Sample records for large-scale field trial

  1. Facilitating large-scale clinical trials: in Asia.

    PubMed

    Choi, Han Yong; Ko, Jae-Wook

    2010-01-01

    The number of clinical trials conducted in Asian countries has started to increase as a result of expansion of the pharmaceutical market in this area. There is a growing opportunity for large-scale clinical trials because of the large number of patients, significant market potential, good quality of data, and the cost effective and qualified medical infrastructure. However, for carrying out large-scale clinical trials in Asia, there are several major challenges, including the quality control of data, budget control, laboratory validation, monitoring capacity, authorship, staff training, and nonstandard treatment that need to be considered. There are also several difficulties in collaborating on international trials in Asia because Asia is an extremely diverse continent. The major challenges are language differences, diversity of patterns of disease, and current treatments, a large gap in the experience with performing multinational trials, and regulatory differences among the Asian countries. In addition, there are also differences in the understanding of global clinical trials, medical facilities, indemnity assurance, and culture, including food and religion. To make regional and local data provide evidence for efficacy through the standardization of these differences, unlimited effort is required. At this time, there are no large clinical trials led by urologists in Asia, but it is anticipated that the role of urologists in clinical trials will continue to increase. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. How Can the Evidence from Global Large-scale Clinical Trials for Cardiovascular Diseases be Improved?

    PubMed

    Sawata, Hiroshi; Tsutani, Kiichiro

    2011-06-29

    Clinical investigations are important for obtaining evidence to improve medical treatment. Large-scale clinical trials with thousands of participants are particularly important for this purpose in cardiovascular diseases. Conducting large-scale clinical trials entails high research costs. This study sought to investigate global trends in large-scale clinical trials in cardiovascular diseases. We searched for trials using clinicaltrials.gov (URL: http://www.clinicaltrials.gov/) using the key words 'cardio' and 'event' in all fields on 10 April, 2010. We then selected trials with 300 or more participants examining cardiovascular diseases. The search revealed 344 trials that met our criteria. Of 344 trials, 71% were randomized controlled trials, 15% involved more than 10,000 participants, and 59% were funded by industry. In RCTs whose results were disclosed, 55% of industry-funded trials and 25% of non-industry funded trials reported statistically significant superiority over control (p = 0.012, 2-sided Fisher's exact test). Our findings highlighted concerns regarding potential bias related to funding sources, and that researchers should be aware of the importance of trial information disclosures and conflicts of interest. We should keep considering management and training regarding information disclosures and conflicts of interest for researchers. This could lead to better clinical evidence and further improvements in the development of medical treatment worldwide.

  3. Not a load of rubbish: simulated field trials in large-scale containers.

    PubMed

    Hohmann, M; Stahl, A; Rudloff, J; Wittkop, B; Snowdon, R J

    2016-09-01

    Assessment of yield performance under fluctuating environmental conditions is a major aim of crop breeders. Unfortunately, results from controlled-environment evaluations of complex agronomic traits rarely translate to field performance. A major cause is that crops grown over their complete lifecycle in a greenhouse or growth chamber are generally constricted in their root growth, which influences their response to important abiotic constraints like water or nutrient availability. To overcome this poor transferability, we established a plant growth system comprising large refuse containers (120 L 'wheelie bins') that allow detailed phenotyping of small field-crop populations under semi-controlled growth conditions. Diverse winter oilseed rape cultivars were grown at field densities throughout the crop lifecycle, in different experiments over 2 years, to compare seed yields from individual containers to plot yields from multi-environment field trials. We found that we were able to predict yields in the field with high accuracy from container-grown plants. The container system proved suitable for detailed studies of stress response physiology and performance in pre-breeding populations. Investment in automated large-container systems may help breeders improve field transferability of greenhouse experiments, enabling screening of pre-breeding materials for abiotic stress response traits with a positive influence on yield. © 2016 John Wiley & Sons Ltd.

  4. Measuring the Large-scale Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Scherrer, P. H.; Peterson, E.; Svalgaard, L.

    2017-12-01

    The Sun's large-scale magnetic field is important for determining global structure of the corona and for quantifying the evolution of the polar field, which is sometimes used for predicting the strength of the next solar cycle. Having confidence in the determination of the large-scale magnetic field of the Sun is difficult because the field is often near the detection limit, various observing methods all measure something a little different, and various systematic effects can be very important. We compare resolved and unresolved observations of the large-scale magnetic field from the Wilcox Solar Observatory, Heliseismic and Magnetic Imager (HMI), Michelson Doppler Imager (MDI), and Solis. Cross comparison does not enable us to establish an absolute calibration, but it does allow us to discover and compensate for instrument problems, such as the sensitivity decrease seen in the WSO measurements in late 2016 and early 2017.

  5. Considerations for Managing Large-Scale Clinical Trials.

    ERIC Educational Resources Information Center

    Tuttle, Waneta C.; And Others

    1989-01-01

    Research management strategies used effectively in a large-scale clinical trial to determine the health effects of exposure to Agent Orange in Vietnam are discussed, including pre-project planning, organization according to strategy, attention to scheduling, a team approach, emphasis on guest relations, cross-training of personnel, and preparing…

  6. Generation of Large-Scale Magnetic Fields by Small-Scale Dynamo in Shear Flows.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-10-23

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.

  7. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-10-20

    We propose a new mechanism for a turbulent mean-field dynamo in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of a large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the "shear-current" effect. Furthermore, given the inevitable existence of nonhelical small-scale magnetic fields in turbulent plasmas, as well as the generic naturemore » of velocity shear, the suggested mechanism may help explain the generation of large-scale magnetic fields across a wide range of astrophysical objects.« less

  8. Field-aligned currents and large-scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1979-01-01

    The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.

  9. Generation of large-scale magnetic fields by small-scale dynamo in shear flows

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Bhattacharjee, Amitava

    2015-11-01

    A new mechanism for turbulent mean-field dynamo is proposed, in which the magnetic fluctuations resulting from a small-scale dynamo drive the generation of large-scale magnetic fields. This is in stark contrast to the common idea that small-scale magnetic fields should be harmful to large-scale dynamo action. These dynamos occur in the presence of large-scale velocity shear and do not require net helicity, resulting from off-diagonal components of the turbulent resistivity tensor as the magnetic analogue of the ``shear-current'' effect. The dynamo is studied using a variety of computational and analytic techniques, both when the magnetic fluctuations arise self-consistently through the small-scale dynamo and in lower Reynolds number regimes. Given the inevitable existence of non-helical small-scale magnetic fields in turbulent plasmas, as well as the generic nature of velocity shear, the suggested mechanism may help to explain generation of large-scale magnetic fields across a wide range of astrophysical objects. This work was supported by a Procter Fellowship at Princeton University, and the US Department of Energy Grant DE-AC02-09-CH11466.

  10. Limited accessibility to designs and results of Japanese large-scale clinical trials for cardiovascular diseases.

    PubMed

    Sawata, Hiroshi; Ueshima, Kenji; Tsutani, Kiichiro

    2011-04-14

    Clinical evidence is important for improving the treatment of patients by health care providers. In the study of cardiovascular diseases, large-scale clinical trials involving thousands of participants are required to evaluate the risks of cardiac events and/or death. The problems encountered in conducting the Japanese Acute Myocardial Infarction Prospective (JAMP) study highlighted the difficulties involved in obtaining the financial and infrastructural resources necessary for conducting large-scale clinical trials. The objectives of the current study were: 1) to clarify the current funding and infrastructural environment surrounding large-scale clinical trials in cardiovascular and metabolic diseases in Japan, and 2) to find ways to improve the environment surrounding clinical trials in Japan more generally. We examined clinical trials examining cardiovascular diseases that evaluated true endpoints and involved 300 or more participants using Pub-Med, Ichushi (by the Japan Medical Abstracts Society, a non-profit organization), websites of related medical societies, the University Hospital Medical Information Network (UMIN) Clinical Trials Registry, and clinicaltrials.gov at three points in time: 30 November, 2004, 25 February, 2007 and 25 July, 2009. We found a total of 152 trials that met our criteria for 'large-scale clinical trials' examining cardiovascular diseases in Japan. Of these, 72.4% were randomized controlled trials (RCTs). Of 152 trials, 9.2% of the trials examined more than 10,000 participants, and 42.8% examined between 1,000 and 10,000 participants. The number of large-scale clinical trials markedly increased from 2001 to 2004, but suddenly decreased in 2007, then began to increase again. Ischemic heart disease (39.5%) was the most common target disease. Most of the larger-scale trials were funded by private organizations such as pharmaceutical companies. The designs and results of 13 trials were not disclosed. To improve the quality of clinical

  11. Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.

    PubMed

    Hotta, H; Rempel, M; Yokoyama, T

    2016-03-25

    The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. Copyright © 2016, American Association for the Advancement of Science.

  12. Connecting the large- and the small-scale magnetic fields of solar-like stars

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.

    2018-05-01

    A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.

  13. Large-scale modeling of rain fields from a rain cell deterministic model

    NASA Astrophysics Data System (ADS)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  14. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories

    NASA Astrophysics Data System (ADS)

    Park, Kiwan; Blackman, Eric G.; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  15. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories.

    PubMed

    Park, Kiwan; Blackman, Eric G; Subramanian, Kandaswamy

    2013-05-01

    Understanding large-scale magnetic field growth in turbulent plasmas in the magnetohydrodynamic limit is a goal of magnetic dynamo theory. In particular, assessing how well large-scale helical field growth and saturation in simulations match those predicted by existing theories is important for progress. Using numerical simulations of isotropically forced turbulence without large-scale shear with its implications, we focus on several additional aspects of this comparison: (1) Leading mean-field dynamo theories which break the field into large and small scales predict that large-scale helical field growth rates are determined by the difference between kinetic helicity and current helicity with no dependence on the nonhelical energy in small-scale magnetic fields. Our simulations show that the growth rate of the large-scale field from fully helical forcing is indeed unaffected by the presence or absence of small-scale magnetic fields amplified in a precursor nonhelical dynamo. However, because the precursor nonhelical dynamo in our simulations produced fields that were strongly subequipartition with respect to the kinetic energy, we cannot yet rule out the potential influence of stronger nonhelical small-scale fields. (2) We have identified two features in our simulations which cannot be explained by the most minimalist versions of two-scale mean-field theory: (i) fully helical small-scale forcing produces significant nonhelical large-scale magnetic energy and (ii) the saturation of the large-scale field growth is time delayed with respect to what minimalist theory predicts. We comment on desirable generalizations to the theory in this context and future desired work.

  16. Amplification of large scale magnetic fields in a decaying MHD system

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-10-01

    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  17. Imprint of thawing scalar fields on the large scale galaxy overdensity

    NASA Astrophysics Data System (ADS)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  18. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2009-04-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  19. Large-scale solar magnetic fields and H-alpha patterns

    NASA Technical Reports Server (NTRS)

    Mcintosh, P. S.

    1972-01-01

    Coronal and interplanetary magnetic fields computed from measurements of large-scale photospheric magnetic fields suffer from interruptions in day-to-day observations and the limitation of using only measurements made near the solar central meridian. Procedures were devised for inferring the lines of polarity reversal from H-alpha solar patrol photographs that map the same large-scale features found on Mt. Wilson magnetograms. These features may be monitored without interruption by combining observations from the global network of observatories associated with NOAA's Space Environment Services Center. The patterns of inferred magnetic fields may be followed accurately as far as 60 deg from central meridian. Such patterns will be used to improve predictions of coronal features during the next solar eclipse.

  20. Nonlinear Generation of shear flows and large scale magnetic fields by small scale

    NASA Astrophysics Data System (ADS)

    Aburjania, G.

    2009-04-01

    EGU2009-233 Nonlinear Generation of shear flows and large scale magnetic fields by small scale turbulence in the ionosphere by G. Aburjania Contact: George Aburjania, g.aburjania@gmail.com,aburj@mymail.ge

  1. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  2. SUPERFUND TREATABILITY CLEARINGHOUSE: FULL SCALE ROTARY KILN INCINERATOR FIELD TRIAL: PHASE I, VERIFICATION TRIAL BURN ON DIOXIN/HERBICIDE ORANGE CONTAMINATED SOIL

    EPA Science Inventory

    This treatability study reports on the results of one of a series of field trials using various remedial action technologies that may be capable of restoring Herbicide Orange (HO)XDioxin contaminated sites. A full-scale field trial using a rotary kiln incinerator capable of pro...

  3. RAAS inhibitors and cardiovascular protection in large scale trials.

    PubMed

    von Lueder, Thomas G; Krum, Henry

    2013-04-01

    Hypertension, coronary artery disease and heart failure affect over half of the adult population in most Western societies, and are prime causes of CV morbidity and mortality. With the ever-increasing worldwide prevalence of CV disease due to ageing and the "diabetes" pandemic, guideline groups have recognized the importance of achieving cardioprotection in affected individuals as well as in those at risk for future CV events. The renin-angiotensin-aldosterone system (RAAS) is the most important system controlling blood pressure (BP), cardiovascular and renal function in man. As our understanding of the crucial role of RAAS in the pathogenesis of most, if not all, CV disease has expanded over the past decades, so has the development of drugs targeting its individual components. Angiotensin-converting enzyme inhibitors (ACEi), Ang-II receptor blockers (ARB), and mineralcorticoid receptor antagonists (MRA) have been evaluated in large clinical trials for their potential to mediate cardioprotection, singly or in combination. Direct renin inhibitors are currently under scrutiny, as well as novel dual-acting RAAS-blocking agents. Herein, we review the evidence generated from large-scale clinical trials of cardioprotection achieved through RAAS-blockade.

  4. Disruption of circumstellar discs by large-scale stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  5. The Large-scale Magnetic Fields of Thin Accretion Disks

    NASA Astrophysics Data System (ADS)

    Cao, Xinwu; Spruit, Hendrik C.

    2013-03-01

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P m is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, β ~ 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  6. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation.

    PubMed

    Pesaran, Bijan; Vinck, Martin; Einevoll, Gaute T; Sirota, Anton; Fries, Pascal; Siegel, Markus; Truccolo, Wilson; Schroeder, Charles E; Srinivasan, Ramesh

    2018-06-25

    New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.

  7. Penetration of Large Scale Electric Field to Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI

  8. Large-scale magnetic fields, non-Gaussianity, and gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2017-12-01

    We explore the generation of large-scale magnetic fields in the so-called moduli inflation. The hypercharge electromagnetic fields couple to not only a scalar field but also a pseudoscalar one, so that the conformal invariance of the hypercharge electromagnetic fields can be broken. We explicitly analyze the strength of the magnetic fields on the Hubble horizon scale at the present time, the local non-Gaussianity of the curvature perturbations originating from the massive gauge fields, and the tensor-to-scalar ratio of the density perturbations. As a consequence, we find that the local non-Gaussianity and the tensor-to-scalar ratio are compatible with the recent Planck results.

  9. A large-scale field randomized trial demonstrates safety and efficacy of the vaccine LetiFend® against canine leishmaniosis.

    PubMed

    Fernández Cotrina, Javier; Iniesta, Virginia; Monroy, Isabel; Baz, Victoria; Hugnet, Christophe; Marañon, Francisco; Fabra, Mercedes; Gómez-Nieto, Luis Carlos; Alonso, Carlos

    2018-04-05

    Canine leishmaniosis is a zoonotic disease caused by Leishmania infantum. Extensive research is currently ongoing to develop safe and effective vaccines to protect from disease development. The European Commission has granted a marketing authorization for LetiFend®, a new vaccine containing recombinant Protein Q. The efficacy of LetiFend® vaccination in a large-scale dog population of both sexes, different breeds and ages in endemic areas is reported in this multicenter, randomized, double-blind, placebo-controlled field trial. Dogs (n = 549) living in France and Spain were randomly selected to receive a single subcutaneous dose of LetiFend® or placebo per year, and were naturally exposed to two L. infantum transmission seasons. Clinical examinations, blood and lymphoid organ sampling to evaluate serological, parasitological and disease status of the dogs were performed at different time points during the study. LetiFend® was very well tolerated and clearly reduced the incidence of clinical signs related to leishmaniosis. The number of confirmed cases of leishmaniosis was statistically significantly lower in the vaccine group. The number of dogs with parasites was close to be significantly reduced in the vaccine group (p = 0.0564). Re-vaccination of seropositive dogs demonstrated to be safe and not to worsen the course of the disease. The likelihood that a dog vaccinated with LetiFend® develops a confirmed case or clinical signs of leishmaniosis in areas with high pressure is, respectively, 5 and 9.8 time less than that for an unvaccinated dog. Thus, the overall efficacy of the LetiFend® vaccine in the prevention of confirmed cases of leishmaniosis in endemic areas with high disease pressure was shown to be 72%. In conclusion, this field trial demonstrates that LetiFend® is a novel, safe and effective vaccine for the active immunization of non-infected dogs from 6 months of age in reducing the risk of developing clinical leishmaniosis after natural

  10. Recovering the full velocity and density fields from large-scale redshift-distance samples

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund; Dekel, Avishai

    1989-01-01

    A new method for extracting the large-scale three-dimensional velocity and mass density fields from measurements of the radial peculiar velocities is presented. Galaxies are assumed to trace the velocity field rather than the mass. The key assumption made is that the Lagrangian velocity field has negligible vorticity, as might be expected from perturbations that grew by gravitational instability. By applying the method to cosmological N-body simulations, it is demonstrated that it accurately reconstructs the velocity field. This technique promises a direct determination of the mass density field and the initial conditions for the formation of large-scale structure from galaxy peculiar velocity surveys.

  11. Tropospheric transport differences between models using the same large-scale meteorological fields

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.

    2017-01-01

    The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.

  12. Numerically modelling the large scale coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Panja, Mayukh; Nandi, Dibyendu

    2016-07-01

    The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.

  13. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

    2013-12-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  14. Relativistic jets without large-scale magnetic fields

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  15. Energy transfers in large-scale and small-scale dynamos

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  16. Generation of a Large-scale Magnetic Field in a Convective Full-sphere Cross-helicity Dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Yokoi, N.

    2018-05-01

    We study the effects of the cross-helicity in the full-sphere large-scale mean-field dynamo models of a 0.3 M ⊙ star rotating with a period of 10 days. In exploring several dynamo scenarios that stem from magnetic field generation by the cross-helicity effect, we found that the cross-helicity provides the natural generation mechanisms for the large-scale scale axisymmetric and nonaxisymmetric magnetic field. Therefore, the rotating stars with convective envelopes can produce a large-scale magnetic field generated solely due to the turbulent cross-helicity effect (we call it γ 2-dynamo). Using mean-field models we compare the properties of the large-scale magnetic field organization that stems from dynamo mechanisms based on the kinetic helicity (associated with the α 2 dynamos) and cross-helicity. For the fully convective stars, both generation mechanisms can maintain large-scale dynamos even for the solid body rotation law inside the star. The nonaxisymmetric magnetic configurations become preferable when the cross-helicity and the α-effect operate independently of each other. This corresponds to situations with purely γ 2 or α 2 dynamos. The combination of these scenarios, i.e., the γ 2 α 2 dynamo, can generate preferably axisymmetric, dipole-like magnetic fields at strengths of several kGs. Thus, we found a new dynamo scenario that is able to generate an axisymmetric magnetic field even in the case of a solid body rotation of the star. We discuss the possible applications of our findings to stellar observations.

  17. Influence of a large-scale field on energy dissipation in magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne

    2017-07-01

    In magnetohydrodynamic (MHD) turbulence, the large-scale magnetic field sets a preferred local direction for the small-scale dynamics, altering the statistics of turbulence from the isotropic case. This happens even in the absence of a total magnetic flux, since MHD turbulence forms randomly oriented large-scale domains of strong magnetic field. It is therefore customary to study small-scale magnetic plasma turbulence by assuming a strong background magnetic field relative to the turbulent fluctuations. This is done, for example, in reduced models of plasmas, such as reduced MHD, reduced-dimension kinetic models, gyrokinetics, etc., which make theoretical calculations easier and numerical computations cheaper. Recently, however, it has become clear that the turbulent energy dissipation is concentrated in the regions of strong magnetic field variations. A significant fraction of the energy dissipation may be localized in very small volumes corresponding to the boundaries between strongly magnetized domains. In these regions, the reduced models are not applicable. This has important implications for studies of particle heating and acceleration in magnetic plasma turbulence. The goal of this work is to systematically investigate the relationship between local magnetic field variations and magnetic energy dissipation, and to understand its implications for modelling energy dissipation in realistic turbulent plasmas.

  18. Large-scale vortices in compressible turbulent medium with the magnetic field

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Dimitrov, B. G.

    1990-08-01

    An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.

  19. Techniques for extracting single-trial activity patterns from large-scale neural recordings

    PubMed Central

    Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V

    2008-01-01

    Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826

  20. The origin of the structure of large-scale magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Nixon, C. J.; Hands, T. O.; King, A. R.; Pringle, J. E.

    2018-07-01

    The large-scale magnetic fields observed in spiral disc galaxies are often thought to result from dynamo action in the disc plane. However, the increasing importance of Faraday depolarization along any line of sight towards the galactic plane suggests that the strongest polarization signal may come from well above (˜0.3-1 kpc) this plane, from the vicinity of the warm interstellar medium (WIM)/halo interface. We propose (see also Henriksen & Irwin 2016) that the observed spiral fields (polarization patterns) result from the action of vertical shear on an initially poloidal field. We show that this simple model accounts for the main observed properties of large-scale fields. We speculate as to how current models of optical spiral structure may generate the observed arm/interarm spiral polarization patterns.

  1. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.

    PubMed

    Hijri, Mohamed

    2016-04-01

    An increasing human population requires more food production in nutrient-efficient systems in order to simultaneously meet global food needs while reducing the environmental footprint of agriculture. Arbuscular mycorrhizal fungi (AMF) have the potential to enhance crop yield, but their efficiency has yet to be demonstrated in large-scale crop production systems. This study reports an analysis of a dataset consisting of 231 field trials in which the same AMF inoculant (Rhizophagus irregularis DAOM 197198) was applied to potato over a 4-year period in North America and Europe under authentic field conditions. The inoculation was performed using a liquid suspension of AMF spores that was sprayed onto potato seed pieces, yielding a calculated 71 spores per seed piece. Statistical analysis showed a highly significant increase in marketable potato yield (ANOVA, P < 0.0001) for inoculated fields (42.2 tons/ha) compared with non-inoculated controls (38.3 tons/ha), irrespective of trial year. The average yield increase was 3.9 tons/ha, representing 9.5 % of total crop yield. Inoculation was profitable with a 0.67-tons/ha increase in yield, a threshold reached in almost 79 % of all trials. This finding clearly demonstrates the benefits of mycorrhizal-based inoculation on crop yield, using potato as a case study. Further improvements of these beneficial inoculants will help compensate for crop production deficits, both now and in the future.

  2. A large scale laboratory cage trial of Aedes densonucleosis virus (AeDNV).

    PubMed

    Wise de Valdez, Megan R; Suchman, Erica L; Carlson, Jonathan O; Black, William C

    2010-05-01

    Aedes aegypti (L.) (Diptera: Culicidae) the primary vector of dengue viruses (DENV1-4), oviposit in and around human dwellings, including sites difficult to locate, making control of this mosquito challenging. We explored the efficacy and sustainability of Aedes Densonucleosis Virus (AeDNV) as a biocontrol agent for Ae. aegypti in and among oviposition sites in large laboratory cages (> 92 m3) as a prelude to field trials. Select cages were seeded with AeDNV in a single oviposition site (OPS) with unseeded OPSs established at varied distances. Quantitative real-time polymerase chain reaction was used to track dispersal and accumulation of AeDNV among OPSs. All eggs were collected weekly from each cage and counted. We asked: (1) Is AeDNV dispersed over varying distances and can it accumulate and persist in novel OPSs? (2) Are egg densities reduced in AeDNV treated populations? AeDNV was dispersed to and sustained in novel OPSs. Virus accumulation in OPSs was positively correlated with egg densities and proximity to the initial infection source affected the timing of dispersal and maintenance of viral titers. AeDNV did not significantly reduce Ae. aegypti egg densities. The current study documents that adult female Ae. aegypti oviposition behavior leads to successful viral dispersal from treated to novel containers in large-scale cages; however, the AeDNV titers reached were not sufficient to reduce egg densities.

  3. Scalable parallel distance field construction for large-scale applications

    DOE PAGES

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less

  4. Scalable Parallel Distance Field Construction for Large-Scale Applications.

    PubMed

    Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H

    2015-10-01

    Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.

  5. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    NASA Astrophysics Data System (ADS)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  6. Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects

    NASA Technical Reports Server (NTRS)

    Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.

    1991-01-01

    A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.

  7. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.

    PubMed

    Sookhak Lari, Kaveh; Johnston, Colin D; Rayner, John L; Davis, Greg B

    2018-03-05

    Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78days; in total extracting over 5m 3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3mL/s) across all remediation techniques each operating over periods of 4-14days over the 78day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier B.V. All rights reserved.

  9. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  10. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  11. Large-scale Organized Magnetic Fields in O, B and A Stars

    NASA Astrophysics Data System (ADS)

    Mathys, G.

    2009-06-01

    The status of our current knowledge of magnetic fields in stars of spectral types ranging from early F to O is reviewed. Fields with large-scale organised structure have now been detected and measured throughout this range. These fields are consistent with the oblique rotator model. In early F to late B stars, their occurrence is restricted to the subgroup of the Ap stars, which have the best studied fields among the early-type stars. Presence of fields with more complex topologies in other A and late B stars has been suggested, but is not firmly established. Magnetic fields have not been studied in a sufficient number of OB stars yet so as to establish whether they occur in all or only in some subset of these stars.

  12. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    PubMed

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  13. Planck intermediate results. XLII. Large-scale Galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Alves, M. I. R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hobson, M.; Hornstrup, A.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Oppermann, N.; Orlando, E.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.

  14. Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou

    2010-04-01

    The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.

  15. Field trials of line transect methods applied to estimation of desert tortoise abundance

    USGS Publications Warehouse

    Anderson, David R.; Burnham, Kenneth P.; Lubow, Bruce C.; Thomas, L. E. N.; Corn, Paul Stephen; Medica, Philip A.; Marlow, R.W.

    2001-01-01

    We examine the degree to which field observers can meet the assumptions underlying line transect sampling to monitor populations of desert tortoises (Gopherus agassizii). We present the results of 2 field trials using artificial tortoise models in 3 size classes. The trials were conducted on 2 occasions on an area south of Las Vegas, Nevada, where the density of the test population was known. In the first trials, conducted largely by experienced biologists who had been involved in tortoise surveys for many years, the density of adult tortoise models was well estimated (-3.9% bias), while the bias was higher (-20%) for subadult tortoise models. The bias for combined data was -12.0%. The bias was largely attributed to the failure to detect all tortoise models on or near the transect centerline. The second trials were conducted with a group of largely inexperienced student volunteers and used somewhat different searching methods, and the results were similar to the first trials. Estimated combined density of subadult and adult tortoise models had a negative bias (-7.3%), again attributable to failure to detect some models on or near the centerline. Experience in desert tortoise biology, either comparing the first and second trials or in the second trial with 2 experienced biologists versus 16 novices, did not have an apparent effect on the quality of the data or the accuracy of the estimates. Observer training, specific to line transect sampling, and field testing are important components of a reliable survey. Line transect sampling represents a viable method for large-scale monitoring of populations of desert tortoise; however, field protocol must be improved to assure the key assumptions are met.

  16. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE PAGES

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; ...

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PF) would be expected to manifest itself in the cosmic microwave background (CB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PF on the cosmological perturbations. We demonstrate how the PF is an important cosmological physical process on small scales. We also summarize the current constraints on the PF amplitude B λ and the power spectral index n B which have been deduced from the available CB observational data by using our computational framework.« less

  17. Planck intermediate results: XLII. Large-scale Galactic magnetic fields

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Alves, M. I. R.; ...

    2016-12-12

    Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. In this paper, we use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering inmore » the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Finally, though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects.« less

  18. Coronal holes, large-scale magnetic field, and activity complexes in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Tavastsherna, K. S.; Polyakow, E. V.

    2014-12-01

    A correlation among coronal holes (CH), a large-scale magnetic field (LMF), and activity complexes (AC) is studied in this work for 1997-2007 with the use of a coronal hole series obtained from observations at the Kitt Peak Observatory in the HeI 10830 Å line in 1975-2003 and SOHO/EIT-195 Å in 1996-2012 (Tlatov et al., 2014), synoptic Hα charts from Kislovodsk Mountain Astonomical Station, and the catalog of AC cores (Yazev, 2012). From the imposition of CH boundaries on Hα charts, which characterize the positions of neutral lines of the radial components of a large-scale solar magnetic field, it turns out that 70% of CH are located in unipolar regions of their sign during the above period, 10% are in the region of an opposite sign, and 20% are mainly very large CH, which are often crossed by the neutral lines of several unipolar regions. Data on mutual arrangement of CH and AC cores were obtained. It was shown that only some activity comples cores have genetic relationships with CH.

  19. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  20. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  1. An innovative large scale integration of silicon nanowire-based field effect transistors

    NASA Astrophysics Data System (ADS)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  2. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution ofmore » the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.« less

  3. A new method of presentation the large-scale magnetic field structure on the Sun and solar corona

    NASA Technical Reports Server (NTRS)

    Ponyavin, D. I.

    1995-01-01

    The large-scale photospheric magnetic field, measured at Stanford, has been analyzed in terms of surface harmonics. Changes of the photospheric field which occur within whole solar rotation period can be resolved by this analysis. For this reason we used daily magnetograms of the line-of-sight magnetic field component observed from Earth over solar disc. We have estimated the period during which day-to-day full disc magnetograms must be collected. An original algorithm was applied to resolve time variations of spherical harmonics that reflect time evolution of large-scale magnetic field within solar rotation period. This method of magnetic field presentation can be useful enough in lack of direct magnetograph observations due to sometimes bad weather conditions. We have used the calculated surface harmonics to reconstruct the large-scale magnetic field structure on the source surface near the sun - the origin of heliospheric current sheet and solar wind streams. The obtained results have been compared with spacecraft in situ observations and geomagnetic activity. We tried to show that proposed technique can trace shon-time variations of heliospheric current sheet and short-lived solar wind streams. We have compared also our results with those obtained traditionally from potential field approximation and extrapolation using synoptic charts as initial boundary conditions.

  4. Generation of large-scale density fluctuations by buoyancy

    NASA Technical Reports Server (NTRS)

    Chasnov, J. R.; Rogallo, R. S.

    1990-01-01

    The generation of fluid motion from a state of rest by buoyancy forces acting on a homogeneous isotropic small-scale density field is considered. Nonlinear interactions between the generated fluid motion and the initial isotropic small-scale density field are found to create an anisotropic large-scale density field with spectrum proportional to kappa(exp 4). This large-scale density field is observed to result in an increasing Reynolds number of the fluid turbulence in its final period of decay.

  5. Restoration of a Mediterranean forest after a fire: bioremediation and rhizoremediation field-scale trial

    PubMed Central

    Pizarro-Tobías, Paloma; Fernández, Matilde; Niqui, José Luis; Solano, Jennifer; Duque, Estrella; Ramos, Juan-Luis; Roca, Amalia

    2015-01-01

    Forest fires pose a serious threat to countries in the Mediterranean basin, often razing large areas of land each year. After fires, soils are more likely to erode and resilience is inhibited in part by the toxic aromatic hydrocarbons produced during the combustion of cellulose and lignins. In this study, we explored the use of bioremediation and rhizoremediation techniques for soil restoration in a field-scale trial in a protected Mediterranean ecosystem after a controlled fire. Our bioremediation strategy combined the use of Pseudomonas putida strains, indigenous culturable microbes and annual grasses. After 8 months of monitoring soil quality parameters, including the removal of monoaromatic and polycyclic aromatic hydrocarbons as well as vegetation cover, we found that the site had returned to pre-fire status. Microbial population analysis revealed that fires induced changes in the indigenous microbiota and that rhizoremediation favours the recovery of soil microbiota in time. The results obtained in this study indicate that the rhizoremediation strategy could be presented as a viable and cost-effective alternative for the treatment of ecosystems affected by fires. PMID:25079309

  6. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  7. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  8. Generation of large-scale magnetic fields, non-Gaussianity, and primordial gravitational waves in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2015-02-01

    The generation of large-scale magnetic fields in inflationary cosmology is explored, in particular, in a kind of moduli inflation motivated by racetrack inflation in the context of the type IIB string theory. In this model, the conformal invariance of the hypercharge electromagnetic fields is broken thanks to the coupling of both the scalar and pseudoscalar fields to the hypercharge electromagnetic fields. The following three cosmological observable quantities are first evaluated: the current magnetic field strength on the Hubble horizon scale, which is much smaller than the upper limit from the backreaction problem, local non-Gaussianity of the curvature perturbations due to the existence of the massive gauge fields, and the tensor-to-scalar ratio. It is explicitly demonstrated that the resultant values of local non-Gaussianity and the tensor-to-scalar ratio are consistent with the Planck data.

  9. The magnetic shear-current effect: Generation of large-scale magnetic fields by the small-scale dynamo

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2016-03-14

    A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. Here, the effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean fieldmore » $${\\it\\alpha}$$coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.« less

  10. Gravitational waves and large field inflation

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2017-02-01

    According to the famous Lyth bound, one can confirm large field inflation by finding tensor modes with sufficiently large tensor-to-scalar ratio r. Here we will try to answer two related questions: is it possible to rule out all large field inflationary models by not finding tensor modes with r above some critical value, and what can we say about the scale of inflation by measuring r? However, in order to answer these questions one should distinguish between two different definitions of the large field inflation and three different definitions of the scale of inflation. We will examine these issues using the theory of cosmological α-attractors as a convenient testing ground.

