Science.gov

Sample records for large volcanic lake

  1. Global CO2 Emission from Volcanic Lakes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  2. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  3. Subsurface structure of a large basaltic maar volcano examined using geologically constrained potential field modelling, Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia

    NASA Astrophysics Data System (ADS)

    van den Hove, Jackson C.; Ailleres, Laurent; Betts, Peter G.; Cas, Ray A. F.

    2015-10-01

    Lake Purrumbete Maar (LPM) is situated in the Late Cenozoic intraplate, basaltic Newer Volcanics Province, southeastern Australia. It is one of the largest maar volcanoes in the world with a near circular crater that is up to 2800 m in diameter containing a 45 m deep lake. Gellibrand Marl accidental lithics, which occurs to a maximum depth of 250 m below LPM, represent the deepest excavated host rock unit present in the volcanic succession. Irregular clast shapes and peperitic textures observed in marl lithics suggest the host rock was poorly consolidated during the eruption. High-resolution lake- and land-based gravity and magnetic data were collected to conduct forward and inverse modelling of the subsurface architecture of the maar. This is done to test the assumption, based on lithics, that the diatreme is limited to 250 m depth and identify the reasons behind LPM's large size. The collection of gravity data presented a unique challenge due to the nature of measuring small changes in gravitational forces (< 1 mGal) associated with the maar, on an inherently unstable water body. The magnetic anomaly over LPM shows several irregularly shaped high magnetic anomalies. Four 2.5-D forward models transecting LPM were constructed based on the observed potential field data. Five coalesced vents forming an undulating shallow bowl-shaped diatreme contained within the Gellibrand Marl (240 m depth) were modelled to satisfy the observed magnetic response, while a large sill body at 350 m depth is modelled to satisfy the observed gravity response. A second forward model, completed to satisfy the observed magnetic response, also includes coalesced shallow bowl-shaped diatremes within the Gellibrand Maar, which then taper down to become thin and steep sided and extend down to the basement (1,050 m depth). Three-dimensional property and geometry inversions suggest the diatreme most likely extends to a greater depth than the initial maximum depth of 240 m. This suggests the

  4. Triggering of volcanic activity by large earthquakes

    NASA Astrophysics Data System (ADS)

    Avouris, D.; Carn, S. A.; Waite, G. P.

    2011-12-01

    Statistical analysis of temporal relationships between large earthquakes and volcanic eruptions suggests seismic waves may trigger eruptions even over great distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stress and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur dioxide (SO2) emission rates as a measure of subtle changes in activity. An SO2 timeseries was produced from OMI data for thirteen persistently active volcanoes. Seismic surface-wave amplitudes were modeled from the source mechanisms of moment magnitude (Mw) ≥7 earthquakes, and peak dynamic stress (PDS) was calculated. The SO2 timeseries for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Delay times for an SO2 response following each earthquake at each volcano were analyzed and compared to a random catalog. The delay time analysis was inconclusive. However, an analysis based on the occurrence of large earthquakes showed a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with lava lakes included in this study, Ambrym, Gaua, Villarrica, and Erta Ale, showed a clear response to dynamic stress while the volcanoes with lava domes, Merapi, Semeru, and Bagana showed no response at all. Perhaps

  5. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  6. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  7. Past, present and future of volcanic lake monitoring

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri; Tassi, Franco; Mora-Amador, Raúl; Sandri, Laura; Chiarini, Veronica

    2014-02-01

    Volcanic lake research boosted after lethal gas burst occurred at Lake Nyos (Cameroon) in 1986, a limnic rather than a volcanic event. This led to the foundation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990s. We here introduce the first data base of volcanic lakes VOLADA, containing 474 lakes, a number that, in our opinion, is surprisingly high. VOLADA could become an interactive, open-access working tool where our community can rely on in the future. Many of the compiled lakes were almost unknown, or at least unstudied to date, whereas there are acidic crater lakes topping active magmatic-hydrothermal systems that are continuously or discontinuously monitored, providing useful information for volcanic surveillance (e.g., Ruapehu, Yugama, Poás). Nyos-type lakes, i.e. those hosted in quiescent volcanoes and characterized by significant gas accumulation in bottom waters, are potentially hazardous. These lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term build-up of gas, which can be released after a trigger. Some of the unstudied lakes are possibly in the latter situation. Acidic crater lakes are easily recognized as active, whereas Nyos-type lakes can only be recognized as potentially hazardous if bottom waters are investigated, a less obvious operation. In this review, research strategies are lined out, especially for the “active crater lakes”. We make suggestions for monitoring frequency based on the principle of the “residence time dependent monitoring time window”. A complementary, multi-disciplinary (geochemistry, geophysics, limnology, statistics) approach is considered to provide new ideas, which can be the bases for future volcanic lake monitoring. More profound deterministic knowledge (e.g., precursory signals for phreatic eruptions, or lake roll-over events) should not only serve to enhance conceptual models of

  8. Large and small volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Agust; Mohajeri, Nahid

    2013-04-01

    Despite great progress in volcanology in the past decades, we still cannot make reliable forecasts as to the likely size (volume, mass) of an eruption once it has started. Empirical data collected from volcanoes worldwide indicates that the volumes (or masses) of eruptive materials in volcanic eruptions are heavy-tailed. This means that most of the volumes erupted from a given magma chamber are comparatively small. Yet, the same magma chamber can, under certain conditions, squeeze out large volumes of magma. To know these conditions is of fundamental importance for forecasting the likely size of an eruption. Thermodynamics provides the basis for understanding the elastic energy available to (i) propagate an injected dyke from the chamber and to the surface to feed an eruption, and (ii) squeeze magma out of the chamber during the eruption. The elastic energy consists of two main parts: first, the strain energy stored in the volcano before magma-chamber rupture and dyke injection, and, second, the work done through displacement of the flanks of the volcano (or the margins of a rift zone) and the expansion and shrinkage of the magma chamber itself. Other forms of energy in volcanoes - thermal, seismic, kinetic - are generally important but less so for squeezing magma out of a chamber during an eruption. Here we suggest that for (basaltic) eruptions in rift zones the strain energy is partly related to minor doming above the reservoir, and partly to stretching of the rift zone before rupture. The larger the reservoir, the larger is the stored strain energy before eruption. However, for the eruption to be really large, the strain energy has to accumulate in the entire crustal segment above the reservoir and there will be additional energy input into the system during the eruption which relates to the displacements of the boundary of the rift-zone segment. This is presumably why feeder dykes commonly propagate laterally at the surface following the initial fissure

  9. Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Ross, Kelly Ann; Smets, Benoît; De Batist, Marc; Hilbe, Michael; Schmid, Martin; Anselmetti, Flavio S.

    2014-09-01

    The history of Lake Kivu is strongly linked to the activity of the Virunga volcanoes. Subaerial and subaquatic volcanoes, in addition to lake-level changes, shape the subaquatic morphologic and structural features in Lake Kivu's Main Basin. Previous studies revealed that volcanic eruptions blocked the former outlet of the lake to the north in the late Pleistocene, leading to a substantial rise in the lake level and subsequently the present-day thermohaline stratification. Additional studies have speculated that volcanic and seismic activities threaten to trigger a catastrophic release of the large amount of gases dissolved in the lake. The current study presents a bathymetric mapping and seismic profiling survey that covers the volcanically active area of the Main Basin at a resolution that is unprecedented for Lake Kivu. New geomorphologic features identified on the lake floor can accurately describe related lake-floor processes for the first time. The late Pleistocene lowstand is observed at 425 m depth, and volcanic cones, tuff rings, and lava flows observed above this level indicate both subaerial and subaquatic volcanic activities during the Holocene. The geomorphologic analysis yields new implications on the geologic processes that have shaped Lake Kivu's basin, and the presence of young volcanic features can be linked to the possibility of a lake overturn.

  10. Hydrological and chemical budgets in a volcanic caldera lake: Lake Kussharo, Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Chikita, Kazuhisa A.; Nishi, Masataka; Fukuyama, Ryuji; Hamahara, Kazuhiro

    2004-05-01

    The contribution of groundwater output and input to lake chemistry was examined by estimating the hydrological and chemical budgets of a volcanic caldera lake, Lake Kussharo, Hokkaido, Japan. The lake level, meteorology, river water discharge and water properties were measured in the ice-covered period of February-March and in the open-water period of June-October in 2000. The inorganic chemistry was then analyzed for sporadically sampled surface water and hot spring water. The chemistry of lake water at pH of 6.91-7.57 and EC25 (electric conductivity at 25 °C) of 29.2-32.7 mS/m appears to be controlled by the input of two types of hot spring water: the inflowing Yunokawa River (pH of 2.27-2.54 and EC25 of 197.8-258.0 mS/m) and groundwater discharging directly on the shore (pH of 7.13-8.32, water temperature of 35.0-46.5 °C and EC25 of 53.1-152.0 mS/m). Excluding the days with rainfall or a great change in lake level, the water budget in June-October gave a net groundwater input of -7.41 to 2.97 m 3/s. A combination of the water budget with the chemical budget of two solutes, Na + and Cl -, led to the best estimate of groundwater output, Gout, at 3.82±3.02 m 3/s, the total fresh groundwater input, ∑ Gfresh, at 2.14±1.00 m 3/s, and the total groundwater input of hot springs, ∑ Gspa, at 0.46±0.05 m 3/s. This is comparable to G out=3.87 m3/ s, ∑G fresh=1.49 m3/ s and ∑G spa=0.41 m3/ s during the ice-covered period. The chemical flux by the freshwater input plays an important role in the alkalinity of lake water, as does the chemical flux by the shoreline hot springs. The large groundwater output could occur by the leakage through the highly permeable, underground pumice, distributed from the east-to-south lake basin to southeast of the outlet.

  11. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  12. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  13. Intense groundwater circulation and heat flow near a volcanic lake: Taal Volcano, Philippines

    NASA Astrophysics Data System (ADS)

    Cardenas, M. B.; Lagmay, A. A.; Andrews, B.; Rodolfo, R. S.; Cabria, H. B.; Zamora, P. B.; Lapus, M. R.

    2011-12-01

    transect near the water table has an EC of ~8,500 microS/cm. This area of fresher water also has relatively cooler groundwater. This suggests recharge from recent rain events. Our results suggest a very active shallow hydrologic system which leads to large exchange fluxes of fluid and solute mass and energy between the lake and its adjacent aquifer. This aspect of volcanic lake and caldera energy-mass balance needs further attention in future studies since it may be important in large-scale dynamics.

  14. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.

    2016-01-01

    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  15. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  16. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  17. Large Scale Impacts and Triggered Volcanism

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Melosh, H. J.

    2003-01-01

    The idea of impact induced volcanism continues to blossom ([1-3] and other references). However, this appealing idea is seldom supported with an appropriate physical mechanism. The aim of this publication is to critically examine some frequently cited mechanisms of impact energy transformation into a trigger for terrestrial volcanism and magmatism.

  18. The bimodal pH distribution of volcanic lake waters

    NASA Astrophysics Data System (ADS)

    Marini, Luigi; Vetuschi Zuccolini, Marino; Saldi, Giuseppe

    2003-02-01

    Volcanic lake waters have a bimodal pH distribution with an acidic mode at pH 0.5-1.5 and a near neutral mode at pH 6-6.5, with relatively few samples having pH 3.5-5. To investigate the reasons for this distribution, the irreversible water-rock mass exchanges during the neutralization of acid SO 4-Cl waters with andesite, under both low- and high-temperature conditions, were simulated by means of the EQ3/6 software package, version 7.2. Reaction path modeling under low temperature and atmospheric P CO 2 and f O 2, suggests that several homogeneous and/or heterogeneous pH buffers exist both in the acidic and neutral regions, but no buffer is active in the intermediate, central pH region. Again, the same titration, under high-temperature, hydrothermal-magmatic conditions, is expected to produce comparatively infrequent aqueous solutions with pH values in the 3.5-5 range, upon their cooling below 100°C. Substantially different pH values are obtained depending on the cooling paths, either through boiling or conductive heat losses. These distinct pH values are governed by either HSO 4- and HCl (aq), in poorly neutralized aqueous solutions, or the CO 2(aq)/HCO 3- couple and the P CO 2 value as well, in neutralized aqueous solutions. Finally, mixing of the acid lake water with the aqueous solutions produced through high-temperature titration and cooled below 100°C is unlikely to generate mixtures with pH values higher than 3, unless the fraction of the acidic water originally present in the lake becomes very small, which means its virtually complete substitution. Summing up, the evidence gathered through reaction path modeling of the neutralization of acid lake waters with andesite, both at low and high temperatures, explains the scarcity of volcanic lake waters with measured pH values of 3.5-5.

  19. Volcanic flood simulation of magma effusion using FLO-2D for drainage of a caldera lake at the Mt. Baekdusan

    NASA Astrophysics Data System (ADS)

    Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun

    2014-05-01

    Many volcanic craters and calderas are filled with large amounts of water that can pose significant flood hazards to downstream communities due to their high elevation and the potential for catastrophic releases of water. Recent reports pointed out the Baekdusan volcano that is located between the border of China and North Korea as a potential active volcano. Since Millennium Eruption around 1000 AD, smaller eruptions have occurred at roughly 100-year intervals, with the last one in 1903. Sudden release of huge volume of water stored in temporarily elevated caldera lakes are a recurrent feature of volcanic environments, due to the case with which outlet channels are blocked by and re-cut through, unwelded pyroclastic deposits. The volcano is showing signs of waking from a century-long slumber recently. Volcanic floods, including breakouts from volcanic lakes, can affect communities beyond the areas immediately affected by a volcanic eruption and cause significant hydrological hazards because floods from lake-filled calderas may be particularly large and high. Although a number of case studies have been presented in the literature, investigation of the underlying physical processes is required as well as a method for interpreting the process of the rapid release of water stored in a caldera lake. The development of various forecasting techniques to prevent and minimize economic and social damage is in urgent need. This study focuses on constructing a flood hazard map triggered by the magma effusion in the Baekdusan volcano. A physically-based uplift model was developed to compute the amount of water and time to peak flow. The ordinary differential equation was numerically solved using the finite difference method and Newton-Raphson iteration method was used to solve nonlinear equation. The magma effusion rate into the caldera lake is followed by examples at other volcanic activities. As a result, the hydrograph serves as an upper boundary condition when hydrodynamic

  20. ARE LAKES GETTING WARMER? REMOTE SENSING OF LARGE LAKE TEMPERATURES

    EPA Science Inventory

    Recent studies (Levitus et al., 2000) suggest a warning of the world ocean over the past 50 years. Freshwater lakes could also be getting warmer but thermal measurements to determine this are lacking. Large lake temperatures are vertically and horizontally heterogeneous and vary ...

  1. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  2. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  3. Stable isotope composition of Earth's large lakes

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Gibson, J. J.; YI, Y.; Birks, S. J.; Sharp, Z. D.

    2011-12-01

    Lakes cover about three percent of Earth's continental area. Large lakes can significantly influence lake shore and regional climates by increasing specific humidity during evaporation and by moderating air temperatures. Stable isotopes of oxygen and hydrogen can be used to quantify lake evaporation, providing a supplementary and often cost-advantageous alternative to conventional hydrologic approaches that require over lake monitoring. Further, stable isotopes in lake sediments are an established tool in paleolimnology; however, interpreting changes to a lake's past isotope composition requires a comprehensive understanding of contemporary controls. Here, δ18O and δ2H values of water in modern lakes exceeding roughly five hundred square kilometres are compiled (n > 35). Voluminous and seasonally mixed lakes - such as the North American Great Lakes - have the most homogenous stable isotope compositions, while perennially-stratified and shallow lakes show greater variability. A rudimentary stable isotope mass balance is used to assess evaporation fluxes from large lakes on Earth. The approach taken simultaneously constrains evaporation outputs for both oxygen and hydrogen stable isotopes by accounting for lake effects on the overlying atmosphere. Model development highlights important considerations such as isotopic stratification (Tanganyika), disequilibrium isotopic mass balances (Baikal), and non-steady hydrologic balances. Further, the isotope composition of Earth's continental surface water reservoir is calculated. This value - weighted to volume - is δ18O = -7.5±1.7 per mille relative to standard mean ocean water. The compiled data may be a useful tracer of continental evaporate in global atmospheric water cycle studies and could be coupled to climate models capable of incorporating oxygen-18 and deuterium tracers to improve or validate calculations of lake effects on regional water cycling.

  4. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  5. Late Archean mafic volcanism in the Rainy Lake area, Minnesota

    SciTech Connect

    Day, W.C.

    1985-01-01

    The Late Archean greenstone-granite terrane of the Rainy Lake area of Minnesota contains a bimodal suite of mafic and felsic volcanic and coeval intrusive rocks. New geochemical data show that the mafic rocks occur in three distinct suites: (1) low-Ti olivine- and quartz-tholeiite, (2) high-Ti quartz-tholeiite and basaltic andesite, and (3) calc-alkaline lamprophyric monzodiorite and quartz diorite. The low-Ti tholeiites have only slightly evolved Mg-numbers from 53-63, Ni=125-300 ppm, and MORB-like REE. In contrast, the high-Ti tholeiites are more evolved, with Mg*=26-48, Ni=43-135 ppm, and higher total REE. Compared to the tholeiitic suites, the monzodiorite suite has more primitive Mg-numbers, with Mg*=70-78, Ni<410 ppm, and anomalously high LREE. The two tholeiitic suites cannot be genetically related by simple fractionation from a single parent magma; however, lower degrees of partial melting (<8 percent) of a mantle source (spinel periodotite) with REE=2-4 times chondrites could have produced the high-Ti tholeiites, and higher degrees of melting (20-30 percent) of a similar source could have generated the low-Ti tholeiites. In contrast, the monzodiorite suite must have been generated from either a LREE-rich or (and) a garnet-bearing source (garnet periodotite). The authors conclude that shallow melting (<40-50 km) within the Archean mantle in the Rainy Lake area produced the tholeiitic rocks, and that deep melting (>40-50 km) generated the lamprophyric monzodiorites.

  6. An aem-tem study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks (basalts, basaltic andesites, and dacitic/ rhyolitic extrusive and pyroclastics) that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as the result of addition of elements released from adjacent reaction sites. Weathering of the highly evolved, Fe-rich Jug Mountain complex at the north end of the lake produced a homogeneous smectite assemblage that contrasts with the heterogeneous smectite assemblage replacing the volcanics along the eastern margin of the lake. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials

  7. Results from NICLAKES Survey of Active Faulting Beneath Lake Managua,Central American Volcanic arc

    NASA Astrophysics Data System (ADS)

    McIntosh, K.; Funk, J.; Mann, P.; Perez, P.; Strauch, W.

    2006-12-01

    Lake Managua covers an area of 1,035 km2 of the Central American volcanic arc and is enclosed by three major stratovolcanoes: Momotombo to the northwest was last active in AD 1905, Apoyeque in the center on the Chiltepe Peninsula was last active ca. 4600 years BP, and Masaya to the southeast was last active in AD 2003. A much smaller volcano in the lake (Momotombito) is thought to have been active <4500 yrs B.P. In May of 2006, we used a chartered barge to collect 330 km of 3.5 kHz profiler data along with coincident 274 km of sidescan sonar and 27 km of seismic reflection data. These data identify three zones of faulting on the lake floor: 1) A zone of north-northeast-striking faults in the shallow (2.5-7.5 m deep) eastern part of the lake that extends from the capital city of Managua, which was severely damaged by shallow, left-lateral strike-slip displacements on two of these faults in 1931 (M 5.6) and 1972 (M 6.2): these faults exhibit a horst and graben character and include possible offsets on drowned river valleys 2) a semicircular rift zone that is 1 km wide and can be traced over a distance of 30 km in the central part of the lake; the rift structure defines the deepest parts of the lake ranging from 12 to 18 m deep and is concentric about the Apoyeque stratocone/Chiltepe Peninsula; and 3) a zone of fault scarps defining the northwestern lake shore that may correlate to the northwestern extension of the Mateare fault zone, a major scarp-forming fault that separates the Managua lowlands from the highlands south and west of the city. Following previous workers, we interpret the northeast- trending group of faults in the eastern part of the lake as part of a 15-km-long discontinuity where the trend of the volcanic arc is offset in a right-lateral sense. The semi-circular pattern of the rift zone that is centered on Chiltepe Peninsula appears to have formed as a distal effect of either magma intrusion or withdrawal from beneath this volcanic complex. The

  8. A Holocene Lake Record from Laguna Del Maule (LdM) in the Chilean Andes: Climatic and Volcanic Controls on Lake Depositional Dynamics

    NASA Astrophysics Data System (ADS)

    Valero-Garces, B. L.; Frugone Alvarez, M.; Barreiro-Lostres, F.; Carrevedo, M. L.; Latorre Hidalgo, C.; Giralt, S.; Maldonado, A.; Bernárdez, P.; Prego, R.; Moreno-Caballud, A.

    2014-12-01

    Central Chile is a tectonically active, drought-prone region sensitive to latitudinal variations in large-scale cold fronts associated with fluctuations of the Pacific subtropical high. Holocene high-resolution records of climate and volcanic events could help inform more on the frequency of extensive droughts as well as volcanic and seismic hazards. LdM is a high altitude, volcanic lake located in the Transition Southern Volcanic Zone (~36°S, 2200 m.a.s.l). The LdM volcanic field is a very seismically and volcanically active zone in the Andes, with several caldera-forming eruptions over the last 1.5 Ma, and intense postglacial activity. In 2013, we recovered over 40 m of sediment cores at four sites of LdM and collected > 20 km of seismic lines. The cores were imaged, their physical and geochemical properties analysed with a Geotek MSCL and XRF scanner respectively, and sampled for TOC, TIC, TS, TN, BioSi, and bulk mineralogy. The chronology was constructed with a Bayesian age-depth model including 210Pb-137Cs, the Quizapú volcanic ash (1932 AD) and 17 AMS 14C dates. The 4.8 m long composite sequence spans the Late glacial and Holocene.Sediments are massive to banded, quartz and plagioclase-rich silts with variable diatom (BioSi, 15- 30 %) and organic matter content (TOC, 1-5 %). Four main units have been defined based on sedimentological and geochemical composition. The transition from Unit 4 to 3 is ascribed to the onset of the Holocene; Unit 2 spans the mid Holocene, and Unit 1 the last 4 ka. Higher (lower) TOC, Br/Ti and Fe/Mn ratios in units 1 and 3 (2 and 4) suggest higher (lower) organic productivity in the lake and dominant oxic (anoxic) conditions at the bottom of the lake. Up to 17 ash and lapilli layers mark volcanic events, mostly grouped in units 1 and 3. Periods of higher lake productivity (units 1 and 3) are synchronous to higher frequency of volcanic events. Some climate transitions (LIA, 4ka, 8ka and 11ka) are evident in the LdM sequence

  9. CO2 emission from Costa Rica and Nicaragua volcanic lakes, Central America

    NASA Astrophysics Data System (ADS)

    Padilla, G.; Nolasco, D.; Ibarra, M.; Chavarría, D.; Alvarez, J.; Barrancos, J.; Rodriguez, F.; Padron, E.; Melian Rodriguez, G.; Hernandez Perez, P. A.; Perez, N.; Muñoz, A.

    2010-12-01

    Several volcanoes along the Central America Volcanic Arc (CAVA), which extends along 1.100 km from Guatemala to Panama, contain caldera or crater lakes. Diffuse surface CO2 degassing rate is a useful geochemical tool for volcano monitoring not only at the air-soil interphase of volcanic systems but also at the air-water boundary in lake-filled calderas and crater lakes. Studies of diffuse CO2 degassing rate in volcanic lakes can help to volcanic surveillance programs and to improve our knowledge on the global CO2 emission from volcanic lakes, which is actually estimated about 136 Mt year-1 (Pérez et al., 2010). The aim of this study is to evaluate diffuse CO2 emission rate from several Costa Rican (Botos, Hule and Laguna Río Cuarto) and Nicaragua volcanic lakes (Nejapa and Apoyeque). In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of the accumulation chamber method with a modified floating device. CO2 efflux maps were constructed using sequential Gaussian simulations (sGs) to quantify the total CO2 emission from each volcanic lake. CO2 efflux measurements from the lake filled Botos crater ranged from negligible values to 13.3 g m-2 d-1, while for Hule and Río Cuarto, these values ranged from 93.0 to 158.3 g m-2 d-1 and 71.9 and 91.7 g m-2 d-1, respectively. While for two crater lakes studied in Nicaragua, Apoyeque and Nejapa, CO2 values ranged from negligible to 2784.4 g m-2 d-1 and 9.9 to 388.9 g m-2 d-1, respectively. The total output of diffuse CO2 emission rate of these volcanic lakes were 0.8 ± 0.4 t d-1 from Botos, 100 ± 2 t d-1 from Hule, 31.4 ± 0.3 t d-1 from Río Cuarto, 211 ± 13 t d-1 from Apoyeque and 5.8 ± 0.5 t d-1 from Nejapa. The Botos crater lake showed a diffuse CO2 emission output per unit of area of 7.7 t d-1 km-2. While Nejapa crater lake showed 28.4 t d-1 km-2, the Laguna Río Cuarto and Apoyeque volcanic lakes showed similar diffuse CO2 emission output per unit of area (68 and

  10. Large-scale volcanism associated with coronae on Venus

    NASA Technical Reports Server (NTRS)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  11. Global monsoon precipitation responses to large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  12. Global monsoon precipitation responses to large volcanic eruptions

    PubMed Central

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  13. Global monsoon precipitation responses to large volcanic eruptions.

    PubMed

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  14. Sinking of volcanic ash in uncompacted sediment in williams lake, washington.

    PubMed

    Anderson, R Y; Nuhfer, E B; Dean, W E

    1984-08-01

    Volcanic ash from the eruption of Mount St. Helens on 18 May 1980 fell into Williams Lake in eastern Washington and was temporarily suspended at the sediment-water interface. After several months of compaction, the ash layer broke up and sank into lower density uncompacted lake sediment. Stratigraphic time displacements of several hundred years and a failure to recognize discontinuous ash layers in sediment cores are possible consequences of this process. PMID:17750852

  15. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  16. Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake

    SciTech Connect

    Takano, B.

    1987-03-27

    The Yugama crater lake at Kusatsu-Shirane volcano, Japan, contains nearly 2200 tons (2800 parts per million) of polythionate ions (S/sub n/O/sub 6//sup 2 -/, where n = 4 to 9). Analytical data on lake water sampled before and during eruptions in 1982 showed that the concentrations of polythionates decreased and sulfate increased in response to the preeruption activities of the subaqueous fumaroles. These changes were observed 2 months before the first phreatic explosion on 26 October 1982. The monitoring of polythionates and sulfate in crater lake water is a promising means of anticipating potential volcanic eruption hazards.

  17. High resolution seismic reflection profiles of Holocene volcanic and tectonic features, Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Hart, P. E.; Bursik, M. I.; McClain, J. S.; Moore, J. C.; Boyle, M.; Childs, J. R.; Novick, M.; Hill, D. P.; Mangan, M.; Roeske, S.

    2009-12-01

    The Inyo-Mono Craters of Long Valley and Mono Basin, California are the youngest eruptive vents of the Great Basin, USA and the second youngest in California. They are one of two seismically active volcanic centers with geothermal power production in the Walker Lane, western Great Basin, the other being the Coso Volcanic Field to the south. High resolution seismic reflection data collected from the northern tip of the Mono Craters eruptive centers in Mono Lake delinates two structural zones proximal to the active volcanic centers in Mono Lake. A growth structure drapped by ~30 m or more of bedded sediment shows increasing deformation and offset of clastic deposits on the northwest margin of the basin. Coherent thin-bedded stratigraphic sections with strong reflectors to 30-100m depth are preserved on the western and northern margins of the basin. The southern and southeastern areas of the lake are generally seismically opaque, due to extensive ash and tephra deposits as well as widespread methane. Thin pockets of well-bedded, poorly consolidated sediment of probable Holocene and last glacial age are present within intrabasin depressions providing some local age constraints on surfaces adjacent to volcanic vents and volcanically modified features.

  18. A viable microbial community in a subglacial volcanic crater lake, Iceland.

    PubMed

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-01-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L(-1)). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 x 10(4) ml(-1) and 4 x 10(7) g(-1), respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Grímsvötn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake. PMID:15383238

  19. What We Can Learn from the Next Large Volcanic Eruption

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2015-12-01

    The April 1982 eruption of El Chichón in México stimulated interest in the climate response to volcanic eruptions and produced very useful observations and modeling studies. The last large volcanic eruption, the June 15, 1991 eruption of Mt. Pinatubo in the Philippines, was the best observed eruption ever, and serves as a canonical example for studies of aerosol production and transport, climate response, and deposition on ice sheets. However, many aspects of both eruptions were poorly observed, climate model simulations of the response are imperfect, and new scientific issues, such as stratospheric sulfate geoengineering, raise new scientific questions that could be answered by better observations of the next large volcanic eruption. In this talk I will summarize what we know and do not know about large volcanic eruptions, and discuss new questions that can be addressed by being prepared for the next large eruption. These include: How and how fast will SO2 convert to sulfate aerosols? How will the aerosols grow? What will be the size distribution of the resulting sulfate aerosol particles? How will the aerosols be transported throughout the stratosphere? How much fine ash gets to the stratosphere, how long does it stay there, and what are its radiative and chemical impacts? How will temperatures change in the stratosphere as a result of the aerosol interactions with shortwave (particularly near IR) and longwave radiation? Are there large stratospheric water vapor changes associated with stratospheric aerosols? Is there an initial injection of water from the eruption? Is there ozone depletion from heterogeneous reactions on the stratospheric aerosols? As the aerosols leave the stratosphere, and as the aerosols affect the upper troposphere temperature and circulation, are there interactions with cirrus and other clouds?

  20. Sr isotope diversity of hot spring and volcanic lake waters from Zao volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiromasa; Ohba, Tsukasa; Fujimaki, Hirokazu

    2007-09-01

    The ratio of 87Sr/ 86Sr was measured from different water samples of thermal/mineral (hot spring as well as crater lake) and meteoric origins, in order to specify the location and to verify the detailed model of a volcano-hydrothermal system beneath Zao volcano. The ratio showed a trimodal distribution for the case of thermal/mineral water: 0.7052-0.7053 (Type A, Zao hot spring), 0.7039-0.7043 (Type B, Okama crater lake and Shin-funkiko hot spring), and 0.7070-0.7073 (Type C, Gaga, Aone, and Togatta hot springs), respectively. However, in comparison, the ratio was found to be higher for meteoric waters (0.7077-0.7079). The water from the central volcanic edifice (Type B) was found to be similar to that of nearby volcanic rocks in their Sr isotopic ratio. This indicates that the Sr in water was derived from shallow volcanic rocks. The 87Sr/ 86Sr ratio for water from the Zao hot spring (Type A) was intermediate between those of the pre-Tertiary granitic and the Quaternary volcanic rocks, thus suggesting that the water had reacted with both volcanic and granitic rocks. The location of the vapor-liquid separation was determined as the boundary of the pre-Tertiary granitic and the Quaternary volcanic rocks by comparing the results of this strontium isotopic study with those of Kiyosu and Kurahashi [Kiyosu, Y., Kurahashi, M., 1984. Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan. J. Volcanol. Geotherm. Res. 21, 313-331.].

  1. Theoretical validation of ASTER_SW algorithm used for the monitoring of hot volcanic lakes

    NASA Astrophysics Data System (ADS)

    Bernard, A.; Campion, R. A.

    2009-12-01

    Volcanic lakes act as calorimeters trapping most of the heat released by the magmatic-hydrothermal system. Their temperatures are reflecting the balance between heat input from hydrothermal fluids and heat output by radiation and evaporation of the lake surface to the atmosphere. The lake surface temperature is one of the key parameters used to detect any changes occurring in the activity of the volcano. Many volcanic lakes are located in remote areas with difficult accessibility; these lakes are rarely visited or monitored. For these lakes remote sensing by satellite sensors can provide very useful information at relatively low cost. To retrieve surface temperatures of volcanic lakes, ASTER TIR images were analyzed with a recently developed algorithm based on a Split-Window method: ASTER_SW. The difference in brightness temperatures between bands 13 and 14 (BT13-BT14) is used to remove the atmospheric effects. The use of two TIR channels enables a differential absorption measurement in order to remove the effects of atmospheric vapor and other absorbing constituents. Further validation of the ASTER_SW algorithm was completed by applying it to a set of radiance simulations using a line-by-line radiative transfer code (Atmosphit). Parameters used for the simulations included: surface temperatures, atmospheric models and surface altitudes. The obtained spectra were integrated on the spectral response functions of ASTER and converted with the inverse of Planck’s law to get the Simulated Brightness Temperatures (SBT). The ASTER_SW algorithm was applied to the SBT. The coherence between ASTER_SW-derived temperatures and model surface temperatures was examined to test the validity and robustness of the algorithm. ASTER_SW proved to be accurate in most circumstances, revealing no systematic bias in any peculiar atmosphere or altitude. However, for very warm lakes (T>50°C), a small dependency on surface altitude is appearing in tropical atmospheres. The low frequency of

  2. Volcanic Geology of Negit Island, Mono Lake, CA

    NASA Astrophysics Data System (ADS)

    Bursik, M.; Kobs, S.; Jayko, A.

    2008-12-01

    Negit Island, located in Mono Lake, eastern California, is a dacitic cumulodome with seven distinct lava flows emanating from at least four separate vent areas. Vent areas are dominated by en echelon northeast-trending fissures, indicating strong tectonic control. Neptunian(?) pyroclastic deposits on the north end of the island indicate an explosive subaqueous eruption early in island history. Northwestern shorelands, as well as a former landbridge to the island, retain a localized cap of rotated Pleistocene lake bottom sediment blocks, suggesting that proto-Negit was similar to modern Paoha Island, a nearby young structural dome draped with rotated lake bed blocks and explosive ejecta. In analogy with Paoha, the pyroclastic ejecta and blocks may thus indicate sublacustrine block landsliding with attendant eruption as an initial magmatic-structural dome grew, on which later lava domes and flows were superposed. What may be the oldest lava flow, in the center-west, is overlain by a deep orange-red soil, and three Mono Craters tephras. The well-developed soil indicates an extended period of chemical weathering before overlying tephra deposition. The southwestern end of the island is dominated by young lava flows and a prominent dome, which are not overlain by the most recent North Mono Craters tephra of 1350 A.D., consistent with earlier work indicating that parts of the island are younger than any eruption of the Mono Craters. The history of early structural doming with little or minimal eruptive activity at both Negit and Paoha Islands may have important implications for the current episode of noneruptive unrest and doming at nearby Long Valley caldera.

  3. The Geysers-Clear Lake area, California: thermal waters, mineralization, volcanism, and geothermal potential

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Burns, M.G.; Goff, F.E.; Peters, E.K.; Thompson, J.M.

    1993-01-01

    Manifestations of a major thermal anomaly in the Geysers-Clear Lake area of northern California include the late Pliocene to Holocene Clear Lake Volcanics, The Geysers geothermal field, abundant thermal springs, and epithermal mercury and gold mineralization. The epithermal mineralization and thermal springs typically occur along high-angle faults within the broad San Andreas transform fault system that forms the western boundary of the North American plate in this area. The young volcanic rocks overlie Mesozoic marine rocks of the Great Valley sequence which have been thrust above the coeval Franciscan Complex and penecontemporaneously dropped back down along low-angle detachment faults. Geothermal power production has peaked at The Geysers and pressure declines indicate significant depletion of the fluid resource. It is proposed that recently discovered, isotopically shifted steam in the northwest Geysers area indicates the presence not of deep connate water but rather of boiled-down, boron-rich Franciscan evolved meteoric water. This water is likely to be present in limited quantities and will not provide a significant hot water resource for geothermal power production at The Geysers field or from the main Clear Lake volcanic field. -from Authors

  4. Distal tephrochronology in volcanic regions: Challenges and insights from Kamchatkan lake sediments

    NASA Astrophysics Data System (ADS)

    Plunkett, Gill; Coulter, Sarah E.; Ponomareva, Vera V.; Blaauw, Maarten; Klimaschewski, Andrea; Hammarlund, Dan

    2015-11-01

    Kamchatka is one of the world's most active volcanic regions and has hosted many explosive eruptions during the Holocene. These eruptions had the potential to disperse tephra over wide areas, forming time-synchronous markers wherever those tephras are found. Recent research in Kamchatka has begun to focus on the geochemical analysis of individual glass shards in order to characterise tephra layers. We have applied this approach to the study of visible tephras from three lakes - one in central and two in northern Kamchatka - with the aim of identifying key tephras and potential issues in the application of distal (> 100 km from an active volcano) tephra in volcanically complex regions. In total, 23 tephras from 22 tephra beds have been geochemically analysed, representing products from at least four volcanic systems in Kamchatka. We demonstrate that distal lake sediments in the region can yield reliable tephrostratigraphies, capturing tephra from eruptions that have the greatest potential to disperse volcanic ash beyond the region. We draw attention to issues relating to correlating and distinguishing key marker horizons from the highly active Shiveluch Volcano, namely the need to ensure inter-lab comparability of geochemical data and good chronological control of the proximal and distal tephras. Importantly, we have also extended the known distribution of two key tephra isochrons from the Ksudach volcano. Our work contributes valuable glass geochemical on data several key marker beds that will facilitate future tephra and palaeoenvironmental research within and beyond Kamchatka.

  5. The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka

    NASA Astrophysics Data System (ADS)

    Self, A. E.; Klimaschewski, A.; Solovieva, N.; Jones, V. J.; Andrén, E.; Andreev, A. A.; Hammarlund, D.; Brooks, S. J.

    2015-11-01

    A sediment sequence was taken from a closed, high altitude lake (informal name Olive-backed Lake) in the central mountain range of Kamchatka, in the Russian Far East. The sequence was dated by radiocarbon and tephrochronology and used for multi-proxy analyses (chironomids, pollen, diatoms). Although the evolution of Beringian climate through the Holocene is primarily driven by global forcing mechanisms, regional controls, such as volcanic activity or vegetation dynamics, lead to a spatial heterogeneous response. This study aims to reconstruct past changes in the aquatic and terrestrial ecosystems and to separate the climate-driven response from a response to regional or localised environmental change. Radiocarbon dates from plant macrophytes gave a basal date of 7800 cal yr BP. Coring terminated in a tephra layer, so sedimentation at the lake started prior to this date, possibly in the early Holocene following local glacier retreat. Initially the catchment vegetation was dominated by Betula and Alnus woodland with a mosaic of open, wet, aquatic and semi-aquatic habitats. Between 7800 and 6000 cal yr BP the diatom-inferred lake water was pH 4.4-5.3 and chironomid and diatom assemblages in the lake were initially dominated by a small number of acidophilic/acid tolerant taxa. The frequency of Pinus pumila (Siberian dwarf pine) pollen increased from 5000 cal yr BP and threshold analysis indicates that P. pumila arrived in the catchment between 4200 and 3000 cal yr BP. Its range expansion was probably mediated by strengthening of the Aleutian Low pressure system and increased winter snowfall. The diatom-inferred pH reconstructions show that after an initial period of low pH, pH gradually increased from 5500 cal yr BP to pH 5.8 at 1500 cal yr BP. This trend of increasing pH through the Holocene is unusual in lake records, but the initially low pH may have resulted directly or indirectly from intense regional volcanic activity during the mid-Holocene. The chironomid

  6. Investigation of volcanic gas analyses and magma outgassing from Erta' Ale lava lake, Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.

    1980-05-01

    The analyses of 18 volcanic gas samples collected over a two-hour period at 1075°C from Erta' Ale lava lake in December 1971 and of 18 samples taken over a half-hour period at 1125-1135°C in 1974 display moderately to intensely variable compositions. These variations result from imposed modifications caused by (1) atmospheric contamination and oxidation, (2) condensation and re-evaporation of water during collection, (3) analytical errors, and (4) chemical reactions between the erupted gases and a steel lead-in tube. Detailed examinations of the analyses indicate the erupted gases were at chemical equilibrium before collection. This condition was partially destroyed by the imposed modifications. High-temperature reaction equilibria were more completely preserved in the 1974 samples. Numerical procedures based on thermodynamic calculations have been used to restore each analysis to a composition representative of the erupted gases. These procedures have also been used to restore the anhydrous mean compositions reported for two series of collections taken at the lava lake in January 1973. The corrected analyses for 1971 and 1973 have similar compositions (69.6-71.3% H 2O, 1.6-2.4% H 2, 17.8-19.4% CO 2, 0.8-1.6% CO, 4.9-8.8% SO 2, 0.2-0.5% S 2, and 0.4-1.0% H 2S); those for 1974 were somewhat different (77.1% H 2O, 1.6% H 2, 11.7% CO 2, 0.5% CO, 7.4% SO 2, 0.3% S 2, 0.9% H 2S and 0.4% HCl). The O 2 and S 2 fugacities of all restored analyses are similar when compared at the same temperatures. O 2 fugacities are close to those of the quartz-magnetite-fayalite buffer. The restored analyses show no evidence of significant short-term (minutes, hours) variations in the compositions of the gases released from the lava lake, and evidence of long-term variations is limited. The restored analyses indicate the O 2 and S 2 potentials of the lava lake remained nearly constant from 1971 to 1974. However, there is a relative decrease in CO 2 between the 1973 and 1974 corrected

  7. Explosive Volcanism in Io's Lava Lakes - The Key To Constraining Eruption Temperature?

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2010-12-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic jovian moon (e.g., [1]). Io’s low atmospheric pressure means that activity within Io’s lava lakes may be explosive, exposing lava at near-liquid temperatures (currently poorly constrained for Io). Lava lakes are therefore important targets for future missions to Io [2, 3]. With this in mind, hand-held infrared imagers were used to collect thermal emission data from the phonolite Erebus (Antarctica) lava lake [4] and the basalt lava lake at Erta’Ale (Ethiopia). Temperature-area distributions and the integrated thermal emission spectra for each lava lake were determined from the data. These calculated spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [5] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Model resurfacing rates broadly agree with observed behaviour at both lakes. Despite different composition lavas, the short-wavelength infrared thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, an Io volcano that has been proposed to be a persistent, active lava lake [6] and which is the source of a 300-km high dust and gas plume. Our study of the cooling of the hottest lava exposed at Erta’Ale yields constraints on the ability of multispectral imagers to determine eruption temperature. We find

  8. Volcanically far-flung lake sediments in New Zealand and their diatom contents.

    NASA Astrophysics Data System (ADS)

    Harper, Margaret; Pledger, Shirley; Smith, Euan; Van Eaton, Alexa; Wilson, Colin

    2015-04-01

    Explosive volcanic eruptions from the Taupo Volcanic Zone in New Zealand such as the Okaia (28.6 ka) and Oruanui (25.4 ka) through paleolake Huka and the Taupo eruption (1.8 ka) through paleolake Taupo dispersed measurable quantities of diatom valves (remains of siliceous microscopic algae) along with the tephra (Van Eaton et al. 2013). Diatoms preserved in tephra can inform us about the past histories of freshwater floras and lakes. For instance the possibly extinct endemic diatom Cyclostephanos novaezealandiae is 20 times commoner in the Late Pleistocene Oruanui and Okaia tephras than in recent lake sediment. We also found Aulacoseira valves (mainly A. ambigua) were generally shorter in the older tephras, possibly due to more turbid conditions in the glacial period due to stronger winds or less availability of nutrients. Some information on eruptive processes can also be derived from diatoms. Nearly all diatom assemblages in the Oruanui samples were remarkably similar, indicating they were well mixed by turbulence in the eruptive column. The exceptions were a proximal sample (11 km from vent) and the clasts of slightly older lake sediment enclosed in the ignimbrite. One clast was dominated by different Aulacoseira taxa (A. granulata and A. granulata var. angustissima). A vent in a shallower area of paleolake Huka could well have been the source of these diatoms. The proximal sample was deposited early in the eruption and on a ridge close to the rim of the paleolake, and is also likely to have come from a local vent. Caution should be used in interpreting diatoms in phreatomagmatic tephra in lake basins. Earlier Harper & Collen (2002) interpreted diatoms associated with the Okaia and Oruanui tephras in the Poukawa basin (125 km from vent) as indicating the existence of lakes formed when drainage was blocked by the tephra. However the strong resemblance of the assemblages and morphometry of Aulacoseira valves to those measured in our new samples shows they arrived

  9. Crustal Structure in Northern Malawi and Southern Tanzania surrounding Lake Malawi and the Rungwe Volcanic Province

    NASA Astrophysics Data System (ADS)

    Borrego, D.; Kachingwe, M.; Nyblade, A.; Shillington, D. J.; Gaherty, J. B.; Ebinger, C. J.; Accardo, N. J.; O'Donnell, J. P.; Mbogoni, G. J.; Mulibo, G. D.; Chindandali, P. R. N.; Mphepo, F.; Ferdinand-Wambura, R.; Tepp, G.

    2015-12-01

    Crustal Structure in Northern Malawi and Southern Tanzania surrounding Lake Malawi and the Rungwe Volcanic Province David Borrego, Marsella Kachingwe, Andrew Nyblade, Donna Shillington, James Gaherty, Cynthia Ebinger, Natalie Accardo, J.P. O'Donnell, Gabriel Mbogoni, Gabriel Mulibo, Richard Ferdinand, Patrick Chindandali, Felix Mphepo, Gabrielle Tepp, Godson Kamihanda We investigate crustal structure around the northern end of Lake Malawi and in the Rungwe Volcanic Province using teleseismic receiver functions from the SEGMeNT broadband seismic network. The SEGMeNT network includes 55 broadband stations deployed in northern Malawi and southern Tanzania, with station spacing of 20-50 km. Fourteen stations were deployed in August 2013, and an additional of 41 stations were added to the study region beginning June/July 2014. Fifteen stations are located in Malawi and 40 stations in Tanzania. Data from teleseismic earthquakes with magnitude 5.5 or greater in the 30 to 90 degrees distance range have been used to calculate P-wave receiver functions. Estimates of Moho depth and Vp/Vs ratios have been obtained by using the H-k stacking method and by jointly inverting the receiver functions with Rayleigh wave phase velocities. Preliminary results show an average Moho depth of 40 km and an average Vp/Vs ratio of 1.72. Little evidence is found for magmatic underplating beneath the Rungwe Volcanic Province.

  10. MATHEMATICAL MODELS OF WATER QUALITY IN LARGE LAKES. PART 1: LAKE HURON AND SAGINAW BAY

    EPA Science Inventory

    This research was undertaken to develop and apply a mathematical model of the water quality in large lakes, particularly Lake Huron and Saginaw Bay and Lake Erie. A mathematical model of phytoplankton biomass was developed which incorporates both phytoplankton and zooplankton as ...

  11. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    SciTech Connect

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  12. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    SciTech Connect

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and

  13. Late Quaternary volcanic record from lakes of Michoacán, central Mexico

    NASA Astrophysics Data System (ADS)

    Newton, Anthony J.; Metcalfe, Sarah E.; Davies, Sarah J.; Cook, Gordon; Barker, Philip; Telford, Richard J.

    2005-01-01

    This paper describes the initial stages of the development of a tephrochronology for the region of the Michoacán-Guanajuato volcanic field (MGVF) in central Mexico. There are two elements to this: the geochemical characterisation of volcanic glass and the linkage of tephra deposits to eruptions of known age. The MGVF is dominated by cinder cones and shield volcanoes which erupt only once. There are only two stratovolcanoes (multiple eruptions) which are common elsewhere in the Trans-Mexican Volcanic Belt. Tephras were sampled from sub-aerial sites close to cones of known age and from lake sediment cores from the Zirahuén, Pátzcuaro and Zacapu basins in the State of Michoacán. Multiple samples were collected to ensure that each tephra was well represented. The glass was analysed by electron microprobe and found to be calc-alkaline in composition. SiO 2 abundances varied from 52% to 75%. Full results are available at http://www.geo.ed.ac.uk/tephra/. The ages of the dated cones ranged from the 20th century AD to ca 17,000 14C years BP. Tephras from eruptions of El Jabali (3840 14C years BP), Jorullo (1759-1774) and Paricutín (1943-1952) have been identified in lake cores. These provide a means of correlating between basins and have the potential to provide a basis for understanding the volcanic history of this area and for dating a wider range of sediment sequences.

  14. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel

    2014-05-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin. Analysis of historical annual precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern largest eruptions and corresponding annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. The atmospheric effect of the volcanic aerosol cloud produced after the Mt. Pinatubo eruption shows responses in the climate system on a hemispherical to global scale. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene period at a rate that persisted throughout the last glacial-interglacial cycle, though with large variations in the mean. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises

  15. LARGE LAKE MODELS - USES, ABUSES, AND FUTURE

    EPA Science Inventory

    Mathematical modeling has played and should continue to play an important role in Great Lakes management and scientific development. Great Lakes modeling is entering a phase of relative maturity in which expectations are more realistic than in the past. For example, it is now rea...

  16. Geosphere-Biosphere Interactions in Bio-Activity Volcanic Lakes: Evidences from Hule and Rìo Cuarto (Costa Rica)

    PubMed Central

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon). PMID

  17. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica).

    PubMed

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon). PMID

  18. Patterns in benthic biodiversity link lake trophic status to structure and potential function of three large, deep lakes.

    PubMed

    Hayford, Barbara L; Caires, Andrea M; Chandra, Sudeep; Girdner, Scott F

    2015-01-01

    Relative to their scarcity, large, deep lakes support a large proportion of the world's freshwater species. This biodiversity is threatened by human development and is in need of conservation. Direct comparison of biodiversity is the basis of biological monitoring for conservation but is difficult to conduct between large, insular ecosystems. The objective of our study was to conduct such a comparison of benthic biodiversity between three of the world's largest lakes: Lake Tahoe, USA; Lake Hövsgöl, Mongolia; and Crater Lake, USA. We examined biodiversity of common benthic organism, the non-biting midges (Chironomidae) and determined lake trophic status using chironomid-based lake typology, tested whether community structure was similar between the three lakes despite geographic distance; and tested whether chironomid diversity would show significant variation within and between lakes. Typology analysis indicated that Lake Hövsgöl was ultra-oligotrophic, Crater Lake was oligotrophic, and Lake Tahoe was borderline oligotrophic/mesotrophic. These results were similar to traditional pelagic measures of lake trophic status for Lake Hövsgöl and Crater Lake but differed for Lake Tahoe, which has been designated as ultra-oligotrophic by traditional pelagic measures such as transparency found in the literature. Analysis of similarity showed that Lake Tahoe and Lake Hövsgöl chironomid communities were more similar to each other than either was to Crater Lake communities. Diversity varied between the three lakes and spatially within each lake. This research shows that chironomid communities from these large lakes were sensitive to trophic conditions. Chironomid communities were similar between the deep environments of Lake Hövsgöl and Lake Tahoe, indicating that chironomid communities from these lakes may be useful in comparing trophic state changes in large lakes. Spatial variation in Lake Tahoe's diversity is indicative of differential response of chironomid

  19. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only <550 km2. Inspired by local mythology of gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of <6500 cal. years B.P., including several very large and regionally significant tephras. Erupted compositions range from basaltic to dacitic, with some showing compositional change during eruption. In addition, some large eruptions appear to have generated regionally significant tsunami, represented by characteristically mixed sandy layers with lithologies including shell fragment, foraminifera and volcanic particles.

  20. Stratified tephra records from lake sediment archives: Holocene eruptions of the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Scholz, Christopher; Poppe, Sam; Schmid, Martin; Ross, Kelly Ann

    2016-04-01

    Lake sediments preserve rare stratified records of explosive volcanism, often with accompanying chronological controls or climatostratigraphic detail. In proximal areas where outcrop stratigraphies are complex, exposures isolated and sediments frequently eroded, the lacustrine archive provides a means to check the order of events and identify additional eruptions not preserved on land. The visible volcanic ash (tephra) record within lake sediments may be limited by eruption volume, distance from source and high sedimentation rates. A more complete eruption history can be detected through the study of non-visible tephra layers. Such "cryptotephra" records may be revealed through non-destructive core-scanning methods, such as XRF-scanning or magnetic susceptibility measurements, or by more thorough laboratory processes and microscopic analysis. Compositional analysis of tephra glass shards using WDS-EPMA and LA-ICP-MS provide a means to provenance eruptions, to cross-correlate between multiple sediment cores, and to establish connections between the lacustrine record and proximal outcrops. Here we present the results of such a "tephrostratigraphic" approach applied to the Holocene volcanic record of the Virunga Volcanic Province (VVP). More than 10 explosive volcanic eruptions, attributed to multiple volcanic centres, are evidenced over the last 12,000 years. This unique insight into the frequency of explosive eruptions from the VVP, demonstrates the potential of visible and cryptotephra investigations in lacustrine sediment archives as a means of studying past, present and future volcanic hazards.

  1. Depth gradients in food web processes linking large lake habitats

    EPA Science Inventory

    In large lakes around the world, shifts in ecological communities are often associated with water depth. This suggests that there may be concomitant changes in patterns of resource allocation. Using Lake Superior as an example, we explored this idea through stable isotope analyse...

  2. Large 13C enrichment in primary carbonates from Andean Altiplano lakes, northwest Argentina

    NASA Astrophysics Data System (ADS)

    Valero-Garcés, Blas L.; Delgado-Huertas, Antonio; Ratto, Norma; Navas, Ana

    1999-08-01

    We report here extreme 13C enrichments up to +13‰ PDB in primary calcite and aragonite precipitates in saline, well oxygenated waters from high-altitude lakes in the southern Andean Altiplano, northwestern Argentina. Biological effects, as well as variations in carbon source inputs, and in the exchange rate with atmospheric CO 2, are commonly considered the main controls on the carbon isotope values of authigenic lacustrine carbonate. We present sedimentological and geochemical evidence that favors physical processes — evaporation effects and CO 2-degassing — as major controls on 13C enrichment. We propose that large enrichments may result from the non-equilibrium gas-transfer isotope fractionation during CO 2-degassing from thermal springs and evaporation effects in arid environments. The dilution effect by large quantities of 14C-free CO 2 hinders accurate 14C chronology of these lake records based on lacustrine organic matter and aquatic plants. Our results indicate that geothermal and volcanic CO 2 sources in lake basins located in volcanic settings, and physical fractionation may have a greater significance than commonly accepted to explain lacustrine carbon isotope records.

  3. Isotopic and geophysical constraints on the structure andevolution of the Clear Lake volcanic system

    SciTech Connect

    Hammersley, L.; DePaolo, D.

    2005-03-09

    New Sr and Nd isotopic data are combined with availableinformation on the composition and petrology of lavas and the thermal andseismic structure of the underlying crust to develop a detailed model forthe deep structure and magmatic processes of the Clear Lake volcanicsystem in northern California. The isotopic data require a two-stagemodel for magmatic evolution. In stage I, basaltic magma (eNd=+6 to +8;87Sr/86Sr=0.703 to 0.7035; SiO2V50 percent) is fed from the mantle intothe lower and middle crust and evolves through combined crustalassimilation and fractional crystallization to basaltic andesite (eNd=+5to +0.4; 87Sr/86Sr=0.70328 to 0.70485; SiO2655 percent to 57 percent). Instage II, the basaltic andesite magmas are transported upward and areeither erupted at the surface or stored in shallow magma chambers wherethey evolve by fractional crystallization to form dacitic and rhyoliticmagmas (SiO2665 percent to 70 percent). High-silica rhyolites (SiO2675percent; high 87Sr/86Sr) show evidence that further crustal assimilationcan occur where upper crustal temperatures are elevated. Calculateddensities of Clear Lake lavas indicate that basalt should pond at a depthof 12-18 km where seismic data show a pronounced density boundary withinthe crust. Thermodynamic models of assimilation require that mid-crustaltemperatures are at least 600-800 8C to allow for enough assimilation toexplain the isotopic data. Both surface heat flow and thermobarometry ofcrustal xenoliths in andesites are consistent with these inferred hightemperatures. The Clear Lake volcanic system provides an opportunity tocross-calibrate petrological, geochemical and geophysical approaches. Theresults confirm that magma supply, magma buoyancy, and crustaltemperatures control magmatic evolution. A temporal trend of increasingeNd over the past 2 million years suggests that magma supply in the ClearLake volcanic field has been increasing and is still high. This isconsistent with high heat flow in the area

  4. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Hao, Zhixin; Sun, Di

    2016-04-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after tropical volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport,therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  5. The large volcanic eruptions at different latitude bands and patterns of winter temperature changes over China

    NASA Astrophysics Data System (ADS)

    Sun, D.; Hao, Z.; Zheng, J.