  11. Large-scale dynamos in rapidly rotating plane layer convection

    NASA Astrophysics Data System (ADS)

    Bushby, P. J.; Käpylä, P. J.; Masada, Y.; Brandenburg, A.; Favier, B.; Guervilly, C.; Käpylä, M. J.

    2018-05-01

    Context. Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component. Aims: Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability. Methods: The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes. Results: In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.

  12. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  13. A large-scale field trial of thin-layer capping of PCDD/F-contaminated sediments: Sediment-to-water fluxes up to 5 years post-amendment.

    PubMed

    Cornelissen, Gerard; Schaanning, Morten; Gunnarsson, Jonas S; Eek, Espen

    2016-04-01

    The longer-term effect (3-5 y) of thin-layer capping on in situ sediment-to-surface water fluxes was monitored in a large-scale field experiment in the polychlorinated dibenzodioxin and dibenzofuran (PCDD/F) contaminated Grenlandfjords, Norway (4 trial plots of 10,000 to 40,000 m(2) at 30 to 100 m water depth). Active caps (designed thickness 2.5 cm) were established in 2 fjords, consisting of dredged clean clay amended with powdered activated carbon (PAC) from anthracite. These active caps were compared to 2 nonactive caps in one of the fjords (designed thickness 5 cm) consisting of either clay only (i.e., without PAC) or crushed limestone. Sediment-to-water PCDD/F fluxes were measured in situ using diffusion chambers. An earlier study showed that during the first 2 years after thin-layer capping, flux reductions relative to noncapped reference fields were more extensive at the fields capped with nonactive caps (70%-90%) than at the ones with PAC-containing caps (50%-60%). However, the present work shows that between 3 and 5 years after thin-layer capping, this trend was reversed and cap effectiveness in reducing fluxes was increasing to 80% to 90% for the PAC caps, whereas cap effectiveness of the nonactive caps decreased to 20% to 60%. The increasing effectiveness over time of PAC-containing "active" caps is explained by a combination of slow sediment-to-PAC mass transfer of PCDD/Fs and bioturbation by benthic organisms. The decreasing effectiveness of "nonactive" limestone and clay caps is explained by deposition of contaminated particles on top of the caps. The present field data indicate that the capping efficiency of thin active caps (i.e., enriched with PAC) can improve over time as a result of slow diffusive PCDD/F transfer from sediment to PAC particles and better mixing of the PAC by bioturbation. © 2015 SETAC.

  14. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-12-01

    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  15. Skin Friction Reduction Through Large-Scale Forcing

    NASA Astrophysics Data System (ADS)

    Bhatt, Shibani; Artham, Sravan; Gnanamanickam, Ebenezer

    2017-11-01

    Flow structures in a turbulent boundary layer larger than an integral length scale (δ), referred to as large-scales, interact with the finer scales in a non-linear manner. By targeting these large-scales and exploiting this non-linear interaction wall shear stress (WSS) reduction of over 10% has been achieved. The plane wall jet (PWJ), a boundary layer which has highly energetic large-scales that become turbulent independent of the near-wall finer scales, is the chosen model flow field. It's unique configuration allows for the independent control of the large-scales through acoustic forcing. Perturbation wavelengths from about 1 δ to 14 δ were considered with a reduction in WSS for all wavelengths considered. This reduction, over a large subset of the wavelengths, scales with both inner and outer variables indicating a mixed scaling to the underlying physics, while also showing dependence on the PWJ global properties. A triple decomposition of the velocity fields shows an increase in coherence due to forcing with a clear organization of the small scale turbulence with respect to the introduced large-scale. The maximum reduction in WSS occurs when the introduced large-scale acts in a manner so as to reduce the turbulent activity in the very near wall region. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0194 monitored by Dr. Douglas Smith.

  16. A unified large/small-scale dynamo in helical turbulence

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel

    2016-09-01

    We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.

  17. Restoration of a Mediterranean forest after a fire: bioremediation and rhizoremediation field-scale trial.

    PubMed

    Pizarro-Tobías, Paloma; Fernández, Matilde; Niqui, José Luis; Solano, Jennifer; Duque, Estrella; Ramos, Juan-Luis; Roca, Amalia

    2015-01-01

    Forest fires pose a serious threat to countries in the Mediterranean basin, often razing large areas of land each year. After fires, soils are more likely to erode and resilience is inhibited in part by the toxic aromatic hydrocarbons produced during the combustion of cellulose and lignins. In this study, we explored the use of bioremediation and rhizoremediation techniques for soil restoration in a field-scale trial in a protected Mediterranean ecosystem after a controlled fire. Our bioremediation strategy combined the use of Pseudomonas putida strains, indigenous culturable microbes and annual grasses. After 8 months of monitoring soil quality parameters, including the removal of monoaromatic and polycyclic aromatic hydrocarbons as well as vegetation cover, we found that the site had returned to pre-fire status. Microbial population analysis revealed that fires induced changes in the indigenous microbiota and that rhizoremediation favours the recovery of soil microbiota in time. The results obtained in this study indicate that the rhizoremediation strategy could be presented as a viable and cost-effective alternative for the treatment of ecosystems affected by fires. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay; Brandenburg, Axel, E-mail: bbkarak@nordita.org

    2016-01-01

    The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when onlymore » the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.« less

  19. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials.

  20. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  1. Biochar: from laboratory mechanisms through the greenhouse to field trials

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gao, X.; Dugan, B.; Silberg, J. J.; Zygourakis, K.; Alvarez, P. J. J.

    2014-12-01

    The biochar community is excellent at pointing to individual cases where biochar amendment has changed soil properties, with some studies showing significant improvements in crop yields, reduction in nutrient export, and remediation of pollutants. However, many studies exist which do not show improvements, and in some cases, studies clearly show detrimental outcomes. The next, crucial step in biochar science and engineering research will be to develop a process-based understanding of how biochar acts to improve soil properties. In particular, we need a better mechanistic understanding of how biochar sorbs and desorbs contaminants, how it interacts with soil water, and how it interacts with the soil microbial community. These mechanistic studies need to encompass processes that range from the nanometer to the kilometer scale. At the nanometer scale, we need a predictive model of how biochar will sorb and desorb hydrocarbons, nutrients, and toxic metals. At the micrometer scale we need models that explain biochar's effects on soil water, especially the plant-available fraction of soil water. The micrometer scale is also where mechanistic information is neeed about microbial processes. At the macroscale we need physical models to describe the landscape mobility of biochar, because biochar that washes away from fields can no longer provide crop benefits. To be most informative, biochar research should occur along a lab-greenhouse-field trial trajectory. Laboratory experiments should aim determine what mechanisms may act to control biochar-soil processes, and then greenhouse experiments can be used to test the significance of lab-derived mechanisms in short, highly replicated, controlled experiments. Once evidence of effect is determined from greenhouse experiments, field trials are merited. Field trials are the gold standard needed prior to full deployment, but results from field trials cannot be extrapolated to other field sites without the mechanistic backup provided

  2. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.« less

  3. Electron acceleration at a coronal shock propagating through a large-scale streamer-like magnetic field

    DOE PAGES

    Kong, Xiangliang; Chen, Yao; Guo, Fan; ...

    2016-04-05

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front during its propagation. We also found that in general the electron acceleration at the shock flank is not so efficient as that at the top of closed field since at the top a collapsing magnetic trap can be formed. In addition, we find that the energy spectra of electrons is power-law like, first hardening then softening with the spectral index varying in a range of -3 to -6. In conclusion, physical interpretations of the results and implications on the study of solar radio bursts are discussed.« less

  4. The persistence of large-scale blowouts in largely vegetated coastal dune fields

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Smyth, Thomas; Jackson, Derek; Davidson-Arnott, Robin; Smith, Alexander

    2016-04-01

    Coastal dunes move through natural phases of stability and instability during their evolution, displaying various temporal and spatial patterns across the dune field. Recent observations, however, have shown exceptionally rapid rates of stability through increased vegetative growth. This progressive vegetation colonisation and consequent loss of bare sand on coastal dune systems has been noted worldwide. Percentage reductions in bare sand of as much as 80% within just a few decades can been seen in examples from South Africa, Canada and Brazil as well as coastal dune sites across NW Europe. Despite these dramatic trends towards dune stabilisation, it is not uncommon to find particular examples of large-scale active blowouts and parabolic dunes within largely vegetated coastal dunes. While turbulence and airflow dynamics within features such as blowouts and other dune forms has been studied in detail within recent years, there is a lack of knowledge about what maintains dune mobility at these specific points in otherwise largely stabilized dune fields. This work explores the particular example of the 'Devil's Hole' blowout, Sefton Dunes, NW England. Approximately 300 m long by 100 m wide, its basin is below the water-table which leads to frequent flooding. Sefton Dunes in general have seen a dramatic loss of bare sand since the 1940s. However, and coinciding with this period of dune stabilisation, the 'Devil's Hole' has not only remained active but also grown in size at a rate of 4.5 m year-1 along its main axis. An exploration of factors controlling the maintenance of open bare sand areas at this particular location is examined using a variety of techniques including Computational Fluid Dynamics (CFD) airflow modelling and in situ empirical measurements of (short-term experiments) of wind turbulence and sand transport. Field measurements of wind parameters and transport processes were collected over a 2 week period during October 2015. Twenty three 3D ultrasonic

  5. Sound production due to large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.

  6. Large-scale regions of antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grobov, A. V., E-mail: alexey.grobov@gmail.com; Rubin, S. G., E-mail: sgrubin@mephi.ru

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  7. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  8. SCALES: SEVIRI and GERB CaL/VaL area for large-scale field experiments

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto; Belda, Fernando; Bodas, Alejandro; Crommelynck, Dominique; Dewitte, Steven; Domenech, Carlos; Gimeno, Jaume F.; Harries, John E.; Jorge Sanchez, Joan; Pineda, Nicolau; Pino, David; Rius, Antonio; Saleh, Kauzar; Tarruella, Ramon; Velazquez, Almudena

    2004-02-01

    The main objective of the SCALES Project is to exploit the unique opportunity offered by the recent launch of the first European METEOSAT Second Generation geostationary satellite (MSG-1) to generate and validate new radiation budget and cloud products provided by the GERB (Geostationary Earth Radiation Budget) instrument. SCALES" specific objectives are: (i) definition and characterization of a large reasonably homogeneous area compatible to GERB pixel size (around 50 x 50 km2), (ii) validation of GERB TOA radiances and fluxes derived by means of angular distribution models, (iii) development of algorithms to estimate surface net radiation from GERB TOA measurements, and (iv) development of accurate methodologies to measure radiation flux divergence and analyze its influence on the thermal regime and dynamics of the atmosphere, also using GERB data. SCALES is highly innovative: it focuses on a new and unique space instrument and develops a new specific validation methodology for low resolution sensors that is based on the use of a robust reference meteorological station (Valencia Anchor Station) around which 3D high resolution meteorological fields are obtained from the MM5 Meteorological Model. During the 1st GERB Ground Validation Campaign (18th-24th June, 2003), CERES instruments on Aqua and Terra provided additional radiance measurements to support validation efforts. CERES instruments operated in the PAPS mode (Programmable Azimuth Plane Scanning) focusing the station. Ground measurements were taken by lidar, sun photometer, GPS precipitable water content, radiosounding ascents, Anchor Station operational meteorological measurements at 2m and 15m., 4 radiation components at 2m, and mobile stations to characterize a large area. In addition, measurements during LANDSAT overpasses on June 14th and 30th were also performed. These activities were carried out within the GIST (GERB International Science Team) framework, during GERB Commissioning Period.

  9. Parsec-Scale Obscuring Accretion Disk with Large-Scale Magnetic Field in AGNs

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2017-01-01

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.

  10. Parsec-scale Obscuring Accretion Disk with Large-scale Magnetic Field in AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorodnitsyn, A.; Kallman, T.

    A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc-scale torus in AGNs. Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate thatmore » the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.« less

  11. The role of large scale motions on passive scalar transport

    NASA Astrophysics Data System (ADS)

    Dharmarathne, Suranga; Araya, Guillermo; Tutkun, Murat; Leonardi, Stefano; Castillo, Luciano

    2014-11-01

    We study direct numerical simulation (DNS) of turbulent channel flow at Reτ = 394 to investigate effect of large scale motions on fluctuating temperature field which forms a passive scalar field. Statistical description of the large scale features of the turbulent channel flow is obtained using two-point correlations of velocity components. Two-point correlations of fluctuating temperature field is also examined in order to identify possible similarities between velocity and temperature fields. The two-point cross-correlations betwen the velocity and temperature fluctuations are further analyzed to establish connections between these two fields. In addition, we use proper orhtogonal decompotion (POD) to extract most dominant modes of the fields and discuss the coupling of large scale features of turbulence and the temperature field.

  12. The role of the large-scale coronal magnetic field in the eruption of prominence/cavity systems

    NASA Astrophysics Data System (ADS)

    de Toma, G.; Gibson, S. E.; Fan, Y.; Torok, T.

    2013-12-01

    Prominence/cavity systems are large-scale coronal structures that can live for many weeks and even months and often end their life in the form of large coronal eruptions. We investigate the role of the surrounding ambient coronal field in stabilizing these systems against eruption. In particular, we examine the extent to which the decline with height of the external coronal magnetic field influences the evolution of these coronal systems and their likelihood to erupt. We study prominence/cavity systems during the rising phase of cycle 24 in 2010-2013, when a significant number of CMEs were associated with polar crown or large filament eruptions. We use EUV observations from SDO/AIA to identify stable and eruptive coronal cavities, and SDO/HMI magnetograms as boundary conditions to PFSS extrapolation to derive the ambient coronal field. We compute the decay index of the potential field for the two groups and find that systematic differences exist between eruptive and non-eruptive systems.

  13. A large-scale field trial experiment to derive effective release of heavy metals from incineration bottom ashes during construction in land reclamation.

    PubMed

    Chan, Wei-Ping; Ren, Fei; Dou, Xiaomin; Yin, Ke; Chang, Victor Wei-Chung

    2018-05-08

    Recycling of incineration bottom ashes (IBA) is attracting great interest as it is considered as a vital aspect for closing the waste loop to achieve sustainable development at the growing cities around the world. Various laboratory-testing methods are developed to assess the release potential of heavy metals - one of the most important concerns of using IBA, by reflecting the release conditions of heavy metals from IBA based on the targeted land reclamation application scenarios and corresponding environmental conditions. However, realistic release of the concerned elements in actual application with the presence of complex environment could possibly deviate from the outcomes produced by leaching tests carried out in the laboratory. Hence, a set of large-scale column trial experiments was performed to experimentally determine the effective release of heavy metals, when IBA is used as a filling material in land reclamation. 20 tons of IBA and 320 m 3 of seawater were used in six column trial experiments. The release of 13 heavy metal elements was analyzed through multiple aspects which included kinetics of release, distribution of elements in seawater and the impacts of two different dumping methods, with and without application of a chute. After dumping of IBA into the seawater, almost instantaneous release of heavy metals with uniform horizontal dispersion was observed. Higher concentration of these elements was observed near the bottom of the column, especially when a chute was applied. Comparative analysis was then carried out to establish relationships between the results obtained from the column trial with batch leaching test carried out in the laboratory. Distinctive relationships were observed for different heavy metals which suggests the need of pursuance of further understanding on leaching of IBA in real application scenario and complex environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  15. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    NASA Astrophysics Data System (ADS)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  16. Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo

    2018-04-01

    We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.

  17. Comparison of H-alpha synoptic charts with the large-scale solar magnetic field as observed at Stanford

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Wilcox, J. M.; Svalgaard, L.; Scherrer, P. H.; Mcintosh, P. S.

    1977-01-01

    Two methods of observing the neutral line of the large-scale photospheric magnetic field are compared: neutral line positions inferred from H-alpha photographs (McIntosh and Nolte, 1975) and observations of the photospheric magnetic field made with low spatial resolution (three minutes) and high sensitivity using the Stanford magnetograph. The comparison is found to be very favorable.

  18. Transition from large-scale to small-scale dynamo.

    PubMed

    Ponty, Y; Plunian, F

    2011-04-15

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a generalized α effect, which includes both the usual α effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized α effect scales as O(Rm(-1)), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  19. Large scale structure from the Higgs fields of the supersymmetric standard model

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, M.; di Clemente, V.; King, S. F.

    2003-05-01

    We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, |n-1|˜0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum.

  20. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize

  1. Development of Dynamic Flow Field Pressure Probes Suitable for Use in Large Scale Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2000-01-01

    A series of dynamic flow field pressure probes were developed for use in large-scale supersonic wind tunnels at NASA Glenn Research Center. These flow field probes include pitot, static, and five-hole conical pressure probes that are capable of capturing fast acting flow field pressure transients that occur on a millisecond time scale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The five-hole conical pressure probes are used primarily to determine local flow angularity, but can also determine local Mach number. These probes were designed, developed, and tested at the NASA Glenn Research Center. They were also used in a NASA Glenn 10-by 10-Foot Supersonic Wind Tunnel (SWT) test program where they successfully acquired flow field pressure data in the vicinity of a propulsion system during an engine compressor staff and inlet unstart transient event. Details of the design, development, and subsequent use of these probes are discussed in this report.

  2. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  3. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less

  4. Large-scale dynamo action precedes turbulence in shearing box simulations of the magnetorotational instability

    DOE PAGES

    Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.

    2016-07-06

    Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less

  5. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  6. Large- to small-scale dynamo in domains of large aspect ratio: kinematic regime

    NASA Astrophysics Data System (ADS)

    Shumaylova, Valeria; Teed, Robert J.; Proctor, Michael R. E.

    2017-04-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In this work, we look for numerical evidence of a large-scale magnetic field as the magnetic Reynolds number, Rm, is increased. The investigation is based on the simulations of the induction equation in elongated periodic boxes. The imposed flows considered are the standard ABC flow (named after Arnold, Beltrami & Childress) with wavenumber ku = 1 (small-scale) and a modulated ABC flow with wavenumbers ku = m, 1, 1 ± m, where m is the wavenumber corresponding to the long-wavelength perturbation on the scale of the box. The critical magnetic Reynolds number R_m^{crit} decreases as the permitted scale separation in the system increases, such that R_m^{crit} ∝ [L_x/L_z]^{-1/2}. The results show that the α-effect derived from the mean-field theory ansatz is valid for a small range of Rm after which small scale dynamo instability occurs and the mean-field approximation is no longer valid. The transition from large- to small-scale dynamo is smooth and takes place in two stages: a fast transition into a predominantly small-scale magnetic energy state and a slower transition into even smaller scales. In the range of Rm considered, the most energetic Fourier component corresponding to the structure in the long x-direction has twice the length-scale of the forcing scale. The long-wavelength perturbation imposed on the ABC flow in the modulated case is not preserved in the eigenmodes of the magnetic field.

  7. Large-scale randomized clinical trials of bioactives and nutrients in relation to human health and disease prevention - Lessons from the VITAL and COSMOS trials.

    PubMed

    Rautiainen, Susanne; Sesso, Howard D; Manson, JoAnn E

    2017-12-29

    Several bioactive compounds and nutrients in foods have physiological properties that are beneficial for human health. While nutrients typically have clear definitions with established levels of recommended intakes, bioactive compounds often lack such a definition. Although a food-based approach is often the optimal approach to ensure adequate intake of bioactives and nutrients, these components are also often produced as dietary supplements. However, many of these supplements are not sufficiently studied and have an unclear role in chronic disease prevention. Randomized trials are considered the gold standard of study designs, but have not been fully applied to understand the effects of bioactives and nutrients. We review the specific role of large-scale trials to test whether bioactives and nutrients have an effect on health outcomes through several crucial components of trial design, including selection of intervention, recruitment, compliance, outcome selection, and interpretation and generalizability of study findings. We will discuss these components in the context of two randomized clinical trials, the VITamin D and OmegA-3 TriaL (VITAL) and the COcoa Supplement and Multivitamin Outcomes Study (COSMOS). We will mainly focus on dietary supplements of bioactives and nutrients while also emphasizing the need for translation and integration with food-based trials that are of vital importance within nutritional research. Copyright © 2017. Published by Elsevier Ltd.

  8. Bias in the effective field theory of large scale structures

    DOE PAGES

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local inmore » space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/k NL and k/k M, where k is the wavenumber of interest, k NL is the wavenumber associated to the non-linear scale, and k M is the comoving wavenumber enclosing the mass of a galaxy.« less

  9. Large-Scale 3D Printing: The Way Forward

    NASA Astrophysics Data System (ADS)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  10. Dissecting the large-scale galactic conformity

    NASA Astrophysics Data System (ADS)

    Seo, Seongu

    2018-01-01

    Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.

  11. Coronal hole evolution by sudden large scale changes

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.

    1978-01-01

    Sudden shifts in coronal-hole boundaries observed by the S-054 X-ray telescope on Skylab between May and November, 1973, within 1 day of CMP of the holes, at latitudes not exceeding 40 deg, are compared with the long-term evolution of coronal-hole area. It is found that large-scale shifts in boundary locations can account for most if not all of the evolution of coronal holes. The temporal and spatial scales of these large-scale changes imply that they are the results of a physical process occurring in the corona. It is concluded that coronal holes evolve by magnetic-field lines' opening when the holes are growing, and by fields' closing as the holes shrink.

  12. On the Fluctuating Component of the Sun's Large-Scale Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Sheeley, N. R., Jr.

    2003-06-01

    The Sun's large-scale magnetic field and its proxies are known to undergo substantial variations on timescales much less than a solar cycle but longer than a rotation period. Examples of such variations include the double activity maximum inferred by Gnevyshev, the large peaks in the interplanetary field strength observed in 1982 and 1991, and the 1.3-1.4 yr periodicities detected over limited time intervals in solar wind speed and geomagnetic activity. We consider the question of the extent to which these variations are stochastic in nature. For this purpose, we simulate the evolution of the Sun's equatorial dipole strength and total open flux under the assumption that the active region sources (BMRs) are distributed randomly in longitude. The results are then interpreted with the help of a simple random walk model including dissipation. We find that the equatorial dipole and open flux generally exhibit multiple peaks during each 11 yr cycle, with the highest peak as likely to occur during the declining phase as at sunspot maximum. The widths of the peaks are determined by the timescale τ~1 yr for the equatorial dipole to decay through the combined action of meridional flow, differential rotation, and supergranular diffusion. The amplitudes of the fluctuations depend on the strengths and longitudinal phase relations of the BMRs, as well as on the relative rates of flux emergence and decay. We conclude that stochastic processes provide a viable explanation for the ``Gnevyshev gaps'' and for the existence of quasi periodicities in the range ~1-3 yr.

  13. Latitudinal variability of large-scale coronal temperature and its association with the density and the global magnetic field

    NASA Technical Reports Server (NTRS)

    Guhathakurta, M.; Fisher, R. R.

    1994-01-01

    In this paper we utilize the latitiude distribution of the coronal temperature during the period 1984-1992 that was derived in a paper by Guhathakurta et al, 1993, utilizing ground-based intensity observations of the green (5303 A Fe XIV) and red (6374 A Fe X) coronal forbidden lines from the National Solar Observatory at Sacramento Peak, and establish it association with the global magnetic field and the density distributions in the corona. A determination of plasma temperature, T, was estimated from the intensity ratio Fe X/Fe XIV (where T is inversely proportional to the ratio), since both emission lines come from ionized states of Fe, and the ratio is only weakly dependent on density. We observe that there is a large-scale organization of the inferred coronal temperature distribution that is associated with the large-scale, weak magnetic field structures and bright coronal features; this organization tends to persist through most of the magnetic activity cycle. These high-temperature structures exhibit time-space characteristics which are similar to those of the polar crown filaments. This distribution differs in spatial and temporal characterization from the traditional picture of sunspot and active region evolution over the range of the sunspot cycle, which are manifestations of the small-scale, strong magnetic field regions.

  14. Modulation of Small-scale Turbulence Structure by Large-scale Motions in the Absence of Direct Energy Transfer.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1996-11-01

    Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117

  15. The structure of the white-light corona and the large-scale solar magnetic field

    NASA Technical Reports Server (NTRS)

    Sime, D. G.; Mccabe, M. K.

    1990-01-01

    The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.

  16. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  17. The role of the large scale convection electric field in erosion of the plasmasphere during moderate and strong storms

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.

    2015-12-01

    The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.

  18. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  19. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  20. Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock.

    PubMed

    Bale, S D; Mozer, F S

    2007-05-18

    Large parallel (fields were measured in the Earth's bow shock by the vector electric field experiment on the Polar satellite. These are the first reported direct measurements of parallel electric fields in a collisionless shock. These fields exist on spatial scales comparable to or less than the electron skin depth (a few kilometers) and correspond to magnetic-field-aligned potentials of tens of volts and perpendicular potentials up to a kilovolt. The perpendicular fields are amongst the largest ever measured in space, with energy densities of epsilon0E2/nkBTe of the order of 10%. The measured parallel electric field implies that the electrons are demagnetized, which may result in stochastic (rather than coherent) electron heating.

  1. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  2. The trispectrum in the Effective Field Theory of Large Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.

    2016-06-01

    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporatemore » vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.« less

  3. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  4. Double inflation - A possible resolution of the large-scale structure problem

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman

    1987-01-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.

  5. A LARGE-SCALE CLUSTER RANDOMIZED TRIAL TO DETERMINE THE EFFECTS OF COMMUNITY-BASED DIETARY SODIUM REDUCTION – THE CHINA RURAL HEALTH INITIATIVE SODIUM REDUCTION STUDY

    PubMed Central

    Li, Nicole; Yan, Lijing L.; Niu, Wenyi; Labarthe, Darwin; Feng, Xiangxian; Shi, Jingpu; Zhang, Jianxin; Zhang, Ruijuan; Zhang, Yuhong; Chu, Hongling; Neiman, Andrea; Engelgau, Michael; Elliott, Paul; Wu, Yangfeng; Neal, Bruce

    2013-01-01

    Background Cardiovascular diseases are the leading cause of death and disability in China. High blood pressure caused by excess intake of dietary sodium is widespread and an effective sodium reduction program has potential to improve cardiovascular health. Design This study is a large-scale, cluster-randomized, trial done in five Northern Chinese provinces. Two counties have been selected from each province and 12 townships in each county making a total of 120 clusters. Within each township one village has been selected for participation with 1:1 randomization stratified by county. The sodium reduction intervention comprises community health education and a food supply strategy based upon providing access to salt substitute. Subsidization of the price of salt substitute was done in 30 intervention villages selected at random. Control villages continued usual practices. The primary outcome for the study is dietary sodium intake level estimated from assays of 24 hour urine. Trial status The trial recruited and randomized 120 townships in April 2011. The sodium reduction program was commenced in the 60 intervention villages between May and June of that year with outcome surveys scheduled for October to December 2012. Baseline data collection shows that randomisation achieved good balance across groups. Discussion The establishment of the China Rural Health Initiative has enabled the launch of this large-scale trial designed to identify a novel, scalable strategy for reduction of dietary sodium and control of blood pressure. If proved effective, the intervention could plausibly be implemented at low cost in large parts of China and other countries worldwide. PMID:24176436

  6. Use of electronic healthcare records in large-scale simple randomized trials at the point of care for the documentation of value-based medicine.

    PubMed

    van Staa, T-P; Klungel, O; Smeeth, L

    2014-06-01

    A solid foundation of evidence of the effects of an intervention is a prerequisite of evidence-based medicine. The best source of such evidence is considered to be randomized trials, which are able to avoid confounding. However, they may not always estimate effectiveness in clinical practice. Databases that collate anonymized electronic health records (EHRs) from different clinical centres have been widely used for many years in observational studies. Randomized point-of-care trials have been initiated recently to recruit and follow patients using the data from EHR databases. In this review, we describe how EHR databases can be used for conducting large-scale simple trials and discuss the advantages and disadvantages of their use. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  7. Follow YOUR Heart: development of an evidence-based campaign empowering older women with HIV to participate in a large-scale cardiovascular disease prevention trial.

    PubMed

    Zanni, Markella V; Fitch, Kathleen; Rivard, Corinne; Sanchez, Laura; Douglas, Pamela S; Grinspoon, Steven; Smeaton, Laura; Currier, Judith S; Looby, Sara E

    2017-03-01

    Women's under-representation in HIV and cardiovascular disease (CVD) research suggests a need for novel strategies to ensure robust representation of women in HIV-associated CVD research. To elicit perspectives on CVD research participation among a community-sample of women with or at risk for HIV, and to apply acquired insights toward the development of an evidence-based campaign empowering older women with HIV to participate in a large-scale CVD prevention trial. In a community-based setting, we surveyed 40 women with or at risk for HIV about factors which might facilitate or impede engagement in CVD research. We applied insights derived from these surveys into the development of the Follow YOUR Heart campaign, educating women about HIV-associated CVD and empowering them to learn more about a multi-site HIV-associated CVD prevention trial: REPRIEVE. Endorsed best methods for learning about a CVD research study included peer-to-peer communication (54%), provider communication (46%) and video-based communication (39%). Top endorsed non-monetary reasons for participating in research related to gaining information (63%) and helping others (47%). Top endorsed reasons for not participating related to lack of knowledge about studies (29%) and lack of request to participate (29%). Based on survey results, the REPRIEVE Follow YOUR Heart campaign was developed. Interwoven campaign components (print materials, video, web presence) offer provider-based information/knowledge, peer-to-peer communication, and empowerment to learn more. Campaign components reflect women's self-identified motivations for research participation - education and altruism. Investigation of factors influencing women's participation in HIV-associated CVD research may be usefully applied to develop evidence-based strategies for enhancing women's enrollment in disease-specific large-scale trials. If proven efficacious, such strategies may enhance conduct of large-scale research studies across disciplines.

  8. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    NASA Astrophysics Data System (ADS)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration

  9. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  10. Large-scale velocities and primordial non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Fabian

    2010-09-15

    We study the peculiar velocities of density peaks in the presence of primordial non-Gaussianity. Rare, high-density peaks in the initial density field can be identified with tracers such as galaxies and clusters in the evolved matter distribution. The distribution of relative velocities of peaks is derived in the large-scale limit using two different approaches based on a local biasing scheme. Both approaches agree, and show that halos still stream with the dark matter locally as well as statistically, i.e. they do not acquire a velocity bias. Nonetheless, even a moderate degree of (not necessarily local) non-Gaussianity induces a significant skewnessmore » ({approx}0.1-0.2) in the relative velocity distribution, making it a potentially interesting probe of non-Gaussianity on intermediate to large scales. We also study two-point correlations in redshift space. The well-known Kaiser formula is still a good approximation on large scales, if the Gaussian halo bias is replaced with its (scale-dependent) non-Gaussian generalization. However, there are additional terms not encompassed by this simple formula which become relevant on smaller scales (k > or approx. 0.01h/Mpc). Depending on the allowed level of non-Gaussianity, these could be of relevance for future large spectroscopic surveys.« less

  11. A large-scale cluster randomized trial to determine the effects of community-based dietary sodium reduction--the China Rural Health Initiative Sodium Reduction Study.

    PubMed

    Li, Nicole; Yan, Lijing L; Niu, Wenyi; Labarthe, Darwin; Feng, Xiangxian; Shi, Jingpu; Zhang, Jianxin; Zhang, Ruijuan; Zhang, Yuhong; Chu, Hongling; Neiman, Andrea; Engelgau, Michael; Elliott, Paul; Wu, Yangfeng; Neal, Bruce

    2013-11-01

    Cardiovascular diseases are the leading cause of death and disability in China. High blood pressure caused by excess intake of dietary sodium is widespread and an effective sodium reduction program has potential to improve cardiovascular health. This study is a large-scale, cluster-randomized, trial done in five Northern Chinese provinces. Two counties have been selected from each province and 12 townships in each county making a total of 120 clusters. Within each township one village has been selected for participation with 1:1 randomization stratified by county. The sodium reduction intervention comprises community health education and a food supply strategy based upon providing access to salt substitute. Subsidization of the price of salt substitute was done in 30 intervention villages selected at random. Control villages continued usual practices. The primary outcome for the study is dietary sodium intake level estimated from assays of 24-hour urine. The trial recruited and randomized 120 townships in April 2011. The sodium reduction program was commenced in the 60 intervention villages between May and June of that year with outcome surveys scheduled for October to December 2012. Baseline data collection shows that randomisation achieved good balance across groups. The establishment of the China Rural Health Initiative has enabled the launch of this large-scale trial designed to identify a novel, scalable strategy for reduction of dietary sodium and control of blood pressure. If proved effective, the intervention could plausibly be implemented at low cost in large parts of China and other countries worldwide. © 2013.

  12. Experiences in running a complex electronic data capture system using mobile phones in a large-scale population trial in southern Nepal.

    PubMed

    Style, Sarah; Beard, B James; Harris-Fry, Helen; Sengupta, Aman; Jha, Sonali; Shrestha, Bhim P; Rai, Anjana; Paudel, Vikas; Thondoo, Meelan; Pulkki-Brannstrom, Anni-Maria; Skordis-Worrall, Jolene; Manandhar, Dharma S; Costello, Anthony; Saville, Naomi M

    2017-01-01

    The increasing availability and capabilities of mobile phones make them a feasible means of data collection. Electronic Data Capture (EDC) systems have been used widely for public health monitoring and surveillance activities, but documentation of their use in complicated research studies requiring multiple systems is limited. This paper shares our experiences of designing and implementing a complex multi-component EDC system for a community-based four-armed cluster-Randomised Controlled Trial in the rural plains of Nepal, to help other researchers planning to use EDC for complex studies in low-income settings. We designed and implemented three interrelated mobile phone data collection systems to enrol and follow-up pregnant women (trial participants), and to support the implementation of trial interventions (women's groups, food and cash transfers). 720 field staff used basic phones to send simple coded text messages, 539 women's group facilitators used Android smartphones with Open Data Kit Collect, and 112 Interviewers, Coordinators and Supervisors used smartphones with CommCare. Barcoded photo ID cards encoded with participant information were generated for each enrolled woman. Automated systems were developed to download, recode and merge data for nearly real-time access by researchers. The systems were successfully rolled out and used by 1371 staff. A total of 25,089 pregnant women were enrolled, and 17,839 follow-up forms completed. Women's group facilitators recorded 5717 women's groups and the distribution of 14,647 food and 13,482 cash transfers. Using EDC sped up data collection and processing, although time needed for programming and set-up delayed the study inception. EDC using three interlinked mobile data management systems (FrontlineSMS, ODK and CommCare) was a feasible and effective method of data capture in a complex large-scale trial in the plains of Nepal. Despite challenges including prolonged set-up times, the systems met multiple data

  13. Experiences in running a complex electronic data capture system using mobile phones in a large-scale population trial in southern Nepal

    PubMed Central

    Style, Sarah; Beard, B. James; Harris-Fry, Helen; Sengupta, Aman; Jha, Sonali; Shrestha, Bhim P.; Rai, Anjana; Paudel, Vikas; Thondoo, Meelan; Pulkki-Brannstrom, Anni-Maria; Skordis-Worrall, Jolene; Manandhar, Dharma S.; Costello, Anthony; Saville, Naomi M.