    2015-12-01

    Based on the chronology of 29 large volcanic eruptions events (Volcanic Explosivity Index≥4) since 1951 and gridded temperature dataset from China Meteorological Data Sharing Service System, we identified the patterns of winter temperature changes over China after the large volcanic eruptions, comparing with the mean temperature within the five years before, then we analyzed the related dynamic mechanisms of different patterns by NCEP reanalysis data and model output data from Community Earth System Model (CESM). The results showed that the winter temperature decreased more than 1°C in East China after volcanic eruptions on middle-lower latitudes and equatorial bands. After volcanic eruptions on different latitudes, the temperature spatial patterns were summarized as two types, which included that temperature was cooling centered on Northeast and warming in Tibets, and its opposite pattern. The first pattern was usually detected after equatorial volcanic eruptions in spring/summer and it also appeared after volcanic eruptions on high latitudes in spring/autumn. After middle-lower latitude volcanic eruptions, the variation of geopotential height on 500hPa showed that the positive anomaly was existed at the East of Ural mountain, which caused the temperature decreased in Northwest , Central East and Southeast when east asian trough was intensified. After high latitudes volcanic eruptions, the zonal circulation was more obvious at middle latitudes, the cold air was not easy to transport therefore winter temperature increased in China except for the Yangtze River Basin. The result of full forcing experiments by CESM showed that temperature decreased at most regions after large volcanic eruptions on equatorial /high bands, and troughs and wedges were developed on 500 hPa. The variation of geopotential height was nearly reversed after volcanic eruptions on high latitudes, only the temperature of Tibetan Plateau decreased. But how the variation of geopotential height

  6. Origin of temporal - compositional variations during the eruption of Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Jordan, S. C.; Jowitt, S. M.; Cas, R. A. F.

    2015-01-01

    The Pleistocene Lake Purrumbete maar eruption sequence of the Newer Volcanics Province of southeastern Australia records stratigraphic, temporal and geochemical variations that cannot be explained by crustal processes, such as fractional crystallisation and crustal contamination. Samples from the Lake Purrumbete maar have distinct trace element trends that correlate with stratigraphic height, with decreasing incompatible element concentrations from the bottom of the sequence to the top, indicating that the most enriched melts were ejected during the earliest eruption stages, with the least enriched melts erupted in the final stages. Variations in rare earth element ratios indicate that these melts were formed by dynamic melting of garnet lherzolite mantle material, consistent with other volcanic centres within the basaltic cones subprovince of the Newer Volcanics Province. The geochemistry of the erupted units at Lake Purrumbete also record minor differentiation of the melts by olivine fractionation, although these processes alone cannot explain the observed geochemical variations in the eruption sequence. Further differentiation of the melts by different processes such as deep clinopyroxene fractionation or assimilation of metasomatised lithosphere may be responsible for the observed geochemical trends at Lake Purrumbete. This shows the complexity of the plumbing system of monogenetic volcanoes, but also shows the opportunities that these volcanoes provide to study these processes in detail, as the geochemical variations that are preserved in this type of volcanism by fast magma ascent through the crust, as evidenced by the presence of fresh mantle xenoliths, predominantly reflect processes that occurred in the mantle rather than in the crust.

  7. Large lake models - uses, abuses, and future

    SciTech Connect

    Sonzogni, W.C.; Canale, R.P.; Lam, D.C.L.; Lick, W.; Mackay, D.; Minns, C.K.; Richardson, W.L.; Scavia, D.; Smith, V.; Strachan, W.M.J.

    1987-01-01

    Mathematical modeling has played and should continue to play an important role in Great Lakes management and scientific development. Great Lakes modeling is entering a phase of relative maturity in which expectations are more realistic than in the past. For example, it is now realized that the modeling process itself is valuable even if the resulting models are not immediately useful for management. The major thrust in the past has been water quality (eutrophication) modeling, but there has been a recent shift toward developing toxic substances models. Modelers and model users have been limited by a lack of knowledge of Great Lakes processes, limited data availability, and incomplete or improper validation. In the future, greater emphasis is needed on specifying prediction uncertainty and conducting proper model validation - including calibration, verification, and post-audits. Among the Great Lakes modeling activities likely to have the greatest payoff in the near future are (1) the development and refinement of toxic substances models, (2) post-auditing and improvement of eutrophication models, and (3) the adaptation of models for use on personal computers to allow greater model utilization.

  8. Trends in evaporation of a large subtropical lake

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2016-03-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  9. Large magnitude silicic volcanism in north Afar: the Nabro Volcanic Range and Ma'alalta volcano

    NASA Astrophysics Data System (ADS)

    Wiart, Pierre; Oppenheimer, Clive

    2005-02-01

    Much of the volcanological work carried out in north Afar (Ethiopia and Eritrea) has focused on the nature of Quaternary basaltic volcanic ranges, which have been interpreted by some as incipient oceanic ridges. However, we show here that comparable volumes of silicic magmas have been erupted in the region. In particular, the virtually undocumented Nabro Volcanic Range, which runs NNE for more than 100 km from the margin of the Danakil Depression to the Red Sea coast, has a subaerial volume of the order of 550 km3, comparable to the volume of the much better known Erta’Ale axial volcanic range. Nabro volcano itself forms part of an enigmatic double caldera structure with a neighbouring volcano, Mallahle. The twin caldera may have formed simultaneously with the eruption of between 20 and 100 km3 of ignimbrite, which is readily identified in Landsat Thematic Mapper imagery. This may have been the largest explosive eruption in north Afar, and is certain to have deposited a regionally distributed tephra layer which could in the future be located in distal sections as a stratigraphic marker. An integrated analysis of optical and synthetic aperture radar imagery, digital topographic data, field observations and limited geochemical measurements, permits here descriptions and first order inferences about the structure, stratigraphy and compositions of several major volcanoes of the Afar Triangle, and a reappraisal of their regional significance.

  10. Aerosol Generation and Circulation in the Shore Zone of a Large Alpine Lake - Lake Tahoe, CA.

    NASA Astrophysics Data System (ADS)

    Vancuren, R. A.; Pederson, J. R.; Lashgari, A.; Dolislager, L.; McCauley, E.

    2007-12-01

    The temporal, spatial, and size-distribution patterns of particles in ambient air over shore areas and the surface of Lake Tahoe (Nevada and California) were studied as part of the 2003-2004 Lake Tahoe Atmospheric Deposition Study (LTADS). The concentration of population along the shoreline of Lake Tahoe makes accurate characterization of local aerosol generation and transport especially important in estimation of annual particle flux onto the surface of the lake. Road dust and smoke are major components of aerosols around the lake, and strong gradients in concentrations and size distributions occur as functions of location, land use, traffic activity, and time of day. Measurements taken while cruising on the lake show that aerosol concentrations in near-shore areas are primarily controlled by a combination of diurnal cycling of land- and lake- breezes coupled with varying particle emissions driven by cycles of human activity. Source-associated particle size distributions were shown to be conserved over wide ranges of particle concentrations. Particle concentrations over water were shown to be highly localized, with highest concentrations just offshore from urbanized areas, lowest concentrations along undeveloped shoreline, and low-to-intermediate concentrations over the middle areas of the lake. Based in part on these observations, particle deposition to the lake is seen to be dominated by mesoscale processes, with only minor contributions from regional or large scale atmospheric circulation.

  11. Paleomagnetic study of the Portage Lake Volcanics exposed in the Quincy Mine

    NASA Astrophysics Data System (ADS)

    Michels, Alexander C.

    A detailed paleomagnetic and rock-magnetic investigation was conducted on thirty six basaltic flows of the ˜1095 Ma Portage Lake Volcanics. The flows were sampled along the East Adit of the Quincy Mine (Hancock, MI). Thirty two flows yielded well-defined primary magnetization directions carried by magnetite. A secondary magnetization component carried by hematite was also found in twenty nine flows. After correction for serial correlation between the flows, nineteen independent mean directions were calculated. The corresponding paleomagnetic pole is located at 25.5 °N, 182.1 °W (A95 = 3.5°). The new pole overlaps with the pole from the ˜1087 Ma Lake Shore Traps suggesting a standstill of the North American plate during that time period. The low angular dispersion of virtual geomagnetic poles (S = 7.9°) suggests that the flows were erupted within a short time period, or that the strength of geomagnetic secular variation was lower than that of the recent field.

  12. Emmons Lake Volcanic Center, Alaska Peninsula: Source of the Late Wisconsin Dawson tephra, Yukon Territory, Canada

    USGS Publications Warehouse

    Mangan, M.T.; Waythomas, C.F.; Miller, T.P.; Trusdell, F.A.

    2003-01-01

    The Emmons Lake Volcanic Center on the Alaska Peninsula of southwestern Alaska is the site of at least two rhyolitic caldera-forming eruptions (C1 and C2) of late Quaternary age that are possibly the largest of the numerous caldera-forming eruptions known in the Aleutian arc. The deposits produced by these eruptions are widespread (eruptive volumes of >50 km3 each), and their association with Quaternary glacial and eolian deposits on the Alaska Peninsula and elsewhere in Alaska and northwestern Canada enhances the likelihood of establishing geochronological control on Quaternary stratigraphic records in this region. The pyroclastic deposits associated with the second caldera-forming eruption (C2) consist of loose, granular, airfall and pumice-flow deposits that extend for tens of kilometres beyond Emmons Lake caldera, reaching both the Bering Sea and Pacific Ocean coastlines north and south of the caldera. Geochronological and compositional data on C2 deposits indicate a correlation with the Dawson tephra, a 24 000 14C BP (27 000 calibrated years BP), widespread bed of silicic ash found in loess deposits in west-central Yukon Territory, Canada. The correlation clearly establishes the Dawson tephra as the time-stratigraphic marker of the last glacial maximum.

  13. Primary alkaline magmas associated with the Quaternary Alligator Lake volcanic complex, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Eiché, G. E.; Francis, D. M.; Ludden, J. N.

    1987-02-01

    The Alligator Lake complex is a Quaternary alkaline volcanic center located in the southern Yukon Territory of Canada. It comprises two cinder cones which cap a shield consisting of five distinct lava units of basaltic composition. Units 2 and 3 of this shield are primitive olivine-phyric lavas (13.5 19.5 cation % Mg) which host abundant spinel lherzolite xenoliths, megacrysts, and granitoid fragments. Although the two lava types have erupted coevally from adjacent vents and are petrographically similar, they are chemically distinct. Unit 2 lavas have considerably higher abundances of LREE, LILE, and Fe, but lower HREE, Y, Ca, Si, and Al relative to unit 3 lavas. The 87Sr/86Sr and 143Nd/144Nd isotopic ratios of these two units are, however, indistinguishable. The differences between these two lava types cannot be explained in terms of low pressure olivine fractionation, and the low concentrations of Sr, Nb, P, and Ti in the granitoid xenoliths relative to the primitive lavas discounts differential crustal contamination. The abundance of spinel lherzolite xenoliths and the high Mg contents in the lavas of both units indicates that their compositional differences originated in the upper mantle. The Al and Si systematics of these lavas suggests that, compared to unit 3 magmas, the unit 2 magmas may have segregated at greater depths from a garnet lherzolite mantle. The identical isotopic composition and similar ratios of highly incompatible elements in these two lava units argues against their differences being a consequence of random metasomatism or mantle heterogeneity. The lower Y and HREE contents but higher concentrations of incompatible elements in the unit 2 lavas relative to unit 3 can be most simply explained by differential partial melting of similar garnet-bearing sources. The unit 2 magmas thus appear to have been generated by smaller degrees of melting at a greater depth than the unit 3 magmas. The contemporaneous eruption of two distinct but

  14. Comparison between mechanisms of CO2 degassing from El Chichon volcanic lake, México, and Specchio di Venere lake, Pantelleria, Italia.

    NASA Astrophysics Data System (ADS)

    Jácome Paz, M. P.; Taran, Y.; Inguaggiato, S.; Collard, N.; Vita, F.; Pecoraino, G.

    2014-12-01

    We present results of the CO2 diffuse emission from the surface of two volcanic lakes: El Chichón (EC) in Mexico and Specchio di Venere (SV) on Pantelleria Island, Italy. Both lakes are drainless, have similar sizes (~2x105 m2) and similar input-output dynamics. However, they are drastically different in water chemistry. The SV lake is alkaline (pH >9) and of a high near constant salinity, whereas EC lake is acidic (pH 2.3) and of a low variable salinity. In the vicinity of both lakes there are thermal grounds with steam vents and hot springs and a high CO2 soil flux. The SV lake has high alkalinity (~70 meq/L), whereas the EC lake is characterized by high concentration of dissolved CO2. CO2 flux measurements from the surface of both lakes were made with the "floating" accumulation chamber. During the flux measuring, gas samples were taken for carbon isotopic analysis. Soil flux measurements were also made in the crater of El Chichon volcano and on the area adjacent to the SV lake. The preliminary results of CO2 fluxes indicate EC lake has a high CO2 flux with a mean value of 3500 g m-2 d-1, with the highest values alignment across NW-SE and NE-SW faults and a high degassing by bubbling gases, especially near the strongest NE fumarolic field. While SV has a mean value of the CO2 flux ~ 10 g m-2 d-1 and limited bubbling on the lake surface. High CO2 flux was measured from the soil near the lake at the Mofeta place. A net mean diffusion flux (without bubbles) from EC lake is about 350 times higher than that from SV lake (3500 g m-2 d-1 vs 10 g m-2 d-1). SV has the total CO2 flux by diffusion of ~3 ton d-1 from an area of 0.3 km2 and the total flux of 0.44 ton d-1 by bubbling areas at SW and S zones. The EC lake has the total CO2 flux of 840 ton d-1 from an area of 0.24 km2. The total CO2 output from SV is nevertheless about two times higher taking into account the seepage from the lake (~ 8 kg s-1) of highly carbonated water.

  15. Non-volcanic tremor driven by large transient shear stresses

    USGS Publications Warehouse

    Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.

    2007-01-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.

  16. Non-volcanic tremor driven by large transient shear stresses.

    PubMed

    Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D

    2007-08-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress. PMID:17671500

  17. Feedback between deglaciation and volcanism in arc settings: the example of the Mount Mazama volcanic system, Crater Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Branecky, C.; Farner, M. J.; Keller, T.; Lanza, F.; Siravo, G.; Gonnermann, H. M.; Huybers, P. J.; Manga, M.; van der Wal, W.

    2015-12-01

    Previous studies have found correlations between glacial cycles and volcanism. Any such feedback mechanisms could have important implications for climate through variations in volcanic outgassing. Although decompression melting has been established as a cause for increased volcanism during deglaciation at mid-ocean ridge systems (Jull and McKenzie, 1996), it has not been determined how changes in glacial loading affect other settings such as volcanic arcs. We examine the Mount Mazama volcanic system, Oregon, where pulses of volcanism have been suggested to follow major deglaciations (Bacon et al. 2006). A statistical test regarding the timing of eruptions is first developed, and its application to eruption dates demonstrates statistically significant clustering of eruptions following deglaciation. To explore potential causes for the identified changes in probability of eruptions, the effects of glacial unloading on melt production are computed using a 1D mantle melting model, and the effect of ice unloading on shallow crustal stress conditions is tested with a viscoelastic stress model. Combining these effects into a simple eruption model, we propose that variations in melt supply rates from the mantle and changing stress conditions around a shallow crustal magma reservoir modulate eruption probability during glacial cycles. This model illustrates the physical plausibility of glacial variability causing the identified changes in eruption rates at Mt Mazama.

  18. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  19. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at ~ 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single ~ 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins ~ 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  20. Patterns in Benthic Biodiversity Link Lake Trophic Status to Structure and Potential Function of Three Large, Deep Lakes

    PubMed Central

    Hayford, Barbara L.; Caires, Andrea M.; Chandra, Sudeep; Girdner, Scott F.

    2015-01-01

    Relative to their scarcity, large, deep lakes support a large proportion of the world’s freshwater species. This biodiversity is threatened by human development and is in need of conservation. Direct comparison of biodiversity is the basis of biological monitoring for conservation but is difficult to conduct between large, insular ecosystems. The objective of our study was to conduct such a comparison of benthic biodiversity between three of the world’s largest lakes: Lake Tahoe, USA; Lake Hövsgöl, Mongolia; and Crater Lake, USA. We examined biodiversity of common benthic organism, the non-biting midges (Chironomidae) and determined lake trophic status using chironomid-based lake typology, tested whether community structure was similar between the three lakes despite geographic distance; and tested whether chironomid diversity would show significant variation within and between lakes. Typology analysis indicated that Lake Hövsgöl was ultra-oligotrophic, Crater Lake was oligotrophic, and Lake Tahoe was borderline oligotrophic/mesotrophic. These results were similar to traditional pelagic measures of lake trophic status for Lake Hövsgöl and Crater Lake but differed for Lake Tahoe, which has been designated as ultra-oligotrophic by traditional pelagic measures such as transparency found in the literature. Analysis of similarity showed that Lake Tahoe and Lake Hövsgöl chironomid communities were more similar to each other than either was to Crater Lake communities. Diversity varied between the three lakes and spatially within each lake. This research shows that chironomid communities from these large lakes were sensitive to trophic conditions. Chironomid communities were similar between the deep environments of Lake Hövsgöl and Lake Tahoe, indicating that chironomid communities from these lakes may be useful in comparing trophic state changes in large lakes. Spatial variation in Lake Tahoe’s diversity is indicative of differential response of chironomid

  1. A Record of the in-Lake and Upland Response to Large Earthquakes, Lake Quinault, Washington

    NASA Astrophysics Data System (ADS)

    Leithold, E. L.; Wegmann, K. W.; Bohnenstiehl, D. R.; Smith, S. A.

    2014-12-01

    Lake Quinault, located at the foot of the Olympic Mountains in western Washington, has served as a trap for sediment delivered from the steep, landslide-prone terrain of the Upper Quinault River catchment since its formation between 20,000 and 29,000 years ago. High resolution seismic reflection and sedimentological data reveal a record of both the in-lake and upland response to large earthquakes that have impacted the region during that period. The sedimentary infill of Lake Quinault is dominated by deposition during river floods, which delivered both abundant siliciclastic sediment and plant debris to the lake bottom. Minor episodes of soft-sediment deformation at the lake margins are recorded, and based on a preliminary age model, may be related to known earthquakes, including the well documented 1700 AD Cascadia megathrust event. By far the most dramatic event in the middle-late Holocene record of Lake Quinault, however, is the lateral spreading and degassing of sediments on its gentle western slopes during an event ca. 1300 years ago. Abundant gas chimneys are visible in seismic stratigraphic profiles from this part of the lake. Several of these gas chimneys extend from the limit of seismic penetration at 15-20 m depth in the lake bed upward to the lake bottom where they terminate at mounds with evidence for active venting. Most of the gas chimneys, however, end abruptly around 2.5 m beneath the lake floor and are overlain by parallel, continuous reflectors. Piston cores show soft-sediment deformation at this level, and abrupt shifts in density, magnetic susceptibility, flood layer thickness, particle size, color, and inorganic geochemistry. We interpret these shifts to mark the contact between sediments that experienced shaking and degassing during a strong earthquake event and overlying sediments that have not experienced comparable seismicity. The earthquake evidently strongly affected the Upper Quinault River catchment, causing increased sediment input to

  2. Geology of the Ivanhoe Hg-Au district, northern Nevada: Influence of Miocene volcanism, lakes, and active faulting on epithermal mineralization

    USGS Publications Warehouse

    Wallace, A.R.

    2003-01-01

    The mercury-gold deposits of the Ivanhoe mining district in northern Nevada formed when middle Miocene rhyolitic volcanism and high-angle faulting disrupted a shallow lacustrine environment. Sinter and replacement mercury deposits formed at and near the paleosurface, and disseminated gold deposits and high-grade gold-silver veins formed beneath the hot spring deposits. The lacustrine environment provided abundant meteoric water; the rhyolites heated the water; and the faults, flow units, and lakebeds provided fluid pathways for the hydrothermal fluids. A shallow lake began to develop in the Ivanhoe area about 16.5 Ma. The lake progressively expanded and covered the entire area with fine-grained lacustrine sediments. Lacustrine sedimentation continued to at least 14.4 Ma, and periodic fluctuations in the size and extent of the lake may have been responses to both climate and nearby volcanism. The eruption of rhyolite and andesite flows and domes periodically disrupted the lacustrine environment and produced interfingered flows and lake sediments. The major pulse of rhyolitic volcanism took place between 15.16 ?? 0.05 and 14.92 ?? 0.05 Ma. High-angle faulting began in the basement about 15.2 Ma, penetrated to and disrupted the paleosurface after 15.10 ?? 0.06 Ma, and largely ceased by 14.92 ?? 0.05 Ma. Ground motion related to both faulting and volcanism created debris flows and soft-sediment deformation in the lakebeds. Mercury-gold mineralization was coeval with rhyolite volcanism and high-angle faulting, and it took place about 15.2 to 14.9 Ma. At and near the paleosurface, hydrothermal fluids migrated through tuffaceous sediments above relatively impermeable volcanic and Paleozoic units, creating chalcedonic, cinnabar-bearing replacement bodies and sinters. Disseminated gold was deposited in sedimentary and volcanic rocks beneath the mercury deposits, although the hydrologic path between the two ore types is unclear. Higher-grade gold-silver deposits formed in

  3. Rise of volcanic plumes to the stratosphere aided by penetrative convection above large lava flows

    NASA Astrophysics Data System (ADS)

    Kaminski, E.; Chenet, A.-L.; Jaupart, C.; Courtillot, V.

    2011-01-01

    Turbulent volcanic plumes disperse fine ash particles and toxic gases in the atmosphere and can lead to significant temperature drops in the atmosphere. In the geological past, the emplacement of large continental flood basalts (CFB) has been associated with large changes in the global environment and extinctions of biological species. The variable intensity of environmental changes induced by otherwise similar CFB events, however, begs for a reevaluation of physical controls on the environmental impact of volcanic eruptions. The climatic impact of an eruption depends on its ability to inject gases in the stratosphere and on the eruption rate. Using integral models of turbulent plumes above line and point sources, we find that mass rate estimates for CFBs are in general not large enough for volcanic plumes to reach the stratosphere on their own. Basaltic eruptions, however, are also associated with widespread lava flows which lose large amounts of heat and generate convection in the atmosphere. This form of convection, known as penetrative convection, acts to erode the stably stratified lower atmosphere and generates a thick well-mixed heated atmospheric layer in a few hours. The added buoyancy provided by such a layer almost always ensures that volcanic gases get transported to the stratosphere. The environmental consequences of CFBs are therefore controlled not by the inputs to the atmosphere from individual volcanic plumes, but by the dynamic response of the climate system to a succession of short eruptive pulses within a longer-lasting eruption sequence.

  4. Rise of Volcanic Plumes to the Stratosphere Aided by Penetrative Convection above Large Lava Flows

    NASA Astrophysics Data System (ADS)

    Kaminski, E.; Chenet, A.; Jaupart, C. P.; Courtillot, V.

    2011-12-01

    Turbulent volcanic plumes disperse fine ash particles and toxic gases in the atmosphere and can lead to significant temperature drops in the atmosphere. In the geological past, the emplacement of large continental flood basalts (CFB) has been associated with large changes in the global environment and extinctions of biological species. The variable intensity of environmental changes induced by otherwise similar CFB events, however, begs for a reevaluation of physical controls on the environmental impact of volcanic eruptions. The climatic impact of an eruption depends on its ability to inject gases in the stratosphere and on the eruption rate. Using integral models of turbulent plumes above line and point sources, we find that mass rate estimates for CFBs are in general not large enough for volcanic plumes to reach the stratosphere on their own. Basaltic eruptions, however, are also associated with widespread lava flows which lose large amounts of heat and generate convection in the atmosphere. This form of convection, known as penetrative convection, acts to erode the stably stratified lower atmosphere and generates a thick well-mixed heated atmospheric layer in a few hours. The added buoyancy provided by such a layer almost always ensures that volcanic gases get transported to the stratosphere. The environmental consequences of CFBs are therefore controlled not by the inputs to the atmosphere from individual volcanic plumes, but by the dynamic response of the climate system to a succession of short eruptive pulses within a longer-lasting eruption sequence.

  5. Brownish discoloration of the summit crater lake of Mt. Shinmoe-dake, Kirishima Volcano, Japan: volcanic-microbial coupled origin

    NASA Astrophysics Data System (ADS)

    Ohsawa, Shinji; Sugimori, Kenji; Yamauchi, Hiroshi; Koeda, Tomoyuki; Inaba, Hiroaki; Kataoka, Yoshihisa; Kagiyama, Tsuneomi

    2014-05-01

    A drastic change in lake water color from blue-green to brown was observed in the summit crater lake of Mt. Shinmoe-dake, Kirishima Volcano about 8 months after its 2008 eruption. The color change lasted for about 2 months (April-June 2009). The discoloration was attributed to a brownish color suspension that had formed in the lake water. X-ray fluorescence and Fourier transform infrared analyses of a sample of the suspension identified schwertmannite (Fe8O8(OH)6(SO4)). A cultivation test of iron-oxidizing bacteria for the sampled lake water with lakebed sediment revealed that the crater lake hosts iron-oxidizing bacteria, which likely participated in schwertmannite formation. We suggest that pyrite (FeS2) provided an energy source for the iron-oxidizing bacteria since the mineral was identified in hydrothermally altered tephra ejected by the August 2008 eruption. From consideration of these and other factors, the brownish discoloration of the summit crater lake of Mt. Shinmoe-dake was inferred to have resulted from a combined volcanic-microbial process.

  6. Terrestrial Lava Lake Physical Parameter Estimation Using a Silicate Cooling Model - Implications for a Return to the Volcanic Moon, Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley

    2010-05-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic moon of Jupiter (see [1]). Lava lakes are important targets for future missions to Io [2, 3] as they provide excellent targets at which to measure lava eruption temperature (see [2] for other targets). With this in mind, hand-held infrared imagers were used to collect in-situ thermal emission data from the anorthoclase phonolite lava lake at Erebus volcano (Antarctica) in December 2005 [1, 3] and the basalt lava lake at Erta'Ale volcano (Ethiopia) in September 2009. These data have been analysed to establish surface temperature and area distributions and the integrated thermal emission spectra for each lava lake. These spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [4] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Despite different composition lavas, the integrated thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, a feature on Io that has been proposed to be a persistent, active lava lake [1]. The 2005 Erebus lava lake had an area of ~820 m2 and a measured surface temperature distribution of 1090 K to 575 K with a broad peak from 730 K to 850 K [5]. Total heat loss was estimated to be 23.5 MW [5]. The model fit yielded an area of ~820 m2, temperatures from 1475 K to 699 K, and an average

  7. Contrasted effects of climate change on temperate large lakes oxygen-depletion (Lakes Geneva, Bourget, Annecy)

    NASA Astrophysics Data System (ADS)

    Jenny, Jean-Philippe; Arnaud, Fabien; Dorioz, Jean-Marcel; Alric, Benjamin; Sabatier, Pierre; Perga, Marie-Elodie

    2013-04-01

    Among manifestations of the entry in a new geological era -The Anthropocene- marked by the fingerprinting of human activities in global ecology, the development of persistent zones of oxygen-depletion particularly threatens aquatic ecosystems. This results in a loss of fisheries, a loss of biodiversity, an alteration of food-webs and even, in extreme cases, mass mortality of fauna1. Whereas hypoxia -defined as dissolved oxygen ≤2 mg/l- has long been considered as a consequence of the sole eutrophication, recent studies showed it also depends on climate change. Despite basic processes of oxygen-depletion are well-known, till now no study evaluated the contrasted effects of climate changes on a long-term perspective. Here we show that climate change paced fluctuation of hypoxia in 3 large lakes (Lake Geneva, Lake Bourget and Lake Annecy) that were previously disturbed by unprecedented nutrient input. Our approach couples century-scale paleo-reconstruction of 1) hypoxia, 2) flood regime and 3) nutrient level, thanks to an exceptional 80 sediment core data collection taken in three large lakes (Geneva, Bourget, Annecy), and monitoring data. Our results show that volume of hypoxia can be annually estimated according to varve records through large lakes. Quantitative additive models were then used to identify and hierarchy environmental forcings on hypoxia. Flood regime and air temperatures hence appeared as significant forcing factors of hypolimnetic hypoxia. Noticeably, their effects are highly contrasted between lakes, depending on specific lake morphology and local hydrological regime. We hence show that greater is the lake specific river discharge the more is the control of winter mixing and the lower is the control of thermal stratification on oxygen depletion. Our study confirms that the perturbation of food web due to nutrient input led to a higher vulnerability of aquatic ecosystems to climate change. We further show specific hydrological regime play a crucial

  8. Horizontal differences in ecosystem metabolism of a large shallow lake

    NASA Astrophysics Data System (ADS)

    Idrizaj, Agron; Laas, Alo; Anijalg, Urmas; Nõges, Peeter

    2016-04-01

    The causes of horizontal differences in metabolic activities between lake zones are still poorly understood. We carried out a two-year study of lake metabolism in two contrasting parts of a large shallow lake using the open-water technique based on high-frequency measurements of dissolved oxygen concentrations. We expected that the more sheltered and macrophyte-rich southern part of the lake receiving a high hydraulic load from the main inflow will exhibit equal or higher rate of metabolic processes compared to the open pelagic zone, and higher temporal variability, including anomalous metabolic estimates such as negative gross primary production (GPP) or community respiration (CR) due to rapid water exchange. Our results showed that anomalous metabolic estimates occurred at both stations with a similar frequency and were related rather to certain wind directions, which likely contributed to stronger water exchange between the littoral and pelagic zones. Periods of auto- and heterotrophy (daily mean NEP> or <0) had a 50:50 distribution at the Central Station while the proportions were 30:70 at the Southern Station. High areal GPP estimated in our study exceeding nearly twice the long-term average 14C primary production, showed the advantages of the free-water technique in integrating the metabolism of all communities, a large part of which has remained undetected by the traditional bottle or chamber incubation techniques.

  9. Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau

    USGS Publications Warehouse

    Turner, C.E.; Fishman, N.S.

    1991-01-01

    Recognition of alkaline, saline-lake deposits in the Morrison Formation significantly alters interpretations of depositional environments of this formation, and it also has important implications for paleoclimatic interpretation. Late Jurassic climate was apparently much more arid than had previously been thought. In fact, sedimentologic evidence suggests that the lake basin was typically dry for extended periods and enjoyed only brief wet intervals. This conclusion has important consequences for environmental interpretation of the habitat that was favorable for large herbivorous dinosaurs, which thrived in the Late Jurassic. -from Authors

  10. Palaeoenvironmental history of the Holocene volcanic crater lake Lago d'Averno (central southern Italy) inferred from aquatic mollusc deposits

    NASA Astrophysics Data System (ADS)

    Welter-Schultes, F. W.; Richling, I.

    2000-12-01

    The mollusc record from Lago d'Averno, central southern Italy, provides a detailed 1600-yr record of changes in water quality in response to bradyseismic movements and salinity fluctuations. Bradyseismic vertical land movements and human impact in Roman times led to several transgressions from the Mediterranean Sea, 1 km distant, making the lake a valuable resource for documenting the effect of episodic marine transgressions of a freshwater lake. Low-oxygen-tolerant freshwater molluscs suggest that, at around 900-500 bc the lake had a slowly decreasing medium freshwater quality, resulting from contamination of volcanic origin. Disappearance of the obligate freshwater snails and transgression of low-salinity-tolerant marine species indicate that, after 500 bc, continuous subsidence resulted in episodic marine transgressions from the nearby sea. The construction of a canal that connected the lake with the sea, in 37 bc, is marked by a considerable increase in the number of shells and by arrival of brackish-water-intolerant marine species. Species diversity increased considerably when the area was partly depopulated towards the end of the Roman Empire around ad 400. When the land was slightly uplifted around ad 600-750, the water quality of the lake became less favourable for marine molluscs.

  11. Multiparameter Monitoring Techniques for Reducing Volcanic Risk from Cuicocha Crater Lake, Ecuador

    NASA Astrophysics Data System (ADS)

    Ruiz, A. G.; Samaniego, P.; von Hillebrandt-Andrade, C.; Hall, M. L.; Ruiz, M. C.; Mothes, P. A.; Macias, C. A.

    2013-05-01

    Cuicocha, a crater-lake volcano located 50 km north of Quito, had an explosive caldera eruption 3000 yBP (Hillebrandt, 1989) that affected an important area of the northern part of the Ecuadorian Interandean valley. The first seismic station was installed at Cuicocha in 1988. Since 2010, this volcano showed an increase of their seismic activity, with several earthquakes felt by inhabitants near the volcano, as well as a subtle increase of the CO2 gas emission. After that, the Instituto Geofisico initiated a program for improving the monitoring capacity combined with a new geological field work dataset. Three broad band stations were installed, two of them outside the caldera rim and the other one, CUIC station, is located just over the Yerovi island dome. Two continuous GPS stations NetRS were installed, one 5 km east of Cuicocha and the other inside the caldera. On Yerovi dome it was deployed a permanent CO2 spectrometer. The Instituto Geofisico carries out a periodically EDM and gas measurements on the volcano in order to correlate geodesic data set and degasing CO2 flux. At the same time, we are re-evaluating the eruptive chronology and the eruptive dynamisms of the Cuicocha caldera eruptions, as well as the petrology of the paroxysmal eruptive products. Preliminary results confirm the 3000 yBP eruption age and our current work will be able to constraint the dynamisms, frequency and size of this paroxysmal eruption of Cuicocha. Finally, we plan to use all this information to re-edit the hazard map (von Hillebrandt and Hall, 1988) and guide local authorities and population to reduce the volcanic risk.

  12. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    USGS Publications Warehouse

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  13. Paleomagnetism of the ~1.1 GA Portage Lake Volcanics (Michigan, USA)

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Smirnov, A. V.

    2014-12-01

    The ~1094 Ma Portage Lake Volcanics (PLV) consist of more than 200 lava flows and represent the most voluminous phase of the North American Midcontinent Rift (MCR) extrusive magmatism. Paleomagnetism of the PLV basalts has been investigated since the 1960s, but most of the paleomagnetic datasets are affected by remagnetization due to an extensive mineralization event that affected the PLV flows in the central part of the Keweenaw Peninsula. We report new paleomagnetic data from 74 and 35 PLV lava flows exposed at the eastern tip of the Keweenaw Peninsula and on Isle Royale, respectively. These lava flows represent the uppermost part of the PLV sequence and are much less affected by mineralization and metamorphism than their counterparts in the center of the Keweenaw Peninsula and the older PLV flows. Detailed thermal demagnetization reveals multiple natural remanent magnetization (NRM) components. In addition to a soft, low-temperature NRM component, removed by heating to 350-375°C, two components carried by magnetite were observed. A secondary magnetite component was isolated between ~375 and 525°C. The characteristic component of NRM was isolated between ~525°C and 585°C. The primary origin of this component is supported by positive paleomagnetic field tests. While the magnetite components have the same declination, the primary remanence is characterized by systematically steeper inclinations. The PLV lava flows also reveal a high-temperature NRM component carried by hematite. The direction of the hematite remanence is indistinguishable from that of the primary magnetite component. The new high-quality paleomagnetic pole for the PLV is obtained. We will discuss implications of the new paleomagnetic data for the MCR evolution as well as for the North American apparent polar wander path and plate motion rate at ~ 1.1 Ga.

  14. Temporal Dynamics and Drivers of Ecosystem Metabolism in a Large Subtropical Shallow Lake (Lake Taihu)

    PubMed Central

    Hu, Zhenghua; Xiao, Qitao; Yang, Jinbiao; Xiao, Wei; Wang, Wei; Liu, Shoudong; Lee, Xuhui

    2015-01-01

    With continuous measurements of dissolved oxygen, temperature, irradiance, and wind speed, as well as frequent measurements of pH, oxidation-reduction potential, and algal chlorophyll, temporal dynamics and drivers of ecosystem metabolism in a large nutrient-rich shallow lake (Lake Taihu) are tested in this study. The results show that the dissolved oxygen concentrations in the lake fluctuate annually. They increase in autumn and winter with a peak value of 14.19 mg·L−1 in winter, and decrease in spring and summer with a trough value of 6.40 mg·L−1 in summer. Gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) increase in summer, with their peak values in late summer and autumn, and decrease in winter and spring. Mean values of GPP, R and NEP are 1.75 ± 0.06 (Mean ± SE), 1.52 ± 0.05, and 0.23 ± 0.03 g O2 m−3·d−1, respectively. It is also found that water temperature and surface irradiance are the best predictors of GPP and R, while water temperature (wind speed) has a significantly positive (negative) relationship with NEP. The findings in this study suggest that Lake Taihu is a net autotrophic ecosystem, and water temperature and surface irradiance are the two important drivers of lake metabolism. PMID:25837347

  15. Surface heat flux variability of a large lake: Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2014-12-01

    The heat budget of a lake is a fundamental component of physical limnology, and is strongly dependent on the surface heat flux. However, the surface energy exchange depends on several factors, making it difficult to estimate. In this study we employed several bulk formulas to estimate Lake Geneva's surface heat flux. Combination of different surface heat flux terms leads to a surface heat exchange model which requires various data. Different data sources were used in the heat flux estimates. Meteorological data were taken from an operational numerical weather prediction model, namely COSMO-2 (run by the Swiss meteorological service), while satellite imagery was used for the lake surface water temperature (LSWT). In order to find the best combination of the bulk formulas and to calibrate the model, the temporal evolution of the heat budget was estimated using long-term time series of vertical temperature profiles. Vertical temperature profiles at two points (one in the Lake Geneva's large basin and one in its small basin) were used. A sensitivity analysis was performed to find the key parameters, and more significantly the optimal combination of different heat flux terms. Finally, the spatio-temporal surface heat flux variation was calculated according to the proposed model. In addition, the relationship between variability of the surface heat flux and meteorological forcing was assessed. The different models, which are of differing complexity, gave reasonably consistent results, with differences attributed to simplifications inherent in them. The modeling results revealed that the LSWT and wind forcing are dominant factors underlying Lake Geneva surface heat flux spatial variation, while its temporal variability is mainly due to the global radiation and air temperature changes. In conclusion, the bulk heat balance approach is a useful tool to estimate various heat flux terms as well as their monthly or seasonally contributions. But, in large lakes where the LSWT is

  16. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, R.; Filin, S.; Avni, Y.; Rosenfeld, D.; Marco, S.

    2014-12-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in climate. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a morphological terrace along the lake's shore. Given the global effects of volcanogenic aerosols, we tested the hypothesis that the 1991-92 shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces in the Dead Sea Basin. Analysis of precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern eruptions and annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene and the last glacial-interglacial cycle. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the LGM. The terraces were compared with a time series of volcanogenic sulfate from the GISP2 record, and similar numbers of sulfate concentration peaks and terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the terraces heights. This

  17. Large-scale volcanism associated with coronae on Venus - Implications for formation and evolution

    NASA Technical Reports Server (NTRS)

    Roberts, Kari M.; Head, James W.

    1993-01-01

    Large-scale volcanism, in the form of areally extensive flow fields, is a previously unrecognized important aspect of the evolution of at least 41 percent of all coronae on Venus. The timing and scale of many coronae flow fields is consistent with an origin due to the arrival and pressure-release melting of material in the head of a mantle plume or diapir. The production of voluminous amounts of volcanism at some coronae is proposed to be the result of larger plume size and/or the intersection of mantle upwellings with regions of lithospheric extension and rifting.

  18. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel

    2014-04-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ˜2-m increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin (DSB). Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the Last Glacial Maximum. The terraces were compared with a dated time series of volcanogenic sulfate from the GISP2 ice core, and similar numbers of sulfate concentration peaks and shore terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the heights of the terraces. This correlation may indicate a link between the explosivity of past eruptions, the magnitude of stratospheric injection, and their impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan. Detailed records of such events, albeit rare because of their vulnerability and short longevity, provide an important demonstration of global climatic teleconnections.

  19. 40Ar/39Ar Age Constraints on Caldera Formation of the Emmons Lake Volcanic Center, Alaska Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Drake, J.; Layer, P. W.; Mangan, M. T.; Miller, T. P.; Waythomas, C. F.

    2001-12-01

    The Emmons Lake Volcanic Center located on the Alaska Peninsula is a large shield/stratovolcano complex composed of basaltic to andesitic lava flows and dacite to rhyolite pyroclastic flows, domes and ashfall. Two caldera forming eruptions in Pleistocene time each produced more than 50 cubic kilometers of silicic ejecta and created a nested depression measuring 20 km long and 10 km wide. We conducted 40Ar/39Ar whole rock dating of units associated with the first caldera forming event, which because of broad geochemical similarities, has been suggested as a possible source of the Old Crow Tephra, dated throughout interior Alaska and the Yukon at about 140 ka. Samples dated ranged in composition from ~62 to 69 wt % SiO2 and contained 2 - 3 wt % K2O. For each sample, 15 specimens, consisting of small ( ~1 mm) whole rock chips, were fused with an argon ion laser. From these analyses, weighted mean and isochron ages were calculated. For all samples, the initial 40Ar/36Ar ratio was indistinguishable from that of the present-day atmosphere (295.5), indicating that these samples do not contain significant quantities of excess argon. The age of a welded tuff interpreted to be from the opening plinian phase of the eruption is 233 +/- 6 ka, and is identical to the age of a post-collapse rheomorphic tuff (234 +/- 5 ka). A lithic fragment from a syn-collapse lag breccia has an age of 419 +/- 9 ka, which we interpret as representing incorporation of older material. Younger tuffs and domes were dated at 99 +/- 7 ka and 16 +/- 10 ka and imply that the complex was active throughout the late Quaternary. Based on these new age data, and subtle but significant trace element differences in glass and Fe-Ti oxide composition, we conclude that the first major caldera building event occurred at approximately 230 ka, and is probably not responsible for the deposition of the Old Crow tephra.

  20. Lagrangian modeling of large volcanic particles: Application to Vulcanian explosions

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Neri, A.; Esposti Ongaro, T.; Lo Savio, S.; Boschi, E.

    2010-08-01

    A new 2D/3D Lagrangian particle model (named LPAC) for the dynamics of clasts ejected during explosive eruptions is presented. The novelty of the model lies in the one-way coupling of the carrier flow field, given by a Eulerian multiphase flow code, and the particles. The model is based on a simplification of the Basset-Boussinesq-Oseen equation, expressing the Lagrangian equation of a particle as the sum of the forces exerted on it along its trajectory. It is assumed that particles are non-interacting and do not affect the background carrier flow and that the drag coefficient is constant. The model was applied to large clasts produced by Vulcanian explosions, in particular those occurring in August 1997 at Soufrière Hills Volcano, Montserrat (West Indies, UK). Simulation results allowed parametric studies as well as semi-quantitative comparisons between modeling results and field evidence. Major results include (1) the carrier flow was found to play a fundamental role even for meter-sized particles—a 1 m diameter block is predicted to reach a distance that is about 70% greater than that predicted without the effect of the carrier flow (assuming the same initial velocity), (2) assumption of the initial velocity of the particle was dropped thanks to the description of both the acceleration and deceleration phases along the particle trajectory, (3) by adopting experimentally based drag coefficients, large particles were able to reach greater distances with respect to smaller particles consistently with field observations and (4) the initial depth of the particle in the conduit was found to mainly influence the ejection velocity while the initial radial position with respect to the conduit axis was found to play a major role on the distance reached by the particle.

  1. Evaluation of climate impacts after a large volcanic eruption during stratospheric sulfur injections

    NASA Astrophysics Data System (ADS)

    Laakso, Anton; Kokkola, Harri; Partanen, Antti-Ilari; Niemeier, Ulrike; Timmreck, Claudia; Lehtinen, Kari; Hakkarainen, Hanne; Korhonen, Hannele

    2016-04-01

    Solar radiation management (SRM) by injecting sulfur to the stratosphere is one of the most discussed geoengineering methods, because it has been suggested to be affordable and effective and its impacts have been thought to be predictable based on volcanic eruptions. Injecting sulfur to the stratosphere could be seen as an analogy of large volcanic eruptions, where large amounts of sulfur dioxide are released into the stratosphere. In the atmosphere sulfur dioxide oxidizes and forms aqueous sulfuric acid aerosols which reflect incoming solar radiation back to space. If SRM is ever used to cool the climate it is possible that a large volcanic eruption could happen also during the SRM, which would lead temporally to a very strong cooling. The simulations in this study were performed in two steps. In the first step, we used the aerosol-climate model MAECHAM5-HAM-SALSA to define global aerosol fields in scenarios with stratospheric sulfur injections and/or a volcanic eruption. In the second step of the study we performed climate simulations using Max-Planck-Institute's Earth system model (MPI-ESM) by using aerosol fields defined by MAECHAM5-HAM-SALSA. We studied scenarios of volcanic eruptions in two different locations and seasons and during the SRM sulfur injections and without injections. According to our simulations the radiative impacts of the eruption and SRM are not additive and the radiative effects and climate changes occurring after the eruption depend strongly on whether SRM is continued or suspended after the eruption. Adding to this, sulfate burden and radiative forcing after the volcanic eruption decrease significantly faster if the volcanic eruption happens during the geoengineering injections. In this situation, sulfur from the eruption does not only form new particles but it also condenses into pre-existing particles. Furthermore, the new small particles that are formed after the eruption coagulate effectively with the existing larger particles from

  2. Patterns of volcanism, weathering, and climate history from high-resolution geochemistry of the BINGO core, Mono Lake, California, USA

    NASA Astrophysics Data System (ADS)

    Zimmerman, S. R.; Starratt, S.; Hemming, S. R.

    2012-12-01

    Mono Lake, California is a closed-basin lake on the east side of the Sierra Nevada, and inflow from snowmelt dominates the modern hydrology. Changes in wetness during the last glacial period (>12,000 years ago) and over the last 2,000 years have been extensively described, but are poorly known for the intervening period. We have recovered a 6.25 m-long core from ~3 m of water in the western embayment of Mono Lake, which is shown by initial radiocarbon dates to cover at least the last 10,000 years. The sediments of the core are variable, ranging from black to gray silts near the base, laminated olive-green silt through the center, to layers of peach-colored carbonate nodules interbedded with gray and olive silts and pea-green organic ooze. Volcanic tephras from <1 to 8 cm thick occur throughout. Results of 0.5 cm-resolution scanning-X-Ray fluoresence (XRF) analysis describe changes in lithology due to volcanism, erosion, and changing lake level and chemistry. Titanium (Ti) is chemically and biologically unreactive, and records the dominant input, from weathering of Sierra Nevada granite to the west and Miocene and Pliocene volcanic rocks of the Bodie and Adobe Hills to the north, east, and south. The rhyolitic tephras of the Mono-Inyo Craters are much lower in TiO2 than the bedrock (<0.1% vs. 1-2%), and are an unweathered source of K2O (3.5-5%), and thus form dramatic peaks in the K/Ti ratio. Calcium (Ca) and Sr are well correlated throughout the core, and normalization of both by K (detritus + tephra) corresponds with occurrence of carbonate-rich layers. These are a mixture of authigenic precipitates directly precipitated and eroded into the lake during periods of regression. The lowermost 1.5 m of the BINGO core contains the highest proportion of detrital input to Mono Lake over the last ~12,000 years, recorded by high Si, Ti, K, and Fe, in black to dark-gray, fine-grained silts above 10 cm of pure light gray silt. Based on radiocarbon dates of >10,000 calibrated

  3. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    SciTech Connect

    Nicholson, S.W. Univ. of Minnesota, MN ); Shirey, S.B. )

    1990-07-10

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North American. The Portage Lake Volcanics in Michigan, which are the youngest MRS flood basalts, fall into distinctly high- and low-TiO{sub 2} types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle (La/Yb = 4.3-5.3; Th/Ta = 2.12-2.16; Zr/Y = 4.3-4.4), and both basalt types are isotopically indistinguishable. Sr, Nd, and Pb isotopic compositions of the Portage Lake tholeiites have {sup 87}Sr/{sup 86}Sr{sub i} {approx}0.7038, {epsilon}{sub Nd(1095 Ma)} {approx}0 {plus minus} 2, and {mu}{sub 1} {approx}8.2. Model ages with respect to a depleted mantle source (T{sub DM}) average about 1950-2100 Ma. Portage Lake rhyolits fall into two groups. Type I rhyolites have Nd and Pb isotopic characteristics ({epsilon}{sub Nd(1095 Ma)} {approx}0 to {minus}4.7; {mu}{sub 1} {approx}8.2-7.8) consistent with contamination of tholeiitic rocks by 5-10% Archean crust. The one type II rhyolite analyzed has Nd and Pb isotopic compositions ({epsilon}{sub Nd(1095 Ma)} {approx}{minus}13 to {minus}16; {mu}{sub 1} {approx}7.6-7.7) which are consistent with partial melting of Archean crust. Early Proterozoic crust was not a major contaminant of MRS rocks in the Lake Superior region. Most reported Nd and Pb isotopic compositions of MRS tholeiites from the main stage of volcanism in the Lake Superior region and of the Duluth Complex are comparable to the Nd and Pb isotopic data for Portage lake tholeiites. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma.

  4. ASTER Observations of 2000-2007 Thermal Features at Pavlof Volcano and Mt. Hague (Emmons Lake Volcanic Center), Alaska

    NASA Astrophysics Data System (ADS)

    Wessels, R. L.; Schneider, D.; Ramsey, M.; Mangan, M. T.

    2007-12-01

    Emmons Lake Volcanic Center (ELVC) is a 15 km by 30 km area of nested calderas, stratovolcanoes, lava domes, hyaloclastite rings, and cinder cones aligned along the arc axis. Pavlof Volcano is the most active volcano along the ELVC, with more than 40 historic eruptions since 1790. The most recent eruption of Pavlof Volcano began in August 2007 after almost 11 years of quiescence. Mount Hague is a prominent intracaldera vent with no known historical eruptions that lies approximately 7 kilometers to the southwest of Pavlof. The southern crater of Mount Hague commonly fluctuates between a crater-filling lake to a dry crater floor with vigorously steaming fumaroles. Mount Hague has another fumarole field on the southeast flank at nearly the same elevation as the crater floor. To better document the behavior of persistent thermal features at these remote volcanoes, we have compiled temperature and dimension data using a seven-year long time series of satellite data. Over 25 daytime and 40 nighttime clear thermal infrared (TIR) images (90 m resolution) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) have recorded variations in the thermal activity at both volcanic vents since July 2000. All cloud-free ASTER TIR observations document persistent low- temperature features at both Pavlof Volcano and Mount Hague during this period. The size and temperature of each thermal feature varies throughout the study period. The data show that the 2518 m summit of Pavlof Volcano is occasionally snow-free in early summer whereas neighboring peaks at lower elevations are still snow-clad. FLIR data acquired near the summit of Pavlof in 2004 show that the majority of warm ground was at 20°C to 40°C. These warm areas commonly persist snow-free into the winter. Temperature variations observed at Mt Hague crater usually correlate to the size of the ephemeral crater lake. As the lake grows, the pixel-integrated ASTER TIR temperature increases. Measurements

  5. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems.

    PubMed

    Ivanov, Alexei V; Demonterova, Elena I

    2009-01-01

    As known from inland sedimentary records, boreholes, and geophysical data, the initiation of the Baikal rift basins began as early as the Eocene. Dating of volcanic rocks on the rift shoulders indicates that volcanism started later, in the Early Miocene or probably in the Late Oligocene. Prominent tectonic uplift took place at about 20 Ma, but information (from both sediments and volcanics) on the initial stage of the rifting is scarce and incomplete. A comprehensive record of sedimentation derived from two stacked boreholes drilled at the submerged Akademichesky ridge indicates that the deep freshwater Lake Baikal existed for at least 8.4 Ma, while the exact formation of the lake in its roughly present-day shape and volume is unknown. Four important events of tectonic/environmental changes at about approximately 7, approximately 5, approximately 2.5, and approximately 0.1 Ma are seen in that record. The first event probably corresponds to a stage of rift propagation from the historical center towards the wings of the rift system. Rifting in the Hovsgol area was initiated at about this time. The event of ~5 Ma is a likely candidate for the boundary between slow and fast stages of rifting. It is reflected in a drastic change of sedimentation rate due to isolation of the Akademichesky ridge from the central and northern Lake Baikal basins. The youngest event of 0.1 Ma is reflected by the (87)0Sr/ (86)Sr ratio increase in Lake Baikal waters and probably related to an increasing rate of mountain growth (and hence erosion) resulting from glacial rebounding. The latter is responsible for the reorganization of the outflow pattern with the termination of the paleo-Manzurka outlet and the formation of the Angara outlet. The event of approximately 2.5 Ma is reflected in the decrease of the (87)Sr/(86)Sr and Na/Al ratios in Lake Baikal waters. We suggest that it is associated with a decrease of the dust load due to a reorganization of the atmospheric circulations in Mainland

  6. Petrology and Geochemistry of Quaternary Mafic Volcanism in the Northern of Lake Van, Eastern Anatolia Collision Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Oyan, Vural; Keskin, Mehmet; Ünal, Esin; Sharkov, Evgenii V.

    2013-04-01

    Quaternary mafic lavas in the north of Lake Van erupted not only from eruption center like Girekol miniature shield volcano but also from N-S (Yüksektepe volcanic field) and E-W (Ormuktepe volcanic field) extending extensional fractures. Literature K/Ar dates (Lebedev et al., 2010) indicate that the basaltic and hawaiitic lavas erupted in a period between 1.08 and 0.36 Ma. These lavas are composed of olivine, plagioclase, augite and titanoaugite crystals and display porphyritic to aphyric textures. Major oxide, trace element and isotopic characteristics of the Quaternary lavas indicate that hawaiitic lavas are the fractionated derivates of a primitive alkali basaltic magma via fractional crystallization combined with assimilation process. Results of our AFC and EC-AFC models imply that alkali basaltic lavas assimilated negligible crustal material (~2%) in contrast to the hawaiitic lavas that experienced crustal contamination between 3% and 10%. LIL and LRE elements of the most primitive lavas display enrichments relative to HFS elements on N- MORB-normalized spidergrams while their lead isotopic ratios exhibit trends heading towards the EM2 type mantle, implying the importance of a distinct subduction component in the source. To evaluate partial melting processes in mantle source region of the Quaternary mafic volcanism, we conducted partial melting models. Results of our models suggest the presence of both garnet and spinel peridotite as the sources material with a partial melting degree ~5 % and mixing of the derivative melts from them in the genesis of the mafic alkaline lavas.

  7. Large-scale Explosive Silicic Volcanic Eruptions in Maine, USA: Where, When, and Why

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Van Lankvelt, A.; Williams, M. L.

    2014-12-01

    Two magmatic belts in Maine host essentially undeformed, well-preserved Silurian to Devonian volcanic sequences that include thick ash flow tuffs and rhyolitic lava flows. The Coastal Maine volcanic belt consists of at least five bimodal volcanic complexes (419 to 424 +/- 2 Ma) hosting volcanic sequences 1-4 km thick, spanning approximately 160 km of the Maine coastline. Entire cross-sections of the volcanic-plutonic complexes are visible, providing excellent sites to study the volcano/pluton interface. The Central Maine belt also extends approximately 160 km, northeast to southwest, across central Maine, and also hosts several bimodal plutonic/volcanic complexes. Rocks in the Central Maine belt range from 400 to 410 Ma (Hubacher and Lux, 1987; Bradley et al., 1996). The largest complex in the Central Maine belt is the ~407 Ma (Rankin and Tucker, 1995) Katahdin granite and Moxie mafic intrusive complex and the coeval Traveler Rhyolite, a monotonous two-member, 3200-meter-thick pyroclastic succession. In Rankin and Hon (1987), Hon argued that the original volume of the Traveler rhyolite was at least 5000 km3, making it one of the largest silicic caldera eruptions in the rock record. Both the Coastal Maine volcanic belt and the Central Maine belt are on the Gander terrane, a peri-Gondwanan crustal block that accreted to Laurentia during the Salinic orogeny. Accretion of the block was complete by ~421 Ma (Pollock et al., 2012), but by then the Avalon terrane was accreting to Gander. Either back-arc extension associated with subduction of oceanic lithosphere on the leading edge of the Avalonian plate, or delamination of that plate beneath Gander resulted in back-arc extension, decompression melting of the mantle, and partial melting of thick crust. The Central Maine belt, farther inboard of the downgoing Avalonian slab, developed similar bimodal, extension-related magmatism by approximately 410 Ma. Large silicic caldera eruptions developed in these belts as a result of

  8. The effects of recent uplift and volcanism on deposition in Mono Lake, California, from seismic-reflection (CHIRP) profiles

    NASA Astrophysics Data System (ADS)

    Colman, S. M.; Hemming, S. R.; Stine, S.; Zimmerman, S. R. H.

    2014-05-01

    About 150 km of high-resolution, seismic reflection (Compressed High-Intensity Radar Pulse) profiles (approximately 20 m penetration) were collected in Mono Lake in order to define the uppermost sedimentary architecture of the basin, which has been heavily impacted by recent volcanic, tectonic, and climatic processes. The study also provides an important background for ongoing efforts to obtain paleoenvironmental records from sediment cores in the lake. The history of four seismic-stratigraphic units in the upper 20 m of section are inferred from the data, and the interpretations are generally consistent with previous interpretations of lake history for the past 2000 years, including a major lowstand at 1941 m. No shorelines below the previously documented major lowstand at 1941 m were found. A relatively steep slope segment, whose toe is at about 1918 m, and which occurs on the southern and western margins of the deep basin of the lake, is interpreted as the relict foreset slope of deposition from prograding western tributaries. This topography is unconformably overlain by a unit of interbedded tephra and lake sediments of variable lithology, which contains tephra of the North Mono (600-625 cal yr BP) eruption in its upper part. The tephra-rich unit is overlain by a mostly massive mudflow deposit that is locally more than 18 m thick and that is distributed in a radial pattern around Paoha Island. The evidence suggests that within the past few hundred years, rapid uplift of Paoha Island through thick, preexisting lake deposits led to widespread slope failures, which created a terrain of disrupted, intact blocks near the island, and a thick, fluid mudflow beyond. As is common in mudflows, the mudflow moved up the depositional slope of the lake floor, terminating against the preexisting slopes, likely in multiple surges. Since about 1700 Common Era, fine-grained, well-laminated sediments have accumulated in the deep parts of the lake at anomalously rapid rates

  9. The role of large bubbles detected from acoustic measurements on the dynamics of Erta 'Ale lava lake (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Bouche, E.; Vergniolle, S.; Staudacher, T.; Nercessian, A.; Delmont, J.-C.; Frogneux, M.; Cartault, F.; Le Pichon, A.