    2017-01-01

    ABSTRACT The increasing availability and capabilities of mobile phones make them a feasible means of data collection. Electronic Data Capture (EDC) systems have been used widely for public health monitoring and surveillance activities, but documentation of their use in complicated research studies requiring multiple systems is limited. This paper shares our experiences of designing and implementing a complex multi-component EDC system for a community-based four-armed cluster-Randomised Controlled Trial in the rural plains of Nepal, to help other researchers planning to use EDC for complex studies in low-income settings. We designed and implemented three interrelated mobile phone data collection systems to enrol and follow-up pregnant women (trial participants), and to support the implementation of trial interventions (women’s groups, food and cash transfers). 720 field staff used basic phones to send simple coded text messages, 539 women’s group facilitators used Android smartphones with Open Data Kit Collect, and 112 Interviewers, Coordinators and Supervisors used smartphones with CommCare. Barcoded photo ID cards encoded with participant information were generated for each enrolled woman. Automated systems were developed to download, recode and merge data for nearly real-time access by researchers. The systems were successfully rolled out and used by 1371 staff. A total of 25,089 pregnant women were enrolled, and 17,839 follow-up forms completed. Women’s group facilitators recorded 5717 women’s groups and the distribution of 14,647 food and 13,482 cash transfers. Using EDC sped up data collection and processing, although time needed for programming and set-up delayed the study inception. EDC using three interlinked mobile data management systems (FrontlineSMS, ODK and CommCare) was a feasible and effective method of data capture in a complex large-scale trial in the plains of Nepal. Despite challenges including prolonged set-up times, the systems met

  14. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE PAGES

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  15. Characterizing stroke lesions using digital templates and lesion quantification tools in a web-based imaging informatics system for a large-scale stroke rehabilitation clinical trial

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Edwardson, Matthew; Dromerick, Alexander; Winstein, Carolee; Wang, Jing; Liu, Brent

    2015-03-01

    Previously, we presented an Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) imaging informatics system that supports a large-scale phase III stroke rehabilitation trial. The ePR system is capable of displaying anonymized patient imaging studies and reports, and the system is accessible to multiple clinical trial sites and users across the United States via the web. However, the prior multicenter stroke rehabilitation trials lack any significant neuroimaging analysis infrastructure. In stroke related clinical trials, identification of the stroke lesion characteristics can be meaningful as recent research shows that lesion characteristics are related to stroke scale and functional recovery after stroke. To facilitate the stroke clinical trials, we hope to gain insight into specific lesion characteristics, such as vascular territory, for patients enrolled into large stroke rehabilitation trials. To enhance the system's capability for data analysis and data reporting, we have integrated new features with the system: a digital brain template display, a lesion quantification tool and a digital case report form. The digital brain templates are compiled from published vascular territory templates at each of 5 angles of incidence. These templates were updated to include territories in the brainstem using a vascular territory atlas and the Medical Image Processing, Analysis and Visualization (MIPAV) tool. The digital templates are displayed for side-by-side comparisons and transparent template overlay onto patients' images in the image viewer. The lesion quantification tool quantifies planimetric lesion area from user-defined contour. The digital case report form stores user input into a database, then displays contents in the interface to allow for reviewing, editing, and new inputs. In sum, the newly integrated system features provide the user with readily-accessible web-based tools to identify the vascular territory involved, estimate lesion area

  16. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  17. Substorm-associated large-scale magnetic field changes in the magnetotail: a prerequisite for magnetotail deflation events

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Kamide, Y.

    2003-04-01

    An attempt is made to search for a critical condition in the lobe magnetic field to initiate large-scale magnetic field changes associated with substorm expansions. Using data from ISEE-1 for 1978, sudden decreases in the lobe magnetic field accompanied by magnetic field dipolarizations are identified. In this study, such events are designated as the magnetotail deflation. The magnetic field component parallel to the equatorial plane, BE , is normalized to a fixed geocentric distance, BEN , and is corrected for the compression effect of the solar wind dynamic pres-sure, BENC . It is shown that the BENC value just prior to a magnetotail deflation correlates well with the Dst index; BENC = 37.5 - 0.217 Dst0, where Dst0 denotes the Dst value corrected for the solar wind dynamic pressure. This regression function appears to delineate the upper limit of BENC values, when they are sorted by the Dst0 index. On the basis of this finding it is suggested that a prerequisite condition for magnetotail deflations must exist in the magnetosphere.

  18. Financial management of a large multisite randomized clinical trial.

    PubMed

    Sheffet, Alice J; Flaxman, Linda; Tom, MeeLee; Hughes, Susan E; Longbottom, Mary E; Howard, Virginia J; Marler, John R; Brott, Thomas G

    2014-08-01

    The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) received five years' funding ($21 112 866) from the National Institutes of Health to compare carotid stenting to surgery for stroke prevention in 2500 randomized participants at 40 sites. Herein we evaluate the change in the CREST budget from a fixed to variable-cost model and recommend strategies for the financial management of large-scale clinical trials. Projections of the original grant's fixed-cost model were compared to the actual costs of the revised variable-cost model. The original grant's fixed-cost budget included salaries, fringe benefits, and other direct and indirect costs. For the variable-cost model, the costs were actual payments to the clinical sites and core centers based upon actual trial enrollment. We compared annual direct and indirect costs and per-patient cost for both the fixed and variable models. Differences between clinical site and core center expenditures were also calculated. Using a variable-cost budget for clinical sites, funding was extended by no-cost extension from five to eight years. Randomizing sites tripled from 34 to 109. Of the 2500 targeted sample size, 138 (5·5%) were randomized during the first five years and 1387 (55·5%) during the no-cost extension. The actual per-patient costs of the variable model were 9% ($13 845) of the projected per-patient costs ($152 992) of the fixed model. Performance-based budgets conserve funding, promote compliance, and allow for additional sites at modest additional cost. Costs of large-scale clinical trials can thus be reduced through effective management without compromising scientific integrity. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.

  19. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    NASA Astrophysics Data System (ADS)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  20. Large-scale volcanism associated with coronae on Venus

    NASA Technical Reports Server (NTRS)

    Roberts, K. Magee; Head, James W.

    1993-01-01

    The formation and evolution of coronae on Venus are thought to be the result of mantle upwellings against the crust and lithosphere and subsequent gravitational relaxation. A variety of other features on Venus have been linked to processes associated with mantle upwelling, including shield volcanoes on large regional rises such as Beta, Atla and Western Eistla Regiones and extensive flow fields such as Mylitta and Kaiwan Fluctus near the Lada Terra/Lavinia Planitia boundary. Of these features, coronae appear to possess the smallest amounts of associated volcanism, although volcanism associated with coronae has only been qualitatively examined. An initial survey of coronae based on recent Magellan data indicated that only 9 percent of all coronae are associated with substantial amounts of volcanism, including interior calderas or edifices greater than 50 km in diameter and extensive, exterior radial flow fields. Sixty-eight percent of all coronae were found to have lesser amounts of volcanism, including interior flooding and associated volcanic domes and small shields; the remaining coronae were considered deficient in associated volcanism. It is possible that coronae are related to mantle plumes or diapirs that are lower in volume or in partial melt than those associated with the large shields or flow fields. Regional tectonics or variations in local crustal and thermal structure may also be significant in determining the amount of volcanism produced from an upwelling. It is also possible that flow fields associated with some coronae are sheet-like in nature and may not be readily identified. If coronae are associated with volcanic flow fields, then they may be a significant contributor to plains formation on Venus, as they number over 300 and are widely distributed across the planet. As a continuation of our analysis of large-scale volcanism on Venus, we have reexamined the known population of coronae and assessed quantitatively the scale of volcanism associated

  1. Large scale structure in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard

    1986-01-01

    The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.

  2. Small-scale monitoring - can it be integrated with large-scale programs?

    Treesearch

    C. M. Downes; J. Bart; B. T. Collins; B. Craig; B. Dale; E. H. Dunn; C. M. Francis; S. Woodley; P. Zorn

    2005-01-01

    There are dozens of programs and methodologies for monitoring and inventory of bird populations, differing in geographic scope, species focus, field methods and purpose. However, most of the emphasis has been placed on large-scale monitoring programs. People interested in assessing bird numbers and long-term trends in small geographic areas such as a local birding area...

  3. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  4. Statistical Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard

    1993-12-01

    \\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.

  5. Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions

    NASA Astrophysics Data System (ADS)

    Schöller, Simon F.; Keaveny, Eric E.

    2016-11-01

    Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.

  6. Financial Management of a Large Multi-site Randomized Clinical Trial

    PubMed Central

    Sheffet, Alice J.; Flaxman, Linda; Tom, MeeLee; Hughes, Susan E.; Longbottom, Mary E.; Howard, Virginia J.; Marler, John R.; Brott, Thomas G.

    2014-01-01

    Background The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) received five years’ funding ($21,112,866) from the National Institutes of Health to compare carotid stenting to surgery for stroke prevention in 2,500 randomized participants at 40 sites. Aims Herein we evaluate the change in the CREST budget from a fixed to variable-cost model and recommend strategies for the financial management of large-scale clinical trials. Methods Projections of the original grant’s fixed-cost model were compared to the actual costs of the revised variable-cost model. The original grant’s fixed-cost budget included salaries, fringe benefits, and other direct and indirect costs. For the variable-cost model, the costs were actual payments to the clinical sites and core centers based upon actual trial enrollment. We compared annual direct and indirect costs and per-patient cost for both the fixed and variable models. Differences between clinical site and core center expenditures were also calculated. Results Using a variable-cost budget for clinical sites, funding was extended by no-cost extension from five to eight years. Randomizing sites tripled from 34 to 109. Of the 2,500 targeted sample size, 138 (5.5%) were randomized during the first five years and 1,387 (55.5%) during the no-cost extension. The actual per-patient costs of the variable model were 9% ($13,845) of the projected per-patient costs ($152,992) of the fixed model. Conclusions Performance-based budgets conserve funding, promote compliance, and allow for additional sites at modest additional cost. Costs of large-scale clinical trials can thus be reduced through effective management without compromising scientific integrity. PMID:24661748

  7. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  8. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    DOE PAGES

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; ...

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/k NL, where k is the wavenumber of interest and k NL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃more » 0.3 h Mpc –1 and k ≃ 0.6 h Mpc –1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ 8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc –1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc –1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.« less

  9. Probing Inflation Using Galaxy Clustering On Ultra-Large Scales

    NASA Astrophysics Data System (ADS)

    Dalal, Roohi; de Putter, Roland; Dore, Olivier

    2018-01-01

    A detailed understanding of curvature perturbations in the universe is necessary to constrain theories of inflation. In particular, measurements of the local non-gaussianity parameter, flocNL, enable us to distinguish between two broad classes of inflationary theories, single-field and multi-field inflation. While most single-field theories predict flocNL ≈ ‑5/12 (ns -1), in multi-field theories, flocNL is not constrained to this value and is allowed to be observably large. Achieving σ(flocNL) = 1 would give us discovery potential for detecting multi-field inflation, while finding flocNL=0 would rule out a good fraction of interesting multi-field models. We study the use of galaxy clustering on ultra-large scales to achieve this level of constraint on flocNL. Upcoming surveys such as Euclid and LSST will give us galaxy catalogs from which we can construct the galaxy power spectrum and hence infer a value of flocNL. We consider two possible methods of determining the galaxy power spectrum from a catalog of galaxy positions: the traditional Feldman Kaiser Peacock (FKP) Power Spectrum Estimator, and an Optimal Quadratic Estimator (OQE). We implemented and tested each method using mock galaxy catalogs, and compared the resulting constraints on flocNL. We find that the FKP estimator can measure flocNL in an unbiased way, but there remains room for improvement in its precision. We also find that the OQE is not computationally fast, but remains a promising option due to its ability to isolate the power spectrum at large scales. We plan to extend this research to study alternative methods, such as pixel-based likelihood functions. We also plan to study the impact of general relativistic effects at these scales on our ability to measure flocNL.

  10. Motions of charged particles in the Magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields were quite complex in the region of the inner magnetosphere. The Volland-Stern type large scale convection electric field was used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 measurements. A time dependence in this electric field was introduced based on the variation in Kp for actual magnetic storm conditions. The particle trajectories were computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments were allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format.

  11. Optimizing Implementation of Obesity Prevention Programs: A Qualitative Investigation Within a Large-Scale Randomized Controlled Trial.

    PubMed

    Kozica, Samantha L; Teede, Helena J; Harrison, Cheryce L; Klein, Ruth; Lombard, Catherine B

    2016-01-01

    The prevalence of obesity in rural and remote areas is elevated in comparison to urban populations, highlighting the need for interventions targeting obesity prevention in these settings. Implementing evidence-based obesity prevention programs is challenging. This study aimed to investigate factors influencing the implementation of obesity prevention programs, including adoption, program delivery, community uptake, and continuation, specifically within rural settings. Nested within a large-scale randomized controlled trial, a qualitative exploratory approach was adopted, with purposive sampling techniques utilized, to recruit stakeholders from 41 small rural towns in Australia. In-depth semistructured interviews were conducted with clinical health professionals, health service managers, and local government employees. Open coding was completed independently by 2 investigators and thematic analysis undertaken. In-depth interviews revealed that obesity prevention programs were valued by the rural workforce. Program implementation is influenced by interrelated factors across: (1) contextual factors and (2) organizational capacity. Key recommendations to manage the challenges of implementing evidence-based programs focused on reducing program delivery costs, aided by the provision of a suite of implementation and evaluation resources. Informing the scale-up of future prevention programs, stakeholders highlighted the need to build local rural capacity through developing supportive university partnerships, generating local program ownership and promoting active feedback to all program partners. We demonstrate that the rural workforce places a high value on obesity prevention programs. Our results inform the future scale-up of obesity prevention programs, providing an improved understanding of strategies to optimize implementation of evidence-based prevention programs. © 2015 National Rural Health Association.

  12. Large-scale magnetic topologies of early M dwarfs

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Morin, J.; Petit, P.; Delfosse, X.; Forveille, T.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.

    2008-10-01

    We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0-M3), that is above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarized profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of six early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field resembling those found in mid-M dwarfs. This abrupt change in the large-scale magnetic topologies of M dwarfs (occurring at spectral type M3) has no related signature on X-ray luminosities (measuring the total amount of magnetic flux); it thus suggests that underlying dynamo processes become more efficient at producing large-scale fields (despite producing the same flux) at spectral types later than M3. We suspect that this change relates to the rapid decrease in the radiative cores of low-mass stars and to the simultaneous sharp increase of the convective turnover times (with decreasing stellar mass) that models predict to occur at M3; it may also be (at least partly) responsible for the reduced magnetic braking reported for fully convective stars. Based on observations obtained at the Télescope Bernard Lyot (TBL), operated by the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France. E-mail: donati@ast.obs-mip.fr (J-FD); jmorin@ast.obs-mip.fr (JM); petit

  13. Measuring Cosmic Expansion and Large Scale Structure with Destiny

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Lauer, Tod R.

    2007-01-01

    Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram and by measuring the large-scale mass power spectrum over time. Its science instrument is a 1.65m space telescope, featuring a near-infrared survey camera/spectrometer with a large field of view. During its first two years, Destiny will detect, observe, and characterize 23000 SN Ia events over the redshift interval 0.4field imager to conduct a weak lensing survey covering >lo00 square degrees to measure the large-scale mass power spectrum. The combination of surveys is much more powerful than either technique on its own, and will have over an order of magnitude greater sensitivity than will be provided by ongoing ground-based projects.

  14. Large-scale motions in the universe: Using clusters of galaxies as tracers

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt; Bahcall, Neta A.; Cen, Renyue; Gott, J. Richard

    1995-01-01

    Can clusters of galaxies be used to trace the large-scale peculiar velocity field of the universe? We answer this question by using large-scale cosmological simulations to compare the motions of rich clusters of galaxies with the motion of the underlying matter distribution. Three models are investigated: Omega = 1 and Omega = 0.3 cold dark matter (CDM), and Omega = 0.3 primeval baryonic isocurvature (PBI) models, all normalized to the Cosmic Background Explorer (COBE) background fluctuations. We compare the cluster and mass distribution of peculiar velocities, bulk motions, velocity dispersions, and Mach numbers as a function of scale for R greater than or = 50/h Mpc. We also present the large-scale velocity and potential maps of clusters and of the matter. We find that clusters of galaxies trace well the large-scale velocity field and can serve as an efficient tool to constrain cosmological models. The recently reported bulk motion of clusters 689 +/- 178 km/s on approximately 150/h Mpc scale (Lauer & Postman 1994) is larger than expected in any of the models studied (less than or = 190 +/- 78 km/s).

  15. On the influences of key modelling constants of large eddy simulations for large-scale compartment fires predictions

    NASA Astrophysics Data System (ADS)

    Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy

    2017-09-01

    An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.

  16. An investigation of the sound field above the audience in large lecture halls with a scale model.

    PubMed

    Kahn, D W; Tichy, J

    1986-09-01

    Measurements of steady-state sound pressure levels above the audience in large lecture halls show that the classical equation for predicting the sound pressure level is not accurate. The direct field above the seats was measured on a 1:10 scale model and was found to be dependent on the incidence angle and direction of sound propagation across the audience. The reverberant field above the seats in the model was calculated by subtracting the direct field from the measured total field and was found to be dependent on the magnitude and particularly on the placement of absorption. The decrease of sound pressure level versus distance in the total field depends on the angle (controlled by absorption placement) at which the strong reflections are incident upon the audience area. Sound pressure level decreases at a fairly constant rate with distance from the sound source in both the direct and reverberant field, and the decrease rate depends strongly on the absorption placement. The lowest rate of decay occurs when the side walls are absorptive, and both the ceiling and rear wall are reflective. These consequences are discussed with respect to prediction of speech intelligibility.

  17. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE PAGES

    Agnieszka M. Cieplak; Slosar, Anze

    2016-03-08

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (b δ) and velocity gradient (b η) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit ofmore » no thermal broadening and linear redshift-space distortions. We also show that his b η formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of b η and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  18. Towards physics responsible for large-scale Lyman-α forest bias parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnieszka M. Cieplak; Slosar, Anze

    Using a series of carefully constructed numerical experiments based on hydrodynamic cosmological SPH simulations, we attempt to build an intuition for the relevant physics behind the large scale density (b δ) and velocity gradient (b η) biases of the Lyman-α forest. Starting with the fluctuating Gunn-Peterson approximation applied to the smoothed total density field in real-space, and progressing through redshift-space with no thermal broadening, redshift-space with thermal broadening and hydrodynamically simulated baryon fields, we investigate how approximations found in the literature fare. We find that Seljak's 2012 analytical formulae for these bias parameters work surprisingly well in the limit ofmore » no thermal broadening and linear redshift-space distortions. We also show that his b η formula is exact in the limit of no thermal broadening. Since introduction of thermal broadening significantly affects its value, we speculate that a combination of large-scale measurements of b η and the small scale flux PDF might be a sensitive probe of the thermal state of the IGM. Lastly, we find that large-scale biases derived from the smoothed total matter field are within 10–20% to those based on hydrodynamical quantities, in line with other measurements in the literature.« less

  19. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  20. An Eulerian time filtering technique to study large-scale transient flow phenomena

    NASA Astrophysics Data System (ADS)

    Vanierschot, Maarten; Persoons, Tim; van den Bulck, Eric

    2009-10-01

    Unsteady fluctuating velocity fields can contain large-scale periodic motions with frequencies well separated from those of turbulence. Examples are the wake behind a cylinder or the processing vortex core in a swirling jet. These turbulent flow fields contain large-scale, low-frequency oscillations, which are obscured by turbulence, making it impossible to identify them. In this paper, we present an Eulerian time filtering (ETF) technique to extract the large-scale motions from unsteady statistical non-stationary velocity fields or flow fields with multiple phenomena that have sufficiently separated spectral content. The ETF method is based on non-causal time filtering of the velocity records in each point of the flow field. It is shown that the ETF technique gives good results, similar to the ones obtained by the phase-averaging method. In this paper, not only the influence of the temporal filter is checked, but also parameters such as the cut-off frequency and sampling frequency of the data are investigated. The technique is validated on a selected set of time-resolved stereoscopic particle image velocimetry measurements such as the initial region of an annular jet and the transition between flow patterns in an annular jet. The major advantage of the ETF method in the extraction of large scales is that it is computationally less expensive and it requires less measurement time compared to other extraction methods. Therefore, the technique is suitable in the startup phase of an experiment or in a measurement campaign where several experiments are needed such as parametric studies.

  1. A Large-Scale Super-Structure at z=0.65 in the UKIDSS Ultra-Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Galametz, Audrey; Candels Clustering Working Group

    2017-07-01

    In hierarchical structure formation scenarios, galaxies accrete along high density filaments. Superclusters represent the largest density enhancements in the cosmic web with scales of 100 to 200 Mpc. As they represent the largest components of LSS, they are very powerful tools to constrain cosmological models. Since they also offer a wide range of density, from infalling group to high density cluster core, they are also the perfect laboratory to study the influence of environment on galaxy evolution. I will present a newly discovered large scale structure at z=0.65 in the UKIDSS UDS field. Although statistically predicted, the presence of such structure in UKIDSS, one of the most extensively covered and studied extragalactic field, remains a serendipity. Our follow-up confirmed more than 15 group members including at least three galaxy clusters with M200 10^14Msol . Deep spectroscopy of the quiescent core galaxies reveals that the most massive structure knots are at very different formation stage with a range of red sequence properties. Statistics allow us to map formation age across the structure denser knots and identify where quenching is most probably occurring across the LSS. Spectral diagnostics analysis also reveals an interesting population of transition galaxies we suspect are transforming from star-forming to quiescent galaxies.

  2. US National Large-scale City Orthoimage Standard Initiative

    USGS Publications Warehouse

    Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.

    2003-01-01

    The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.

  3. Catch trials in force field learning influence adaptation and consolidation of human motor memory

    PubMed Central

    Stockinger, Christian; Focke, Anne; Stein, Thorsten

    2014-01-01

    Force field studies are a common tool to investigate motor adaptation and consolidation. Thereby, subjects usually adapt their reaching movements to force field perturbations induced by a robotic device. In this context, so-called catch trials, in which the disturbing forces are randomly turned off, are commonly used to detect after-effects of motor adaptation. However, catch trials also produce sudden large motor errors that might influence the motor adaptation and the consolidation process. Yet, the detailed influence of catch trials is far from clear. Thus, the aim of this study was to investigate the influence of catch trials on motor adaptation and consolidation in force field experiments. Therefore, 105 subjects adapted their reaching movements to robot-generated force fields. The test groups adapted their reaching movements to a force field A followed by learning a second interfering force field B before retest of A (ABA). The control groups were not exposed to force field B (AA). To examine the influence of diverse catch trial ratios, subjects received catch trials during force field adaptation with a probability of either 0, 10, 20, 30, or 40%, depending on the group. First, the results on motor adaptation revealed significant differences between the diverse catch trial ratio groups. With increasing amount of catch trials, the subjects' motor performance decreased and subjects' ability to accurately predict the force field—and therefore internal model formation—was impaired. Second, our results revealed that adapting with catch trials can influence the following consolidation process as indicated by a partial reduction to interference. Here, the optimal catch trial ratio was 30%. However, detection of consolidation seems to be biased by the applied measure of performance. PMID:24795598

  4. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locke, James; Winschel, Richard

    2012-05-21

    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent ofmore » the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.« less

  5. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  6. Field Assessment Stroke Triage for Emergency Destination: A Simple and Accurate Prehospital Scale to Detect Large Vessel Occlusion Strokes.

    PubMed

    Lima, Fabricio O; Silva, Gisele S; Furie, Karen L; Frankel, Michael R; Lev, Michael H; Camargo, Érica C S; Haussen, Diogo C; Singhal, Aneesh B; Koroshetz, Walter J; Smith, Wade S; Nogueira, Raul G

    2016-08-01

    Patients with large vessel occlusion strokes (LVOS) may be better served by direct transfer to endovascular capable centers avoiding hazardous delays between primary and comprehensive stroke centers. However, accurate stroke field triage remains challenging. We aimed to develop a simple field scale to identify LVOS. The Field Assessment Stroke Triage for Emergency Destination (FAST-ED) scale was based on items of the National Institutes of Health Stroke Scale (NIHSS) with higher predictive value for LVOS and tested in the Screening Technology and Outcomes Project in Stroke (STOPStroke) cohort, in which patients underwent computed tomographic angiography within the first 24 hours of stroke onset. LVOS were defined by total occlusions involving the intracranial internal carotid artery, middle cerebral artery-M1, middle cerebral artery-2, or basilar arteries. Patients with partial, bihemispheric, and anterior+posterior circulation occlusions were excluded. Receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value of FAST-ED were compared with the NIHSS, Rapid Arterial Occlusion Evaluation (RACE) scale, and Cincinnati Prehospital Stroke Severity (CPSS) scale. LVO was detected in 240 of the 727 qualifying patients (33%). FAST-ED had comparable accuracy to predict LVO to the NIHSS and higher accuracy than RACE and CPSS (area under the receiver operating characteristic curve: FAST-ED=0.81 as reference; NIHSS=0.80, P=0.28; RACE=0.77, P=0.02; and CPSS=0.75, P=0.002). A FAST-ED ≥4 had sensitivity of 0.60, specificity of 0.89, positive predictive value of 0.72, and negative predictive value of 0.82 versus RACE ≥5 of 0.55, 0.87, 0.68, and 0.79, and CPSS ≥2 of 0.56, 0.85, 0.65, and 0.78, respectively. FAST-ED is a simple scale that if successfully validated in the field, it may be used by medical emergency professionals to identify LVOS in the prehospital setting enabling rapid triage of patients. © 2016

  7. Powering up with indirect reciprocity in a large-scale field experiment.

    PubMed

    Yoeli, Erez; Hoffman, Moshe; Rand, David G; Nowak, Martin A

    2013-06-18

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples' actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability's power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company's previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game.

  8. Powering up with indirect reciprocity in a large-scale field experiment

    PubMed Central

    Yoeli, Erez; Hoffman, Moshe; Rand, David G.; Nowak, Martin A.

    2013-01-01

    A defining aspect of human cooperation is the use of sophisticated indirect reciprocity. We observe others, talk about others, and act accordingly. We help those who help others, and we cooperate expecting that others will cooperate in return. Indirect reciprocity is based on reputation, which spreads by communication. A crucial aspect of indirect reciprocity is observability: reputation effects can support cooperation as long as peoples’ actions can be observed by others. In evolutionary models of indirect reciprocity, natural selection favors cooperation when observability is sufficiently high. Complimenting this theoretical work are experiments where observability promotes cooperation among small groups playing games in the laboratory. Until now, however, there has been little evidence of observability’s power to promote large-scale cooperation in real world settings. Here we provide such evidence using a field study involving 2413 subjects. We collaborated with a utility company to study participation in a program designed to prevent blackouts. We show that observability triples participation in this public goods game. The effect is over four times larger than offering a $25 monetary incentive, the company’s previous policy. Furthermore, as predicted by indirect reciprocity, we provide evidence that reputational concerns are driving our observability effect. In sum, we show how indirect reciprocity can be harnessed to increase cooperation in a relevant, real-world public goods game. PMID:23754399

  9. Large-scale manufacturing of GMP-compliant anti-EGFR targeted nanocarriers: production of doxorubicin-loaded anti-EGFR-immunoliposomes for a first-in-man clinical trial.

    PubMed

    Wicki, Andreas; Ritschard, Reto; Loesch, Uli; Deuster, Stefanie; Rochlitz, Christoph; Mamot, Christoph

    2015-04-30

    We describe the large-scale, GMP-compliant production process of doxorubicin-loaded and anti-EGFR-coated immunoliposomes (anti-EGFR-ILs-dox) used in a first-in-man, dose escalation clinical trial. 10 batches of this nanoparticle have been produced in clean room facilities. Stability data from the pre-GMP and the GMP batch indicate that the anti-EGFR-ILs-dox nanoparticle was stable for at least 18 months after release. Release criteria included visual inspection, sterility testing, as well as measurements of pH (pH 5.0-7.0), doxorubicin HCl concentration (0.45-0.55 mg/ml), endotoxin concentration (<1.21 IU/ml), leakage (<10%), particle size (Z-average of Caelyx ± 20 nm), and particle uptake (uptake absolute: >0.50 ng doxorubicin/μg protein; uptake relatively to PLD: >5 fold). All batches fulfilled the defined release criteria, indicating a high reproducibility as well as batch-to-batch uniformity of the main physico-chemical features of the nanoparticles in the setting of the large-scale GMP process. In the clinical trial, 29 patients were treated with this nanoparticle between 2007 and 2010. Pharmacokinetic data of anti-EGFR-ILs-dox collected during the clinical study revealed stability of the nanocarrier in vivo. Thus, reliable and GMP-compliant production of anti-EGFR-targeted nanoparticles for clinical application is feasible. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Intervention for First Graders with Limited Number Knowledge: Large-Scale Replication of a Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Gersten, Russell; Rolfhus, Eric; Clarke, Ben; Decker, Lauren E.; Wilkins, Chuck; Dimino, Joseph

    2015-01-01

    Replication studies are extremely rare in education. This randomized controlled trial (RCT) is a scale-up replication of Fuchs et al., which in a sample of 139 found a statistically significant positive impact for Number Rockets, a small-group intervention for at-risk first graders that focused on building understanding of number operations. The…

  11. Study design of a cluster-randomized controlled trial to evaluate a large-scale distribution of cook stoves and water filters in Western Province, Rwanda.

    PubMed

    Nagel, Corey L; Kirby, Miles A; Zambrano, Laura D; Rosa, Ghislane; Barstow, Christina K; Thomas, Evan A; Clasen, Thomas F

    2016-12-15

    In Rwanda, pneumonia and diarrhea are the first and second leading causes of death, respectively, among children under five. Household air pollution (HAP) resultant from cooking indoors with biomass fuels on traditional stoves is a significant risk factor for pneumonia, while consumption of contaminated drinking water is a primary cause of diarrheal disease. To date, there have been no large-scale effectiveness trials of programmatic efforts to provide either improved cookstoves or household water filters at scale in a low-income country. In this paper we describe the design of a cluster-randomized trial to evaluate the impact of a national-level program to distribute and promote the use of improved cookstoves and advanced water filters to the poorest quarter of households in Rwanda. We randomly allocated 72 sectors (administratively defined units) in Western Province to the intervention, with the remaining 24 sectors in the province serving as controls. In the intervention sectors, roughly 100,000 households received improved cookstoves and household water filters through a government-sponsored program targeting the poorest quarter of households nationally. The primary outcome measures are the incidence of acute respiratory infection (ARI) and diarrhea among children under five years of age. Over a one-year surveillance period, all cases of acute respiratory infection (ARI) and diarrhea identified by health workers in the study area will be extracted from records maintained at health facilities and by community health workers (CHW). In addition, we are conducting intensive, longitudinal data collection among a random sample of households in the study area for in-depth assessment of coverage, use, environmental exposures, and additional health measures. Although previous research has examined the impact of providing household water treatment and improved cookstoves on child health, there have been no studies of national-level programs to deliver these interventions

  12. Latest COBE results, large-scale data, and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    One of the predictions of the inflationary scenario of cosmology is that the initial spectrum of primordial density fluctuations (PDFs) must have the Harrison-Zeldovich (HZ) form. Here, in order to test the inflationary scenario, predictions of the microwave background radiation (MBR) anisotropies measured by COBE are computed based on large-scale data for the universe and assuming Omega-1 and the HZ spectrum on large scales. It is found that the minimal scale where the spectrum can first enter the HZ regime is found, constraining the power spectrum of the mass distribution to within the bias factor b. This factor is determined and used to predict parameters of the MBR anisotropy field. For the spectrum of PDFs that reaches the HZ regime immediately after the scale accessible to the APM catalog, the numbers on MBR anisotropies are consistent with the COBE detections and thus the standard inflation can indeed be considered a viable theory for the origin of the large-scale structure in the universe.

  13. Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    ERIC Educational Resources Information Center

    Shirahama, Kimiaki; Grzegorzek, Marcin; Indurkhya, Bipin

    2015-01-01

    "Large-Scale Multimedia Retrieval" (LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more…

  14. Large- and small-scale constraints on power spectra in Omega = 1 universes

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Gradwohl, Ben-Ami; Frieman, Joshua A.

    1993-01-01

    The CDM model of structure formation, normalized on large scales, leads to excessive pairwise velocity dispersions on small scales. In an attempt to circumvent this problem, we study three scenarios (all with Omega = 1) with more large-scale and less small-scale power than the standard CDM model: (1) cold dark matter with significantly reduced small-scale power (inspired by models with an admixture of cold and hot dark matter); (2) cold dark matter with a non-scale-invariant power spectrum; and (3) cold dark matter with coupling of dark matter to a long-range vector field. When normalized to COBE on large scales, such models do lead to reduced velocities on small scales and they produce fewer halos compared with CDM. However, models with sufficiently low small-scale velocities apparently fail to produce an adequate number of halos.