    2010-06-01

    The activity at the surface of the lava lake on Erta 'Ale volcano (Ethiopia) shows that large bubbles are regularly breaking at a fixed position on the lava lake. This is also where the small lava fountains are sometimes produced. Since this location is likely to be directly above the volcanic conduit feeding the lava lake, we have done continuous measurements between March 22 and 26, 2003 to understand the degassing of a volcano in permanent activity. The bubble size has been first estimated from videos, which once combined with the acoustic pressure, can constrain the source of the sound. The gas volume and overpressure stayed roughly constant, between 36-700 m3 and 4 × 103-1.8 × 104 Pa, respectively. Simultaneous thermal measurements showed regular peaks, which occurred when the crust was broken by a large bubble, hence gave a direct indication on the typical return time between the bubbles (1 h). These spherical cap bubbles had a high Reynolds number, 4600-20000, therefore a wake, periodically unstable, formed and detached from the bubble bottom. The bubbly wake, if the detachment occurs close to the surface, can explain the duration of lava fountains, measured on the videos. The periodic arrival of bubbly wakes, which mostly detach from the driving spherical cap within the lava lake, could explain the absence of cooling at Erta 'Ale, Erebus (Antartica), Villarica (Chile) and Nyiragongo (Democratic Republic of Congo) without invoking a convective downflow of magma in the conduit, as previously done.

  10. Historical seismicity of the Mont Dore volcanic province (Auvergne, France) unraveled by a regional lacustrine investigation: New insights about lake sensitivity to earthquakes

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Lajeunesse, Patrick; Tachikawa, Kazuyo; Garcia, Marta; Bard, Edouard

    2016-06-01

    Lake sediments are relevant natural seismographs over long time scale. However, because tectonic events are not systematically recorded in lake sediments, one forthcoming challenge for paleoseismology is to better assess lake sensitivity to earthquakes. To this end, a limnogeological investigation, including hydroacoustic mapping techniques, core sampling and multi-proxy sediment analyses, has been conducted within four small volcanic lakes located in the Mont Dore province (Auvergne, France), an area with a moderate seismo-tectonic activity. Results show the existence of several gravity reworking processes in the lakes over the last millennium. Around AD 1300, the occurrence of synchronous events in lakes Pavin, Chauvet, Montcineyre and Guéry (100 km2 area) highlights an undocumented earthquake as a common trigger for slope failures in disconnected basins. At regional scale, the record of this tectonic event may have been favored by human-induced increase in sediment load (Chauvet and Montcineyre) and/or after an abrupt lake-level drop (Pavin) affecting the sediment stability. In addition, synchronous turbidites and mass-wasting deposits (MWD) recorded in lakes Pavin and Guéry provide evidence for a seismic activity during the XIXth century. Potential triggers are historical earthquakes that occurred either in the Mont Dore area or in the southern part of the Limagne fault at this time. Despite moderate seismic activity in this intraplate volcanic domain, these results highlight the role of tectonics as a major trigger in the sedimentary processes dominating these lacustrine infills. Within the diversity of studied sites, it appears that lake sensitivity to earthquakes was not constant over time. This sensitivity can be expressed as a combination of external factors, namely earthquake magnitude and lake-epicenter distance and internal factors such as lake morphology, nature of sediment, lake-level fluctuations and human-induced changes in catchment sedimentary

  11. AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of dating sediments from a large, oligotrophic lake

    USGS Publications Warehouse

    Colman, Steven M.; Jones, Glenn A.; Rubin, M.; King, J.W.; Peck, J.A.; Orem, W.H.

    1996-01-01

    A suite of 146 new accelerator-mass spectrometer (AMS) radiocarbon ages provides the first reliable chronology for late Quaternary sediments in Lake Baikal. In this large, highly oligotrophic lake, biogenic and authigenic carbonate are absent, and plant macrofossils are extremely rare. Total organic carbon is therefore the primary material available for dating. Several problems are associated with the TOC ages. One is the mixture of carbon sources in TOC, not all of which are syndepositional in age. This problem manifests itself in apparent ages for the sediment surface that are greater than zero. However, because most of the organic carbon in Lake Baikal sediments is algal (autochthonous) in origin, this effect is limited to about 1000+500 years, which can be corrected, at least for young deposits. The other major problem with dating Lake Baikal sediments is the very low carbon contents of glacial-age deposits, which makes them extremely susceptible to contamination with modern carbon. This problem can be minimized by careful sampling and handling procedures. The ages show almost an order of magnitude difference in sediment-accumulation rates among different sedimentary environments in Lake Baikal, from about 0.04 mm/year on isolated banks such as Academician Ridge, to nearly 0.3 mm/year in the turbidite depositional areas beneath the deep basin floors, such as the Central Basin. The new AMS ages clearly indicate that the dramatic increase in diatom productivity in the lake, as evidenced by increases in biogenic silica and organic carbon, began about 13 ka, in contrast to previous estimates of 7 ka for the age of this transition. Holocene net sedimentation rates may be less than, equal to, or greater than those in the late Pleistocene, depending on the site. This variability reflects the balance between variable terrigenous sedimentation and increased biogenic sedimentation during interglaciations. The ages reported here, and the temporal and spatial variation in

  12. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity

  13. Depositional evolution of the Early Cretaceous Sihetun Lake and implications for regional climatic and volcanic history in western Liaoning, NE China

    NASA Astrophysics Data System (ADS)

    Jiang, Baoyu; Fürsich, Franz T.; Hethke, Manja

    2012-06-01

    Numerous well-known fossils of the Jehol Biota, including early birds, feathered theropods, primitive mammals, and putative early angiosperms, have been discovered in lacustrine deposits (Lake Sihetun) of the Lower Cretaceous Yixian Formation of western Liaoning province, NE China. Based on extensive field investigations and four high-resolution excavations, we document in detail the spatio-temporal changes of sedimentary facies, facies associations and limnic community relicts, reconstruct the depositional history, and discuss the significance of these deposits regarding the regional climatic and volcanic history. Four phases are recognized in the history of Lake Sihetun. They are: (1) a phase of fluctuating but gradually rising water level indicated by subaerial and shallow-water lacustrine deposits, (2) a lake with beach-nearshore facies along the marginal areas and suspension-dominated lake floor facies in central areas, (3) a lake phase with a lake floor dominated by hyperpycnal flows, and (4) progradation of a fan delta. Two distinct depositional conditions are observed: stratified and unstratified lake intervals. The former occurred mainly during the second phase and produced clay-poor and clay-rich laminae, whereas the latter developed during the other three phases, and were dominated by deposition of subaqueous sedimentary density flows. These alternations of depositional conditions in offshore lacustrine deposits suggest that the Yixian Formation may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Resurgent volcanism is inferred to have become stronger during the late phase of lake development based on distribution of deposits characterizing the unstratified lake interval and volcanic rocks of the overlying Upper Lava unit, a higher content of primary pyroclastic fragments, and evidence of strong syndepositional disturbance.

  14. Depth gradients in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem

    USGS Publications Warehouse

    Sierszen, Michael E.; Hrabik, Thomas R.; Stockwell, Jason D.; Cotter, Anne M; Hoffman, Joel C.; Yule, Daniel L.

    2014-01-01

    Support of whole-lake food webs through trophic linkages among pelagic, profundal and littoral habitats appears to be integral to the functioning of large lakes. These linkages can be disrupted though ecosystem disturbance such as eutrophication or the effects of invasive species and should be considered in native species restoration efforts.

  15. Complete Genome Sequence of the Linear Plasmid pJD12 Hosted by Micrococcus sp. D12, Isolated from a High-Altitude Volcanic Lake in Argentina.

    PubMed

    Dib, Julian Rafael; Angelov, Angel; Liebl, Wolfgang; Döbber, Johannes; Voget, Sonja; Schuldes, Jörg; Gorriti, Marta; Farías, Maria Eugenia; Meinhardt, Friedhelm; Daniel, Rolf

    2015-01-01

    The linear plasmid pDJ12 from Micrococcus D12, isolated from the high-altitude volcanic Diamante Lake in the northwest of Argentina, was completely sequenced and annotated. It is noteworthy that the element is probably conjugative and harbors genes potentially instrumental in coping with stress conditions that prevail in such an extreme environment. PMID:26067968

  16. Lava lakes on Io: Observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys

    USGS Publications Warehouse

    Lopes, R.M.C.; Kamp, L.W.; Smythe, W.D.; Mouginis-Mark, P.; Kargel, J.; Radebaugh, J.; Turtle, E.P.; Perry, J.; Williams, D.A.; Carlson, R.W.; Doute, S.

    2004-01-01

    Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes 200 km high plumes and rapidly-emplaced flow fields), and a new style we call "lokian" that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian

  17. Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA

    SciTech Connect

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.; Aoyagi, R.; Yamamoto, K.; Benson, S.M.

    2006-11-20

    We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth. Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.

  18. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes

    NASA Astrophysics Data System (ADS)

    Pritchard, Matthew E.; Simons, Mark

    2002-07-01

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.

  19. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes.

    PubMed

    Pritchard, Matthew E; Simons, Mark

    2002-07-11

    Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile. PMID:12110886

  20. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.

    PubMed

    Juncos, Romina; Arcagni, Marina; Rizzo, Andrea; Campbell, Linda; Arribére, María; Guevara, Sergio Ribeiro

    2016-02-01

    Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes. PMID:26598997

  1. Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale ensemble simulations

    NASA Astrophysics Data System (ADS)

    Heng, Y.; Hoffmann, L.; Griessbach, S.; Rößler, T.; Stein, O.

    2015-10-01

    An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often can not be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i. e., large-scale ensemble simulations for the reconstruction of volcanic emissions and final transport simulations. The transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric Infrared Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final transport simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. The SO2 column densities from the simulations are in good qualitative agreement with the AIRS observations. Our new inverse modeling and simulation system is expected to become a useful tool to also study other volcanic

  2. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: Implications for large terrestrial and Martian volcanic edifices

    SciTech Connect

    Borgia, A. ); Burr, J. ); Montero, W.; Morales, L.D. ); Alvarado, G.E. )

    1990-08-30

    Long sublinear ridges and related scarps located at the base of large volcanic structures are frequently interpreted as normal faults associated with extensional regional stress. In contrast, the ridges bordering the Central Costa Rica volcanic range (CCRVR) are the topographic expression of hanging wall asymmetric angular anticlines overlying low-angle thrust faults at the base of the range. These faults formed by gravitational failure and slumping of the flanks of the range due to the weight of the volcanic edifices and were perhaps triggered by the intrusion of magma over the past 20,000 years. These anticlines are hypothesized to occur along the base of the volcano, where the thrust faults ramp up toward the sea bottom. Ridges and scarps between 2,000 and 5,000 m below sea level are interpreted as the topographic expression of these folds. The authors further suggest that the scarps of the CCRVR and valid scaled terrestrial analogs of the perimeter scarp of the Martian volcano Olympus Mons. They suggest that the crust below Olympus Mons has failed under the load of the volcano, triggering the radial slumping of the flanks of the volcano on basal thrusts. The thrusting would have, in turn, formed the anticlinal ridges and scarps that surround the edifice. The thrust faults may extend all the way to the base of the Martian crust (about 40 km), and they may have been active until almost the end of the volcanic activity. They suggest that gravitational failure and slumping of the flanks of volcanoes is a process common to most large volcanic edifices. In the CCRVR this slumping of the flanks is a slow intermittent process, but it could evolve to rapid massive avalanching leading to catastrophic eruptions. Thus monitoring of uplift and displacement of the folds related to the slump tectonics could become an additional effective method for mitigating volcanic hazards.

  3. Large-volume volcanic edifi ce failures in Central America and associated hazards

    USGS Publications Warehouse

    Siebert, L.; Alvarado, Guillermo E.; Vallance, J.W.; Van Wyk, De Vries, B.

    2006-01-01

    Edifi ce-collapse phenomena have, to date, received relatively little attention in Central America, although ??40 major collapse events (??0.1 km3) from about two dozen volcanoes are known or inferred in this volcanic arc. Volcanoes subjected to gravitational failure are concentrated at the arc's western and eastern ends. Failures correlate positively with volcano elevation, substrate elevation, edifi ce height, volcano volume, and crustal thickness and inversely with slab descent angle. Collapse orientations are strongly infl uenced by the direction of slope of the underlying basement, and hence are predominately perpendicular to the arc (preferentially to the south) at its extremities and display more variable failure directions in the center of the arc. The frequency of collapse events in Central America is poorly constrained because of the lack of precise dating of deposits, but a collapse interval of ??1000-2000 yr has been estimated during the Holocene. These high-impact events fortunately occur at low frequency, but the proximity of many Central American volcanoes to highly populated regions, including some of the region's largest cities, requires evaluation of their hazards. The primary risks are from extremely mobile debris avalanches and associated lahars, which in Central America have impacted now-populated areas up to ??50 km from a source volcano. Lower probability risks associated with volcanic edifi ce collapse derive from laterally directed explosions and tsunamis. The principal hazards of the latter here result from potential impact of debris avalanches into natural or man-made lakes. Much work remains on identifying and describing debris-avalanche deposits in Central America. The identifi cation of potential collapse sites and assessing and monitoring the stability of intact volcanoes is a major challenge for the next decade. ?? 2006 Geological Society of America.

  4. Statistical Analysis of Large Volcano Seismology Datasets to Determine Patterns of Volcanic Behaviour.

    NASA Astrophysics Data System (ADS)

    Rodgers, M.; Pyle, D. M.; Mather, T. A.

    2015-12-01

    Consistent and efficient analysis of both real-time volcano seismology data and of data catalogues from key eruptions is important to characterise seismicity surrounding eruptions and to determine patterns of volcanic behaviour. Seismicity patterns can be characterised by a variety of metrics, such as spectral analysis, identification of repeating waveform families and event classification, and temporal changes in these seismicity patterns can indicate changes in volcanic behaviour. Data catalogues from key eruptions can be large, and during seismic crises real-time monitoring of volcano seismicity can be overwhelming. This highlights the need for simple, rapid and effective analysis of such datasets, however, large-scale or rapid analysis of this type has been hindered by computational limitations associated with cross-correlation of large datasets and the labour intensive nature of waveform classification. Consistent waveform classification remains a challenge during both real-time analysis and retrospective analysis. In real-time many events are classified by an analyst, but during seismic crises there may be hundreds to thousands of events to analyse per day and this can rapidly become unfeasible. Automated classification allows consistent classification of waveforms but often requires an extensive training period. We have developed a fast-approximation method, peakmatch, to cross-correlate large seismic data catalogues for rapid analysis of repeating waveforms, and we use machine-learning techniques to automatically classify seismic waveforms with minimal training data.

  5. Development and application of indices using large volcanic databases for a global hazard and risk assessment

    NASA Astrophysics Data System (ADS)

    Brown, Sarah; Auker, Melanie; Cottrell, Elizabeth; Delgado Granados, Hugo; Loughlin, Sue; Ortiz Guerrero, Natalie; Sparks, Steve; Vye-Brown, Charlotte; Taskforce, Indices

    2015-04-01

    The Global Volcano Model (GVM) and IAVCEI were commissioned by the United Nations Office for Disaster Risk Reduction to produce a global assessment of volcanic hazard and risk for the Global Assessment Report 2015 (GAR15). This involved presenting both an introduction to volcanology and developing indices to assess hazard and risk on a global scale. To this end two open-access databases were of utmost importance: the Global Volcanism Program's Volcanoes of the World (http://www.volcano.si.edu) and the Large Magnitude Explosive Volcanic Eruptions database (LaMEVE; http://www.bgs.ac.uk/vogripa/). Indices were developed to enable a relative global assessment cognisant of data uncertainty and availability to broadly identify how hazard and risk varies around the world, the extent of monitoring and strengths and limitations in knowledge. The accessibility of both physical (e.g. volcano, eruption) and social data is crucial to our understanding of past behaviour, forecasting probable future behaviour and the potential impacts on communities. Such data is regionally highly variable and the eruption record worsens back in time. The Volcanic Hazard Index (VHI) was designed to quantify hazard levels globally, based on the Holocene eruption record. Vulnerability to eruptions was measured using the Population Exposure Index, which weights the population within 100 km of volcanoes by area and historical fatalities. The combination of these indices provides an indicator of population risk at individual volcanoes. The VHI was also combined with the total populations living within 30 km of volcanoes in each country to develop an understanding of the global distribution of volcano threat, and to rank countries by this measure. About half of the historically active volcanoes have insufficient information to adequately calculate VHI and these are highlighted as requiring future research. A database currently in development, GLOVOREMID, collates monitoring data to understand

  6. Development of new measuring technique using sound velocity for CO2 concentration in Cameroonian volcanic lakes

    NASA Astrophysics Data System (ADS)

    Sanemasa, M.; Saiki, K.; Kaneko, K.; Ohba, T.; Kusakabe, M.; Tanyileke, G.; Hell, J.

    2012-12-01

    1. Introduction Limnic eruptions at Lakes Monoun and Nyos in Cameroon, which are sudden degassing of magmatic CO2 dissolved in the lake water, occurred in 1984 and 1986, respectively. The disasters killed about 1800 people around the lakes. Because of ongoing CO2 accumulation in the bottom water of the lakes, tragedy of limnic eruptions will possibly occur again. To prevent from further disasters, artificial degassing of CO2 from the lake waters has been undergoing. Additionally, CO2 monitoring of the lake waters is needed. Nevertheless, CO2 measurement is done only once or twice a year because current methods of CO2 measurement, which require chemical analysis of water samples, are not suitable for frequent measurement. In engineering field, on the other hand, a method to measure salt concentration using sound velocity has been proposed (Kleis and Sanchez, 1990). This method allows us to evaluate solute concentration fast. We applied the method to dissolved CO2 and examined the correlation between sound velocity and CO2 concentration in laboratory experiment. Furthermore, using the obtained correlation, we tried to estimate the CO2 concentration of waters in the Cameroonian lakes. 2. Laboratory experiment We examined the correlation between sound velocity and CO2 concentration. A profiler (Minos X, made by AML oceanography) and pure water were packed in cylindrical stainless vessel and high-pressure CO2 gas was injected to produce carbonated water. The profiler recorded temperature, pressure and sound velocity. Change of sound velocity was defined as difference of sound velocity between carbonated water and pure water under the same temperature and pressure conditions. CO2 concentration was calculated by Henry's law. The result indicated that the change of sound velocity [m s-1] is proportional to CO2 concentration [mmol kg-1], and the coefficient is 0.021 [m kg s-1 mmol-1]. 3. Field application Depth profiles of sound velocity, pressure, and temperature of Lakes

  7. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  8. Midcontinent rift volcanism in the Lake Superior region: Sr, Nd, and Pb isotopic evidence for a mantle plume origin

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.

    1990-01-01

    Between 1091 and 1098 Ma, most of a 15- to 20-km thickness of dominantly tholeiitic basalt erupted in the Midcontinent Rift System of the Lake Superior region, North America. The Portage Lake Volcanics in Michigan, which are the younget MRS flood basalts, fall into distinctly high- and low-TiO2 types having different liquid lines of descent. Incompatible trace elements in both types of tholeiites are enriched compared to depleted or primitive mantle and both basalt types are isotopically indistinguishable. The isotopic enrichment of the MRS source compared to depleted mantle is striking and must have occurred at least 700 m.y. before 1100 Ma. There are two likely sources for such magmatism: subcontinental lithospheric mantle enriched during the early Proterozoic or enriched mantle derived from an upwelling plume. Decompression melting of an upwelling enriched mantle plume in a region of lithosphere thinned by extension could have successfully generated the enormous volume (850 ?? 103 km3) of relatively homogeneous magma in a restricted time interval. -from Authors

  9. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins.

    PubMed

    Manganelli, Maura; Stefanelli, Mara; Vichi, Susanna; Andreani, Paolo; Nascetti, Giuseppe; Scialanca, Fabrizio; Scardala, Simona; Testai, Emanuela; Funari, Enzo

    2016-06-01

    Vico Lake, a volcanic meso-eutrophic lake in Central Italy, whose water is used for drinking and recreational activities, experienced the presence of the microcystins (MC) producing cyanobacterium Planktothrix rubescens. In order to assess the human health risks and to provide the local health authorities with a scientific basis for planning tailored monitoring activities, we studied P. rubescens ecology and toxicity for two years. P. rubescens generally dominated the phytoplankton community, alternating with Limnothrix redekei, potentially toxic. P. rubescens was distributed throughout the water column during winter; in summer it produced intense blooms where drinking water is collected (-20 m); here MC were detected all year round (0.5-5 μg/L), with implications for drinking water quality. In surface waters, MC posed no risk for recreational activities in summer, while in winter surface blooms and foams (containing up to 56 μg MC/L) can represent a risk for people and children practicing water sports and for animals consuming raw water. Total phosphorus, phosphate and inorganic nitrogen were not relevant to predict densities nor toxicity; however, a strong correlation between P. rubescens density and aminopeptidase ectoenzymatic activity, an enzyme involved in protein degradation, suggested a role of organic nitrogen for this species. The fraction of potentially toxic population, determined both as mcyB(+)/16SrDNA (10-100%) and as the MC/mcyB(+) cells (0.03-0.79 pg MC/cell), was much more variable than usually observed for P. rubescens. Differently from other Italian and European lakes, the correlation between cell density or the mcyB(+) cells and MC explained only ∼50 and 30% of MC variability, respectively: for Vico Lake, monitoring only cell or the mcyB(+) cell density is not sufficient to predict MC concentrations, and consequently to protect population health. Finally, during a winter bloom one site has been sampled weekly, showing that

  10. Successive collapses of the El Estribo volcanic complex in the Pátzcuaro Lake, Michoacán, Mexico

    NASA Astrophysics Data System (ADS)

    Pola, A.; Macías, J. L.; Garduño-Monroy, V. H.; Osorio-Ocampo, S.; Cardona-Melchor, S.

    2014-12-01

    The El Estribo volcanic complex is located in the north-central part of Michoacán State (Mexico) within the Michoacán-Guanajuato Volcanic Field. It consists of a ~ 126 kr shield volcano crowned by a cinder cone, separated by a paleosol dated at 28,360 ± 170 BP. The shield volcano has been cut by the E-W normal Pátzcuaro fault that exposes 200-m of piled up lavas flows. Our field reconstruction suggests that two collapses have been originated from this fault. Two debris avalanche deposits with hummocky topography are exposed between this fault and the southern shore of the Pátzcuaro Lake. The basal debris avalanche deposit (BDAD) covers lacustrine sediments and is covered by a paleosol that at 28,110 ± 720 yr BP yielding a minimum age for the event. It had a maximum run out of 3.2 km with a H/L of 0.0062. The upper debris avalanche deposit (UDAD) is overlain by a paleosol dated at 14,110 ± 60 yr BP that yields a minimum age of the event. It had a maximum run out of 2.3 km with a H/L of 0.0086. No pyroclastic deposits have been found in association with these debris avalanches and the shield volcano rocks show signs of intense hydrothermal alteration or abundant clay minerals for which we assume that failure was triggered by seismic-tectonic activity. The older debris avalanche was more mobile because it moved on water and on top of water-saturated sediments deforming them and likely originating a tsunami across the lake. Instead, the younger debris avalanche moved across the previous rugged hummocky topography of the basal avalanche resulting in a more restricted dispersion. These collapse events of El Estribo, the morphology of the scarp and historic and modern seismicity indicate that a future failure represents a serious threat to the surrounding communities of the Pátzcuaro Lake. Consequently, some preventive measurements as seismic and deformation rate monitoring are necessary. Today five villages with circa 1500 inhabitants live upon the mass waste

  11. Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka

    PubMed Central

    Lane, Christine S.; Chorn, Ben T.; Johnson, Thomas C.

    2013-01-01

    The most explosive volcanic event of the Quaternary was the eruption of Mt. Toba, Sumatra, 75,000 y ago, which produced voluminous ash deposits found across much of the Indian Ocean, Indian Peninsula, and South China Sea. A major climatic downturn observed within the Greenland ice cores has been attributed to the cooling effects of the ash and aerosols ejected during the eruption of the Youngest Toba Tuff (YTT). These events coincided roughly with a hypothesized human genetic bottleneck, when the number of our species in Africa may have been reduced to near extinction. Some have speculated that the demise of early modern humans at that time was due in part to a dramatic climate shift triggered by the supereruption. Others have argued that environmental conditions would not have been so severe to have such an impact on our ancestors, and furthermore, that modern humans may have already expanded beyond Africa by this time. We report an observation of the YTT in Africa, recovered as a cryptotephra layer in Lake Malawi sediments, >7,000 km west of the source volcano. The YTT isochron provides an accurate and precise age estimate for the Lake Malawi paleoclimate record, which revises the chronology of past climatic events in East Africa. The YTT in Lake Malawi is not accompanied by a major change in sediment composition or evidence for substantial temperature change, implying that the eruption did not significantly impact the climate of East Africa and was not the cause of a human genetic bottleneck at that time. PMID:23630269

  12. Pre-Venus-Transit Dark Lunar Eclipse Reveals a Very Large Volcanic Eruption in 1761

    NASA Astrophysics Data System (ADS)

    Pang, Kevin

    2009-01-01

    Kepler's third law states Sun-planet distances in AU. International observations of the solar parallax during the 1761/1769 Venus transits gave us the first AU in miles. Benjamin Franklin promoted American participation in the project. While serving as Ambassador to France he observed that a "dry fog” from the 1783 Laki eruption in Iceland had obscured the Sun, and led to a cold summer and winter. Using Benjamin Franklin's method I analyzed photometric observations of the dark lunar eclipse made just before the 1761 Venus transit, ice core, tree ring, and Chinese weather data, and conclude that a very large previously unknown volcanic eruption in early 1761 had cooled the world climate. Observers worldwide found the 18 May 1761 totally eclipsed Moon very dark or invisible, e.g., Wargentin could not see the Moon for 38 minutes even with a 2-ft telescope (Phil. Trans. 52, 208, 1761-1762). Since the totally eclipsed Moon is illuminated only by sunlight refracted by the Earth's atmosphere, the obscuration must have been very severe. Ice cores from Greenland and Antarctica have large sulfuric acid contents in 1761-1762, precipitated from the global volcanic acid cloud (Zeilinski, J. Geophys. Res. 102, 26625, 1997). Frost-damaged rings in American bristlecone pines confirm that 1761 was very cold (LaMarche, Nature 307, 121, 1984). Contemporary Chinese chronicles report that heavy sustained snow fell from the Tropic of Cancer to the Yellow River. Wells and rivers froze, e.g., Taihu "Great Lake” and nearby Yangtze tributaries were not navigable. Innumerable trees, birds and livestock perished, etc. All observations are consistent with the above conclusion. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used. Moreover his legacy continues to inspire climate researchers. See Pang, Eos 74, no. 43, 106, 1993; and as cited in "Earth in Balance,” Al Gore, p. 379, 1993.

  13. The origin of a large (> 3 km) maar volcano by coalescence of multiple shallow craters: Lake Purrumbete maar, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Jordan, S. C.; Cas, R. A. F.; Hayman, P. C.

    2013-03-01

    Lake Purrumbete maar is located in the intraplate, monogenetic Newer Volcanics Province in southeastern Australia. The extremely large crater of 3000 m in diameter formed on an intersection of two fault lines and comprises at least three coalesced vents. The evolution of these vents is controlled by the interaction of the tectonic setting and the properties of both hard and soft rock aquifers. Lithics in the maar deposits originate from country rock formations less than 300 m deep, indicating that the large size of the crater cannot only be the result of the downwards migration of the explosion foci in a single vent. Vertical crater walls and primary inward dipping beds evidence that the original size of the crater has been largely preserved. Detailed mapping of the facies distributions, the direction of transport of base surges and pyroclastic flows, and the distribution of ballistic block fields, form the basis for the reconstruction of the complex eruption history,which is characterised by alternations of the eruption style between relatively dry and wet phreatomagmatic conditions, and migration of the vent location along tectonic structures. Three temporally separated eruption phases are recognised, each starting at the same crater located directly at the intersection of two local fault lines. Activity then moved quickly to different locations. A significant volcanic hiatus between two of the three phases shows that the magmatic system was reactivated. The enlargement of especially the main crater by both lateral and vertical growth led to the interception of the individual craters and the formation of the large circular crater. Lake Purrumbete maar is an excellent example of how complicated the evolution of large, seemingly simple, circular maar volcanoes can be, and raises the question if these systems are actually monogenetic.

  14. Estimation of the CO2 flux from Furnas volcanic Lake (São Miguel, Azores)

    NASA Astrophysics Data System (ADS)

    Andrade, César; Viveiros, Fátima; Cruz, J. Virgílio; Coutinho, Rui; Silva, Catarina

    2016-04-01

    A study on diffuse CO2 degassing was undertaken at Furnas lake (São Miguel island, Azores) in order to estimate the total diffuse CO2 output and identify anomalous degassing areas over the lake. Furnas lake is located in Furnas Volcano, the easternmost of the three active central volcanoes of the São Miguel island. The lake has an area of 1.87 km2 and a maximum length and width equal to 2025 and 1600 m, respectively. The maximum depth of the water column is 15 m and the estimated water storage is 14 × 106 m3. Lake water temperature is cold, with temperature values between 13 °C and 15 °C in the winter period and 18.9 °C to 19.3 °C in early autumn, and the variation along the water column suggests a monomictic character. The major-ion relative composition is in decreasing order Na+ > K+ > Ca2+ > Mg2 + for cations and HCO3- > Cl- > SO42- for anions, and conductivity and pH measurements, respectively in the range of 152 to 165 μS cm- 1 and 5.3 to 8.7, suggests that Furnas has neutral-diluted waters and can be classified as a non-active lake. Diffuse CO2 flux measurements were made using the accumulation chamber method with a total of 1537 and 2577 measurements performed in two different sampling campaigns. The total amount of diffuse CO2 emitted to the atmosphere was estimated between 28 and 321 t km- 2 d- 1, respectively, in the second and first sampling campaigns, corresponding to ~ 52 and ~ 600 t d- 1. The main anomalous degassing area identified over the Furnas lake during both surveys is probably associated to a WNW-ESE trending tectonic structure. Other secondary areas are also suggested to be tectonically influenced. Identified anomalous areas showed similarities to the ones observed during previous soil CO2 degassing studies.

  15. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Kokkola, H.; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2015-08-01

    Both explosive volcanic eruptions, which emit sulfur dioxide into the stratosphere, and stratospheric geoengineering via sulfur injections can potentially cool the climate by increasing the amount of scattering particles in the atmosphere. Here we employ a global aerosol-climate model and an earth system model to study the radiative and climate impacts of an erupting volcano during solar radiation management (SRM). According to our simulations, the radiative impacts of an eruption and SRM are not additive: in the simulated case of concurrent eruption and SRM, the peak increase in global forcing is about 40 % lower compared to a corresponding eruption into a clean background atmosphere. In addition, the recovery of the stratospheric sulfate burden and forcing was significantly faster in the concurrent case since the sulfate particles grew larger and thus sedimented faster from the stratosphere. In our simulation where we assumed that SRM would be stopped immediately after a volcano eruption, stopping SRM decreased the overall stratospheric aerosol load. For the same reasons, a volcanic eruption during SRM lead to only about 1/3 of the peak global ensemble-mean cooling compared to an eruption under unperturbed atmospheric conditions. Furthermore, the global cooling signal was seen only for 12 months after the eruption in the former scenario compared to over 40 months in the latter. In terms of the global precipitation rate, we obtain a 36 % smaller decrease in the first year after the eruption and again a clearly faster recovery in the concurrent eruption and SRM scenario. We also found that an explosive eruption could lead to significantly different regional climate responses depending on whether it takes place during geoengineering or into an unperturbed background atmosphere. Our results imply that observations from previous large eruptions, such as Mt Pinatubo in 1991, are not directly applicable when estimating the potential consequences of a volcanic eruption

  16. Sedimentation, volcanism, and ancestral lakes in the Valles Marineris: Clues from topography

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.

    1993-01-01

    Compilation of a simplified geologic/geomorphic map onto a digital terrain model of Valles Marineris has permitted quantitative evaluations of topographic parameters. The study showed that, if their interior layered deposits are lacustrine, the ancestral Valles Marineris must have consisted of isolated basins. If, on the other hand, the troughs were interconnected as they are today, the deposits are most likely to volcanic origin, and the mesas in the peripheral troughs may be table mountains. The material eroded from the trough walls was probably not sufficient to form all of the interior layered deposits, but it may have contributed significantly to their formation.

  17. Volcanic hazard alert issued for the Long Valley-Mono Lake area of California

    USGS Publications Warehouse

    Kerr, R. A.

    1982-01-01

    The ski resort of Mammoth Lakes, nestled against the east front of the Sierra Nevada just east of Yosemite National Park, knows about natural hazards. It is still being shaken by an unusual sequence of earthquakes that started in 1978 and included four earthquakes of magnitude 6 within 48 hours of each other in May 1980. An earthquake hazard watch is still in effect. 

  18. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China.

    PubMed

    Zhang, Lei; Gao, Guang; Tang, Xiangming; Shao, Keqiang; Gong, Yi

    2016-06-01

    The bacteria inhabiting brackish lake environments are poorly known, and there are few studies on the microbial diversity of these environments. Lake Bosten, a large brackish inland lake, is the largest lake in Xinjiang Province in northwestern China. Because sediments record past limnic changes, the analysis of sedimentary bacteria in Lake Bosten may help elucidate bacterial responses to environmental change. We employed 454 pyrosequencing to investigate the diversity and bacterial community composition in Lake Bosten. A total of 48 230 high-quality sequence reads with 16 314 operational taxonomic units were successfully obtained from the 4 selected samples, and they were numerically dominated by members of the Deltaproteobacteria (17.1%), Chloroflexi (16.1%), Betaproteobacteria (12.6%), Bacteroidetes (6.6%), and Firmicutes (5.7%) groups, accounting for more than 58.1% of the bacterial sequences. The sediment bacterial communities and diversity were consistently different along the 2 geographic environmental gradients: (i) freshwater-brackish water gradient and (ii) oligotrophic-mesotrophic habitat gradient. Deltaproteobacteria, Chloroflexi, and Betaproteobacteria were amplified throughout all of the sampling sites. More Bacteroidetes and Firmicutes were found near the Kaidu River estuary (site 14). Our investigation showed that Proteobacteria did not display any systematic change along the salinity gradient, and numerous 16S rRNA sequences could not be identified at the genus level. Our data will provide a better understanding of the diversity and distribution of bacteria in arid region brackish lakes. PMID:27045804

  19. Constraining timescales of pre-eruptive events within large silicic volcanic centers

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Cooper, K. M.; Kent, A. J.; Costa Rodriguez, F.; Till, C. B.

    2015-12-01

    Large silicic volcanic centers produce catastrophic supervolcanic eruptions. As a result it is necessary to understand what's happening within these centers, and on what timescales, in order to anticipate and prepare for such eruptions. A widely accepted model for many rhyolitic volcanic systems is that of a long-lived mush from which melt is periodically extracted and erupted. However, what remains unclear are 1) the specific processes by which melt is amalgamated and extracted from this mush and 2) the timescales over which these occur. Processes occurring close to eruption likely include amalgamation (and potentially homogenization) of melt, melt extraction, crystallization of major phases, and final magma ascent. Numerical and geochemical models have been used to constrain timescales of mush rejuvenation, and contrast between short timescales for mush reactivation (e.g., <<1000 years, depending on the reservoir) and others demonstrating much longer timescales at super-solidus conditions (e.g., 100s of kyrs). Timescales calculated from intra-crystalline diffusion profiles suggest that many crystals spend very short amounts of time (decades to centuries) at near-solidus temperatures prior to eruption. At the Okataina Volcanic Center (OVC) in New Zealand, geochemical and isotopic data suggest that melts are extracted from a long-lived, heterogeneous mush prior to eruption. Despite this protracted existence, combined U-series ages and diffusion profiles in OVC zircon and plagioclase crystals suggest that crystallization often occurs within the final hundreds to thousands of years prior to eruption, and at most, a few percent of a crystal's total history is spent at above-solidus conditions. Within these brief amounts of time, diffusion techniques can be linked to specific pre-eruptive processes in order to constrain timescales of melt extraction from a mush (likely decades to centuries), intrusions of new melt and/or magma mixing (likely years to decades), and

  20. Characterization of endocrine-disruption and clinical manifestations in large-mouth bass from Florida lakes

    SciTech Connect

    Gross, D.A.; Gross, T.S.; Johnson, B.; Folmar, L.

    1995-12-31

    Previous efforts from this laboratory have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefore, a survey of large mouth bass populations was conducted on several lakes in North Central Florida to examine reproductive and clinical health. Large-mouth bass were collected from lakes Apopka, Griffin, Jessup and Woodruff. Approximately 24 fish (12 males and 12 females) were collected from each lake during the spawning (March--April) and non-reproductive (July--August) seasons. Plasma samples were collected for analysis of estrogen, testosterone and 11-keto-testosterone concentrations. Gonadal and liver tissues were collected for histological analysis. General blood chemistry analyses and parasite surveys were also conducted to estimate general health. Additionally, fillet samples were collected and analyzed for pesticide levels. Fish from Lake Apopka had unusual concentrations of estrogen and 11-keto-testosterone in plasma when compared to bass from Lakes Woodruff, Jessup and Griffin. Parasites loads were significantly higher for bass from lake Apopka than from the other lakes. Male bass on Apopka had depressed concentrations of 11-keto-testosterone, skewing the E/T ratios upward while female bass had higher concentrations of estrogens than females from the other lakes, again resulting in skewed E/T ratios. These skewed E/T ratios are similar to those observed for alligators on the same lake and raise the possibility that they are caused by contaminants. However, contaminant levels in fillets did not differ significantly between lakes. These studies indicate potentially altered reproductive and immunological function for large-mouth bass living in a contaminated lake.

  1. Granulite facies xenoliths in Clear Lake volcanic rocks and the distribution of heat around geothermal energy sources

    SciTech Connect

    Glassley, W.E. ); Stimac, J. )

    1990-06-01

    Within the Clear Lake (CA) volcanic field, a broad range of felsic and mafic xenoliths occur at several of the volcanic centers that erupted through Franciscan Complex rocks. A small proportion of these xenoliths are composed of granulite facies mineral assemblages and appear to be of crustal origin. Most of these xenoliths contain fine-grained gneissic textures. The xenoliths preserve a complex recrystallization history in which garnet-opx-plagioclase-qtz{plus minus}kspar{plus minus}sillimanite assemblages are partially replaced either by multiple generations of plagioclase-opx-hercynite coronas around garnets or cordierite overgrowths on hercynite-spinel. In some cases, hydration of the xenoliths is recorded by the development of biotite, which often occurs as nearly concentric bands in the interior of the xenoliths. Textural and compositional evidence suggests that recrystallization records the following reaction sequence, at the indicated pressures: garnet + quartz -> opx + plag (<5.8 kb) and garnet + sillimanite -> hercynite + quartz (3.8 to 2.2 kb), followed by garnet + sillimanite + quartz -> cordierite (<5.9 kb). The geobarometric results indicate that, for all recrystallization events, reequilibration occurred at crustal depths less than {approximately}18 km. The original granulite facies assemblage appears to have formed at pressures in excess of 8 kb, but precise definition of the conditions of formation are precluded by difficulty in identifying the equilibrium high pressure garnet composition. Associated with the gneissic xenoliths are mafic xenoliths that are interpreted to represent fragments from deep crustal magma bodies. The presence of shallow to intermediate depth granulites in this region demonstrates that a significant quantity of the heat released during cooling and recrystallization of the magma bodies is used in the recrystallization of the rocks enclosing the magma chambers.

  2. Preliminary geology, mineral chemistry and diamond results from the C29/30 Candle Lake volcanic complex, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Verigeanu, D.; Hetman, C. M.; Jellicoe, B.; Baumgartner, M. C.

    2009-11-01

    The C29/30 kimberlite is one of two diamondiferous kimberlites in the Candle Lake cluster located in east-central Saskatchewan, Canada, approximately 70 km from the Fort á la Corne kimberlite field. The kimberlites are hosted by a Cretaceous sequence of marine mudstone and shale of the Lower Colorado Group, and underlying siltstone and sandstone of the Mannville Group. This sequence overlies Paleozoic carbonates that were deposited over the Proterozoic crystalline basement. Based on the country rock stratigraphy and morphology of the body, C29/30 is inferred to be Cretaceous in age. The elongated kimberlite body has a lateral extent of approximately 2 km with the long axis oriented in a south-east to north-west direction and an estimated surface expression of 75.3 ha. The investigation of 47 drill cores suggests that this body is a single volcanic complex dominated by a single phase of volcaniclastic kimberlite that is characterised by absent to rare phlogopite within the groundmass of preserved juvenile clasts. Minor amounts of at least one other phase of kimberlite containing conspicuous groundmass phlogopite have also been documented. The subsurface shape of C29/30 is complex and is interpreted to result from a combination of explosive volcanic activity that formed two craters from separate feeder vents. The formation of the elongated trough is poorly understood. It may have formed by a fissure style eruption, or erosive processes related to the mass flow of material away from one of the craters or possible the collapse of an eruption column. The C29/30 kimberlite is similar to bodies of the Fort á la Corne kimberlite field with respect to country rock setting, pipe morphology and the dominant textural varieties present. This contribution presents a preliminary geological model of C29/30 based on data obtained from the drilling programmes completed in 2006, 2007 and 2008.

  3. The 7-decade degradation of a large freshwater lake in central Yangtze River, China.

    PubMed

    Zhao, Shuqing; Fang, Jingyun; Miao, Shili; Gu, Ben; Tao, Shu; Peng, Changhui; Tang, Zhiyao

    2005-01-15

    Freshwater lakes store water for human use and agricultural irrigation and provide habitats for aquatic fauna and flora. However, a number of these lakes have been degraded by human activities at a rapid rate. Here, we used historical land cover information and remotely sensed data to explore a 7-decade (between 1930s and 1998) shrinkage and fragmentation of Dongting Lake, the second largest freshwater lake in China, located in the drainage basin of Central Yangtze River. The water surface area of Dongting Lake decreased by 49.2%, from 4955 km2 in the 1930s to 2518 km2 in 1998, with an average decrease rate of 38.1 km2/yr in the past 7 decades. The lake was also fragmented, as indicated by a decreasing mean patch size from 4.2 km2 in the 1930s to 1.7 km2 in 1998. The degradation of the lake is largely attributed to a rapidly growing human population in the lake region that led to extensive impoldering. The degradation of the lake has resulted in negative ecological consequences, such as frequent flooding, a decline of biodiversity, and extinction of some endemic species. Our results also suggest that lake restoration projects implemented in this region since the end of the 1990s will help to decrease the lake degradation. PMID:15707041

  4. Bonneville basin shoreline records of a large lake during Marine Isotope Stage 16

    NASA Astrophysics Data System (ADS)

    Nishizawa, Shizuo; Currey, Donald R.; Brunelle, Andrea; Sack, Dorothy

    2012-12-01

    The occurrence of the 650,000-year-old Rye Patch Dam tephra within shoreline sedimentary sequences suggests the presence of a large lake in the Bonneville basin in North America during Marine Isotope Stage (MIS) 16. The observed shoreline sedimentology and stratigraphy indicate that the lake was expanding when the air-fall ash landed onto the lake water. The minimum estimated surface area of the 650 ka lake almost equals that of Lake Bonneville during the Provo stage in late MIS 2. The magnitude of the 650 ka large lake implies that the climatic and hydrologic conditions in the Bonneville basin during early MIS 16 might have been comparable to those in late MIS 2.

  5. Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.

    2015-12-01

    The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates

  6. Draft genome of iron-oxidizing bacterium Leptospirillum sp. YQP-1 isolated from a volcanic lake in the Wudalianchi volcano, China.

    PubMed

    Yan, Lei; Zhang, Shuang; Yu, Gaobo; Ni, Yongqing; Wang, Weidong; Hu, Huixin; Chen, Peng

    2015-12-01

    Leptospirillum sp. YQP-1, a member of iron-oxidizing bacteria was isolated from volcanic lake in northeast China. Here, we report the draft genome sequence of the strain YQP-1 with a total genome size of 3,103,789 bp from 85 scaffolds (104 contigs) with 58.64% G + C content. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LIEB00000000. PMID:26697362

  7. Draft genome of iron-oxidizing bacterium Leptospirillum sp. YQP-1 isolated from a volcanic lake in the Wudalianchi volcano, China

    PubMed Central

    Yan, Lei; Zhang, Shuang; Yu, Gaobo; Ni, Yongqing; Wang, Weidong; Hu, Huixin; Chen, Peng

    2015-01-01

    Leptospirillum sp. YQP-1, a member of iron-oxidizing bacteria was isolated from volcanic lake in northeast China. Here, we report the draft genome sequence of the strain YQP-1 with a total genome size of 3,103,789 bp from 85 scaffolds (104 contigs) with 58.64% G + C content. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LIEB00000000. PMID:26697362

  8. Non-linear Holocene Climate Behavior Reconstructed from Icelandic Lake Sediment Linked to Both Explosive and Diffusive Volcanism

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Thordarson, T.; Miller, G. H.; Larsen, D. J.; Ólafsdóttir, S.

    2011-12-01

    Because of the strong influence of oceanic heat transport on terrestrial climates throughout the northern North Atlantic, Iceland's climate should reflect key attributes of North Atlantic circulation changes throughout the Holocene. High-resolution paleoclimate reconstructions from well dated Icelandic lake sediment cores, synchronized using tephra layers and paleomagnetic secular variations, reveal concordant abrupt changes, each accompanied by dramatic increases in sediment accumulation rates indicating accelerated erosional processes. Orbitally forced summer insolation decreases are reflected in a first-order cooling trend, but this trend is dominated by abrupt changes in state in the catchments, including stepped increases in periglacial activity, decreases in vegetation cover, and glacier growth. Many of these stepwise changes are associated with dated Icelandic explosive tephra-producing eruptions such as the 10180 BP Saksunarvatn, ~7000 BP H5, ~4300 BP H4, ~3800 BP H-S and ~2980 BP H3, but also repeated diffusive basaltic eruptions accompanied by high sulfur loading in the atmosphere. The strongest disturbances occur during the last 2 ka, beginning about 550 AD with shorter periods of relative summer warmth such as between 950 and 1250 AD. However, this warmth was punctuated by multi-decadal cold intervals, the most apparent around 1150 AD. The transition into the Little Ice Age is recorded by initial summer cooling 1250-1300 AD, more severe drops in summer temperatures 1450 to 1550 AD, followed by cold spikes in the early 1600s, mid 1700s and mid 1800s AD, when peak summer cold was achieved. The lake systems record LIA cold perturbations that coincide with periods of known, severe explosive and effusive volcanism, with subsequent re-equilibration in a new state. We conclude from our paleoclimate studies that both explosive and effusive eruptions, if sustained long enough, may have acted as regional cooling triggers.

  9. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  10. Protocol to Reconstruct Historical Contaminant Loading to Large Lakes: The Lake Michigan Sediment Record of Mercury

    EPA Science Inventory

    Samples of opportunity from Pb-210 dated sediment cores collected from Lake Michigan between 1994 and 1996 were analyzed for mercury. The storage of both anthropogenic and total (post-1850) mercury in the lake was calculated to be 186 and 228 metric tons, respectively. By setti...

  11. Automated, reproducible delineation of zones at risk from inundation by large volcanic debris flows

    USGS Publications Warehouse

    Schilling, Steve P.; Iverson, Richard M.

    1997-01-01

    Large debris flows can pose hazards to people and property downstream from volcanoes. We have developed a rapid, reproducible, objective, and inexpensive method to delineate distal debris-flow hazard zones. Our method employs the results of scaling and statistical analyses of the geometry of volcanic debris flows (lahars) to predict inundated valley cross-sectional areas (A) and planimetric areas (B) as functions of lahar volume. We use a range of specified lahar volumes to evaluate A and B. In a Geographic Information System (GIS) we employ the resulting range of predicted A and B to delineate gradations in inundation hazard, which is highest near the volcano and along valley thalwegs and diminishes as distances from the volcano and elevations above valley floors increase. Comparison of our computer-generated hazard maps with those constructed using traditional, field-based methods indicates that our method can provide an accurate means of delineating lahar hazard zones.

  12. The Effect of Stratospheric Water Vapor in Large Volcanic Eruptions on Climate and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Case, P. A.; Tsigaridis, K.; LeGrande, A. N.

    2015-12-01

    Large, explosive volcanic eruptions that inject material into the stratosphere have a significant impact on atmospheric composition and climate. Understanding and generalizing these effects is crucial to the development of climate models. Previously, volcanic forcing was crudely parameterized in all climate models which may be a source of large error in past-climate simulations. Here we investigate how water vapor, in addition to sulfur dioxide, from volcanic eruptions affect atmospheric chemistry and climate using NASA's atmospheric general circulation model GISS Model-E2. Three simulations were considered: a control run with no eruption, a run with a summertime dry eruption of 18 Tg of SO2, and a run with a summertime eruption containing 150 MT of water vapor in addition to 18 Tg of SO2.These amounts roughly approximate the mass of water and SO2 injected during the 1991 Mt. Pinatubo eruption. They were also injected at the same geographic location, directly into 10-layers of the lower to mid stratosphere. Each simulation was set in a pre-industrial atmosphere and monthly averages from the control were subtracted from the data in order to avoid signals from anthropogenic and meteorological effects, respectively. Comparing the dry and wet eruptions, there is a quicker forming but shorter lived sulfate aerosol population from the eruption containing water vapor. It was also observed that the aerosols spread more evenly between the Northern and Southern hemispheres when water was added to the eruption, compared to the dry eruption which was mostly contained in the Northern hemisphere. These differences more rapidly increase sulfate aerosol optical depth and cause a climatic effect of a quicker, shorter-lived decrease in surface temperatures and increase in stratospheric temperatures. The quicker signal from the wet eruption matches observations more closely than that of the dry eruption. This understanding will help in generalizing the climatic effects of volcanoes

  13. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake District, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Layton-Matthews, Daniel; Leybourne, Matthew I.; Peter, Jan M.; Scott, Steven D.; Cousens, Brian; Eglington, Bruce M.

    2013-09-01

    Volcanic-hosted massive sulfide (VHMS) and volcanic-sediment-hosted massive sulfide (VSHMS; i.e., hosted by both volcanic and sedimentary rocks) deposits in the Finlayson Lake District, Yukon, Canada, provide a unique opportunity to study the influence of seafloor and sub-seafloor hydrothermal processes on the formation of Se-poor (GP4F VHMS deposit; 7 ppm Se average), intermediate (Kudz Ze Kayah—KZK VHMS deposit; 200 ppm Se average), and Se-enriched (Wolverine VSHMS deposit; 1100 ppm Se average) mineralization. All three deposits are hosted by mid-Paleozoic (˜360-346 Ma) felsic volcanic rocks, but only the Wolverine deposit has voluminous coeval carbonaceous argillites (black shales) in the host rock package. Here we report the first application of Se isotope analyses to ancient seafloor mineralization and use these data, in conjunction with Pb and S isotope analyses, to better understand the source(s) and depositional process(es) of Se within VHMS and VSHMS systems. The wide range of δ82Se (-10.2‰ to 1.3‰, relative to NIST 3149), δ34S (+2.0‰ to +12.8‰ CDT), and elevated Se contents (up to 5865 ppm) within the Wolverine deposit contrast with the narrower range of δ82Se (-3.8‰ to -0.5‰), δ34S (9.8‰ to 13.0‰), and lower Se contents (200 ppm average) of the KZK deposit. The Wolverine and KZK deposits have similar sulfide depositional histories (i.e., deposition at the seafloor, with concomitant zone refining). The Se in the KZK deposit is magmatic (leaching or degassing) in origin, whereas the Wolverine deposit requires an additional large isotopically negative Se source (i.e. ˜-15‰ δ82Se). The negative δ82Se values for the Wolverine deposit are at the extreme light end for measured terrestrial samples, and the lightest observed for hypogene sulfide minerals, but are within calculated equilibrium values of δ82Se relative to NIST 3149 (˜30‰ at 25 °C between SeO4 and Se2-). We propose that the most negative Se isotope values at the

  14. Physical mechanisms that lead to large-scale gas accumulation in a volcanic conduit

    NASA Astrophysics Data System (ADS)

    Collombet, Marielle; Burgisser, Alain

    2016-04-01

    The eruption of viscous magma at the Earth's surface often gives rise to abrupt regime changes. The transition from the gentle effusion of a lava dome to brief but powerful explosions is a common regime change. This transition is often preceded by the sealing of the shallow part of the volcanic conduit and the accumulation of volatile-rich magma underneath, a situation that collects the energy to be brutally released during the subsequent explosion. While conduit sealing is well-documented, volatile accumulation has proven harder to characterize. We use a 2D conduit flow model including gas loss within the magma and into the wallrock to find steady-state magma flow configurations in the effusive regime. Model outputs yield a strongly heterogeneous distribution of the gas volume fraction underneath a dense, impermeable magma cap. Gas accumulates in inclined structures hundredths of meters long and several meters thick. These structures probably constitute the gas pockets that accumulate explosive energy and that were intuited by previous studies. We tested the numerical robustness of our results by simulating the fragmented state of the magma contained within the pockets, by testing various fragmentation criteria, and by varying computational gird size. These gas pockets are robust features that occur regardless of wallrock permeability (from very permeable at 10-12 m2 to quasi impermeable at 10-16 m2) but that are sensitive to the volume to surface ratio of the volcanic conduit. One implication is that the formation of these large degassing structures probably plays an essential role in the triggering of violent explosions. Such large scale outgassing feature may also bring a partial answer to the long standing issue of the observed gas transfer across entire magmatic systems despite high magma viscosity and no obvious physical mechanism of transfer.

  15. Depth gradients in food web processes linking large lake habitats -presentation

    EPA Science Inventory

    In large lakes around the world, shifts in ecological communities are often associated with water depth. This suggests that there may be concomitant changes in patterns of resource allocation. Using Lake Superior as an example, we explored this idea through stable isotope analyse...

  16. Effects of Volcanic Pumice Inputs on Microbial Community Composition and Dissolved C/P Ratios in Lake Waters: an Experimental Approach.

    PubMed

    Modenutti, B E; Balseiro, E G; Bastidas Navarro, M A; Lee, Z M; Souza, M S; Corman, J R; Elser, J J

    2016-01-01

    Volcanic eruptions discharge massive amounts of ash and pumice that decrease light penetration in lakes and lead to concomitant increases in phosphorus (P) concentrations and shifts in soluble C/P ratios. The consequences of these sudden changes for bacteria community composition, metabolism, and enzymatic activity remain unclear, especially for the dynamic period immediately after pumice deposition. Thus, the main aim of our study was to determine how ambient bacterial communities respond to pumice inputs in lakes that differ in dissolved organic carbon (DOC) and P concentrations and to what extent these responses are moderated by substrate C/P stoichiometry. We performed an outdoor experiment with natural lake water from two lakes that differed in dissolved organic carbon (DOC) concentration. We measured nutrient concentrations, alkaline phosphatase activity (APA), and DOC consumption rates and assessed different components of bacterial community structure using next-generation sequencing of the 16S rRNA gene. Pumice inputs caused a decrease in the C/P ratio of dissolved resources, a decrease in APA, and an increase in DOC consumption, indicating reduced P limitation. These changes in bacteria metabolism were coupled with modifications in the assemblage composition and an increase in diversity, with increases in bacterial taxa associated with biofilm and sediments, in predatory bacteria, and in bacteria with gliding motility. Our results confirm that volcanic eruptions have the potential to alter nutrient partitioning and light penetration in receiving waterways which can have dramatic impacts on microbial community dynamics. PMID:26563321

  17. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    USGS Publications Warehouse

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  18. Hydrologic interconnection between the volcanic aquifer and springs, Lake Tana basin on the Upper Blue Nile

    NASA Astrophysics Data System (ADS)

    Nigate, Fenta; Van Camp, Marc; Kebede, Seifu; Walraevens, Kristine

    2016-09-01

    Hydrochemical and stable isotope (δ18O, δ2H) data were used to identify the recharge sources of major springs and the hydraulic interconnection between the volcanic aquifer and springs in the Gilgel Abay catchment and adjacent areas. The hydrochemical data analysis showed that all water samples of springs and shallow wells have freshwater chemistry, Casbnd HCO3 to Casbnd Mgsbnd HCO3 types. This is mainly controlled by dissolution/hydrolysis of silicate minerals. The analyzed stable isotope data indicate that springs water, except Dengel Mesk, Kurt Bahir and Bility springs, and well waters, except Dangila well, fall close to the LMWL. This clearly shows that the infiltrated rainwater did not undergo much evaporation and δ18O values for spring water and groundwater are nearly equal to the value of Ethiopian summer rainfall, which is -2.5‰. Therefore, generally both stable isotope and hydrochemical data show the recharge source to springs and shallow groundwater is primarily from precipitation. Furthermore, data suggest that rock-water interaction has remained relatively limited, pointing to relatively short residence times, and local recharge rather than regional recharge.

  19. Coupled evolution of magma chambers and flow in conduits during large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Karlstrom, L.; Manga, M.; Rudolph, M. L.

    2010-12-01

    The largest silicic and mafic volcanic eruptions in the geologic record, Supervolcano and Large Igneous Province (LIP) eruptions, are distinguished by differences in surface emplacement mode, geologic context, magma volatile content, viscosity, and reservoir depth. However, these large eruptions also share several common features. Individual eruptions of both types emplace roughly the same total volume (10^3 - 10^4 km^3) of remarkably homogeneous magma that likely comes from a single reservoir. In addition, they both release large quantities of volatiles, and hence individual eruptions may significantly perturb global climate. We have developed a model that couples conduit flow and magma chamber deformation, allowing us to study both eruption types. Steady, one-dimensional multiphase flow of magma containing crystals, exsolved water, and CO_2 in a cylindrical conduit is coupled to pressure evolution within an ellipsoidal magma chamber beneath a free surface. LIP eruptions are characterized by gas-driven flow of mafic lava that may be sustained past the cessation of chamber overpressure, much like a siphon. Eruptions cease when the yield strength of the country rocks is reached and the (generally Moho-level) chamber or the conduit implodes, resulting in steady discharge and atmospheric volatile loading. In contrast, more shallow silicic lavas such as the Fish Canyon Tuff erupt through rapid mobilization of a long-lived crystal-rich mush. The crystal-rich mush is a yield strength fluid, which we model using the von Mises criterion for mobilization. If the trigger for mobilization of the mush leads directly to eruption, time-progressive yielding due to mass removal results in a fluid magma chamber that grows as the eruption proceeds, until free-surface stresses induce roof collapse and caldera formation. Chamber pressure evolution may be buffered by the mobilization of the mush, maintaining overpressure and high discharge throughout the eruption. This model suggests

  20. Depth gradients in food web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem

    EPA Science Inventory

    In large lakes around the world, water depth is often associated with shifts in ecological communities. Depth-based changes in the abundance and distribution of invertebrate and fish species suggest that there may be concomitant changes in patterns of resource allocation. Using L...

  1. Discovery of large conical stromatolites in Lake Untersee, Antarctica.

    PubMed

    Andersen, D T; Sumner, D Y; Hawes, I; Webster-Brown, J; McKay, C P

    2011-05-01

    Lake Untersee is one of the largest (11.4 km(2)) and deepest (>160 m) freshwater lakes in East Antarctica. Located at 71°S the lake has a perennial ice cover, a water column that, with the exception of a small anoxic basin in the southwest of the lake, is well mixed, supersaturated with dissolved oxygen, alkaline (pH 10.4) and exceedingly clear. The floor of the lake is covered with photosynthetic microbial mats to depths of at least 100 m. These mats are primarily composed of filamentous cyanophytes and form two distinct macroscopic structures, one of which--cm-scale cuspate pinnacles dominated by Leptolyngbya spp.--is common in Antarctica, but the second--laminated, conical stromatolites that rise up to 0.5 m above the lake floor, dominated by Phormidium spp.--has not previously been reported in any modern environment. The laminae that form the conical stromatolites are 0.2-0.8 mm in thickness consisting of fine clays and organic material; carbon dating implies that laminations may occur on near decadal timescales. The uniformly steep sides (59.6 ± 2.5°) and the regular laminar structure of the cones suggest that they may provide a modern analog for growth of some of the oldest well-described Archean stromatolites. Mechanisms underlying the formation of these stromatolites are as yet unclear, but their growth is distinct from that of the cuspate pinnacles. The sympatric occurrence of pinnacles and cones related to microbial communities with distinct cyanobacterial compositions suggest that specific microbial behaviors underpin the morphological differences in the structures. PMID:21504538

  2. Seasonal Dynamics of Picocyanobacteria and Picoeukaryotes in a Large Shallow Lake (Lake Balaton, Hungary)

    NASA Astrophysics Data System (ADS)

    Mózes, Andrea; Présing, Mátyás; Vörös, Lajos

    2006-02-01

    The abundance and composition of autotrophic picoplankton (APP) were studied between February 2003 and March 2004 in Lake Balaton. Water samples were taken fortnightly in the eutrophic western basin and mesotrophic eastern basin. Our study, which took more than one year, revealed pronounced seasonal pattern of the picoplankton abundance and composition. According to our results there were three types of picoplankton in Lake Balaton: 1. Phycoerythrin-rich coccoid cyanobacteria (PE), dominant summer picoplankters in the mesotrophic lake area; 2. Phycocyanin-rich cyanobacteria (PC), the most abundant summer picoplankters in the eutrophic lake area; 3. Picoeukaryotes, dominant winter picoplankters in the whole lake. The observed abundance of picoeukaryotes (3 × 105 cells ml-1) was one of the highest ever found. Our study confirms that in Lake Balaton the colonial autotrophic picoplankton (colonial APP) become dominant in summer in the nutrient limited period. We have found strong negative relationship between the concentrations of available nitrogen forms (NH4-N, NO3-N, urea-N) and the colonial APP abundance.

  3. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    NASA Astrophysics Data System (ADS)

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-02-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007-2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10-14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of - 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  4. Post-11,000-year volcanism at Medicine Lake Volcano, Cascade Range, northern California

    SciTech Connect

    Donnelly-Nolan, J.M.; Champion, D.E.; Trimble, D.A. ); Miller, C.D. ); Grove, T.L. )

    1990-11-10

    Eight eruptions produced about 5.3 km{sup 3} of basaltic lava during an interval of a few hundred years about 10,500 years B.P. After a hiatus of about 6,000 years, eruptive activity resumed with a small andesite eruption at about 4,300 years B.P. Approximately 2.5 km{sup 3} of lava with compositions ranging from basalt to rhyolite vented in nine eruptions during an interval of about 3,400 years in late Holocene time. The most recent eruption occurred about 900 years B.P. A compositional gap in SiO{sub 2} values of erupted lavas occurs between 58 and 63%. The gap is spanned by chilled magmatic inclusions in late Holocene silicic lavas. Late Holocene andesitic to rhyolitic lavas were probably derived by fractionation, assimilation, and mixing from high-alumina basalt parental magma, possibly from basalt intruded into the volcano during the early mafic episode. Some eruptions have produced both tholeiitic and calc-alkaline compositions. The eruptive activity is probably driven by intrusions of basalt that occur during east-west stretching of the crust in an extensional tectonic environment. Vents are typically aligned parallel or subparallel to major structural features, most commonly within 30{degree} of north. Intruded magma should provide adequate heat for commercial geothermal development if sufficient fluids can be found. The nature and timing of future volcanic activity cannot be predicted from the observed pattern, but eruptions high on the edifice could produce high-silica products that might be accompanied by explosive activity, whereas eruptions lower on the flanks are likely to vent more fluid mafic lavas.

  5. Morphology, distribution, and estimated eruption volumes for intracaldera tuffs associated with volcanic-hosted massive sulfide deposits in the Archean Sturgeon Lake Caldera Complex, Northwestern Ontario

    NASA Astrophysics Data System (ADS)

    Hudak, George J.; Morton, Ronald L.; Franklin, James M.; Peterson, Dean M.

    The Archean Sturgeon Lake Caldera Complex (SLCC) comprises a well-preserved, north-facing homoclinal sequence of greenschist facies metamorphosed intrusive, volcanic, and sedimentary strata. This piecemeal caldera complex is at least 25 km in strike length and contains nearly 3000 meters of dominantly subaqueously deposited intracaldera fill. Episodes of subaerial and subaqueous explosive felsic volcanism produced rhyodacitic to rhyolitic tuffs and lapilli tuffs. Progressing stratigraphically upward, the most voluminous are: a) the High Level Lake Tuff (˜16km3 b) the Mattabi Tuff (˜27km3) and c) the Middle L Tuff (˜7km3). The subaerially erupted, subaerially and locally subaqueously deposited High Level Lake Tuff comprises an 80-300 meter-thick unit composed of basal, poorly sorted, massive to normal graded, quartz-phyric, locally spherulitic tuffs and lapilli tuffs (30—150m thick) that are overlain by thin-bedded tuffs (<1-5m thick). The subaqueously erupted and deposited Mattabi Tuff contains up to thirteen individual flow units, each comprising two distinct depositional facies: a) lower, quartz-phyric, poorly sorted, ungraded, massive tuffs and lapilli tuffs (20-250 meters thick; and b) upper, laminated to medium bedded, typically normal graded tuffs (1-13 meters thick). The subaqueously erupted and deposited Middle L Tuff is also characterized by two distinct lithofacies: a) lower graded, quartz- and, rarely, potassium feldspar-phyric tuffs and lapilli tuffs (5-120m thick); and b) overlying, well-sorted, laminated to thickly bedded, normal graded tuffs (volcanic-hosted massive sulfide (VHMS) ore bodies in the SLCC. At Sturgeon Lake, VHMS ore deposition appears to be favored by processes associated with the generation of voluminous subaqueous explosive eruptions.

  6. Post-11,000-year volcanism at Medicine Lake Volcano, Cascade Range, northern California

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Champion, D.E.; Miller, C.D.; Grove, T.L.; Trimble, D.A.

    1990-01-01

    Eruptive activity during the past 11,000 years at Medicine Lake volcano has been episodic. Eight eruptions produced about 5.3 km3 of basaltic lava during an interval of a few hundred years about 10 500 years B.P. After a hiatus of about 6000 years, eruptive activity resumed with a small andesite eruption at about 4300 years B.P. Approximately 2.5 km3 of lava with compositions ranging from basalt to rhyolite vented in nine eruptions during an interval of about 3400 years in late Holocene time. The most recent eruption occurred about 900 years B.P. A compositional gap in SiO2 values of erupted lavas occurs between 58 and 63%. The gap is spanned by chilled magmatic inclusions in late Holocene silicic lavas. Late Holocene andesitic to rhyolitic lavas were probably derived by fractionation, assimilation, and mixing from high-alumina basalt parental magma, possibly from basalt intruded into the volcano during the early mafic episode. Eruptive activity is probably driven by intrusions of basalt that occur during E-W stretching of the crust in an extensional tectonic environment. Vents are typically aligned parallel or subparallel to major structural features, most commonly within 30?? of north. Intruded magma should provide adequate heat for commercial geothermal development if sufficient fluids can be found. -from Authors

  7. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  8. Diatom assemblages promote ice formation in large lakes.

    PubMed

    D'souza, N A; Kawarasaki, Y; Gantz, J D; Lee, R E; Beall, B F N; Shtarkman, Y M; Koçer, Z A; Rogers, S O; Wildschutte, H; Bullerjahn, G S; McKay, R M L

    2013-08-01

    We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (T(c)) as high as -3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world. PMID:23552624

  9. NUTRIENT CHEMISTRY OF A LARGE DEEP LAKE IN SUBARCTIC ALASKA

    EPA Science Inventory

    The primary objective of this project was to assess the state of the water quality of Harding Lake, and to attempt to predict the effects of future development within its watershed. Since the major effect of degradation of water quality due to human activity is the promotion of n...

  10. Diatom assemblages promote ice formation in large lakes

    PubMed Central

    D'souza, N A; Kawarasaki, Y; Gantz, J D; Lee, R E; Beall, B F N; Shtarkman, Y M; Koçer, Z A; Rogers, S O; Wildschutte, H; Bullerjahn, G S; McKay, R M L

    2013-01-01

    We present evidence for the directed formation of ice by planktonic communities dominated by filamentous diatoms sampled from the ice-covered Laurentian Great Lakes. We hypothesize that ice formation promotes attachment of these non-motile phytoplankton to overlying ice, thereby maintaining a favorable position for the diatoms in the photic zone. However, it is unclear whether the diatoms themselves are responsible for ice nucleation. Scanning electron microscopy revealed associations of bacterial epiphytes with the dominant diatoms of the phytoplankton assemblage, and bacteria isolated from the phytoplankton showed elevated temperatures of crystallization (Tc) as high as −3 °C. Ice nucleation-active bacteria were identified as belonging to the genus Pseudomonas, but we could not demonstrate that they were sufficiently abundant to incite the observed freezing. Regardless of the source of ice nucleation activity, the resulting production of frazil ice may provide a means for the diatoms to be recruited to the overlying lake ice, thereby increasing their fitness. Bacterial epiphytes are likewise expected to benefit from their association with the diatoms as recipients of organic carbon excreted by their hosts. This novel mechanism illuminates a previously undescribed stage of the life cycle of the meroplanktonic diatoms that bloom in Lake Erie and other Great Lakes during winter and offers a model relevant to aquatic ecosystems having seasonal ice cover around the world. PMID:23552624

  11. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

    PubMed

    Strandberg, Ursula; Hiltunen, Minna; Jelkänen, Elli; Taipale, Sami J; Kainz, Martin J; Brett, Michael T; Kankaala, Paula

    2015-12-01

    Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans. PMID:26282609

  12. New 40Ar/39Ar isotopic dates from Miocene volcanic rocks in the Lake Mead area and southern Las Vegas Range, Nevada

    USGS Publications Warehouse

    Harlan, S.S.; Duebendorfer, E.M.; Deibert, J.E.

    1998-01-01

    New 40Ar/39Ar dates on volcanic rocks interlayered with synextensional Miocene sedimentary rocks in the western Lake Mead area and southern end of the Las Vegas Range provide tight constraints on magmatism, basin formation, and extensional deformation in the Basin and Range province of southern Nevada. Vertical axis rotations associated with movement along the Las Vegas Valley shear zone occurred after 15.67??0.10 Ma (2??), based on a 40Ar/39Ar date from a tuff in the Gass Peak formation in the southern Las Vegas Range. Basaltic magmatism in the western Lake Mead area began as early as 13.28??0.09 Ma, based on a date from a basalt flow in the Lovell Wash Member of the Horse Spring Formation. Isotopic dating of a basalt from the volcanic rocks of Callville Mesa indicates that these rocks are as old as 11.41??0.14 Ma, suggesting that volcanic activity began shortly after formation of the Boulder basin, the extensional basin in which the informally named red sandstone unit was deposited. The red sandstone unit is at least as old as 11.70??0.08 Ma and contains megabreccia deposits younger than 12.93??0.10 Ma. This results shows that formation of the Boulder basin was associated with development of topographic relief that was probably generated by movement along the Saddle Island low-angle normal fault. Stratal tilting associated with extension occurred both prior to and after 11.5 Ma.

  13. Yardea Dacite -large-volume, high-temperature felsic volcanism from the Middle Proterozoic of South Australia

    SciTech Connect

    Creaser, R.A.; White, A.J.R. )

    1991-01-01

    The Yardea Dacite is a large-volume felsic volcanic unit from the Middle Proterozoic Gawler Range Volcanics of South Australia; it has been previously described as an ignimbrite. However, some samples contain no petrographic evidence for a pyroclastic origin, but have characteristics compatible with final crystallization from a nonfragmented magma. These samples may have erupted as lavas, but others are likely to be extremely densely welded ignimbrites, suggesting a compound nature for the unit. Geothermometry and phase equilibria indicate that the Yardea Dacite originated from a high-temperature ({approximately}1,000{degree}C) felsic magma with a low water content ({le}2%). The Yardea Dacite is not associated with a known caldera of the Valles type, and shares many characteristics of recently described Cenozoic felsic volcanic rocks from the western United States, interpreted as rheoignimbrites or as unusually extensive lavas.

  14. A catastrophic flood caused by drainage of a caldera lake at Aniakchak Volcano, Alaska, and implications for volcanic hazards assessment

    USGS Publications Warehouse

    Waythomas, C.F.; Walder, J.S.; McGimsey, R.G.; Neal, C.A.

    1996-01-01

    Aniakchak caldera, located on the Alaska Peninsula of southwest Alaska, formerly contained a large lake (estimated volume 3.7 ?? 109 m3) that rapidly drained as a result of failure of the caldera rim sometime after ca. 3400 yr B.P. The peak discharge of the resulting flood was estimated using three methods: (1) flow-competence equations, (2) step-backwater modeling, and (3) a dam-break model. The results of the dam-break model indicate that the peak discharge at the breach in the caldera rim was at least 7.7 ?? 104 m3 s-1, and the maximum possible discharge was ???1.1 ?? 106 m3 s-1. Flow-competence estimates of discharge, based on the largest boulders transported by the flood, indicate that the peak discharge values, which were a few kilometers downstream of the breach, ranged from 6.4 ?? 105 to 4.8 ?? 106 m3 s-1. Similar but less variable results were obtained by step-backwater modeling. Finally, discharge estimates based on regression equations relating peak discharge to the volume and depth of the impounded water, although limited by constraining assumptions, provide results within the range of values determined by the other methods. The discovery and documentation of a flood, caused by the failure of the caldera rim at Aniakchak caldera, underscore the significance and associated hydrologic hazards of potential large floods at other lake-filled calderas.

  15. Assessing Resiliency in a Large Lake Receiving Mine Tailings Waste: Impacts of Major Environmental Disturbance.

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen; Owens, Philip; Albers, Sam

    2016-04-01

    On 4th August 2014, the tailings impoundment of the Mount Polley copper and gold mine in British Columbia failed. Material from the impoundment (surface area = 2.7 km2) flowed into nearby Polley Lake and Hazeltine Creek, before discharging into Quesnel Lake, a large (ca. 100 km long, >500 m deep), relatively pristine lake. Initial estimates suggest that approximately 25 Mm3 of tailings (water and solids) and eroded soils and surficial materials from Hazeltine Creek were delivered to Quesnel Lake, raising the lake by 7.7 cm. Much of this material was deposited at the bottom of Quesnel Lake but a plume of fine-grained sediment (D50 of ca. 1 μm) remained suspended in the water column. The impact of the distribution of this sediment was monitored over the next 15 months using water column profiling for temperature, conductivity, fluorescence and turbidity with depth. The plume movement was regulated by natural processes associated with the physical limnology of this large fjord lake, specifically, seiche events which transferred suspended particles both up-lake, against the flow regime, and down-lake into the Quesnel River. Samples of lake water and bottom sediment taken from the impacted area show elevated levels of total metals and other elements, which may have important ecosystem implications in this watershed. Indeed, the breach occurred at a time when a peak run of sockeye salmon were returning to their natal streams in the Quesnel basin. Zooplankton sampling for metals was initiated in fall 2014 to determine up take of metals into the food web. This poster describes the failure of the impoundment dam and presents results of sampling the aquatic environment over the first fifteen months of impact.

  16. Deposits of large volcanic debris avalanches at Mount St. Helens and Mount Shasta volcanoes

    SciTech Connect

    Glicken, H.

    1985-01-01

    Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material picked up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.

  17. Radiative and climate impacts of a large volcanic eruption during stratospheric sulfur geoengineering

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Kokkola, H.; Partanen, A.-I.; Niemeier, U.; Timmreck, C.; Lehtinen, K. E. J.; Hakkarainen, H.; Korhonen, H.

    2016-01-01

    first year after the eruption and again a clearly faster recovery in the concurrent eruption and SRM scenario, which is suspended after the eruption. We also found that an explosive eruption could lead to significantly different regional climate responses depending on whether it takes place during geoengineering or into an unperturbed background atmosphere. Our results imply that observations from previous large eruptions, such as Mount Pinatubo in 1991, are not directly applicable when estimating the potential consequences of a volcanic eruption during stratospheric geoengineering.

  18. Chronology and dynamics of a large silicic magmatic system. Central Taupo volcanic zone, New Zealand

    SciTech Connect

    Houghton, B.F.; Wilson, C.J.N. ); McWilliams, M.O. ); Lanphere, M.A.; Pringle, M.S. ); Weaver, S.D. ); Briggs, R.M. )

    1995-01-01

    The central Taupo Volcanic Zone in New Zealand is a region of intense Quaternary silicic volcanism accompanying rapid extension of continental crust. At least 34 caldera-forming ignimbrite eruptions have produced a complex sequence of relatively short-lived, nested, and/or overlapping volcanic centers over 1.6 m.y. Silicic volcanism at Taupo is similar to the Yellowstone system in size, longevity, thermal flux, and magma output rate. However, Taupo contrasts with Yellowstone in the exceptionally high frequency, but small size, of caldera-forming eruptions. This contrast reflects the thin, rifted nature of the crust, which precludes the development of long-term magmatic cycles at Taupo. 11 refs., 4 figs., 1 tab.

  19. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  20. Prolonged plume volcanism in the Caribbean Large Igneous Province: New insights from Curaçao and Haiti

    NASA Astrophysics Data System (ADS)

    Loewen, Matthew W.; Duncan, Robert A.; Kent, Adam J. R.; Krawl, Kyle

    2013-10-01

    We present 36 new 40Ar-39Ar incremental heating age determinations from the Caribbean Large Igneous Province (CLIP) providing evidence for extended periods of volcanic activity and suggest a new tectonomagmatic model for the province's timing and construction. These new 40Ar-39Ar ages for the Curaçao Lava Formation (CLF) and Haiti's Dumisseau Formation show evidence for active CLIP volcanism from 94 to 63 Ma. No clear changes in geochemical character are evident over this period. The CLF has trace element signatures (e.g., Zr/Nb = 10-20) and flat rare earth element (REE) trends consistent with plume volcanism. The Dumisseau Formation also has plume-like geochemistry and steeper REE trends similar to ocean island basalts. Volcanism in the Dumisseau Formation appears to have largely ceased by 83 Ma while at Curaçao it continued until 63 Ma. A rapidly surfacing and melting plume head alone does not fit this age distribution. Instead, we propose that the residual Galapagos plume head, following initial ocean plateau construction, was advected eastward by asthenospheric flow induced by subducting oceanic lithosphere. Slab rollback at the Lesser Antilles and Central America subduction zones created an extensional regime within the Caribbean plate. Mixing of plume with upwelling asthenospheric mantle provided a source for intermittent melting and eruption through the original plateau over a ˜30 Ma period.

  1. The Discovery of Stromatolites Developing at 3570 m above Sea Level in a High-Altitude Volcanic Lake Socompa, Argentinean Andes

    PubMed Central

    Farías, María E.; Rascovan, Nicolás; Toneatti, Diego M.; Albarracín, Virginia H.; Flores, María R.; Poiré, Daniel G.; Collavino, Mónica M.; Aguilar, O. Mario; Vazquez, Martin P.; Polerecky, Lubos

    2013-01-01

    We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20–24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under

  2. The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes.

    PubMed

    Farías, María E; Rascovan, Nicolás; Toneatti, Diego M; Albarracín, Virginia H; Flores, María R; Poiré, Daniel G; Collavino, Mónica M; Aguilar, O Mario; Vazquez, Martin P; Polerecky, Lubos

    2013-01-01

    We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20-24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under

  3. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-01-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  4. Large volcanic eruptions affect climate in many more ways than just cooling (Invited)

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2009-12-01

    . Each of the largest sulfur-emitting eruptions since 1600 (Huaynaputina, Laki, Tambora, Krakatau, Santa Maria, Novarupta, Pinatubo) were in the same year as moderate to strong El Niños but were typically followed by very strong El Niños within 6 to 8 years (Data: Bradley and Jones, 1992). During El Niños, warm water heats the tropical Pacific atmosphere. Many ocean currents are affected over short time scales by atmospheric teleconnections but then affect atmospheric conditions over longer time scales. The sum of these processes with different time constants varies when the rate of volcanic activity changes by orders of magnitude. Ward (2009, doi:10.1016/j.tsf.2009.01.005) presents data suggesting large eruptions occurring on average once per century (current rate) provide only short-term changes in climate, but when they occur every few decades, they supplement Milanković cycles and increment the world into ice ages, and when they occur as often as once per year, they cause rapid global warming. Volcanic-like sulfate deposited in Greenland from man burning fossil fuels between 1930 and 1980 was as high as the highest levels of sulfate deposited during rapid warming at the end of the last ice age. Man did not eject sulfur into the stratosphere, but it remained in the atmosphere long enough to be deposited in Greenland. Understanding how volcanoes caused abrupt warming in the past would help us understand how man is causing abrupt warming today.

  5. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  6. Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential.

    PubMed

    Salmaso, Nico; Cerasino, Leonardo; Boscaini, Adriano; Capelli, Camilla

    2016-10-01

    This work allowed assessing a widespread occurrence of Tychonema bourrellyi in the largest lakes south of the Alps (Garda, Iseo, Como and Maggiore). The taxonomy of the species was confirmed adopting a polyphasic approach, which included microscopic examinations, molecular (16S rRNA and rbcLX sequences) and (Lake Garda) ecological characterisations. Over 70% of the 36 isolates of Tychonema sampled from the four lakes tested positive for the presence of genes implicated in the biosynthesis of anatoxins (anaF and/or anaC) and for the production of anatoxin-a (ATX) and homoanatoxin-a (HTX). A detailed analysis carried out in Lake Garda showed strong ongoing changes in the cyanobacterial community, with populations of Tychonema developing with higher biovolumes compared to the microcystins (MCs) producer Planktothrix rubescens Moreover, the time × depth distribution of Tychonema was paralleled by a comparable distribution of ATX and HTX. The increasing importance of Tychonema in Lake Garda was also suggested by the opposite trends of ATX and MCs observed since 2009. These results suggest that radical changes are occurring in the largest lakes south of the Alps. Their verification and implications will require to be assessed by extending a complete experimental work to the other large perialpine lakes. PMID:27402712

  7. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for low-δ18O magmas of the Snake River Plain - Yellowstone hotspot

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kitajima, K.; Nakashima, D.; Valley, J. W.

    2013-12-01

    The Snake River Plain - Yellowstone (SRP-Y) hotspot trend is one of the largest known low-δ18O magmatic provinces, yet the timing and distribution of hydrothermal alteration relative to hotspot magmatism remains incompletely understood. Existing models for SRP-Y low-δ18O magma genesis differ regarding the timing of protolith alteration (e.g. Eocene vs. present), depth at which alteration occurs (e.g. 15 km vs. <5 km), and physical controls on the extent of alteration (e.g. caldera collapse, crustal scale fluid flow, etc.). We expand the existing oxygen isotope data set for zircon in the Lake Owyhee volcanic field (LOVF) of east central Oregon to further identify magmatic oxygen isotope trends within the field. These data offer insight into the timing of alteration and the extent of the greater SRP-Y low-δ18O province, as well as the conditions that generate large low-δ18O provinces. 16-14 Ma silicic volcanism in the LOVF is linked to the pre-14 Ma SRP-Y hotspot, with volcanism partially overlapping extension in the north-south trending Oregon-Idaho Graben (OIG). Ion microprobe analyses of zircons from 16 LOVF silicic lavas and tuffs reveal homogeneous zircons on both the single grain and hand sample scales: individual samples have 2 S.D. for δ18O ranging from 0.27 to 0.96‰ (SMOW), and sample averages ranging from 1.8 to 6.0‰, excluding texturally chaotic and/or porous zircons which have δ18O values as low as 0.0‰. All low-δ18O LOVF magmas, including the caldera-forming Tuff of Leslie Gulch and Tuff of Spring Creek, are confined to the OIG, although not all zircons from within the OIG have low δ18O values. The presence and sequence of low-δ18O magmas in the LOVF and adjacent central Snake River Plain (CSRP) cannot be explained by existing caldera subsidence or pre-hotspot source models. These data, however, combined with volumetrically limited low-δ18O material in the adjacent Idaho Batholith and Basin and Range, are consistent with low-δ18O magmas

  8. Advances in estimating the climate sensibility of a large lake using scenario simulations

    NASA Astrophysics Data System (ADS)

    Eder, M. M.; Schlabing, D.; Frassl, M. A.; Rinke, K.; Bárdossy, A.

    2012-04-01

    The vertical mixing behaviour of large deep lakes as e.g. Lake Constance is reflecting the long-term meteorological conditions and therefore is likely to be sensible to climate change. Today, Lake Constance does not mix completely every year, but only once in 2-3 years, which leads to the typical saw-tooth pattern in the deep water temperature. Whether complete mixing does occur is not only depending on the meteorological conditions in the respective winter period, but also on the thermal conditions in the lake and hence on the meteorological conditions in the preceding years. The lake's response to climate change thus depends on the temperature increase itself as well as on its gradient and on the inter-annual variability of the meteorological variables. Last year we showed first steps towards a model system to evaluate possible effects of climate change on Lake Constance: The Vector-Autoregressive Weathergenerator VG produces time series of meteorological data, which are used as boundary conditions for the 3D hydrodynamic lake model ELCOM (Centre of Water Research, University of Western Australia). As VG gives the opportunity to change mean and variability of selected variables, "What if?" - scenarios for process understanding can be performed. The time scales of variability turned out to be a critical point in the artificial time series for modelling the hydrodynamics of Lake Constance, as the big water body integrates over time and thus the hydrodynamics overlook the variability of air temperature on short time scales. Therefore, VG was developed further, especially with respect to the time scales of variability. While for heat input, the time scale of several days to weeks seems to be more important, wind and, when biology is modelled, short-wave radiation should be given at a sub-daily timestep. Besides producing user-defined scenario time-series, VG can also be used to stochastical downscale output of global climate model IPCC scenarios for lake modelling

  9. Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central-Southern Italy)

    NASA Astrophysics Data System (ADS)

    Cabassi, Jacopo; Tassi, Franco; Vaselli, Orlando; Fiebig, Jens; Nocentini, Matteo; Capecchiacci, Francesco; Rouwet, Dmitri; Bicocchi, Gabriele

    2013-01-01

    This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central-Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from -66.8 to -55.6 ‰ V-PDB and from -279 to -195 ‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from -5.8 to -0.4 ‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from -13.4 to -8.2 ‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2-CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water-bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and

  10. Volcanism on Venus: Large shields and major accumulations of small domes

    NASA Technical Reports Server (NTRS)

    Schaber, Gerald G.; Kozak, Richard C.

    1989-01-01

    The outer layers of the Venusian lithosphere appear to dissipate heat from the interior through mantle-driven thermal anomalies (hot spots, swells). As a result, Venus exhibits diverse forms of thin-skin tectonism and magmatic transfer to and extrusion from countless numbers of volcanic centers (e.g., shields, paterae, domes) and volcano-tectonic complexes (e.g., coronae, arachnoids). What is known about the distribution and morphologies of major Venusian shields is summarized, and the evidence for possible structural control of major accumulations as long as 5000 km of small volcanic domes is described.

  11. Response to comments on "Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport".

    PubMed

    Bourassa, Adam E; Robock, Alan; Randel, William J; Deshler, Terry; Rieger, Landon A; Lloyd, Nicholas D; Llewellyn, E J; Degenstein, Douglas A

    2013-02-01

    Fromm et al. and Vernier et al. suggest that their analyses of satellite measurements indicate that the main part of the Nabro volcanic plume from the eruption on 13 June 2011 was directly injected into the stratosphere. We address these analyses and, in addition, show that both wind trajectories and height-resolved profiles of sulfur dioxide indicate that although the eruption column may have extended higher than the Smithsonian report we highlighted, it was overwhelmingly tropospheric. Additionally, the height-resolved sulfur dioxide profiles provide further convincing evidence for convective transport of volcanic gas to the stratosphere from deep convection associated with the Asian monsoon. PMID:23393248

  12. Volcanism on Venus: Large shields and major accumulations of small domes

    NASA Astrophysics Data System (ADS)

    Schaber, Gerald G.; Kozak, Richard C.

    The outer layers of the Venusian lithosphere appear to dissipate heat from the interior through mantle-driven thermal anomalies (hot spots, swells). As a result, Venus exhibits diverse forms of thin-skin tectonism and magmatic transfer to and extrusion from countless numbers of volcanic centers (e.g., shields, paterae, domes) and volcano-tectonic complexes (e.g., coronae, arachnoids). What is known about the distribution and morphologies of major Venusian shields is summarized, and the evidence for possible structural control of major accumulations as long as 5000 km of small volcanic domes is described.

  13. Large increases in carbon burial in northern lakes during the Anthropocene.

    PubMed

    Heathcote, Adam J; Anderson, N John; Prairie, Yves T; Engstrom, Daniel R; del Giorgio, Paul A

    2015-01-01

    Northern forests are important ecosystems for carbon (C) cycling and lakes within them process and bury large amounts of organic-C. Current burial estimates are poorly constrained and may discount other shifts in organic-C burial driven by global change. Here we analyse a suite of northern lakes to determine trends in organic-C burial throughout the Anthropocene. We found burial rates increased significantly over the last century and are up to five times greater than previous estimates. Despite a correlation with temperature, warming alone did not explain the increase in burial, suggesting the importance of other drivers including atmospherically deposited reactive nitrogen. Upscaling mean lake burial rates for each time period to global northern forests yields up to 4.5 Pg C accumulated in the last 100 years--20% of the total burial over the Holocene. Our results indicate that lakes will become increasingly important for C burial under future global change scenarios. PMID:26607672

  14. Large increases in carbon burial in northern lakes during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Heathcote, Adam J.; Anderson, N. John; Prairie, Yves T.; Engstrom, Daniel R.; Del Giorgio, Paul A.

    2015-11-01

    Northern forests are important ecosystems for carbon (C) cycling and lakes within them process and bury large amounts of organic-C. Current burial estimates are poorly constrained and may discount other shifts in organic-C burial driven by global change. Here we analyse a suite of northern lakes to determine trends in organic-C burial throughout the Anthropocene. We found burial rates increased significantly over the last century and are up to five times greater than previous estimates. Despite a correlation with temperature, warming alone did not explain the increase in burial, suggesting the importance of other drivers including atmospherically deposited reactive nitrogen. Upscaling mean lake burial rates for each time period to global northern forests yields up to 4.5 Pg C accumulated in the last 100 years--20% of the total burial over the Holocene. Our results indicate that lakes will become increasingly important for C burial under future global change scenarios.

  15. Large increases in carbon burial in northern lakes during the Anthropocene

    PubMed Central

    Heathcote, Adam J.; Anderson, N. John; Prairie, Yves T.; Engstrom, Daniel R.; del Giorgio, Paul A.

    2015-01-01

    Northern forests are important ecosystems for carbon (C) cycling and lakes within them process and bury large amounts of organic-C. Current burial estimates are poorly constrained and may discount other shifts in organic-C burial driven by global change. Here we analyse a suite of northern lakes to determine trends in organic-C burial throughout the Anthropocene. We found burial rates increased significantly over the last century and are up to five times greater than previous estimates. Despite a correlation with temperature, warming alone did not explain the increase in burial, suggesting the importance of other drivers including atmospherically deposited reactive nitrogen. Upscaling mean lake burial rates for each time period to global northern forests yields up to 4.5 Pg C accumulated in the last 100 years—20% of the total burial over the Holocene. Our results indicate that lakes will become increasingly important for C burial under future global change scenarios. PMID:26607672

  16. Ground-water, large-lake interactions in Saginaw Bay, Lake Huron: A geochemical and isotopic approach

    USGS Publications Warehouse

    Kolak, J.J.; Long, D.T.; Matty, J.M.; Larson, G.J.; Sibley, D.F.; Councell, T.B.

    1999-01-01

    Delineating the nature and extent of ground-water inputs is necessary to understand the hydrochemistry of large lakes. Characterizing the interaction between ground water and large lakes (e.g., the Great Lakes) is facilitated by the use of geochemical and isotopic data. In this study, pore waters were extracted from sediment cores collected from Saginaw Bay and the surrounding Saginaw lowland area; the geochemistry and stable isotope signature of these pore waters were used to identify sources for the water and solutes. Cores from Saginaw Bay and the Saginaw lowland area yielded strong vertical gradients in chloride concentrations, suggesting that a high-chloride source is present at depth. The spatial distribution of cores with elevated chloride concentrations corresponds to the regional distribution of chloride in ground water. Most of the Saginaw lowland area cores contain water with significantly lower ??18O values than modern meteoric water, suggesting that the water had been recharged during a much cooler climate. The ??18O values measured in pore waters (from Saginaw Bay cores) containing high chloride concentrations are similar to modern meteoric water; however, values lighter than modern meteoric water are encountered at depth. Chloride:bromide ratios, used to distinguish between different chloride sources, identify formation brine as the likely source for chloride. Transport models indicate that a combination of advection and diffusion is responsible for the observed Saginaw lowland area pore-water profiles. Pore-water profiles in Saginaw Bay sediments are produced primarily by diffusion and require significantly less time to evolve. An upward flux of solutes derived from formation brine could occur elsewhere within the Great Lakes region and significantly affect the geochemical cycling of chloride and other contaminants (e.g., trace metals).

  17. The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica—Energies, pressures, seismology, and infrasound

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Aster, R. C.; Johnson, J. B.; Kyle, P. R.

    2013-07-01

    We describe a multiparameter experiment at Erebus volcano, Antarctica, employing Doppler radar, video, acoustic, and seismic observations to estimate the detailed energy budget of large (up to 40 m-diameter) bubble bursts from a persistent phonolite lava lake. These explosions are readily studied from the crater rim at ranges of less than 500 m and present an ideal opportunity to constrain the dynamics and mechanism of magmatic bubble bursts that can drive Strombolian and Hawaiian eruptions. We estimate the energy budget of the first second of a typical Erebus explosion as a function of time and energy type. We constrain gas pressures and forces using an analytic model for the expansion of a gas bubble above a conduit that incorporates conduit geometry and magma and gas parameters. The model, consistent with video and radar observations, invokes a spherical bulging surface with a base diameter equal to that of the lava lake. The model has no ad hoc free parameters, and geometrical calculations predict zenith height, velocity, and acceleration during shell expansion. During explosions, the energy contained in hot overpressured gas bubbles is freed and partitioned into other energy types, where by far the greatest nonthermal energy component is the kinetic and gravitational potential energy of the accelerated magma shell (>109 J). Seismic source energy created by explosions is estimated from radar measurements and is consistent with source energy determined from seismic observations. For the generation of the infrasonic signal, a dual mechanism incorporating a terminally disrupted slug is proposed, which clarifies previous models and provides good fits to observed infrasonic pressures. A new and straightforward method is presented for determining gas volumes from slug explosions at volcanoes from remote infrasound recordings.

  18. High-levels of microplastic pollution in a large, remote, mountain lake.

    PubMed

    Free, Christopher M; Jensen, Olaf P; Mason, Sherri A; Eriksen, Marcus; Williamson, Nicholas J; Boldgiv, Bazartseren

    2014-08-15

    Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km(-2), Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics. PMID:24973278

  19. Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa)

    NASA Astrophysics Data System (ADS)

    Morana, C.; Borges, A. V.; Roland, F. A. E.; Darchambeau, F.; Descy, J.-P.; Bouillon, S.

    2014-11-01

    The permanently stratified Lake Kivu is one of the largest freshwater reservoirs of dissolved methane (CH4) on Earth. Yet CH4 emissions from its surface to the atmosphere has been estimated to be 2 orders of magnitude lower than the CH4 upward flux to the mixed layer, showing that microbial CH4 oxidation is an important process within the water column. A combination of natural abundance carbon stable isotope analysis (δ13C) of several inorganic and organic carbon pools and 13CH4-labelling experiments was carried out during rainy and dry season to quantify (i) the contribution of CH4-derived carbon to the biomass, (ii) methanotrophic bacterial production (MBP), and (iii) methanotrophic bacterial growth efficiency (MBGE), defined as the ratio between MBP and gross CH4 oxidation. We also investigated the distribution and the δ13C of specific phospholipid fatty acids (PLFA), used as biomarkers for aerobic methanotrophs. Data revealed that methanotrophic organisms oxidized within the water column most of the upward flux of CH4 to the mixed layer and a significant amount of CH4-derived carbon was incorporated into the microbial biomass in the oxycline. Maximal MBP rates were measured in the oxycline, suggesting that CH4 oxidation was mainly driven by oxic processes. The MBGE was variable (2-50%) and negatively related to CH4 : O2 molar ratios. Thus, a comparatively smaller fraction of CH4-derived carbon was incorporated into the cellular biomass in deeper waters, at the bottom of the oxycline where oxygen was scarce. The aerobic methanotrophic community was clearly dominated by type I methanotrophs and no evidence was found for an active involvement of type II methanotrophs in CH4 oxidation in Lake Kivu. Vertically integrated over the water column, the MBP was equivalent to 16-58% of the average phytoplankton primary production. This relatively high magnitude of MBP, and the substantial contribution of CH4-derived carbon to the overall biomass in the oxycline, suggest

  20. Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa)

    NASA Astrophysics Data System (ADS)

    Morana, C.; Borges, A. V.; Roland, F. A. E.; Darchambeau, F.; Descy, J.-P.; Bouillon, S.

    2015-04-01

    The permanently stratified Lake Kivu is one of the largest freshwater reservoirs of dissolved methane (CH4) on Earth. Yet CH4 emissions from its surface to the atmosphere have been estimated to be 2 orders of magnitude lower than the CH4 upward flux to the mixed layer, suggesting that microbial CH4 oxidation is an important process within the water column. A combination of natural abundance stable carbon isotope analysis (δ13C) of several carbon pools and 13CH4-labelling experiments was carried out during the rainy and dry season to quantify (i) the contribution of CH4-derived carbon to the biomass, (ii) methanotrophic bacterial production (MBP), and (iii) methanotrophic bacterial growth efficiency (MBGE), defined as the ratio between MBP and gross CH4 oxidation. We also investigated the distribution and the δ13C of specific phospholipid fatty acids (PLFAs), used as biomarkers for aerobic methanotrophs. Maximal MBP rates were measured in the oxycline, suggesting that CH4 oxidation was mainly driven by oxic processes. Moreover, our data revealed that methanotrophic organisms in the water column oxidized most of the upward flux of CH4, and that a significant amount of CH4-derived carbon was incorporated into the microbial biomass in the oxycline. The MBGE was variable (2-50%) and negatively related to CH4 : O2 molar ratios. Thus, a comparatively smaller fraction of CH4-derived carbon was incorporated into the cellular biomass in deeper waters, at the bottom of the oxycline where oxygen was scarce. The aerobic methanotrophic community was clearly dominated by type I methanotrophs and no evidence was found for an active involvement of type II methanotrophs in CH4 oxidation in Lake Kivu, based on fatty acids analyses. Vertically integrated over the water column, the MBP was equivalent to 16-60% of the average phytoplankton particulate primary production. This relatively high magnitude of MBP, and the substantial contribution of CH4-derived carbon to the overall

  1. Unrest within a large rhyolitic magma system at Laguna del Maule volcanic field (Chile) from 2007 through 2013: geodetic measurements and numerical models

    NASA Astrophysics Data System (ADS)

    Le Mevel, H.; Cordova, L.; Ali, S. T.; Feigl, K. L.; DeMets, C.; Williams-Jones, G.; Tikoff, B.; Singer, B. S.

    2013-12-01

    The Laguna del Maule (LdM) volcanic field is remarkable for its unusual concentration of post-glacial rhyolitic lava coulées and domes that erupted between 25 and 2 thousand years ago. Covering more than 100 square kilometers, they erupted from 24 vents encircling a lake basin approximately 20 km in diameter on the range crest of the Andes. Geodetic measurements at the LdM volcanic field show rapid uplift since 2007 over an area more than 20 km in diameter that is centered on the western portion of the young rhyolite domes. By quantifying this active deformation and its evolution with time, we aim to investigate the storage conditions and dynamic processes in the underlying rhyolitic reservoir that drive the ongoing inflation. Analyzing interferometric synthetic aperture radar (InSAR) data, we track the rate of deformation. The rate of vertical uplift is negligible from 2003 to 2004, accelerates from at least 200 mm/yr in 2007 to more than 300 mm/yr in 2012, and then decreases to 200mm/yr in early 2013. To describe the deformation, we use a simple model that approximates the source as a 8 km-by-6 km sill at a depth of 5 km, assuming a rectangular dislocation in a half space with uniform elastic properties. Between 2007 and 2013, the modeled sill increased in volume by at least 190 million cubic meters. Four continuous GPS stations installed in April 2012 around the lake confirm this extraordinarily high rate of vertical uplift and a substantial rate of radial expansion. As of June 2013, the rapid deformation persists in the InSAR and GPS data. To describe the spatial distribution of material properties at depth, we are developing a model using the finite element method. This approach can account for geophysical observations, including magneto-telluric measurements, gravity surveys, and earthquake locations. It can also calculate changes in the local stress field. In particular, a large increase in stress in the magma chamber roof could lead to the initiation and

  2. Volcanic soil formation in Calabria (southern Italy): The Cecita Lake geosol in the late Quaternary geomorphological evolution of the Sila uplands

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; De Rosa, Rosanna; Vecchio, Giuseppe; Apollaro, Carmine; Robustelli, Gaetano; Terrasi, Filippo

    2008-10-01

    wide extent, the soil can be considered a good pedostratigraphic marker in the Sila highlands and is informally defined as the "Cecita Lake geosol". It supplies valuable time constraints for the underlying (occasionally overlying) deposits and/or soils. Moreover, it allows regional-scale morphostratigraphic correlations and detailed reconstruction of Late Pleistocene-Holocene geomorphic events in Calabria, a very suitable region for distal tephra deposition in the central Mediterranean peri-volcanic area. The effects of high-energy volcanic eruptions are interfingered with or superimposed by other geomorphic processes and climatic or anthropogenic signals.

  3. STS-42 Earth observation of Lake Van in Turkey

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of Lake Van in Turkey, near the Iranian border (38.5N, 43.0E). Lake Van sits in the middle of a large fault and volcanic zone, the details of which are barely known. Earthquakes, sometimes severe, are frequent in this area. The lake is surrounded by many volcanic cones, calderas and lava plains. Because the climate is semi-arid and the lake has no apparent outlet, scientists say, the lake is relatively alkaline. Lake Van sits at an elevation of 5,400 feet with surrounding mountains completely snow-covered, reaching elevations in excess of 13,000 feet. The city of Van on the eastern edge of the lake shows up well because of the wintertime reflectance contrast between urban development and the snowy countryside.

  4. Recent increases in the large glacial-relict calanoid Limnocalanus macrurus in Lake Michigan

    USGS Publications Warehouse

    Barbiero, R.P.; Bunnell, D.B.; Rockwell, D.C.; Tuchman, M.L.

    2009-01-01

    Since 2004, population density of the large hypolimnetic calanoid Limnocalanus macrurus Sars. has increased dramatically in Lake Michigan. The average summer biomass of this species between 2004 and 2006 was roughly three times that of the period 1984–2003, and at levels unprecedented in our 22-year dataset, making L. macrurus the dominant zooplankter in the lake in terms of biomass. These increases have been accentuated by coincident population declines of the main daphnid, Daphnia mendotae, in the lake with the result that in 2006, L. macrurus accounted for 75% and 50% of the large (> 0.9 mm) crustacean biomass in the northern and southern basins of Lake Michigan, respectively. The increases in L. macrurus populations have closely coincided with equally dramatic increases in summer water clarity. Recent extinction coefficients are among the lowest recorded for the lake, and deepening light penetration has permitted increases in the size of the deep chlorophyll layer. In addition, planktivorous fish populations have declined coincidently with the increases in L. macrurus. It seems likely that an increase in sub-epilimnetic production has resulted in increased food resources for the deep-living L. macrurus, while low planktivore abundances have reduced predation loss, permitting L. macrurus to respond to these increases in sub-epilimnetic production.

  5. Natural trophic variability in a large, oligotrophic, near-pristine lake

    USGS Publications Warehouse

    Young, Talia; Jensen, Olaf P.; Weidel, Brian C.; Chandra, Sudeep

    2015-01-01

    Conclusions drawn from stable isotope data can be limited by an incomplete understanding of natural isotopic variability over time and space. We quantified spatial and temporal variability in fish carbon and nitrogen stable isotopes in Lake Hövsgöl, Mongolia, a large, remote, oligotrophic lake with an unusually species-poor fish community. The fish community demonstrated a high degree of trophic level overlap. Variability in δ13C was inversely related to littoral-benthic dependence, with pelagic species demonstrating more δ13C variability than littoral-benthic species. A mixed effects model suggested that space (sampling location) had a greater impact than time (collection year) on both δ13C and δ15N variability. The observed variability in Lake Hövsgöl was generally greater than isotopic variability documented in other large, oligotrophic lakes, similar to isotopic shifts attributed to introduced species, and less than isotopic shifts attributed to anthropogenic chemical changes such as eutrophication. This work complements studies on isotopic variability and changes in other lakes around the world.

  6. Heavy Halogen (Br, I) Injections into the Stratosphere from Large Explosive Volcanic Eruptions: Information from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Frische, M.; Wehrmann, H.; Schmincke, H.; Kluegel, A.

    2008-12-01

    Large explosive volcanic eruptions inject gases, aerosols and ash into the stratosphere, thus influencing stratospheric chemistry and the Earth´s radiation budget. Such periodic injections cause turbulent mixing which enhance chemical reactions. Reactive species responsible for catalytic ozone depletion following large eruptions include not only chlorine (Cl), but also the heavy halogens bromine (Br) and iodine (I) occurring in trace amounts in volcanic plumes. Due to the higher catalytic potential for ozone destruction of Br and I than of Cl, even trace amounts of these elements in volcanic emissions are relevant for stratospheric chemistry. We have analysed halogens in volcanic glasses and in glass inclusions in phenocrysts using electron microprobe and Synchrotron-XRF microprobe methods. Halogens from bulk glass samples were extracted using pyrohydrolysis, and analysed by ICP-MS. Eruptions investigated include Baitoushan, China /North Korea (ca. 969 AD), Mt. Hudson, Chile (1991), and several dacitic Quaternary eruptions from Nicaragua. Chlorine concentrations in glass inclusions are typically 2000 to 4000 ppm, which is on average about 50 percent higher than the concentrations in the matrix glasses. Br concentrations in glass inclusions are typically in the range of 2 to 20 ppm. This gives an average Cl/ Br ratios of about 300:1. Using the petrologic method, involving the concentration differences of halogens between the glass inclusion and those retained in the matrix glass, the average Cl/ Br ratio of the volcanic emissions were about 200:1 Typical I concentrations of Nicaraguan glass inclusions range between 1 and 3 ppm. The resulting Cl/ I ratio of eruptive emissions is about 1100:1. Depending on eruption size, each large event injected between several kt and several hundred kt Br and I into the atmosphere. As a first approach to estimate global Br and I fluxes from subduction zones, although affected by several sources of uncertainty, we combine these

  7. High-resolution sulfur isotopes in ice cores identify large stratospheric volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Burke, Andrea; Sigl, Michael; Adkins, Jess; Paris, Guillaume; McConnell, Joe

    2016-04-01

    The record of the volcanic forcing of climate over the past 2500 years is reconstructed primarily from sulfate concentrations in ice cores. Of particular interest are stratospheric eruptions, as these afford sulfate aerosols the longest residence time and largest dispersion in the atmosphere, and thus the greatest impact on radiative forcing. Identification of stratospheric eruptions currently relies on the successful matching of the same volcanic sulphate peak in ice cores from both the Northern and Southern hemispheres (a "bipolar event"). These are interpreted to reflect the global distribution of sulfur aerosols by the stratospheric winds. Despite its recent success, this method relies on precise and accurate dating of ice cores, in order to distinguish between a true 'bipolar event' and two separate eruptions that occurred in close temporal succession. Sulfur isotopes can been used to distinguish between these two scenarios since stratospheric sulfur aerosols are exposed to UV radiation which imparts a mass independent fractionation (Baroni et al., 2007). Mass independent fractionation of sulfate in ice cores thus offers a novel method of fingerprinting stratospheric eruptions, and thus refining the historic record of explosive volcanism and its forcing of climate. Here we present new high-resolution (sub-annual) sulfur isotope data from the Tunu Ice core in Greenland over seven eruptions. Sulfur isotopes were measured by MC-ICP-MS, which substantially reduces sample size requirements and allows high temporal resolution from a single ice core. We demonstrate the efficacy of the method on recent, well-known eruptions (including Pinatubo and Katmai/Novarupta), and then apply it to unidentified sulfate peaks, allowing us to identify new stratospheric eruptions. Baroni, M., Thiemens, M. H., Delmas, R. J., & Savarino, J. (2007). Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions. Science, 315(5808), 84-87. http://doi.org/10

  8. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  9. Effects of large volcanic eruptions on Eurasian climate and societies: unravelling past evidence to predict future impacts

    NASA Astrophysics Data System (ADS)

    Churakova Sidorova, Olga; Guillet, Sébastien; Corona, Christophe; Khodri, Myriam; Vaganov, Eugene; Siegwolf, Rolf; Bryukhanova, Marina; Naumova, Oksana; Kirdyanov, Aleksander; Myglan, Vladimir; Sviderskaya, Irina; Pyzhev, Anton; Grachev, Alexei; Saurer, Matthias; Beniston, Martin; Stoffel, Markus

    2016-04-01

    Substantial evidence exists for the sulphur deposition in ice cores of Greenland and Antarctica after major volcanic eruptions but their impacts have not been documented with sufficient detail so far. This is true for temperature, of which the cooling induced by eruptions has been vividly debated in recent years, but even more so for precipitation. In the Era.Net RUS Plus ELVECS, we are currently quantifying climate disturbance induced by major Common Era eruptions, the persistence of changes and their impact on short- to mid-term temperature and precipitation anomalies by using an unprecedented dataset of tree-ring records across Eurasia and a large body of recently unearthed historical archives. We will compile a comprehensive database of tree-ring proxies and historical archives; quantify temperature and precipitation impacts of large eruptions; simulate on a case-by-case basis volcanic microphysical processes and radiative forcing induced by the eruptions as well as evaluate results against tree-ring records; quantify impacts of large volcanic eruptions on atmospheric and oceanic circulations and feedbacks; and assess impacts of possible future eruptions. The new and diversified proxy data sources and more sophisticated modelling are expected to reduce discrepancies and uncertainties related to climatic responses to some of the largest eruptions. We expect to capture persistence of anomalies correctly by climate models, even more so if they are evaluated against highly resolved proxy data of past events. This will increase our confidence in the overall reliability of climate models and help to correctly capture, and therefore predict, the cooling and precipitation anomalies of possible future, large eruptions. These predictions of climatic anomalies will then be used to quantify their likely impacts on major economy and society, including food security, migration and air traffic. Acknowledgements: Era.Net RUS Plus ELVECS project № 122

  10. Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001

    NASA Technical Reports Server (NTRS)

    Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo

    2003-01-01

    Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.

  11. Hydrologic budget and dynamics of a large oligotrophic lake related to hydro-meteorological inputs

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2013-09-01

    A turbulent diffusion transfer model was developed and coupled to a developed Dynamic Lake Model with Water Quality (DLM-WQ) with the goal of correctly estimating the hydrologic budget of Lake Tahoe (California-Nevada). Isohyetal lines were created using PRISM gridded monthly precipitation data during 1990-2011 to estimate the precipitation distribution directly on the lake. The US Environmental Protection Agency supported watershed model, Loading Simulation Program in C++ (LSPC), was used to generate the stream flows and pollutants loading of 64 streams. The exchange coefficients for latent heat, sensible heat and wind drag (CEN, CHN, and CDN, respectively) and precipitation inputs were calibrated using coefficient of determination (R2) as the objective function and comparing visually the estimated values to those of measured record of 1994 to 2008. CEN, CHN, and CDN were found to be optimum at 1.82 × 10-6, 3.00 × 10-6 and 1.3 × 10-3, respectively for Lake Tahoe. CEN variation results in a greater change in lake water level compared to CHN and CDN. The annual precipitation contour lines indicate a reduction of approximately 35% of Tahoe City precipitation. DLM-WQ estimated 36% reduction of Tahoe City precipitation. Although latent heat loss (17%) is small compared to combined shortwave radiation and longwave radiation (77%) the effect on water balance due to inaccurate estimates of evaporative loss is very large because the ratio of watershed to lake surface area is low at 1.64. Evaporation (32%) is the largest contributor in the hydrologic budget and its accurate estimation is therefore critical and important for sustainable water management. The DLM-WQ estimated water surface temperatures and lake water level were in excellent agreement with those of measured records for the period 1994-2008 with R2 equal to 0.97 and 0.99, respectively.