  15. Towards precision constraints on gravity with the Effective Field Theory of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Bose, Benjamin; Koyama, Kazuya; Lewandowski, Matthew; Vernizzi, Filippo; Winther, Hans A.

    2018-04-01

    We compare analytical computations with numerical simulations for dark-matter clustering, in general relativity and in the normal branch of DGP gravity (nDGP). Our analytical frameword is the Effective Field Theory of Large-Scale Structure (EFTofLSS), which we use to compute the one-loop dark-matter power spectrum, including the resummation of infrared bulk displacement effects. We compare this to a set of 20 COLA simulations at redshifts z = 0, z = 0.5, and z = 1, and fit the free parameter of the EFTofLSS, called the speed of sound, in both ΛCDM and nDGP at each redshift. At one-loop at z = 0, the reach of the EFTofLSS is kreach ≈ 0.14 Mpc‑1 for both ΛCDM and nDGP. Along the way, we compare two different infrared resummation schemes and two different treatments of the time dependence of the perturbative expansion, concluding that they agree to approximately 1% over the scales of interest. Finally, we use the ratio of the COLA power spectra to make a precision measurement of the difference between the speeds of sound in ΛCDM and nDGP, and verify that this is proportional to the modification of the linear coupling constant of the Poisson equation.

  16. Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Fonseca, R. A.; Vieira, J.; Fiuza, F.; Davidson, A.; Tsung, F. S.; Mori, W. B.; Silva, L. O.

    2013-12-01

    A new generation of laser wakefield accelerators (LWFA), supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modelling to further understand the underlying physics and identify optimal regimes, but large scale modelling of these scenarios is computationally heavy and requires the efficient use of state-of-the-art petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed/shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modelling of LWFA, demonstrating speedups of over 1 order of magnitude on the same hardware. Finally, scalability to over ˜106 cores and sustained performance over ˜2 P Flops is demonstrated, opening the way for large scale modelling of LWFA scenarios.

  17. What initial condition of inflation would suppress the large-scale CMB spectrum?

    DOE PAGES

    Chen, Pisin; Lin, Yu -Hsiang

    2016-01-08

    There is an apparent power deficit relative to the Λ CDM prediction of the cosmic microwave background spectrum at large scales, which, though not yet statistically significant, persists from WMAP to Planck data. Proposals that invoke some form of initial condition for the inflation have been made to address this apparent power suppression, albeit with conflicting conclusions. By studying the curvature perturbations of a scalar field in the Friedmann-Lemaître-Robertson-Walker universe parameterized by the equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the superhorizon spectrum of the initial state. The large-scale spectrummore » is suppressed if the universe begins with the adiabatic vacuum in a superinflation (w < –1) or positive-pressure (w > 0) era. In the latter case, there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long as the universe begins with the adiabatic vacuum in an era with –1 < w < 0, even if there exists an intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. In conclusion, we further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the result agrees with that obtained from the ad hoc single-field analysis.« less

  18. Structure of small-scale magnetic fields in the kinematic dynamo theory.

    PubMed

    Schekochihin, Alexander; Cowley, Steven; Maron, Jason; Malyshkin, Leonid

    2002-01-01

    A weak fluctuating magnetic field embedded into a a turbulent conducting medium grows exponentially while its characteristic scale decays. In the interstellar medium and protogalactic plasmas, the magnetic Prandtl number is very large, so a broad spectrum of growing magnetic fluctuations is excited at small (subviscous) scales. The condition for the onset of nonlinear back reaction depends on the structure of the field lines. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to the field variation across itself (rapid transverse direction reversals), while the scale of the field variation along itself stays approximately constant. Specifically, we find that, though both the magnetic energy and the mean-square curvature of the field lines grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e., the curved field is relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power tail extending to large values of curvature where it is eventually cut off by the resistive regularization. The regions of large curvature, therefore, occupy only a small fraction of the total volume of the system. Our theoretical results are corroborated by direct numerical simulations. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies. Our results also directly apply to the problem of statistical geometry of the material lines in a random flow.

  19. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  20. SPONTANEOUS FORMATION OF SURFACE MAGNETIC STRUCTURE FROM LARGE-SCALE DYNAMO IN STRONGLY STRATIFIED CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@auecc.aichi-edu.ac.jp, E-mail: sano@ile.osaka-u.ac.jp

    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α {sup 2}-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceedsmore » in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.« less

  1. Investigation of a laser Doppler velocimeter system to measure the flow field around a large scale V/STOL aircraft in ground effect

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Brashears, M. R.; Jordan, A. J.; Shrider, K. R.; Vought, C. D.

    1979-01-01

    The flow field measured around a hovering 70 percent scale vertical takeoff and landing (V/STOL) aircraft model is described. The velocity measurements were conducted with a ground based laser Doppler velocimeter. The remote sensing instrumentation and experimental tests of the velocity surveys are discussed. The distribution of vertical velocity in the fan jet and fountain; the radial velocity in the wall jet and the horizontal velocity along the aircraft underside are presented for different engine rpms and aircraft height above ground. Results show that it is feasible to use a mobile laser Doppler velocimeter to measure the flow field generated by a large scale V/STOL aircraft operating in ground effect.

  2. Could the electroweak scale be linked to the large scale structure of the Universe?

    NASA Technical Reports Server (NTRS)

    Chakravorty, Alak; Massarotti, Alessandro

    1991-01-01

    We study a model where the domain walls are generated through a cosmological phase transition involving a scalar field. We assume the existence of a coupling between the scalar field and dark matter and show that the interaction between domain walls and dark matter leads to an energy dependent reflection mechanism. For a simple Yakawa coupling, we find that the vacuum expectation value of the scalar field is theta approx. equals 30GeV - 1TeV, in order for the model to be successful in the formation of large scale 'pancake' structures.

  3. Large-scale functional models of visual cortex for remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumby, Steven P; Kenyon, Garrett; Rasmussen, Craig E

    Neuroscience has revealed many properties of neurons and of the functional organization of visual cortex that are believed to be essential to human vision, but are missing in standard artificial neural networks. Equally important may be the sheer scale of visual cortex requiring {approx}1 petaflop of computation. In a year, the retina delivers {approx}1 petapixel to the brain, leading to massively large opportunities for learning at many levels of the cortical system. We describe work at Los Alamos National Laboratory (LANL) to develop large-scale functional models of visual cortex on LANL's Roadrunner petaflop supercomputer. An initial run of a simplemore » region VI code achieved 1.144 petaflops during trials at the IBM facility in Poughkeepsie, NY (June 2008). Here, we present criteria for assessing when a set of learned local representations is 'complete' along with general criteria for assessing computer vision models based on their projected scaling behavior. Finally, we extend one class of biologically-inspired learning models to problems of remote sensing imagery.« less

  4. Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livermore, P. W.; Hughes, D. W.; Tobias, S. M.

    2010-03-15

    In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less

  5. THE RECENT REJUVENATION OF THE SUN’S LARGE-SCALE MAGNETIC FIELD: A CLUE FOR UNDERSTANDING PAST AND FUTURE SUNSPOT CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheeley, N. R. Jr.; Wang, Y.-M.

    The quiet nature of sunspot cycle 24 was disrupted during the second half of 2014 when the Sun’s large-scale field underwent a sudden rejuvenation: the solar mean field reached its highest value since 1991, the interplanetary field strength doubled, and galactic cosmic rays showed their strongest 27-day modulation since neutron-monitor observations began in 1957; in the outer corona, the large increase of field strength was reflected by unprecedentedly large numbers of coronal loops collapsing inward along the heliospheric current sheet. Here, we show that this rejuvenation was not caused by a significant increase in the level of solar activity asmore » measured by the smoothed sunspot number and CME rate, but instead was caused by the systematic emergence of flux in active regions whose longitudinal distribution greatly increased the Sun’s dipole moment. A similar post-maximum increase in the dipole moment occurred during each of the previous three sunspot cycles, and marked the start of the declining phase of each cycle. We note that the north–south component of this peak dipole moment provides an early indicator of the amplitude of the next cycle, and conclude that the amplitude of cycle 25 may be comparable to that of cycle 24, and well above the amplitudes obtained during the Maunder Minimum.« less

  6. Solar powered oxygen systems in remote health centers in Papua New Guinea: a large scale implementation effectiveness trial.

    PubMed

    Duke, Trevor; Hwaihwanje, Ilomo; Kaupa, Magdalynn; Karubi, Jonah; Panauwe, Doreen; Sa'avu, Martin; Pulsan, Francis; Prasad, Peter; Maru, Freddy; Tenambo, Henry; Kwaramb, Ambrose; Neal, Eleanor; Graham, Hamish; Izadnegahdar, Rasa

    2017-06-01

    Pneumonia is the largest cause of child deaths in Papua New Guinea (PNG), and hypoxaemia is the major complication causing death in childhood pneumonia, and hypoxaemia is a major factor in deaths from many other common conditions, including bronchiolitis, asthma, sepsis, malaria, trauma, perinatal problems, and obstetric emergencies. A reliable source of oxygen therapy can reduce mortality from pneumonia by up to 35%. However, in low and middle income countries throughout the world, improved oxygen systems have not been implemented at large scale in remote, difficult to access health care settings, and oxygen is often unavailable at smaller rural hospitals or district health centers which serve as the first point of referral for childhood illnesses. These hospitals are hampered by lack of reliable power, staff training and other basic services. We report the methodology of a large implementation effectiveness trial involving sustainable and renewable oxygen and power systems in 36 health facilities in remote rural areas of PNG. The methodology is a before-and after evaluation involving continuous quality improvement, and a health systems approach. We describe this model of implementation as the considerations and steps involved have wider implications in health systems in other countries. The implementation steps include: defining the criteria for where such an intervention is appropriate, assessment of power supplies and power requirements, the optimal design of a solar power system, specifications for oxygen concentrators and other oxygen equipment that will function in remote environments, installation logistics in remote settings, the role of oxygen analyzers in monitoring oxygen concentrator performance, the engineering capacity required to sustain a program at scale, clinical guidelines and training on oxygen equipment and the treatment of children with severe respiratory infection and other critical illnesses, program costs, and measurement of processes and

  7. Solar powered oxygen systems in remote health centers in Papua New Guinea: a large scale implementation effectiveness trial

    PubMed Central

    Duke, Trevor; Hwaihwanje, Ilomo; Kaupa, Magdalynn; Karubi, Jonah; Panauwe, Doreen; Sa’avu, Martin; Pulsan, Francis; Prasad, Peter; Maru, Freddy; Tenambo, Henry; Kwaramb, Ambrose; Neal, Eleanor; Graham, Hamish; Izadnegahdar, Rasa

    2017-01-01

    Background Pneumonia is the largest cause of child deaths in Papua New Guinea (PNG), and hypoxaemia is the major complication causing death in childhood pneumonia, and hypoxaemia is a major factor in deaths from many other common conditions, including bronchiolitis, asthma, sepsis, malaria, trauma, perinatal problems, and obstetric emergencies. A reliable source of oxygen therapy can reduce mortality from pneumonia by up to 35%. However, in low and middle income countries throughout the world, improved oxygen systems have not been implemented at large scale in remote, difficult to access health care settings, and oxygen is often unavailable at smaller rural hospitals or district health centers which serve as the first point of referral for childhood illnesses. These hospitals are hampered by lack of reliable power, staff training and other basic services. Methods We report the methodology of a large implementation effectiveness trial involving sustainable and renewable oxygen and power systems in 36 health facilities in remote rural areas of PNG. The methodology is a before–and after evaluation involving continuous quality improvement, and a health systems approach. We describe this model of implementation as the considerations and steps involved have wider implications in health systems in other countries. Results The implementation steps include: defining the criteria for where such an intervention is appropriate, assessment of power supplies and power requirements, the optimal design of a solar power system, specifications for oxygen concentrators and other oxygen equipment that will function in remote environments, installation logistics in remote settings, the role of oxygen analyzers in monitoring oxygen concentrator performance, the engineering capacity required to sustain a program at scale, clinical guidelines and training on oxygen equipment and the treatment of children with severe respiratory infection and other critical illnesses, program costs, and

  8. Four large-scale field-aligned current systmes in the dayside high-latitude region

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Potemra, T. A.; Newell, P.T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Blomberg, L. G.; Elphinstone, R. D.; Murphree, J. S.; Yamauchi, M.

    1995-01-01

    A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for

  9. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of themore » morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.« less

  10. Effects of large-scale wind driven turbulence on sound propagation

    NASA Technical Reports Server (NTRS)

    Noble, John M.; Bass, Henry E.; Raspet, Richard

    1990-01-01

    Acoustic measurements made in the atmosphere have shown significant fluctuations in amplitude and phase resulting from the interaction with time varying meteorological conditions. The observed variations appear to have short term and long term (1 to 5 minutes) variations at least in the phase of the acoustic signal. One possible way to account for this long term variation is the use of a large scale wind driven turbulence model. From a Fourier analysis of the phase variations, the outer scales for the large scale turbulence is 200 meters and greater, which corresponds to turbulence in the energy-containing subrange. The large scale turbulence is assumed to be elongated longitudinal vortex pairs roughly aligned with the mean wind. Due to the size of the vortex pair compared to the scale of the present experiment, the effect of the vortex pair on the acoustic field can be modeled as the sound speed of the atmosphere varying with time. The model provides results with the same trends and variations in phase observed experimentally.

  11. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  12. Large scale solar magnetic fields at the site of flares, the greatness of flares, and solar-terrestrial disturbances

    NASA Technical Reports Server (NTRS)

    Dodson, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Evidence is presented for an intrinsically solar effect which may dominate such solar-terrestrial correlations as that reported by Chertkov (1976), where large H-alpha flares during 1967-1972 in solar active regions with overlying fields on a 100,000 km scale and predominantly north-to-south orientation were more efficient in the production of geomagnetic disturbances than comparable flares in regions whose fields at the flare sites were directed south-to-north. In addition to being responsible for geomagnetic disturbance enhancements, this purely solar effect may cause solar wind velocity and solar flare proton flux enhancements. If the effect can be generalized to other portions of the solar cycle, it could improve present understanding of the flare mechanism and therefore prove useful in the prediction of solar-terrestrial disturbances.

  13. Large Scale Spectral Line Mapping of Galactic Regions with CCAT-Prime

    NASA Astrophysics Data System (ADS)

    Simon, Robert

    2018-01-01

    CCAT-prime is a 6-m submillimeter telescope that is being built on the top of Cerro Chajnantor (5600 m altitude) overlooking the ALMA plateau in the Atacama Desert. Its novel Crossed-Dragone design enables a large field of view without blockage and is thus particularly well suited for large scale surveys in the continuum and spectral lines targeting important questions ranging from star formation in the Milky Way to cosmology. On this poster, we focus on the large scale mapping opportunities in important spectral cooling lines of the interstellar medium opened up by CCAT-prime and the Cologne heterodyne instrument CHAI.

  14. Evaluating Experience-Based Geologic Field Instruction: Lessons Learned from A Large-Scale Eye-Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Walders, K.; Bono, R. K.; Pelz, J.; Jacobs, R.

    2015-12-01

    A course centered on experience-based learning in field geology has been offered ten times at the University of Rochester. The centerpiece of the course is a 10-day field excursion to California featuring a broad cross-section of the geology of the state, from the San Andreas Fault to Death Valley. Here we describe results from a large-scale eye-tracking experiment aimed at understanding how experts and novices acquire visual geologic information. One ultimate goal of the project is to determine whether expert gaze patterns can be quantified to improve the instruction of beginning geology students. Another goal is to determine if aspects of the field experience can be transferred to the classroom/laboratory. Accordingly, ultra-high resolution segmented panoramic images have been collected at key sites visited during the field excursion. We have found that strict controls are needed in the field to obtain meaningful data; this often involves behavior atypical of geologists (e.g. limiting the field of view prior to data collection and placing time limits on scene viewing). Nevertheless some general conclusions can be made from a select data set. After an initial quick search, experts tend to exhibit scanning behavior that appears to support hypothesis testing. Novice fixations appear to define a scattered search pattern and/or one distracted by geologic noise in a scene. Noise sources include modern erosion features and vegetation. One way to quantify noise is through the use of saliency maps. With the caveat that our expert data set is small, our preliminary analysis suggests that experts tend to exhibit top-down behavior (indicating hypothesis driven responses) whereas novices show bottom-up gaze patterns, influenced by more salient features in a scene. We will present examples and discuss how these observations might be used to improve instruction.

  15. Large tensor non-Gaussianity from axion-gauge field dynamics

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-05-01

    We show that an inflation model in which a spectator axion field is coupled to an S U (2 ) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, Bh, on the scales relevant to the cosmic microwave background experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by Bh/Ph2=O (10 )×ΩA-1 , where ΩA is a fraction of the energy density in the gauge field and Ph is the power spectrum of gravitational waves produced by the gauge field.

  16. Field-aligned currents' scale analysis performed with the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Park, Jaeheung; Gjerloev, Jesper W.; Rauberg, Jan; Michaelis, Ingo; Merayo, Jose M. G.; Brauer, Peter

    2015-01-01

    We present a statistical study of the temporal- and spatial-scale characteristics of different field-aligned current (FAC) types derived with the Swarm satellite formation. We divide FACs into two classes: small-scale, up to some 10 km, which are carried predominantly by kinetic Alfvén waves, and large-scale FACs with sizes of more than 150 km. For determining temporal variability we consider measurements at the same point, the orbital crossovers near the poles, but at different times. From correlation analysis we obtain a persistent period of small-scale FACs of order 10 s, while large-scale FACs can be regarded stationary for more than 60 s. For the first time we investigate the longitudinal scales. Large-scale FACs are different on dayside and nightside. On the nightside the longitudinal extension is on average 4 times the latitudinal width, while on the dayside, particularly in the cusp region, latitudinal and longitudinal scales are comparable.

  17. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or PNL noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10 exp 6 based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  18. Quality of life in small-scaled homelike nursing homes: an 8-month controlled trial.

    PubMed

    Kok, Jeroen S; Nielen, Marjan M A; Scherder, Erik J A

    2018-02-27

    Quality of life is a clinical highly relevant outcome for residents with dementia. The question arises whether small scaled homelike facilities are associated with better quality of life than regular larger scale nursing homes do. A sample of 145 residents living in a large scale care facility were followed over 8 months. Half of the sample (N = 77) subsequently moved to a small scaled facility. Quality of life aspects were measured with the QUALIDEM and GIP before and after relocation. We found a significant Group x Time interaction on measures of anxiety meaning that residents who moved to small scale units became less anxious than residents who stayed on the regular care large-scale units. No significant differences were found on other aspects of quality of life. This study demonstrates that residents who move from a large scale facility to a small scale environment can improve an aspect of quality of life by showing a reduction in anxiety. Current Controlled Trials ISRCTN11151241 . registration date: 21-06-2017. Retrospectively registered.

  19. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  20. Space Technology 5 Multi-point Observations of Field-aligned Currents: Temporal Variability of Meso-Scale Structures

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  1. Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses

    PubMed Central

    Kielmanowicz, Merav Gleit; Inberg, Alex; Lerner, Inbar Maayan; Golani, Yael; Brown, Nicholas; Turner, Catherine Louise; Hayes, Gerald J. R.; Ballam, Joan M.

    2015-01-01

    Over the last decade, unusually high losses of colonies have been reported by beekeepers across the USA. Multiple factors such as Varroa destructor, bee viruses, Nosema ceranae, weather, beekeeping practices, nutrition, and pesticides have been shown to contribute to colony losses. Here we describe a large-scale controlled trial, in which different bee pathogens, bee population, and weather conditions across winter were monitored at three locations across the USA. In order to minimize influence of various known contributing factors and their interaction, the hives in the study were not treated with antibiotics or miticides. Additionally, the hives were kept at one location and were not exposed to potential stress factors associated with migration. Our results show that a linear association between load of viruses (DWV or IAPV) in Varroa and bees is present at high Varroa infestation levels (>3 mites per 100 bees). The collection of comprehensive data allowed us to draw a predictive model of colony losses and to show that Varroa destructor, along with bee viruses, mainly DWV replication, contributes to approximately 70% of colony losses. This correlation further supports the claim that insufficient control of the virus-vectoring Varroa mite would result in increased hive loss. The predictive model also indicates that a single factor may not be sufficient to trigger colony losses, whereas a combination of stressors appears to impact hive health. PMID:25875764

  2. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onunkwo, Uzoma

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutualmore » benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.« less

  3. Motions of charged particles in the magnetosphere under the influence of a time-varying large scale convection electric field

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.

    1979-01-01

    The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.

  4. Rossby waves and two-dimensional turbulence in a large-scale zonal jet

    NASA Technical Reports Server (NTRS)

    Shepherd, Theodor G.

    1987-01-01

    Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.

  5. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE PAGES

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    2018-02-01

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  6. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  7. Large-scale structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Spergel, David N.; Turok, Nail

    1991-01-01

    This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.

  8. Direct Computation of Sound Radiation by Jet Flow Using Large-scale Equations

    NASA Technical Reports Server (NTRS)

    Mankbadi, R. R.; Shih, S. H.; Hixon, D. R.; Povinelli, L. A.

    1995-01-01

    Jet noise is directly predicted using large-scale equations. The computational domain is extended in order to directly capture the radiated field. As in conventional large-eddy-simulations, the effect of the unresolved scales on the resolved ones is accounted for. Special attention is given to boundary treatment to avoid spurious modes that can render the computed fluctuations totally unacceptable. Results are presented for a supersonic jet at Mach number 2.1.

  9. Renormalizable Quantum Field Theories in the Large -n Limit

    NASA Astrophysics Data System (ADS)

    Guruswamy, Sathya

    1995-01-01

    In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.

  10. On the scaling of small-scale jet noise to large scale

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Allen, Christopher S.

    1992-01-01

    An examination was made of several published jet noise studies for the purpose of evaluating scale effects important to the simulation of jet aeroacoustics. Several studies confirmed that small conical jets, one as small as 59 mm diameter, could be used to correctly simulate the overall or perceived noise level (PNL) noise of large jets dominated by mixing noise. However, the detailed acoustic spectra of large jets are more difficult to simulate because of the lack of broad-band turbulence spectra in small jets. One study indicated that a jet Reynolds number of 5 x 10(exp 6) based on exhaust diameter enabled the generation of broad-band noise representative of large jet mixing noise. Jet suppressor aeroacoustics is even more difficult to simulate at small scale because of the small mixer nozzles with flows sensitive to Reynolds number. Likewise, one study showed incorrect ejector mixing and entrainment using a small-scale, short ejector that led to poor acoustic scaling. Conversely, fairly good results were found with a longer ejector and, in a different study, with a 32-chute suppressor nozzle. Finally, it was found that small-scale aeroacoustic resonance produced by jets impacting ground boards does not reproduce at large scale.

  11. Bio-inspired wooden actuators for large scale applications.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  12. Large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1983-01-01

    Problems encountered by aerospace designers in attempting to optimize whole aircraft are discussed, along with possible solutions. Large scale optimization, as opposed to component-by-component optimization, is hindered by computational costs, software inflexibility, concentration on a single, rather than trade-off, design methodology and the incompatibility of large-scale optimization with single program, single computer methods. The software problem can be approached by placing the full analysis outside of the optimization loop. Full analysis is then performed only periodically. Problem-dependent software can be removed from the generic code using a systems programming technique, and then embody the definitions of design variables, objective function and design constraints. Trade-off algorithms can be used at the design points to obtain quantitative answers. Finally, decomposing the large-scale problem into independent subproblems allows systematic optimization of the problems by an organization of people and machines.

  13. Contractual Duration and Investment Incentives: Evidence from Large Scale Production Units in China

    NASA Astrophysics Data System (ADS)

    Li, Fang; Feng, Shuyi; D'Haese, Marijke; Lu, Hualiang; Qu, Futian

    2017-04-01

    Large Scale Production Units have become important forces in the supply of agricultural commodities and agricultural modernization in China. Contractual duration in farmland transfer to Large Scale Production Units can be considered to reflect land tenure security. Theoretically, long-term tenancy contracts can encourage Large Scale Production Units to increase long-term investments by ensuring land rights stability or favoring access to credit. Using a unique Large Scale Production Units- and plot-level field survey dataset from Jiangsu and Jiangxi Province, this study aims to examine the effect of contractual duration on Large Scale Production Units' soil conservation behaviours. IV method is applied to take into account the endogeneity of contractual duration and unobserved household heterogeneity. Results indicate that farmland transfer contract duration significantly and positively affects land-improving investments. Policies aimed at improving transaction platforms and intermediary organizations in farmland transfer to facilitate Large Scale Production Units to access farmland with long-term tenancy contracts may therefore play an important role in improving soil quality and land productivity.

  14. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  15. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.

  16. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE PAGES

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  17. Large Scale Metal Additive Techniques Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nycz, Andrzej; Adediran, Adeola I; Noakes, Mark W

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environmentmore » friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.« less

  18. Evaluation of Kirkwood-Buff integrals via finite size scaling: a large scale molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dednam, W.; Botha, A. E.

    2015-01-01

    Solvation of bio-molecules in water is severely affected by the presence of co-solvent within the hydration shell of the solute structure. Furthermore, since solute molecules can range from small molecules, such as methane, to very large protein structures, it is imperative to understand the detailed structure-function relationship on the microscopic level. For example, it is useful know the conformational transitions that occur in protein structures. Although such an understanding can be obtained through large-scale molecular dynamic simulations, it is often the case that such simulations would require excessively large simulation times. In this context, Kirkwood-Buff theory, which connects the microscopic pair-wise molecular distributions to global thermodynamic properties, together with the recently developed technique, called finite size scaling, may provide a better method to reduce system sizes, and hence also the computational times. In this paper, we present molecular dynamics trial simulations of biologically relevant low-concentration solvents, solvated by aqueous co-solvent solutions. In particular we compare two different methods of calculating the relevant Kirkwood-Buff integrals. The first (traditional) method computes running integrals over the radial distribution functions, which must be obtained from large system-size NVT or NpT simulations. The second, newer method, employs finite size scaling to obtain the Kirkwood-Buff integrals directly by counting the particle number fluctuations in small, open sub-volumes embedded within a larger reservoir that can be well approximated by a much smaller simulation cell. In agreement with previous studies, which made a similar comparison for aqueous co-solvent solutions, without the additional solvent, we conclude that the finite size scaling method is also applicable to the present case, since it can produce computationally more efficient results which are equivalent to the more costly radial distribution

  19. Large-scale Activities Associated with the 2005 Sep. 7th Event

    NASA Astrophysics Data System (ADS)

    Zong, Weiguo

    We present a multi-wavelength study on large-scale activities associated with a significant solar event. On 2005 September 7, a flare classified as bigger than X17 was observed. Combining with Hα 6562.8 ˚, He I 10830 ˚and soft X-ray observations, three large-scale activities were A A found to propagate over a long distance on the solar surface. 1) The first large-scale activity emanated from the flare site, which propagated westward around the solar equator and appeared as sequential brightenings. With MDI longitudinal magnetic field map, the activity was found to propagate along the magnetic network. 2) The second large-scale activity could be well identified both in He I 10830 ˚images and soft X-ray images and appeared as diffuse emission A enhancement propagating away. The activity started later than the first one and was not centric on the flare site. Moreover, a rotation was found along with the bright front propagating away. 3) The third activity was ahead of the second one, which was identified as a "winking" filament. The three activities have different origins, which were seldom observed in one event. Therefore this study is useful to understand the mechanism of large-scale activities on solar surface.

  20. Facilitating dynamo action via control of large-scale turbulence.

    PubMed

    Limone, A; Hatch, D R; Forest, C B; Jenko, F

    2012-12-01

    The magnetohydrodynamic dynamo effect is considered to be the major cause of magnetic field generation in geo- and astrophysical systems. Recent experimental and numerical results show that turbulence constitutes an obstacle to dynamos; yet its role in this context is not totally clear. Via numerical simulations, we identify large-scale turbulent vortices with a detrimental effect on the amplification of the magnetic field in a geometry of experimental interest and propose a strategy for facilitating the dynamo instability by manipulating these detrimental "hidden" dynamics.

  1. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks

  2. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks

  3. Prehospital Acute Stroke Severity Scale to Predict Large Artery Occlusion: Design and Comparison With Other Scales.

    PubMed

    Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe

    2016-07-01

    We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.

  4. Actual Condition of Paddy Field Levee Maintenance by Various Farm Households including Large-scale Farming in the Developed Land Renting Area

    NASA Astrophysics Data System (ADS)

    Sakata, Yasuyo

    The survey of interview, resource acquisition, photographic operation, and questionnaire were carried out in the “n” Community in the “y” District in Hakusan City in Ishikawa Prefecture to investigate the actual condition of paddy field levee maintenance in the area where land-renting market was proceeding, large-scale farming was dominant, and the problems of geographically scattered farm-land existed. In the study zone, 1) an agricultural production legal person rent-cultivated some of the paddy fields and maintained the levees, 2) another agricultural production legal person rent-cultivated some of the soy bean fields for crop changeover and land owners maintained the levees. The results indicated that sufficient maintenance was executed on the levees of the paddy fields cultivated by the agricultural production legal person, the soy bean fields for crop changeover, and the paddy fields cultivated by the land owners. Each reason is considered to be the managerial strategy, the economic incentive, the mutual monitoring and cross-regulatory mechanism, etc.

  5. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico.

    PubMed

    Penilla, R P; Rodríguez, A D; Hemingway, J; Torres, J L; Arredondo-Jiménez, J I; Rodríguez, M H

    1998-07-01

    A high level of DDT resistance and low levels of resistance to organophosphorus, carbamate and pyrethroid insecticides were detected by discriminating dose assays in field populations of Anopheles albimanus in Chiapas, southern Mexico, prior to a large-scale resistance management project described by Hemingway et al. (1997). Biochemical assays showed that the DDT resistance was caused by elevated levels of glutathione S-transferase (GST) activity leading to increased rates of metabolism of DDT to DDE. The numbers of individuals with elevated GST and DDT resistance were well correlated, suggesting that this is the only major DDT resistance mechanism in this population. The carbamate resistance in this population is conferred by an altered acetylcholinesterase (AChE)-based resistance mechanism. The level of resistance observed in the bioassays correlates with the frequency of individuals homozygous for the altered AChE allele. This suggests that the level of resistance conferred by this mechanism in its heterozygous state is below the level of detection by the WHO carbamate discriminating dosage bioassay. The low levels of organophosphate (OP) and pyrethroid resistance could be conferred by either the elevated esterase or monooxygenase enzymes. The esterases were elevated only with the substrate pNPA, and are unlikely to be causing broad spectrum OP resistance. The altered AChE mechanism may also be contributing to the OP but not the pyrethroid resistance. Significant differences in resistance gene frequencies were obtained from the F1 mosquitoes resulting from adults obtained by different collection methods. This may be caused by different insecticide selection pressures on the insects immediately prior to collection, or may be an indication that the indoor- and outdoor-resting A. albimanus collections are not from a randomly mating single population. The underlying genetic variability of the populations is currently being investigated by molecular methods.

  6. Physicochemical heterogeneity controls on uranium bioreduction rates at the field scale.

    PubMed

    Li, Li; Gawande, Nitin; Kowalsky, Michael B; Steefel, Carl I; Hubbard, Susan S

    2011-12-01

    It has been demonstrated in laboratory systems that U(VI) can be reduced to immobile U(IV) by bacteria in natural environments. The ultimate efficacy of bioreduction at the field scale, however, is often challenging to quantify and depends on site characteristics. In this work, uranium bioreduction rates at the field scale are quantified, for the first time, using an integrated approach. The approach combines field data, inverse and forward hydrological and reactive transport modeling, and quantification of reduction rates at different spatial scales. The approach is used to explore the impact of local scale (tens of centimeters) parameters and processes on field scale (tens of meters) system responses to biostimulation treatments and the controls of physicochemical heterogeneity on bioreduction rates. Using the biostimulation experiments at the Department of Energy Old Rifle site, our results show that the spatial distribution of hydraulic conductivity and solid phase mineral (Fe(III)) play a critical role in determining the field-scale bioreduction rates. Due to the dependence on Fe-reducing bacteria, field-scale U(VI) bioreduction rates were found to be largely controlled by the abundance of Fe(III) minerals at the vicinity of the injection wells and by the presence of preferential flow paths connecting injection wells to down gradient Fe(III) abundant areas.

  7. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE PAGES

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  8. Large-scale circulation departures related to wet episodes in northeast Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  9. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  10. Canadian MSAT field trial program user requirements

    NASA Technical Reports Server (NTRS)

    Pedersen, Allister

    1990-01-01

    A wide range of mobile satellite service offerings will be available in late 1993 with the launch of Canada's first satellite devoted almost exclusively to mobile and transportable services. During the last seven years, the Dept. of Communications has been meeting with potential MSAT users in government and the private sector as part of a $20M Communications Trials Program. User trials will be conducted using leased capacity as well as capacity on Canada's MSAT satellite. User requirements are discussed which were identified under the Communications Trials Program. Land, marine, aeronautical, and fixed applications are described from the perspective of the end users. Emphasis is placed on field trials being accomplished using leased capacity such as the marine data trial being implemented by Ultimateast Data Communications, trials using transportable briefcase terminals and additional field trials being considered for implementation with the TMI Mobile Data Service. The pre-MSAT trials that will be conducted using leased capacity are only a limited sample of the overall end user requirements that have been identified to date. Additional end user applications are discussed, along with a summary of user benefits.