  12. New insights from IODP Expedition 340 offshore Montserrat: First drilling of large volcanic island landslides

    NASA Astrophysics Data System (ADS)

    Talling, Peter; Le Friant, Anne; Ishizuka, Osamu; Watt, Sebastian; Coussens, Maya; Jutzeler, Martin; Wall-Palmer, Deborah; Palmer, Martin; Cassidy, Michael; Kataoka, Kyoko; Endo, Daisuko; McCanta, Molly; Trofimovs, Jessica; Hatfield, Robert; Stinton, Adam; Lebas, Elodie; Boudon, Georges; Expedition 340 Shipboard Science Party, IODP

    2015-04-01

    Montserrat now provides one of the most complete datasets for understanding the character and tempo of hazardous events at volcanic islands. Much of the erupted material ends up offshore, and this offshore record may be easier to date due to intervening hemiplegic sediments between event beds. The offshore dataset includes the first scientific drilling of volcanic island landslides during IODP Expedition 340, together with an unusually comprehensive set of shallow sediment cores and 2-D and 3-D seismic surveys. Most recently in 2013, Remotely Operated Vehicle (ROV) dives mapped and sampled the surface of the main landslide deposits. This contribution aims to provide an overview of key insights from ongoing work on IODP Expedition 340 Sites offshore Montserrat.Key objectives are to understand the composition (and hence source), emplacement mechanism (and hence tsunami generation) of major landslides, together with their frequency and timing relative to volcanic eruption cycles. The most recent major collapse event is Deposit 1, which involved ~1.8 km cubed of material and produced a blocky deposit at ~12-14ka. Deposit 1 appears to have involved not only the volcanic edifice, but also a substantial component of a fringing bioclastic shelf, and material locally incorporated from the underlying seafloor. This information allows us to test how first-order landslide morphology (e.g. blocky or elongate lobes) is related to first-order landslide composition. Preliminary analysis suggests that Deposit 1 occurred shortly before a second major landslide on the SW of the island (Deposit 5). It may have initiated English's Crater, but was not associated with a major change in magma composition. An associated turbidite-stack suggests it was emplaced in multiple stages, separated by at least a few hours and thus reducing the tsunami magnitude. The ROV dives show that mega-blocks in detail comprise smaller-scale breccias, which can travel significant distances without complete

  13. Locating groundwater discharge in large lakes using bottom sediment electrical conductivity mapping

    NASA Astrophysics Data System (ADS)

    Harvey, F. Edwin; Lee, David R.; Rudolph, David L.; Frape, Shaun K.

    1997-11-01

    Groundwater-surface water studies that use conventional near-shore piezometers and /or seepage meters are impractical in larger, areal extensive lakes, as they require exorbitant numbers of instruments to quantify groundwater discharge zones. In smaller lakes an electrical conductivity mapping method has proven useful in mapping groundwater discharge zones. The technique identifies groundwater discharge by measuring variations in sediment pore water electrical conductivity and reduces the number of instruments necessary to quantify inflow, thereby lowering instrumentation costs and increasing a study's efficiency. This study sought to determine the technique's applicability in larger lakes. Thus the method was tested within the Hamilton Harbour, at the western end of Lake Ontario. This study found systematic variations between nearshore and offshore sediments and identified three anomalous zones that were thought to represent groundwater inflow. Onshore and offshore piezometers were used to verify the presence of upward gradients and elevated electrical conductivities. The sediment probe survey provided qualitative maps of areas of elevated electrical conductivity indicative of groundwater discharge and allowed a fairly extensive shoreline to be mapped quickly and economically. Survey results guided the installation of nearshore piezometers to discharge zones, eliminating the inefficiency of more conventional "hit or miss" point source installation approaches. This research demonstrated that the sediment probe was a valuable tool for studying groundwater inputs into large lakes.

  14. Causes and mobility of large volcanic landslides: application to Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hürlimann, M.; Garcia-Piera, J. O.; Ledesma, A.

    2000-12-01

    Giant volcanic landslides are one of the most hazardous geological processes due to their volume and velocity. Since the 1980 eruption and associated debris avalanche of Mount St. Helens hundreds of similar events have been recognised worldwide both on continental volcanoes and volcanic oceanic islands. However, the causes and mobility of these enormous mass movements remain unresolved. Tenerife exhibits three voluminous subaerial valleys and a wide offshore apron of landslide debris produced by recurrent flank failures with ages ranging from Upper Pliocene to Middle Pleistocene. We have selected the La Orotava landslide for analysis of its causes and mobility using a variety of simple numerical models. First, the causes of the landslide have been evaluated using Limit Equilibrium Method and 2D Finite Difference techniques. Conventional parameters including hydrostatic pore pressure and material strength properties, together with three external processes, dike intrusion, caldera collapse and seismicity, have been incorporated into the stability models. The results indicate that each of the external mechanism studied is capable of initiating slope failures. However, we propose that a combination of these processes may be the most probable cause for giant volcanic landslides. Second, we have analysed the runout distance of the landslide using a simple model treating both the subaerial and submarine parts of the sliding path. The effect of the friction coefficient, drag forces and hydroplaning has been incorporated into the model. The results indicate that hydroplaning particularly can significantly increase the mobility of the landslide, which may reach runout distances greater than 70 km. The models presented are not considered definite and have mainly a conceptual purpose. However, they provide a physical basis from which to better interpret these complex geologic phenomena and should be taken into account in the prediction of future events and the assessment of

  15. Inverse transport modeling of volcanic sulfur dioxide emissions using large-scale simulations

    NASA Astrophysics Data System (ADS)

    Heng, Yi; Hoffmann, Lars; Griessbach, Sabine; Rößler, Thomas; Stein, Olaf

    2016-05-01

    An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often cannot be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i.e., unit simulations for the reconstruction of volcanic emissions and final forward simulations. Both types of transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric InfraRed Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final forward simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. By using the critical success index (CSI), the simulation results are evaluated with the AIRS observations. Compared to the results with an assumption of a constant flux of SO2 emissions, our inversion approach leads to an improvement

  16. Methanotrophy and chemoautotrophy within the redox gradient of a large and deep tropical lake (Lake Kivu, East Africa)

    NASA Astrophysics Data System (ADS)

    Morana, Cedric; Borges, Alberto V.; Darchambeau, François; Roland, Fleur; Montante, Laetitia; Descy, Jean-Pierre; Bouillon, Steven

    2014-05-01

    Lake Kivu (East Africa) is a large (2370 km2) and deep (maximum depth of 485 m) meromictic lake. Its vertical structure consists of an oxic and nutrient-poor mixed layer down to 70 m maximum, and a permanently anoxic monimolimnion rich in dissolved gases (methane and carbon dioxide) and inorganic nutrients. Seasonal variation of the vertical position of the oxic-anoxic interface is driven by contrasting precipitation and wind speed regimes between rainy (October-May) and dry (June-September) season, the latter being characterized by a deepening of the oxic zone, and an increased input of dissolved gases and inorganic nutrients. Our work aimed at quantifying methanotrophic and chemoautotrophic production within the redox gradient of Lake Kivu and identifying the micro-organisms involved in these processes using phospholipid-derived fatty acid markers and their carbon stable isotope composition. Our approach combined both natural stable isotope abundance analysis and 13C-labelling (13C-DIC ; 13C-CH4) experiments. Sampling was carried out at two stations in Lake Kivu during rainy (February 2012) and dry (September 2012) season conditions. Methanotrophic bacterial production rates were highly variable (from 0.1 to 7.0 μmol C L-1 d-1), but maximum values were always observed at the oxic-anoxic interface when the CH4:O2 ratio varied between 0.1 and 10, suggesting that the majority of methane was oxidized aerobically. Furthermore, strong stable isotope labelling of monounsaturated C16 fatty acids indicate that active methane oxidizers were related to the group of type I aerobic methanotrophs (gammaproteobacteria). Despite the dominance of aerobic methane oxidation, significant methanotrophic bacterial production rates were found below the oxic-anoxic interface during the rainy season, indicating that at least a fraction of the upcoming methane may be oxidized anaerobically. This observation was further confirmed by the strong labelling at these depths of the 10Me16

  17. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.

    PubMed

    Higgins, Scott N; Althouse, B; Devlin, S P; Vadeboncoeur, Y; Vander Zanden, M J

    2014-08-01

    While limnological studies have emphasized the importance of grazers on algal biomass and primary production in pelagic habitats, few studies have examined their potential role in altering total ecosystem primary production and it's partitioning between pelagic and benthic habitats. We modified an existing ecosystem production model to include biotic feedbacks associated with two groups of large-bodied grazers of phytoplankton (large-bodied zooplankton and dreissenid mussels) and estimated their effects on total ecosystem production (TEP), and the partitioning of TEP between phytoplankton and periphyton (autotrophic structure) across large gradients in lake size and total phosphorus (TP) concentration. Model results indicated that these filter feeders were capable of reducing whole-lake phytoplankton production by 20-70%, and increasing whole-lake benthic production between 0% and 600%. Grazer effects on TEP were constrained by lake size, trophic status, and potential feedbacks between grazing and maximum rates of benthic photosynthesis (BP(MAX)). In small (mean depth Z < 10 m) oligotrophic and mesotrophic (TP < 100 mg P/m2) lakes, both large-bodied zooplankton and dreissenids were capable of increasing the benthic fraction (Bf) by 10-50% of TEP. Small lakes were also the only systems where TEP had the potential to increase in the presence of large-bodied grazers, but such increases only occurred if grazer-induced changes in water clarity, macrophyte coverage, or nutrient availability stimulated specific growth rates of periphyton. In other scenarios, TEP declined by a maximum of 50%. In very large lakes (Z > 100 m), Bf was minor (< 10%) in the presence or absence of grazers, but increases in littoral habitat and the stimulation of benthic production in these ecosystems could be of ecological relevance because littoral zones in large lakes contain a relatively high proportion of within-lake biodiversity and are important for whole-lake food webs. PMID:25230476

  18. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    PubMed

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. PMID:26410705

  19. Paleodynamics of large closed lakes as a standard for climate modeling data verification

    NASA Astrophysics Data System (ADS)

    Kislov, Alexander

    2015-04-01

    Observed and reconstructed variations of large lakes can serve as a standard for assessing the quality of the model run off simulated by climate models. It provides the opportunity to assess whether models designed for future scenarios are skillful in 'out-of sample' climate change experiments. Based on general ideas about the laws of temporal dynamics relating to massive inertial objects, slow changes of the lake level under the semi-steady climate state can be represented as resulting from the accumulation of small anomalies in the water regime; it appears like a kind of "self-developing" system. To test this hypothesis, the water balance model of the Caspian Sea (CS) was used. Time scale for the CS is estimated as ~20 years. Model is interpreted as stochastic, and from this perspective, it is a Langevin equation that incorporates the action of precipitation and evaporation like random white noise, so that the whole can be thought of as an analogue of Brownian motion. Under these conditions, the CS palaeostages during the Holocene is represented by a system undergoing random walk. It should be emphasized that modeling results are interpreted from the probabilistic point of view, despite the fact that the model is deterministically based on the physical law of conservation of water mass. Despite the CS, another candidate to be as a potential evaluation tool for climate model simulations is the Black Sea (BS) until its merger with the Mediterranean. Therefore, although the image of the CS, BS and other lakes within the climate models is very simplified (or absent), changes in the levels could be used to assess the ability of climate models to reproduce the water budget over the catchment areas. For the CS or the BS, they are the large parts of the East European Plane and can be as indicators of climate model quality. However, the use of reconstructed data of other closed lakes is problematic. It is due to its water budget components cannot be simulated with needed

  20. Nutrient limitation of a thermokarst lake and large river ecosystem in the Kolyma River basin (Russia)

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Heslop, J.; Sobczak, W. V.; Schade, J. D.; Spektor, V.; Holmes, R. M.; Bunn, A. G.; Bulygina, E. B.; Walter Anthony, K. M.; Frey, K. E.; Zimov, N.; Zimov, S. A.

    2010-12-01

    Productivity (autotrophic phytoplankton and heterotrophic bacteria) are important food web components that govern the carbon cycling dynamics in aquatic ecosystems. Productivity is often regulated by macro- and micro micronutrient availability which can vary across the globe (polar, temperate, tropical, continents, latitude, etc.) and ecosystem (lake, river, estuary). Until recentely, very little research has been conducted in Polar aquatic ecosystems, particularly continuous permafrost regions, to understand nutrient limitation of lake productivity even though large scale disturbances from permafrost thaw may be changing the nutrient availability to these ecosystems. The objective of this study was to evaluate the nutrient limitation to surface productivity of a river and lake in the Kolyma River Basin, an area where observed methane and dissolved organic carbon transport from upland sources to the ocean has been observed. After 4 days and elevating nutrients to 10 times the background concentrations in a 75 L volume mesocosms, we determined autochthonous production in the Panteleja river was colimited by nitrogen and phosphorus before and during an algal bloom. In contrast, Suchi Lake, a thermokarst ecosystem, exhibited no response to nutrient additions indicating that other factors may limit production.

  1. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake.

    PubMed

    Di Cesare, Andrea; Eckert, Ester M; Teruggi, Alessia; Fontaneto, Diego; Bertoni, Roberto; Callieri, Cristiana; Corno, Gianluca

    2015-08-01

    The fate of antibiotic resistance genes (ARGs) in environmental microbial communities is of primary concern as prodromal of a potential transfer to pathogenic bacteria. Although of diverse origin, the persistence of ARGs in aquatic environments is highly influenced by anthropic activities, allowing potential control actions in well-studied environments. However, knowledge of abundance and space-time distribution of ARGs in ecosystems is still scarce. Using quantitative real-time PCR, we investigated the presence and the abundance of twelve ARGs (against tetracyclines, β-lactams, aminoglycosides, quinolones and sulphonamides) at different sampling sites, depths and seasons, in Lake Maggiore, a large subalpine lake, and in the area of its watershed. We then evaluated the correlation between each ARG and a number of ecological parameters in the water column in the deepest part of the lake. Our results suggest the constitutive presence of at least four ARGs within the bacterial community with a high proportion of bacteria potentially resistant to tetracyclines and sulphonamides. The presence of these ARGs was independent of the total bacterial density and temperature. The dynamics of tet(A) and sulII genes were, however, positively correlated with dissolved oxygen and negatively to chlorophyll a, suggesting that the resistant microbes inhabit specific niches. These observations indicate that the lake is a reservoir of antibiotic resistances, highlighting the need of a deeper understanding of the sources of ARGs and the factors allowing their persistence in waters. PMID:26118321

  2. Chronology of tectonic, geomorphic, and volcanic interactions and the tempo of fault slip near Little Lake, California

    USGS Publications Warehouse

    Amos, Colin B.; Brownlee, Sarah J.; Rood, Sylan H.; Fisher, G. Burch; Burgmann, Roland; Renne, Paul R.; Jayko, Angela S.

    2013-01-01

    New geochronologic and geomorphic constraints on the Little Lake fault in the Eastern California shear zone reveal steady, modest rates of dextral slip during and since the mid-to-late Pleistocene. We focus on a suite of offset fluvial landforms in the Pleistocene Owens River channel that formed in response to periodic interaction with nearby basalt flows, thereby recording displacement over multiple time intervals. Overlap between 40Ar/39Ar ages for the youngest intracanyon basalt flow and 10Be surface exposure dating of downstream terrace surfaces suggests widespread channel incision during a prominent outburst flood through the Little Lake channel at ca. 64 ka. Older basalt flows flanking the upper and lower canyon margins indicate localization of the Owens River in its current position between 212 ± 14 and 197 ± 11 ka. Coupled with terrestrial light detection and ranging (lidar) and digital topographic measurements of dextral offset, the revised Little Lake chronology indicates average dextral slip rates of at least ∼0.6–0.7 mm/yr and 4 to 105 yr. Despite previous geodetic observations of relatively rapid interseismic strain along the Little Lake fault, we find no evidence for sustained temporal fluctuations in slip rates over multiple earthquake cycles. Instead, our results indicate that accelerated fault loading may be transient over much shorter periods (∼101 yr) and perhaps indicative of time-dependent seismic hazard associated with Eastern California shear zone faults.

  3. Volcanic ash ingestion by a large gas turbine aeroengine: fan-particle interaction

    NASA Astrophysics Data System (ADS)

    Vogel, Andreas; Clarkson, Rory; Durant, Adam; Cassiani, Massimo; Stohl, Andreas

    2016-04-01

    Airborne particles from explosive volcanic eruptions are a major safety threat for aviation operations. The fine fraction of the emitted particles (<63 microns diameter) may remain in the atmosphere for days, or even weeks, and can affect commercial air traffic routes. Over the past century, there have been a considerable number of aircraft encounters with drifting volcanic ash clouds. Particles ingested into the engine cause erosion of upstream surfaces of compressor fan blades and rotor-path components, and can also cause contamination or blockage of electrical systems and the fuel system such as fuel nozzles and air bleed filters. Ash particles that enter the hot-section of the engine (combustor and turbine stages; temperature between 1400-1800°C) are rapidly heated above the glass transition temperature (about 650-1000°C) and become soft (or form a melt) and can stick as re-solidified deposits on nozzle guide vanes. The glass deposits change the internal aerodynamic airflow in the engine and can affect the cooling capability of the different components by clogging the cooling inlets/outlets, which can lead to a loss of power or flame-out. The nature of volcanic ash ingestion is primarily influenced by the fan at the front of the engine which produces the thrust that drives the aircraft. The ingested air is split between the core (compressor/combustor/turbine) and bypass (thrust) at a ratio of typically between, 1:5-10 on modern engines. Consequently, the ash particles are fractionated between the core and bypass by the geometry and dynamics of the fan blades. This study uses computational fluid dynamics (CFD) simulations of particle-laden airflows into a turbofan engine under different atmospheric and engine operation conditions. The main aim was to investigate the possible centrifugal effect of the fan blades as a function of particle size, and to relate this to the core intake concentration. We generated a generic 3D axial high-bypass turbofan engine using

  4. Limnogeology in Brazil's "forgotten wilderness": a synthesis from the large floodplain lakes of the Pantanal

    USGS Publications Warehouse

    McGlue, Michael M.; Silva, Aguinaldo; Corradini, Fabricio A.; Zani, Hiran; Trees, Mark A.; Ellis, Geoffrey S.; Parolin, Mauro; Swarzenski, Peter W.; Cohen, Andrew S.; Assine, Mario L.

    2011-01-01

    Sediment records from floodplain lakes have a large and commonly untapped potential for inferring wetland response to global change. The Brazilian Pantanal is a vast, seasonally inundated savanna floodplain system controlled by the flood pulse of the Upper Paraguay River. Little is known, however, about how floodplain lakes within the Pantanal act as sedimentary basins, or what influence hydroclimatic variables exert on limnogeological processes. This knowledge gap was addressed through an actualistic analysis of three large, shallow (2- > Si4+ > Ca2+), mildly alkaline, freshwater systems, the chemistries and morphometrics of which evolve with seasonal flooding. Lake sills are bathymetric shoals marked by siliciclastic fans and marsh vegetation. Flows at the sills likely undergo seasonal reversals with the changing stage of the Upper Paraguay River. Deposition in deeper waters, typically encountered in proximity to margin-coincident topography, is dominated by reduced silty-clays with abundant siliceous microfossils and organic matter. Stable isotopes of carbon and nitrogen, plus hydrogen index measured on bulk organic matter, suggest that contributions from algae (including cyanobacteria) and other C3-vegetation dominate in these environments. The presence of lotic sponge spicules, together with patterns of terrigenous sand deposition and geochemical indicators of productivity, points to the importance of the flood pulse for sediment and nutrient delivery to the lakes. Flood-pulse plumes, waves and bioturbation likewise affect the continuity of sedimentation. Short-lived radioisotopes indicate rates of 0.11-0.24 cm year-1 at sites of uninterrupted deposition. A conceptual facies model, developed from insights gained from modern seasonal processes, can be used to predict limnogeological change when the lakes become isolated on the floodplain or during intervals associated with a strengthened flood pulse. Amplification of the seasonal cycle over longer time scales

  5. The mechanism of polar vortex strengthening after large tropical volcanic eruptions as simulated in the MPI-ESM

    NASA Astrophysics Data System (ADS)

    Bittner, Matthias; Timmreck, Claudia; Schmidt, Hauke; Toohey, Matthew; Krueger, Kirstin

    2016-04-01

    State-of-the-art climate models that have participated in the recent CMIP5 model intercomparison activity do, on average, not produce the strengthened northern hemispheric (NH) polar vortex after historical large tropical volcanic eruptions as suggested by observations. Here, we study the impact of volcanic eruptions of different strength on the NH winter stratosphere in the MPI-ESM Earth system model. We compare the dynamical impact in ensemble simulations of a very large Tambora eruption in 1815 with the response to the two largest eruptions of the CMIP5 historical simulations (Krakatau, 1883; and Mt. Pinatubo, 1991). The mechanism, of the strengthening of the vortex can clearly be identified in the simulations for the Tambora eruption. An increased meridional stratospheric temperature gradient is often assumed to be the cause of the vortex strengthening. The position of the maximum temperature anomaly gradient is located, however, at approximately 30°N, far away from the polar vortex . Hence, the vortex strengthening is caused only indirectly by the changed temperature gradient which first produces a subtropical wind anomaly in early winter. This leads planetary waves propagating more equatorward causing finally the vortex strengthening. The simulated response to the weaker eruptions of Krakatau and Pinatubo is also a slight average strengthening of the polar vortex, but individual ensemble members differ strongly indicating that internal variability can mask the impact on the polar vortex in the NH post-eruption winter under such moderate eruption strengths. The large forcing of the Tambora eruption does not only cause a mean vortex strengthening but also a reduction of the ensemble variability of the vortex.

  6. Were Holocene large slumps in Lake Geneva off the city of Lausanne caused by fault activity?

    NASA Astrophysics Data System (ADS)

    Correia Demand, Jehanne; Marillier, François; Kremer, Katrina; Girardclos, Stéphanie

    2014-05-01

    Lake Geneva is set in an area where glacier advances and retreats have carved Tertiary Molasse rocks in front of the Alpine units. Glacial and lacustrine sediments have accumulated in the lake on top of the Molasse. Within Holocene sedimentary layers, seismic studies in the central part of Lake Geneva ("Grand-Lac") have shown the presence of several mass transport deposits (MTD). A large one, MTD A, is observed off the city of Lausanne. The depth of the associated failure scars (100 m water depth), its volume (~ 0.13 km3), and the occurrence of other smaller MTDs that were possibly co-deposited with MTD A point to the occurrence of a major slide event in the lake, most likely associated with an earthquake. Based on 14C dating, the sediment age model for MTD A gives an age interval of 1865-1608 BC (Kremer et al. 2014). To resolve the details of the MTDs off Lausanne, and to better understand its geological context different seismic systems were used. These were a 3.5 KHz pinger with a theoretical vertical resolution of 0.15 m and a multichannel system with water-gun or air-gun seismic sources with vertical resolution of 0.6 m and 1.1 m, respectively. After a first pass processing, the multi-channel data were reprocessed in order to take into account the shape of the streamer in the water and to enhance the results of migration. In addition to typical seismic images of MTDs observed in other alpine lakes such as chaotic or transparent seismic character between well-organized reflections, two intriguing positive water-bottom topographic features associated with apparent sub-vertical offsets are revealed by the seismic data. They are located in the near vicinity of the depot centers of the MTDs and conspicuously located near faults in the Tertiary Molasse. These are thrust faults that are offset by small strike-slip faults, and we suggest that the positive topographic features are linked to a compressive component within the sediments due to displacements along these

  7. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.; Lanphere, Marvin A.; Champion, Duane E.; Ramsey, David W.

    2008-10-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ˜ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ˜ 2000 km 2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ˜ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ˜ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ˜ 200 to ˜ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ˜ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ˜ 600 km 3, giving an overall effusion rate of ˜ 1.2 km 3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted

  8. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline

  9. Effect of Large-Scale Bathymetry on Internal Wave Structure in Lakes

    NASA Astrophysics Data System (ADS)

    Fricker, Paul D.; Nepf, Heidi M.

    1998-11-01

    Internal wave structure can be strongly influenced by large-scale bathymetry. In particular, analytic solutions suggest that seiche motion is amplified in shallow regions, so that seiche-induced mixing should be augmented over shelf bathymetry. A combination of field and numerical studies is used to examine the dynamic significance of simple bathymetric variation as well the potential impact on bed-source contamination. Internal wave eigensolutions are evaluated numerically for a model bathmetry which includes a shallow ledge and compared to simpler solutions such as the box-model lake. The predicted spatial structure of isotherm displacement predicted for a V1H1 mode is compared with actual thermistor chain data, collected in the Upper Mystic Lake, near Boston, MA. The comparison confirms the predicted modal structure, specifically including the amplification of seiche motions on the shelf. We consider how large-scale bathymetry of the lake may focus internal wave energy and create local 'hot spots' where the vertical flux of contaminant is accelerated. Because the spatial heterogeneity of internal wave motions can influence spatial distribution and redistribution of contaminants, these motions have important implications for long-term fate of watershed contamination and the interpretation of historic contamination through sediment records.

  10. Chemical characteristics of the volcanic gases from Nyiragongo lava lake and the generation of CH 4-rich fluid inclusions in alkaline rocks

    NASA Astrophysics Data System (ADS)

    Gerlach, T. M.

    1980-10-01

    Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H 2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H 2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H 2S, S 2, and H 2. The estimated gas compositions are relatively CO 2-rich, low in total sulfur and reduced. They contain approximately 35-50% CO 2 45-55% H 2O, 1-2% SO 2, 1-2% H 2., 2-3% CO, 1.5-2.5% H 2S, 0.5% S 2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO 2 of the crystallizing lava. At temperatures above 800°C and pressures of 1-1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO 2 buffered by the rock, results in gas compositions very rich in CH 4 (50-70%) and resembling secondary fluid inclusions formed at 200-500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH 4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.

  11. Long-term impacts of invasive species on a native top predator in a large lake system

    USGS Publications Warehouse

    Rush, Scott A.; Paterson, Gordon; Johnson, Tim B.; Drouillard, Ken G.; Haffner, Gordon D.; Hebert, Craig E.; Arts, Michael T.; McGoldrick, Daryl J.; Backus, Sean M.; Lantry, Brian F.; Lantry, Jana R.; Schaner, Ted; Fisk, Aaron T.

    2012-01-01

    1. Declining abundances of forage fish and the introduction and establishment of non-indigenous species have the potential to substantially alter resource and habitat exploitation by top predators in large lakes. 2. We measured stable isotopes of carbon (δ13C) and nitrogen (δ15N) in field-collected and archived samples of Lake Ontario lake trout (Salvelinus namaycush) and five species of prey fish and compared current trophic relationships of this top predator with historical samples. 3. Relationships between δ15N and lake trout age were temporally consistent throughout Lake Ontario and confirmed the role of lake trout as a top predator in this food web. However, δ13C values for age classes of lake trout collected in 2008 ranged from 1.0 to 3.9‰ higher than those reported for the population sampled in 1992. 4. Isotope mixing models predicted that these changes in resource assimilation were owing to the replacement of rainbow smelt (Osmerus mordax) by round goby (Neogobius melanostomus) in lake trout diet and increased reliance on carbon resources derived from nearshore production. This contrasts with the historical situation in Lake Ontario where δ13C values of the lake trout population were dominated by a reliance on offshore carbon production. 5. These results indicate a reduced capacity of the Lake Ontario offshore food web to support the energetic requirements of lake trout and that this top predator has become increasingly reliant on prey resources that are derived from nearshore carbon pathways.

  12. Electrification of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Harrison, R. G.

    2006-07-01

    Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.

  13. Electrification of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Harrison, R. G.

    We present a review of our current understanding of the electrification of volcanic plumes on Earth and discuss the possible implications both in terms of the volcanic monitoring, early Earth evolution and planetary exploration. Volcanic lightning is perhaps the most spectacular consequence of the electrification of volcanic plumes. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. Volcanic lightning has been implicated in a number of ways in the origin of life on Earth, and may also exist in other planetary atmospheres where measurements of its occurrence might give clues about the nature of volcanism on other

  14. Influence of Salinity on the Bacterial Community Composition in Lake Bosten, a Large Oligosaline Lake in Arid Northwestern China

    PubMed Central

    Tang, Xiangming; Xie, Guijuan; Shao, Keqiang; Sai·Bayartu; Chen, Yuangao

    2012-01-01

    Salinity was found to be the dominating contributor controlling bacterial community composition (BCC) and the abundance of Betaproteobacteria in the oligosaline Lake Bosten. The high percentage of unclassified bacteria inhabiting this unique habitat highlights the potential ecological importance of BCC in the early stage of lake salinization and eutrophication. PMID:22522679

  15. Large fractionations of C and H isotopes related to methane oxidation in Arctic lakes

    NASA Astrophysics Data System (ADS)

    Cadieux, Sarah B.; White, Jeffrey R.; Sauer, Peter E.; Peng, Yongbo; Goldman, Amy E.; Pratt, Lisa M.

    2016-08-01

    Microbial oxidation of methane (CH4) plays a central role in carbon cycling in Arctic lakes, reducing potential CH4 emissions associated with warming. Isotopic signatures of CH4 (δ13C and δ2H) are indicators of microbial oxidation, wherein the process strongly enriches 13C and 2H in residual CH4. We present δ13C and δ2H measurements obtained from sampling the water column and sediment for dissolved CH4 from three, small Arctic lakes in western Greenland under both open-water and ice-covered conditions from 2013 to 2014. Despite substantial variations in aquatic chemistry among the lakes, δ13C and δ2H of CH4 suggested that CH4 was produced predominantly by acetoclastic methanogenesis in the littoral sediments and hydrogenotrophic methanogenesis in the profundal sediments in all of the lakes. Surprisingly large variations for both δ13C and δ2H of CH4 were observed, with δ13C extending from -72‰ to +7.4‰ and δ2H from -390‰ to +250‰. The CH4 isotopic values reported here were significantly more enriched (p < 0.0001) in both 13C and 2H than values reported from other Arctic freshwater environments. As is characteristic of methanotrophy, the enrichment in 13C and 2H was associated with low CH4 concentrations. We suggest that the CH4 most enriched in 13C and 2H may reflect unusually efficient methanotrophic communities in Arctic ice-margin lakes. This study provides the first measurement of δ2H for CH4 in an Arctic freshwater environment at concentrations <10 μM. The extreme enrichment of 13C and 2H of CH4 from Arctic methanotrophy has significant implications for interpreting sources and sinks of CH4. Without knowledge of local geology, stable isotope values of CH4 higher than -30‰ for δ13C and -150‰ for δ2H could be misinterpreted as thermogenic, geothermal, or abiogenic origins. Given crystalline bedrock and the strong positive correlation between δ13C and δ2H throughout the water columns in three Arctic lakes confirms that CH4 heavily

  16. Mantle Heterogeneities and Crustal Processes of the Cascade Arc Represented by Basalts of the Poison Lake Chain, Lassen Volcanic Center, California

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Teasdale, R.; Hiebing, M. S.; Lenz, Q. A.; Kroeninger, K.

    2013-12-01

    Basalts in the Poison Lake chain (PLC) include eight chemically distinct groups of primitive calc-alkaline basalts (defined by major element geochemistry and mineralogy). Located east of the Lassen Volcanic Center, PLC primitive basalts span the range of basalt compositions exposed throughout the entire Cascade arc (e.g. Ba: 100-1000 ppm; (Sr/P)n: 1.3 - 3.8; La/Yb: 4-26). PLC groups have trace-element and isotope ratios that show little evidence of direct genetic relationships among groups or a common source. Major, trace element and isotope ratios show evidence of contributions from multiple mantle sources including MORB, fluid rich subduction component and subduction-related sediment. Some groups record compositional variations from multiple mantle sources with minimal crustal processing. Similarly, preliminary probe data for olivine-spinel pairs suggest that some PLC groups are derived from heterogeneous mantle sources. Geochemical evidence indicates that other groups have petrogenetic histories that include crustal processes such as fractional crystallization, mixing or crustal contamination. Isotope ratios, major and trace element compositions and crystal compositions provide insights into the extent of source heterogeneities versus the degree of crustal processing. The broad range of compositional variations in basalts of PLC provides the opportunity to examine the extent of mantle heterogeneities and crustal processing in a small geographic area (50km2) for rocks that are nearly the same age (100-110 ka). The diverse primitive compositions erupted in the constrained time and space of the Poison Lake chain and the lack of genetic relationship among groups make it the ideal place to investigate the small scale nature of mantle domains and the roles of subduction and modification processes in the generation of basaltic compositions in arcs such as the Cascades, Mexico, Japan.

  17. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. PMID:22047737

  18. Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná-Etendeka Large Igneous Province: New palaeomagnetic data from Namibia

    NASA Astrophysics Data System (ADS)

    Dodd, Sarah C.; Mac Niocaill, Conall; Muxworthy, Adrian R.

    2015-03-01

    There is long-standing correlation between Large Igneous Provinces (LIPs) and major mass extinction events in the Geological Record, postulated to be due to the emission of large quantities of volcanic gases over a geologically short period of time causing major climatic perturbations within the Earth system. The ∼135 Ma Paraná-Etendeka volcanic province of Brazil and Namibia represents something of an enigma amongst LIPs. Despite an erupted volume (>1 Mkm3) comparable to other LIPs associated with mass extinctions, such as the Siberian or Deccan traps, it is not linked to a known mass extinction event. This suggests that the Paraná-Etendeka volcanic province was emplaced over longer timescales than other LIPs, and/or emitted a lower concentration of volatiles, directly or indirectly during its emplacement. We present a new, detailed magnetostratigraphy for the Etendeka portion of the province that suggests emplacement took place over longer timescales (>4 Ma) than those associated with other LIPs. Palaeomagnetic analysis of 893 specimens from 99 sites, in sections that encompass nearly the complete Etendeka stratigraphy, yielded high-quality data from 70 sites (612 specimens). These record 16 individual polarity intervals, which can be correlated with Chrons 15 to 11 of the geomagnetic polarity time scale (GPTS) while also providing two new, high quality palaeopoles for South Africa at 130-135 Ma. Our magnetostratigraphy reveals a minimum period of volcanic activity in excess of 4 Myrs and, importantly, we find no evidence for major changes in the rates of volcanic activity through that time period, in contrast to other LIPs where volcanism seems to be concentrated in major pulses. This suggests that the anomalously feeble environmental impact of Paraná-Etendeka volcanism may be due to lower effusion rates reducing the atmospheric loading due to volcanogenic volatiles.

  19. Geochemical Uniformity over 30 Million Years of Volcanic Activity in the Caribbean Large Igneous Province: Evidence from Curacao and Haiti

    NASA Astrophysics Data System (ADS)

    Loewen, M. W.; Kent, A. J.; Duncan, R. A.; Krawl, K.; Michael, P. J.; Graham, D. W.

    2012-12-01

    New 40Ar/39Ar age determinations from Caribbean Large Igneous Province (CLIP) lavas, dikes, and sills from Curacao and Haiti record almost 30 million years of volcanism, beginning at ~93 Ma and continuing until ~63 Ma, with peak activity at 93-90, 86-85, 80-76 and 66-63 Ma. A variety of rock types are apparent. Despite the significant age range evident in our sample set, which includes picritic to tholeitic pillow lavas, thick hyaloclastite sequences, and poikolitic sills, compositions show only subtle compositional differences between groups of different age. Most whole rock samples appear to derive from a similar mantle source peridotite and to have undergone a common set differentiation processes (primarily partial melting followed by fractionation of olivine, clinopyroxene, and plagioclase). The recognition of this range of ages and compositional similarities poses important questions for the extent and cause of CLIP magmatism. We present new 40Ar-39Ar ages and major and trace elements for whole rock, minerals and glass samples from throughout the exposed volcanic sections at the two locations. Hyaloclastite glasses have also been analyzed by FTIR for volatile abundances. Unlike major element compositions of whole rock samples, major element and volatile analyses of hyaloclastite glasses reveal the presence of at least three distinct magma series. In addition, variations in Cl and Cl/K suggest that differences exist in the degree to which magmatic systems interact with seawater-derived components. One He-isotopic analysis from a Haiti picrite (3He/4He = 12.3 Ra) is consistent with other isotopic evidence for a significant mantle plume contribution to CLIP construction. Future work will focus on trace element modeling to further constrain magma sources and extents of melting, and on expanding the number of samples for which we have age control.

  20. LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of 1-dimensional lake models

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Stepanenko, Viktor; Darchambeau, François; Joehnk, Klaus; Martynov, Andrey; Mironov, Dmitrii; Perroud, Marjorie; van Lipzig, Nicole

    2013-04-01

    The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the last decades, these lakes experienced fast changes in ecosystem structure and functioning and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated over East-Africa, in particular over Lake Kivu (2.28 °S; 28.98 °E). The unique limnology of meromictic Lake Kivu, with the importance of salinity and geothermal springs in a tropical high-altitude climate, presents a worthy challenge to the 1D-lake models currently involved in the Lake Model Intercomparison Project (LakeMIP). Furthermore, this experiment will serve as the basis for a future, more complex intercomparison, coupling lake models with atmospheric circulation models to analyse climate change effects on the lake. Meteorological observations from two automatic weather stations, one at Kamembe airport (Rwanda, 2003-2008), the other at ISP Bukavu (DRC, 2003-2011), are used to drive each of these models. For the evaluation, a unique dataset is used which contains over 150 temperature profiles recorded since 2002. The standard LakeMIP protocol is adapted to mirror the limnological conditions in Lake Kivu and to unify model parameters as far as possible. Since some lake models do not account for salinity and its effect upon lake stratification, two sets of simulations are performed with each model: one for the freshwater layer only (60 m) and one for the average lake depth (240 m) including salinity. Therewith, on the one hand it is investigated whether each model is able to reproduce the correct mixing regime in Lake Kivu and captures the controlling of this seasonality by the relative humidity, which constrains evaporation except during summer (JJA). On the other hand, the ability of different models to simulate salinity- and geothermal-induced effects upon deep water stratification is

  1. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  2. Trace analysis of semivolatile organic compounds in large volume samples of snow, lake water, and groundwater.

    PubMed

    Usenko, Sascha; Hageman, Kimberly J; Schmedding, Dave W; Wilson, Glenn R; Simonich, Staci L

    2005-08-15

    An analytical method was developed for the trace analysis of a wide range of semivolatile organic compounds (SOCs) in 50-L high-elevation snow and lake water samples. The method was validated for 75 SOCs from seven different chemical classes (polycyclic aromatic hydrocarbons, organochlorine pesticides, amides, triazines, polychlorinated biphenyls, thiocarbamates, and phosphorothioates) that covered a wide range of physical-chemical properties including 7 orders of magnitude of octanol-water partition coefficient (log K(ow) = 1.4-8.3). The SOCs were extracted using a hydrophobically and hydrophilically modified divinylbenzene solid-phase extraction device (modified Speedisk). The average analyte recovery from 50 L of reverse osmosis water, using the modified Speedisk, was 99% with an average relative standard deviation of 4.8%. Snow samples were collected from the field, melted, and extracted using the modified Speedisk and a poly(tetrafluoroethylene) remote sample adapter in the laboratory. Lake water was sampled, filtered, and extracted in situ using an Infiltrex 100 fitted with a 1-microm glass fiber filter to trap particulate matter and the modified Speedisk to trap dissolved SOCs. The extracts were analyzed by gas chromatographic mass spectrometry with electron impact ionization and electron capture negative ionization using isotope dilution and selective ion monitoring. Estimated method detection limits for snow and lake water ranged from 0.2 to 125 pg/L and 0.5-400 pg/L, respectively. U.S. historic and current-use pesticides were identified and quantified in snow and lake water samples collected from Rocky Mountain National Park, CO. The application of the analytical method to the analysis of SOCs in large-volume groundwater samples is also shown. PMID:16173557

  3. The Influence of Macrophytes on Sediment Resuspension and the Effect of Associated Nutrients in a Shallow and Large Lake (Lake Taihu, China)

    PubMed Central

    Zhu, Mengyuan; Zhu, Guangwei; Nurminen, Leena; Wu, Tingfeng; Deng, Jianming; Zhang, Yunlin; Qin, Boqiang; Ventelä, Anne-Mari

    2015-01-01

    A yearlong campaign to examine sediment resuspension was conducted in large, shallow and eutrophic Lake Taihu, China, to investigate the influence of vegetation on sediment resuspension and its nutrient effects. The study was conducted at 6 sites located in both phytoplankton-dominated zone and macrophyte-dominated zone of the lake, lasting for a total of 13 months, with collections made at two-week intervals. Sediment resuspension in Taihu, with a two-week high average rate of 1771 g·m-2·d-1 and a yearly average rate of 377 g·m-2·d-1, is much stronger than in many other lakes worldwide, as Taihu is quite shallow and contains a long fetch. The occurrence of macrophytes, however, provided quite strong abatement of sediment resuspension, which may reduce the sediment resuspension rate up to 29-fold. The contribution of nitrogen and phosphorus to the water column from sediment resuspension was estimated as 0.34 mg·L-1 and 0.051 mg·L-1 in the phytoplankton-dominated zone. Sediment resuspension also largely reduced transparency and then stimulated phytoplankton growth. Therefore, sediment resuspension may be one of the most important factors delaying the recovery of eutrophic Lake Taihu, and the influence of sediment resuspension on water quality must also be taken into account by the lake managers when they determine the restoration target. PMID:26030094

  4. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.

    PubMed

    Rasilo, Terhi; Prairie, Yves T; Del Giorgio, Paul A

    2015-03-01

    Lakes are a major component of boreal landscapes, and whereas lake CO2 emissions are recognized as a major component of regional C budgets, there is still much uncertainty associated to lake CH4 fluxes. Here, we present a large-scale study of the magnitude and regulation of boreal lake summer diffusive CH4 fluxes, and their contribution to total lake carbon (C) emissions, based on in situ measurements of concentration and fluxes of CH4 and CO2 in 224 lakes across a wide range of lake type and environmental gradients in Québec. The diffusive CH4 flux was highly variable (mean 11.6 ± 26.4 SD mg m(-2)  d(-1) ), and it was positively correlated with temperature and lake nutrient status, and negatively correlated with lake area and colored dissolved organic matter (CDOM). The relationship between CH4 and CO2 concentrations fluxes was weak, suggesting major differences in their respective sources and/or regulation. For example, increasing water temperature leads to higher CH4 flux but does not significantly affect CO2 flux, whereas increasing CDOM concentration leads to higher CO2 flux but lower CH4 flux. CH4 contributed to 8 ± 23% to the total lake C emissions (CH4  + CO2 ), but 18 ± 25% to the total flux in terms of atmospheric warming potential, expressed as CO2 -equivalents. The incorporation of ebullition and plant-mediated CH4 fluxes would further increase the importance of lake CH4 . The average Q10 of CH4 flux was 3.7, once other covarying factors were accounted for, but this apparent Q10 varied with lake morphometry and was higher for shallow lakes. We conclude that global climate change and the resulting shifts in temperature will strongly influence lake CH4 fluxes across the boreal biome, but these climate effects may be altered by regional patterns in lake morphometry, nutrient status, and browning. PMID:25220765

  5. Water level and ice monitoring of large and middle-sized lakes of Russia

    NASA Astrophysics Data System (ADS)

    Rybushkina, Galina; Troitskaya, Yuliya; Soustova, Irina

    2014-05-01

    Studying of water level and ice cover of large and medium sized lakes are of interest because they represent natural reservoirs of fresh water and are associated with human economic activity. Moreover, the water level variations and ice cover duration are important indicators of climate changes. In addition to in situ observations satellite methods of monitoring have certain advantages connected with the global coverage, instantaneous observations of large water areas and relatively low cost. However, the use of satellite methods for inland waters is often difficult because of their spatial resolution comparable to or greater than the size of water reservoirs. Remote sensing with high spatial resolution is often associated with a large repeat period of data (ICESat), or with a significant dependence of the quality of data on weather conditions (Landsat). In this regard, the use of Jason -2 satellite equipped with dual-frequency (13.6 GHz and 5 GHz) radar altimeters and passive three-frequency (18, 21 and 37 GHz) microwave radiometers is of interest, because the footprint diameter of their altimeters in Ku-band is about 10 km and the repeat period of observations is ten days, that make it suitable for observations of large and medium-sized inland waters. In this work we use the data of three mentioned above satellites to determine the water level variations and ice-cover régime of 8 lakes in Russia, water areas of which are intersected by the tracks of these satellites. Variations in water level is calculated on the base of retracking method [1] taking into account the fact that the waveforms of altimetry pulses of satellites Jason-2 and ICESat are distorted due to the influence of land. Satellite data are compared with available in situ observations and the correlation coefficient with in situ observations is calculated. The ice regime of lakes is determined using a new method [2] based on the analysis of the difference between the brightness temperatures of land

  6. The Rungwe Volcanic Province, Tanzania - A volcanological review

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Williamson, David; Mbede, Evelyne; Ernst, Gerald G. J.

    2012-02-01

    The Rungwe Volcanic Province in SW Tanzania is a densely populated area that is considered volcanically active. As part of the East African Rift System, a significant control of tectonic activity seems to exist on the location and also potential destabilization of volcanic edifices. Three large volcanoes, Ngozi, Rungwe, and Kyejo, dominate the landscape and all show contrasting eruptive behaviour in the recent geological past. Kyejo volcano is a flow-dominated volcano that had a historic lava flow eruption. Lake sediment cores, drilled in Lakes Malawi, Masoko, Rukwa, and Tanganyika, provide a record of frequent explosive eruptions in the last few tens of thousands of years. In combination with on-land stratigraphic observations, they constrain the minimum eruptive frequency of especially Rungwe and Ngozi volcanoes. Both volcanoes had Plinian-style eruptions in the Holocene. The most striking documented Rungwe eruption, the ca. 4 ka Rungwe Pumice, is a rare case of a Plinian eruption in near-wind-free conditions. Furthermore, the Rungwe Pumice, just like any other Rungwe tephra deposit, does not show any evidence of pyroclastic density current deposits. Apart from explosive eruptions at a range of scales happening every few hundred years at Rungwe, the volcano also experienced at least two sector collapse events generating debris avalanches. All existing evidence shows that the Rungwe Volcanic Province is prone to future significant explosive eruptions. To further assess, quantify and mitigate volcanic hazard risks, extensive and systematic multidisciplinary geological research, and both volcanic and tectonic monitoring are needed.

  7. Discovery of a Large Volcanic Eruption in 1761 From Pre-Venus-Transit and Other Proxy Data, Using Benjamin Franklin's Method of Linking the 1783-1784 Cold Weather to the Laki Eruption

    NASA Astrophysics Data System (ADS)

    Pang, K. D.

    2006-12-01

    , Nature 307, 121, 1984]. Annual weather reviews in imperial, provincial and county histories in China have been examined. Unseasonable cold are classified by their degree of severity: (1) Late (April-June) or early (July-Sept.) killing frosts; (2) Bitter cold/heavy snowfall; and (3) Heavy sustained snowfall, bitter cold with frozen wells, lakes and rivers. The latter cases were often widespread and multi-year, with the coast icebound also. The weather of 1761-1762 was a "3." Heavy sustained snow fell over many sites from the Tropic of Cancer to the Yellow River. In the north wells and rivers froze. Taihu (Great Lake near Shanghai) and nearby rivers froze over and were not navigable. Innumerable trees, birds and livestock perished, etc. Whereas all three of Benjamin Franklin's conditions have been met I conclude that a very large volcanic eruption early in 1761 had a major impact on the Earth's climate. Its location is unknown, but was probably low- or mid-latitude, as sulfuric acid from the volcanic cloud settled onto both poles. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used (the appearance of brilliant red twilight displays have since been added). Moreover his legacy continues to inspire climate researchers. See, for example, "Climatic Impact of the mid-15th-Century Kuwae Caldera Formation...," Pang, Eos 74, No. 43, 106, 1993; and as cited in "Earth in Balance," Al Gore, p. 379, Penguin, 1993. See also "Constantinople's Volcanic Twilight," Lynn Simarski, Aramco World 47, No. 6, 8-13, 1996.

  8. How a small noise generates large-amplitude oscillations of volcanic plug and provides high seismicity

    NASA Astrophysics Data System (ADS)

    Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.

    2015-04-01

    A non-linear behavior of dynamic model of the magma-plug system under the action of N-shaped friction force and stochastic disturbances is studied. It is shown that the deterministic dynamics essentially depends on the mutual arrangement of an equilibrium point and the friction force branches. Variations of this arrangement imply bifurcations, birth and disappearance of stable limit cycles, changes of the stability of equilibria, system transformations between mono- and bistable regimes. A slope of the right increasing branch of the friction function is responsible for the formation of such regimes. In a bistable zone, the noise generates transitions between small and large amplitude stochastic oscillations. In a monostable zone with single stable equilibrium, a new dynamic phenomenon of noise-induced generation of large amplitude stochastic oscillations in the plug rate and pressure is revealed. A beat-type dynamics of the plug displacement under the influence of stochastic forcing is studied as well.

  9. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  10. Climatic warming and overgrazing induced the high concentration of organic matter in Lake Hulun, a large shallow eutrophic steppe lake in northern China.

    PubMed

    Chen, Xiaofeng; Chuai, Xiaoming; Yang, Liuyan; Zhao, Huiying

    2012-08-01

    An abnormally high concentration of organic matter (OM) in Lake Hulun, a large shallow eutrophic lake located in the sparsely populated Hulun Buir Steppe, was observed in a field investigation. Little was known about the origin of the OM. To identify the source of the OM in Lake Hulun, the carbon/nitrogen (C/N) ratio, natural abundance of stable isotope and three dimensional excitation emission matrix (3DEEM) fluorescence spectroscopy techniques were employed. Furthermore, a cyanobacterial incubation and degradation experiment was conducted in the laboratory to quantify the contribution of algae to dissolved organic matter (DOM) in Lake Hulun. C/N, the stable carbon isotope (δ(13)C) values typical of C3 plant debris in particulate organic matter (POM) and the fluorescence indices of DOM indicate that most of the OM in Lake Hulun is of terrigenous origin. It was deduced that only about 10.2% and 7.3% of DOM were contributed by algae in September and January, respectively, according to the linear correlation between the concentrations of algae-derived DOM and the fluorescence intensities of tyrosine-like matter. According to the stockbreeding development and climate change in Hunlun Buir Steppe, we deduced that the destruction of the grassland ecosystem by overgrazing in specific locations and trends in climatic warming and drying were the main factors causing the increase of OM and nutrient concentrations in Lake Hulun. This result highlights the need to pay more attention to the inputs of terrigenous organic matter to the lakes in northern China. PMID:22705868

  11. Volcanism on Venus as inferred from the morphometry of large shields

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.

    1991-01-01

    Morphometric data for the Venusian shields are compared with those for large volcanos on Mars and the Big Island shield in Hawaii. Reasonable assumptions and constraints on the chemical and physical properties of venusian magma, crust, and lithosphere are used with the morphometric data to estimate probable deep magma-source depths below the shields. Such data for selected large volcanos on Venus, Mars, and earth are presented. The flattened profiles of the Venusian shields are interpreted to be predominantly the result of the density contrast between lava and rocks between the source and surface, a relatively shallow depth to a primary magma source, low magma viscosity, high magma volumes and rates, and the inferred presence of flanking vents and lava tubes that carried lavas great distances from the summit. The measured shield heights are used in conjunction with a reasonable range of magma and rock densities to estimate the depths to deep magma sources, yielding an average of 25 km beneath the Venusian plains with a range depth of 3 to 40 km.

  12. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  13. Searching for large scale structures over Lake Geneva using Wind-Lidars

    NASA Astrophysics Data System (ADS)

    Calaf, M.; Hultmark, M.; Oldroyd, H. J.; Parlange, M. B.

    2012-12-01

    Large-scale coherent structures in turbulent boundary layers have received much attention in laboratory studies during the last decade. Kim & Adrian (1999) found that the structures can extend up to 15 times the boundary layer thickness and that they are responsible for about 50% of the total turbulent kinetic energy. Thus, understanding the details of these large-scale structures is of great importance, both for fluid-structure interaction and energy harvesting techniques. Hutchins & Marusic (2007) conducted a very complete study of the large-scale structures where they also measured in the atmospheric surface layer (ASL). By using rakes of hot-wires in a near-ideal neutral boundary layer they were able to find evidence that these large structures exist also in the ASL, and the scaling of them is very similar to that shown in wind tunnel tests. However, Taylor's hypothesis is needed to convert time to space, when using hot-wire data to investigate the spatial structures. For unraveling the true spatial distribution of these structures one need to use distributed sensors or remote sensing technologies. Here, data taken over lake Geneva during the super-cold winter from 2012 will be presented. Unique photographs clearly illustrating the organization and coherency of these structures, together with data obtained from wind LIDARs will be shown. The field observations provide clear evidence of the existence of these large-scale structures in the atmospheric boundary layer (ABL) above the lake and their size to be correlated with the height of the ABL itself. The LIDAR data provide a unique possibility to compare space and time data to each other, allowing us to explore these structures from a spatial and temporal perspective.

  14. In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake.

    PubMed

    Ding, Shiming; Han, Chao; Wang, Yanping; Yao, Lei; Wang, Yan; Xu, Di; Sun, Qin; Williams, Paul N; Zhang, Chaosheng

    2015-05-01

    Understanding the labile status of phosphorus (P) in sediments is crucial for managing a eutrophic lake, but it is hindered by lacking in situ data particularly on a catchment scale. In this study, we for the first time characterized in situ labile P in sediments with the Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) technique at a two-dimensional (2D), submillimeter resolution in a large eutrophic lake (Lake Taihu, China, with an area of 2338 km(2)). The concentration of DGT-labile P in the sediment profiles showed strong variation mostly ranging from 0.01 to 0.35 mg L(-1) with a considerable number of hotspots. The horizontal heterogeneity index of labile P varied from 0.04 to 4.5. High values appeared at the depths of 0-30 mm, likely reflecting an active layer of labile P under the sediment-water interface (SWI). Concentration gradients of labile P were observed from the high-resolution 1D DGT profiles in both the sediment and overlying water layers close to the SWI. The apparent diffusion flux of P across the SWI was calculated between -21 and 65 ng cm(-2) d(-1), which showed that the sediments tended to be a source and sink of overlying water P in the algal- and macrophyte-dominated regions, respectively. The DGT-labile P in the 0-30 mm active layer showed a better correlation with overlying water P than the labile P measured by ex situ chemical extraction methods. It implies that in situ, high-resolution profiling of labile P with DGT is a more reliable approach and will significantly extend our ability in in situ monitoring of the labile status of P in sediments in the field. PMID:25720671

  15. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger

    2015-04-01

    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0

  16. A Killer Lake

    ERIC Educational Resources Information Center

    Horvath, Thomas

    2005-01-01

    In 1986, Lake Nyos, a volcanic lake in Cameroon, released a huge amount of carbon dioxide gas, killing over 1,700 people in the surrounding area. This case study, developed for use in a limnology or aquatic biology course, explores that event, introducing students to concepts relating to lake formation, thermal stratification, and dissolved gases.…

  17. Biodiversity of Clostridium botulinum Type E Associated with a Large Outbreak of Botulism in Wildlife from Lake Erie and Lake Ontario ▿

    PubMed Central

    Hannett, George E.; Stone, Ward B.; Davis, Stephen W.; Wroblewski, Danielle

    2011-01-01

    The genetic relatedness of Clostridium botulinum type E isolates associated with an outbreak of wildlife botulism was studied using random amplification of polymorphic DNA (RAPD). Specimens were collected from November 2000 to December 2008 during a large outbreak of botulism affecting birds and fish living in and around Lake Erie and Lake Ontario. In our present study, a total of 355 wildlife samples were tested for the presence of botulinum toxin and/or organisms. Type E botulinum toxin was detected in 110 samples from birds, 12 samples from fish, and 2 samples from mammals. Sediment samples from Lake Erie were also examined for the presence of C. botulinum. Fifteen of 17 sediment samples were positive for the presence of C. botulinum type E. Eighty-one C. botulinum isolates were obtained from plants, animals, and sediments; of these isolates, 44 C. botulinum isolates produced type E toxin, as determined by mouse bioassay, while the remaining 37 isolates were not toxic for mice. All toxin-producing isolates were typed by RAPD; that analysis showed 12 different RAPD types and multiple subtypes. Our study thus demonstrates that multiple genetically distinct strains of C. botulinum were involved in the present outbreak of wildlife botulism. We found that C. botulinum type E is present in the sediments of Lake Erie and that a large range of bird and fish species is affected. PMID:21115703

  18. Biodiversity of Clostridium botulinum type E associated with a large outbreak of botulism in wildlife from Lake Erie and Lake Ontario.

    PubMed

    Hannett, George E; Stone, Ward B; Davis, Stephen W; Wroblewski, Danielle

    2011-02-01

    The genetic relatedness of Clostridium botulinum type E isolates associated with an outbreak of wildlife botulism was studied using random amplification of polymorphic DNA (RAPD). Specimens were collected from November 2000 to December 2008 during a large outbreak of botulism affecting birds and fish living in and around Lake Erie and Lake Ontario. In our present study, a total of 355 wildlife samples were tested for the presence of botulinum toxin and/or organisms. Type E botulinum toxin was detected in 110 samples from birds, 12 samples from fish, and 2 samples from mammals. Sediment samples from Lake Erie were also examined for the presence of C. botulinum. Fifteen of 17 sediment samples were positive for the presence of C. botulinum type E. Eighty-one C. botulinum isolates were obtained from plants, animals, and sediments; of these isolates, 44 C. botulinum isolates produced type E toxin, as determined by mouse bioassay, while the remaining 37 isolates were not toxic for mice. All toxin-producing isolates were typed by RAPD; that analysis showed 12 different RAPD types and multiple subtypes. Our study thus demonstrates that multiple genetically distinct strains of C. botulinum were involved in the present outbreak of wildlife botulism. We found that C. botulinum type E is present in the sediments of Lake Erie and that a large range of bird and fish species is affected. PMID:21115703

  19. CHARACTERIZATION OF ENDOCRINE-DISRUPTION AND CLINICAL MANIFESTATIONS IN LARGE-MOUTH BASS FROM FLORIDA LAKES

    EPA Science Inventory

    Previous efforts from this laboratory, have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefo...

  20. Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California

    SciTech Connect

    Stimac, J.; Goff, F. ); Hearn, B.C. Jr. )

    1992-01-01

    The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in the region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.

  1. Influence of Large Lakes on Methane Greenhouse Forcing in the Early Eocene

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Granberg, D. L.; Kasprak, A. H.; Taylor, K. W.; Pancost, R. D.

    2011-12-01

    , euxinic waters extending into the photic zone, as inferred from the presence of isorenieratene derivatives. Thus, the GRF was likely an area of elevated methanogenic activity during this time. Increasing input of terrestrial matter into the GRF correlates with shifts in the pristane/phytane ratio and isorenieratane abundances, suggesting that increased runoff intensified the stratification of the lake with a transition to more anoxic conditions. Following this transition, it is likely that methane production in the GRF lake increased, which released more into the atmosphere. Our new results suggest that the global carbon cycle of the early Eocene greenhouse world was strongly mediated by both astronomical forcing (including obliquity) and increased methane production in large stratified lakes.

  2. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lakes can be important sites for removal of reactive nitrogen (N) through denitrification, but spatial heterogeneity in denitrification rates can be high, and our understanding of factors controlling the capacity of lakes to remove excess N is incomplete. In oligotrophic Lake Superior, a century-lon...

  3. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  4. Characterization of the sub-continental lithospheric mantle beneath the Cameroon volcanic line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and Nyos Lakes

    NASA Astrophysics Data System (ADS)

    Pintér, Zsanett; Patkó, Levente; Tene Djoukam, Joëlle Flore; Kovács, István; Tchouankoue, Jean Pierre; Falus, György; Konc, Zoltán; Tommasi, Andréa; Barou, Fabrice; Mihály, Judith; Németh, Csaba; Jeffries, Teresa

    2015-11-01

    We carried out detailed petrographic, major and trace element geochemical, microstructural and FTIR analyses on eight characteristic ultramafic xenoliths from Nyos and Barombi Mbo Lakes in the continental sector of the Cameroon Volcanic Line (CVL). The studied xenoliths are spinel lherzolites showing lithologies similar to the other xenoliths reported previously along the CVL. They have protogranular and porphyroclastic textures. One of the Barombi xenolith contains amphibole, which had not been previously reported in this locality. Amphibole is common in the Nyos xenoliths suite. Peridotite xenoliths from both localities show some chemical heterogeneity, but Barombi xenoliths generally are less depleted in basaltic elements with respect to Nyos xenoliths. Trace element compositions of Nyos spinel lherzolites show a moderately depleted initial (premetasomatic) composition and variable enrichment in REE. Evidence for both modal and cryptic metasomatism is present in Nyos xenoliths. Rare earth element patterns of clinopyroxene suggest that interaction between mafic melts and the upper mantle occurred beneath the Nyos locality. Barombi Mbo xenoliths, on the other hand, record a small degree of partial melting. The Barombi Mbo xenoliths have weak, dominantly orthorhombic olivine crystal preferred orientations, whereas Nyos ones have strong axial-[010] patterns, which may have formed in response to transpression. Nominally anhydrous mantle minerals (NAMs) of the Barombi Mbo xenoliths show generally higher bulk concentrations of 'water' (70-127 ppm) than Nyos xenoliths (32-81 ppm). The Barombi Mbo xenoliths could originate from a juvenile segment of the lithospheric mantle, which had been originally part of the asthenosphere. It became a part of the lithosphere in response to thermal relaxation following the extension, forming a weakly deformed lower lithospheric mantle region along the CVL. The Nyos xenoliths, however, represent a shallow lithospheric mantle bearing

  5. Climatic, volcanic and tectonic events recorded in recent sediments of the Rukwa rift, Western Tanzania

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Mees, F.; Williamson, D.; Macheyeki, A. S.

    2009-04-01

    Lake Rukwa is now a shallow lake occupying the floor of the closed Rukwa depression in the western branch of the East African Rift System. Sediment records of the paleo-lake level show that during the Late Pleistocene to Early Holocene, Lake Rukwa reached the level of the overflow sill, 180 m higher than its present level, and was overflowing into Lake Tanganyika. Lacustrine sediments from this period are now exposed on the margin of the depression, and in particular along the Songwe River, where several large sections up to 35 meters high can be studied. Investigation of selected sections reveals a complex evolution in alternating fluvio-deltaic to lacustrine environment, punctuated by episodic inflow of volcanic material from the nearby Rungwe Volcanic Province. Macroscopic description of the sedimentary packages and their geometry, combined with C14 dating, diatom analysis, and optical microscopy allow to propose a preliminary evolution scheme in which climatically induced lake level change, volcanic input and tectonic influence can be reconstructed. In particular, correlations between sections at different altitudes allow to better constrain the lake level fluctuation than previous estimates based on drill core analysis.

  6. Meteorite Impact Lakes: Difficulties of the Evidence for Origin

    NASA Astrophysics Data System (ADS)

    Sapelko, Tatyana; Naumenko, Mikhail; Kuznetsov, Denis

    2014-05-01

    In addition to volcanic and tectonic activity on the border of the Late Pleistocene and Holocene occurred and other disastrous events that are reflected in the history of the lakes. The recognition of meteorite impact crater lakes is impeded by difficulties in finding evidence of an impact origin. Such lakes have been recognized (Hartung and Koeberl, 1994) by their circular shape, their occurrence outside of areas where other mechanisms for circular depression formation are readily apparent, and the preservation of meteorite or ejected glass fragments (Cohen. 2003). Meteorite impact Lake appeared not only in early periods (like Lake El'gygytgyn and Lake Yanisyarvi in Russia), but in the Late Pleistocene and Holocene as well. One of these lakes is located in the Nizhny Novgorod region of Russia. Svetloyar (56º49' N; 45º05'E; 109 m a.s.l.) - lake with a small area of 0.15 km2 and a great depth of the lake up to 35 m., a circular shape, surrounded on three sides by hills , reaching 15 m above the lake level. On the lake we have carried out paleolimnological and hydrological investigations.Interdisciplinary researches included sedimentological, geochemical, pollen, diatom, radiocarbon and other analyses of lake sediments. Based on field measurements, we created a digital morphometric model of the bottom depths and slopes of the lake. Using the all results we are reconstruct the Lake's history and climatic changes. We establish a long hiatus after the disappearance of large lake on the border of the late Pleistocene and Holocene. For comparison we were have studied three of the morphometric similar lakes in the Nizhny Novgorod region. According to preliminary data the history of any of these lakes is not similar the Lake Svetloyar history. We discuss our results and have compared with data on the meteorite Lake Kaali , Estonia (Rasmussen et al., 2000; Raukas et.al,1995; 2002; Veski et.al, 2001, 2002, 2004).

  7. New homogenized daily lake surface water temperature data of three decades from multiple sensors confirm warming of large sub-alpine lake Garda

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-04-01

    Availability of remotely sensed multi-spectral images from the early eighties covering three decades of voluminous data could help researchers to study the change dynamics in bio-physical characteristics of land and water. However it is very important to homogenize these data originating from multiple sources which follow different standards and quality. In this study, we explored the thermal dynamics of a large sub-alpine lake Garda over last twentyeight years (1986 - 2014) using Lake Surface Water Temperature (LSWT) derived from the thermal bands of moderate resolution sensors - AVHRR/2, AVHRR/3, ATSR1, ATSR2, A(A)TSR and MODIS aboard multiple satellites. We developed a homogenized daily LSWT dataset (12:00 P.M) at 1km spatial resolution combining the data from these sensors using split window technique and performing an acquisition time correction. The gaps in the temporal database due to clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The results show high correlation (R2 > 90) between satellite derived LSWT (taken into account both individual sensors and the combined data) and the in-situ data. The time correction enable us to perform a trend analysis on unified datasets corrected for its acquisition times. The trend analysis using non-parametric tests shows significant warming in annual trend at the rate of 0.01K yr-1 (p<0.05), while in summer the increasing trend is 0.02K yr-1(p<0.1). The results are in line with similar findings on warming of Alpine lakes. Moreover, the advantage of the spatial coverage at 1 km resolution we are able to characterize the thermal dynamics of the lake Garda at multiple locations of this large lake.

  8. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  9. Volcanic Stratigraphy of the Quaternary Rhyolite Plateau in Yellowstone National Park

    USGS Publications Warehouse

    Christiansen, Robert L.; Blank, H. Richard, Jr.

    1972-01-01

    The volcanic sequence of the Quaternary Yellowstone plateau consists of rhyolites and basalts representing three volcanic cycles. The major events of each cycle were eruption of a voluminous ash-flow sheet and formation of a large collapse caldera. Lesser events of each cycle were eruption of precaldera and postcaldera rhyolitic lava flows and marginal basaltic lavas. The three major ash-flow sheets are named and designated in this report as formations within the Yellowstone Group. The lavas are assigned to newly named formations organized around the three ash-flow sheets of the Yellowstone Group to represent the volcanic cycles. Rocks of the first volcanic cycle comprise the precaldera Junction Butte Basalt and rhyolite of Broad Creek; the Huckleberry Ridge Tuff of the Yellowstone Group; and the postcaldera Lewis Canyon Rhyolite and basalt of The Narrows. Rocks of the second volcanic cycle do not crop out within Yellowstone National Park, and only the major unit, the Mesa Falls Tuff of the Yellowstone Group, is named here. The third volcanic cycle is represented by the precaldera Mount Jackson Rhyolite and Undine Falls Basalt; the Lava Creek Tuff of the Yellowstone Group; and the postcaldera Plateau Rhyolite and five post-Lava Creek basaltic sequences. Collapse to form the compound and resurgent Yellowstone caldera was related to eruption of the Lava Creek Tuff. The Plateau Rhyolite is divided into six members - the Mallard Lake, Upper Basin, Obsidian Creek, Central Plateau, Shoshone Lake Tuff, and Roaring Mountain Members; all but the Mallard Lake postdate resurgent doming of the caldera. The basalts are divided into the Swan Lake Flat Basalt, Falls River Basalt, basalt of Mariposa Lake, Madison River Basalt, and Osprey Basalt. Sediments are intercalated in the volcanic section below the Huckleberry Ridge and Mesa Falls Tuffs and within the Junction Butte Basalt, sediments and basalts of The Narrows, Undine Falls Basalt, Plateau Rhyolite, and Osprey Basalt.

  10. Winter Temperature Response to Large Tropical Volcanic Eruptions in Temperate Western North America: Relationship to ENSO Phases

    NASA Astrophysics Data System (ADS)

    Wahl, E. R.; Diaz, H. F.; Smerdon, J. E.

    2013-12-01

    In light of anthropogenic climate forcing, significant evaluation of the climate system's response to a range of forcing factors has been undertaken. Responses to large tropical volcanic eruptions are a key focus area. Paleoclimatology offers a unique vehicle to extend the study of these responses over much longer periods than those available from instrumental data. In this work, we present a set of annually-resolved, late-winter temperature responses in temperate western North America over 1500-1980 CE, and evaluate, from a regional perspective, evidence that large tropical eruptions show a tendency towards an initial El Niño (EN) response followed by a delayed La Niña (LN) (c.f. Li et al., 2013, DOI:10.1038/NCLIMATE1936). The proxy information are primarily tree ring widths and some ring density data from the target reconstruction region (30-55° N, 95-130° W) and northern Mexico, which are calibrated and validated against 5x5° gridded instrumental temperature data. Calibration uses an optimized form of principal components spatial regression, and well-validated reconstructions (for both the regional average and spatially) were able to be achieved for the February-March (FM) period. The reconstructions are additionally validated by their capacity to resolve known regional composite EN and LN late-winter temperature patterns. Superposed epoch analysis (SEA, n=13) was used to determine the composite responses for a sequence of post-volcanic-event years. Results do not show an initial EN-like regional response, but do show LN-like patterns in post-event Years 3-5. The correlations of the SEA patterns for Years 3-4 with the LN regional composite are significant based on correlations observed in ensembles of random-event-year SEAs, which account for the strong regional ENSO teleconnection. Relative homogeneity of the SEA response for each post-event year is evaluated as the amplitude (signal) of the SEA composite relative to its variance (noise) across events

  11. Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp

    NASA Astrophysics Data System (ADS)

    Palucis, Marisa C.; Dietrich, William E.; Williams, Rebecca M. E.; Hayes, Alexander G.; Parker, Tim; Sumner, Dawn Y.; Mangold, Nicolas; Lewis, Kevin; Newsom, Horton

    2016-03-01

    The quantification of lake levels in Gale crater is important to define the hydrologic and climatic history experienced by the sedimentary deposits found by Curiosity. We propose that there were at least three major lake stands within Gale, each persisted >1000 years, and all occurred after Mount Sharp reached close to its current topographic form. Deltaic deposits off the southern rim of Gale, derived from incision of Farah Vallis, and corresponding deposits off the southern flank of Mount Sharp define the highest lake level, which had a mean depth of 700 m. Canyons similar in form to Farah Vallis enter into craters and/or the crustal dichotomy near Gale from the south, suggesting that the highest lake was supplied by a large-scale flow system. The next lake level, established after a period of drying and rewetting, is defined by four deltaic features, three sourced from Mount Sharp and one from the western rim of Gale, as well as the termination of gullies around the northern rim of Gale. This second lake level had a mean depth of 300 m. The presence of the gullies suggests more locally sourced water. Lake levels then rose another 100 m, as evidenced by two deltaic deposits derived from the rim of Gale and the termination of a second set of gullies. Post-lake, reduced hydrologic activity continued, evidenced by a time of fan building (including Peace Vallis). The sequence of events suggests an episodic shift through time from relatively wet regional conditions to a drier environment with local runoff.

  12. Large floods and rapid deglaciation of the Lake Michigan Lobe and environs, ca. 19 to 18 ka

    NASA Astrophysics Data System (ADS)

    Curry, B.; Brown, S.; Hajic, E.; Konen, M.

    2007-12-01

    Our collective research indicates that features attributed to large floods are associated with events separated in time by about 900 years. The oldest event is interpreted from a long and narrow morainal gap floored by coarse sand and gravel outwash that likely formed by a plungepool and migration of this nickpoint via overflow of Glacial Lake Wauponsee across the Marseilles Moraine near Oswego, Illinois. The weighted mean of four AMS C-14 ages of tundra plant stems and leaves identified from the base of the overlying lake fill is 18,900 ± 35 cal yr BP (15,710 ± 35 yr BP). The age of another overflow channel across the Marseilles Moraine is not yet known, but similar channel floor elevations relative to the Oswego channel suggest that they were contemporaneous. Landforms attributed to a younger large flood are located downstream of where the Fox River breaches the Woodstock Moraine in Algonquin, Illinois. Radiocarbon ages of tundra plant fossils preserved in sediment of ice-walled and slackwater lakes associated with the Woodstock and West Chicago Moraines indicate the younger floods likely predate 18,080 cal yr BP (14,860 ± 40 yr BP; UCIAMS-26265). A statistically similar age of 18,000 cal yr BP (14,830 ± 50 yr BP; B-207031) was obtained from organics preserved in a slackwater lake deposit in the Illinois River valley near Havana. The slackwater lake basin is floored by coarse gravelly sand attributed to the latest stage of flooding. At this time, the similar C-14 ages are the only evidence that link the proglacial and distal sites (more than 150 km apart) to the same flood. Based on continuity of morainic ridges, we believe that the large floods that eroded scarps into the southern margin of the Valparaiso Moraine north and parallel to the Kankakee River in NW Indiana and NE Illinois are contemporaneous with the younger large floods discussed above. The scarp was eroded by meltwater from interlobate areas of the Lake Michigan and Huron-Erie Lobes. The rate of

  13. The mount st. Helens volcanic eruption of 18 may 1980: large short-term surface temperature effects.

    PubMed

    Robock, A; Mass, C

    1982-05-01

    The surface temperature effects of the 18 May 1980 eruption of Mount St. Helens Volcano were examinedfor 1 day immediately after the eruption; 24-hour temperature differences and Model Output Statistics errors as well as the detailed temporal evolution of surface temperature at selected stations were used. During the daytime hours immediately after the eruption, the temperature was suppressed by the volcanic plume by as much as 8 degrees C. That night, low-level volcanic dust produced temperature enhancements of up to 8 degrees C. These effects quickly diminished the next day as the volcanic dust cloud dissipated and moved toward the east. The net local effect of the eruption appears to be warming, in contrast to cooling which might be expected over climatic time scales. PMID:17783309

  14. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China).

    PubMed

    Qin, Boqiang; Li, Wei; Zhu, Guangwei; Zhang, Yunlin; Wu, Tingfeng; Gao, Guang

    2015-04-28

    The large shallow eutrophic Lake Taihu in China has long suffered from eutrophication and toxic cyanobacterial blooms. Despite considerable efforts to divert effluents from the watershed, the cyanobacterial blooms still reoccur and persist throughout summer. To mitigate cyanobacterial bloom pollution risk, a large scale integrated monitoring and forecasting system was developed, and a series of emergency response measures were instigated based on early warning. This system has been in place for 2009-2012. With this integrated monitoring system, it was found that the detectable maximum and average cyanobacterial bloom area were similar to that before drinking water crisis, indicating that poor eutrophic status and cyanobacterial bloom had persisted without significant alleviation. It also revealed that cyanobacterial bloom would occur after the intense storm, which may be associated with the increase in buoyance of cyanobacterial colonies. Although the cyanobacterial blooms had persisted during the monitoring period, there had been a reduction in frequency and intensity of the cyanobacterial bloom induced black water agglomerates (a phenomenon of algal bloom death decay to release a large amount black dissolved organic matter), and there have been no further drinking water crises. This monitoring and response strategy can reduce the cyanobacterial bloom pollution risk, but cannot reduce eutrophication and cyanobacterial blooms, problems which will take decades to resolve. PMID:25679801

  15. Volcanic jets, plumes, and collapsing fountains: evidence from large-scale experiments, with particular emphasis on the entrainment rate

    NASA Astrophysics Data System (ADS)

    Dellino, P.; Dioguardi, F.; Mele, D.; D'Addabbo, M.; Zimanowski, B.; Büttner, R.; Doronzo, D. M.; Sonder, I.; Sulpizio, R.; Dürig, T.; La Volpe, L.

    2014-06-01

    The source conditions of volcanic plumes and collapsing fountains are investigated by means of large-scale experiments. In the experiments, gas-particle jets issuing from a cylindrical conduit are forced into the atmosphere at different mass flow rates. Dense jets (high particle volumetric concentration, e.g., C 0 > 0.01) generate collapsing fountains, whose height scales with the squared exit velocity. This is consistent with Bernoulli's equation, which is a good approximation if air entrainment is negligible. In this case, kinetic energy is transformed into potential energy without any significant loss by friction with the atmosphere. The dense collapsing fountain, on hitting the ground, generates an intense shear flow similar to a pyroclastic density current. Dilute hot jets (low particle volumetric concentration, e.g., C 0 < 0.01) dissipate their initial kinetic energy at much smaller heights than those predicted by Bernoulli's equation. This is an indication that part of the total mechanical energy is lost by friction with the atmosphere. Significant air entrainment results in this case, leading to the formation of a buoyant column (plume) from which particles settle similarly to pyroclastic fallout. The direct measurement of entrainment coefficient in the experiments suggests that dense collapsing fountains form only when air entrainment is not significant. This is a consequence of the large density difference between the jet and the atmosphere. Cold dilute experiments result in an entrainment coefficient of about 0.06, which is typical of pure jets of fluid dynamics. Hot dilute experiments result in an entrainment coefficient of about 0.11, which is typical of thermally buoyant plumes. The entrainment coefficients obtained by experiments were used as input data in numerical simulations of fountains and plumes. A numerical model was used to solve the classic top-hat system of governing equations, which averages the field variables (e.g., column velocity and

  16. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS

    EPA Science Inventory

    This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

  17. Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance

    NASA Astrophysics Data System (ADS)

    Jammet, Mathilde; Crill, Patrick; Dengel, Sigrid; Friborg, Thomas

    2015-11-01

    The ice-cover season and subsequent spring thaw are thought to be of particular importance for the biogeochemical cycle of northern lakes and wetlands. Yet the magnitude of their methane emissions during an entire cold season is uncertain due to scarce measurements. While wetlands are known to be the highest natural emitters of methane, emissions from northern lakes are an uncertain component of terrestrial carbon budgets. To evaluate the importance of methane emissions from a subarctic lake during winter and spring, surface methane fluxes were recorded with the eddy covariance method in a subarctic fen-type wetland and in an adjacent shallow lake, from freezeup to complete ice out. The fen was a steady emitter of methane throughout winter. While no detectable flux was observed from the ice-covered lake surface during winter, it was the largest methane source of the landscape in spring, with a cumulative release 1.7-fold higher than at the fen, accounting for 53% of annual lake emissions. The high temporal resolution of the measurements allowed making a direct link between breakdown of the temperature stratification after ice breakup and the highest release of methane from the lake surface. A sediment upwelling at the end of the thaw season likely contributed to these emissions. We suggest that, unlike wetlands, shallow seasonally ice-covered lakes can have their highest methane emission potential in the cold season, likely dominating the spring methane release of subarctic landscapes with high lake coverage.

  18. Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes

    NASA Astrophysics Data System (ADS)

    Morana, Cedric; Sarmento, Hugo; Descy, Jean-Pierre; Gasol, Josep M.; Borges, Alberto V.; Bouillon, Steven; Darchambeau, François

    2014-05-01

    In pelagic ecosystems, phytoplankton extracellular release (ER) can substantially subsidize the heterotrophic prokaryotic carbon demand. Factors influencing ER were never investigated in large tropical lakes. We performed time-course experiments to quantify the fraction of phytoplankton production released (PER) and the microbial uptake of freshly excreted compounds (DOCp) in 4 large tropical lakes: lakes Kivu, Edward, Victoria and Albert. In Lake Kivu, we also examined whether the major heterotrophic bacterial group were active in the uptake of freshly excreted compounds using MAR-FISH (microautoradiography coupled to fluorescent in situ hybridization). PER varied across a productivity gradient covering 2 orders of magnitude, with higher values at low productivity. Futhermore, PER was comparatively higher in oligotrophic tropical lakes than in their temperate counterparts and was positively related to the light:phosphate balance. Both observations suggest that environmental factors play a key role in the control of phytoplankton excretion. Furthermore, the standing stocks of DOCp were small and generally contributed less than 1 % to the total dissolved organic carbon as it was rapidly assimilated by prokaryotes, in other words we observed a tight coupling between the production and the heterotrophic consumption of DOCp. We found that none of the major phylogenetic bacterial groups investigated differed in their ability to take up DOCp, in contrast with earlier results reported for standard labelled single-molecule substrates (leucine, glucose, ATP). Overall, these results highlight the strong dependence of all heterotrophic prokaryotes on the labile pool of DOCp, and the importance of carbon transfer between phytoplankton and heterotrophic prokaryotes in large African lakes.

  19. Planation surfaces as a record of medium to large wavelength deformation: the example of the Lake Albert Rift (Uganda) on the East African Dome

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta

    2016-04-01

    African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced

  20. Current status and historical variations of phthalate ester (PAE) contamination in the sediments from a large Chinese lake (Lake Chaohu).

    PubMed

    Kang, Lei; Wang, Qing-Mei; He, Qi-Shuang; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Jiang, Yu-Jiao; Xu, Fu-Liu

    2016-06-01

    The residual levels of phthalate esters (PAEs) in the surface and two core sediments from Lake Chaohu were measured with a gas chromatograph-mass spectrometer (GC-MS). The temporal-spatial distributions, compositions of PAEs, and their effecting factors were investigated. The results indicated that di-n-butyl phthalate (DnBP), diisobutyl phthalate (DIBP), and di(2-ethylhexyl) phthalate (DEHP) were three dominant PAE components in both the surface and core sediments. The residual level of total detected PAEs (∑PAEs) in the surface sediments (2.146 ± 2.255 μg/g dw) was lower than that in the western core sediments (10.615 ± 9.733 μg/g) and in the eastern core sediments (5.109 ± 4.741 μg/g). The average content of ∑PAEs in the surface sediments from the inflow rivers (4.128 ± 1.738 μg/g dw) was an order of magnitude higher than those from the lake (0.323 ± 0.093 μg/g dw), and there were similar PAE compositions between the lake and inflow rivers. This finding means that there were important effects of PAE input from the inflow rivers on the compositions and distributions of PAEs in the surface sediments. An increasing trend was found for the residual levels of ΣPAEs, DnBP, and DIBP from the bottom to the surface in both the western and eastern core sediments. Increasing PAE usage with the population growth, urbanization, and industrial and agricultural development in Lake Chaohu watershed would result in the increasing production of PAEs and their resulting presence in the sediments. The significant positive relationships were also found between the PAE contents and the percentage of sand particles, as well as TOC contents in the sediment cores. PMID:26330308

  1. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  2. The electrification of volcanic plumes and volcanic lightning

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Mather, T. A.

    2006-12-01

    We present a review of our current understanding of the electrification of volcanic plumes on Earth and discuss the possible implications both in terms of the volcanic monitoring, early Earth evolution and planetary exploration. We also present simple calculations to show how the global electrical circuit might be modified following a large volcanic eruption reaching the stratosphere. Volcanic lightning is perhaps the most spectacular consequence of the electrification of volcanic plumes. Recent years have seen remote-sensing measurements of volcanic lightning used as part of a portfolio of techniques to monitor volcanic eruptions. Surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be key. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. Volcanic lightning has been implicated in a number of ways in the origin of life on Earth, and may also exist in other planetary atmospheres where measurements of its

  3. Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China

    PubMed Central

    Wan, Li; Xu, Liang; Fu, Yongsheng

    2016-01-01

    The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296

  4. Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China.

    PubMed

    Wan, Li; Xu, Liang; Fu, Yongsheng

    2016-01-01

    The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296

  5. Spaceborne Thermal Infrared Measurements of Volcanic Thermal Features

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Hook, S. J.; Davies, A. G.

    2006-12-01

    Thermal Infrared (TIR) remote sensing measurements of high-temperature volcanic features improve our understanding of volcanic processes and our ability to identify renewed volcanic activity, forecast eruptions, and assess hazards. We will present a time-series analysis of ASTER TIR data acquired over 3 different volcanoes that span a range of temperatures typical of volcanic features: 1) crater lake at Mount Ruapehu; 2) dacite dome at Mount St. Helens, and 3) lava lake at Mount Erebus. The goals of this study were to determine a baseline for the thermal behavior of these volcanoes by characterizing non-volcanic background temperature variations as well as identify how temporal changes in the ASTER-derived temperatures relate to dynamic volcanic processes. Also, one of the on-going and future goals of this work is to develop background thermal variation models for many volcanoes to help identify changes that may occur prior to eruptions. Measuring the temporal thermal behavior of well-monitored active volcanoes provides insights on how to interpret TIR data over other volcanoes that are more remote and less well-studied. At Mount Ruapehu, 34 nighttime ASTER-derived temperatures (integrated over 90-m pixels) from Apr 2001 to Mar 2006 ranged from 10 to 34 C, reflecting regular seasonal variations, with some thermal anomalies that possibly relate to increased fumarolic activity on the crater floor beneath the lake. At Mount St Helens, 19 nighttime ASTER-derived temperatures from Mar 2000 to Feb 2006 ranged from -10 to 96 C. They varied seasonally before the most recent eruption (Oct 2004), and tracked with dome growth after the eruption, relating to dome volume and morphology changes. At Mount Erebus, 115 nighttime ASTER-derived temperatures from Mar 2001 to July 2006 ranged from 0 to 90 C. The sub-pixel sized lava lake showed a large range of retrieved temperatures but no systematic variability, possibly due to steam frequently condensing over the lake. Currently

  6. Effects of large-scale tephra deposition on vegetation and environment: evidence from three lakes in Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Dögg Eddudóttir, Sigrún; Erlendsson, Egill; Tinganelli, Leone; Gísladóttir, Guðrún

    2016-04-01

    The environment of Iceland is one of the most dynamic in the world, shaped by complex interactions of climate and volcanic activity. The country was uninhabited until about AD 870 and therefore Icelandic paleoecological records offer a unique look at undisturbed environments for most of the Holocene. Using lake sediment records from three different environments in Northwest Iceland, from highland, lowland and oceanic settings, we examine the effects of two of the largest Holocene tephra depositions on the environment. They are the silicic Hekla 4 (c. 4200 cal. yr BP), which produced c. 9 km3 of tephra and the basaltic Saksunarvatn tephra (c. 10,300 cal. yr BP) which dispersed >15 km3 of tephra across the North Atlantic. To examine whether the tephras affected vegetation communities we examine pollen and plant macrofossils prior to, and following, both tephra falls. Lithological proxies such as magnetic susceptibility and organic matter content provide information about landscape stability prior to and after the events. Both tephra deposits affected the environment. However, the magnitude of environmental change and rate of recovery observed in the sediments is dependent on the vegetation in the vicinity of the lakes at the time of the tephra fall, climate and the characteristics of the tephra.

  7. STS-55 Earth observation of Lake Natron, Tanzania, East Africa

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Lake Natron in Tansania, in the 35-mile-wide East African Rift Valley. This lake is surrounded by sodium carbonate volcanoes. Through erosion, these salts of volcanic origin are transported into the rift valley lakes. The various shades of bright red reflecting from the lake result from the water chemistry and biotic blooms. The white spots in the lakebed are drying soda salts. The depth and circulation of the water in the southern end of the lake cause it to appear dark blue rather than bright red. In the repeated photographs of this lake from orbit, we have seen the extent and intensity of its colors fluctuate seasonally. In this photograph, the biotic activity appears to be at a peak. Such a large extent of red-colored water was not present in the photos taken from STS-56, just a few days before (04-10-93).

  8. Cross-arc geochemical variations in volcanic fields in Honduras C.A.: progressive changes in source with distance from the volcanic front

    NASA Astrophysics Data System (ADS)

    Patino, Lina C.; Carr, Michael J.; Feigenson, Mark D.

    A geochemical traverse across Honduras reveals the heterogeneity of the mantle underneath Central America. Alkali basalts from Lake Yojoa (170km behind the front) have low 87Sr/86Sr but high La/Yb, and elevated incompatible trace element abundances, consistent with derivation from a normal mid-ocean ridge basalt source mantle via low degrees of melting. These lavas lack evidence for an enriched source thought to be intermingled with normal mid-ocean ridge basalt source mantle beneath most of Central America. The amplitude of the subducted slab signature decreases smoothly with distance from the volcanic front. Lavas from Zacate Grande, the area nearest to the volcanic front (17 km behind the arc), display large ion lithophile element enrichment and high field strength element depletion indicating the involvement of subducted material in magma genesis. Components of subducted material are not evident in lavas from Lake Yojoa, the area furthest from the arc. Basalts and basaltic andesites from Tegucigalpa, 102 km behind the volcanic front, are geochemically intermediate between those of Lake Yojoa and Zacate Grande. The lavas from Tegucigalpa show a decreased influence of the subduction component, and are affected by assimilation-fractional crystallization processes at shallow depths. The gradual decrease in the subducted component from the volcanic front to Zacate Grande, Tegucigalpa and finally Lake Yojoa contrasts with the abrupt decrease documented for southeast Guatemala, the only other area in Central America where a cross-arc transect has been studied.

  9. Approaches to Integrated Assessment of Large Lakes involving New Survey Designs and Synoptic, in situ Technologies

    EPA Science Inventory

    The Laurentian Great Lakes have had, for decades, regular water quality monitoring programs to track conditions in their offshore waters, as dictated by a binational Great Lakes Water Quality Agreement between the US and Canada. Unfortunately, resources have limited monitoring t...

  10. Prevalence of Viral Photosynthetic and Capsid Protein Genes from Cyanophages in Two Large and Deep Perialpine Lakes

    PubMed Central

    Zhong, Xu

    2013-01-01

    Cyanophages are important components of aquatic ecosystems, but their genetic diversity has been little investigated in freshwaters. A yearlong survey was conducted in surface waters of the two largest natural perialpine lakes in France (Lake Annecy and Lake Bourget) to investigate part of this cyanophage diversity through the analysis of both structural (e.g., g20) and functional (e.g., psbA) genes. We found that these cyanophage signature genes were prevalent throughout the year but that the community compositions of g20 cyanomyoviruses were significantly different between the two lakes. In contrast, psbA-containing cyanophages seemed to be more similar between the two ecosystems. We also found that a large proportion of g20 sequences grouped with cyanomyophage isolates. psbA sequences, belonging to phages of Synechococcus spp., were characterized by distinct triplet motifs (with a novel viral triplet motif, EFE). Thus, our results show that cyanophages (i) are a diverse viral community in alpine lakes and (ii) are clearly distinct from some other freshwater and marine environments, suggesting the influence of unique biogeographic factors. PMID:24038692

  11. Capturing variations in inundation with satellite remote sensing in a morphologically complex, large lake

    NASA Astrophysics Data System (ADS)

    Wu, Guiping; Liu, Yuanbo

    2015-04-01

    Poyang Lake is the largest freshwater lake in China, with high morphological complexity from south to north. In recent years, the lake has experienced expansion and shrinkage processes over both short- and long-term scales, resulting in significant hydrological, ecological and economic problems. Exactly how and how rapidly the processes of spatial change have occurred in the lake during the expansion and shrinkage periods is unknown. Such knowledge is of great importance for policymakers as it may help with flood/drought prevention, land use planning and lake ecological conservation. In this study, we investigated the spatial-temporal distribution and changing processes of inundation in Poyang Lake based on Moderate Resolution Imaging Spectroradiometer (MODIS) Level-1B data from 2000 to 2011. A defined water variation rate (WVR) and inundation frequency (IF) indicator revealed the water surface submersion and exposure processes of lake expansion and shrinkage in different zones which were divided according to the lake's hydrological and topographic features. Regional differences and significant seasonality variability were found in the annual and monthly mean IF. The monthly mean IF increased slowly from north to south during January-August but decreased quickly from south to north during September-December. During the lake expansion period, the lake-type water body zone (Zone II) had the fastest expansion rate, with a mean monthly WVR value of 34.47% in February-March, and was followed by the channel-type water body zone (Zone I) in March-May (22.47%). However, during the lake shrinkage period, rapid shrinkage first appeared around the alluvial delta zones in August-October. The sequence of lake surface shrinkage from August to December is exactly opposite to that of lake expansion from February to July. These complex inundation characteristics and changing process were driven by the high temporal variability of the river flows, the morphological diversity of the

  12. Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank-collapse to seafloor sediment failure?

    NASA Astrophysics Data System (ADS)

    Brunet, Morgane; Le Friant, Anne; Boudon, Georges; Lafuerza, Sara; Talling, Peter; Hornbach, Matthew; Ishizuka, Osamu; Lebas, Elodie; Guyard, Hervé

    2016-03-01

    Landslides are common features in the vicinity of volcanic islands. In this contribution, we investigate landslides emplacement and dynamics around the volcanic island of Martinique based on the first scientific drilling of such deposits. The evolution of the active Montagne Pelée volcano on this island has been marked by three major flank-collapses that removed much of the western flank of the volcano. Subaerial collapse volumes vary from 2 to 25 km3 and debris avalanches flowed into the Grenada Basin. High-resolution seismic data (AGUADOMAR-1999, CARAVAL-2002, and GWADASEIS-2009) is combined with new drill cores that penetrate up to 430 m through the three submarine landslide deposits previously associated to the aerial flank-collapses (Site U1399, Site U1400, Site U1401, IODP Expedition 340, Joides Resolution, March-April 2012). This combined geophysical and core data provide an improved understanding of landslide processes offshore a volcanic island. The integrated analysis shows a large submarine landslide deposit, without debris avalanche deposits coming from the volcano, comprising up to 300 km3 of remobilized seafloor sediment that extends for 70 km away from the coast and covers an area of 2100 km2. Our new data suggest that the aerial debris avalanche deposit enter the sea but stop at the base of submarine flank. We propose a new model dealing with seafloor sediment failures and landslide propagation mechanisms, triggered by volcanic flank-collapse events affecting Montagne Pelée volcano. Newly recognized landslide deposits occur deeper in the stratigraphy, suggesting the recurrence of large-scale mass-wasting processes offshore the island and thus, the necessity to better assess the associated tsunami hazards in the region.

  13. Lake Eyre

    Atmospheric Science Data Center

    2013-04-16

    ...   View Larger Image Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. ... the effect of sunglint at the nadir camera view angle. Dry, salt encrusted parts of the lake appear bright white or gray. Purple areas have ...

  14. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Lian, Olav B.; Clague, John J.

    2012-01-01

    Glacial Lake Missoula formed when the Purcell Trench lobe of the Cordilleran ice sheet dammed Clark Fork River in Montana during the Fraser Glaciation (marine oxygen isotope stage 2). Over a period of several thousand years, the lake repeatedly filled and drained through its ice dam, and floodwaters coursed across the landscape in eastern Washington. In this paper, we describe the stratigraphy and sedimentology of a significant new section of fine-grained glacial Lake Missoula sediment and compare this section to a similar, previously described sequence of sediments at Ninemile Creek, 26 km to the northwest. The new exposure, which we informally term the rail line section, is located near Missoula, Montana, and exposes 29 units, each of which consists of many silt and clay couplets that we interpret to be varves. The deposits are similar to other fine-grained sediments attributed to glacial Lake Missoula. Similar varved sediments overlie gravelly flood deposits elsewhere in the glacial Lake Missoula basin. Each of the 29 units represents a period when the lake was deepening, and all units show evidence for substantial draining of glacial Lake Missoula that repeatedly exposed the lake floor. The evidence includes erosion and deformation of glaciolacustrine sediment that we interpret happened during draining of the lake, desiccation cracks that formed during exposure of the lake bottom, and fluvial sand deposited as the lake began to refill. The floods date to between approximately 21.4 and 13.4 cal ka ago based on regional chronological data. The total number of varves at the rail line and Ninemile sites are, respectively, 732 and 583. Depending on lake refilling times, each exposure probably records 1350-1500 years of time. We present three new optical ages from the rail line and Ninemile sites that further limit the age of the floods. These ages, in calendar years, are 15.1 ± 0.6 ka at the base of the Ninemile exposure, and 14.8 ± 0.7 and 12.6 ± 0.6 ka midway

  15. Contrasting diversity of phycodnavirus signature genes in two large and deep western European lakes.

    PubMed

    Zhong, Xu; Jacquet, Stéphan

    2014-03-01

    Little is known about Phycodnavirus (or double-stranded DNA algal virus) diversity in aquatic ecosystems, and virtually, no information has been provided for European lakes. We therefore conducted a 1-year survey of the surface waters of France's two largest lakes, Annecy and Bourget, which are characterized by different trophic states and phytoplanktonic communities. We found complementary and contrasting diversity of phycodnavirus in the lakes based on two genetic markers, the B family DNA polymerase-encoding gene (polB) and the major capsid protein-encoding gene (mcp). These two core genes have already been used, albeit separately, to infer phylogenetic relationships and genetic diversity among members of the phycodnavirus family and to determine the occurrence and diversity of these genes in natural viral communities. While polB yielded prasinovirus-like sequences, the mcp primers yielded sequences for prasinoviruses, chloroviruses, prymnesioviruses and other groups not known from available databases. There was no significant difference in phycodnavirus populations between the two lakes when the sequences were pooled over the full year of investigation. By comparing Lakes Annecy and Bourget with data for other aquatic environments around the world, we show that these alpine lakes are clearly distinct from both other freshwater ecosystems (lakes and rivers) and marine environments, suggesting the influence of unique biogeographic factors. PMID:23889778

  16. Long-term effects of a trophic cascade in a large lake ecosystem

    PubMed Central

    Ellis, Bonnie K.; Stanford, Jack A.; Goodman, Daniel; Stafford, Craig P.; Gustafson, Daniel L.; Beauchamp, David A.; Chess, Dale W.; Craft, James A.; Deleray, Mark A.; Hansen, Barry S.

    2011-01-01

    Introductions or invasions of nonnative organisms can mediate major changes in the trophic structure of aquatic ecosystems. Here we document multitrophic level impacts in a spatially extensive system that played out over more than a century. Positive interactions among exotic vertebrate and invertebrate predators caused a substantial and abrupt shift in community composition resulting in a trophic cascade that extended to primary producers and to a nonaquatic species, the bald eagle. The opossum shrimp, Mysis diluviana, invaded Flathead Lake, Montana, the largest freshwater lake in the western United States. Lake trout had been introduced 80 y prior but remained at low densities until nonnative Mysis became established. The bottom-dwelling mysids eliminated a recruitment bottleneck for lake trout by providing a deep water source of food where little was available previously. Lake trout subsequently flourished on mysids and this voracious piscivore now dominates the lake fishery; formerly abundant kokanee were extirpated, and native bull and westslope cutthroat trout are imperiled. Predation by Mysis shifted zooplankton and phytoplankton community size structure. Bayesian change point analysis of primary productivity (27-y time series) showed a significant step increase of 55 mg C m−2 d−1 (i.e., 21% rise) concurrent with the mysid invasion, but little trend before or after despite increasing nutrient loading. Mysis facilitated predation by lake trout and indirectly caused the collapse of kokanee, redirecting energy flow through the ecosystem that would otherwise have been available to other top predators (bald eagles). PMID:21199944

  17. Long-term effects of a trophic cascade in a large lake ecosystem.

    PubMed

    Ellis, Bonnie K; Stanford, Jack A; Goodman, Daniel; Stafford, Craig P; Gustafson, Daniel L; Beauchamp, David A; Chess, Dale W; Craft, James A; Deleray, Mark A; Hansen, Barry S

    2011-01-18

    Introductions or invasions of nonnative organisms can mediate major changes in the trophic structure of aquatic ecosystems. Here we document multitrophic level impacts in a spatially extensive system that played out over more than a century. Positive interactions among exotic vertebrate and invertebrate predators caused a substantial and abrupt shift in community composition resulting in a trophic cascade that extended to primary producers and to a nonaquatic species, the bald eagle. The opossum shrimp, Mysis diluviana, invaded Flathead Lake, Montana, the largest freshwater lake in the western United States. Lake trout had been introduced 80 y prior but remained at low densities until nonnative Mysis became established. The bottom-dwelling mysids eliminated a recruitment bottleneck for lake trout by providing a deep water source of food where little was available previously. Lake trout subsequently flourished on mysids and this voracious piscivore now dominates the lake fishery; formerly abundant kokanee were extirpated, and native bull and westslope cutthroat trout are imperiled. Predation by Mysis shifted zooplankton and phytoplankton community size structure. Bayesian change point analysis of primary productivity (27-y time series) showed a significant step increase of 55 mg C m(-2) d(-1) (i.e., 21% rise) concurrent with the mysid invasion, but little trend before or after despite increasing nutrient loading. Mysis facilitated predation by lake trout and indirectly caused the collapse of kokanee, redirecting energy flow through the ecosystem that would otherwise have been available to other top predators (bald eagles). PMID:21199944

  18. Large residuals on geoidal heights determined on the Fagnano Lake, Tierra del Fuego-Argentina

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Del Cogliano, D.; Perdomo, R.

    2013-05-01

    A new geoid model was developed in Tierra del Fuego and it was evaluated in the area of Fagnano Lake. The model was developed by means of the Equivalent Source Technique combining gravity data, levelling information measured on the province and observations of a GPS buoy on the Fagnano Lake. Those GPS buoy measurements provide information of the mean lake level surface (Del Cogliano et al., 2007). A cross validation process was realized in order to evaluate the model on the lake. What allowed determining a 6 cm geoid in the area of Fagnano Lake. Also, an evaluation of the EGM2008 (Pavlis et al., 2008) was made on the lake. Its behaviour was compared to that observed on the levelling lines. Differences of several decimetres were found when EGM2008 undulations were compared to observed geoid undulations in the lake area. In the regions where EGM2008 has included real gravimetric observations, differences between model and observations were only of a few centimetres. Such model has the particularity that includes fill-in gravity in that region. The above mentioned evaluation derived in an analysis of the effect that not representative gravity information could have on the estimation of geoid undulations in high mountainous regions. We found that this effect could be significant if there is no real information in the computing area (Gomez et al, 2012).

  19. Deep-sea ash layers reveal evidence of large Pleistocene and Holocene volcanic eruptions from Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Salisbury, M. J.; Kent, A.; Patton, J. R.; Goldfinger, C.; Surachman, Y.; Udrekh, U.

    2010-12-01

    At least six undocumented, latest Pleistocene to Holocene volcanic eruptions have been identified through geochemical and textural analysis of glass shards from twenty volcanic tephra layers sampled from deep-sea cores collected along the Sunda trench and accretionary prism piggy-back slope basins, ~ 200 - 300 km west of the Sumatran volcanic arc. The tephra layers were sampled from depths ranging from 15 to 486 cm within 12 deep-sea cores collected from 3.3°N to 4.6°S at water depths between 1.8 and 5.5 km. The tephra layers range from a few mm to 8 cm and are variably distorted by bioturbation. Glass shards within the tephra are relatively small (<150 µm), commonly pumiceous, and show little evidence for significant chemical, post-depositional alteration. Major and trace element compositions of glass shards, analyzed using electron microprobe and LA-ICP-MS at Oregon State University, reveal six unique geochemical signatures. We interpret these as distinct volcanic eruptive units, with compositions ranging from andesite to rhyolite. The most widespread unit is rhyodacitic and correlates among six cores from 0.8 to 1.7°S along the Sunda trench, at a distance of ~300-340 km due west of the active Marapi volcano. The unit is at least 8 cm thick in the most near-shore core, and 1 to 4 cm in the more distal cores. Radiocarbon age determinations of foraminifera constrain the deposition of this unit to ~4,800 cal yrs BP. Ages for thinner units are constrained at ~1,900, ~5,600, ~13,600, and ~24,000 cal yrs BP. Although limited data points preclude the creation of accurate isopach maps, layer thickness and distances to the nearest volcanoes suggest minimum eruptive volumes in excess of 1 km3 (VEI = 5). We have yet to find a close geochemical match with any on-land volcanic deposits, although due to proximity and high productivity, the little-studied Sumatran arc is the most likely source of these tephra layers. This study highlights the potential hazards of explosive

  20. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar- 39Ar age of Kap Washington Group volcanics, North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Lo, C.-H.; Knudsen, M. F.

    2011-03-01

    The High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and has been suggested to include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan Orogeny. New 40Ar-39Ar dating of alkaline volcanics from Kap Kane, part of the Kap Washington Group volcanics at the northern tip of Greenland, provides an emplacement age of 71.2 ± 0.5 Ma obtained from amphibole in lapilli tuffs, and a thermal resetting age of 49-47 Ma obtained in feldspar and whole-rocks from trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting. This thermal event is interpreted as a result of compressional tectonism of the Kap Cannon Thrust Zone in which older Palaeozoic metasediments were thrusted northwards over the Kap Washington Group volcanics. The formation of the tholeiitic suite (130-80 Ma) is linked to the opening of the Canada Basin and may involve mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay, and to eastwards displacement of Greenland relative to North America. The alkaline suite, therefore, may be unrelated to the main tholeiitic phase of the High Arctic Large Igneous Province. The subsequent initiation of continental rifting and ensuing seafloor spreading in the Northeast Atlantic resulted in spreading and volcanism (61-25 Ma) on both sides of Greenland, pushing Greenland northwards relative to North America. The tectonic setting in the High Arctic thus changed from extensional to compressional and volcanic activity was terminated. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  1. Bonneville Basin Analogues for Large Lake Processes & Chronologies of Geomorphic Development on Mars

    NASA Astrophysics Data System (ADS)

    Nicoll, K.; Chan, M. A.; Parker, T. J.; Jewell, P. W.; Komatsu, G.; Okubo, C. H.

    2009-03-01

    We present an inventory of geomorphic analogues for Lake Bonneville and Mars, with focus on potential standing-water features. The goal is to understand water as a geomorphic agent at a variety of temporal and spatial scales.

  2. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    Wood in riverine environments exerts different functions on ecological and geomorphic settings, influencing morphological processes, and increasing risks for sensitive structures. Large wood (LW) is defined as wood material, dead or alive, larger than 10 cm in diameter and 1 m in length. Natural hazards can strongly increase the presence of LW in waterways and flood events can transport it affecting the ecosystem and landscape. This study aims to increase the knowledge of wood budget, considering the effects of two subsequent slight flood events along a sub-reach of the Rio Blanco gravel bed river , in Chilean Patagonia, strongly affected by the eruption of Chaiten volcano in 2008. The volcanic eruption affected almost 3,5 km 2 of evergreen forest on the southern (left) bank, because of primary direct effects from pyroclastic density currents and lahar-floods that caused deposition up to 8 m of reworked tephra, alluvium, and wood on floodplains and terrace along the Rio Blanco. After the eruption, there was a considerable increase of LW into the main channel: into the bankfull channel, volume exceeds 100 m 3 /ha. Field surveys were carried out in January and March 2015, before and after two slight flood events (Recurrence Intervals lower than 1 year). The pre-event phase permitted to detect and analyze the presence of LW into the study area, along a 80 m-long reach of Rio Blanco (7500 m 2 . Every LW element was manually measured and described, a numbered metal tag was installed, and the position was recorded by GPS device. In January, there was a total amount of 113 m 3 /ha, 90% accumulated in LW jams (WJ) and 10% as single logs. The LW was characterized by mean dimensions of 3,36 m height, 0,25 m diameter and 0,26 m 3 volume, respectively. The WJ are characterized by wide range of dimension: volume varies from 0,28 m 3 to 672 m 3 , length from 1,20 m to 56 m, width from 0,40 m to 8,70 m and height from 0,20 m to 3 m, respectively. After the flood events, field

  3. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu

    NASA Astrophysics Data System (ADS)

    Xue, Qingju; Su, Xiaomei; Steinman, Alan D.; Cai, Yongjiu; Zhao, Yanyan; Xie, Liqiang

    2016-08-01

    Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer.

  4. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu.

    PubMed

    Xue, Qingju; Su, Xiaomei; Steinman, Alan D; Cai, Yongjiu; Zhao, Yanyan; Xie, Liqiang

    2016-01-01

    Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer. PMID:27499175

  5. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu

    PubMed Central

    Xue, Qingju; Su, Xiaomei; Steinman, Alan D.; Cai, Yongjiu; Zhao, Yanyan; Xie, Liqiang

    2016-01-01

    Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer. PMID:27499175

  6. Kimberlite Volcanism

    NASA Astrophysics Data System (ADS)

    Sparks, R. S. J.

    2013-05-01

    Kimberlite magmas are volatile-rich, silica-poor ultrabasic magmas originating as small-degree mantle melts at depths of 150 km or greater. Alteration and entrained xenoliths obscure their original magma chemistry and properties. Kimberlite magmas decrease temperature by a few hundred degrees during ascent. Changes of melt composition can result as a function of assimilation. Stalling of kimberlite can result in fractional crystallization, loss of xenocrysts, and loss of volatiles. Multiple pulses of kimberlite magmas form several distinct geological units in the same pipe or intrusion. Kimberlite pipes form by explosive disruption and deformation of country rocks. Confinement in a pipe introduces new processes such as fluidization, dynamic sintering, and intense mixing between volcanic jets and concentrated trapped mixtures. Occurrences of extravent and crater-fill lithofacies indicate that kimberlite eruptions generate eruptive products that are similar to those produced by common magma types. Alteration is largely attributed to hydrothermal systems, diagenesis, and weathering involving external water.

  7. Large difference in carbon emission - burial balances between boreal and arctic lakes

    NASA Astrophysics Data System (ADS)

    Lundin, E. J.; Klaminder, J.; Bastviken, D.; Olid, C.; Hansson, S. V.; Karlsson, J.

    2015-09-01

    Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic - arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink - source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes.

  8. Large difference in carbon emission – burial balances between boreal and arctic lakes

    PubMed Central

    Lundin, E. J.; Klaminder, J.; Bastviken, D.; Olid, C.; Hansson, S. V.; Karlsson, J.

    2015-01-01

    Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic – arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink – source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes. PMID:26370519

  9. The Role of Fish Communities in Water Quality Management of a Large Shallow Lake

    NASA Astrophysics Data System (ADS)

    Tátrai, István; Paulovits, Gábor; Mátyás, Kálmán; Korponai, János

    2003-09-01

    Management measures of Lake Balaton such as wetland reconstruction at the main inflow to the lake along with the unplanned commercial fishery led to great changes in the density and biomass of fish populations. There was no significant difference in CPUE data between the two, eastern and western, basins. Biomass of total fish stock in Lake Balaton has decreased substantially, 2-3 times between 1991-1999, and ranges between 120-194 kg ha-1. Bottom-up effects are more important than the top-down effects due to the impact of internal nutrient load. Changes in the biomass and thus the activity of omnivorous fish in the lake lowered the intensity of various indirect effects and feedback mechanisms causing changes in the nutrient metabolism of the lake. Intensified fishery effort in Lake Balaton did not result in an increased stock of piscivores. The ratio of piscivores and omnivores remained at 5% during the whole study period. Despite this low piscivores to omnivores ratio, the water quality has improved in all basins.

  10. An approach to improve direct runoff estimates and reduce uncertainty in the calculated groundwater component in water balances of large lakes

    NASA Astrophysics Data System (ADS)

    Wiebe, Andrew J.; Conant, Brewster; Rudolph, David L.; Korkka-Niemi, Kirsti

    2015-12-01

    Groundwater is important in the overall water budget of a lake because it affects the quantity and quality of surface water and the ecological health of the lake. The water balance equation is frequently used to estimate the net groundwater flow for small lakes but is seldom used to determine net groundwater flow components for large lakes because: (1) errors accumulate in the calculated groundwater term, and (2) there is an inability to accurately quantify the direct runoff component. In this water balance study of Lake Pyhäjärvi (155 km2) in Finland, it was hypothesized a hydrograph separation model could be used to estimate direct runoff to the lake and, when combined with a rigorous uncertainty analyses, would provide reliable net groundwater flow estimates. The PART hydrograph separation model was used to estimate annual per unit area direct runoff values for the watershed of the inflowing Yläneenjoki River (a subwatershed of the lake) which were then applied to other physically similar subwatersheds of the lake to estimate total direct runoff to the lake. The hydrograph separation method provided superior results and had lower uncertainty than the common approach of using a runoff coefficient based method. The average net groundwater flow into the lake was calculated to be +43 mm per year (+3.0% of average total inflow) for the 38 water years 1971-2008. It varied from -197 mm to 284 mm over that time, and had a magnitude greater than the uncertainty for 17 of the 38 years. The average indirect groundwater contribution to the lake (i.e., the groundwater part of the inflowing rivers) was 454 mm per year (+32% of average total inflow) and demonstrates the overall importance of groundwater. The techniques in this study are applicable to other large lakes and may allow small net groundwater flows to be reliably quantified in settings that might otherwise be unquantifiable or completely lost in large uncertainties.

  11. Volcanically Active Regions on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shown here is a portion of one of the highest-resolution images of Io (Latitude: +10 to +60 degrees, Longitude: 180 to 225 degrees) acquired by the Galileo spacecraft, revealing immense lava flows and other volcanic landforms. Several high-temperature volcanic hot spots have been detected in this region by both the Near Infrared Mapping Spectrometer and the imaging system of Galileo. The temperatures are consistent with active silicate volcanism in lava flows or lava lakes (which reside inside irregular depressions called calderas). The large dark lava flow in the upper left region of the image is more than 400 km long, similar to ancient flood basalts on Earth and mare lavas on the Moon.

    North is to the top of the picture and the sun illuminates the surface from the left. The image covers an area 1230 kilometers wide and the smallest features that can be discerned are 2.5 kilometers in size. This image was taken on November 6th, 1996, at a range of 245,719 kilometers by the Solid State Imaging (CCD) system on the Galileo Spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  12. Volcano crisis response at Yellowstone volcanic complex - after-action report for exercise held at Salt Lake City, Utah, November 15, 2011

    USGS Publications Warehouse

    Pierson, Thomas C.; Driedger, Carolyn L.; Tilling, Robert I.