  11. Canadian MSAT field trial program user requirements

    NASA Astrophysics Data System (ADS)

    Pedersen, Allister

    A wide range of mobile satellite service offerings will be available in late 1993 with the launch of Canada's first satellite devoted almost exclusively to mobile and transportable services. During the last seven years, the Dept. of Communications has been meeting with potential MSAT users in government and the private sector as part of a $20M Communications Trials Program. User trials will be conducted using leased capacity as well as capacity on Canada's MSAT satellite. User requirements are discussed which were identified under the Communications Trials Program. Land, marine, aeronautical, and fixed applications are described from the perspective of the end users. Emphasis is placed on field trials being accomplished using leased capacity such as the marine data trial being implemented by Ultimateast Data Communications, trials using transportable briefcase terminals and additional field trials being considered for implementation with the TMI Mobile Data Service. The pre-MSAT trials that will be conducted using leased capacity are only a limited sample of the overall end user requirements that have been identified to date. Additional end user applications are discussed, along with a summary of user benefits.

  12. Applications of large-scale density functional theory in biology

    NASA Astrophysics Data System (ADS)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  13. The influence of large-scale magnetic field in the structure of supercritical accretion flow with outflow

    NASA Astrophysics Data System (ADS)

    Ghasemnezhad, Maryam; Abbassi, Shahram

    2017-08-01

    We present the effects of ordered large-scale magnetic field on the structure of supercritical accretion flow in the presence of an outflow. In the cylindrical coordinates (r, φ, z), we write the 1.5-dimensional, steady-state (partial /partial t= 0) and axisymmetric (partial /partial \\varphi = 0) inflow-outflow equations by using self-similar solutions. Also, a model for radiation pressure supported accretion flow threaded by both toroidal and vertical components of magnetic field has been formulated. For studying the outflows, we adopt a radius-dependent mass accretion rate as \\dot{M}=\\dot{M}_{out}{(r/r_{out})^{s+1/2}} with s = 1/2. Also, by following the previous works, we have considered the interchange of mass, radial and angular momentum and the energy between inflow and outflow. We have found numerically that two components of magnetic field have the opposite effects on the thickness of the disc and similar effects on the radial and angular velocities of the flow. We have found that the existence of the toroidal component of magnetic field will lead to an increase in the radial and azimuthal velocities as well as the relative thickness of the disc. Moreover, in a magnetized flow, the thickness of the disc decreases with increase in the vertical component of magnetic field. The solutions indicated that the mass inflow rate and the specific energy of outflow strongly affect the advection parameter. We have shown that by increasing the two components of magnetic field, the temperature of the accretion flow decreases significantly. On the other hand, we have shown that the bolometric luminosity of the slim discs for high values of \\dot{m} (\\dot{m}>>1)\\dot{m} (\\dot{m}≫ 1) is not sensitive to mass accretion rate and is kept constant (L ≈ 10LE).

  14. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    PubMed

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  15. Large-scale neuromorphic computing systems

    NASA Astrophysics Data System (ADS)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  16. Large scale EMF in current sheets induced by tearing modes

    NASA Astrophysics Data System (ADS)

    Mizerski, Krzysztof A.

    2018-02-01

    An extension of the analysis of resistive instabilities of a sheet pinch from a famous work by Furth et al (1963 Phys. Fluids 6 459) is presented here, to study the mean electromotive force (EMF) generated by the developing instability. In a Cartesian configuration and in the presence of a current sheet first the boundary layer technique is used to obtain global, matched asymptotic solutions for the velocity and magnetic field and then the solutions are used to calculate the large-scale EMF in the system. It is reported, that in the bulk the curl of the mean EMF is linear in {{j}}0\\cdot {{B}}0, a simple pseudo-scalar quantity constructed from the large-scale quantities.

  17. Large-scale galaxy bias

    NASA Astrophysics Data System (ADS)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  18. Bio-Inspired Wooden Actuators for Large Scale Applications

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  19. ``Large''- vs Small-scale friction control in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp

    2017-11-01

    We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.

  20. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    NASA Astrophysics Data System (ADS)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  1. Statistical Analysis of Large-Scale Structure of Universe

    NASA Astrophysics Data System (ADS)

    Tugay, A. V.

    While galaxy cluster catalogs were compiled many decades ago, other structural elements of cosmic web are detected at definite level only in the newest works. For example, extragalactic filaments were described by velocity field and SDSS galaxy distribution during the last years. Large-scale structure of the Universe could be also mapped in the future using ATHENA observations in X-rays and SKA in radio band. Until detailed observations are not available for the most volume of Universe, some integral statistical parameters can be used for its description. Such methods as galaxy correlation function, power spectrum, statistical moments and peak statistics are commonly used with this aim. The parameters of power spectrum and other statistics are important for constraining the models of dark matter, dark energy, inflation and brane cosmology. In the present work we describe the growth of large-scale density fluctuations in one- and three-dimensional case with Fourier harmonics of hydrodynamical parameters. In result we get power-law relation for the matter power spectrum.

  2. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.

    PubMed

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.

  3. Recruiting to a large-scale physical activity randomised controlled trial - experiences with the gift of hindsight.

    PubMed

    Copeland, Robert J; Horspool, Kimberley; Humphreys, Liam; Scott, Emma

    2016-02-24

    Recruitment issues continue to impact a large number of trials. Sharing recruitment information is vital to supporting researchers to accurately predict recruitment and to manage the risk of poor recruitment during study design and implementation. The purpose of this article is to build on the knowledge available to researchers on recruiting to community-based trials. A critical commentary of the recruitment challenges encountered during the Booster Study, a randomised controlled trial in which researchers investigated the effectiveness of a motivational interviewing style intervention on the maintenance of physical activity. An overview of recruitment is provided, as well as strategies employed to recruit prospective participants and possible barriers to recruitment. Two hundred eighty-two people, 47 % of the original target, were recruited through mail-outs, with secondary recruitment pathways yielding no additional participants. The research team encountered problems with recontacting interested participants and providing study materials in non-English languages. A lower response rate to the mail-out and a greater number of non-contactable participants in the full study than in the pilot study resulted in a smaller pool of eligible participants from the brief intervention eligible for recruitment into the randomised controlled trial. Despite using widely accepted recruitment strategies and incorporating new recruitment tactics in response to challenges, the Booster Study investigators failed to randomise a sufficient number of participants. Recruitment in trials of community-based behavioural interventions may have different challenges than trials based on clinical or primary care pathways. Specific challenges posed by the complexity of the study design and problems with staffing and resources were exacerbated by the need to revise upwards the number of mailed invitations as a result of the pilot study. Researchers should ensure study design facilitates

  4. Principal shapes and squeezed limits in the effective field theory of large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less

  5. Time-sliced perturbation theory for large scale structure I: general formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution ofmore » the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.« less

  6. Post-trial follow-up methodology in large randomized controlled trials: a systematic review protocol.

    PubMed

    Llewellyn-Bennett, Rebecca; Bowman, Louise; Bulbulia, Richard

    2016-12-15

    Clinical trials typically have a relatively short follow-up period, and may both underestimate potential benefits of treatments investigated, and fail to detect hazards, which can take much longer to emerge. Prolonged follow-up of trial participants after the end of the scheduled trial period can provide important information on both efficacy and safety outcomes. This protocol describes a systematic review to qualitatively compare methods of post-trial follow-up used in large randomized controlled trials. A systematic search of electronic databases and clinical trial registries will use a predefined search strategy. All large (more than 1000 adult participants) randomized controlled trials will be evaluated. Two reviewers will screen and extract data according to this protocol with the aim of 95% concordance of papers checked and discrepancies will be resolved by a third reviewer. Trial methods, participant retention rates and prevalence of missing data will be recorded and compared. The potential for bias will be evaluated using the Cochrane Risk of Bias tool (applied to the methods used during the in-trial period) with the aim of investigating whether the quality of the post-trial follow-up methodology might be predicted by the quality of the methods used for the original trial. Post-trial follow-up can provide valuable information about the long-term benefits and hazards of medical interventions. However, it can be logistically challenging and costly. The aim of this systematic review is to describe how trial participants have been followed-up post-trial in order to inform future post-trial follow-up designs. Not applicable for PROSPERO registration.

  7. Plot-scale field experiment of surface hydrologic processes with EOS implications

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  8. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  9. High-Resolution Large Field-of-View FUV Compact Camera

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    The need for a high resolution camera with a large field of view and capable to image dim emissions in the far-ultraviolet is driven by the widely varying intensities of FUV emissions and spatial/temporal scales of phenomena of interest in the Earth% ionosphere. In this paper, the concept of a camera is presented that is designed to achieve these goals in a lightweight package with sufficient visible light rejection to be useful for dayside and nightside emissions. The camera employs the concept of self-filtering to achieve good spectral resolution tuned to specific wavelengths. The large field of view is sufficient to image the Earth's disk at Geosynchronous altitudes and capable of a spatial resolution of >20 km. The optics and filters are emphasized.

  10. Field-scale simulation of chemical flooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, N.

    1989-01-01

    A three-dimensional compositional chemical flooding simulator (UTCHEM) has been improved. The new mathematical formulation, boundary conditions, and a description of the physicochemical models of the simulator are presented. This improved simulator has been used for the study of the low tension pilot project at the Big Muddy field near Casper, Wyoming. Both the tracer injection conducted prior to the injection of the chemical slug, and the chemical flooding stages of the pilot project, have been analyzed. Not only the oil recovery but also the tracers, polymer, alcohol and chloride histories have been successfully matched with field results. Simulation results indicatemore » that, for this fresh water reservoir, the salinity gradient during the preflush and the resulting calcium pickup by the surfactant slug played a major role in the success of the project. In addition, analysis of the effects of the crossflow on the performance of the pilot project indicates that, for the well spacing of the pilot, crossflow does not play as important a role as it might for a large-scale project. To improve the numerical efficiency of the simulator, a third order convective differencing scheme has been applied to the simulator. This method can be used with non-uniform mesh, and therefore is suited for simulation studies of large-scale multiwell heterogeneous reservoirs. Comparison of the results with one and two dimensional analytical solutions shows that this method is effective in eliminating numerical dispersion using relatively large grid blocks. Results of one, two and three-dimensional miscible water/tracer flow, water flooding, polymer flooding, and micellar-polymer flooding test problems, and results of grid orientation studies, are presented.« less

  11. Disorder in the Disk: The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo.

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2018-01-01

    The evolution of the magnetic field from the enigmatic large-scale dynamo is often considered a central feature of the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the growth and decay of the field strength, along with the change in field orientation, are thought to be intimately tied to variability from the disk. Several factors are at play, but the dynamo can either be directly tied to observable signatures through modulation of the heating rate, or indirectly as the source of quasiperiodic oscillations, the driver of nonlinear structure from propagating fluctuations in mass accretion rate, or even the trigger of state transitions. We present a selection of results from a recent study of this process using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary the scale height ratio and find the large-scale dynamo fails to develop above a scale height ratio of h/r ≥ 0.2. Using “butterfly” diagrams of the azimuthal magnetic field, we show the large-scale dynamo exists in the thinner accretion disk models, but fails to excite when the scale height ratio is increased, a feature which is also reflected in 2D Fourier transforms. Additionally, we calculate the dynamo α-parameter through correlations in the averaged magnetic field and turbulent electromotive force, and also generate synthetic light curves from the disk cooling. Using our emission proxy, we find the disks have markedly different characters as photometric fluctuations are larger and less ordered when the disk is thicker and the dynamo is absent.

  12. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  13. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    PubMed

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  14. A density spike on astrophysical scales from an N-field waterfall transition

    NASA Astrophysics Data System (ADS)

    Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.

    2015-09-01

    Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.

  15. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations

    PubMed Central

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414

  16. The relationship of the large-scale solar field to the interplanetary magnetic field - What will Ulysses find?

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1986-01-01

    Using photospheric magnetic field observations obtained at the Stanford Wilcox Solar Observatory, results from a potential field model for the present solar cycle are given, and qualitative predictions of the IMF that Ulysses may encounter are presented. Results indicate that the IMF consists of large regions of opposite polarity separated by a neutral sheet (NS) (extended to at least 50 deg) and a four-sector structure near solar minimum (produced by small quadripolar NS warps). The latitudinal extent of the NS increases following minimum and the structure near maximum includes multiple NSs, while a simplified IMF is found during the declining phase.

  17. Synchronization of coupled large-scale Boolean networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fangfei, E-mail: li-fangfei@163.com

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  18. The three-point function as a probe of models for large-scale structure

    NASA Astrophysics Data System (ADS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1994-04-01

    We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  19. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Western U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  20. Large Scale Deformation of the Western U.S. Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2002-01-01

    Over the past couple of years, with support from NASA, we used a large collection of data from GPS, VLBI, SLR, and DORIS networks which span the Westem U.S. Cordillera (WUSC) to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work was roughly divided into an analysis of these space geodetic observations to infer the deformation field across and within the entire plate boundary zone, and an investigation of the implications of this deformation field regarding plate boundary dynamics. Following the determination of the first generation WUSC velocity solution, we placed high priority on the dissemination of the velocity estimates. With in-kind support from the Smithsonian Astrophysical Observatory, we constructed a web-site which allows anyone to access the data, and to determine their own velocity reference frame.

  1. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  2. IKONOS imagery for the Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA).

    Treesearch

    George Hurtt; Xiangming Xiao; Michael Keller; Michael Palace; Gregory P. Asner; Rob Braswell; Brond& #305; Eduardo S. zio; Manoel Cardoso; Claudio J.R. Carvalho; Matthew G. Fearon; Liane Guild; Steve Hagen; Scott Hetrick; Berrien Moore III; Carlos Nobre; Jane M. Read; S& aacute; Tatiana NO-VALUE; Annette Schloss; George Vourlitis; Albertus J. Wickel

    2003-01-01

    The LBA-ECO program is one of several international research components under the Brazilian-led Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA). The field-oriented research activities of this study are organized along transects and include a set of primary field sites, where the major objective is to study land-use change and ecosystem dynamics, and a...

  3. Large scale mass redistribution and surface displacement from GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  4. The Prominent Role of the Upstream Conditions on the Large-scale Motions of a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Castillo, Luciano; Dharmarathne, Suranga; Tutkun, Murat; Hutchins, Nicholas

    2017-11-01

    In this study we investigate how upstream perturbations in a turbulent channel flow impact the downstream flow evolution, especially the large-scale motions. Direct numerical simulations were carried out at a friction Reynolds number, Reτ = 394 . Spanwise varying inlet blowing perturbations were imposed at 1 πh from the inlet. The flow field is decomposed into its constituent scales using proper orthogonal decomposition. The large-scale motions and the small-scale motions of the flow field are separated at a cut-off mode number, Mc. The cut-off mode number is defined as the number of the mode at which the fraction of energy recovered is 55 % . It is found that Reynolds stresses are increased due to blowing perturbations and large-scale motions are responsible for more than 70 % of the increase of the streamwise component of Reynolds normal stress. Surprisingly, 90 % of Reynolds shear stress is due to the energy augmentation of large-scale motions. It is shown that inlet perturbations impact the downstream flow by means of the LSM.

  5. Large-scale circulation departures related to wet episodes in north-east Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  6. Literature Review: Herbal Medicine Treatment after Large-Scale Disasters.

    PubMed

    Takayama, Shin; Kaneko, Soichiro; Numata, Takehiro; Kamiya, Tetsuharu; Arita, Ryutaro; Saito, Natsumi; Kikuchi, Akiko; Ohsawa, Minoru; Kohayagawa, Yoshitaka; Ishii, Tadashi

    2017-01-01

    Large-scale natural disasters, such as earthquakes, tsunamis, volcanic eruptions, and typhoons, occur worldwide. After the Great East Japan earthquake and tsunami, our medical support operation's experiences suggested that traditional medicine might be useful for treating the various symptoms of the survivors. However, little information is available regarding herbal medicine treatment in such situations. Considering that further disasters will occur, we performed a literature review and summarized the traditional medicine approaches for treatment after large-scale disasters. We searched PubMed and Cochrane Library for articles written in English, and Ichushi for those written in Japanese. Articles published before 31 March 2016 were included. Keywords "disaster" and "herbal medicine" were used in our search. Among studies involving herbal medicine after a disaster, we found two randomized controlled trials investigating post-traumatic stress disorder (PTSD), three retrospective investigations of trauma or common diseases, and seven case series or case reports of dizziness, pain, and psychosomatic symptoms. In conclusion, herbal medicine has been used to treat trauma, PTSD, and other symptoms after disasters. However, few articles have been published, likely due to the difficulty in designing high quality studies in such situations. Further study will be needed to clarify the usefulness of herbal medicine after disasters.

  7. Sound production due to large-scale coherent structures. [and identification of noise mechanisms in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.

  8. Geometric quantification of features in large flow fields.

    PubMed

    Kendall, Wesley; Huang, Jian; Peterka, Tom

    2012-01-01

    Interactive exploration of flow features in large-scale 3D unsteady-flow data is one of the most challenging visualization problems today. To comprehensively explore the complex feature spaces in these datasets, a proposed system employs a scalable framework for investigating a multitude of characteristics from traced field lines. This capability supports the examination of various neighborhood-based geometric attributes in concert with other scalar quantities. Such an analysis wasn't previously possible because of the large computational overhead and I/O requirements. The system integrates visual analytics methods by letting users procedurally and interactively describe and extract high-level flow features. An exploration of various phenomena in a large global ocean-modeling simulation demonstrates the approach's generality and expressiveness as well as its efficacy.

  9. Scale invariance, conformality, and generalized free fields

    DOE PAGES

    Dymarsky, Anatoly; Farnsworth, Kara; Komargodski, Zohar; ...

    2016-02-16

    This paper addresses the question of whether there are 4D Lorentz invariant unitary quantum fi eld theories with scale invariance but not conformal invariance. We present an important loophole in the arguments of Luty-Polchinski-Rattazzi and Dymarsky-Komargodski-Schwimmer-Theisen that is the trace of the energy-momentum tensor T could be a generalized free field. In this paper we rule out this possibility. The key ingredient is the observation that a unitary theory with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unlessmore » the theory also contains a dimension-2 scalar operator. In the special case where such an operator is present it can be used to redefine ("improve") the energy-momentum tensor, and we show that there is at least one energy-momentum tensor that is not a generalized free field. In addition, we emphasize that, in general, large momentum limits of correlation functions cannot be understood from the leading terms of the coordinate space OPE. This invalidates a recent argument by Farnsworth-Luty-Prilepina (FLP). Finally, despite the invalidity of the general argument of FLP, some of the techniques turn out to be useful in the present context.« less

  10. A Large-scale Plume in an X-class Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.

    Ever-increasing multi-frequency imaging of solar observations suggests that solar flares often involve more than one magnetic fluxtube. Some of the fluxtubes are closed, while others can contain open fields. The relative proportion of nonthermal electrons among those distinct loops is highly important for understanding energy release, particle acceleration, and transport. The access of nonthermal electrons to the open field is also important because the open field facilitates the solar energetic particle (SEP) escape from the flaring site, and thus controls the SEP fluxes in the solar system, both directly and as seed particles for further acceleration. The large-scale fluxtubes aremore » often filled with a tenuous plasma, which is difficult to detect in either EUV or X-ray wavelengths; however, they can dominate at low radio frequencies, where a modest component of nonthermal electrons can render the source optically thick and, thus, bright enough to be observed. Here we report the detection of a large-scale “plume” at the impulsive phase of an X-class solar flare, SOL2001-08-25T16:23, using multi-frequency radio data from Owens Valley Solar Array. To quantify the flare’s spatial structure, we employ 3D modeling utilizing force-free-field extrapolations from the line of sight SOHO /MDI magnetograms with our modeling tool GX-Simulator. We found that a significant fraction of the nonthermal electrons that accelerated at the flare site low in the corona escapes to the plume, which contains both closed and open fields. We propose that the proportion between the closed and open fields at the plume is what determines the SEP population escaping into interplanetary space.« less

  11. Brief Self-Efficacy Scales for use in Weight-Loss Trials: Preliminary Evidence of Validity

    PubMed Central

    Wilson, Kathryn E.; Harden, Samantha M.; Almeida, Fabio A.; You, Wen; Hill, Jennie L.; Goessl, Cody; Estabrooks, Paul A.

    2015-01-01

    Self-efficacy is a commonly included cognitive variable in weight-loss trials, but there is little uniformity in its measurement. Weight-loss trials frequently focus on physical activity (PA) and eating behavior, as well as weight loss, but no survey is available that offers reliable measurement of self-efficacy as it relates to each of these targeted outcomes. The purpose of this study was to test the psychometric properties of brief, pragmatic self-efficacy scales specific to PA, healthful eating and weight-loss (4 items each). An adult sample (n=1790) from 28 worksites enrolled in a worksite weight-loss program completed the self-efficacy scale, as well as measures of PA, dietary fat intake, and weight, at baseline, 6-, and 12-months. The hypothesized factor structure was tested through confirmatory factor analysis, which supported the expected factor structure for three latent self-efficacy factors, specific to PA, healthful eating, and weight-loss. Measurement equivalence/invariance between relevant demographic groups, and over time was also supported. Parallel growth processes in self-efficacy factors and outcomes (PA, fat intake, and weight) support the predictive validity of score interpretations. Overall, this initial series of psychometric analyses supports the interpretation that scores on these scales reflect self-efficacy for PA, healthful eating, and weight-loss. The use of this instrument in large-scale weight-loss trials is encouraged. PMID:26619093

  12. AzTEC Millimetre Survey of the COSMOS field - II. Source count overdensity and correlations with large-scale structure

    NASA Astrophysics Data System (ADS)

    Austermann, J. E.; Aretxaga, I.; Hughes, D. H.; Kang, Y.; Kim, S.; Lowenthal, J. D.; Perera, T. A.; Sanders, D. B.; Scott, K. S.; Scoville, N.; Wilson, G. W.; Yun, M. S.

    2009-03-01

    We report an overdensity of bright submillimetre galaxies (SMGs) in the 0.15 deg2 AzTEC/COSMOS survey and a spatial correlation between the SMGs and the optical-IR galaxy density at z <~ 1.1. This portion of the COSMOS field shows a ~3σ overdensity of robust SMG detections when compared to a background, or `blank-field', population model that is consistent with SMG surveys of fields with no extragalactic bias. The SMG overdensity is most significant in the number of very bright detections (14 sources with measured fluxes S1.1mm > 6 mJy), which is entirely incompatible with sample variance within our adopted blank-field number densities and infers an overdensity significance of >> 4σ. We find that the overdensity and spatial correlation to optical-IR galaxy density are most consistent with lensing of a background SMG population by foreground mass structures along the line of sight, rather than physical association of the SMGs with the z <~ 1.1 galaxies/clusters. The SMG positions are only weakly correlated with weak-lensing maps, suggesting that the dominant sources of correlation are individual galaxies and the more tenuous structures in the survey region, and not the massive and compact clusters. These results highlight the important roles cosmic variance and large-scale structure can play in the study of SMGs.

  13. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  14. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team

    2015-11-01

    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  15. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  16. A holistic approach for large-scale derived flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno

    2017-04-01

    Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.

  17. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    PubMed

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  18. Field Validation of the Los Angeles Motor Scale as a Tool for Paramedic Assessment of Stroke Severity.

    PubMed

    Kim, Joon-Tae; Chung, Pil-Wook; Starkman, Sidney; Sanossian, Nerses; Stratton, Samuel J; Eckstein, Marc; Pratt, Frank D; Conwit, Robin; Liebeskind, David S; Sharma, Latisha; Restrepo, Lucas; Tenser, May-Kim; Valdes-Sueiras, Miguel; Gornbein, Jeffrey; Hamilton, Scott; Saver, Jeffrey L

    2017-02-01

    The Los Angeles Motor Scale (LAMS) is a 3-item, 0- to 10-point motor stroke-deficit scale developed for prehospital use. We assessed the convergent, divergent, and predictive validity of the LAMS when performed by paramedics in the field at multiple sites in a large and diverse geographic region. We analyzed early assessment and outcome data prospectively gathered in the FAST-MAG trial (Field Administration of Stroke Therapy-Magnesium phase 3) among patients with acute cerebrovascular disease (cerebral ischemia and intracranial hemorrhage) within 2 hours of onset, transported by 315 ambulances to 60 receiving hospitals. Among 1632 acute cerebrovascular disease patients (age 70±13 years, male 57.5%), time from onset to prehospital LAMS was median 30 minutes (interquartile range 20-50), onset to early postarrival (EPA) LAMS was 145 minutes (interquartile range 119-180), and onset to EPA National Institutes of Health Stroke Scale was 150 minutes (interquartile range 120-180). Between the prehospital and EPA assessments, LAMS scores were stable in 40.5%, improved in 37.6%, and worsened in 21.9%. In tests of convergent validity, against the EPA National Institutes of Health Stroke Scale, correlations were r=0.49 for the prehospital LAMS and r=0.89 for the EPA LAMS. Prehospital LAMS scores did diverge from the prehospital Glasgow Coma Scale, r=-0.22. Predictive accuracy (adjusted C statistics) for nondisabled 3-month outcome was as follows: prehospital LAMS, 0.76 (95% confidence interval 0.74-0.78); EPA LAMS, 0.85 (95% confidence interval 0.83-0.87); and EPA National Institutes of Health Stroke Scale, 0.87 (95% confidence interval 0.85-0.88). In this multicenter, prospective, prehospital study, the LAMS showed good to excellent convergent, divergent, and predictive validity, further establishing it as a validated instrument to characterize stroke severity in the field. © 2017 American Heart Association, Inc.

  19. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  20. Linking Large-Scale Reading Assessments: Measuring International Trends over 40 Years

    ERIC Educational Resources Information Center

    Strietholt, Rolf; Rosén, Monica

    2016-01-01

    Since the start of the new millennium, international comparative large-scale studies have become one of the most well-known areas in the field of education. However, the International Association for the Evaluation of Educational Achievement (IEA) has already been conducting international comparative studies for about half a century. The present…

  1. The Effect of Large Scale Salinity Gradient on Langmuir Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.

    2017-12-01

    Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by

  2. The three-point function as a probe of models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1993-01-01

    The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  3. Generation of scale invariant magnetic fields in bouncing universes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriramkumar, L.; Atmjeet, Kumar; Jain, Rajeev Kumar, E-mail: sriram@physics.iitm.ac.in, E-mail: katmjeet@physics.du.ac.in, E-mail: jain@cp3.dias.sdu.dk

    2015-09-01

    We consider the generation of primordial magnetic fields in a class of bouncing models when the electromagnetic action is coupled non-minimally to a scalar field that, say, drives the background evolution. For scale factors that have the power law form at very early times and non-minimal couplings which are simple powers of the scale factor, one can easily show that scale invariant spectra for the magnetic field can arise before the bounce for certain values of the indices involved. It will be interesting to examine if these power spectra retain their shape after the bounce. However, analytical solutions for themore » Fourier modes of the electromagnetic vector potential across the bounce are difficult to obtain. In this work, with the help of a new time variable that we introduce, which we refer to as the e-N-fold, we investigate these scenarios numerically. Imposing the initial conditions on the modes in the contracting phase, we numerically evolve the modes across the bounce and evaluate the spectra of the electric and magnetic fields at a suitable time after the bounce. As one could have intuitively expected, though the complete spectra depend on the details of the bounce, we find that, under the original conditions, scale invariant spectra of the magnetic fields do arise for wavenumbers much smaller than the scale associated with the bounce. We also show that magnetic fields which correspond to observed strengths today can be generated for specific values of the parameters. But, we find that, at the bounce, the backreaction due to the electromagnetic modes that have been generated can be significantly large calling into question the viability of the model. We briefly discuss the implications of our results.« less

  4. Identifying large scale structures at 1 AU using fluctuations and wavelets

    NASA Astrophysics Data System (ADS)

    Niembro, T.; Lara, A.

    2016-12-01

    The solar wind (SW) is inhomogeneous and it is dominated for two types of flows: one quasi-stationary and one related to large scale transients (such as coronal mass ejections and co-rotating interaction regions). The SW inhomogeneities can be study as fluctuations characterized by a wide range of length and time scales. We are interested in the study of the characteristic fluctuations caused by large scale transient events. To do so, we define the vector space F with the normalized moving monthly/annual deviations as the orthogonal basis. Then, we compute the norm in this space of the solar wind parameters (velocity, magnetic field, density and temperature) fluctuations using WIND data from August 1992 to August 2015. This norm gives important information about the presence of a large structure disturbance in the solar wind and by applying a wavelet transform to this norm, we are able to determine, without subjectivity, the duration of the compression regions of these large transient structures and, even more, to identify if the structure corresponds to a single or complex (or merged) event. With this method we have automatically detected most of the events identified and published by other authors.

  5. Large-scale oscillatory calcium waves in the immature cortex.

    PubMed

    Garaschuk, O; Linn, J; Eilers, J; Konnerth, A

    2000-05-01

    Two-photon imaging of large neuronal networks in cortical slices of newborn rats revealed synchronized oscillations in intracellular Ca2+ concentration. These spontaneous Ca2+ waves usually started in the posterior cortex and propagated slowly (2.1 mm per second) toward its anterior end. Ca2+ waves were associated with field-potential changes and required activation of AMPA and NMDA receptors. Although GABAA receptors were not involved in wave initiation, the developmental transition of GABAergic transmission from depolarizing to hyperpolarizing (around postnatal day 7) stopped the oscillatory activity. Thus we identified a type of large-scale Ca2+ wave that may regulate long-distance wiring in the immature cortex.

  6. Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing.

    PubMed

    Xu, Xiaoqing; Hu, Xiaolin; Chen, Xiaoshu; Kang, Yangsen; Zhang, Zhiping; B Parizi, Kokab; Wong, H-S Philip

    2016-11-23

    In this work, we developed a simple method to fabricate 12 × 4 mm 2 large scale nanostructure arrays and investigated the feasibility of indium nanodot (ND) array with different diameters and periods for refractive index sensing. Absorption resonances at multiple wavelengths from the visible to the near-infrared range were observed for various incident angles in a variety of media. Engineering the ND array with a centered square lattice, we successfully enhanced the sensitivity by 60% and improved the figure of merit (FOM) by 190%. The evolution of the resonance dips in the reflection spectra, of square lattice and centered square lattice, from air to water, matches well with the results of Lumerical FDTD simulation. The improvement of sensitivity is due to the enhancement of local electromagnetic field (E-field) near the NDs with centered square lattice, as revealed by E-field simulation at resonance wavelengths. The E-field is enhanced due to coupling between the two square ND arrays with [Formula: see text]x period at phase matching. This work illustrates an effective way to engineer and fabricate a refractive index sensor at a large scale. This is the first experimental demonstration of poor-metal (indium) nanostructure array for refractive index sensing. It also demonstrates a centered square lattice for higher sensitivity and as a better basic platform for more complex sensor designs.

  7. Large-Scale periodic solar velocities: An observational study

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.

    1977-01-01

    Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.

  8. Feasibility and acceptability of the DSM-5 Field Trial procedures in the Johns Hopkins Community Psychiatry Programs†

    PubMed Central

    Clarke, Diana E.; Wilcox, Holly C.; Miller, Leslie; Cullen, Bernadette; Gerring, Joan; Greiner, Lisa H.; Newcomer, Alison; Mckitty, Mellisha V.; Regier, Darrel A.; Narrow, William E.

    2014-01-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) contains criteria for psychiatric diagnoses that reflect advances in the science and conceptualization of mental disorders and address the needs of clinicians. DSM-5 also recommends research on dimensional measures of cross-cutting symptoms and diagnostic severity, which are expected to better capture patients’ experiences with mental disorders. Prior to its May 2013 release, the American Psychiatric Association (APA) conducted field trials to examine the feasibility, clinical utility, reliability, and where possible, the validity of proposed DSM-5 diagnostic criteria and dimensional measures. The methods and measures proposed for the DSM-5 field trials were pilot tested in adult and child/adolescent clinical samples, with the goal to identify and correct design and procedural problems with the proposed methods before resources were expended for the larger DSM-5 Field Trials. Results allowed for the refinement of the protocols, procedures, and measures, which facilitated recruitment, implementation, and completion of the DSM-5 Field Trials. These results highlight the benefits of pilot studies in planning large multisite studies. PMID:24615761

  9. Measuring Energy Scaling of Laser Driven Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John

    2016-10-01

    Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Field-scale and wellbore modeling of compaction-induced casing failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.

    1999-06-01

    Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less

  11. Characterising large-scale structure with the REFLEX II cluster survey

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung

    2016-10-01

    We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.

  12. Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects.

    PubMed

    Matsushima, Kyoji; Sonobe, Noriaki

    2018-01-01

    Digitized holography techniques are used to reconstruct three-dimensional (3D) images of physical objects using large-scale computer-generated holograms (CGHs). The object field is captured at three wavelengths over a wide area at high densities. Synthetic aperture techniques using single sensors are used for image capture in phase-shifting digital holography. The captured object field is incorporated into a virtual 3D scene that includes nonphysical objects, e.g., polygon-meshed CG models. The synthetic object field is optically reconstructed as a large-scale full-color CGH using red-green-blue color filters. The CGH has a wide full-parallax viewing zone and reconstructs a deep 3D scene with natural motion parallax.

  13. The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2011-11-01

    We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shownmore » to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.« less

  14. Local properties of the large-scale peaks of the CMB temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks ismore » performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.« less

  15. Dark matter, long-range forces, and large-scale structure

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami; Frieman, Joshua A.

    1992-01-01

    If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.

  16. From Efficacy Trial to Large Scale Effectiveness Trial: A Tier 2 Mathematics Intervention for First Graders with Difficulties in Mathematics

    ERIC Educational Resources Information Center

    Rolfhus, Eric; Clarke, Ben; Decker, Lauren E.; Williams, Chuck; Dimino, Joseph

    2013-01-01

    Large scale longitudinal research (Morgan, Farkas, & Wu, 2009) and a meta-analysis (Duncan et al., 2007) have found that early mathematics achievement is a strong predictor of later mathematics achievement. In fact, end of Kindergarten and end of grade 1 mathematics achievement on ECLS-K and similar mathematics proficiency measures tends to be…

  17. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  18. Large-scale field testing on flexible shallow landslide barriers

    NASA Astrophysics Data System (ADS)

    Bugnion, Louis; Volkwein, Axel; Wendeler, Corinna; Roth, Andrea

    2010-05-01

    Open shallow landslides occur regularly in a wide range of natural terrains. Generally, they are difficult to predict and result in damages to properties and disruption of transportation systems. In order to improve the knowledge about the physical process itself and to develop new protection measures, large-scale field experiments were conducted in Veltheim, Switzerland. Material was released down a 30° inclined test slope into a flexible barrier. The flow as well as the impact into the barrier was monitored using various measurement techniques. Laser devices recording flow heights, a special force plate measuring normal and shear basal forces as well as load cells for impact pressures were installed along the test slope. In addition, load cells were built in the support and retaining cables of the barrier to provide data for detailed back-calculation of load distribution during impact. For the last test series an additional guiding wall in flow direction on both sides of the barrier was installed to achieve higher impact pressures in the middle of the barrier. With these guiding walls the flow is not able to spread out before hitting the barrier. A special constructed release mechanism simulating the sudden failure of the slope was designed such that about 50 m3 of mixed earth and gravel saturated with water can be released in an instant. Analysis of cable forces combined with impact pressures and velocity measurements during a test series allow us now to develop a load model for the barrier design. First numerical simulations with the software tool FARO, originally developed for rockfall barriers and afterwards calibrated for debris flow impacts, lead already to structural improvements on barrier design. Decisive for the barrier design is the first dynamic impact pressure depending on the flow velocity and afterwards the hydrostatic pressure of the complete retained material behind the barrier. Therefore volume estimation of open shallow landslides by assessing

  19. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  20. The assessment of field trials in GMO research around the world and their possible integration in field trials for variety registration.

    PubMed

    Slot, M M; van de Wiel, C C M; Kleter, G A; Visser, R G F; Kok, E J

    2018-05-04

    Most regulations worldwide stipulate that a new genetically modified (GM) crop event has to be compared to its closest non-GM counterpart as a corner stone of the pre-market risk assessment. To this end the GM crop and its comparator should be grown in field trials for a phenotypic comparison as well as for subsequent detailed analysis of the composition of the two crop varieties. A more in-depth globally harmonised approach for the conduct of these field trials is lacking. Only a few countries have formulated detailed protocols for the set-up of GM field trials. In some countries, commercial non-GM reference varieties need to be included in a field study to compile reliable data that indicate the range of natural variation for the compounds tested at the specific location. Detailed analysis of pre-market assessment reports have so far not shown the added value of including these reference varieties in the field trials. In all cases where specific values were found to be outside of the range of the reference varieties, it proved possible to draw conclusions on the part of the pre-market risk assessment that relates to the compositional analysis, on the basis of already available compositional data. With the increasing quality of several databases on compositional data of a growing number of crop species, it seems unlikely that reference varieties will become more important on future occasions. It was furthermore investigated whether this part of the risk assessment can be related to field trial requirements for variety registration with the explicit intention of reducing the data burden on producers of new GM plant varieties. Field trials for variety registration so far include an assessment of phenotypic characteristics that do not cover safety aspects, with the exception of establishment of the glycoalkaloid content in potatoes in the Netherlands and Sweden. It may, however, under certain conditions be relatively easy to exchange data from compositional

  1. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    PubMed

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  2. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary

  3. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    NASA Astrophysics Data System (ADS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  4. The large-scale environment from cosmological simulations - I. The baryonic cosmic web

    NASA Astrophysics Data System (ADS)

    Cui, Weiguang; Knebe, Alexander; Yepes, Gustavo; Yang, Xiaohu; Borgani, Stefano; Kang, Xi; Power, Chris; Staveley-Smith, Lister

    2018-01-01

    Using a series of cosmological simulations that includes one dark-matter-only (DM-only) run, one gas cooling-star formation-supernova feedback (CSF) run and one that additionally includes feedback from active galactic nuclei (AGNs), we classify the large-scale structures with both a velocity-shear-tensor code (VWEB) and a tidal-tensor code (PWEB). We find that the baryonic processes have almost no impact on large-scale structures - at least not when classified using aforementioned techniques. More importantly, our results confirm that the gas component alone can be used to infer the filamentary structure of the universe practically un-biased, which could be applied to cosmology constraints. In addition, the gas filaments are classified with its velocity (VWEB) and density (PWEB) fields, which can theoretically connect to the radio observations, such as H I surveys. This will help us to bias-freely link the radio observations with dark matter distributions at large scale.

  5. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    NASA Astrophysics Data System (ADS)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  6. FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Robert J.; Berlind, Andreas A.; Mao, Qingqing

    2010-01-01

    Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function called the copula, which contains all of the information on correlations between the distributions. The copula provides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some of the consequences of this hypothesis. Future directions for investigation are discussed.

  7. Large-scale inverse model analyses employing fast randomized data reduction

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; Le, Ellen B.; O'Malley, Daniel; Vesselinov, Velimir V.; Bui-Thanh, Tan

    2017-08-01

    When the number of observations is large, it is computationally challenging to apply classical inverse modeling techniques. We have developed a new computationally efficient technique for solving inverse problems with a large number of observations (e.g., on the order of 107 or greater). Our method, which we call the randomized geostatistical approach (RGA), is built upon the principal component geostatistical approach (PCGA). We employ a data reduction technique combined with the PCGA to improve the computational efficiency and reduce the memory usage. Specifically, we employ a randomized numerical linear algebra technique based on a so-called "sketching" matrix to effectively reduce the dimension of the observations without losing the information content needed for the inverse analysis. In this way, the computational and memory costs for RGA scale with the information content rather than the size of the calibration data. Our algorithm is coded in Julia and implemented in the MADS open-source high-performance computational framework (http://mads.lanl.gov). We apply our new inverse modeling method to invert for a synthetic transmissivity field. Compared to a standard geostatistical approach (GA), our method is more efficient when the number of observations is large. Most importantly, our method is capable of solving larger inverse problems than the standard GA and PCGA approaches. Therefore, our new model inversion method is a powerful tool for solving large-scale inverse problems. The method can be applied in any field and is not limited to hydrogeological applications such as the characterization of aquifer heterogeneity.

  8. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; ...

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  9. Tracking of large-scale structures in turbulent channel with direct numerical simulation of low Prandtl number passive scalar

    NASA Astrophysics Data System (ADS)

    Tiselj, Iztok

    2014-12-01

    Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and

  10. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems

    PubMed Central

    Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip

    2017-01-01

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409

  11. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.

    PubMed

    Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip

    2017-01-31

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.

  12. Large Scale Traffic Simulations

    DOT National Transportation Integrated Search

    1997-01-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computation speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated "looping" between t...

  13. Cooperation, collective action, and the archeology of large-scale societies.

    PubMed

    Carballo, David M; Feinman, Gary M

    2016-11-01

    Archeologists investigating the emergence of large-scale societies in the past have renewed interest in examining the dynamics of cooperation as a means of understanding societal change and organizational variability within human groups over time. Unlike earlier approaches to these issues, which used models designated voluntaristic or managerial, contemporary research articulates more explicitly with frameworks for cooperation and collective action used in other fields, thereby facilitating empirical testing through better definition of the costs, benefits, and social mechanisms associated with success or failure in coordinated group action. Current scholarship is nevertheless bifurcated along lines of epistemology and scale, which is understandable but problematic for forging a broader, more transdisciplinary field of cooperation studies. Here, we point to some areas of potential overlap by reviewing archeological research that places the dynamics of social cooperation and competition in the foreground of the emergence of large-scale societies, which we define as those having larger populations, greater concentrations of political power, and higher degrees of social inequality. We focus on key issues involving the communal-resource management of subsistence and other economic goods, as well as the revenue flows that undergird political institutions. Drawing on archeological cases from across the globe, with greater detail from our area of expertise in Mesoamerica, we offer suggestions for strengthening analytical methods and generating more transdisciplinary research programs that address human societies across scalar and temporal spectra. © 2016 Wiley Periodicals, Inc.

  14. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  15. Implementing Large-Scale Instructional Technology in Kenya: Changing Instructional Practice and Developing Accountability in a National Education System

    ERIC Educational Resources Information Center

    Piper, Benjamin; Oyanga, Arbogast; Mejia, Jessica; Pouezevara, Sarah

    2017-01-01

    Previous large-scale education technology interventions have shown only modest impacts on student achievement. Building on results from an earlier randomized controlled trial of three different applications of information and communication technologies (ICTs) on primary education in Kenya, the Tusome Early Grade Reading Activity developed the…

  16. Galaxy clustering and the origin of large-scale flows

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, R.; Yahil, A.

    1989-01-01

    Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.

  17. Evidence of Ubiquitous Large-Amplitude Alfven waves in the Global Field-Aligned Current System

    NASA Astrophysics Data System (ADS)

    Pakhotin, I.; Mann, I.; Lysak, R. L.; Knudsen, D. J.; Burchill, J. K.; Gjerloev, J. W.; Rae, J.; Forsyth, C.; Murphy, K. R.; Miles, D.; Ozeke, L.; Balasis, G.

    2017-12-01

    Large-amplitude non-stationarities have been observed during an analysis of a quiescent field-aligned current system crossing using the multi-satellite Swarm constellation. Using simultaneous electric and magnetic field measurements it has been determined that these non-stationarities, reaching tens to hundreds of nanoteslas, are Alfvenic in nature. Evidence suggests that these large-amplitude Alfven waves are a ubiquitous, fundamentally inherent feature of and exist in a continuum with larger-scale field-aligned currents, and both can be explained using the same physical paradigm of reflected Alfven waves.

  18. Toward Increasing Fairness in Score Scale Calibrations Employed in International Large-Scale Assessments

    ERIC Educational Resources Information Center

    Oliveri, Maria Elena; von Davier, Matthias

    2014-01-01

    In this article, we investigate the creation of comparable score scales across countries in international assessments. We examine potential improvements to current score scale calibration procedures used in international large-scale assessments. Our approach seeks to improve fairness in scoring international large-scale assessments, which often…

  19. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity

  20. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  1. The Field Assessment Stroke Triage for Emergency Destination (FAST-ED): a Simple and Accurate Pre-Hospital Scale to Detect Large Vessel Occlusion Strokes

    PubMed Central

    Lima, Fabricio O.; Silva, Gisele S.; Furie, Karen L.; Frankel, Michael R.; Lev, Michael H.; Camargo, Érica CS; Haussen, Diogo C.; Singhal, Aneesh B.; Koroshetz, Walter J.; Smith, Wade S.; Nogueira, Raul G.

    2016-01-01

    Background and Purpose Patients with large vessel occlusion strokes (LVOS) may be better served by direct transfer to endovascular capable centers avoiding hazardous delays between primary and comprehensive stroke centers. However, accurate stroke field triage remains challenging. We aimed to develop a simple field scale to identify LVOS. Methods The FAST-ED scale was based on items of the NIHSS with higher predictive value for LVOS and tested in the STOPStroke cohort, in which patients underwent CT angiography within the first 24 hours of stroke onset. LVOS were defined by total occlusions involving the intracranial-ICA, MCA-M1, MCA-2, or basilar arteries. Patients with partial, bi-hemispheric, and/or anterior + posterior circulation occlusions were excluded. Receiver operating characteristic (ROC) curve, sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of FAST-ED were compared with the NIHSS, Rapid Arterial oCclusion Evaluation (RACE) scale and Cincinnati Prehospital Stroke Severity Scale (CPSSS). Results LVO was detected in 240 of the 727 qualifying patients (33%). FAST-ED had comparable accuracy to predict LVO to the NIHSS and higher accuracy than RACE and CPSS (area under the ROC curve: FAST-ED=0.81 as reference; NIHSS=0.80, p=0.28; RACE=0.77, p=0.02; and CPSS=0.75, p=0.002). A FAST-ED ≥4 had sensitivity of 0.60, specificity 0.89, PPV 0.72, and NPV 0.82 versus RACE ≥5 of 0.55, 0.87, 0.68, 0.79 and CPSS ≥2 of 0.56, 0.85, 0.65, 0.78, respectively. Conclusions FAST-ED is a simple scale that if successfully validated in the field may be used by medical emergency professionals to identify LVOS in the pre-hospital setting enabling rapid triage of patients. PMID:27364531

  2. A study of large, medium and small scale structures in the topside ionosphere

    NASA Technical Reports Server (NTRS)

    Gross, Stanley H.; Kuo, Spencer P.; Shmoys, Jerry

    1986-01-01

    Alouette and ISIS data were studied for large, medium, and small scale structures in the ionosphere. Correlation was also sought with measurements by other satellites, such as the Atmosphere Explorer C and E and the Dynamic Explorer 2 satellites, of both neutrals and ionization, and with measurements by ground facilities, such as the incoherent scatter radars. Large scale coherent wavelike structures were found from ISIS 2 electron density contours from above the F peak to nearly the satellite altitude. Such structures were also found to correlate with the observation by AE-C below the F peak during a conjunction of the two satellites. Vertical wavefronts found in the upper F region suggest the dominance of diffusion along field lines as well. Also discovered were multiple, evenly spaced field-aligned ducts in the F region that, at low latitudes, extended to the other hemisphere and were in the form of field-aligned sheets in the east-west direction. Low latitude heating events were discovered that could serve as sources for waves in the ionosphere.

  3. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  4. Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis

    NASA Astrophysics Data System (ADS)

    Zhou, Naiyun; Yu, Xiaxia; Zhao, Tianhao; Wen, Si; Wang, Fusheng; Zhu, Wei; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel; Gao, Yi

    2017-03-01

    Digital histopathology images with more than 1 Gigapixel are drawing more and more attention in clinical, biomedical research, and computer vision fields. Among the multiple observable features spanning multiple scales in the pathology images, the nuclear morphology is one of the central criteria for diagnosis and grading. As a result it is also the mostly studied target in image computing. Large amount of research papers have devoted to the problem of extracting nuclei from digital pathology images, which is the foundation of any further correlation study. However, the validation and evaluation of nucleus extraction have yet been formulated rigorously and systematically. Some researches report a human verified segmentation with thousands of nuclei, whereas a single whole slide image may contain up to million. The main obstacle lies in the difficulty of obtaining such a large number of validated nuclei, which is essentially an impossible task for pathologist. We propose a systematic validation and evaluation approach based on large scale image synthesis. This could facilitate a more quantitatively validated study for current and future histopathology image analysis field.

  5. Numerical analysis of field-scale transport of bromacil

    NASA Astrophysics Data System (ADS)

    Russo, David; Tauber-Yasur, Inbar; Laufer, Asher; Yaron, Bruno

    Field-scale transport of bromacil (5-bromo-3- sec-butyl-6-methyluracil) was analyzed using two different model processes for local description of the transport. The first was the classical, one-region convection dispersion equation (CDE) model while the second was the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional, numerical simulations of the flow and the transport [Russo, D., Zaidel, J. and Laufer, A., Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil. Water Resour. Res., 1998, in press], employing local soil hydraulic properties parameters from field measurements and local adsorption/desorption coefficients and the first-order degradation rate coefficient from laboratory measurements. Results of the analyses suggest that for a given flow regime, mass exchange between the mobile and the immobile regions retards the bromacil degradation, considerably affects the distribution of the bromacil resident concentration, c, at relatively large travel times, slightly affects the spatial moments of the distribution of c, and increases the skewing of the bromacil breakthrough and the uncertainty in its prediction, compared with the case in which the soil contained only a single (mobile) region. Mean and standard deviation of the simulated concentration profiles at various elapsed times were compared with measurements from a field-scale transport experiment [Tauber-Yasur, I., Hadas, A., Russo, D. and Yaron, B., Leaching of terbuthylazine and bromacil through field soils. Water, Air Soil Poln., 1998, in press] conducted at the Bet Dagan site. Given the limitations of the present study (e.g. the lack of detailed field data on the spatial variability of the soil chemical properties) the main conclusion of the present study is that the field-scale transport of bromacil at the Bet Dagan site is better quantified with the MIM model than the CDE model.

  6. Simulating the large-scale structure of HI intensity maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 2048{sup 3} particles (particle mass 1.6 × 10{sup 11} M{sub ⊙} / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (10{sup 8} M{sub ⊙} / h < M{sub halo} < 10{sup 13} M{sub ⊙} / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 ∼< z ∼< 0.9 in redshift bins of width Δ z ≈ 0.05 andmore » cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.« less

  7. FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)

    EPA Science Inventory

    Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...

  8. Feasibility and acceptability of the DSM-5 Field Trial procedures in the Johns Hopkins Community Psychiatry Programs.

    PubMed

    Clarke, Diana E; Wilcox, Holly C; Miller, Leslie; Cullen, Bernadette; Gerring, Joan; Greiner, Lisa H; Newcomer, Alison; McKitty, Mellisha V; Regier, Darrel A; Narrow, William E

    2014-06-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) contains criteria for psychiatric diagnoses that reflect advances in the science and conceptualization of mental disorders and address the needs of clinicians. DSM-5 also recommends research on dimensional measures of cross-cutting symptoms and diagnostic severity, which are expected to better capture patients' experiences with mental disorders. Prior to its May 2013 release, the American Psychiatric Association (APA) conducted field trials to examine the feasibility, clinical utility, reliability, and where possible, the validity of proposed DSM-5 diagnostic criteria and dimensional measures. The methods and measures proposed for the DSM-5 field trials were pilot tested in adult and child/adolescent clinical samples, with the goal to identify and correct design and procedural problems with the proposed methods before resources were expended for the larger DSM-5 Field Trials. Results allowed for the refinement of the protocols, procedures, and measures, which facilitated recruitment, implementation, and completion of the DSM-5 Field Trials. These results highlight the benefits of pilot studies in planning large multisite studies. Copyright © 2013, American Psychiatric Association. All rights reserved.

  9. Novel method to construct large-scale design space in lubrication process utilizing Bayesian estimation based on a small-scale design-of-experiment and small sets of large-scale manufacturing data.

    PubMed

    Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo

    2012-12-01

    A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.

  10. On the "Optimal" Choice of Trial Functions for Modelling Potential Fields

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2015-04-01

    There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.

  11. Osteoporosis improvement: a large-scale randomized controlled trial of patient and primary care physician education.

    PubMed

    Solomon, Daniel H; Katz, Jeffrey N; Finkelstein, Joel S; Polinski, Jennifer M; Stedman, Margaret; Brookhart, M Alan; Arnold, Marilyn; Gauthier, Suzanne; Avorn, Jerry

    2007-11-01

    We conducted a randomized controlled trial within the setting of a large drug benefit plan for Medicare beneficiaries. Primary care physicians and their patients were randomized to usual care, patient intervention only, physician intervention only, or both interventions. There was no difference in the probability of the primary composite endpoint (BMD test or osteoporosis medication) or in either of its components comparing the combined intervention group with usual care (risk ratio = 1.04; 95% CI, 0.85-1.26). Fractures from osteoporosis are associated with substantial morbidity, mortality, and cost. However, only a minority of at-risk older adults receives screening and/or treatment for this condition. We evaluated the effect of educational interventions for osteoporosis targeting at-risk patients, primary care physicians, or both. We conducted a randomized controlled trial within the setting of a large drug benefit plan for Medicare beneficiaries. Primary care physicians and their patients were randomized to usual care, patient intervention only, physician intervention only, or both interventions. The at-risk patients were women >or=65 yr of age, men and women >or=65 yr of age with a prior fracture, and men and women >or=65 yr of age who used oral glucocorticoids. The primary outcome studied was a composite of either undergoing a BMD test or initiating a medication used for osteoporosis. The secondary outcome was a hip, humerus, spine, or wrist fracture. We randomized 828 primary care physicians and their 13,455 eligible at-risk patients into four study arms. Physician and patient characteristics were very similar across all four groups. Across all four groups, the rate of the composite outcome was 10.3 per 100 person-years and did not differ between the usual care and the combined intervention groups (p = 0.5). In adjusted Cox proportional hazards models, there was no difference in the probability of the primary composite endpoint comparing the combined

  12. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vásconez, C. L.; Pucci, F.; Valentini, F.

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the rolemore » of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.« less

  13. The Value of Large-Scale Randomised Control Trials in System-Wide Improvement: The Case of the Reading Catch-Up Programme

    ERIC Educational Resources Information Center

    Fleisch, Brahm; Taylor, Stephen; Schöer, Volker; Mabogoane, Thabo

    2017-01-01

    This article illustrates the value of large-scale impact evaluations with counterfactual components. It begins by exploring the limitations of small-scale impact studies, which do not allow reliable inference to a wider population or which do not use valid comparison groups. The paper then describes the design features of a recent large-scale…

  14. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  15. Galaxies and large scale structure at high redshifts

    PubMed Central

    Steidel, Charles C.

    1998-01-01

    It is now straightforward to assemble large samples of very high redshift (z ∼ 3) field galaxies selected by their pronounced spectral discontinuity at the rest frame Lyman limit of hydrogen (at 912 Å). This makes possible both statistical analyses of the properties of the galaxies and the first direct glimpse of the progression of the growth of their large-scale distribution at such an early epoch. Here I present a summary of the progress made in these areas to date and some preliminary results of and future plans for a targeted redshift survey at z = 2.7–3.4. Also discussed is how the same discovery method may be used to obtain a “census” of star formation in the high redshift Universe, and the current implications for the history of galaxy formation as a function of cosmic epoch. PMID:9419319

  16. Small-scale turbulence detected in Mercury's magnetic field

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-11-01

    With its closest approach a mere 46 million kilometers from the Sun, the blast of the solar wind was supposed to wash away any chance that Mercury could hold on to a magnetic field—an idea rejected by the observations of the Mariner 10 spacecraft in 1974. Though Mercury was shown to harbor a weak magnetic field (one-hundredth the strength of Earth's), its structure, behavior, and interactions with the solar wind remained heavily debated, yet untested, until the 14 January 2008 approach of NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbiter. Using a continuous scalogram analysis—a novel statistical technique in space research—Uritsky et al. analyzed the high-resolution magnetic field strength observations taken by MESSENGER as it flew within a few hundred kilometers of the planet's surface. The authors found turbulence in Mercury's magnetosphere, which they attributed to small-scale interactions between the solar wind plasma and the magnetic field. At large spatial and temporal scales the solar wind can be thought of as a fluid with some magnetic properties—a domain well explained by the theories of magnetohydrodynamics.

  17. EFT of large scale structures in redshift space [On the EFT of large scale structures in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco

    Here, we further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ = 6. We find that the IR resummation allows us to correctly reproduce the baryonmore » acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k—depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z = 0.56 and up to ℓ = 2 matches the data at the percent level approximately up to k~0.13 hMpc –1 or k~0.18 hMpc –1, depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.« less

  18. EFT of large scale structures in redshift space [On the EFT of large scale structures in redshift space

    DOE PAGES

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; ...

    2018-03-15

    Here, we further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ = 6. We find that the IR resummation allows us to correctly reproduce the baryonmore » acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k—depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z = 0.56 and up to ℓ = 2 matches the data at the percent level approximately up to k~0.13 hMpc –1 or k~0.18 hMpc –1, depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.« less

  19. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae.

    PubMed

    Mösta, Philipp; Ott, Christian D; Radice, David; Roberts, Luke F; Schnetter, Erik; Haas, Roland

    2015-12-17

    Magnetohydrodynamic turbulence is important in many high-energy astrophysical systems, where instabilities can amplify the local magnetic field over very short timescales. Specifically, the magnetorotational instability and dynamo action have been suggested as a mechanism for the growth of magnetar-strength magnetic fields (of 10(15) gauss and above) and for powering the explosion of a rotating massive star. Such stars are candidate progenitors of type Ic-bl hypernovae, which make up all supernovae that are connected to long γ-ray bursts. The magnetorotational instability has been studied with local high-resolution shearing-box simulations in three dimensions, and with global two-dimensional simulations, but it is not known whether turbulence driven by this instability can result in the creation of a large-scale, ordered and dynamically relevant field. Here we report results from global, three-dimensional, general-relativistic magnetohydrodynamic turbulence simulations. We show that hydromagnetic turbulence in rapidly rotating protoneutron stars produces an inverse cascade of energy. We find a large-scale, ordered toroidal field that is consistent with the formation of bipolar magnetorotationally driven outflows. Our results demonstrate that rapidly rotating massive stars are plausible progenitors for both type Ic-bl supernovae and long γ-ray bursts, and provide a viable mechanism for the formation of magnetars. Moreover, our findings suggest that rapidly rotating massive stars might lie behind potentially magnetar-powered superluminous supernovae.

  20. Stochastic inflation lattice simulations - Ultra-large scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.

    1991-01-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.

  1. Do Plot Scale Studies Yield Useful Data When Assessing Field Scale Practices?

    USDA-ARS?s Scientific Manuscript database

    Plot scale data has been used to develop models used to assess field and watershed scale nutrient losses. The objective of this study was to determine if phosphorus (P) loss results from plot scale rainfall simulation studies are “directionally correct” when compared to field scale P losses. Two fie...

  2. The Origin of Clusters and Large-Scale Structures: Panoramic View of the High-z Universe

    NASA Astrophysics Data System (ADS)

    Ouchi, Masami

    We will report results of our on-going survey for proto-clusters and large-scale structures at z=3-6. We carried out very wide and deep optical imaging down to i=27 for a 1 deg^2 field of the Subaru/XMM Deep Field with 8.2m Subaru Telescope. We obtain maps of the Universe traced by ~1,000 Ly-a galaxies at z=3, 4, and 6 and by ~10,000 Lyman break galaxies at z=3-6. These cosmic maps have a transverse dimension of ~150 Mpc x 150 Mpc in comoving units at these redshifts, and provide us, for the first time, a panoramic view of the high-z Universe from the scales of galaxies, clusters to large-scale structures. Major results and implications will be presented in our talk. (Part of this work is subject to press embargo.)

  3. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    PubMed

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  4. A large-scale clinical validation of an integrated monitoring system in the emergency department.

    PubMed

    Clifton, David A; Wong, David; Clifton, Lei; Wilson, Sarah; Way, Rob; Pullinger, Richard; Tarassenko, Lionel

    2013-07-01

    We consider an integrated patient monitoring system, combining electronic patient records with high-rate acquisition of patient physiological data. There remain many challenges in increasing the robustness of "e-health" applications to a level at which they are clinically useful, particularly in the use of automated algorithms used to detect and cope with artifact in data contained within the electronic patient record, and in analyzing and communicating the resultant data for reporting to clinicians. There is a consequential "plague of pilots," in which engineering prototype systems do not enter into clinical use. This paper describes an approach in which, for the first time, the Emergency Department (ED) of a major research hospital has adopted such systems for use during a large clinical trial. We describe the disadvantages of existing evaluation metrics when applied to such large trials, and propose a solution suitable for large-scale validation. We demonstrate that machine learning technologies embedded within healthcare information systems can provide clinical benefit, with the potential to improve patient outcomes in the busy environment of a major ED and other high-dependence areas of patient care.

  5. Development of a Shipboard Remote Control and Telemetry Experimental System for Large-Scale Model’s Motions and Loads Measurement in Realistic Sea Waves

    PubMed Central

    Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe

    2017-01-01

    Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379

  6. Lessons learned: Infrastructure development and financial management for large, publicly funded, international trials.

    PubMed

    Larson, Gregg S; Carey, Cate; Grarup, Jesper; Hudson, Fleur; Sachi, Karen; Vjecha, Michael J; Gordin, Fred

    2016-04-01

    Randomized clinical trials are widely recognized as essential to address worldwide clinical and public health research questions. However, their size and duration can overwhelm available public and private resources. To remain competitive in international research settings, advocates and practitioners of clinical trials must implement practices that reduce their cost. We identify approaches and practices for large, publicly funded, international trials that reduce cost without compromising data integrity and recommend an approach to cost reporting that permits comparison of clinical trials. We describe the organizational and financial characteristics of The International Network for Strategic Initiatives in Global HIV Trials, an infectious disease research network that conducts multiple, large, long-term, international trials, and examine challenges associated with simple and streamlined governance and an infrastructure and financial management model that is based on performance, transparency, and accountability. It is possible to reduce costs of participants' follow-up and not compromise clinical trial quality or integrity. The International Network for Strategic Initiatives in Global HIV Trials network has successfully completed three large HIV trials using cost-efficient practices that have not adversely affected investigator enthusiasm, accrual rates, loss-to-follow-up, adherence to the protocol, and completion of data collection. This experience is relevant to the conduct of large, publicly funded trials in other disease areas, particularly trials dependent on international collaborations. New approaches, or creative adaption of traditional clinical trial infrastructure and financial management tools, can render large, international clinical trials more cost-efficient by emphasizing structural simplicity, minimal up-front costs, payments for performance, and uniform algorithms and fees-for-service, irrespective of location. However, challenges remain. They

  7. Soil stabilization field trial : interim report.

    DOT National Transportation Integrated Search

    2001-04-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying : the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field : trial of six 1000 ft test sections to investigate several al...

  8. Large-scale magnetic topologies of mid M dwarfs

    NASA Astrophysics Data System (ADS)

    Morin, J.; Donati, J.-F.; Petit, P.; Delfosse, X.; Forveille, T.; Albert, L.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.

    2008-10-01

    We present in this paper, the first results of a spectropolarimetric analysis of a small sample (~20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully convective stars. This paper focuses on five stars of spectral type ~M4, i.e. with masses close to the full convection threshold (~=0.35Msolar), and with short rotational periods. Tomographic imaging techniques allow us to reconstruct the surface magnetic topologies from the rotationally modulated time-series of circularly polarized profiles. We find that all stars host mainly axisymmetric large-scale poloidal fields. Three stars were observed at two different epochs separated by ~1 yr; we find the magnetic topologies to be globally stable on this time-scale. We also provide an accurate estimation of the rotational period of all stars, thus allowing us to start studying how rotation impacts the large-scale magnetic field. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) and the Télescope Bernard Lyot (TBL). CFHT is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (INSU/CNRS) and the University of Hawaii, while the TBL is operated by CNRS/INSU. E-mail: jmorin@ast.obs-mip.fr (JM); donati@ast.obs-mip.fr (J-FD); petit@ast.obs-mip.fr (PP); xavier.delfosse@obs.ujf-grenoble.fr (XD); thierry.forveille@obs.ujf-grenoble.fr (TF); albert@cfht.hawaii.edu (LA); auriere@ast.obs-mip.fr (MA); remi.cabanac@ast.obs-mip.fr (RC); dintrans@ast.obs-mip.fr (BD); rfares@ast.obs-mip.fr (RF); tgastine@ast.obs-mip.fr (TG); mmj@st-andrews.ac.uk (MMJ); ligniere@ast.obs-mip.fr (FL); fpaletou@ast.obs-mip.fr (FP); jramirez@mesiog.obspm.fr (JR); sylvie.theado@ast.obs-mip.fr (ST)

  9. The impact of large-scale, long-term optical surveys on pulsating star research

    NASA Astrophysics Data System (ADS)

    Soszyński, Igor

    2017-09-01

    The era of large-scale photometric variability surveys began a quarter of a century ago, when three microlensing projects - EROS, MACHO, and OGLE - started their operation. These surveys initiated a revolution in the field of variable stars and in the next years they inspired many new observational projects. Large-scale optical surveys multiplied the number of variable stars known in the Universe. The huge, homogeneous and complete catalogs of pulsating stars, such as Cepheids, RR Lyrae stars, or long-period variables, offer an unprecedented opportunity to calibrate and test the accuracy of various distance indicators, to trace the three-dimensional structure of the Milky Way and other galaxies, to discover exotic types of intrinsically variable stars, or to study previously unknown features and behaviors of pulsators. We present historical and recent findings on various types of pulsating stars obtained from the optical large-scale surveys, with particular emphasis on the OGLE project which currently offers the largest photometric database among surveys for stellar variability.

  10. The large-scale gravitational bias from the quasi-linear regime.

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.

    1996-08-01

    It is known that in gravitational instability scenarios the nonlinear dynamics induces non-Gaussian features in cosmological density fields that can be investigated with perturbation theory. Here, I derive the expression of the joint moments of cosmological density fields taken at two different locations. The results are valid when the density fields are filtered with a top-hat filter window function, and when the distance between the two cells is large compared to the smoothing length. In particular I show that it is possible to get the generating function of the coefficients C_p,q_ defined by <δ^p^({vec}(x)_1_)δ^q^({vec}(x)_2_)>_c_=C_p,q_ <δ^2^({vec}(x))>^p+q-2^ <δ({vec}(x)_1_)δ({vec}(x)_2_)> where δ({vec}(x)) is the local smoothed density field. It is then possible to reconstruct the joint density probability distribution function (PDF), generalizing for two points what has been obtained previously for the one-point density PDF. I discuss the validity of the large separation approximation in an explicit numerical Monte Carlo integration of the C_2,1_ parameter as a function of |{vec}(x)_1_-{vec}(x)_2_|. A straightforward application is the calculation of the large-scale ``bias'' properties of the over-dense (or under-dense) regions. The properties and the shape of the bias function are presented in details and successfully compared with numerical results obtained in an N-body simulation with CDM initial conditions.

  11. The Challenge of Large-Scale Literacy Improvement

    ERIC Educational Resources Information Center

    Levin, Ben

    2010-01-01

    This paper discusses the challenge of making large-scale improvements in literacy in schools across an entire education system. Despite growing interest and rhetoric, there are very few examples of sustained, large-scale change efforts around school-age literacy. The paper reviews 2 instances of such efforts, in England and Ontario. After…

  12. Weak Lensing by Large-Scale Structure: A Dark Matter Halo Approach.

    PubMed

    Cooray; Hu; Miralda-Escudé

    2000-05-20

    Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the cosmological parameters that govern them, but they are currently limited to small fields and subject to selection biases. We show how the expected signal from large-scale structure arises from the contributions from and correlations between individual halos. We determine the convergence power spectrum as a function of the maximum halo mass and so provide the means to interpret results from surveys that lack high-mass halos either through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the sample variance below 10&arcmin;, our method should aid our ability to extract cosmological information from small fields.

  13. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    USGS Publications Warehouse

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As

  14. Large-scale influences in near-wall turbulence.

    PubMed

    Hutchins, Nicholas; Marusic, Ivan

    2007-03-15

    Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.

  15. Test-particle simulations of SEP propagation in IMF with large-scale fluctuations

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Dalla, S.; Laitinen, T.

    2012-11-01

    The results of full-orbit test-particle simulations of SEPs propagating through an IMF which exhibits large-scale fluctuations are presented. A variety of propagation conditions are simulated - scatter-free, and scattering with mean free path, λ, of 0.3 and 2.0 AU - and the cross-field transport of SEPs is investigated. When calculating cross-field displacements the Parker spiral geometry is accounted for and the role of magnetic field expansion is taken into account. It is found that transport across the magnetic field is enhanced in the λ =0.3 AU and λ =2 AU cases, compared to the scatter-free case, with the λ =2 AU case in particular containing outlying particles that had strayed a large distance across the IMF. Outliers are catergorized by means of Chauvenet's criterion and it is found that typically between 1 and 2% of the population falls within this category. The ratio of latitudinal to longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in latitude is less efficient.

  16. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    PubMed

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.

  17. A comparison of refuse attenuation in laboratory and field scale lysimeters.

    PubMed

    Youcai, Zhao; Luochun, Wang; Renhua, Hua; Dimin, Xu; Guowei, Gu

    2002-01-01

    For this study, small and middle scale laboratory lysimeters, and a large scale field lysimeter in situ in Shanghai Refuse Landfill, with refuse weights of 187,600 and 10,800,000 kg, respectively, were created. These lysimeters are compared in terms of leachate quality (pH, concentrations of COD, BOD and NH3-N), refuse composition (biodegradable matter and volatile solid) and surface settlement for a monitoring period of 0-300 days. The objectives of this study were to explore both the similarities and disparities between laboratory and field scale lysimeters, and to compare degradation behaviors of refuse at the intensive reaction phase in the different scale lysimeters. Quantitative relationships of leachate quality and refuse composition with placement time show that degradation behaviors of refuse seem to depend heavily on the scales of the lysimeters and the parameters of concern, especially in the starting period of 0-6 months. However, some similarities exist between laboratory and field lysimeters after 4-6 months of placement because COD and BOD concentrations in leachate in the field lysimeter decrease regularly in a parallel pattern with those in the laboratory lysimeters. NH3-N, volatile solid (VS) and biodegradable matter (BDM) also gradually decrease in parallel in this intensive reaction phase for all scale lysimeters as refuse ages. Though the concrete data are different among the different scale lysimeters, it may be considered that laboratory lysimeters with sufficient scale are basically applicable for a rough simulation of a real landfill, especially for illustrating the degradation pattern and mechanism. Settlement of refuse surface is roughly proportional to the initial refuse height.

  18. Lessons learned: Infrastructure development and financial management for large, publically funded, international trials

    PubMed Central

    Larson, Gregg S; Carey, Cate; Grarup, Jesper; Hudson, Fleur; Sachi, Karen; Vjecha, Michael J; Gordin, Fred

    2015-01-01

    Background/Aims Randomized clinical trials are widely recognized as essential to address world-wide clinical and public health research questions. However, for many conditions, their size and duration can overwhelm available public and private resources. To remain competitive in international research settings, advocates and practitioners of clinical trials must implement practices that reduce their cost. We identify approaches and practices for large, publicly-funded, international trials that reduce cost without compromising data integrity, and recommend an approach to cost reporting that permits comparison of clinical trials. Methods We describe the organizational and financial characteristics of INSIGHT, an infectious disease research network that conducts multiple, large, long-term, international trials, and examine challenges associated with simple and streamlined governance and an infrastructure and financial management model that is based on performance, transparency, and accountability. Results It is possible to reduce costs of participant follow-up and not compromise clinical trial quality or integrity. The INSIGHT network has successfully completed four large HIV trials using cost-efficient practices that have not adversely affected investigator enthusiasm, accrual rates, loss-to-follow-up, adherence to the protocol, and completion of data collection. This experience is relevant to the conduct of large, publically funded trials in other disease areas, particularly trials dependent on international collaborations. Conclusion New approaches, or creative adaption of traditional clinical trial infrastructure and financial management tools, can render large, international clinical trials more cost-efficient by emphasizing structural simplicity; minimal up-front costs; payments for performance; and uniform algorithms and fees-for-service, irrespective of location. However, challenges remain. They include institutional resistance to financial change, growing

  19. PKI security in large-scale healthcare networks.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2012-06-01

    During the past few years a lot of PKI (Public Key Infrastructures) infrastructures have been proposed for healthcare networks in order to ensure secure communication services and exchange of data among healthcare professionals. However, there is a plethora of challenges in these healthcare PKI infrastructures. Especially, there are a lot of challenges for PKI infrastructures deployed over large-scale healthcare networks. In this paper, we propose a PKI infrastructure to ensure security in a large-scale Internet-based healthcare network connecting a wide spectrum of healthcare units geographically distributed within a wide region. Furthermore, the proposed PKI infrastructure facilitates the trust issues that arise in a large-scale healthcare network including multi-domain PKI infrastructures.

  20. Diffuse pollution of soil and water: Long term trends at large scales?

    NASA Astrophysics Data System (ADS)

    Grathwohl, P.

    2012-04-01

    Industrialization and urbanization, which consequently increased pressure on the environment to cause degradation of soil and water quality over more than a century, is still ongoing. The number of potential environmental contaminants detected in surface and groundwater is continuously increasing; from classical industrial and agricultural chemicals, to flame retardants, pharmaceuticals, and personal care products. While point sources of pollution can be managed in principle, diffuse pollution is only reversible at very long time scales if at all. Compounds which were phased out many decades ago such as PCBs or DDT are still abundant in soils, sediments and biota. How diffuse pollution is processed at large scales in space (e.g. catchments) and time (centuries) is unknown. The relevance to the field of processes well investigated at the laboratory scale (e.g. sorption/desorption and (bio)degradation kinetics) is not clear. Transport of compounds is often coupled to the water cycle and in order to assess trends in diffuse pollution, detailed knowledge about the hydrology and the solute fluxes at the catchment scale is required (e.g. input/output fluxes, transformation rates at the field scale). This is also a prerequisite in assessing management options for reversal of adverse trends.

  1. Large-scale structure non-Gaussianities with modal methods

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel

    2016-10-01

    Relying on a separable modal expansion of the bispectrum, the implementation of a fast estimator for the full bispectrum of a 3d particle distribution is presented. The computational cost of accurate bispectrum estimation is negligible relative to simulation evolution, so the bispectrum can be used as a standard diagnostic whenever the power spectrum is evaluated. As an application, the time evolution of gravitational and primordial dark matter bispectra was measured in a large suite of N-body simulations. The bispectrum shape changes characteristically when the cosmic web becomes dominated by filaments and halos, therefore providing a quantitative probe of 3d structure formation. Our measured bispectra are determined by ~ 50 coefficients, which can be used as fitting formulae in the nonlinear regime and for non-Gaussian initial conditions. We also compare the measured bispectra with predictions from the Effective Field Theory of Large Scale Structures (EFTofLSS).

  2. Evidence for the interaction of large scale magnetic structures in solar flares

    NASA Technical Reports Server (NTRS)

    Mandrini, C. H.; Demoulin, P.; Henoux, J. C.; Machado, M. E.

    1991-01-01

    By modeling the observed vertical magnetic field of an active region AR 2372 by the potential field of an ensemble of magnetic dipoles, the likely location of the separatrices, surfaces that separates cells of different field line connectivities, and of the separator which is the intersection of the separatrices, is derived. Four of the five off-band H-alpha kernels of a flare that occurred less than 20 minutes before obtaining the magnetogram are shown to have taken place near or at the separatrices. These H-alpha kernels are connected by field lines that pass near the separator. This indicates that the flare may have resulted from the interaction in the separator region of large scale magnetic structures.

  3. Multi-optical mine detection: results from a field trial

    NASA Astrophysics Data System (ADS)

    Letalick, Dietmar; Tolt, Gustav; Sjökvist, Stefan K.; Nyberg, Sten; Grönwall, Christina; Andersson, Pierre; Linderhed, Anna; Forssell, Göran; Larsson, Håkan; Uppsäll, Magnus

    2006-05-01

    As a part of the Swedish mine detection project MOMS, an initial field trial was conducted at the Swedish EOD and Demining Centre (SWEDEC). The purpose was to collect data on surface-laid mines, UXO, submunitions, IED's, and background with a variety of optical sensors, for further use in the project. Three terrain types were covered: forest, gravel road, and an area which had recovered after total removal of all vegetation some years before. The sensors used in the field trial included UV, VIS, and NIR sensors as well as thermal, multi-spectral, and hyper-spectral sensors, 3-D laser radar and polarization sensors. Some of the sensors were mounted on an aerial work platform, while others were placed on tripods on the ground. This paper describes the field trial and the presents some initial results obtained from the subsequent analysis.

  4. Evolution of the Busbar Structure in Large-Scale Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Liang, Jinding; Li, Jie; Sun, Kena; Xiao, Jin

    2017-02-01

    Studies of magnetic field and magneto-hydro-dynamics are regarded as the foundation for the development of large-scale aluminum reduction cells, while due to the direct relationship between the busbar configuration and magnetic compensation, the actual key content is the configuration of the busbar. As the line current has been increased from 160 kA to 600 kA, the configuration of the busbar was becoming more complex. To summarize and explore the evolution of busbar configuration in aluminum reduction cells, this paper has reviewed various representative large-scale pre-baked aluminum reduction cell busbar structures, such as end-to-end potlines, side-by-side potlines and external compensation current. The advantages and disadvantages in the magnetic distribution or technical specifications have also been introduced separately, especially for the configurations of the mainstream 400-kA potlines. In the end, the development trends of the bus structure configuration were prospected, based on the recent successful applications of super-scale cell busbar structures in China (500-600 kA).

  5. Evaluating the Health Impact of Large-Scale Public Policy Changes: Classical and Novel Approaches

    PubMed Central

    Basu, Sanjay; Meghani, Ankita; Siddiqi, Arjumand

    2018-01-01

    Large-scale public policy changes are often recommended to improve public health. Despite varying widely—from tobacco taxes to poverty-relief programs—such policies present a common dilemma to public health researchers: how to evaluate their health effects when randomized controlled trials are not possible. Here, we review the state of knowledge and experience of public health researchers who rigorously evaluate the health consequences of large-scale public policy changes. We organize our discussion by detailing approaches to address three common challenges of conducting policy evaluations: distinguishing a policy effect from time trends in health outcomes or preexisting differences between policy-affected and -unaffected communities (using difference-in-differences approaches); constructing a comparison population when a policy affects a population for whom a well-matched comparator is not immediately available (using propensity score or synthetic control approaches); and addressing unobserved confounders by utilizing quasi-random variations in policy exposure (using regression discontinuity, instrumental variables, or near-far matching approaches). PMID:28384086

  6. Solar Wind Turbulent Cascade from MHD to Sub-ion Scales: Large-size 3D Hybrid Particle-in-cell Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Landi, Simone; Verdini, Andrea; Matteini, Lorenzo; Hellinger, Petr

    2018-01-01

    Properties of the turbulent cascade from fluid to kinetic scales in collisionless plasmas are investigated by means of large-size 3D hybrid (fluid electrons, kinetic protons) particle-in-cell simulations. Initially isotropic Alfvénic fluctuations rapidly develop a strongly anisotropic turbulent cascade, mainly in the direction perpendicular to the ambient magnetic field. The omnidirectional magnetic field spectrum shows a double power-law behavior over almost two decades in wavenumber, with a Kolmogorov-like index at large scales, a spectral break around ion scales, and a steepening at sub-ion scales. Power laws are also observed in the spectra of the ion bulk velocity, density, and electric field, at both magnetohydrodynamic (MHD) and kinetic scales. Despite the complex structure, the omnidirectional spectra of all fields at ion and sub-ion scales are in remarkable quantitative agreement with those of a 2D simulation with similar physical parameters. This provides a partial, a posteriori validation of the 2D approximation at kinetic scales. Conversely, at MHD scales, the spectra of the density and of the velocity (and, consequently, of the electric field) exhibit differences between the 2D and 3D cases. Although they can be partly ascribed to the lower spatial resolution, the main reason is likely the larger importance of compressible effects in the full 3D geometry. Our findings are also in remarkable quantitative agreement with solar wind observations.

  7. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  8. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  9. Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method

    NASA Astrophysics Data System (ADS)

    Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.

    2017-03-01

    We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.

  10. Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.

    PubMed

    Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B

    2012-06-01

    This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.

  11. Towards large scale multi-target tracking

    NASA Astrophysics Data System (ADS)

    Vo, Ba-Ngu; Vo, Ba-Tuong; Reuter, Stephan; Lam, Quang; Dietmayer, Klaus

    2014-06-01

    Multi-target tracking is intrinsically an NP-hard problem and the complexity of multi-target tracking solutions usually do not scale gracefully with problem size. Multi-target tracking for on-line applications involving a large number of targets is extremely challenging. This article demonstrates the capability of the random finite set approach to provide large scale multi-target tracking algorithms. In particular it is shown that an approximate filter known as the labeled multi-Bernoulli filter can simultaneously track one thousand five hundred targets in clutter on a standard laptop computer.

  12. The Expanded Large Scale Gap Test

    DTIC Science & Technology

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  13. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  14. On large-scale dynamo action at high magnetic Reynolds number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaneo, F.; Tobias, S. M., E-mail: smt@maths.leeds.ac.uk

    2014-07-01

    We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect ofmore » the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.« less

  15. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  16. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  17. Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies

    NASA Astrophysics Data System (ADS)

    Xie, S.; Zhang, Y.

    2011-12-01

    The large-scale forcing fields (e.g., vertical velocity and advective tendencies) are required to run single-column and cloud-resolving models (SCMs/CRMs), which are the two key modeling frameworks widely used to link field data to climate model developments. In this study, we use an advanced objective analysis approach to derive the required forcing data from the soundings collected by the Midlatitude Continental Convective Cloud Experiment (MC3E) in support of its cloud modeling studies. MC3E is the latest major field campaign conducted during the period 22 April 2011 to 06 June 2011 in south-central Oklahoma through a joint effort between the DOE ARM program and the NASA Global Precipitation Measurement Program. One of its primary goals is to provide a comprehensive dataset that can be used to describe the large-scale environment of convective cloud systems and evaluate model cumulus parameterizations. The objective analysis used in this study is the constrained variational analysis method. A unique feature of this approach is the use of domain-averaged surface and top-of-the atmosphere (TOA) observations (e.g., precipitation and radiative and turbulent fluxes) as constraints to adjust atmospheric state variables from soundings by the smallest possible amount to conserve column-integrated mass, moisture, and static energy so that the final analysis data is dynamically and thermodynamically consistent. To address potential uncertainties in the surface observations, an ensemble forcing dataset will be developed. Multi-scale forcing will be also created for simulating various scale convective systems. At the meeting, we will provide more details about the forcing development and present some preliminary analysis of the characteristics of the large-scale forcing structures for several selected convective systems observed during MC3E.

  18. The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.

    2017-06-01

    The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.

  19. Economically viable large-scale hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  20. Deformation of leaky-dielectric fluid globules under strong electric fields: Boundary layers and jets at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud

    2013-11-01

    In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.

  1. Large-Scale Coronal Heating from the Solar Magnetic Network

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Porter, Jason G.; Hathaway, David H.

    1999-01-01

    In Fe 12 images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi- supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe MI emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large- scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half These results suggest that the brightness of the large-scale corona is more closely related to the large- scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.

  2. Microwave bale moisture sensing: Field trial

    USDA-ARS?s Scientific Manuscript database

    A microwave moisture measurement technique was developed for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This research conducted a field trial to test the sensor in a commercial...

  3. Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.

    2016-12-01

    Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.

  4. Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm.

    PubMed

    Ergül, Özgür

    2011-11-01

    Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.

  5. Nurse Family Partnership: Comparing Costs per Family in Randomized Trials Versus Scale-Up.

    PubMed

    Miller, Ted R; Hendrie, Delia

    2015-12-01

    The literature that addresses cost differences between randomized trials and full-scale replications is quite sparse. This paper examines how costs differed among three randomized trials and six statewide scale-ups of nurse family partnership (NFP) intensive home visitation to low income first-time mothers. A literature review provided data on pertinent trials. At our request, six well-established programs reported their total expenditures. We adjusted the costs to national prices based on mean hourly wages for registered nurses and then inflated them to 2010 dollars. A centralized data system provided utilization. Replications had fewer home visits per family than trials (25 vs. 31, p = .05), lower costs per client ($8860 vs. $12,398, p = .01), and lower costs per visit ($354 vs. $400, p = .30). Sample size limited the significance of these differences. In this type of labor intensive program, costs probably were lower in scale-up than in randomized trials. Key cost drivers were attrition and the stable caseload size possible in an ongoing program. Our estimates reveal a wide variation in cost per visit across six state programs, which suggests that those planning replications should not expect a simple rule to guide cost estimations for scale-ups. Nevertheless, NFP replications probably achieved some economies of scale.

  6. Kinetic Alfvén Wave Generation by Large-scale Phase Mixing

    NASA Astrophysics Data System (ADS)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Matthaeus, W. H.; Malara, F.

    2015-12-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length dp may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to dp and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  7. Capturing field-scale variability in crop performance across a regional-scale climosequence

    NASA Astrophysics Data System (ADS)

    Brooks, E. S.; Poggio, M.; Anderson, T. R.; Gasch, C.; Yourek, M. A.; Ward, N. K.; Magney, T. S.; Brown, D. J.; Huggins, D. R.

    2014-12-01

    With the increasing availability of variable rate technology for applying fertilizers and other agrichemicals in dryland agricultural production systems there is a growing need to better capture and understand the processes driving field scale variability in crop yield and soil water. This need for a better understanding of field scale variability has led to the recent designation of the R. J. Cook Agronomy Farm (CAF) (Pullman, WA, USA) as a United States Department of Agriculture Long-Term Agro-Ecosystem Research (LTAR) site. Field scale variability at the CAF is closely monitored using extensive environmental sensor networks and intensive hand sampling. As investigating land-soil-water dynamics at CAF is essential for improving precision agriculture, transferring this knowledge across the regional-scale climosequence is challenging. In this study we describe the hydropedologic functioning of the CAF in relation to five extensively instrumented field sites located within 50 km in the same climatic region. The formation of restrictive argillic soil horizons in the wetter, cooler eastern edge of the region results in the development of extensive perched water tables, surface saturation, and surface runoff, whereas excess water is not an issue in the warmer, drier, western edge of the region. Similarly, crop and tillage management varies across the region as well. We discuss the implications of these regional differences on field scale management decisions and demonstrate how we are using proximal soil sensing and remote sensing imagery to better understand and capture field scale variability at a particular field site.

  8. Large-Scale Aerosol Modeling and Analysis

    DTIC Science & Technology

    2009-09-30

    Modeling of Burning Emissions ( FLAMBE ) project, and other related parameters. Our plans to embed NAAPS inside NOGAPS may need to be put on hold...AOD, FLAMBE and FAROP at FNMOC are supported by 6.4 funding from PMW-120 for “Large-scale Atmospheric Models”, “Small-scale Atmospheric Models

  9. Information Tailoring Enhancements for Large-Scale Social Data

    DTIC Science & Technology

    2016-06-15

    Intelligent Automation Incorporated Information Tailoring Enhancements for Large-Scale... Automation Incorporated Progress Report No. 3 Information Tailoring Enhancements for Large-Scale Social Data Submitted in accordance with...1 Work Performed within This Reporting Period .................................................... 2 1.1 Enhanced Named Entity Recognition (NER

  10. Approximate registration of point clouds with large scale differences

    NASA Astrophysics Data System (ADS)

    Novak, D.; Schindler, K.

    2013-10-01

    3D reconstruction of objects is a basic task in many fields, including surveying, engineering, entertainment and cultural heritage. The task is nowadays often accomplished with a laser scanner, which produces dense point clouds, but lacks accurate colour information, and lacks per-point accuracy measures. An obvious solution is to combine laser scanning with photogrammetric recording. In that context, the problem arises to register the two datasets, which feature large scale, translation and rotation differences. The absence of approximate registration parameters (3D translation, 3D rotation and scale) precludes the use of fine-registration methods such as ICP. Here, we present a method to register realistic photogrammetric and laser point clouds in a fully automated fashion. The proposed method decomposes the registration into a sequence of simpler steps: first, two rotation angles are determined by finding dominant surface normal directions, then the remaining parameters are found with RANSAC followed by ICP and scale refinement. These two steps are carried out at low resolution, before computing a precise final registration at higher resolution.

  11. 7 CFR 1755.3 - Field trials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system electronics; (vi) Fiber optic cable system electronics; (vii) Multiplex equipment; (viii) Mobile... Telephone Systems of RUS Borrowers,” RUS Bulletin 344-2. When new items of materials or equipment are... that the field trial is carried out and that the required information on the product's performance is...

  12. The Helicobacter Eradication Aspirin Trial (HEAT): A Large Simple Randomised Controlled Trial Using Novel Methodology in Primary Care.

    PubMed

    Dumbleton, Jennifer S; Avery, Anthony J; Coupland, Carol; Hobbs, F D Richard; Kendrick, Denise; Moore, Michael V; Morris, Clive; Rubin, Greg P; Smith, Murray D; Stevenson, Diane J; Hawkey, Chris J

    2015-09-01

    is important medically, because aspirin is so widely used, and methodologically, as a successful trial would show that large-scale studies of important clinical outcomes can be conducted at a fraction of the cost of those conducted by industry, which in turn will help to ensure that trials of primarily medical rather than commercial interest can be conducted successfully in the UK.

  13. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    NASA Astrophysics Data System (ADS)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  14. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  15. Ward identities and consistency relations for the large scale structure with multiple species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Pietroni, Massimo, E-mail: peloso@physics.umn.edu, E-mail: pietroni@pd.infn.it

    2014-04-01

    We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistencymore » relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field.« less

  16. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor aremore » positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.« less

  17. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    PubMed

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  18. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  19. Large-Scale Structure and Hyperuniformity of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto

    2017-09-01

    We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.

  20. Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric Boundary Layer with Large-Scale Turbulent Motion

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Sada, Koichi

    2011-10-01

    Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.

  1. Inflation physics from the cosmic microwave background and large scale structure

    DOE PAGES

    Abazajian, K. N.; Arnold, K.; Austermann, J.; ...

    2014-06-26

    Here, fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments—the theory of cosmic inflation—and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to amore » depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B -mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.« less

  2. Learning From Past Failures of Oral Insulin Trials.

    PubMed

    Michels, Aaron W; Gottlieb, Peter A

    2018-07-01

    Very recently one of the largest type 1 diabetes prevention trials using daily administration of oral insulin or placebo was completed. After 9 years of study enrollment and follow-up, the randomized controlled trial failed to delay the onset of clinical type 1 diabetes, which was the primary end point. The unfortunate outcome follows the previous large-scale trial, the Diabetes Prevention Trial-Type 1 (DPT-1), which again failed to delay diabetes onset with oral insulin or low-dose subcutaneous insulin injections in a randomized controlled trial with relatives at risk for type 1 diabetes. These sobering results raise the important question, "Where does the type 1 diabetes prevention field move next?" In this Perspective, we advocate for a paradigm shift in which smaller mechanistic trials are conducted to define immune mechanisms and potentially identify treatment responders. The stage is set for these interventions in individuals at risk for type 1 diabetes as Type 1 Diabetes TrialNet has identified thousands of relatives with islet autoantibodies and general population screening for type 1 diabetes risk is under way. Mechanistic trials will allow for better trial design and patient selection based upon molecular markers prior to large randomized controlled trials, moving toward a personalized medicine approach for the prevention of type 1 diabetes. © 2018 by the American Diabetes Association.

  3. Octet baryons in large magnetic fields

    NASA Astrophysics Data System (ADS)

    Deshmukh, Amol; Tiburzi, Brian C.

    2018-01-01

    Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.

  4. Multi-level structure in the large scale distribution of optically luminous galaxies

    NASA Astrophysics Data System (ADS)

    Deng, Xin-fa; Deng, Zu-gan; Liu, Yong-zhen

    1992-04-01

    Fractal dimensions in the large scale distribution of galaxies have been calculated with the method given by Wen et al. [1] Samples are taken from CfA redshift survey in northern and southern galactic [2] hemisphere in our analysis respectively. Results from these two regions are compared with each other. There are significant differences between the distributions in these two regions. However, our analyses do show some common features of the distributions in these two regions. All subsamples show multi-level fractal character distinctly. Combining it with the results from analyses of samples given by IRAS galaxies and results from samples given by redshift survey in pencil-beam fields, [3,4] we suggest that multi-level fractal structure is most likely to be a general and important character in the large scale distribution of galaxies. The possible implications of this character are discussed.

  5. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2017-03-01

    Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterising the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  6. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    NASA Technical Reports Server (NTRS)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  7. Large Scale Cross Drive Correlation Of Digital Media

    DTIC Science & Technology

    2016-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS LARGE SCALE CROSS-DRIVE CORRELATION OF DIGITAL MEDIA by Joseph Van Bruaene March 2016 Thesis Co...CROSS-DRIVE CORRELATION OF DIGITAL MEDIA 5. FUNDING NUMBERS 6. AUTHOR(S) Joseph Van Bruaene 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...the ability to make large scale cross-drive correlations among a large corpus of digital media becomes increasingly important. We propose a

  8. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability.

    PubMed

    Li, Quanfeng; Wang, Qi; Hou, Yubin; Lu, Qingyou

    2012-04-01

    We present a home-built 18/20 T high magnetic field scanning tunneling microscope (STM) featuring fully low voltage (lower than ±15 V) operability in low temperatures, large scale searching ability, and 20 fA high current resolution (measured by using a 100 GOhm dummy resistor to replace the tip-sample junction) with a bandwidth of 3.03 kHz. To accomplish low voltage operation which is important in achieving high precision, low noise, and low interference with the strong magnetic field, the coarse approach is implemented with an inertial slider driven by the lateral bending of a piezoelectric scanner tube (PST) whose inner electrode is axially split into two for enhanced bending per volt. The PST can also drive the same sliding piece to inertial slide in the other bending direction (along the sample surface) of the PST, which realizes the large area searching ability. The STM head is housed in a three segment tubular chamber, which is detachable near the STM head for the convenience of sample and tip changes. Atomic resolution images of a graphite sample taken under 17.6 T and 18.0001 T are presented to show its performance. © 2012 American Institute of Physics

  9. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  10. Soil stabilization field trial : interim report II.

    DOT National Transportation Integrated Search

    2002-02-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft sections to investigate several alternative...

  11. Storm Time Global Observations of Large-Scale TIDs From Ground-Based and In Situ Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Yizengaw, Endawoke; Katamzi-Joseph, Zama T.; Moldwin, Mark B.; Buchert, Stephan

    2018-01-01

    This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16-18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large-scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large-scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400-700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large-scale TIDs are visible over the European-African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm-induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.

  12. Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.

  13. Large-eddy simulation of laminar-turbulent breakdown at high speeds with dynamic subgrid-scale modeling

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1993-01-01

    The laminar-turbulent breakdown of a boundary-layer flow along a hollow cylinder at Mach 4.5 is investigated with large-eddy simulation. The subgrid scales are modeled dynamically, where the model coefficients are determined from the local resolved field. The behavior of the dynamic-model coefficients is investigated through both an a priori test with direct numerical simulation data for the same case and a complete large-eddy simulation. Both formulations proposed by Germano et al. and Lilly are used for the determination of unique coefficients for the dynamic model and their results are compared and assessed. The behavior and the energy cascade of the subgrid-scale field structure are investigated at various stages of the transition process. The investigations are able to duplicate a high-speed transition phenomenon observed in experiments and explained only recently by the direct numerical simulations of Pruett and Zang, which is the appearance of 'rope-like' waves. The nonlinear evolution and breakdown of the laminar boundary layer and the structure of the flow field during the transition process were also investigated.

  14. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials.

    PubMed

    Kallel, Héla; Kamen, Amine A

    2015-05-01

    Efforts to make vaccines against infectious diseases and immunotherapies for cancer have evolved to utilize a variety of heterologous expression systems such as viral vectors. These vectors are often attenuated or engineered to safely deliver genes encoding antigens of different pathogens. Adenovirus and poxvirus vectors are among the viral vectors that are most frequently used to develop prophylactic vaccines against infectious diseases as well as therapeutic cancer vaccines. This mini-review describes the trends and processes in large-scale production of adenovirus and poxvirus vectors to meet the needs of clinical applications. We briefly describe the general principles for the production and purification of adenovirus and poxvirus viral vectors. Currently, adenovirus and poxvirus vector manufacturing methods rely on well-established cell culture technologies. Several improvements have been evaluated to increase the yield and to reduce the overall manufacturing cost, such as cultivation at high cell densities and continuous downstream processing. Additionally, advancements in vector characterization will greatly facilitate the development of novel vectored vaccine candidates. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. First field trials with fungi against Anoplophora glabripennis

    Treesearch

    Thomas Dubois; Ann Hajek; Hu Jiafu; Zengzhi Li

    2003-01-01

    We have been evaluating the use of entomopathogenic fungi against A. glabripennis; so far, 20 strains have been isolated belonging to three species, 14 strains have been tested in the laboratory, five strains have been evaluated in caged field trials and two strains have been tested in the open field.

  16. Large-scale environments of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.

    2017-09-01

    Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.

  17. Interactive Effects of Large- and Small-Scale Sources of Feral Honey-Bees for Sunflower in the Argentine Pampas

    PubMed Central

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A.

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated “sierras”, and narrow (3–7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0–10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services. PMID:22303477

  18. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    PubMed

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  19. Soil stabilization field trial : interim report I.

    DOT National Transportation Integrated Search

    2001-04-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft test sections to investigate several altern...

  20. Soil stabilization field trial : interim report III.

    DOT National Transportation Integrated Search

    2003-11-01

    Shrinkage cracks in cement-stabilized bases/subbase can be alleviated by specifying the right cement dosage, or by other additives/procedures that suppress crack susceptibility. A field trial of six 1000 ft test sections to investigate several altern...

  1. Thermophoretically induced large-scale deformations around microscopic heat centers

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.

    2016-05-01

    Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.

  2. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1985-01-01

    Data from Magsat analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The Magsat data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  3. Spatiotemporal dynamics of large-scale brain activity

    NASA Astrophysics Data System (ADS)

    Neuman, Jeremy

    Understanding the dynamics of large-scale brain activity is a tough challenge. One reason for this is the presence of an incredible amount of complexity arising from having roughly 100 billion neurons connected via 100 trillion synapses. Because of the extremely high number of degrees of freedom in the nervous system, the question of how the brain manages to properly function and remain stable, yet also be adaptable, must be posed. Neuroscientists have identified many ways the nervous system makes this possible, of which synaptic plasticity is possibly the most notable one. On the other hand, it is vital to understand how the nervous system also loses stability, resulting in neuropathological diseases such as epilepsy, a disease which affects 1% of the population. In the following work, we seek to answer some of these questions from two different perspectives. The first uses mean-field theory applied to neuronal populations, where the variables of interest are the percentages of active excitatory and inhibitory neurons in a network, to consider how the nervous system responds to external stimuli, self-organizes and generates epileptiform activity. The second method uses statistical field theory, in the framework of single neurons on a lattice, to study the concept of criticality, an idea borrowed from physics which posits that in some regime the brain operates in a collectively stable or marginally stable manner. This will be examined in two different neuronal networks with self-organized criticality serving as the overarching theme for the union of both perspectives. One of the biggest problems in neuroscience is the question of to what extent certain details are significant to the functioning of the brain. These details give rise to various spatiotemporal properties that at the smallest of scales explain the interaction of single neurons and synapses and at the largest of scales describe, for example, behaviors and sensations. In what follows, we will shed some

  4. Spectral fingerprints of large-scale neuronal interactions.

    PubMed

    Siegel, Markus; Donner, Tobias H; Engel, Andreas K

    2012-01-11

    Cognition results from interactions among functionally specialized but widely distributed brain regions; however, neuroscience has so far largely focused on characterizing the function of individual brain regions and neurons therein. Here we discuss recent studies that have instead investigated the interactions between brain regions during cognitive processes by assessing correlations between neuronal oscillations in different regions of the primate cerebral cortex. These studies have opened a new window onto the large-scale circuit mechanisms underlying sensorimotor decision-making and top-down attention. We propose that frequency-specific neuronal correlations in large-scale cortical networks may be 'fingerprints' of canonical neuronal computations underlying cognitive processes.

  5. Potential climatic impacts and reliability of large-scale offshore wind farms

    NASA Astrophysics Data System (ADS)

    Wang, Chien; Prinn, Ronald G.

    2011-04-01

    -based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.

  6. Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading

    PubMed Central

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Background Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. Methodology/Principal Findings In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease. PMID:21747932

  7. A Functional Model for Management of Large Scale Assessments.

    ERIC Educational Resources Information Center

    Banta, Trudy W.; And Others

    This functional model for managing large-scale program evaluations was developed and validated in connection with the assessment of Tennessee's Nutrition Education and Training Program. Management of such a large-scale assessment requires the development of a structure for the organization; distribution and recovery of large quantities of…

  8. Correlation between UV and IR cutoffs in quantum field theory and large extra dimensions

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.

    1999-04-01

    A recently conjectured relationship between UV and IR cutoffs in an effective field theory without quantum gravity is generalized in the presence of large extra dimensions. Estimates for the corrections to the usual calculation of observables within quantum field theory are used to put very stringent limits, in some cases, on the characteristic scale of the additional compactified dimensions. Implications for the cosmological constant problem are also discussed.

  9. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  10. Large-scale transport across narrow gaps in rod bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guellouz, M.S.; Tavoularis, S.

    1995-09-01

    Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the fieldmore » of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.« less

  11. Evaluating large-scale health programmes at a district level in resource-limited countries.

    PubMed

    Svoronos, Theodore; Mate, Kedar S

    2011-11-01

    Recent experience in evaluating large-scale global health programmes has highlighted the need to consider contextual differences between sites implementing the same intervention. Traditional randomized controlled trials are ill-suited for this purpose, as they are designed to identify whether an intervention works, not how, when and why it works. In this paper we review several evaluation designs that attempt to account for contextual factors that contribute to intervention effectiveness. Using these designs as a base, we propose a set of principles that may help to capture information on context. Finally, we propose a tool, called a driver diagram, traditionally used in implementation that would allow evaluators to systematically monitor changing dynamics in project implementation and identify contextual variation across sites. We describe an implementation-related example from South Africa to underline the strengths of the tool. If used across multiple sites and multiple projects, the resulting driver diagrams could be pooled together to form a generalized theory for how, when and why a widely-used intervention works. Mechanisms similar to the driver diagram are urgently needed to complement existing evaluations of large-scale implementation efforts.

  12. Chiral battery, scaling laws and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm).more » Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.« less

  13. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  14. Simultaneous stochastic inversion for geomagnetic main field and secular variation. I - A large-scale inverse problem

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy

    1987-01-01

    The method of stochastic inversion is extended to the simultaneous inversion of both main field and secular variation. In the present method, the time dependency is represented by an expansion in Legendre polynomials, resulting in a simple diagonal form for the a priori covariance matrix. The efficient preconditioned Broyden-Fletcher-Goldfarb-Shanno algorithm is used to solve the large system of equations resulting from expansion of the field spatially to spherical harmonic degree 14 and temporally to degree 8. Application of the method to observatory data spanning the 1900-1980 period results in a data fit of better than 30 nT, while providing temporally and spatially smoothly varying models of the magnetic field at the core-mantle boundary.

  15. Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy

    NASA Astrophysics Data System (ADS)

    Avolio, E.; Pasqualoni, L.; Federico, S.; Fornaciari, M.; Bonofiglio, T.; Orlandi, F.; Bellecci, C.; Romano, B.

    2008-11-01

    Olives are one of the largest crops in the Mediterranean and in central and southern Italy. This work investigates the correlation of the Olea europaea L. pollen season in Perugia, the capital city of the region of Umbria in central Italy, with atmospheric parameters. The aim of the study is twofold. First, we study the correlation between the pollen season and the surface air temperature of the spring and late spring in Perugia. Second, the correlation between the pollen season and large-scale atmospheric patterns is investigated. The average surface temperature in the spring and late spring has a clear impact on the pollen season in Perugia. Years with higher average temperatures have an earlier onset of the pollen season. In particular, a 1°C higher (lower) average surface temperature corresponds to an earlier (later) start of the pollen season of about 1 week. The correlation between the pollen season and large-scale atmospheric patterns of sea level pressure and 500-hPa geopotential height shows that the cyclonic activity in the Mediterranean is unequivocally tied to the pollen season in Perugia. A larger than average cyclonic activity in the Mediterranean Basin corresponds to a later than average pollen season. Larger than average cyclonic activity in Northern Europe and Siberia corresponds to an earlier than average pollen season. A possible explanation of this correlation, that needs further investigation to be proven, is given. These results can have a practical application by using the seasonal forecast of atmospheric general circulation models.

  16. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  17. Recurrent patterning in the daily foraging routes of hamadryas baboons (Papio hamadryas): spatial memory in large-scale versus small-scale space.

    PubMed

    Schreier, Amy L; Grove, Matt

    2014-05-01

    The benefits of spatial memory for foraging animals can be assessed on two distinct spatial scales: small-scale space (travel within patches) and large-scale space (travel between patches). While the patches themselves may be distributed at low density, within patches resources are likely densely distributed. We propose, therefore, that spatial memory for recalling the particular locations of previously visited feeding sites will be more advantageous during between-patch movement, where it may reduce the distances traveled by animals that possess this ability compared to those that must rely on random search. We address this hypothesis by employing descriptive statistics and spectral analyses to characterize the daily foraging routes of a band of wild hamadryas baboons in Filoha, Ethiopia. The baboons slept on two main cliffs--the Filoha cliff and the Wasaro cliff--and daily travel began and ended on a cliff; thus four daily travel routes exist: Filoha-Filoha, Filoha-Wasaro, Wasaro-Wasaro, Wasaro-Filoha. We use newly developed partial sum methods and distribution-fitting analyses to distinguish periods of area-restricted search from more extensive movements. The results indicate a single peak in travel activity in the Filoha-Filoha and Wasaro-Filoha routes, three peaks of travel activity in the Filoha-Wasaro routes, and two peaks in the Wasaro-Wasaro routes; and are consistent with on-the-ground observations of foraging and ranging behavior of the baboons. In each of the four daily travel routes the "tipping points" identified by the partial sum analyses indicate transitions between travel in small- versus large-scale space. The correspondence between the quantitative analyses and the field observations suggest great utility for using these types of analyses to examine primate travel patterns and especially in distinguishing between movement in small versus large-scale space. Only the distribution-fitting analyses are inconsistent with the field observations, which

  18. An Analysis of Rich Cluster Redshift Survey Data for Large Scale Structure Studies

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1994-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from Abell's catalog show evidence of structure on scales of 100 Mpc and may hold the promise of confirming structure on the scale of the COBE result. However, many Abell clusters have zero or only one measured redshift, so present knowledge of their three dimensional distribution has quite large uncertainties. The shortage of measured redshifts for these clusters may also mask a problem of projection effects corrupting the membership counts for the clusters. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 80 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work will result in a deeper, more complete (and reliable) sample of positions of rich clusters. Our primary intent for the sample is for two-point correlation and other studies of the large scale structure traced by these clusters in an effort to constrain theoretical models for structure formation. We are also obtaining enough redshifts per cluster so that a much better sample of reliable cluster velocity dispersions will be available for other studies of cluster properties. To date, we have collected such data for 64 clusters, and for most of them, we have seven or more cluster members with redshifts, allowing for reliable velocity dispersion calculations. Velocity histograms and stripe density plots for several interesting cluster fields are presented, along with summary tables of cluster redshift results. Also, with 10 or more redshifts in most of our cluster fields (30({') } square, just about an `Abell diameter' at z ~ 0.1) we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect

  19. Large-scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M⊙, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.

  20. Reconstructing Information in Large-Scale Structure via Logarithmic Mapping

    NASA Astrophysics Data System (ADS)

    Szapudi, Istvan

    We propose to develop a new method to extract information from large-scale structure data combining two-point statistics and non-linear transformations; before, this information was available only with substantially more complex higher-order statistical methods. Initially, most of the cosmological information in large-scale structure lies in two-point statistics. With non- linear evolution, some of that useful information leaks into higher-order statistics. The PI and group has shown in a series of theoretical investigations how that leakage occurs, and explained the Fisher information plateau at smaller scales. This plateau means that even as more modes are added to the measurement of the power spectrum, the total cumulative information (loosely speaking the inverse errorbar) is not increasing. Recently we have shown in Neyrinck et al. (2009, 2010) that a logarithmic (and a related Gaussianization or Box-Cox) transformation on the non-linear Dark Matter or galaxy field reconstructs a surprisingly large fraction of this missing Fisher information of the initial conditions. This was predicted by the earlier wave mechanical formulation of gravitational dynamics by Szapudi & Kaiser (2003). The present proposal is focused on working out the theoretical underpinning of the method to a point that it can be used in practice to analyze data. In particular, one needs to deal with the usual real-life issues of galaxy surveys, such as complex geometry, discrete sam- pling (Poisson or sub-Poisson noise), bias (linear, or non-linear, deterministic, or stochastic), redshift distortions, pro jection effects for 2D samples, and the effects of photometric redshift errors. We will develop methods for weak lensing and Sunyaev-Zeldovich power spectra as well, the latter specifically targetting Planck. In addition, we plan to investigate the question of residual higher- order information after the non-linear mapping, and possible applications for cosmology. Our aim will be to work out

  1. Seismic safety in conducting large-scale blasts

    NASA Astrophysics Data System (ADS)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  2. Potential for geophysical experiments in large scale tests.

    USGS Publications Warehouse

    Dieterich, J.H.

    1981-01-01

    Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author

  3. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    PubMed

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  4. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    PubMed Central

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  5. EFT of large scale structures in redshift space

    NASA Astrophysics Data System (ADS)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  6. Understanding Participation in E-Learning in Organizations: A Large-Scale Empirical Study of Employees

    ERIC Educational Resources Information Center

    Garavan, Thomas N.; Carbery, Ronan; O'Malley, Grace; O'Donnell, David

    2010-01-01

    Much remains unknown in the increasingly important field of e-learning in organizations. Drawing on a large-scale survey of employees (N = 557) who had opportunities to participate in voluntary e-learning activities, the factors influencing participation in e-learning are explored in this empirical paper. It is hypothesized that key variables…

  7. Scaling Deviations for Neutrino Reactions in Aysmptotically Free Field Theories

    DOE R&D Accomplishments Database

    Wilczek, F. A.; Zee, A.; Treiman, S. B.

    1974-11-01

    Several aspects of deep inelastic neutrino scattering are discussed in the framework of asymptotically free field theories. We first consider the growth behavior of the total cross sections at large energies. Because of the deviations from strict scaling which are characteristic of such theories the growth need not be linear. However, upper and lower bounds are established which rather closely bracket a linear growth. We next consider in more detail the expected pattern of scaling deviation for the structure functions and, correspondingly, for the differential cross sections. The analysis here is based on certain speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up in the X and y distributions. The last section of the paper deals with deviations from the Callan-Gross relation.

  8. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  9. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    NASA Astrophysics Data System (ADS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  10. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a verymore » tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.« less

  11. The large-scale organization of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.

    2000-10-01

    In a cell or microorganism, the processes that generate mass, energy, information transfer and cell-fate specification are seamlessly integrated through a complex network of cellular constituents and reactions. However, despite the key role of these networks in sustaining cellular functions, their large-scale structure is essentially unknown. Here we present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems. This may indicate that metabolic organization is not only identical for all living organisms, but also complies with the design principles of robust and error-tolerant scale-free networks, and may represent a common blueprint for the large-scale organization of interactions among all cellular constituents.

  12. Large-scale weakly supervised object localization via latent category learning.

    PubMed

    Chong Wang; Kaiqi Huang; Weiqiang Ren; Junge Zhang; Maybank, Steve

    2015-04-01

    Localizing objects in cluttered backgrounds is challenging under large-scale weakly supervised conditions. Due to the cluttered image condition, objects usually have large ambiguity with backgrounds. Besides, there is also a lack of effective algorithm for large-scale weakly supervised localization in cluttered backgrounds. However, backgrounds contain useful latent information, e.g., the sky in the aeroplane class. If this latent information can be learned, object-background ambiguity can be largely reduced and background can be suppressed effectively. In this paper, we propose the latent category learning (LCL) in large-scale cluttered conditions. LCL is an unsupervised learning method which requires only image-level class labels. First, we use the latent semantic analysis with semantic object representation to learn the latent categories, which represent objects, object parts or backgrounds. Second, to determine which category contains the target object, we propose a category selection strategy by evaluating each category's discrimination. Finally, we propose the online LCL for use in large-scale conditions. Evaluation on the challenging PASCAL Visual Object Class (VOC) 2007 and the large-scale imagenet large-scale visual recognition challenge 2013 detection data sets shows that the method can improve the annotation precision by 10% over previous methods. More importantly, we achieve the detection precision which outperforms previous results by a large margin and can be competitive to the supervised deformable part model 5.0 baseline on both data sets.

  13. Bridging the gap between small and large scale sediment budgets? - A scaling challenge in the Upper Rhone Basin, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar

    2016-04-01

    A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub

  14. Constraints on the power spectrum of the primordial density field from large-scale data - Microwave background and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.

  15. TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; hide

    2012-01-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the

  16. Are there synergies from combining hygiene and sanitation promotion campaigns: Evidence from a large-scale cluster-randomized trial in rural Tanzania.

    PubMed

    Briceño, Bertha; Coville, Aidan; Gertler, Paul; Martinez, Sebastian

    2017-01-01

    The current evidence on handwashing and sanitation programs suggests limited impacts on health when at-scale interventions have been tested in isolation. However, no published experimental evidence currently exists that tests the interaction effects between sanitation and handwashing. We present the results of two large-scale, government-led handwashing and sanitation promotion campaigns in rural Tanzania, with the objective of tracing the causal chain from hygiene and sanitation promotion to changes in child health outcomes and specifically testing for potential interaction effects of combining handwashing and sanitation interventions. The study is a factorial cluster-randomized control trial where 181 rural wards from 10 districts in Tanzania were randomly assigned to receive sanitation promotion, handwashing promotion, both interventions together or neither (control). Interventions were rolled out from February 2009 to June 2011 and the endline survey was conducted from May to November 2012, approximately one year after program completion. The sample was composed of households with children under 5 years old in the two largest villages in each ward. Masking was not possible due to the nature of the intervention, but enumerators played no part in the intervention and were blinded to treatment status. The primary outcome of interest was 7-day diarrhea prevalence for children under five. Intermediate outcomes of behavior change including improved latrine construction, levels of open defecation and handwashing with soap were also analyzed. Secondary health outcomes included anemia, height-for-age and weight-for-age of children under 5. An intention-to-treat analysis was used to assess the relationship between the interventions and outcomes of interest. One year after the end of the program, ownership of improved latrines increased from 49.7% to 64.8% (95% CI 57.9%-71.7%) and regular open defecation decreased from 23.1% to 11.1% (95% CI 3.5%-18.7%) in sanitation

  17. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    DOE PAGES

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; ...

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less

  18. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  19. An Novel Architecture of Large-scale Communication in IOT

    NASA Astrophysics Data System (ADS)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  20. Cosmology from Cosmic Microwave Background and large- scale structure

    NASA Astrophysics Data System (ADS)

    Xu, Yongzhong

    2003-10-01

    This dissertation consists of a series of studies, constituting four published papers, involving the Cosmic Microwave Background and the large scale structure, which help constrain Cosmological parameters and potential systematic errors. First, we present a method for comparing and combining maps with different resolutions and beam shapes, and apply it to the Saskatoon, QMAP and COBE/DMR data sets. Although the Saskatoon and QMAP maps detect signal at the 21σ and 40σ, levels, respectively, their difference is consistent with pure noise, placing strong limits on possible systematic errors. In particular, we obtain quantitative upper limits on relative calibration and pointing errors. Splitting the combined data by frequency shows similar consistency between the Ka- and Q-bands, placing limits on foreground contamination. The visual agreement between the maps is equally striking. Our combined QMAP+Saskatoon map, nicknamed QMASK, is publicly available at www.hep.upenn.edu/˜xuyz/qmask.html together with its 6495 x 6495 noise covariance matrix. This thoroughly tested data set covers a large enough area (648 square degrees—at the time, the largest degree-scale map available) to allow a statistical comparison with LOBE/DMR, showing good agreement. By band-pass-filtering the QMAP and Saskatoon maps, we are also able to spatially compare them scale-by-scale to check for beam- and pointing-related systematic errors. Using the QMASK map, we then measure the cosmic microwave background (CMB) power spectrum on angular scales ℓ ˜ 30 200 (1° 6°), and we test it for non-Gaussianity using morphological statistics known as Minkowski functionals. We conclude that the QMASK map is neither a very typical nor a very exceptional realization of a Gaussian random field. At least about 20% of the 1000 Gaussian Monte Carlo maps differ more than the QMASK map from the mean morphological parameters of the Gaussian fields. Finally, we compute the real-space power spectrum and the

  1. Gravitational lenses and large scale structure

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1987-01-01

    Four possible statistical tests of the large scale distribution of cosmic material are described. Each is based on gravitational lensing effects. The current observational status of these tests is also summarized.

  2. Large-Scale 1:1 Computing Initiatives: An Open Access Database

    ERIC Educational Resources Information Center

    Richardson, Jayson W.; McLeod, Scott; Flora, Kevin; Sauers, Nick J.; Kannan, Sathiamoorthy; Sincar, Mehmet

    2013-01-01

    This article details the spread and scope of large-scale 1:1 computing initiatives around the world. What follows is a review of the existing literature around 1:1 programs followed by a description of the large-scale 1:1 database. Main findings include: 1) the XO and the Classmate PC dominate large-scale 1:1 initiatives; 2) if professional…

  3. Current Barriers to Large-scale Interoperability of Traceability Technology in the Seafood Sector.

    PubMed

    Hardt, Marah J; Flett, Keith; Howell, Colleen J

    2017-08-01

    Interoperability is a critical component of full-chain digital traceability, but is almost nonexistent in the seafood industry. Using both quantitative and qualitative methodology, this study explores the barriers impeding progress toward large-scale interoperability among digital traceability systems in the seafood sector from the perspectives of seafood companies, technology vendors, and supply chains as a whole. We highlight lessons from recent research and field work focused on implementing traceability across full supply chains and make some recommendations for next steps in terms of overcoming challenges and scaling current efforts. © 2017 Institute of Food Technologists®.

  4. How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?

    DOE PAGES

    Hagos, Samson; Ruby Leung, L.; Zhao, Chun; ...

    2018-02-10

    Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less

  5. How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Ruby Leung, L.; Zhao, Chun

    Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less

  6. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  7. Spatiotemporal property and predictability of large-scale human mobility

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  8. Multi-scale approaches for high-speed imaging and analysis of large neural populations

    PubMed Central

    Ahrens, Misha B.; Yuste, Rafael; Peterka, Darcy S.; Paninski, Liam

    2017-01-01

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution. PMID:28771570

  9. Primary and Secondary Prevention Trials in Alzheimer Disease: Looking Back, Moving Forward

    PubMed Central

    Hsu, David C.; Marshall, Gad A.

    2015-01-01

    The field of Alzheimer disease (AD) prevention has been a culmination of basic science, clinical, and translational research. In the past three years since the new 2011 AD diagnostic guidelines, large-scale collaborative efforts have embarked on new clinical trials with the hope of someday preventing AD. This review will shed light on the historical and scientific contexts in which these trials were based on, as well as discuss potential challenges these trials may face in the coming years. Primary preventive measures, such as lifestyle, multidomain, medication, and supplemental interventions, will be analyzed. Secondary prevention as represented by disease-modifying interventions, such as anti-amyloid therapy and pioglitazone, will also be reviewed. Finally, hypotheses on future directions for AD prevention trials will be proposed. PMID:27697063

  10. Wedge measures parallax separations...on large-scale 70-mm

    Treesearch

    Steven L. Wert; Richard J. Myhre

    1967-01-01

    A new parallax wedge (range: 1.5 to 2 inches) has been designed for use with large-scaled 70-mm. aerial photographs. The narrow separation of the wedge allows the user to measure small parallax separations that are characteristic of large-scale photographs.

  11. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction

    NASA Astrophysics Data System (ADS)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng

    2017-01-01

    Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.

  12. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  13. Large-scale tropospheric transport in the Chemistry-Climate Model Initiative (CCMI) simulations

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Yang, Huang; Waugh, Darryn W.; Zeng, Guang; Morgenstern, Olaf; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Plummer, David A.; Scinocca, John F.; Josse, Beatrice; Marecal, Virginie; Jöckel, Patrick; Oman, Luke D.; Strahan, Susan E.; Deushi, Makoto; Tanaka, Taichu Y.; Yoshida, Kohei; Akiyoshi, Hideharu; Yamashita, Yousuke; Stenke, Andreas; Revell, Laura; Sukhodolov, Timofei; Rozanov, Eugene; Pitari, Giovanni; Visioni, Daniele; Stone, Kane A.; Schofield, Robyn; Banerjee, Antara

    2018-05-01

    Understanding and modeling the large-scale transport of trace gases and aerosols is important for interpreting past (and projecting future) changes in atmospheric composition. Here we show that there are large differences in the global-scale atmospheric transport properties among the models participating in the IGAC SPARC Chemistry-Climate Model Initiative (CCMI). Specifically, we find up to 40 % differences in the transport timescales connecting the Northern Hemisphere (NH) midlatitude surface to the Arctic and to Southern Hemisphere high latitudes, where the mean age ranges between 1.7 and 2.6 years. We show that these differences are related to large differences in vertical transport among the simulations, in particular to differences in parameterized convection over the oceans. While stronger convection over NH midlatitudes is associated with slower transport to the Arctic, stronger convection in the tropics and subtropics is associated with faster interhemispheric transport. We also show that the differences among simulations constrained with fields derived from the same reanalysis products are as large as (and in some cases larger than) the differences among free-running simulations, most likely due to larger differences in parameterized convection. Our results indicate that care must be taken when using simulations constrained with analyzed winds to interpret the influence of meteorology on tropospheric composition.

  14. Design and implementation of a distributed large-scale spatial database system based on J2EE

    NASA Astrophysics Data System (ADS)

    Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia

    2003-03-01

    With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.

  15. Are large clinical trials in orthopaedic trauma justified?

    PubMed

    Sprague, Sheila; Tornetta, Paul; Slobogean, Gerard P; O'Hara, Nathan N; McKay, Paula; Petrisor, Brad; Jeray, Kyle J; Schemitsch, Emil H; Sanders, David; Bhandari, Mohit

    2018-04-20

    The objective of this analysis is to evaluate the necessity of large clinical trials using FLOW trial data. The FLOW pilot study and definitive trial were factorial trials evaluating the effect of different irrigation solutions and pressures on re-operation. To explore treatment effects over time, we analyzed data from the pilot and definitive trial in increments of 250 patients until the final sample size of 2447 patients was reached. At each increment we calculated the relative risk (RR) and associated 95% confidence interval (CI) for the treatment effect, and compared the results that would have been reported at the smaller enrolments with those seen in the final, adequately powered study. The pilot study analysis of 89 patients and initial incremental enrolments in the FLOW definitive trial favored low pressure compared to high pressure (RR: 1.50, 95% CI: 0.75-3.04; RR: 1.39, 95% CI: 0.60-3.23, respectively), which is in contradiction to the final enrolment, which found no difference between high and low pressure (RR: 1.04, 95% CI: 0.81-1.33). In the soap versus saline comparison, the FLOW pilot study suggested that re-operation rate was similar in both the soap and saline groups (RR: 0.98, 95% CI: 0.50-1.92), whereas the FLOW definitive trial found that the re-operation rate was higher in the soap treatment arm (RR: 1.28, 95% CI: 1.04-1.57). Our findings suggest that studies with smaller sample sizes would have led to erroneous conclusions in the management of open fracture wounds. NCT01069315 (FLOW Pilot Study) Date of Registration: February 17, 2010, NCT00788398 (FLOW Definitive Trial) Date of Registration: November 10, 2008.

  16. A small scale field trial with expanded polystyrene beads for mosquito control in septic tanks.

    PubMed

    Chang, M S; Lian, S; Jute, N

    1995-01-01

    A field trial of the use of expanded polystyrene beads (EPSB) to control the breeding of mosquito larvae in household septic tanks was conducted in Sarawak. One week after treatment, the breeding of Culex quinquefasciatus and Aedes albopictus was reduced by 100% and 68.7% respectively. For both species combined, a 57.25% reduction in the adult emergence rate was achieved. No adult was caught in the emergence trap one month after treatment. A reduction in mosquito biting rates was reported by 87.3% of respondents. All households regarded the EPSB treatment as effective. This study has reduced the relatively high infestation rate of A. albopictus in the septic tanks to 16-20%. The EPSB treatment is feasible and practical. Post-treatment assessment using adult emergence traps and the implications for the vector control programme of the local authority are discussed.

  17. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  18. FIELD DEMONSTRATION OF EMERGING PIPE WALL INTEGRITY ASSESSMENT TECHNOLOGIES FOR LARGE CAST IRON WATER MAINS

    EPA Science Inventory

    The U.S. Environmental Protection Agency sponsored a large-scale field demonstration of innovative leak detection/location and condition assessment technologies on a 76-year old, 2,500-ft long, cement-lined, 24-in. cast iron water main in Louisville, KY from July through Septembe...

  19. A new subgrid-scale representation of hydrometeor fields using a multivariate PDF

    DOE PAGES

    Griffin, Brian M.; Larson, Vincent E.

    2016-06-03

    The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate probability density function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields. Previously, hydrometeor fields were assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced.The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormalmore » shape, are compared to histograms of data taken from large-eddy simulations (LESs) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. In conclusion, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES.« less

  20. [Defining an ethics for preventive trials].

    PubMed

    Chippaux, J-P

    2008-04-01

    Preventive trials (to prevent from infection) or prophylaxis trials (to avoid consequences of the disease) differ from other clinical trials as they apply to healthy subjects or subjects considering themselves as such: the latter do not ask for intervention even less for trial. Moreover, it is generally an experiment which aims at validating a public health intervention, the individual character of which could appear as secondary regarding the collective interest. It concerns many tools or methods: preventive or prophylactic vaccines and drugs, condoms, impregnated bed nets, etc. The field of implementation of preventive trials is large and covers routine immunization (EPI), large-scale control or eradication of endemic diseases or epidemics, for which the concept of individual risk is generally better understood. Preventive trials imply ethical obligations (high individual or collective benefits and absence of risks as there is no immediate therapeutic compensation), methodological adaptations (because the number of subjects is considerably larger than for therapeutic trials) and a sensitive valorization towards a large population who is not asking for the recommended intervention. As regard the benefits, it is also necessary to consider the costs in comparison with the expected efficacy The methodological constraints are important because the demonstration of both safety and efficacy requires a very large number of subjects to validate the product. It is often necessary to use indirect or substitutive markers and indicators (title of protective antibodies rather than definite clinical protection) which need a preliminary validation. Before carrying out a preventive or prophylactic trial, it is advisable to specify the objectives in order to assess the real profits and absence of risks during the trial and after the implementation of the tested product. Preventive trials require a phase of technological transfer to guarantee the application of the validated tools

  1. Ethical issues in field trials of genetically modified disease-resistant mosquitoes.

    PubMed

    Resnik, David B

    2014-04-01

    Mosquito-borne diseases take a tremendous toll on human populations, especially in developing nations. In the last decade, scientists have developed mosquitoes that have been genetically modified to prevent transmission of mosquito-borne diseases, and field trials have been conducted. Some mosquitoes have been rendered infertile, some have been equipped with a vaccine they transmit to humans, and some have been designed to resist diseases. This article focuses on ethical issues raised by field trials of disease-resistant, genetically modified mosquitoes. Some of these issues include: protecting the public and the environment from harm, balancing benefits and risks, collaborating with the local community, avoiding exploitation, and safeguarding the rights and welfare of research subjects. One of the most difficult problems involves protecting the welfare of community members who will be impacted by the release of mosquitoes but who are not enrolled in the study as research subjects. To address this concern, field trials should take place only when the targeted disease is a significant public health problem in an isolated area, the benefits of the trial for the community are likely to outweigh the risks, community leaders approve of the trial, and there are measures in place to protect the welfare of un-enrolled community members, such as informing the community about the study and offering free treatment to people who contract mosquito-borne diseases. Since the justification of any field trial depends on a careful examination of the scientific and ethical issues, proposed studies should be evaluated on a case-by-case basis. Published 2012. This article is a US Government work and is in the public domain in the USA.

  2. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  3. Large-scale structure in superfluid Chaplygin gas cosmology

    NASA Astrophysics Data System (ADS)

    Yang, Rongjia

    2014-03-01

    We investigate the growth of the large-scale structure in the superfluid Chaplygin gas (SCG) model. Both linear and nonlinear growth, such as σ8 and the skewness S3, are discussed. We find the growth factor of SCG reduces to the Einstein-de Sitter case at early times while it differs from the cosmological constant model (ΛCDM) case in the large a limit. We also find there will be more stricture growth on large scales in the SCG scenario than in ΛCDM and the variations of σ8 and S3 between SCG and ΛCDM cannot be discriminated.

  4. Large-scale structures in turbulent Couette flow

    NASA Astrophysics Data System (ADS)

    Kim, Jung Hoon; Lee, Jae Hwa

    2016-11-01

    Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).

  5. Geospatial Optimization of Siting Large-Scale Solar Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Quinby, Ted; Caulfield, Emmet

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent withmore » each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.« less

  6. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.

    PubMed

    Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D

    2013-09-30

    Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Critical Issues in Large-Scale Assessment: A Resource Guide.

    ERIC Educational Resources Information Center

    Redfield, Doris

    The purpose of this document is to provide practical guidance and support for the design, development, and implementation of large-scale assessment systems that are grounded in research and best practice. Information is included about existing large-scale testing efforts, including national testing programs, state testing programs, and…

  8. [Privacy and public benefit in using large scale health databases].

    PubMed

    Yamamoto, Ryuichi

    2014-01-01

    In Japan, large scale heath databases were constructed in a few years, such as National Claim insurance and health checkup database (NDB) and Japanese Sentinel project. But there are some legal issues for making adequate balance between privacy and public benefit by using such databases. NDB is carried based on the act for elderly person's health care but in this act, nothing is mentioned for using this database for general public benefit. Therefore researchers who use this database are forced to pay much concern about anonymization and information security that may disturb the research work itself. Japanese Sentinel project is a national project to detecting drug adverse reaction using large scale distributed clinical databases of large hospitals. Although patients give the future consent for general such purpose for public good, it is still under discussion using insufficiently anonymized data. Generally speaking, researchers of study for public benefit will not infringe patient's privacy, but vague and complex requirements of legislation about personal data protection may disturb the researches. Medical science does not progress without using clinical information, therefore the adequate legislation that is simple and clear for both researchers and patients is strongly required. In Japan, the specific act for balancing privacy and public benefit is now under discussion. The author recommended the researchers including the field of pharmacology should pay attention to, participate in the discussion of, and make suggestion to such act or regulations.

  9. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  10. Passive drainage and biofiltration of landfill gas: Australian field trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, S.A.; Swarbrick, G.E.; Stuetz, R.M.

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane,more » and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.« less

  11. Large-scale Estimates of Leaf Area Index from Active Remote Sensing Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Mahoney, C.

    2016-12-01

    Leaf area index (LAI) is a key parameter that describes the spatial distribution of foliage within forest canopies which in turn control numerous relationships between the ground, canopy, and atmosphere. The retrieval of LAI has demonstrated success by in-situ (digital) hemispherical photography (DHP) and airborne laser scanning (ALS) data; however, field and ALS acquisitions are often spatially limited (100's km2) and costly. Large-scale (>1000's km2) retrievals have been demonstrated by optical sensors, however, accuracies remain uncertain due to the sensor's inability to penetrate the canopy. The spaceborne Geoscience Laser Altimeter System (GLAS) provides a possible solution in retrieving large-scale derivations whilst simultaneously penetrating the canopy. LAI retrieved by multiple DHP from 6 Australian sites, representing a cross-section of Australian ecosystems, were employed to model ALS LAI, which in turn were used to infer LAI from GLAS data at 5 other sites. An optimally filtered GLAS dataset was then employed in conjunction with a host of supplementary data to build a Random Forest (RF) model to infer predictions (and uncertainties) of LAI at a 250 m resolution across the forested regions of Australia. Predictions were validated against ALS-based LAI from 20 sites (R2=0.64, RMSE=1.1 m2m-2); MODIS-based LAI were also assessed against these sites (R2=0.30, RMSE=1.78 m2m-2) to demonstrate the strength of GLAS-based predictions. The large-scale nature of current predictions was also leveraged to demonstrate large-scale relationships of LAI with other environmental characteristics, such as: canopy height, elevation, and slope. The need for such wide-scale quantification of LAI is key in the assessment and modification of forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network, in fulfilling their government issued mandates.

  12. Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...

  13. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    PubMed

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

  14. Emergence of universal scaling in financial markets from mean-field dynamics

    NASA Astrophysics Data System (ADS)

    Vikram, S. V.; Sinha, Sitabhra

    2011-01-01

    Collective phenomena with universal properties have been observed in many complex systems with a large number of components. Here we present a microscopic model of the emergence of scaling behavior in such systems, where the interaction dynamics between individual components is mediated by a global variable making the mean-field description exact. Using the example of financial markets, we show that asset price can be such a global variable with the critical role of coordinating the actions of agents who are otherwise independent. The resulting model accurately reproduces empirical properties such as the universal scaling of the price fluctuation and volume distributions, long-range correlations in volatility, and multiscaling.

  15. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  16. Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Orlov, A. V.; Brazhnikov, M. Yu.; Levchenko, A. A.

    2018-04-01

    The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k -5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.

  17. Wellbore Completion Systems Containment Breach Solution Experiments at a Large Scale Underground Research Laboratory : Sealant placement & scale-up from Lab to Field

    NASA Astrophysics Data System (ADS)

    Goodman, H.

    2017-12-01

    This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244

  18. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  20. Self-Consistent Large-Scale Magnetosphere-Ionosphere Coupling: Computational Aspects and Experiments

    NASA Technical Reports Server (NTRS)

    Newman, Timothy S.

    2003-01-01

    Both external and internal phenomena impact the terrestrial magnetosphere. For example, solar wind and particle precipitation effect the distribution of hot plasma in the magnetosphere. Numerous models exist to describe different aspects of magnetosphere characteristics. For example, Tsyganenko has developed a series of models (e.g., [TSYG89]) that describe the magnetic field, and Stern [STER75] and Volland [VOLL73] have developed an analytical model that describes the convection electric field. Over the past several years, NASA colleague Khazanov, working with Fok and others, has developed a large-scale coupled model that tracks particle flow to determine hot ion and electron phase space densities in the magnetosphere. This model utilizes external data such as solar wind densities and velocities and geomagnetic indices (e.g., Kp) to drive computational processes that evaluate magnetic, electric field, and plasma sheet models at any time point. These models are coupled such that energetic ion and electron fluxes are produced, with those fluxes capable of interacting with the electric field model. A diagrammatic representation of the coupled model is shown.