    2013-01-01

    A functional tabletop exercise was run on November 14-15, 2011 in Salt Lake City, Utah, to test crisis response capabilities, communication protocols, and decision-making by the staff of the multi-agency Yellowstone Volcano Observatory (YVO) as they reacted to a hypothetical exercise scenario of accelerating volcanic unrest at the Yellowstone caldera. The exercise simulated a rapid build-up of seismic activity, ground deformation, and hot-spring water-chemistry and temperature anomalies that culminated in a small- to moderate-size phreatomagmatic eruption within Yellowstone National Park. The YVO scientific team's responses to the unfolding events in the scenario and to simulated requests for information by stakeholders and the media were assessed by (a) the exercise organizers; (b) several non-YVO scientists, who observed and queried participants, and took notes throughout the exercise; and (c) the participants themselves, who kept logs of their actions during the exercise and later participated in a group debriefing session and filled out detailed questionnaires. These evaluations were tabulated, interpreted, and summarized for this report, and on the basis of this information, recommendations have been made. Overall, the YVO teams performed their jobs very well. The exercise revealed that YVO scientists were able to successfully provide critical hazards information, issue information statements, and appropriately raise alert levels during a fast-moving crisis. Based on the exercise, it is recommended that several measures be taken to increase YVO effectiveness during a crisis: 1. Improve role clarification within and between YVO science teams. 2. Improve communications tools and protocols for data-sharing and consensus-building among YVO scientists, who are geographically and administratively dispersed among various institutions across the United States. 3. Familiarize YVO staff with Incident Command System (ICS) procedures and protocols, and provide more in

  13. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    PubMed

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states. PMID:26549710

  14. Spatio-temporal Variation of Sediment Methanotrophic Microorganisms in a Large Eutrophic Lake.

    PubMed

    Yang, Yuyin; Zhao, Qun; Cui, Yahui; Wang, Yilin; Xie, Shuguang; Liu, Yong

    2016-01-01

    Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the methane emission from lake ecosystems to the atmosphere. However, the distribution of methanotrophic community in shallow and eutrophic lake and its influential factors remain essentially unclear. The present study investigated sediment methanotrophic microorganisms at different sites in eutrophic freshwater Dianchi Lake (China) in two different seasons. The abundance, diversity, and structure of sediment methanotrophic community showed a profound spatial and seasonal variation. The pmoA gene copy number in lake sediments ranged from 8.71 ± 0.49 × 10(4) to 2.09 ± 0.03 × 10(7) copies per gram of dry sediment. Sediment methanotrophic communities were composed of Methylococcus and Methylobacter (type I methanotrophs) and Methylosinus (type II methanotrophs), while type I MOB usually outnumbered type II MOB. Moreover, ammonia nitrogen was found to be a potential determinant of methanotrophic community structure in Dianchi Lake. PMID:26318324

  15. Relations between large scale oscillation patterns and rising water temperatures at Lake Neusiedl

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Soja, Gerhard

    2013-04-01

    Lake Neusiedl (Neusiedler See, Fertitó) is a very shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary. The low ratio of water depth to water volume accounts for dynamic, air temperature-dependent developments of water temperature with the potential of unusually warm waters that are a pillar of the touristic attractiveness of the lake. Likewise these conditions are a risk factor for water quality deterioration. In the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU, data records of water temperature at 5 monitoring stations of Lake Neusiedl (eHYD) and the nearby air temperature monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG) were used to investigate the period 1976-2009. Additionally the influences of 7 teleconnection patterns, i.e. the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. The increase of temperature during the observation period was more pronounced for water than for air. Water temperatures increased significantly (p

  16. Quantifying Groundwater Nutrient Discharge to a Large Glacial Lake using a Watershed Loading Model

    NASA Astrophysics Data System (ADS)

    Schilling, K. E.

    2015-12-01

    Groundwater discharge to a lake is an important, if often neglected, component to water and nutrient budgets. Point measurements of groundwater discharge into a lake are prone to error, so in this study of 15.57 km2 West Lake Okoboji, Iowa, a watershed-based groundwater loading model was developed. Located in northwest Iowa, West Lake Okoboji is considered one of Iowa's premier tourist destinations but is threatened by eutrophication. A network of 21 observation wells was installed in the watershed to evaluate groundwater recharge and quality under representative land cover types in a range of landscape positions. Our objective was to develop typical groundwater responses from various land cover-landscape associations for scaling up to unmonitored areas in the watershed. Results indicated substantial variation in groundwater recharge and quality in the 3847 ha watershed. Recharge was similar among land covers under vegetation but was much lower under urban pavement. Nitrate-nitrogen concentrations were highest under cropped fields and lowest under perennial grassland and golf courses, whereas dissolved phosphorus was highest under residential and urban areas, including an engineered bioswale. A groundwater load allocation model indicated 91% of the nitrate load was from cropped areas and 7% from residential areas. In contrast, P loads were more equally divided among cropped fields (43%), perennial grass (36%) and residential (19%) areas. Based on the mass of nitrate and P in the lake, groundwater accounts for 71% and 18% of the nutrient inputs, respectively.

  17. Treating floodplain lakes of large rivers as study units for variables that vary within lakes; an evaluation using chlorophyll a and inorganic suspended solids data from floodplain lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Gray, B.R.; Rogala, J.R.; Houser, J.N.

    2013-01-01

    Contiguous floodplain lakes ('lakes') have historically been used as study units for comparative studies of limnological variables that vary within lakes. The hierarchical nature of these studies implies that study variables may be correlated within lakes and that covariate associations may differ not only among lakes but also by spatial scale. We evaluated the utility of treating lakes as study units for limnological variables that vary within lakes based on the criteria of important levels of among-lake variation in study variables and the observation of covariate associations that vary among lakes. These concerns were selected, respectively, to ensure that lake signatures were distinguishable from within-lake variation and that lake-scale effects on covariate associations might provide inferences not available by ignoring those effects. Study data represented chlorophyll a (CHL) and inorganic suspended solids (ISS) data from lakes within three reaches of the Upper Mississippi River. Sampling occurred in summer from 1993 through 2005 (except 2003); numbers of lakes per reach varied from 7 to 19, and median lake area varied from 53 to 101 ha. CHL and ISS levels were modelled linearly, with lake, year and lake x year effects treated as random. For all reaches, the proportions of variation in CHL and ISS attributable to differences among lakes (including lake and lake x year effects) were substantial (range: 18%-73%). Finally, among-lake variation in CHL and ISS was strongly associated with covariates and covariate effects that varied by lakes or lake-years (including with vegetation levels and, for CHL, log(ISS)). These findings demonstrate the utility of treating floodplain lakes as study units for the study of limnological variables and the importance of addressing hierarchy within study designs when making inferences from data collected within floodplain lakes.

  18. Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Kunz, Manuel J.; Anselmetti, Flavio S.; Wüest, Alfred; Wehrli, Bernhard; Vollenweider, Adrian; Thüring, Silvan; Senn, David B.

    2011-09-01

    Large dams affect the aquatic continuum from land to ocean by accumulating particles and nutrients in their reservoirs. We examined sediment cores to quantify sediment, organic carbon (OC), nitrogen (N), and phosphorous (P) accumulation, and to examine historic changes and spatial variability in the sedimentation pattern in Lake Kariba, the largest hydropower reservoir in the Zambezi River Basin (ZRB). Sediment characteristics (concentrations of OC, N, P; δ13C and δ15N; wet bulk density) showed large variability both with sediment depth and between cores. While organic matter (OM) in river deltas was primarily allochthonous in origin, OM characteristics (δ13C, C:N) in lacustrine sediments suggest that autochthonous sources account for >45% of the OM that accumulates over large areas of the lake. At the same time, the relative contribution of allochthonous material within individual layers of lacustrine cores varied considerably with depth due to discrete flood deposits. The overall sediment accumulation rate in Lake Kariba is on the order of 4 × 106 t yr-1, and the estimated OC accumulation of 120 × 103 t C yr-1 accounts for ˜1‰ of globally buried OC in reservoirs. In addition, mass balance calculations revealed that approximately 70% and 90% of incoming total N and P, respectively, are eliminated from the water column by sedimentation (N, P) and denitrification (N). Since Lake Kariba attenuates flow from ˜50% of the ZRB, these OC, N, and P removals represent a drastic reduction in nutrient loadings to downstream riparian ecosystems and to the coastal Indian Ocean.

  19. Influence of ecosystematic factors on survival of Escherichia coli after large-scale release into lake water mesocosms.

    PubMed Central

    Brettar, I; Höfle, M G

    1992-01-01

    Mass cultures of an Escherichia coli K-12 strain were released into exposed mesocosms in a eutrophic lake. The release was performed with and without additional input of the E. coli culture medium to stimulate the scenario of leakage of a production fermenter on one hand and to compare the influence of the added organic nutrients with that of the added strain on the other hand. The survival of the introduced strain and the influence on ecological processes in the mesocosms were monitored for 10 weeks after release. For comparison, survival of the strain in microcosms with sterile lake water was also monitored. Survival of the strain was determined by means of immunofluorescence and growth on selective agar medium. In lake mesocosms, E. coli showed a rapid and constant dieback during the first week. After 4 days, cells were mostly restricted to particles, which seemed to provide niches for survival. From the second week onward, survival was improved in mesocosms with culture medium added. In microcosms with sterile lake water, plate counts of E. coli showed a strong decrease within 2 weeks, while total cell numbers remained approximately the same. The rapid elimination of E. coli from the free-water phase of the mesocosms was probably due to the combined effect of the inability to grow in lake water and grazing. The better survival of E. coli (mainly on particles) in mesocosms with added medium was attributed to the medium-induced enhancement of primary production, which was the source of a large quantity of particles. These particles, in turn, may have functioned as niches for prolonged survival as well as transport vehicles for sedimentation of the E. coli cells. Images PMID:1637157

  20. Numerical modeling of the spring thermal bar and pollutant transport in a large lake

    NASA Astrophysics Data System (ADS)

    Tsydenov, Bair O.; Kay, Anthony; Starchenko, Alexander V.

    2016-08-01

    The spring riverine thermal bar phenomenon is investigated numerically on an example of Lake Baikal, and the spread of pollutants coming from the Selenga River is forecast using the 2.5 D non-hydrostatic model in the Boussinesq approximation. This hydrodynamic model takes into account the diurnal variability of the heat fluxes on the lake surface and the effects of wind and the Earth's rotation. The results of numerical modeling show that the variability of the total heat flux over 24 h plays a significant role in the variation of the thermal bar movement rate that contributes to the rapid mixing of impurities entering with river water.

  1. El Estribo Volcanic Complex: Evolution from a shield volcano to a cinder cone, Pátzcuaro Lake, Michoacán, México

    NASA Astrophysics Data System (ADS)

    Pola, A.; Macías, J. L.; Osorio-Ocampo, S.; Sosa-Ceballos, G.; Garduño-Monroy, V. H.; Martínez-Martínez, J.

    2015-09-01

    El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán-Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia-Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21-58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65-59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their

  2. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu).

    PubMed

    He, Wei; Bai, Ze-Lin; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Jørgensen, Sven Erik; Xu, Fu-Liu

    2016-06-01

    Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake Chaohu was 672 pg g(-1) dry weight (dw), with a range of 7 to 3999 pg g(-1) dw, which was lower than other water bodies worldwide. The majority of heavy metals were detected at all sampling locations, except for Sr, B, and In. Concentrations of Al, Fe, Ca, Mn, Sr, Co, Zn, Cd, Pb, and Hg were similar to that reported for other lakes globally. Concentrations of K, Mg, Na, Li, Ga, and Ag were greater than the average, whereas those of Cr, Ni, and Cu were lower. Cluster analysis (CA) and positive matrix factorization (PMF) yielded accordant results for the source apportionment of PCBs. The technical PCBs and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca-Na-Mg minerals rather than Fe-Mn minerals. The uncorrelated results between organic matter revealed by pyrolysis technology and heavy metals might be caused by the existence of competitive adsorption between organic matter and minerals. PCBs and heavy metals were coupling discharge without organochlorine pesticides (OCPs), but with polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). No sediment sample exceeded the toxic threshold for dioxin-like PCBs (dl-PCBs) set at 20 pg toxicity equivalency quantity (TEQ) g(-1), (max dl-PCBs, 10.9 pg TEQ g(-1)). However, concentrations of Ag, Cd, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some

  3. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong'er volcanic province

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Wang, Xinping; Lai, Yong; Wang, Chong; Windley, Brian F.

    2015-11-01

    Immiscibility is a potential mechanism for the formation of high-Fe-Ti-P rocks; however, whether large-scale segregation and eruption of high-Si lavas can occur in nature has yet to be proven. In this study, we investigate the possibility of immiscibility between the cogenetic 1780 Ma high-Fe-Ti-P-bearing Taihang dykes and the 'bimodal' Xiong'er volcanics in North China. The compositions of silicate melt inclusions in plagioclase megacrysts of the dykes provide a new approach to obtain the primary liquid. Mineral and bulk-rock compositions reveal that large compositional variations in the dykes are the result of plagioclase- and clinopyroxene-dominated fractional crystallization and of density-driven mineral sorting, which together caused the liquids to be poor in Ca-Al but rich in Fe-Ti-P-K, and thus chemically immiscible. Conjugate interstitial granophyric and ilmenite-rich intergrowths and reactive microstructures especially olivine coronas in the dykes, and Si-/Fe-Ti-rich globules in the volcanics, provide petrographic evidence for the presence of two coeval, coexisting liquids in equilibrium separated by a miscibility gap, and thus for immiscibility and segregation/migration. The fractional crystallization and subsequent segregation were responsible for the compositional diversity of the Taihang dykes and also of the 'bimodal' Xiong'er volcanics. Accordingly, the dacite and rhyolite lavas are potentially the high-Si counterparts of the high-Ti dykes, and the basalt and andesite lavas are the erupted equivalents of the relatively low-Ti dykes. It is likely that the sustained plagioclase- and clinopyroxene-dominated fractional crystallization, and the enhanced fO2 were responsible for the immiscibility. The segregation probably took place during the ascent of the liquid in the pumping system (feeder dykes). This likely represents one natural example of crust-scale immiscibility from which many high-Ti dykes and silicic lavas (~ 1/3 volume of the Xiong

  4. Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China.

    PubMed

    Tang, Xiangming; Li, Linlin; Shao, Keqiang; Wang, Boweng; Cai, Xianlei; Zhang, Lei; Chao, Jianying; Gao, Guang

    2015-01-01

    To elucidate the relationship between particle-attached (PA, ≥ 5.0 μm) and free-living (FL, 0.2-5.0 μm) bacterial communities, samplings were collected seasonally from November 2011 to August 2012 in Meiliang Bay, Lake Taihu, China. We used 454 pyrosequencing of 16S rRNA genes to study bacterial diversity and structure of PA and FL communities. The analysis rendered 37,985 highly qualified reads, subsequently assigned to 1755 operational taxonomic units (97% similarity) for the 8 samples. Although 27 high-level taxonomic groups were obtained, the 3 dominant phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) comprised about 75.9% and 82.4% of the PA and FL fractions, respectively. Overall, we found no significant differences between community types, as indicated by ANOSIM R statistics (R = 0.063, P > 0.05) and the Parsimony test (P = 0.222). Dynamics of bacterial communities were correlated with changes in concentrations of total suspended solids (TSS) and total phosphorus (TP). In summer, a significant taxonomic overlap in the 2 size fractions was observed when Cyanobacteria, a major contributor of TSS and TP, dominated in the water, highlighting the potential rapid exchange between PA and FL bacterial populations in large shallow eutrophic lakes. PMID:25496473

  5. Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three-dimensional dynamic models to enhance lake management criteria

    NASA Astrophysics Data System (ADS)

    Bocaniov, Serghei A.; Scavia, Donald

    2016-06-01

    Hypoxia or low bottom water dissolved oxygen (DO) is a world-wide problem of management concern requiring an understanding and ability to monitor and predict its spatial and temporal dynamics. However, this is often made difficult in large lakes and coastal oceans because of limited spatial and temporal coverage of field observations. We used a calibrated and validated three-dimensional ecological model of Lake Erie to extend a statistical relationship between hypoxic extent and bottom water DO concentrations to explore implications of the broader temporal and spatial development and dissipation of hypoxia. We provide the first numerical demonstration that hypoxia initiates in the nearshore, not the deep portion of the basin, and that the threshold used to define hypoxia matters in both spatial and temporal dynamics and in its sensitivity to climate. We show that existing monitoring programs likely underestimate both maximum hypoxic extent and the importance of low oxygen in the nearshore, discuss implications for ecosystem and drinking water protection, and recommend how these results could be used to efficiently and economically extend monitoring programs.

  6. WILD CATTLE MOUNTAIN AND HEART LAKE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Muffler, L.J. Patrick; Denton, David K., Jr.

    1984-01-01

    The results of geologic, geochemical, and geophysical surveys in Wild Cattle Mountain and Heart Lake Roadless Areas in California indicate little promise for the occurrence of metallic, nonmetallic, or fossil fuel resources. However, Wild Cattle Mountain Roadless Area and part of Heart Lake Roadless Area lie in Lassen Known Geothermal Resources Area, and noncompetitive geothermal lease applications have been filed on much of the rest of Heart Lake Roadless Area. Both areas are adjacent to Lassen Volcanic National Park. Geochemical and geologic data indicate that the thermal manifestations in the Park and at Growler and Morgan Hot Springs just southwest of Wild Cattle Mountain Roadless Area are part of the same large geothermal system. Consequently, the entire Wild Cattle Mountain Roadless Area and part of the Heart Lake Roadless Area have a substantiated geothermal resource potential; the rest of the Heart Lake Roadless Area has a probable geothermal resource potential.

  7. Ecological Responses of a Large Shallow Lake (Okeechobee, Florida) to Climate Change and Potential Future Hydrologic Regimes

    NASA Astrophysics Data System (ADS)

    Havens, Karl E.; Steinman, Alan D.

    2015-04-01

    We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10 % increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55 % of the time compared to less than 4 % of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.

  8. Ecological responses of a large shallow lake (Okeechobee, Florida) to climate change and potential future hydrologic regimes.

    PubMed

    Havens, Karl E; Steinman, Alan D

    2015-04-01

    We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10% increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55% of the time compared to less than 4% of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration. PMID:24178125

  9. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  10. Ecological tracers reveal resource convergence among prey fish species in a large lake ecosystem

    USGS Publications Warehouse

    Paterson, Gord; Rush, Scott A.; Arts, Michael T.; Drouillard, Ken G.; Haffner, G. Doug; Johnson, Tim B.; Lantry, Brian F.; Hebert, Craig E.; McGoldrick, Daryl J.; Backus, Sean M.; Fisk, Aaron T.

    2014-01-01

    5. These results indicate a temporal convergence of the food niche, whereas food partitioning has historically supported the coexistence of prey fish species in Lake Ontario. This convergence is consistent with changes in food-web processes associated with the invasion of dreissenid mussels.

  11. Heat flux modifications related to climate-induced warming of large European lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Schmid, Martin; Wahl, Bernd; Wolf, Thomas; Wüest, Alfred

    2014-03-01

    Within the last decades, the water temperature of several European lakes has risen. It is assumed that these temperature increases are due to a reconfiguration of the heat-balance components. This study explores the dominant modifications of heat exchange with the atmosphere and their temporal evolutions. The objective is to identify the primary changes in heat fluxes and the sequence of events of the reconfiguration for the period 1984-2011. For this purpose, a model was applied to Lake Constance to estimate the contributions of the individual heat fluxes to the total heat balance. The results show that increasing absorption of solar radiation (+0.21 ± 0.13 W m-2 yr-1) and of longwave radiation (+0.25 ± 0.11 W m-2 yr-1) was responsible for the lake surface warming of 0.046 ± 0.011°C yr-1. Heat losses to the atmosphere by longwave emission (-0.24 ± 0.06 W m-2 yr-1) and by latent heat flux (-0.27 ± 0.12 W m-2 yr-1) have intensified in parallel due to higher lake surface temperatures. The heat budget is in a quasi-steady state, whereas incoming solar radiation and the warmer atmosphere increased the lake surface temperature; the warmer surface emits more longwave radiation and more water is evaporated. At each level of the slowly increasing water temperature, the heat fluxes are balanced. The overall change of the total heat content, however, is relatively little. Although the cooling effect of inflowing rivers decreased, this contribution is also small.

  12. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  13. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  14. Trends in ice formation at Lake Neusiedl since 1931 and large-scale oscillation patterns

    NASA Astrophysics Data System (ADS)

    Soja, Anna-Maria; Maracek, Karl; Soja, Gerhard

    2013-04-01

    Ice formation at Lake Neusiedl (Neusiedler See, Fertitó), a shallow steppe lake (area 320 km2, mean depth 1.2 m) at the border of Austria/Hungary, is of ecological and economic importance. Ice sailing and skating help to keep a touristic off-season alive. Reed harvest to maintain the ecological function of the reed belt (178 km2) is facilitated when lake surface is frozen. Changes in ice formation were analysed in the frame of the EULAKES-project (European Lakes under Environmental Stressors, www.eulakes.eu), financed by the Central Europe Programme of the EU. Data records of ice-on, ice duration and ice-off at Lake Neusiedl starting with the year 1931, and air temperature (nearby monitoring station Eisenstadt - Sopron (HISTALP database and ZAMG)) were used to investigate nearly 80 winters. Additionally, influences of 8 teleconnection patterns, i.e. the Atlantic Multidecadal Oscillation (AMO), the East Atlantic pattern (EAP), the East Atlantic/West Russia pattern (EA/WR), the Eastern Mediterranean Pattern (EMP), the Mediterranean Oscillation (MO) for Algiers and Cairo, and for Israel and Gibraltar, resp., the North Atlantic Oscillation (NAO) and the Scandinavia pattern (SCA) were assessed. Ice cover of Lake Neusiedl showed a high variability between the years (mean duration 71±27 days). Significant trends for later ice-on (p=0.02), shorter ice duration (p=0.07) and earlier ice-off (p=0.02) for the period 1931-2011 were found by regression analysis and trend analysis tests. On an average, freezing of Lake Neusiedl started 2 days later per decade and ice melting began 2 days earlier per decade. Close relationships between mean air temperature and ice formation could be found: ice-on showed a dependency on summer (R=+0.28) and autumn air temperatures (R=+0.51), ice duration and ice off was related to autumn (R=-0.36 and -0.24), winter (R=-0.73 and -0.61) and concurrent spring air temperatures (R=-0.44). Increases of air temperature by 1° C caused an 8.4 days later

  15. Uranium-series disequilibria in Vanuatu arc volcanic rocks: constraints on pre-eruptive processes in contrasting volcanic systems

    NASA Astrophysics Data System (ADS)

    Handley, H. K.; Turner, S.; Reagan, M. K.; Girard, G.; Cronin, S. J.; Firth, C.

    2011-12-01

    Recent and present volcanism in the Vanuatu arc (South West Pacific Ocean) occurs at a variety of volcano types that exhibit a wide range of eruptive behaviour: from post-caldera lava-lake activity and lava flows at shield volcanoes (Ambrym), moderately explosive sub-plinian events and associated pyroclastic-flows and lava flows at stratovolcanoes (Lopevi), to persistent strombolian and vulcanian-style eruptions at scoria cones (Yasur). This precludes a generic model of magmatic and eruptive behaviour for the Vantuatu arc volcanoes and necessitates a detailed study of each system. Uranium-series disequilibria in volcanic rocks offer unique insights into pre-eruptive magmatic systems over process-relevant timescales e.g., 238U-230Th (380Ka), 230Th-226Ra (8Ka) and 226Ra-210Pb (100a). The short half-life of 210Pb (t1/2 = 22.6 years) and the volatile nature of the intermediate isotope, 222Rn, (intermediate between the 226Ra parent and 210Pb daughter) provide valuable information on magma transport, evolution and degassing over a timescale more pertinent to the processes leading up to volcanic eruptions. We present new Uranium-series isotope data (U-Th-Ra-210Pb) for young (< 100 years old) volcanic samples from Ambrym, Lopevi and Yasur volcanoes to investigate the timescales of magmatic evolution and degassing in the contrasting volcanic systems. 210Pb deficits ((210Pb/226Ra)0 < 1) in Ambrym and Yasur volcanic rocks suggest effective open-system magmatic degassing of 222Rn, consistent with the persistent lava-lakes/exposed magma and significant gas emissions observed at both volcanoes. Lopevi, on the other hand, largely displays excess 210Pb ((210Pb/226Ra)0 > 1) suggesting that 222Rn gas accumulation and fluxing preceding and/or during eruption (on a decadal timescale) is responsible for the more explosive-style of eruption witnessed at this volcano. Significant accumulation of recently crystallised plagioclase phenocrysts can also create 210Pb excesses in volcanic

  16. Abnormal P-wave delays in the geysers-clear lake Geothermal Area, California

    USGS Publications Warehouse

    Iyer, H.M.; Oppenheimer, D.H.; Hitchcock, T.

    1979-01-01

    Large teleseismic delays, exceeding 1 second, are found near Mount Hannah in the Clear Lake volcanic field and in the steam-production area at The Geysers. The delays are superimposed on a general delay field of about 0.5 second extending over the volcanic rocks and the steam reservoir. It is postulated that a magma chamber under the surface volcanic rocks with a core of severely molten rock beneath Mount Hannah and a highly fractured steam reservoir probably underlain by partially molten rock at The Geysers are responsible for the observed delays. Both zones extend to depths of 20 kilometers or more. Copyright ?? 1979 AAAS.

  17. [Ontogenetic Mechanisms of Explosive Morphological Divergence in the Lake Tana (Ethiopia) Species Flock of Large African Barbs (Labeobarbus; Cyprinidae; Teleostei)].

    PubMed

    Shkila, F N; Lazebny, O E; Kapitanova, D V; Abdissa, Belay; Borisov, V B; Smirnov, S V

    2015-01-01

    Species flock of Lake Tana (Ethiopia) large African barbs (Labeobarbus; Cyprinidae; Teleostei) was studied as a model system for investigating ontogenetic mechanisms of the explosive morphological divergence often accompanying sympatric speciation in bony fishes. Comparative morphological analysis carried out with the use ofgeometric morphometric techniques revealed quantitative differences in the head shapes of species under study. Comparative analysis of skull development revealed significant interspecies differences in the temporal characteristics of craniogenesis in these species. These two lines of evidence suggest that heterochronies in craniogenesis underlie divergence in the head shapes of adult Tana barbs. This prediction was verified via experimental changes of temporal characteristics of craniogenesis in L. intermedius, a putative ancestor for the Lake Tana species flock. For this aim, timing and rate of skull development were changed by artificial manipulation of thyroid hormone levels. In sum, it was shown that it is heterochronies that underlie an explosive morphological divergence of the Lake Tana barbs species flock. Our findings together with those reported in the literature suggest variability in the activity of the hypothalamic-pituitary-thyroid axis to contribute to these heterochronies. PMID:26606829

  18. The Basalt of Yellowjacket Butte, Another Large and Interesting Lava Flow at Medicine Lake Volcano, N. California, USA

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Champion, D. E.; Ramsey, D. W.; Lanphere, M. A.

    2005-12-01

    The late Pleistocene basalt of Yellowjacket Butte (BYB) covers ~300 km2 on the SE flank of Medicine Lake volcano (MLV) in the N CA Cascade Range. Combined field mapping, geochemistry, paleomagnetism, and Ar dating provide constraints on growth of this extensive basalt flow in space and time. Multiple vents on the upper S flank fed lobes via lava tubes to >30 km. Estimated volume of this compositionally-zoned plag-ol basalt is 4-5 km3, most in the earliest lobes. The E lobe is largest, covering >one 7.5' quadrangle. It contains 50.0-51.4% SiO2, 7.4-8.3% MgO, and ranges in Mg# from 62-66. The smaller SW lobe overlaps the E lobe in composition, but is somewhat less mafic (50.7-51.7% SiO2, 7.0-7.6 MgO, Mg# 61-64). Both display late, low-volume, high-Sr facies (400- 465 vs. 350-400 ppm for the main lobes). Overlying the high-Sr E and SW lavas are the Hole-in-Rock (HR) lobe and the youngest lava, the NW lobe. The HR lobe typically has higher and more variable SiO2 (50.4-53.1%), lower MgO (5.2-6.3%) and lower Mg# (50-55), whereas the NW lobe has the lowest SiO2} (49.3-50.7%) despite its mid-range MgO (6.8-7.8%) and Mg# (56-61). Sr concentration is similar in both youngest lobes (370-430 ppm), which are partly buried by late Holocene lava, but have ~subequal volumes, larger than either of the late high-Sr facies of E and SW lobes. BYB is distinct from other large MLV compositionally-zoned basalts in having little compositional variation in SiO2, despite considerable (although complex) variability in TiO2, FeO* (7.5-10.2%), K2 O (0.2-0.9%), and other elements. Paleomagnetic sampling at 19 sites indicates a correlation between stratigraphic position, chemical composition, and magnetic inclination (I) value. A >10° shift to shallower I values was found, while declination (D) values were essentially constant as the eruption progressed. The farthest-traveled early E lavas have the highest I (78-80°), whereas the SW and near E lavas have I=75-77°. TiO2 contents for these

  19. Volcanic mesocyclones.

    PubMed

    Chakraborty, Pinaki; Gioia, Gustavo; Kieffer, Susan W

    2009-03-26

    A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal 'umbrella'. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date-a 'volcanic mesocyclone'. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts or dust devils, as seen in numerous eruptions, and groups the electric charges about the plume to form the 'lightning sheath' that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes. PMID:19325632

  20. Volcanic Mesocyclones

    NASA Astrophysics Data System (ADS)

    Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2008-12-01

    A strong volcanic plume is customarily modeled as a cylindrical, rising column topped with an axisymmetric, radially spreading umbrella. In this talk we argue that standard models of strong volcanic plumes are missing a crucial component: a "volcanic mesocyclone" that sets the column rotating about its axis. We show theoretically that the volcanic mesocyclone is induced by the entrainment of air into the rising column, which is set rotating about its vertical axis. The umbrella inherits the rotation of the column, and we show that the rotation of the umbrella can be verified directly for the 1991 eruption of Mount Pinatubo and indirectly for several other eruptions. Once rotating, the umbrella becomes destabilized by centrifugal forces and undergoes an hitherto unknown form of the Rayleigh-Taylor instability. As a result, the edge of the umbrella becomes lobate, as has been observed in numerous satellite records. We also show that the volcanic mesocyclone spawns tornadoes in the form of waterspouts or dustdevils, as seen in numerous eruptions, and modifies the distribution of electric charges about the plume, leading to the formation of lightning sheaths, as seen in the recent eruption of Chaitén. The concept of volcanic mesocyclone allows us to give a unified explanation to a broad set of disparate, poorly understood phenomena in volcanic plumes.

  1. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite.

    PubMed

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-01-01

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition. PMID:26883449

  2. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite

    NASA Astrophysics Data System (ADS)

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-02-01

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition.

  3. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite

    PubMed Central

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-01-01

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition. PMID:26883449

  4. A new species of nucleo-cytoplasmic large DNA virus (NCLDV) associated with mortalities in Manitoba lake sturgeon Acipenser fulvescens.

    PubMed

    Clouthier, Sharon C; Vanwalleghem, Elissa; Copeland, Shelagh; Klassen, Cheryl; Hobbs, Gary; Nielsen, Ole; Anderson, Eric D

    2013-02-28

    A newly discovered virus, Namao virus, associated with morbidity and mortality, was detected among juvenile lake sturgeon Acipenser fulvescens being propagated by a conservation stocking program for this endangered species in Manitoba, Canada. The outbreaks resulted in cumulative mortalities of 62 to 99.6% among progeny of wild Winnipeg River or Nelson River lake sturgeon and occurred at 2 geographically separate facilities. Namao virus was detected in almost 94% of the moribund or dead lake sturgeon according to a conventional polymerase chain reaction (cPCR) test that is based upon amplification of a 219 bp fragment of the virus major capsid protein (MCP). The virus itself was large (242 to 282 nm) and icosahedral-shaped with 2 capsids and a condensed bar-shaped core. It was found in virus factories within the host cell cytoplasm and displayed a tropism for the integument. Namao virus caused cellular changes characterized by enlarged eosinophilic epithelial cells in the gills and skin. Samples suspected of containing Namao virus did not have cytopathic effects on primary lake sturgeon or established white sturgeon cell lines. However, viral nucleic acid was detected in the former after prolonged incubation periods. Using primers designed from conserved regions of the MCP from NCLDVs, an estimated 95 to 96% of the Namao virus MCP open reading frame was captured. Phylogenetic analysis using the MCP of Namao virus and 27 other NCLDVs suggested that Namao virus and white sturgeon iridovirus share a common evolutionary past and might be members of the family Mimiviridae or a new, as yet unrecognized, virus family. PMID:23446969

  5. Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon

    NASA Astrophysics Data System (ADS)

    Rudorff, Conrado M.; Melack, John M.; MacIntyre, Sally; Barbosa, CláUdio C. F.; Novo, Evlyn M. L. M.

    2011-12-01

    The inundation status of the Amazon floodplain affects biogenic gas production and evasion. We analyzed spatial variability of dissolved CO2 concentration and gas evasion in a large floodplain lake in the lower reach of the Amazon River in four hydrological phases. We calculated surficial CO2 concentrations from measurements of pH, dissolved inorganic carbon, temperature, and conductivity and used meteorological data to calculate gas transfer coefficients to estimate CO2 evasion. Gas transfer coefficients that take into account both wind and heating and cooling at the lake's surface are on the order of 10 cm hr-1, approximately four times higher than values previously used in regional estimates of gas evasion from lakes on the Amazon floodplain. Supersaturation of CO2 occurred throughout the lake and was higher in the littoral zone and in regions receiving Amazon River inflows. CO2 concentration was reduced in regions with phytoplankton blooms. The range of CO2 concentrations was least at low water, 47 μM to 233 μM, and largest at high water, 1 μM to 656 μM; the average annual value was 125 μM. We estimate mean (±standard deviation) fluxes from open-water in L. Curuai to the atmosphere of 44 ± 15, 348 ± 13, 371 ± 23, and 364 ± 20 mmol CO2 m-2 d-1 during receding, low, rising, and high water, respectively. The error associated with these values reflects, for each hydrological phase, the spatial variation in CO2 concentration in L. Curuai, a likely range in atmospheric CO2 levels and temporal variations in gas transfer coefficient within 10-day periods.

  6. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  7. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake

    PubMed Central

    Craft, James A.; Stanford, Jack A.

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810

  8. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake.

    PubMed

    Ellis, Bonnie K; Craft, James A; Stanford, Jack A

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810

  9. Six-decade change in water chemistry of large freshwater Lake Taihu, China.

    PubMed

    Tao, Yu; Yuan, Zhang; Fengchang, Wu; Wei, Meng

    2013-08-20

    Taihu lake has become a hot spot internationally due to its algae bloom. However, its natural water chemistry (major ions) received little attention though it is equally important for drinking water and aquatic ecology. Using historical data (1950s-2012) we explored the drastic change of Taihu water chemistry over the past six decades and the driving factors. Results show that major ions increased around 2-7-fold and TDS increased nearly 3-fold during the last 60 years. The dominant cation has shifted from Ca(2+) to Na(+), and the current Cl(-) is dominant over HCO3(-), the predominant anion before the 2000s. Analyses show that population increase and human activities were the major driving factors responsible for the drastic change. Whereas the mechanism of increase was different for ions, i.e., Na(+) and Cl(-) increase was directly related to the population increase and sewage discharge in the basin; SO4(2-) was related to atmospheric deposition derived from increasing coal consumption and SO2 emissions; hardness (Ca and Mg) increase was closely linked to the acidic precipitation. No increase trend of HCO3(-) was attributable to frequent outbreaks of algae bloom which consumed HCO3(-). Estimation indicated that sewage discharge in the basin contributed 23% to the lake in terms of Cl(-), exceeding the contribution from rock weathering. Current water chemistry of Taihu lake has become "anthropogenic dominance" from its original rock dominance. PMID:23875770

  10. Within-lake distribution patterns of fish assemblages: the relative roles of spatial, temporal and random environmental factors in assessing fish assemblages using gillnets in a large and shallow temperate lake.

    PubMed

    Specziár, A; György, A I; Erős, T

    2013-03-01

    In this study, the relative role of spatio-temporal factors and associated environmental variables (water transparency and temperature) were quantified in relation to gillnet samples of fishes in a large and shallow lake (Lake Balaton, Hungary). Most of the variance (56·1%) in the relative abundance data (%) was related to the vertical segregation of fishes. This gradient substantially affected the catch per unit effort (CPUE) by number of the dominant species, the surface-oriented bleak Alburnus alburnus and the benthic common bream Abramis brama. It also influenced total CPUE, mean fish mass and species richness and diversity. At the lake level, horizontal habitat heterogeneity (i.e. littoral v. offshore) accounted for only 8·3% of the total variance in relative abundance data, but was important in structuring the CPUE of the ruffe Gymnocephalus cernua and the pikeperch Sander lucioperca. The longitudinal environmental gradient (i.e. lake basin), year and season of sampling, water transparency and temperature had significant effects on relative abundance only at the habitat level, but were also important components of variability of CPUE in some species at the lake level. As sampling schemes need to consider the main gradients in fish assemblage distributions, the use of surface and pelagic gillnets should be more intensively incorporated in the study and monitoring of fish assemblages in shallow lakes and lake habitats. PMID:23464547

  11. The Potential Applications of Real-Time Monitoring of Water Quality in a Large Shallow Lake (Lake Taihu, China) Using a Chromophoric Dissolved Organic Matter Fluorescence Sensor

    PubMed Central

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r2 = 0.80, p < 0.001), fluorescence intensities (Ex./Em. 370/460 nm) (r2 = 0.91, p < 0.001), the fluorescence index (r2 = 0.88, p < 0.001) and the humification index (r2 = 0.78, p < 0.001), suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r2 = 0.68, p < 0.001), indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r2 = 0.83, p < 0.001), TP (r2 = 0.82, p < 0.001) concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor. PMID:24984060

  12. Biogeochemistry of a large and deep tropical lake (Lake Kivu, East Africa: insights from a stable isotope study covering an annual cycle

    NASA Astrophysics Data System (ADS)

    Morana, C.; Darchambeau, F.; Roland, F. A. E.; Borges, A. V.; Muvundja, F.; Kelemen, Z.; Masilya, P.; Descy, J.-P.; Bouillon, S.

    2015-08-01

    During this study, we investigated the seasonal variability of the concentration and the stable isotope composition of several inorganic and organic matter (OM) reservoirs in the large, oligotrophic and deep tropical Lake Kivu (East Africa). Data were acquired over 1 year at a fortnightly temporal resolution. The δ13C signature of the dissolved inorganic carbon (DIC) increased linearly with time during the rainy season, then suddenly decreased during the dry season due to vertical mixing with 13C-depleted DIC waters. The δ13C signature of the particulate organic carbon pool (POC) revealed the presence of a consistently abundant methanotrophic biomass in the oxycline throughout the year. We also noticed a seasonal shift during the dry season toward higher values in the δ15N of particulate nitrogen (PN) in the mixed layer and δ15N-PN was significantly related to the contribution of cyanobacteria to the phytoplankton assemblage, suggesting that rainy season conditions could be more favourable to atmospheric nitrogen-fixing cyanobacteria. Finally, zooplankton were slightly enriched in 13C compared to the autochthonous POC pool, and the δ15N signature of zooplankton followed well the seasonal variability in δ15N-PN, consistently 3.0 ± 1.1 ‰ heavier than the PN pool. Together, δ13C and δ15N analysis suggests that zooplankton directly incorporate algal-derived OM in their biomass, and that they rely almost exclusively on this source of OM throughout the year in general agreement with the very low allochthonous OM inputs from rivers in Lake Kivu.

  13. The potential applications of real-time monitoring of water quality in a large shallow lake (Lake Taihu, China) using a chromophoric dissolved organic matter fluorescence sensor.

    PubMed

    Niu, Cheng; Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Liu, Xiaohan; Qin, Boqiang

    2014-01-01

    This study presents results from field surveys performed over various seasons in a large, eutrophic, shallow lake (Lake Taihu, China) using an in situ chromophoric dissolved organic matter (CDOM) fluorescence sensor as a surrogate for other water quality parameters. These measurements identified highly significant empirical relationships between CDOM concentration measured using the in situ fluorescence sensor and CDOM absorption, fluorescence, dissolved organic carbon (DOC), chemical oxygen demand (COD) and total phosphorus (TP) concentrations. CDOM concentration expressed in quinine sulfate equivalent units, was highly correlated with the CDOM absorption coefficient (r(2) = 0.80, p < 0.001), fluorescence intensities (Ex./Em. 370/460 nm) (r(2) = 0.91, p < 0.001), the fluorescence index (r(2) = 0.88, p < 0.001) and the humification index (r(2) = 0.78, p < 0.001), suggesting that CDOM concentration measured using the in situ fluorescence sensor could act as a substitute for the CDOM absorption coefficient and fluorescence measured in the laboratory. Similarly, CDOM concentration was highly correlated with DOC concentration (r(2) = 0.68, p < 0.001), indicating that in situ CDOM fluorescence sensor measurements could be a proxy for DOC concentration. In addition, significant positive correlations were found between laboratory CDOM absorption coefficients and COD (r(2) = 0.83, p < 0.001), TP (r(2) = 0.82, p < 0.001) concentrations, suggesting a potential further application for the real-time monitoring of water quality using an in situ CDOM fluorescence sensor. PMID:24984060

  14. Large Monsoon Lakes Monitoring in China Exploiting Envisat, TOPEX/Poseidon, JASON and ALTIKA Altimetry Missions: Yearly Variations and Global Trends for Poyang and Dongting Lakes (P.R. China)

    NASA Astrophysics Data System (ADS)

    Daillet, Sylviane; Huber, Claire; Lai, Xijun; Huang, Shifeng; Chen, Xiaoling; Uribe, Carlos; Cretaux, Jean-Francois; Gennero, Marie-Claude; Yesou, Herve

    2014-11-01

    Ability of altimetry to be a powerful tool for inland water surfaces surveys has been demonstrated over large inland seas or large reservoirs. Asian monsoon lakes such as Dongting and Poyang lakes have very large and rapid fluctuations. Levels can vary of more than 5 meters in one month. In this case, monitoring of water height from space is challenging. The goal of this work is to improve the space monitoring of these fluctuations. For this, all the altimeter data of the ENVISAT nominal mission has been processed (from 2002 to 2009) over Dongting and Poyang Lakes. Over Dongting South Lake, TOPEX/Poseidon data from 1992 to 2002 and JASON2 data from 2008 to 2011 have also been analyzed. In addition, data from the recently launched ALTIKA altimeter over Poyang Lake have been analyzed. After discussion of the accuracy of the altimetric solutions, altimetric series are checked against in situ water level measurements. Maximum absolute average difference is 0.89 m. Altimetric series are also checked against space observations of watered surfaces. The correlation is very high with a computed coefficient of determination R2 equal to 0.82. The relationship between water height and water extent, both derived from space sensors, are also analyzed allowing the segmentation of the large Poyang depression into 8 sub basins.

  15. Movements of the thermocline lead to high variability in benthic mixing in the nearshore of a large lake

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mijanur R.; Wells, Mathew G.; Howell, Todd

    2016-04-01

    The thermocline of Lake Ontario is in constant motion, and as it washes back and forth along the sloping lakebed there is a striking asymmetry in near-bed stratification and benthic turbulence between its rise and fall. Detailed field observations of the stratification and water currents from the summers of 2012 and 2013 showed that the thermocline motions had large amplitudes (as high as 15 m) and a dominant period between 16 and 17.5 h, corresponding to a near-inertial internal Poincaré wave. During the falling phase, the warmer down-slope flow was strongly stratified with near-bed water temperature gradients of 1°C m-1. In contrast during the rising phase of colder up-slope flow, there was an unstable stratification in near-bed water and large temperature overturns due to the differential advection of stratified waters, i.e., the shear-driven convective mechanism. Using a Thorpe-scale analysis of overturns, the inferred turbulent diffusivity during the up-slope flow was Kz =5 × 10-4 m2 s-1. In striking contrast during the down-slope flow, the strong stratification had lower turbulent diffusivities of Kz =10-6 m2 s-1. The near bottom region of Lake Ontario within the thermocline swash-zone has intense biological activity and the highest concentrations of invasive dreissenid mussels. We discuss the potential biological implications of the striking variability in benthic mixing and near-bed stratification for nutrient cycling in the Lake Ontario nearshore.

  16. Age estimation of a large bighead carp from Grand Lake, Oklahoma

    USGS Publications Warehouse

    Long, James M.; Nealis, Ashley

    2011-01-01

    On April 23, 2011, a 1356-mm total length (TL), 39.8 kg bighead carp (Hypophthalmichthys nobilis) was brought to the Oklahoma Department of Wildlife Conservation. This specimen is the largest bighead carp recorded from Oklahoma, and it is near the maximum size reported from the United States. This specimen was estimated to be nine years old based on estimates from three different structures (pectoral fin ray, branchiostegal ray, and otolith). The age, together with past Oklahoma records of the species, indicates that there has been multiple introductions or undocumented reproduction of bighead carp in the Grand Lake basin.

  17. Habitat coupling in a large lake system: delivery of an energy subsidy by an offshore planktivore to the nearshore zone of Lake Superior

    USGS Publications Warehouse

    Stockwell, Jason D.; Yule, Daniel L.; Hrabik, Thomas R.; Sierszen, Michael E.; Isaac, Edmund J.

    2014-01-01

    1. We hypothesised that the autumn spawning migration of Lake Superior cisco (Coregonus artedi) provides a resource subsidy, in the form of energy-rich cisco eggs, from the offshore pelagic to the nearshore benthic community over winter, when alternate prey production is likely to be low. 2. We tested this hypothesis using fish and macroinvertebrate surveys, fish population demographics, diet and stable isotope analyses, and bioenergetics modelling. 3. The benthic, congeneric lake whitefish (C. clupeaformis) was a clear beneficiary of cisco spawning. Cisco eggs represented 16% of lake whitefish annual consumption in terms of biomass, but 34% of energy (because of their high energy density: >10 kJ g wet mass−1). Stable isotope analyses were consistent with these results and suggest that other nearshore fish species may also rely on cisco eggs. 4. The lipid content of lake whitefish liver almost doubled from 26 to 49% between November and March, while that of muscle increased from 14 to 26% over the same period, suggesting lake whitefish were building, rather than depleting, lipid reserves during winter. 5. In the other Laurentian Great Lakes, where cisco populations remain very low and rehabilitation efforts are underway, the offshore-to-nearshore ecological link apparent in Lake Superior has been replaced by non-native planktivorous species. These non-native species spawn in spring have smaller eggs and shorter incubation periods. The rehabilitation of cisco in these systems should reinstate the onshore subsidy as it has in Lake Superior.

  18. Historical Response of Ice Cover on Large Lakes of Northern Canada, Derived from Smmr and Ssm/i (1979-2015)

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C. R.

    2015-12-01

    Lakes that form a seasonal ice cover are a significant part of the terrestrial landscape. Ice cover presence/absence (and extent) on large northern lakes influences both regional climate and weather events (e.g. thermal moderation and lake-effect snowfall). Ice phenology parameters such as freeze-onset (FO)/melt-onset (MO), ice-on/ice-off dates, and ice cover duration (ICD) are useful climate data records as they are sensitive to variability and changes in air temperature and, to a lesser extent, on ice snow depth. Given the poor spatial/temporal coverage of ground-based lake ice observations in many northern countries, remote sensing has been assuming a greater role in observing lake ice phenology, and for investigating the response and role of ice cover in lake-atmosphere interactions. Spaceborne passive microwave instruments operating since the late 1970s present an invaluable data source for assessing the response of ice cover on large northern lakes to climate. The primary objective of this study was to develop new ice phenology retrieval algorithms (H-pol) from SSM/I 19.35 GHz brightness temperature measurements (1987-2015), and 18.00 GHz TB data (1979-1987) from SMMR over four large northern lakes in Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL) in the Mackenzie River Basin as well as Lake Nettiling, and Lake Amadjuak on Baffin Island in the eastern Canadian Arctic. The second objective consisted of analyzing trends in the derived ice phenology time series (SMMR and SSM/I combined). From the preliminary analysis (1979-2013), FO and ice-on dates were found to occur later on both GBL (6 d decade-1 and 4 d decade-1) and GSL (4 d decade-1 and 2 d decade-1). Trends in MO are positive (later) by 4 d decade-1 in GSL while ice-off date and ICD show negative trends (earlier ice-off and shorter ICD) of -2 d decade-1 and -3 d decade-1, respectively, for both GBL and GSL.

  19. The reinterpretation of Leone Lake sediments as a pyroclastic surge deposit and its tectonic significance. [volcanics in Cascade Range of Oregon

    NASA Technical Reports Server (NTRS)

    Mcdonough, W. F.; Waibel, A. F.; Gannett, M. W.

    1984-01-01

    The Leone Lake sediments, previously interpreted as being of fluvial and lacustrine origin, are reinterpreted as subaerial pyroclastic surge and palagonite tuff cone deposits. This conclusion is based on bedforms, particle morphology, the primary mineral assemblage, and the nature and mineralogy of the alteration. The principal characteristics of the pyroclastic surge units and palagonite tuffs are examined, and the tectonic significance of the reinterpretation is briefly discussed.

  20. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  1. The Southern Part of the Southern Volcanic Zone (SSVZ; 42-46S) of the Andes: History of Medium and Large Explosive Holocene Eruptions

    NASA Astrophysics Data System (ADS)

    Stern, C. R.; Naranjo, J. A.

    2008-12-01

    Chaitén volcano is one of 13 large volcanic centers, and numerous small cones, comprising the southern part of the Andean Southern Volcanic Zone (SVZ), that results from the subduction of the Nazca plate (at 7.8 cm/yr) between the landward extension of the Chiloé FZ at 42S and the Chile Rise - Trench triple junction at 46S. Chaitén is a rhyolite dome inside a 3 km diameter caldera located 15 km west of the larger Michinmahuida stratovolcano. Other stratovolcanoes in the SSVZ include Yate, Hornopirén, Corcovado, Yanteles, Melimoyu, Mentolat, Cay and Macá. Hudson volcano, the southernmost in the Southern SVZ, is a large 10 km caldera, while Huequi and Hualaihué - Cordón Cabrera are a group of small aligned cinder cones possibly related to a larger eroded volcanic complex. Prior to the May 2008 eruption of Chaitén, the only well documented historic eruptions in this segment of the Andean arc were the explosive eruption of Hudson in August 1991 (Naranjo et al. 1993), and two eruptions of Michinmahuida in 1742 and 1834-35. Tephra deposits provide evidence of 11 prehistoric explosive Holocene eruptions of the southernmost SSVZ Hudson volcano, including two large eruptions near <6700 and <3600 BP (Naranjo and Stern 1998). The 6700 BP eruption produced greater than 18 km3 of andesitic tephra, possibly the largest Holocene eruption in all the southern Andes. Although Hudson is clearly the most active of the Southern SVZ volcanoes in terms of both volume and frequency of explosive eruptions, tephra deposits indicate that seven of the other SSVZ volcanoes, including Chaitén, also have had medium to large Holocene explosive eruptions (Naranjo and Stern 2004). Three of these eruptions were from Corcovado at approximately <9190, <7980 and <6870 BP, one from Yanteles at <9180 BP, two from Melimoyu at <2740 and <1750 BP, one from Mentolat at <6960 and one from Macá at <1540 BP. Two other eruptions, at <6350 and <3820 BP, we interpret as having been produced by

  2. Quantifying temporal and spatial variations in sediment, nitrogen and phosphorus transport in stream inflows to a large eutrophic lake.

    PubMed

    Abell, J M; Hamilton, D P; Rutherford, J C

    2013-06-01

    High-frequency sampling of two major stream inflows to a large eutrophic lake (Lake Rotorua, New Zealand) was conducted to measure inputs of total suspended sediment (TSS), and fractions of nitrogen and phosphorus (P). A total of 17 rain events were sampled, including three during which both streams were simultaneously monitored to quantify how concentration-discharge (Q) relationships varied between catchments during similar hydrological conditions. Dissolved inorganic nitrogen (DIN) concentrations declined slightly during events, reflecting dilution of groundwater inputs by rainfall, whereas dissolved inorganic P (PO4-P) concentrations were variable and unrelated to Q, suggesting dynamic sorptive behaviour. Event loads of total nitrogen (TN) were predominantly DIN, which is available for immediate uptake by primary producers, whereas total phosphorus (TP) loads predominantly comprised particulate P (less labile). Positive correlations between Q and concentrations of TP (and to a lesser extent TN) reflected increased particulate nutrient concentrations at high flows. Consequently, load estimates based on hourly Q during storm events and concentrations of routine monthly samples (mostly base flow) under-estimated TN and TP loads by an average of 19% and 40% respectively. Hysteresis with Q was commonly observed and inclusion of hydrological variables that reflect Q history in regression models improved predictions of TN and TP concentrations. Lorenz curves describing the proportions of cumulative load versus cumulative time quantified temporal inequality in loading. In the two study streams, 50% of estimated two-year loads of TN, TP and TSS were transported in 202-207, 76-126 and 1-8 days respectively. This study quantifies how hydrological and landscape factors can interact to influence pollutant flux at the catchment scale and highlights the importance of including storm transfers in lake loading estimates. PMID:23652422

  3. Characterization of the volcanic and hypabissal rocks of the Paleoproterozoic Iricoumé Group in the Pitinga region and Balbina Lake area, Amazonian Craton, Brazil: Petrographic distinguishing features and emplacement conditions

    NASA Astrophysics Data System (ADS)

    Simões, Matheus Silva; Almeida, Marcelo Esteves; de Souza, Antonio Gilmar Honorato; da Silva, Desaix Paulo Balieiro; Rocha, Paloma Gabriela

    2014-10-01

    The Iricoumé Group (1.897 to 1.875 Ma) is a widespread volcanic sequence in the Amazonian Craton, South American Platform. In the Pitinga region, it consists of acidic to intermediate ignimbrites with cogenetic surge and ash-fall deposits associated to hypabissal and effusive acidic rocks. In the Balbina Lake area it consists of acidic to intermediate effusive rocks, crystal-rich ignimbrites and pumice-rich ignimbrites. Detailed petrographic studies of phenocrysts and crystal fragments provided characterization and distinctive features of pyroclastic, effusive and hypabissal rocks. The phenocrysts of hypabissal rocks were affected by high temperature resorption and flow-related physical fragmentation, the effusive rocks can have a considerable content of crystal fragments due to intense dissolution and fragmentation of the phenocrysts and the pyroclastic rocks crystal fragments are generated mainly by decompression mechanic fragmentation. Dissolution and resorption of quartz and feldspar crystals may have acted at pressure conditions between 500 MPa and 100 MPa, in response to rapid decompression in the magma ascent. The viscosity values of 7,5-10 log η (Pa s) for anhydrous conditions decrease exponentially with estimated water addition. The amount of phenocrysts and their intratelluric character in the volcanic units of Iricoumé Group can be related to a magma chamber with high content of crystals. We suggest that even with the addition of water in the magma, the viscosities had a drastic increase with progressive crystal growth due to the viscosity dependence on the solid fraction and the deposits were generated by the extrusion of viscous lava and pyroclastic flows.

  4. A RESEARCH PLAN FOR THE USE OF THERMAL AVHRR IMAGERY TO STUDY ANNUAL AND SEASONAL MEAN SURFACE TEMPERATURES FOR LARGE LAKES IN NORTH AMERICA

    EPA Science Inventory

    Surface and vertical temperature data will be obtained from several large lakes With surface areas large enough to be effectively sampled with AVHRR imagery. Yearly and seasonal patterns of surface and whole water column thermal values will be compared to estimates of surface tem...

  5. Volcanism in Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Eichelberger, L. G.

    2008-12-01

    The diverse and robust volcanism of Kamchatka challenges our understanding of subduction zone volcanism on both local volcanic and regional tectonic scales (e.g., AGU Geophysics Monograph 172). One might expect the two North Pacific peninsula/ island arc pairs, Kamchatka Peninsula/ Kuriles and Alaska Peninsula/ Aleutians, to be twins, but there are some important differences as well as similarities. In both cases, the continental margin largely controls the position of the volcanic front on the peninsulas and the associated island arcs are pinned to the peninsula tips. The unusually acute Aleutian-Kamchatka subduction cusp may have formed by jamming and outboard (southeastward) jumping of Bering subduction at about 50 Ma to form the Aleutians, with capture of the Bering microplate by the North American plate. Perhaps the acuteness was augmented by convergence of the Emperor Seamount Chain with the junction. Another outboard (eastward) jump may explain the two lines of volcanoes in Kamchatka, which are partially separated by the rift-like Central Kamchatka Depression. This is thought to have occurred at 7 - 10 Ma when 3 seamounts were accreted as capes to the eastern edge of Kamchatka. But other workers, pointing to east-west chemical trends and persistence of volcanism in the inboard Sredinny Range, prefer to postulate two depths of volatile release from the same intact slab. On the Alaska Peninsula, Quaternary volcanic deposits are discontinuous and even famous Mount Katmai is a volumetric dwarf. The opposite is the case in Kamchatka, where pre-volcanic basement under the young eastern volcanic front is sparsely exposed and Holocene stratovolcanoes rise as high as 4,835 m. Calderas are so numerous they sometimes overlap. Some exhibit repeated andesitic stratovolcano - silicic caldera cycles over remarkably short time frames. Remoteness, international politics, and challenging weather have conspired to make Kamchatka's volcanoes less appreciated by non

  6. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  7. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  8. Pigment-based chemotaxonomy--a quick alternative to determine algal assemblages in large shallow eutrophic lake?

    PubMed

    Tamm, Marju; Freiberg, René; Tõnno, Ilmar; Nõges, Peeter; Nõges, Tiina

    2015-01-01

    Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive. PMID:25803038

  9. EPIDEMIOLOGY OF SUBSTANCE-EXPOSED PREGNANCIES AT ONE GREAT LAKES HOSPITAL THAT SERVES A LARGE NUMBER OF AMERICAN INDIANS

    PubMed Central

    Hanson, Jessica D.; Jensen, Jamie L.; Campbell, Kelly; Chaudhary, Kaushal Raj; Puumala, Susan E.

    2016-01-01

    Objective The purpose of this research was to determine the prevalence of substance-exposed pregnancies at a hospital in the Great Lakes region of the U.S. Method Data were collected via retrospective chart abstractions of patients who were seen for delivery at one Great Lakes region hospital during a 1-year period who were given at least one of the International Classification of Diseases codes related to substance use. Results A total of 342 medical records were included in the analysis, and, while much race/ethnicity data were missing, a large percentage of those in our analysis identified as American Indian. The prevalence of substance-exposed pregnancies at this hospital during a 1-year period was 34.5%. The majority (84.8%) were tobacco users, and many were found to have multiple substance exposures. Also, 48.5% were found to have a mental health diagnosis in addition to substance use. Conclusions Data from this project can be used in prevention efforts, including preconception care for women at risk for substance use and mental health issues. PMID:27536897

  10. The importance of large scale flood over the regular sedimentation in delta development: A case study involving Wax lake delta

    NASA Astrophysics Data System (ADS)

    Ullah, M. S.; Kolker, A.; Li, C.

    2011-12-01

    It has been widely hypothesized that catastrophic floods can play an important role in the development of a young and growing delta. This study examines the nature and rate of sediment deposition in the Wax lake delta in the Atchafalaya Basin of Louisiana during the Mississippi River flood of from April, 2011 to June, 2011. We hypothesize that the deposition rate that results from large scales floods in the Mississippi/Atchafalaya river outlets have a greater impact in the Wax lake delta development than the deposition rates that result from typical yearly sedimentation. Preliminary results from the cosmogenic 7Be counts from sediment collected from the delta show distinct regional and local sediment deposition patterns during the flood, and rates that are significantly higher when compared to the sedimentation rate of the last few decades. This application of cosmogenic 7Be to distinguish the sediment deposition rate provides a first-order understanding of the deltaic evolution and stratigraphic sequence development in a high-discharge setting.

  11. Coupled Uranium-Series and (U-Th)/He Zircon Geochronology of the Emmons Lake Volcanic Center (ELVC): Dating the Record of Voluminous Tephra Production in Quaternary Eastern-Beringia.

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Vazquez, J. A.; Grove, M. J.; Coble, M. A.; Hourigan, J. K.; Waythomas, C. F.; Coombs, M. L.; Wallace, K.

    2015-12-01

    Tephrochronology is an invaluable tool used to date, link, and reconstruct paleo-environments, climates, and landscapes. Single tephra layers represent isochronous markers across broad regions, thus accurate and precise temporal constraints on the timing of eruption are critical to their utility. If a U-bearing accessory phase such as zircon is present, U/Pb, U-series, and (U-Th)/He geochronometers may be selectively applied. Application of multiple geochronometers to the same sample corroborates accuracy, can potentially resolve mineral crystallization and volcano eruption dates, and can define an eruption age from inherited crystals, assuming complete thermal resetting of the (U-Th)/He system upon crystal incorporation into magma prior to eruption. The Emmons Lake Volcanic Center is one of the largest Quaternary volcanic systems in the Aleutian volcanic arc, and is characterized by at least two major caldera-forming eruptions. C1 has been dated by 40Ar/39Ar at ~238 ka, and was originally proposed as the source for the Old Crow tephra, the largest and most widespread Quaternary tephra in eastern Beringia, and a critical time horizon for reconstruction of Pleistocene paleo-environment and climate. C2 produced the widespread Dawson tephra, and has been dated indirectly by radiocarbon at ~27 ka. We present in-situ grain-surface ion microprobe (SHRIMP-RG) 238U-230Th and/or U/Pb data on a suite of autocrysitc zircon grains from a C1 sample, the Old Crow, and from the Dawson. On these same zircon crystals, we utilize a noble gas sector mass spectrometer to make sensitive, low blank, single crystal 4He measurements. With these datasets, we investigate the temporal and potential genetic relationship between C1 and Old Crow, and place absolute radiogenic time constraints on the C2 eruption. Coupled 238U-230Th and sector field (U-Th)/He application shows significant promise for generating accurate, precise dates for Quaternary tephra bearing a U-rich accessory mineral phase.

  12. Hydrogeochemical features of Lake Ngozi (SW Tanzania)

    NASA Astrophysics Data System (ADS)

    Delalande-Le Mouëllic, Manuëlla; Gherardi, Fabrizio; Williamson, David; Kajula, Stephen; Kraml, Michael; Noret, Aurélie; Abdallah, Issah; Mwandapile, Ezekiel; Massault, Marc; Majule, Amos; Bergonzini, Laurent

    2015-03-01

    Located on the triple rift junction hosting the Karonga-Usungu depression in Tanzania, Lake Ngozi is the second largest crater lake of the East African Rift. The lake has a number of peculiar features: it has a near constant water level, no permanent surface inlets and outlets, it is vertically well-mixed, with homogeneous distribution of temperature and chemical composition, and it is characterised by near neutral to slightly acid Na-Cl waters of comparatively high salinity and high P-CO2. Based on the different chemical signature of surface and ground waters (low-Cl type) from lake waters, mass balance methods have been applied to investigate lake dynamics. Water enters the lake mainly by precipitation and groundwater inflow, and leaves by groundwater outflow and evaporation. A large groundwater outflow of 2.4 m yr-1 has been estimated. The high salinity, Na-Cl signature of Lake Ngozi waters, together with 3He/4He ratios measured on dissolved gases (between 7 and 8.3 Ra) and high-PCO2 values estimated all along the water vertical column indicate the inflow of deep-seated fluids, likely magmatic in origin, into the lake. The existence of a hydrothermal system possibly at 250 °C in the root of the volcanic edifice is also hypothesised on the basis of solute geothermometry. Despite the current lack of vertical stratification, the lake is suspected to act as condenser for CO2 and other gases of deep magmatic origin, and should be then further monitored for the risk of limnic eruptions as well as for environmental and climatic concerns.

  13. Recurrence rates of volcanism in basaltic volcanic fields: An example from the Springerville volcanic field, Arizona

    SciTech Connect

    Condit, C.D.; Connor, C.B.

    1996-10-01

    A spatio-temporal near-neighbor model is used to identify and map variations in the recurrence rate of volcanism in the Springerville volcanic field, Arizona, a large field on the Colorado Plateau boundary. Detailed mapping of individual lava flows and their associated vents, together with radiometric and paleomagnetic dating, demonstrates that 366 volcanic events have formed the Springerville volcanic field. A near-neighbor spatio-temporal recurrence-rate model using seven near-neighbor volcanoes and a 0.5 m.y. time window reveals that (1) areas of waxing and waning magmatism in the Springerville volcanic field are much more localized and (2) volcanic activity within these areas is much more intense than implied by field-wide temporal trends. Because volcanic activity is spatially and temporally clustered, forecasting subsequent activity is more successful if the spatio-temporal recurrence-rate model is used, rather than the average recurrence rates. This success indicates that spatio-temporal recurrence-rate models are useful tools for the quantification of long-term volcanic hazards in basaltic volcanic fields. 61 refs., 13 figs., 2 tabs.

  14. Stress and mass changes at a "wet" volcano: Example during the 2011-2012 volcanic unrest at Kawah Ijen volcano (Indonesia)

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Lecocq, Thomas; Syahbana, Devy K.; McCausland, Wendy; Watlet, Arnaud; Camelbeeck, Thierry; Bernard, Alain; Surono

    2015-07-01

    Since 2010, Kawah Ijen volcano has been equipped with seismometers, and its extremely acid volcanic lake has been monitored using temperature and leveling sensors, providing unprecedented time resolution of multiparametric data for an acidic volcanic lake. The nature of stress and mass changes of the volcano is studied by combining seismic analyses and volcanic lake measurements that were made during the strongest unrest ever recorded by the seismic network at Kawah Ijen. The distal VT earthquake swarm that occurred in May 2011 was the precursor of volcanic unrest in October 2011 that caused an increase in shallow earthquakes. The proximal VT earthquakes opened pathways for fluids to ascend by increasing the permeability of the rock matrix. The following months were characterized by two periods of strong heat and mass discharge into the lake and by the initiation of monochromatic tremor (MT) activity when steam/gases interacted with shallow portions of the aquifer. Significant seismic velocity variations, concurrent with water level rises in which water contained a large amount of steam/gas, were associated with the crises, that caused an although the unrest did not affect the shallow hydrothermal system at a large scale. Whereas shallow VT earthquakes likely reflect a magmatic intrusion, MT and relative seismic velocity changes are clearly associated with shallow hydrothermal processes. These results will facilitate the forecast of future crises.

  15. Deposition of the 2011-2012 Cordón Caulle tephra (Chile, 40°S) in lake sediments: Implications for tephrochronology and volcanology

    NASA Astrophysics Data System (ADS)

    Bertrand, Sébastien; Daga, Romina; Bedert, Robin; Fontijn, Karen

    2014-12-01

    Tephras preserved in lake sediments are commonly used to synchronize sedimentary archives of climate and environmental change and to correlate them with terrestrial environments. They also provide opportunities to reconstruct volcanic explosive activity, e.g., eruption frequency and tephra dispersal. Although sedimentary processes may affect the record of tephras in lakes, lake sediments are generally considered as one of the best archives of tephra stratigraphy. The 2011-2012 eruption of Cordón Caulle volcano (Chile, 40°S) offered an ideal opportunity to study the processes affecting tephra deposition in lakes. Although the prevailing westerlies transported the erupted pyroclastic material away from nearby Puyehue Lake, the tephra was identified within this relatively large lake with a thickness ranging from 1 to >10 cm. This is in contrast with smaller lakes, where tephra thickness was in agreement with ashfall distribution maps. Geomorphological observations and sedimentological analyses provide evidence that the tephra deposited in Puyehue Lake entirely consists of material reworked from the upper watershed, transported by rivers, and distributed by lake currents according to particle size and density. Our results have important implications for tephrochronology and volcanology. They suggest that (1) lakes do not act as passive tephra traps; (2) lakes with large watersheds record more eruptions than smaller lakes, which only register direct ashfalls, affecting conclusions regarding the recurrence of volcanic eruptions; and (3) using lakes with large watersheds for isopach mapping systematically leads to an overestimation of erupted tephra volumes. Smaller lakes with limited drainage basins are generally better suited for volcanological studies.

  16. Tools and techniques for developing tephra stratigraphies in lake cores: A case study from the basaltic Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, Jenni L.; Millet, Marc-Alban; Timm, Christian; Wilson, Colin J. N.; Leonard, Graham S.; Palin, J. Michael; Neil, Helen

    2015-09-01

    Probabilistic hazard forecasting for a volcanic region relies on understanding and reconstructing the eruptive record (derived potentially from proximal as well as distal volcanoes). Tephrostratigraphy is commonly used as a reconstructive tool by cross-correlating tephra deposits to create a stratigraphic framework that can be used to assess magnitude-frequency relationships for eruptive histories. When applied to widespread rhyolitic deposits, tephra identifications and correlations have been successful; however, the identification and correlation of basaltic tephras are more problematic. Here, using tephras in drill cores from six maars in the Auckland Volcanic Field (AVF), New Zealand, we show how X-ray density scanning coupled with magnetic susceptibility analysis can be used to accurately and reliably identify basaltic glass shard-bearing horizons in lacustrine sediments and which, when combined with the major and trace element signatures of the tephras, can be used to distinguish primary from reworked layers. After reliably identifying primary vs. reworked basaltic horizons within the cores, we detail an improved method for cross-core correlation based on stratigraphy and geochemical fingerprinting. We present major and trace element data for individual glass shards from 57 separate basaltic horizons identified within the cores. Our results suggest that in cases where major element compositions (SiO2, CaO, Al2O3, FeO, MgO) do not provide unambiguous correlations, trace elements (e.g. La, Gd, Yb, Zr, Nb, Nd) and trace element ratios (e.g. [La/Yb]N, [Gd/Yb]N, [Zr/Yb]N) are successful in improving the compositional distinction between the AVF basaltic tephra horizons, thereby allowing an improved eruptive history of the AVF to be reconstructed.

  17. Stable isotope evaluation of population- and individual-level diet variability in a large, oligotrophic lake with non-native lake trout

    USGS Publications Warehouse

    Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.

    2016-01-01

    Non-native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake troutSalvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic-origin carbon did not overlap with those using more littoral-origin carbon. Species using more littoral-origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non-native species.

  18. Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: Dimensions, emplacement and post-emplacement characteristics

    USGS Publications Warehouse

    Huff, W.D.; Kolata, Dennis R.; Bergstrom, Stig M.; Zhang, Y.-S.

    1996-01-01

    Middle Ordovician K-bentonites represent some of the largest known fallout ash deposits in the Phanerozoic Era. They cover minimally 2.2 ?? 106 km2 in eastern North America and 6.9 ?? 105 km2 in northwestern Europe, and represents the coeval accumulation of plinian and co-ignimbrite ash on both Laurentia and Baltica during the closure of the Iapetus Ocean. The three most widespread beds are the Deicke and Millbrig K-bentonites in North America and the Kinnekulle K-bentonite in northwestern Europe. The vents were located near the Laurentian margin of Iapetus on an arc or microplate undergoing collision with Laurentia. The volume of ash preserved in the stratigraphic record converted to dense rock equivalent (DRE) of silicic magma is minimally estimated to be 943 km3 for the Deicke, 1509 km3 for the Millbrig and 972 km3 for the Kinnekulle. The Millbrig and Kinnekulle beds are coeval and possibly equivalent, yielding a combined DRE volume of nearly 2500 km3. Some unknown but probably large amount of additional ash fell into oceanic regions of the Iapetus, but these areas became subducted and the ash is not preserved in the geologic record. The symmetry of the thickness contours is suggestive that one or more ash clouds interacting with equatorial stratospheric and tropospheric wind patterns dispersed pyroclastic material to both the northwest and southeast in terms of Ordovician paleogeography. Based on grain size measurements and thickness/area1/2 plots we conclude the three beds were each formed from co-ignimbrite or possibly phreatoplinian eruption columns. Analyses of melt inclusions in primary quartz crystals indicate the parental magma contained approximately 4% dissolved water at the time of the eruption. This water provided the explosive energy during the initial gas thrust phase. The implied fragmentation pressure on the magma would have reduced much of the ejecta to small particles, forming a deposit composed largely of single crystals and glassy dust

  19. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  20. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  1. Structure of aquatic vegetation of a large lake, western border of the Brazilian Pantanal.

    PubMed

    Cunha, N L; Delatorre, M; Rodrigues, R B; Vidotto, C; Gonçalves, F; Scremin-Dias, E; Damasceno-Júnior, G; Pott, V J; Pott, A

    2012-08-01

    Studies on Neotropical aquatic macrophytes have increased in recent decades, however species richness in wetlands of South America is far from being fully known. In addition, studies having an ecological approach are scarce in the Pantanal. Rapid assessments are essential for gaining knowledge of the biodiversity in the region. This study was performed in five sites of the Baía do Castelo, the western border of the Brazilian Pantanal, which included wild-rice patches, floating mats and floating meadows. At each site, plots of 0.5 × 0.5 m were set (n = 137), species of aquatic macrophytes were identified, their coverage was measured and the plot depth was estimated. We recorded 57 species in 26 families, of which Poaceae was the richest. The most frequent and abundant species was Commelina schomburgkiana; the second most frequent was Oryza latifolia,followed by Leersia hexandra, Enydra radicans and Pityrogramma calomelanos. The latter species was second in cover, followed by Pontederia rotundifolia, Eichhornia azurea, E. crassipes and Enydra radicans. These five species and C. schomburgkiana (the most abundant) together represent more than half of the coverage on the lake. Pontederia rotundifolia, Ludwigia helminthorrhiza, Pistia stratiotes, E. azurea, E. crassipes, Enydra radicans and Panicum elephantipes were strongly associated with deeper areas, while Oryza latifolia, Leersia hexandra and Salvinia auriculata were prevalent in shallow areas. Pityrogramma calomelanos, Ludwigia nervosa, Ipomoea alba, Cayaponia podantha, Polygonum acuminatum, Rhynchanthera novemnervia and Ludwigia leptocarpa were highly correlated with floating meadows. The structure of the habitat, natural dynamics and zonation of aquatic vegetation in the Baía do Castelo seems to be influenced by a variation in water levels, which promotes spatial segregation, most likely due to competition and/habitat preference. PMID:22990823

  2. Hf Isotopic Variations in Volcanic Rocks From the Caribbean Large Igneous Province and Cocos Ridge (Central East Pacific)

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hanan, B. B.; Blichert-Toft, J.; Hoernle, K. A.; Hauff, F.; Werner, R.; Kerr, A.

    2001-12-01

    The Caribbean Large Igneous Province (CLIP) consists of the Caribbean oceanic plateau and associated magmatic terranes along the Pacific coast of central America and western Colombia and is interpreted to mark the initiation of the Galapagos hotspot 75-95 Ma ago. New 176Hf/177Hf data show: 1) a depleted end-member (176Hf/177Hfin= 0.28324) represented by lavas from DSDP site 152 ( ~75 Ma) in the central Caribbean, lavas from the young Osa Peninsula ( ~62 Ma) and basalts from the Cocos and Carnegie Ridges portions of the Miocene Galapagos hotspot track, and 2) an enriched end-member (176Hf/177Hfin = 0.28298) represented by lavas from DSDP site 151 and by the younger Quepos terrane of Costa Rica ( ~59 Ma). Our results support previous interpretations, based on trace elements and Sr, Nd and Pb isotopic ratios (Hauff et al., 2000) that infer mixing between the regular depleted MORB mantle source, or alternatively a depleted plume component derived from recycled oceanic crust, and an enriched Galapagos plume source. Lavas from the Caribbean Island of Curacao and western Colombia have elevated epsilon Hf for a given epsilon Nd relative to the Nd-Hf mantle array, suggesting influence of a pelagic sediment component. Similar Nd-Hf isotope compositions are observed in lavas from the southern Galapagos island of Floreana (Blichert-Toft and White, 2001). High epsilon Hf relative to the mantle array is also observed in a lava from the Malpelo Ridge, part of the Galapagos hotspot track, ~200 km off the coast of Panama. In addition to the regular depleted MORB and enriched plume source, a crustal source component is required to account for the spatial and temporal isotopic variations in the magmatic products of the Galapagos plume. F. Hauff, K. Hoernle, G. Tilton, D.W. Graham and A.C. Kerr (2000) EPSL 174, p.247-263 J. Blichert-Toft and W.M. White (2001) G-cubed, in press

  3. Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota—Effects of a changing climate

    USGS Publications Warehouse

    Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.

    2015-01-01

    The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.

  4. Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): Effects of weathering and mineralogical sorting

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.

    2004-01-01

    Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.

  5. Hydrological Disturbances Caused By Explosive Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Major, J. J.; Pierson, T. C.; Spicer, K. R.; Mark, L.; Yamakoshi, T.; Suwa, H.

    2014-12-01

    Explosive eruptions can drastically alter hydrogeomorphic regimes of drainage basins. The extent and degree of eruption-induced alteration scale with eruption magnitude, volcanic process, and basin proximity to a volcano. The most important effects of explosive eruptions on basin hydrology are ones that alter production and routing of runoff: (a) vegetation damage, which decreases (or eliminates) interception and evapotranspiration (ET); (b) reduction of surface infiltration owing to tephra deposition, which increases overland flow; (c) alteration of stream-channel hydraulics, which enables efficient transport of water and sediment; and (d) alterations to drainage networks, which accelerate or delay geomorphic response. In combination, these effects alter flood magnitude and frequency and rates of sediment transport. Vegetation loss allows more water to fall directly to the ground surface and reduces ET, which affects soil moisture, water storage and runoff pathways. Tephra fall, which typically paves the landscape with nearly impervious sediment, can reduce infiltration by as much as 2 orders of magnitude compared to pre-eruption rates and can increase direct runoff from near zero to as much as 90%. Even very thin layers (2-5 mm) of extremely fine tephra can increase runoff and decrease lag times between peak rainfall and peak runoff. Volcanic sedimentation in river valleys can increase channel gradient, reduce planform resistance, and smooth channel hydraulics, allowing for more efficient flow routing and producing larger, flashier flows. Hydrological effects of eruptive disturbance can linger for decades, but the most extreme effects typically last but a few years. However, lake formation through tributary blockage by thick deposits can delay response and extend the hydrologic legacy of eruptive disturbances. Failures of lake-impounding dams can produce large floods that renew downstream channel instability and rejuvenate headwater erosion.

  6. Environmental and ecological conditions surrounding the production of large year classes of walleye (Sander vitreus) in Saginaw Bay, Lake Huron

    USGS Publications Warehouse

    Fielder, D.G.; Schaeffer, J.S.; Thomas, M.V.

    2007-01-01

    The Saginaw Bay walleye population (Sander vitreus) has not fully recovered from a collapse that began in the 1940s and has been dependent on stocking with only limited natural reproduction. Beginning in 2003, and through at least 2005, reproductive success of walleye surged to unprecedented levels. The increase was concurrent with ecological changes in Lake Huron and we sought to quantitatively model which factors most influenced this new dynamic. We developed Ricker stock-recruitment models for both wild and stock fish and evaluated them with second-order Akaike's information criterion to find the best model. Independent variables included adult alewife (Alosa pseudoharengus) abundance, spring water temperatures, chlorophyll a levels and total phosphorus levels. In all, 14 models were evaluated for production of wild age-0 walleyes and eight models for stocked age-0 walleyes. For wild walleyes, adult alewife abundance was the dominant factor, accounting for 58% of the variability in age-0 abundance. Production of wild age-0 fish increased when adult alewives were scarce. The only other plausible factor was spring water temperature. Predictably, alewife abundance was not important to stocked fish; instead temperature and adult walleye abundance were more significant variables. The surge in reproductive success for walleyes during 2003–2005 was most likely due to large declines in adult alewives in Lake Huron. While relatively strong year classes (age-1 and up) have been produced as a result of increased age-0 production during 2003–2005, the overall magnitude has not been as great as the initial age-0 abundance originally suggested. It appears that over-winter mortality is higher than in the past and may stem from higher predation or slower growth (lower condition for enduring winter thermal stress). From this it appears that low alewife abundance does not assure strong walleye year classes in Saginaw Bay but may be a prerequisite for them.

  7. The Control of an Invasive Bivalve, Corbicula fluminea, Using Gas Impermeable Benthic Barriers in a Large Natural Lake

    NASA Astrophysics Data System (ADS)

    Wittmann, Marion E.; Chandra, Sudeep; Reuter, John E.; Schladow, S. Geoffrey; Allen, Brant C.; Webb, Katie J.

    2012-06-01

    Anoxia can restrict species establishment in aquatic systems and the artificial promotion of these conditions can provide an effective control strategy for invasive molluscs. Low abundances (2-20 m-2) of the nonnative bivalve, Asian clam ( Corbicula fluminea), were first recorded in Lake Tahoe, CA-NV in 2002 and by 2010 nuisance-level population densities (>10,000 m-2) were observed. A non-chemical control method using gas impermeable benthic barriers to reduce dissolved oxygen (DO) concentrations available to C. fluminea was tested in this ultra-oligotrophic natural lake. In 2009, the impact of ethylene propylene diene monomer (EPDM) sheets (9 m2, n = 6) on C. fluminea beds was tested on 1-7 day intervals over a 56 day period (August-September). At an average water temperature of 18 °C, DO concentrations under these small barriers were reduced to zero after 72 h resulting in 100 % C. fluminea mortality after 28 days. In 2010, a large EPDM barrier (1,950 m2) was applied to C. fluminea populations for 120 days (July-November). C. fluminea abundances were reduced over 98 % after barrier removal, and remained significantly reduced (>90 %) 1 year later. Non-target benthic macroinvertebrate abundances were also reduced, with variable taxon-specific recolonization rates. High C. fluminea abundance under anoxic conditions increased the release of ammonium and soluble reactive phosphorus from the sediment substrate; but levels of unionized ammonia were low at 0.004-0.005 mg L-1. Prolonged exposure to anoxia using benthic barriers can provide an effective short term control strategy for C. fluminea.

  8. The control of an invasive bivalve, Corbicula fluminea, using gas impermeable benthic barriers in a large natural lake.

    PubMed

    Wittmann, Marion E; Chandra, Sudeep; Reuter, John E; Schladow, S Geoffrey; Allen, Brant C; Webb, Katie J

    2012-06-01

    Anoxia can restrict species establishment in aquatic systems and the artificial promotion of these conditions can provide an effective control strategy for invasive molluscs. Low abundances (2-20 m(-2)) of the nonnative bivalve, Asian clam (Corbicula fluminea), were first recorded in Lake Tahoe, CA-NV in 2002 and by 2010 nuisance-level population densities (>10,000 m(-2)) were observed. A non-chemical control method using gas impermeable benthic barriers to reduce dissolved oxygen (DO) concentrations available to C. fluminea was tested in this ultra-oligotrophic natural lake. In 2009, the impact of ethylene propylene diene monomer (EPDM) sheets (9 m(2), n = 6) on C. fluminea beds was tested on 1-7 day intervals over a 56 day period (August-September). At an average water temperature of 18 °C, DO concentrations under these small barriers were reduced to zero after 72 h resulting in 100 % C. fluminea mortality after 28 days. In 2010, a large EPDM barrier (1,950 m(2)) was applied to C. fluminea populations for 120 days (July-November). C. fluminea abundances were reduced over 98 % after barrier removal, and remained significantly reduced (>90 %) 1 year later. Non-target benthic macroinvertebrate abundances were also reduced, with variable taxon-specific recolonization rates. High C. fluminea abundance under anoxic conditions increased the release of ammonium and soluble reactive phosphorus from the sediment substrate; but levels of unionized ammonia were low at 0.004-0.005 mg L(-1). Prolonged exposure to anoxia using benthic barriers can provide an effective short term control strategy for C. fluminea. PMID:22476670

  9. Intense magmatic degassing through the lake of Copahue volcano, 2013-2014

    NASA Astrophysics Data System (ADS)

    Tamburello, G.; Agusto, M.; Caselli, A.; Tassi, F.; Vaselli, O.; Calabrese, S.; Rouwet, D.; Capaccioni, B.; Di Napoli, R.; Cardellini, C.; Chiodini, G.; Bitetto, M.; Brusca, L.; Bellomo, S.; Aiuppa, A.

    2015-09-01

    Here we report on the first assessment of volatile fluxes from the hyperacid crater lake hosted within the summit crater of Copahue, a very active volcano on the Argentina-Chile border. Our observations were performed using a variety of in situ and remote sensing techniques during field campaigns in March 2013, when the crater hosted an active fumarole field, and in March 2014, when an acidic volcanic lake covered the fumarole field. In the latter campaign, we found that 566 to 1373 t d-1 of SO2 were being emitted from the lake in a plume that appeared largely invisible. This, combined with our derived bulk plume composition, was converted into flux of other volcanic species (H2O ~ 10989 t d-1, CO2 ~ 638 t d-1, HCl ~ 66 t d-1, H2 ~ 3.3 t d-1, and HBr ~ 0.05 t d-1). These levels of degassing, comparable to those seen at many open-vent degassing arc volcanoes, were surprisingly high for a volcano hosting a crater lake. Copahue's unusual degassing regime was also confirmed by the chemical composition of the plume that, although issuing from a hot (65°C) lake, preserves a close-to-magmatic signature. EQ3/6 models of gas-water-rock interaction in the lake were able to match observed compositions and demonstrated that magmatic gases emitted to the atmosphere were virtually unaffected by scrubbing of soluble (S and Cl) species. Finally, the derived large H2O flux (10,988 t d-1) suggested a mechanism in which magmatic gas stripping drove enhanced lake water evaporation, a process likely common to many degassing volcanic lakes worldwide.

  10. Distribution and Fate of Black Carbon Nanoparticles from Regional Urban Pollution and Wildfire at a Large Subalpine Lake in the Western United States

    NASA Astrophysics Data System (ADS)

    Bisiaux, M. M.; Heyvaert, A. C.; Edwards, R.

    2012-04-01

    Emitted to the atmosphere through fire and fossil fuel combustion, refractory black carbon nanoparticles (rBC) impact human health, climate, atmospheric chemistry, and the carbon cycle. Eventually these particles enter aquatic environments, where their distribution, fate and association with other pollutants are still poorly characterized. This study presents results from an evaluation of rBC in the waters of oligotrophic Lake Tahoe and its watershed in the western United States. The study period included a large wildfire within the Tahoe basin, seasonal snowmelt, and a number of storm events that resulted in pulsed urban runoff into the lake with rBC concentrations up to four orders of magnitude higher than mid-lake concentrations. The results show that elevated rBC concentrations from wildfire and urban runoff were rapidly attenuated in the lake, suggesting unexpected aggregation or degradation of the particles that prevent rBC concentrations from building up in the water of this lake, renowned for its clarity. The rBC concentrations were also measured in sediment cores from Lake Tahoe to evaluate the sediment archive as a potential combustion record. The evidence suggests that rBC is efficiently transferred to these sediments, which preserve a local-to-regional scale history of rBC emissions, as revealed by comparison with other pollutant records in the sediment. Rapid removal of rBC soon after entry into the lake has implications for transport of rBC in the global aquatic environment and flux of rBC from continents to the global ocean.

  11. Coping With Lake Kivu, East Africa

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas C.; Scholz, Christopher A.

    2010-07-01

    Workshop on Tropical Rift Lake Systems: Integrated Volcanogenic, Tectonic, Biogeochemical, and Geohazard Assessment of Lake Kivu; Gisenyi, Rwanda, 13-15 January 2010; Situated in the volcanic highlands of the East African Rift Valley's western branch, Lake Kivu contains one of the most unusual and fascinating aquatic ecosystems on the planet. Bottom waters in the 480-meter-deep lake are warmer and saltier than its surface waters. The concentrations of dissolved carbon dioxide and methane are so high in the deep water that catastrophic overturn, an abrupt upwelling of deep water and gas driven by the buoyancy of expanding gas bubbles as they rise from the depths, could well happen in the coming century. Were this to occur, human fatalities would likely number in the hundreds of thousands—a disaster similar to what occurred when Lake Nyos (Cameroon) in 1986 emitted a large amount of carbon dioxide, causing hundreds of local residents to suffocate—but with orders-of-magnitude more gas release.

  12. Numerical model of crater lake eruptions

    NASA Astrophysics Data System (ADS)

    Morrissey, M.; Gisler, G.; Weaver, R.; Gittings, M.

    2010-12-01

    We present results from a numerical investigation of subaqueous eruptions involving superheated steam released through a lake mimicking the volcanic setting at Mt. Ruapehu. The simulations were conducted using an adaptive mesh, multi-material, hydrodynamics code with thermal conduction SAGE, (Simple Adaptive Grid Eulerian). Parameters investigated include eruption pressure, lake level and mass of superheated vapor. The simulations produced a spectrum of eruption styles from vapor cavities to radial jets that resulted in hazards that ranged from small-scale waves to high amplitude surges that reached and cascaded over the edge of the crater rim. There was an overall tendency for lake surface activity to increase (including wave amplitude) with increasing mass of superheated vapor and eruption pressure. Surface waves were induced by the formation and collapse of a gas cavity. The collapse of the cavity is considered to play a major role in the characteristic features observed during a subaqueous eruption. The additional mass of superheated vapor produced a larger cavity that displaced a larger area of the lake surface resulting in fast moving surges upon the collapse of the cavity. High lake levels (>90 m) appear to suppress the development of explosive jetting activity when eruption pressures are <10 MPa. At very large eruption pressures (>10 MPa), vertical jets and radial ejections of steam and water can occur in water depths >90 m. Less explosive eruption styles can produce hazardous events such as lahars by the outward movement of surface waves over the crater rim.

  13. Volcanic Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  14. Volcanic effects on climate

    NASA Technical Reports Server (NTRS)

    Robock, Alan

    1991-01-01

    Volcanic eruptions which inject large amounts of sulfur-rich gas into the stratosphere produce dust veils which last years and cool the earth's surface. At the same time, these dust veils absorb enough solar radiation to warm the stratosphere. Since these temperature changes at the earth's surface and in the stratosphere are both in the opposite direction of hypothesized effects from greenhouse gases, they act to delay and mask the detection of greenhouse effects on the climate system. Tantalizing recent research results have suggested regional effects of volcanic eruptions, including effects on El Nino/Southern Oscillation (ENSO). In addition, a large portion of the global climate change of the past 100 years may be due to the effects of volcanoes, but a definite answer is not yet clear. While effects of several years were demonstrated with both data studies and numerical models, long-term effects, while found in climate model calculations, await confirmation with more realistic models. Extremely large explosive prehistoric eruptions may have produced severe weather and climate effects, sometimes called a 'volcanic winter'. Complete understanding of the above effects of volcanoes is hampered by inadequacies of data sets on volcanic dust veils and on climate change. Space observations can play an increasingly important role in an observing program in the future. The effects of volcanoes are not adequately separated from ENSO events, and climate modeling of the effects of volcanoes is in its infancy. Specific suggestions are made for future work to improve the knowledge of this important component of the climate system.

  15. Integration of Hydrologic, Sediment Yield, Sediment Delivery, Hydrodynamic and Sediment Transport Models in Large Great Lakes Watersheds

    NASA Astrophysics Data System (ADS)

    Brunton, A.; Nairn, R.; Selegean, J.

    2004-12-01

    Computational tools to evaluate surface and subsurface water flow and sediment transport are commonly used by environmental and engineering practitioners. However, different parts of the hydrologic system (e.g. hillslope overland flow, groundwater, river channel flow) are often treated separately and at disparate spatial and temporal scales. Overland flow models typically have no explicit channel representation and vice-versa, making integrated assessments of water and sediment delivery from catchment to channel difficult. This is problematic when appraising the influence of land use change (urbanization, modification of riparian buffer strips, changes in tillage and forestry practices etc.) on catchment sediment movement and river flood hydrographs. A 'budgetary' approach was taken to defining the sources and sinks of water and sediment within large catchments in the Great Lakes area under a variety of land uses. These budgets were derived from existing datasets including digital elevation models, river flow and sediment load records, and dam sedimentation surveys. Numerical models of watershed hydrology and sediment delivery, 2-D river flow and sediment transport were constructed to develop a general understanding of the hydrologic and geomorphic behavior of these systems, and to predict the effects of changing land use and riparian buffer zone modification. Models were calibrated against river flow and sediment transport records, reservoir sedimentation surveys and harbor dredging records. The challenges and benefits of combining these diverse approaches and their implementation in best management practices are discussed.

  16. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  17. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    PubMed Central

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 0.036 °C yr−1 (***P < 0.001) during summer. PMID:27502177

  18. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake.

    PubMed

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-01-01

    Availability of remotely sensed multi-spectral images since the 1980's, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr(-1) (*P < 0.05), and of 0.036 °C yr(-1) (***P < 0.001) during summer. PMID:27502177

  19. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Salmaso, Nico; Adrian, Rita; Neteler, Markus

    2016-08-01

    Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of voluminous data could help researchers to study the changing dynamics of bio-physical characteristics of land and water. In this study, we introduce a new methodology to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C yr‑1 (*P < 0.05), and of 0.036 °C yr‑1 (***P < 0.001) during summer.

  20. Large phreatomagmatic vent complex at Coombs Hills, Antarctica: Wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP

    NASA Astrophysics Data System (ADS)

    McClintock, Murray; White, James D. L.

    2006-01-01

    The Mawson Formation and correlatives in the Transantarctic Mountains and South Africa record an early eruption episode related to the onset of Ferrar-Karoo flood basalt volcanism. Mawson Formation rocks at Coombs Hills comprise mainly (≥80% vol) structureless tuff breccia and coarse lapilli tuff cut by irregular dikes and sills, within a large vent complex (>30 km2). Quenched juvenile fragments of generally low but variable vesicularity, accretionary lapilli and country rock clasts within vent-fill, and pyroclastic density current deposits point to explosive interaction of basalt with groundwater in porous country rock and wet vent filling debris. Metre-scale dikes and pods of coherent basalt in places merge imperceptibly into peperite and then into surrounding breccia. Steeply dipping to sub-vertical depositional contacts juxtapose volcaniclastic rocks of contrasting componentry and grainsize. These sub-vertical tuff breccia zones are inferred to have formed when jets of debris + steam + water passed through unconsolidated vent-filling deposits. These jets of debris may have sometimes breached the surface to form subaerial tephra jets which fed subaerial pyroclastic density currents and fall deposits. Others, however, probably died out within vent fill before reaching the surface, allowing mixing and recycling of clasts which never reached the atmosphere. Most of the ejecta that did escape the debris-filled vents was rapidly recycled as vents broadened via lateral quarrying of country rock and bedded pyroclastic vent-rim deposits, which collapsed along the margins into individual vents. The unstratified, poorly sorted deposits comprising most of the complex are capped by tuff, lapilli tuff and tuff breccia beds inferred to have been deposited on the floor of the vent complex by pyroclastic density currents. Development of the extensive Coombs Hills vent-complex involved interaction of large volumes of magma and water. We infer that recycling of water, as well

  1. Observations of Massive Volcanic Eruptions on the Jovian Moon Io in August 2013: A Template for Unravelling the Mysteries of Large Lava Flow Emplacement on the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Davies, Ashley; de Pater, Imke; de Kleer, Katherine

    2014-11-01

    Flood basalt eruptions helped shape the surfaces of the terrestrial planets in the distant past, but little is understood about the mechanism of eruption and duration of events. However, highly-voluminous eruptions are taking place on Io. Only recently have multispectral data been obtained over a useful time period which allow detailed modelling of the evolution of individual eruption episodes, thus revealing the eruption style and effusion rate variability. Observations obtained with the near-infrared camera NIRC2 and the adaptive optics system on the 10-m Keck II telescope (Mauna Kea, HI) on 15 Aug 2013 revealed two large “outburst” eruptions [1]. Follow-up observations 5 and 7 days later showed that both had substantially faded. The most energetic eruption on 15 Aug 2015 was at Rarog Patera, at a location near 305°W, 42°S the less energetic eruption occurred further south at ≈310°W and ≈57°S, close to Heno Patera. We note that a third outburst eruption (designated 201308C) was observed at ~224°W, ~29°N on 29 Aug 2013 with the Gemini N and IRTF telescopes [2], an unprecedented series of such events. Ionian outbursts are rare, transient, highly-voluminous volcanic eruptions of high-temperature silicate lava in lava fountains feeding fast-moving lava flows [3]. The modelling the time series data of the Heno and Rarog Paterae data allowed estimation of peak volumetric lava effusion rates, which approach 105 m3/s. This rate is two orders of magnitude greater than that of the Mauna Loa, HI, 1984 eruption, one of the largest effusive eruptions of recent times. Temperatures determined from spectral data at 201308C suggest an ultramafic lava composition, although uncertainties are large [2]. The Rarog and Heno Patera 2013 eruptions each delivered 6-13 km3 of lava to the surface in ~1 week, suggesting flood basalts were erupted in similar short duration, high volume episodes. Part of this work was carried out at the Jet Propulsion Laboratory

  2. High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Caudron, Corentin; van Hinsberg, Vincent J.; Hilley, George E.

    2016-08-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake's thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface ("skin") temperatures at high spatial (˜32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ˜21 to 33 °C. At two locations, apparent skin temperatures were ˜4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  3. Numerous large and long-duration seismic events during the Bárðarbunga volcanic eruption in 2014: What do they tell us about the caldera subsidence?

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, Vala; Jónsdóttir, Kristín; Hensch, Martin; Guðmundsson, Gunnar; Roberts, Matthew; Ófeigsson, Benedikt; Vogfjörð, Kristín; Magnússon, Eyjólfur; Tumi Gudmundsson, Magnús

    2015-04-01

    The volcanic unrest in and around the Bárðarbunga volcano was followed by a sequence of large events occurring on the caldera rim. Between Aug 16th and Dec 31st 2014, more than 70 events occurring close to the caldera rim, with Mw >= 5 had been reported by Iceland Meterological Office (IMO). The events are in many aspects unusual: 1) Moment tensors for the events have a large negative vertical CLVD component (see Hensch et al, and Cesca et al., this conference). Similar events, but with a large positive vertical CLVD component, occurred in Bárðarbunga during the 1990s, and were interpreted to result from near simultaneous motion on a significant part of the caldera ringfault, as a piston of material above the magma chamber was rising (Nettles and Ekström 1998, Tcalcic et al 2009). The large negative CLVD component observed in events during this eruption, could then indicate subsidence on the ring fault, consistent with the observed subsidence of the caldera floor. 2) Many of the largest events are accompanied by a sudden subsidence at the center of the caldera (see Roberts et al, this conference). A GPS station was installed in the caldera in early september and has been nearly continuously operating since. The steps are seen to be decreasing with time, even for events of the same magnitude. 3) The events have a very long duration for their size. This is evidenced by a large difference between centroid and hypocentral time and a difference between magnitudes estimated from short period P-waves (NEIC) and those estimated from long-period body- and surface waves over time. This difference seems to be increasing with time. As part of this work, we plan to present independent estimates of the durations of the events, based on P-wave modeling in process. 4) Event hypocenters are very shallow. An accelerometer was installed on the ice cap (possibly the first time in history?) in the 7x11 km wide subglacial caldera next to the cGPS instrument in early November, and

  4. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    years ago. Within that record is a quasi-periodic rise and fall of about 160 ? 40 years in duration and a shorter fluctuation of 32 ? 6 years that is superimposed on the 160-year fluctuation. Recorded lake-level history from 1860 to the present falls within the longer-term pattern and appears to be a single 160-year quasi-periodic fluctuation. Independent investigations of past climate change in the basin over the long-term period of record confirm that most of these changes in lake level were responses to climatically driven changes in water balance, including lake-level highstands commonly associated with cooler climatic conditions and lows with warm climate periods. The mechanisms underlying these large hydroclimatic anomalies are not clear, but they may be related to internal dynamics of the ocean-atmosphere system or dynamical responses of the ocean-atmosphere system to variability in solar radiation or volcanic activity. The large capacities of the Great Lakes allow them to store great volumes of water. As calculated at chart datum, Lake Superior stores more water (2,900 mi3) than all the other lakes combined (2,539 mi3). Lake Michigan's storage is 1,180 mi3; Lake Huron's, 850 mi3; Lake Ontario's, 393 mi3; and Lake Erie's, 116 mi3. Seasonal lake-level changes alter storage by as much as 6 mi3 in Lake Superior and as little as 2.1 mi3 in Lake Erie. The extreme high and low lake levels measured in recorded lake-level history have altered storage by as much as 31 mi3 in Lake Michigan-Huron and as little as 9 mi3 in Lake Ontario. Diversions of water into and out of the lakes are very small compared to the total volume of water stored in the lakes. The water level of Lake Superior has been regulated since about 1914 and levels of Lake Ontario since about 1960. The range of Lake Superior water-level fluctuations and storage has not been altered greatly by regulation. However, fluctuations on Lake Ontario have been reduced from 6.6 ft preregulation

  5. Volcanism-Climate Interactions

    NASA Technical Reports Server (NTRS)

    Walter, Louis S. (Editor); Desilva, Shanaka (Editor)

    1991-01-01

    The range of disciplines in the study of volcanism-climate interactions includes paleoclimate, volcanology, petrology, tectonics, cloud physics and chemistry, and climate and radiation modeling. Questions encountered in understanding the interactions include: the source and evolution of sulfur and sulfur-gaseous species in magmas; their entrainment in volcanic plumes and injection into the stratosphere; their dissipation rates; and their radiative effects. Other issues include modeling and measuring regional and global effects of such large, dense clouds. A broad-range plan of research designed to answer these questions was defined. The plan includes observations of volcanoes, rocks, trees, and ice cores, as well as satellite and aircraft observations of erupting volcanoes and resulting lumes and clouds.

  6. Multidisciplinary characterisation of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central) and implication for natural hazards

    NASA Astrophysics Data System (ADS)

    Chapron, E.; Albéric, P.; Jézéquel, D.; Versteeg, W.; Bourdier, J.-L.; Sitbon, J.

    2010-09-01

    Sedimentation processes occurring in the most recent maar lake of the French Massif Central (Lake Pavin) are documented for the first time based on high resolution seismic reflection and multibeam bathymetric surveys and by piston coring and radiocarbon dating on a sediment depocentre developed on a narrow sub aquatic plateau. This new data set confirms the mid Holocene age of maar lake Pavin formation at 6970±60 yrs cal BP and highlights a wide range of gravity reworking phenomena affecting the basin. In particular, a slump deposit dated between AD 580-640 remoulded both mid-Holocene lacustrine sediments, terrestrial plant debris and some volcanic material from the northern crater inner walls. Between AD 1200 and AD 1300, a large slide scar mapped at 50 m depth also affected the southern edge of the sub aquatic plateau, suggesting that these gas-rich biogenic sediments (laminated diatomite) are poorly stable. Although several triggering mechanisms can be proposed for these prehistoric sub-aquatic mass wasting deposits in Lake Pavin, we argue that such large remobilisation of gas-rich sediments may affect the gas stability in deep waters of meromictic maar lakes. This study highlights the need to further document mass wasting processes in maar lakes and their impacts on the generation of waves, favouring the development of dangerous (and potentially deadly) limnic eruptions.

  7. Differential resilience of ancient sister lakes Ohrid and Prespa to environmental disturbances during the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Jovanovska, Elena; Cvetkoska, Aleksandra; Hauffe, Torsten; Levkov, Zlatko; Wagner, Bernd; Sulpizio, Roberto; Francke, Alexander; Albrecht, Christian; Wilke, Thomas

    2016-02-01

    Ancient lakes, such as lakes Ohrid and Prespa on the Balkan Peninsula, have become model systems for studying the link between geological and biotic evolution. Recently, the scientific deep-drilling project Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) was initiated to better understand the environmental, climatic, and limnological evolution of the lake. It revealed that Lake Ohrid experienced a number of environmental disturbances during its ca. 2.0 million year long history. These are comprised of disturbances that lasted over longer periods of time ("press events") such as glacial-interglacial cycles and Heinrich events, as well as sudden and short disturbances ("pulse events") like the deposition of landslides, earthquakes, and volcanic ash depositions. The latter includes one of the most severe volcanic episodes during the Late Pleistocene: the eruption of the Campanian Ignimbrite (known as Y-5 marine tephra layer) from the Campi Flegrei caldera, dated to 39.6 ± 0.1 thousand years ago. The event is recorded by the deposition of a ca. 15 cm thick tephra layer in sediment cores of lakes Ohrid (DEEP-5045-1) and Prespa (Co1204). Coincidently, this pulse event is superimposed by the Heinrich H4 event, 40.4-38.4 thousand years ago. In the current paper, diatoms were used as proxies to compare the responses of these lakes to the Y-5 (pulse) and the H4 (press) disturbances. Based on stratigraphically constrained incremental sum of squares cluster (CONISS) and unconstrained Partitioning Around Medoids (PAM) analyses, we found little evidence that diatom community compositions in either lake responded to the H4 event. However, the Y-5 influx caused clear and rapid diatom community changes. After the initial response, community compositions in Lake Ohrid and, to a lesser extent, in Lake Prespa slowly returned to their quasi pre-disturbance state. Moreover, there is no evidence for disturbance-related extinction events. The combined

  8. High Spatio-Temporal Resolution Observations of Crater-Lake Surface Temperatures at Kawah Ijen Volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Caudron, C.; van Hinsberg, V.; Bani, P.; Hilley, G. E.; Kelly, P. J.

    2015-12-01

    Subaqueous volcanic eruptions comprise only 8% of all recorded eruptions in historical time, but have caused ~20% of fatalities associated with volcanic activity during this time (Mastin and Witter, 2000). Crater lakes, however, act as calorimeters, absorbing heat from intruding magma and integrating it over space and time and thus offer a unique opportunity to monitor volcanic activity. Kawah Ijen is a composite volcano located on east Java, Indonesia, whose crater hosts the largest natural hyperacidic lake (27 x 106 m3; pH <1) on Earth. As part of an international workshop on Kawah Ijen in September 2014, we tested a novel approach for mapping and monitoring variations in crater-lake apparent surface temperatures at high spatial (~30 cm) and temporal (every two minutes) resolution. We used a ground-based thermal infrared (TIR) camera from the crater rim to collect a set of visible imagery around the crater during the daytime and a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent surface temperatures typically ranged from ~21 to 28oC. At two locations, apparent surface temperatures were ~ 7 and 9 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. We observed large spatio-temporal variations in lake apparent surface temperatures, which were likely associated with wind-driven evaporative cooling of the lake surface. Our approach shows promise for continuous monitoring of crater-lake surface temperatures, particularly if the TIR camera is deployed as part of a permanent station with ancillary meteorological measurements to help distinguish temperature variations associated with atmospheric processes from those at depth within the lake and volcano.

  9. The importance of small urbanized watersheds to pollutant loading in a large oligotrophic subalpine lake of the western USA.

    PubMed

    Rios, David T; Chandra, Sudeep; Heyvaert, Alan C

    2014-11-01

    Urban land use has been implicated as a major contributor of nonpoint source pollution in aquatic systems. Through increased nonpoint delivery of pollutants, including constituents found in stormwater, Lake Tahoe is undergoing a marked decline in its transparency, primarily due to increasing production of algae from enhanced nutrient loading and delivery of fine particles to the lake from the watershed. In response to these findings, a regional restoration effort is underway to improve basin watersheds and the water quality in Lake Tahoe. In this study, stormwater autosamplers were used to collect flow-weighted composite samples that characterized event mean concentrations for event and nonevent conditions within a small, urbanized watershed in the Tahoe basin. An event-specified constant-concentration water quality model was then applied to the event mean concentration and continuous streamflow data to estimate pollutant loads for nitrate, nitrite, ammonia, orthophosphate, and suspended sediment. These data were compared with previously reported load estimates from 10 primary monitored streams in larger watersheds of the Tahoe basin. Results from a linear regression analysis demonstrate strong and significant relationships between watershed impervious area and pollutant loadings from Lake Tahoe watersheds. These small, urbanized watersheds and intervening zones, which only comprise 10 % of the total Lake Tahoe drainage area, include a significant portion of the total Lake Tahoe impervious area. The findings of this study suggest that small, urbanized watersheds and intervening zones are disproportionately important contributors of nonpoint source pollution, including nutrients and suspended particles. PMID:25106117

  10. Crater Lake revealed

    USGS Publications Warehouse

    Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.

    2003-01-01

    Around 500,000 people each year visit Crater Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and Crater Lake’s incredibly blue water are the park’s main attractions. Crater Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath Crater Lake’s surface. As the Crater Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at Crater Lake National Park and the major transportation corridor east of the Cascades. Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of Crater Lake.

  11. A hydrodynamics-based approach to evaluating the risk of waterborne pathogens entering drinking water intakes in a large, stratified lake.

    PubMed

    Hoyer, Andrea B; Schladow, S Geoffrey; Rueda, Francisco J

    2015-10-15

    Pathogen contamination of drinking water lakes and reservoirs is a severe threat to human health worldwide. A major source of pathogens in surface sources of drinking waters is from body-contact recreation in the water body. However, dispersion pathways of human waterborne pathogens from recreational beaches, where body-contact recreation is known to occur to drinking water intakes, and the associated risk of pathogens entering the drinking water supply remain largely undocumented. A high spatial resolution, three-dimensional hydrodynamic and particle tracking modeling approach has been developed to analyze the risk and mechanisms presented by pathogen dispersion. The pathogen model represents the processes of particle release, transport and survival. Here survival is a function of both water temperature and cumulative exposure to ultraviolet (UV) radiation. Pathogen transport is simulated using a novel and computationally efficient technique of tracking particle trajectories backwards, from a drinking water intake toward their source areas. The model has been applied to a large, alpine lake - Lake Tahoe, CA-NV (USA). The dispersion model results reveal that for this particular lake (1) the risk of human waterborne pathogens to enter drinking water intakes is low, but significant; (2) this risk is strongly related to the depth of the thermocline in relation to the depth of the intake; (3) the risk increases with the seasonal deepening of the surface mixed layer; and (4) the risk increases at night when the surface mixed layer deepens through convective mixing and inactivation by UV radiation is eliminated. While these risk factors will quantitatively vary in different lakes, these same mechanisms will govern the process of transport of pathogens. PMID:26162312

  12. Effect of algae on flocculation of suspended bed sediments in a large shallow lake. Consequences for ecology and sediment transport processes

    NASA Astrophysics Data System (ADS)

    de Lucas Pardo, Miguel Angel; Sarpe, Dirk; Winterwerp, Johan Christian

    2015-06-01

    Lake Markermeer, a large shallow lake in The Netherlands, suffers from turbidity and ecology problems. As part of a study aiming to mitigate these problems, we study flocculation processes in the lake; in particular, the possible mutual flocculation between algae and re-suspended bed sediments. We show that sediment re-suspended from the bed of the lake can flocculate, forming flocs for which size is a function of the turbulence level in the water column. Moreover, we also demonstrate that algae and re-suspended bed sediments can mutually flocculate, yielding organic-inorganic aggregates. These aggregates have different features to those of their individual components, some of which have been measured and characterized in this paper. Furthermore, the characteristics of the resulting organic-inorganic flocs are strongly influenced by the type of algae in the aggregate. We found that, in the case of flocs consisting of bed sediments and filamentous algae, flocculation yields smaller flocs than for bed sediments only, resulting in an increased turbidity in the water column. In the case of flocs consisting of bed sediments and colonial algae, flocs grow faster and become larger than bed sediment flocs, which may result in the depletion of most colonies from the water column.

  13. Longevity of Lake Superior lake trout

    USGS Publications Warehouse

    Schram, Stephen T.; Fabrizio, Mary C.

    1998-01-01

    The age structure of mature lake trout Salvelinus namaycush from the Wisconsin waters of Lake Superior increased following a population recovery that has taken place since the 1960s. As the population aged, it became apparent that scales were unreliable aging structures. Beginning in 1986, we examined both scale and sagittal otolith ages from tagged fish with a known period at liberty. We found large discrepancies in scale and sagittal otolith ages of mature fish, such that scale ages were biased low. We estimated lake trout living up to 42 years, which is greater than previously reported from Lake Superior. Investigators studying lake trout population dynamics in the Great Lakes should be aware that lake trout can live longer than previously thought.

  14. Kawah Ijen volcanic activity: a review

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Syahbana, Devy Kamil; Lecocq, Thomas; Van Hinsberg, Vincent; McCausland, Wendy; Triantafyllou, Antoine; Camelbeeck, Thierry; Bernard, Alain; Surono

    2015-03-01

    Kawah Ijen is a composite volcano located at the easternmost part of Java island in Indonesia and hosts the largest natural acidic lake in the world. We have gathered all available historical reports on Kawah Ijen's activity since 1770 with the purpose of reviewing the temporal evolution of its activity. Most of these observations and studies have been conducted from a geochemical perspective and in punctuated scientific campaigns. Starting in 1991, the seismic activity and a set of volcanic lake parameters began to be weekly available. We present a database of those measurements that, combined with historical reports, allow us to review each eruption/unrest that occurred during the last two centuries. As of 2010, the volcanic activity is monitored by a new multi-disciplinary network, including digital seismic stations, and lake level and temperature measurements. This detailed monitoring provides an opportunity for better classifying seismic events and forecasting volcanic unrest at Kawah Ijen, but only with the understanding of the characteristics of this volcanic system gained from the historical review presented here.

  15. Volcanic Eruptions and Climate

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  16. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  17. Synopsis of volcanic stratigraphy

    NASA Technical Reports Server (NTRS)

    Hammond, P. E.

    1974-01-01

    Volcanic stratigraphic units are mappable layered units composed of volcanic rocks that are formed on land (subaerially) or under water (subaqueously) by volcanic processes. At least ten different types of volcanic stratigraphic units are recognized. The characteristics for each are discussed briefly and some typical examples are illustrated by diagrams to show their salient features.

  18. Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet

    NASA Astrophysics Data System (ADS)

    Liu, J.; Kang, S.; Gong, T.; Lu, A.

    2009-08-01

    This study analyzed satellite images and long term climate variables from a high-elevation meteorological station (4730 m) and streamflow records to examine hydrological response of Nam Co Lake (4718 m), the largest lake on the Tibetan Plateau, over the last 50 years. The results show the lake area extended by 51.8 km2 (2.7% of the total area) when compared with the area in 1976. This change is associated with an annual precipitation increase of 65 mm (18.6%), annual and winter mean temperature increases of 0.9°C and 2.1°C respectively, an annual runoff increase of 20% and an annual pan evaporation decrease of about 2%, during the past 20 years. The year of the change point in annual precipitation, air temperature, annual pan evaporation and runoff occurred in 1971, 1983, 1997 and 1997, respectively. The timing of the lake growth corresponds with the abrupt increase in annual precipitation and runoff since the mid-1990s. This study suggests a strong positive water balance in the largest inland lake on the Tibetan Plateau.

  19. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  20. The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Ojakangas, R. W.; Morey, G. B.; Green, J. C.

    2001-06-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ∽1109-1087 Ma, the age span of most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance.

  1. Monogenetic volcanic hazards and assessment

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic