Science.gov

Sample records for large-scale open quantum

  1. Large Scale Quantum Simulations of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Fattoyev, Farrukh J.; Horowitz, Charles J.; Schuetrumpf, Bastian

    2016-03-01

    Complex and exotic nuclear geometries collectively referred to as ``nuclear pasta'' are expected to naturally exist in the crust of neutron stars and in supernovae matter. Using a set of self-consistent microscopic nuclear energy density functionals we present the first results of large scale quantum simulations of pasta phases at baryon densities 0 . 03 < ρ < 0 . 10 fm-3, proton fractions 0 . 05 quantum simulations, in particular, allow us to also study the role and impact of the nuclear symmetry energy on these pasta configurations. This work is supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  2. Large-scale quantum effects in biological systems

    NASA Astrophysics Data System (ADS)

    Mesquita, Marcus V.; Vasconcellos, Áurea R.; Luzzi, Roberto; Mascarenhas, Sergio

    Particular aspects of large-scale quantum effects in biological systems, such as biopolymers and also microtubules in the cytoskeleton of neurons which can have relevance in brain functioning, are discussed. The microscopic (quantum mechanical) and macroscopic (quantum statistical mechanical) aspects, and the emergence of complex behavior, are described. This phenomena consists of the large-scale coherent process of Fröhlich-Bose-Einstein condensation in open and sufficiently far-from-equilibrium biopolymers. Associated with this phenomenon is the presence of Schrödinger-Davydov solitons, which propagate, undistorted and undamped, when embedded in the Fröhlich-Bose-Einstein condensate, thus allowing for the transmission of signals at long distances, involving a question relevant to bioenergetics.

  3. Quantum computation for large-scale image classification

    NASA Astrophysics Data System (ADS)

    Ruan, Yue; Chen, Hanwu; Tan, Jianing; Li, Xi

    2016-07-01

    Due to the lack of an effective quantum feature extraction method, there is currently no effective way to perform quantum image classification or recognition. In this paper, for the first time, a global quantum feature extraction method based on Schmidt decomposition is proposed. A revised quantum learning algorithm is also proposed that will classify images by computing the Hamming distance of these features. From the experimental results derived from the benchmark database Caltech 101, and an analysis of the algorithm, an effective approach to large-scale image classification is derived and proposed against the background of big data.

  4. Large-scale quantum networks based on graphs

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  5. Quantum Noise in Large-Scale Coherent Nonlinear Photonic Circuits

    NASA Astrophysics Data System (ADS)

    Santori, Charles; Pelc, Jason S.; Beausoleil, Raymond G.; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo

    2014-06-01

    A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasiprobability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total and functions as a four-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.

  6. Cryogenic Control Architecture for Large-Scale Quantum Computing

    NASA Astrophysics Data System (ADS)

    Hornibrook, J. M.; Colless, J. I.; Conway Lamb, I. D.; Pauka, S. J.; Lu, H.; Gossard, A. C.; Watson, J. D.; Gardner, G. C.; Fallahi, S.; Manfra, M. J.; Reilly, D. J.

    2015-02-01

    Solid-state qubits have recently advanced to the level that enables them, in principle, to be scaled up into fault-tolerant quantum computers. As these physical qubits continue to advance, meeting the challenge of realizing a quantum machine will also require the development of new supporting devices and control architectures with complexity far beyond the systems used in today's few-qubit experiments. Here, we report a microarchitecture for controlling and reading out qubits during the execution of a quantum algorithm such as an error-correcting code. We demonstrate the basic principles of this architecture using a cryogenic switch matrix implemented via high-electron-mobility transistors and a new kind of semiconductor device based on gate-switchable capacitance. The switch matrix is used to route microwave waveforms to qubits under the control of a field-programmable gate array, also operating at cryogenic temperatures. Taken together, these results suggest a viable approach for controlling large-scale quantum systems using semiconductor technology.

  7. Ferroelectric opening switches for large-scale pulsed power drivers.

    SciTech Connect

    Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

    2009-11-01

    Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of

  8. Large Scale Electronic Structure Calculations using Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.

    1998-03-01

    This talk will address our recent efforts in developing fast, linear scaling electronic structure methods for large scale applications. Of special importance is our fast multipole method( M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271), 51 (1996). (FMM) for achieving linear scaling for the quantum Coulomb problem (GvFMM), the traditional bottleneck in quantum chemistry calculations based on Gaussian orbitals. Fast quadratures(R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257), 213 (1996). combined with methods that avoid the Hamiltonian diagonalization( J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106), 5569 (1997) have resulted in density functional theory (DFT) programs that can be applied to systems containing many hundreds of atoms and ---depending on computational resources or level of theory-- to many thousands of atoms.( A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys. 107), 425 (1997). Three solutions for the diagonalization bottleneck will be analyzed and compared: a conjugate gradient density matrix search (CGDMS), a Hamiltonian polynomial expansion of the density matrix, and a pseudo-diagonalization method. Besides DFT, our near-field exchange method( J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105), 8969 (1996). for linear scaling Hartree-Fock calculations will be discussed. Based on these improved capabilities, we have also developed programs to obtain vibrational frequencies (via analytic energy second derivatives) and excitation energies (through time-dependent DFT) of large molecules like porphyn or C_70. Our GvFMM has been extended to periodic systems( K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett., in press.) and progress towards a Gaussian-based DFT and HF program for polymers and solids will be reported. Last, we will discuss our progress on a Laplace-transformed \\cal O(N^2) second-order pertubation theory (MP2) method.

  9. Distribution of entanglement in large-scale quantum networks

    NASA Astrophysics Data System (ADS)

    Perseguers, S.; Lapeyre, G. J., Jr.; Cavalcanti, D.; Lewenstein, M.; Acín, A.

    2013-09-01

    The concentration and distribution of quantum entanglement is an essential ingredient in emerging quantum information technologies. Much theoretical and experimental effort has been expended in understanding how to distribute entanglement in one-dimensional networks. However, as experimental techniques in quantum communication develop, protocols for multi-dimensional systems become essential. Here, we focus on recent theoretical developments in protocols for distributing entanglement in regular and complex networks, with particular attention to percolation theory and network-based error correction.

  10. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  11. Large Scale Quantum Coherence of Nearly Circular Wavepackets

    SciTech Connect

    Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.; Wyker, B.; Mestayer, J. J.; Dunning, F. B.

    2009-01-01

    We demonstrate that the quantum coherence of mesoscopic very-high-n, n {approx} 305, Rydberg wave packets travelling along nearly circular orbits can be maintained on microsecond time scales corresponding to hundreds of classical orbital periods. The coherence is probed through collapses and revivals of periodic oscillations in the average electron position. The temporal interferences of spatially separated Schroedinger cat-like wave packets are also observed. A novel hybrid quantum-classical trajectory method is employed to simulate the wave packet dynamics.

  12. Cryogenic Linear Ion Trap for Large-Scale Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Pagano, Guido; Hess, Paul; Kaplan, Harvey; Birckelbaw, Eric; Hernanez, Micah; Lee, Aaron; Smith, Jake; Zhang, Jiehang; Monroe, Christopher

    2016-05-01

    Ions confined in RF Paul traps are a useful tool for quantum simulation of long-range spin-spin interaction models. As the system size increases, classical simulation methods become incapable of modeling the exponentially growing Hilbert space, necessitating quantum simulation for precise predictions. Current experiments are limited to less than 30 qubits due to collisions with background gas that regularly destroys the ion crystal. We present progress toward the construction of a cryogenic ion trap apparatus, which uses differential cryopumping to reduce vacuum pressure to a level where collisions do not occur. This should allow robust trapping of about 100 ions/qubits in a single chain with long lifetimes. Such a long chain will provide a platform to investigate simultaneously cooling of various vibrational modes and will enable quantum simulations that outperform their classical counterpart. Our apparatus will provide a powerful test-bed to investigate a large variety of Hamiltonians, including spin 1 and spin 1/2 systems with Ising or XY interactions. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, the IC Fellowship Program and the NSF Physics Frontier Center at JQI.

  13. Cryogenic Linear Ion Trap for Large-Scale Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Kaplan, H. B.; Hess, P. W.; Pagano, G.; Birckelbaw, E. J.; Hernandez, M.; Lee, A. C.; Smith, J.; Zhang, J.; Monroe, C.

    2016-05-01

    Ions confined in RF Paul traps are a useful tool for quantum simulation of long-range spin-spin interaction models. As the system size increases, classical simulation methods become incapable of modeling the exponentially growing Hilbert space, necessitating quantum simulation for precise predictions. Current experiments are limited to less than 30 qubits due to collisions with background gas that regularly destroys the ion crystal. We present progress toward the construction of a cryogenic ion trap apparatus, which uses differential cryopumping to reduce vacuum pressure to a level where collisions do not occur. This should allow robust trapping of about 100 ions/qubits in a single chain with long lifetimes. Such a long chain will provide a platform to investigate simultaneously cooling of various vibrational modes and will enable quantum simulations that outperform their classical counterpart. Our apparatus will provide a powerful test-bed to investigate a large variety of Hamiltonians, including spin 1 and spin 1/2 systems with Ising or XY interactions. This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, and the NSF Physics Frontier Center at JQI.

  14. [Large scale quantum chemical calculation for drug discovery].

    PubMed

    Kitaura, Kazuo

    2011-01-01

    Due to the increase in computer power and the development of computational methods, it becomes possible to perform quantum mechanical calculations of very large molecules such as proteins that were previously exclusively treated with classical force field methods. We have developed the fragment molecular orbital (FMO) method aimed at biomolecular applications. One of the important applications of the method is in structure-based drug design because it provides accurate descriptions of various non-bonded interactions between a protein and its ligand. In this article, the FMO method will be described as well as its applications to the analysis of protein-ligand binding. PMID:21804319

  15. HTS cables open the window for large-scale renewables

    NASA Astrophysics Data System (ADS)

    Geschiere, A.; Willén, D.; Piga, E.; Barendregt, P.

    2008-02-01

    In a realistic approach to future energy consumption, the effects of sustainable power sources and the effects of growing welfare with increased use of electricity need to be considered. These factors lead to an increased transfer of electric energy over the networks. A dominant part of the energy need will come from expanded large-scale renewable sources. To use them efficiently over Europe, large energy transits between different countries are required. Bottlenecks in the existing infrastructure will be avoided by strengthening the network. For environmental reasons more infrastructure will be built underground. Nuon is studying the HTS technology as a component to solve these challenges. This technology offers a tremendously large power transport capacity as well as the possibility to reduce short circuit currents, making integration of renewables easier. Furthermore, power transport will be possible at lower voltage levels, giving the opportunity to upgrade the existing network while re-using it. This will result in large cost savings while reaching the future energy challenges. In a 6 km backbone structure in Amsterdam Nuon wants to install a 50 kV HTS Triax cable for a significant increase of the transport capacity, while developing its capabilities. Nevertheless several barriers have to be overcome.

  16. Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications

    NASA Astrophysics Data System (ADS)

    Hu, Michael Z.; Zhu, Ting

    2015-12-01

    This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  17. Oscillatory barrier-assisted Langmuir-Blodgett deposition of large-scale quantum dot monolayers

    NASA Astrophysics Data System (ADS)

    Xu, Shicheng; Dadlani, Anup L.; Acharya, Shinjita; Schindler, Peter; Prinz, Fritz B.

    2016-03-01

    Depositing continuous, large-scale quantum dot films with low pinhole density is an inevitable but nontrivial step for studying their properties for applications in catalysis, electronic devices, and optoelectronics. This rising interest in high-quality quantum dot films has provided research impetus to improve the deposition technique. We show that by incorporating oscillatory barriers in the commonly used Langmuir-Blodgett method, large-scale monolayers of quantum dots with full coverage up to several millimeters have been achieved. With assistance of perturbation provided by the oscillatory barriers, the film has been shown to relax towards thermal equilibrium, and this physical process has been supported by molecular dynamics simulation. In addition, time evolution of dilatational moduli has been shown to give a clear indication of the film morphology and its stability.

  18. Optically driven nanostructures as the basis for large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexander V.

    2008-03-01

    We propose a large-scale quantum computer architecture based upon the regular arrays of dopant atoms implanted into the semiconductor host matrix. The singly-ionized pairs of donors represent charge qubits on which arbitrary quantum operations can be achieved by application of two strongly detuned laser pulses. The implementation of two-qubit operations as well as the qubit read-out utilize the intermediate circuit containing a probe electron that is able to shuttle along the array of ionized ancilla donors providing the indirect conditional coupling between the qubits. The quantum bus strategy enables us to handle the qubits connected in parallel and enhances the efficiency of the quantum information processing. We demonstrate that non-trivial multi-qubit operations in the quantum register (e.g., an entanglement generation) can be accomplished by the sequence of the optical pulses combined with an appropriate voltage gate pattern.

  19. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  20. Direct measurement of large-scale quantum states via expectation values of non-Hermitian matrices

    PubMed Central

    Bolduc, Eliot; Gariepy, Genevieve; Leach, Jonathan

    2016-01-01

    In quantum mechanics, predictions are made by way of calculating expectation values of observables, which take the form of Hermitian operators. Non-Hermitian operators, however, are not necessarily devoid of physical significance, and they can play a crucial role in the characterization of quantum states. Here we show that the expectation values of a particular set of non-Hermitian matrices, which we call column operators, directly yield the complex coefficients of a quantum state vector. We provide a definition of the state vector in terms of measurable quantities by decomposing these column operators into observables. The technique we propose renders very-large-scale quantum states significantly more accessible in the laboratory, as we demonstrate by experimentally characterizing a 100,000-dimensional entangled state. This represents an improvement of two orders of magnitude with respect to previous phase-and-amplitude characterizations of discrete entangled states. PMID:26780858

  1. Direct measurement of large-scale quantum states via expectation values of non-Hermitian matrices.

    PubMed

    Bolduc, Eliot; Gariepy, Genevieve; Leach, Jonathan

    2016-01-01

    In quantum mechanics, predictions are made by way of calculating expectation values of observables, which take the form of Hermitian operators. Non-Hermitian operators, however, are not necessarily devoid of physical significance, and they can play a crucial role in the characterization of quantum states. Here we show that the expectation values of a particular set of non-Hermitian matrices, which we call column operators, directly yield the complex coefficients of a quantum state vector. We provide a definition of the state vector in terms of measurable quantities by decomposing these column operators into observables. The technique we propose renders very-large-scale quantum states significantly more accessible in the laboratory, as we demonstrate by experimentally characterizing a 100,000-dimensional entangled state. This represents an improvement of two orders of magnitude with respect to previous phase-and-amplitude characterizations of discrete entangled states. PMID:26780858

  2. Direct measurement of large-scale quantum states via expectation values of non-Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Bolduc, Eliot; Gariepy, Genevieve; Leach, Jonathan

    2016-01-01

    In quantum mechanics, predictions are made by way of calculating expectation values of observables, which take the form of Hermitian operators. Non-Hermitian operators, however, are not necessarily devoid of physical significance, and they can play a crucial role in the characterization of quantum states. Here we show that the expectation values of a particular set of non-Hermitian matrices, which we call column operators, directly yield the complex coefficients of a quantum state vector. We provide a definition of the state vector in terms of measurable quantities by decomposing these column operators into observables. The technique we propose renders very-large-scale quantum states significantly more accessible in the laboratory, as we demonstrate by experimentally characterizing a 100,000-dimensional entangled state. This represents an improvement of two orders of magnitude with respect to previous phase-and-amplitude characterizations of discrete entangled states.

  3. Bridging the Gap between Quantum Mechanics and Large-Scale Atomistic Simulation

    SciTech Connect

    Moriarty, J A

    2004-08-16

    The prospect of modeling across disparate length and time scales to achieve a predictive multiscale description of real materials properties has attracted widespread research interest in the last decade. To be sure, the challenges in such multiscale modeling are many, and in demanding cases, such as mechanical properties or dynamic phase transitions, multiple bridges extending from the atomic level all the way to the continuum level must be built. Although often overlooked in this process, one of the most fundamental and important problems in multiscale modeling is that of bridging the gap between first-principles quantum mechanics, from which true predictive power for real materials emanates, and the large-scale atomistic simulation of thousands or millions of atoms, which is usually essential to describe the complex atomic processes that link to higher length and time scales. For example, to model single-crystal plasticity at micron length scales via dislocation-dynamics simulations that evolve the detailed dislocation microstructure requires accurate large-scale atomistic information on the mobility and interaction of individual dislocations. Similarly, modeling the kinetics of structural phase transitions requires linking accurate large-scale atomistic information on nucleation processes with higher length and time scale growth processes.

  4. Large-scale semidefinite programming for many-electron quantum mechanics.

    PubMed

    Mazziotti, David A

    2011-02-25

    The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. We illustrate with (i) the dissociation of N(2) and (ii) the metal-to-insulator transition of H(50). For H(50) the SDP problem has 9.4×10(6) variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics. PMID:21405567

  5. Large Scale Monte Carlo Simulation of Neutrino Interactions Using the Open Science Grid and Commercial Clouds

    NASA Astrophysics Data System (ADS)

    Norman, A.; Boyd, J.; Davies, G.; Flumerfelt, E.; Herner, K.; Mayer, N.; Mhashilhar, P.; Tamsett, M.; Timm, S.

    2015-12-01

    Modern long baseline neutrino experiments like the NOvA experiment at Fermilab, require large scale, compute intensive simulations of their neutrino beam fluxes and backgrounds induced by cosmic rays. The amount of simulation required to keep the systematic uncertainties in the simulation from dominating the final physics results is often 10x to 100x that of the actual detector exposure. For the first physics results from NOvA this has meant the simulation of more than 2 billion cosmic ray events in the far detector and more than 200 million NuMI beam spill simulations. Performing these high statistics levels of simulation have been made possible for NOvA through the use of the Open Science Grid and through large scale runs on commercial clouds like Amazon EC2. We details the challenges in performing large scale simulation in these environments and how the computing infrastructure for the NOvA experiment has been adapted to seamlessly support the running of different simulation and data processing tasks on these resources.

  6. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots

    PubMed Central

    Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae

    2015-01-01

    Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films. PMID:26383257

  7. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae

    2015-09-01

    Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films.

  8. Large-scale quantum mechanical simulations of high-Z metals

    SciTech Connect

    Yang, L H; Hood, R; Pask, J; Klepeis, J

    2007-01-03

    High-Z metals constitute a particular challenge for large-scale ab initio calculations, as they require high resolution due to the presence of strongly localized states and require many eigenstates to be computed due to the large number of electrons and need to accurately resolve the Fermi surface. Here, we report recent findings on high-Z materials, using an efficient massively parallel planewave implementation on some of the largest computational architectures currently available. We discuss the particular architectures employed and methodological advances required to harness them effectively. We present a pair-correlation function for U, calculated using quantum molecular dynamics, and discuss relaxations of Pu atoms in the vicinity of defects in aged and alloyed Pu. We find that the self-irradiation associated with aging has a negligible effect on the compressibility of Pu relative to other factors such as alloying.

  9. Effective interactions, large-scale diagonalization, and one-dimensional quantum dots

    NASA Astrophysics Data System (ADS)

    Kvaal, Simen; Hjorth-Jensen, Morten; Nilsen, Halvor Møll

    2007-08-01

    The widely used large-scale diagonalization method using harmonic oscillator basis functions (an instance of the Rayleigh-Ritz method [S. Gould, Variational Methods for Eigenvalue Problems: An Introduction to the Methods of Rayleigh, Ritz, Weinstein, and Aronszajn (Dover, New York, 1995)], also called a spectral method, configuration-interaction method, or “exact diagonalization” method) is systematically analyzed using results for the convergence of Hermite function series. We apply this theory to a Hamiltonian for a one-dimensional model of a quantum dot. The method is shown to converge slowly, and the nonsmooth character of the interaction potential is identified as the main problem with the chosen basis, while, on the other hand, its important advantages are pointed out. An effective interaction obtained by a similarity transformation is proposed for improving the convergence of the diagonalization scheme, and numerical experiments are performed to demonstrate the improvement. Generalizations to more particles and dimensions are discussed.

  10. Integrated Technologies for Large-Scale Trapped-Ion Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Sorace-Agaskar, C.; Bramhavar, S.; Kharas, D.; Mehta, K. K.; Loh, W.; Panock, R.; Bruzewicz, C. D.; McConnell, R.; Ram, R. J.; Sage, J. M.; Chiaverini, J.

    2016-05-01

    Atomic ions trapped and controlled using electromagnetic fields hold great promise for practical quantum information processing due to their inherent coherence properties and controllability. However, to realize this promise, the ability to maintain and manipulate large-scale systems is required. We present progress toward the development of, and proof-of-principle demonstrations and characterization of, several technologies that can be integrated with ion-trap arrays on-chip to enable such scaling to practically useful sizes. Of particular use are integrated photonic elements for routing and focusing light throughout a chip without the need for free-space optics. The integration of CMOS electronics and photo-detectors for on-chip control and readout, and methods for monolithic fabrication and wafer-scale integration to incorporate these capabilities into tile-able 2D ion-trap array cells, are also explored.

  11. Robust predictions for the large-scale cosmological power deficit from primordial quantum nonequilibrium

    NASA Astrophysics Data System (ADS)

    Colin, Samuel; Valentini, Antony

    2016-04-01

    The de Broglie-Bohm pilot-wave formulation of quantum theory allows the existence of physical states that violate the Born probability rule. Recent work has shown that in pilot-wave field theory on expanding space relaxation to the Born rule is suppressed for long-wavelength field modes, resulting in a large-scale power deficit ξ(k) which for a radiation-dominated expansion is found to have an approximate inverse-tangent dependence on k (assuming that the width of the initial distribution is smaller than the width of the initial Born-rule distribution and that the initial quantum states are evenly-weighted superpositions of energy states). In this paper, we show that the functional form of ξ(k) is robust under changes in the initial nonequilibrium distribution — subject to the limitation of a subquantum width — as well as under the addition of an inflationary era at the end of the radiation-dominated phase. In both cases, the predicted deficit ξ(k) remains an inverse-tangent function of k. Furthermore, with the inflationary phase the dependence of the fitting parameters on the number of superposed pre-inflationary energy states is comparable to that found previously. Our results indicate that, for the assumed broad class of initial conditions, an inverse-tangent power deficit is likely to be a fairly general and robust signature of quantum relaxation in the early universe.

  12. Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology.

    PubMed

    Siegle, Joshua H; Hale, Gregory J; Newman, Jonathan P; Voigts, Jakob

    2015-06-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is 'open' or 'closed': that is, whether or not the system's schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. PMID:25528614

  13. A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders

    NASA Astrophysics Data System (ADS)

    Hou, Juan; Yan, Jin; Zhao, Qi; Li, Yi; Ding, Hong; Ding, Lan

    2013-09-01

    A simple one-pot microwave-assisted approach has been established for the large-scale preparation of carbon quantum dots (CDs) with excellent water solubility and photoluminescence. The properties and mechanism were demonstrated. Moreover, the CDs have been applied to the detection of tetracycline hydrochloride.A simple one-pot microwave-assisted approach has been established for the large-scale preparation of carbon quantum dots (CDs) with excellent water solubility and photoluminescence. The properties and mechanism were demonstrated. Moreover, the CDs have been applied to the detection of tetracycline hydrochloride. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03444e

  14. Quantum Celestial Mechanics: Large-scale Gravitational Quantization States in Galaxies and the Universe

    NASA Astrophysics Data System (ADS)

    Preston, Howard G.; Potter, Franklin

    2006-03-01

    We report a new theory of celestial mechanics for gravitationally bound systems based upon a gravitational wave equation derived from the general relativistic Hamilton-Jacobi equation. The single ad hoc assumption is that the large-scale physical properties depend only on the ratio of the bound system's total angular momentum to its total mass. The theory predicts quantization states for the Solar System and for galaxies. The galactic quantization determines the energy and angular momentum eigenstates without requiring dark matter, and predicts expressions for the galactic disk rotation velocity, the baryonic Tully-Fisher relation, the MOND acceleration parameter, the large-angle gravitational lensing, and the shape, stability and number of arms in spiral galaxies. Applied to the universe, the theory has a repulsive effective gravitational potential that predicts a new Hubble relation and explains the observed apparent acceleration of distant supernovae with the matter/energy density of the universe at the critical density with only about 5% matter content. We suggest a laboratory experiment with a torsion bar near a rotating mass. This theory is not quantum gravity.

  15. Neural ensemble communities: Open-source approaches to hardware for large-scale electrophysiology

    PubMed Central

    Siegle, Joshua H.; Hale, Gregory J.; Newman, Jonathan P.; Voigts, Jakob

    2014-01-01

    One often-overlooked factor when selecting a platform for large-scale electrophysiology is whether or not a particular data acquisition system is “open” or “closed”: that is, whether or not the system’s schematics and source code are available to end users. Open systems have a reputation for being difficult to acquire, poorly documented, and hard to maintain. With the arrival of more powerful and compact integrated circuits, rapid prototyping services, and web-based tools for collaborative development, these stereotypes must be reconsidered. We discuss some of the reasons why multichannel extracellular electrophysiology could benefit from open-source approaches and describe examples of successful community-driven tool development within this field. In order to promote the adoption of open-source hardware and to reduce the need for redundant development efforts, we advocate a move toward standardized interfaces that connect each element of the data processing pipeline. This will give researchers the flexibility to modify their tools when necessary, while allowing them to continue to benefit from the high-quality products and expertise provided by commercial vendors. PMID:25528614

  16. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  17. Open source database of images DEIMOS: extension for large-scale subjective image quality assessment

    NASA Astrophysics Data System (ADS)

    Vítek, Stanislav

    2014-09-01

    DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.

  18. Large-Scale 1:1 Computing Initiatives: An Open Access Database

    ERIC Educational Resources Information Center

    Richardson, Jayson W.; McLeod, Scott; Flora, Kevin; Sauers, Nick J.; Kannan, Sathiamoorthy; Sincar, Mehmet

    2013-01-01

    This article details the spread and scope of large-scale 1:1 computing initiatives around the world. What follows is a review of the existing literature around 1:1 programs followed by a description of the large-scale 1:1 database. Main findings include: 1) the XO and the Classmate PC dominate large-scale 1:1 initiatives; 2) if professional…

  19. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.

    2010-09-01

    The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full

  20. Open-path Fourier transform infrared studies of large-scale laboratory biomass fires

    NASA Astrophysics Data System (ADS)

    Yokelson, Robert J.; Griffith, David W. T.; Ward, Darold E.

    1996-09-01

    A series of nine large-scale, open fires was conducted in the Intermountain Fire Sciences Laboratory (IFSL) controlled-environment combustion facility. The fuels were pure pine needles or sagebrush or mixed fuels simulating forest-floor, ground fires; crown fires; broadcast burns; and slash pile burns. Mid-infrared spectra of the smoke were recorded throughout each fire by open path Fourier transform infrared (FTIR) spectroscopy at 0.12 cm-1 resolution over a 3 m cross-stack pathlength and analyzed to provide pseudocontinuous, simultaneous concentrations of up to 16 compounds. Simultaneous measurements were made of fuel mass loss, stack gas temperature, and total mass flow up the stack. The products detected are classified by the type of process that dominates in producing them. Carbon dioxide is the dominant emission of (and primarily produced by) flaming combustion, from which we also measure nitric oxide, nitrogen dioxide, sulfur dioxide, and most of the water vapor from combustion and fuel moisture. Carbon monoxide is the dominant emission formed primarily by smoldering combustion from which we also measure carbon dioxide, methane, ammonia, and ethane. A significant fraction of the total emissions is unoxidized pyrolysis products; examples are methanol, formaldehyde, acetic and formic acid, ethene (ethylene), ethyne (acetylene), and hydrogen cyanide. Relatively few previous data exist for many of these compounds and they are likely to have an important but as yet poorly understood role in plume chemistry. Large differences in emissions occur from different fire and fuel types, and the observed temporal behavior of the emissions is found to depend strongly on the fuel bed and product type.

  1. Repurposing of open data through large scale hydrological modelling - hypeweb.smhi.se

    NASA Astrophysics Data System (ADS)

    Strömbäck, Lena; Andersson, Jafet; Donnelly, Chantal; Gustafsson, David; Isberg, Kristina; Pechlivanidis, Ilias; Strömqvist, Johan; Arheimer, Berit

    2015-04-01

    Hydrological modelling demands large amounts of spatial data, such as soil properties, land use, topography, lakes and reservoirs, ice and snow coverage, water management (e.g. irrigation patterns and regulations), meteorological data and observed water discharge in rivers. By using such data, the hydrological model will in turn provide new data that can be used for new purposes (i.e. re-purposing). This presentation will give an example of how readily available open data from public portals have been re-purposed by using the Hydrological Predictions for the Environment (HYPE) model in a number of large-scale model applications covering numerous subbasins and rivers. HYPE is a dynamic, semi-distributed, process-based, and integrated catchment model. The model output is launched as new Open Data at the web site www.hypeweb.smhi.se to be used for (i) Climate change impact assessments on water resources and dynamics; (ii) The European Water Framework Directive (WFD) for characterization and development of measure programs to improve the ecological status of water bodies; (iii) Design variables for infrastructure constructions; (iv) Spatial water-resource mapping; (v) Operational forecasts (1-10 days and seasonal) on floods and droughts; (vi) Input to oceanographic models for operational forecasts and marine status assessments; (vii) Research. The following regional domains have been modelled so far with different resolutions (number of subbasins within brackets): Sweden (37 000), Europe (35 000), Arctic basin (30 000), La Plata River (6 000), Niger River (800), Middle-East North-Africa (31 000), and the Indian subcontinent (6 000). The Hype web site provides several interactive web applications for exploring results from the models. The user can explore an overview of various water variables for historical and future conditions. Moreover the user can explore and download historical time series of discharge for each basin and explore the performance of the model

  2. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.

  3. User Friendly Open GIS Tool for Large Scale Data Assimilation - a Case Study of Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Gupta, P. K.

    2012-08-01

    Open source software (OSS) coding has tremendous advantages over proprietary software. These are primarily fuelled by high level programming languages (JAVA, C++, Python etc...) and open source geospatial libraries (GDAL/OGR, GEOS, GeoTools etc.). Quantum GIS (QGIS) is a popular open source GIS package, which is licensed under GNU GPL and is written in C++. It allows users to perform specialised tasks by creating plugins in C++ and Python. This research article emphasises on exploiting this capability of QGIS to build and implement plugins across multiple platforms using the easy to learn - Python programming language. In the present study, a tool has been developed to assimilate large spatio-temporal datasets such as national level gridded rainfall, temperature, topographic (digital elevation model, slope, aspect), landuse/landcover and multi-layer soil data for input into hydrological models. At present this tool has been developed for Indian sub-continent. An attempt is also made to use popular scientific and numerical libraries to create custom applications for digital inclusion. In the hydrological modelling calibration and validation are important steps which are repetitively carried out for the same study region. As such the developed tool will be user friendly and used efficiently for these repetitive processes by reducing the time required for data management and handling. Moreover, it was found that the developed tool can easily assimilate large dataset in an organised manner.

  4. The Open Cloud Testbed: Supporting Open Source Cloud Computing Systems Based on Large Scale High Performance, Dynamic Network Services

    NASA Astrophysics Data System (ADS)

    Grossman, Robert; Gu, Yunhong; Sabala, Michal; Bennet, Colin; Seidman, Jonathan; Mambratti, Joe

    Recently, a number of cloud platforms and services have been developed for data intensive computing, including Hadoop, Sector, CloudStore (formerly KFS), HBase, and Thrift. In order to benchmark the performance of these systems, to investigate their interoperability, and to experiment with new services based on flexible compute node and network provisioning capabilities, we have designed and implemented a large scale testbed called the Open Cloud Testbed (OCT). Currently OCT has 120 nodes in 4 data centers: Baltimore, Chicago (two locations), and San Diego. In contrast to other cloud testbeds, which are in small geographic areas and which are based on commodity Internet services, the OCT is a wide area testbed and the 4 data centers are connected with a high performance 10Gb/s network, based on a foundation of dedicated lightpaths. This testbed can address the requirements of extremely large data streams that challenge other types of distributed infrastructure. We have also developed several utilities to support the development of cloud computing systems and services, including novel node and network provisioning services, a monitoring system, and an RPC system. In this paper, we describe the OCT concepts, architecture, infrastructure, a few benchmarks that were developed for this platform, interoperability studies, and results.

  5. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  6. Large scale solution assembly of quantum dot-gold nanorod architectures with plasmon enhanced fluorescence.

    PubMed

    Nepal, Dhriti; Drummy, Lawrence F; Biswas, Sushmita; Park, Kyoungweon; Vaia, Richard A

    2013-10-22

    Tailoring the efficiency of fluorescent emission via plasmon-exciton coupling requires structure control on a nanometer length scale using a high-yield fabrication route not achievable with current lithographic techniques. These systems can be fabricated using a bottom-up approach if problems of colloidal stability and low yield can be addressed. We report progress on this pathway with the assembly of quantum dots (emitter) on gold nanorods (plasmonic units) with precisely controlled spacing, quantum dot/nanorod ratio, and long-term colloidal stability, which enables the purification and encapsulation of the assembled architecture in a protective silica shell. Overall, such controllability with nanometer precision allows one to synthesize stable, complex architectures at large volume in a rational and controllable manner. The assembled architectures demonstrate photoluminescent enhancement (5×) useful for applications ranging from biological sensing to advanced optical communication. PMID:24004164

  7. Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices

    SciTech Connect

    Cybart, Shane A. Dynes, R. C.; Wong, T. J.; Cho, E. Y.; Beeman, J. W.; Yung, C. S.; Moeckly, B. H.

    2014-05-05

    Magnetic field sensors based on two-dimensional arrays of superconducting quantum interference devices were constructed from magnesium diboride thin films. Each array contained over 30 000 Josephson junctions fabricated by ion damage of 30 nm weak links through an implant mask defined by nano-lithography. Current-biased devices exhibited very large voltage modulation as a function of magnetic field, with amplitudes as high as 8 mV.

  8. Large scale two-dimensional arrays of magnesium diboride superconducting quantum interference devices

    NASA Astrophysics Data System (ADS)

    Cybart, Shane A.; Wong, T. J.; Cho, E. Y.; Beeman, J. W.; Yung, C. S.; Moeckly, B. H.; Dynes, R. C.

    2014-05-01

    Magnetic field sensors based on two-dimensional arrays of superconducting quantum interference devices were constructed from magnesium diboride thin films. Each array contained over 30 000 Josephson junctions fabricated by ion damage of 30 nm weak links through an implant mask defined by nano-lithography. Current-biased devices exhibited very large voltage modulation as a function of magnetic field, with amplitudes as high as 8 mV.

  9. Large-Scale Programmable Synthesis of PbS Quantum Dots.

    PubMed

    Preske, Amanda; Liu, Jin; Prezhdo, Oleg V; Krauss, Todd D

    2016-03-01

    The most common method of synthesizing colloidal quantum dots (QDs) relies on an increasing particle size through increasing reaction time. We demonstrate a synthesis where the QD size is programmable through the use of a secondary phosphine sulfide precursor. The reaction runs to thermodynamic completion, resulting in a desired PbS diameter for a given set of specific reaction conditions, with no need for reaction quenching or post-synthesis size-separation. Moreover, this method is shown to produce high-quality PbS QDs on the grams scale. PMID:26663537

  10. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules.

    PubMed

    Fox, Stephen J; Pittock, Chris; Fox, Thomas; Tautermann, Christofer S; Malcolm, Noj; Skylaris, Chris-Kriton

    2011-12-14

    Biomolecular simulations with atomistic detail are often required to describe interactions with chemical accuracy for applications such as the calculation of free energies of binding or chemical reactions in enzymes. Force fields are typically used for this task but these rely on extensive parameterisation which in cases can lead to limited accuracy and transferability, for example for ligands with unusual functional groups. These limitations can be overcome with first principles calculations with methods such as density functional theory (DFT) but at a much higher computational cost. The use of electrostatic embedding can significantly reduce this cost by representing a portion of the simulated system in terms of highly localised charge distributions. These classical charge distributions are electrostatically coupled with the quantum system and represent the effect of the environment in which the quantum system is embedded. In this paper we describe and evaluate such an embedding scheme in which the polarisation of the electronic density by the embedding charges occurs self-consistently during the calculation of the density. We have implemented this scheme in a linear-scaling DFT program as our aim is to treat with DFT entire biomolecules (such as proteins) and large portions of the solvent. We test this approach in the calculation of interaction energies of ligands with biomolecules and solvent and investigate under what conditions these can be obtained with the same level of accuracy as when the entire system is described by DFT, for a variety of neutral and charged species. PMID:22168680

  11. Openwebglobe - AN Open Source Sdk for Creating Large-Scale Virtual Globes on a Webgl Basis

    NASA Astrophysics Data System (ADS)

    Loesch, B.; Christen, M.; Nebiker, S.

    2012-07-01

    This paper introduces the OpenWebGlobe project (www.openwebglobe.org) and the OpenWebGlobe SDK (Software Development Kit) - an open source virtual globe environment using WebGL. Unlike other (web-based) 3d geovisualisation technologies and toolkits, the OpenWebGlobe SDK not only supports the content authoring and web visualization aspects, but also the data processing functionality for generating multi-terabyte terrain, image, map and 3d point cloud data sets in high-performance and cloud-based parallel computing environments. The OpenWebGlobe architecture is described and the paper outlines the processing and the viewer functionality provided by the OpenWebGlobe SDK. It then discusses the generation and updating of a global 3d base map using OpenStreetMap data and finally presents two show cases employing the technology a) for implementing an interactive national 3d geoportal incorporating high resolution national geodata sets and b) for implementing a 3d geoinformation service supporting the real-time incorporation of 3d point cloud data.

  12. Demonstration of string breaking in quantum chromodynamics by large-scale eigenvalue computations

    NASA Astrophysics Data System (ADS)

    Attig, N.; Bali, G. S.; Düssel, Th.; Lippert, Th.; Neff, H.; Prkaçin, Z.; Schilling, K.

    2005-07-01

    We present results of our ongoing determination of "string breaking" in quantum chromodynamics (QCD) including two dynamical light quarks. Our investigation of the fission of the string between a heavy (static) quark and a corresponding antiquark into a meson-antimeson system is based on dynamical configurations of size 24×40. The all-to-all light quark propagators occurring in the transition element are computed from a set of 200 low-lying eigenmodes of the Hermitian Wilson-Dirac matrix which encodes the effect of the dynamical quarks. These eigenmodes are calculated on the 1312-node IBM p690 system at the John von Neumann Institute in Jülich. Combining the eigenvalue computations with a variety of ground state enhancing optimization methods we determine the matrix elements of the two-by-two system with so far unprecedented accuracy. We observe—for the first time ever in a simulation of 4-dimensional lattice-QCD— level-splitting as the perfect signature for dynamical string breaking between ground state and excited potential.

  13. Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data

    SciTech Connect

    Lu, Wei; Liu, Cheng; Bhaduri, Budhendra L

    2014-01-01

    The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: user equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.

  14. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment. PMID:26370817

  15. Lars Onsager Prize Talk: 1+1d conformal field theories as natural languages for asymptotically large-scale quantum computing

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2010-03-01

    An abstract argument is offered that the ideal physical systems for asymptotically large-scale quantum computers are near-critical quantum circuits, critical in the bulk, whose bulk universality classes are described by 1+1d conformal field theories. One in particular -- the Monster conformal field theory -- is especially ideal, because all of its bulk couplings are irrelevant.

  16. Sustainability of Open-Source Software Organizations as Underpinning for Sustainable Interoperability on Large Scales

    NASA Astrophysics Data System (ADS)

    Fulker, D. W.; Gallagher, J. H. R.

    2015-12-01

    OPeNDAP's Hyrax data server is an open-source framework fostering interoperability via easily-deployed Web services. Compatible with solutions listed in the (PA001) session description—federation, rigid standards and brokering/mediation—the framework can support tight or loose coupling, even with dependence on community-contributed software. Hyrax is a Web-services framework with a middleware-like design and a handler-style architecture that together reduce the interoperability challenge (for N datatypes and M user contexts) to an O(N+M) problem, similar to brokering. Combined with an open-source ethos, this reduction makes Hyrax a community tool for gaining interoperability. E.g., in its response to the Big Earth Data Initiative (BEDI), NASA references OPeNDAP-based interoperability. Assuming its suitability, the question becomes: how sustainable is OPeNDAP, a small not-for-profit that produces open-source software, i.e., has no software-sales? In other words, if geoscience interoperability depends on OPeNDAP and similar organizations, are those entities in turn sustainable? Jim Collins (in Good to Great) highlights three questions that successful companies can answer (paraphrased here): What is your passion? Where is your world-class excellence? What drives your economic engine? We attempt to shed light on OPeNDAP sustainability by examining these. Passion: OPeNDAP has a focused passion for improving the effectiveness of scientific data sharing and use, as deeply-cooperative community endeavors. Excellence: OPeNDAP has few peers in remote, scientific data access. Skills include computer science with experience in data science, (operational, secure) Web services, and software design (for servers and clients, where the latter vary from Web pages to standalone apps and end-user programs). Economic Engine: OPeNDAP is an engineering services organization more than a product company, despite software being key to OPeNDAP's reputation. In essence, provision of

  17. Leveraging human oversight and intervention in large-scale parallel processing of open-source data

    NASA Astrophysics Data System (ADS)

    Casini, Enrico; Suri, Niranjan; Bradshaw, Jeffrey M.

    2015-05-01

    The popularity of cloud computing along with the increased availability of cheap storage have led to the necessity of elaboration and transformation of large volumes of open-source data, all in parallel. One way to handle such extensive volumes of information properly is to take advantage of distributed computing frameworks like Map-Reduce. Unfortunately, an entirely automated approach that excludes human intervention is often unpredictable and error prone. Highly accurate data processing and decision-making can be achieved by supporting an automatic process through human collaboration, in a variety of environments such as warfare, cyber security and threat monitoring. Although this mutual participation seems easily exploitable, human-machine collaboration in the field of data analysis presents several challenges. First, due to the asynchronous nature of human intervention, it is necessary to verify that once a correction is made, all the necessary reprocessing is done in chain. Second, it is often needed to minimize the amount of reprocessing in order to optimize the usage of resources due to limited availability. In order to improve on these strict requirements, this paper introduces improvements to an innovative approach for human-machine collaboration in the processing of large amounts of open-source data in parallel.

  18. Open source large-scale high-resolution environmental modelling with GEMS

    NASA Astrophysics Data System (ADS)

    Baarsma, Rein; Alberti, Koko; Marra, Wouter; Karssenberg, Derek

    2016-04-01

    Many environmental, topographic and climate data sets are freely available at a global scale, creating the opportunities to run environmental models for every location on Earth. Collection of the data necessary to do this and the consequent conversion into a useful format is very demanding however, not to mention the computational demand of a model itself. We developed GEMS (Global Environmental Modelling System), an online application to run environmental models on various scales directly in your browser and share the results with other researchers. GEMS is open-source and uses open-source platforms including Flask, Leaflet, GDAL, MapServer and the PCRaster-Python modelling framework to process spatio-temporal models in real time. With GEMS, users can write, run, and visualize the results of dynamic PCRaster-Python models in a browser. GEMS uses freely available global data to feed the models, and automatically converts the data to the relevant model extent and data format. Currently available data includes the SRTM elevation model, a selection of monthly vegetation data from MODIS, land use classifications from GlobCover, historical climate data from WorldClim, HWSD soil information from WorldGrids, population density from SEDAC and near real-time weather forecasts, most with a ±100m resolution. Furthermore, users can add other or their own datasets using a web coverage service or a custom data provider script. With easy access to a wide range of base datasets and without the data preparation that is usually necessary to run environmental models, building and running a model becomes a matter hours. Furthermore, it is easy to share the resulting maps, timeseries data or model scenarios with other researchers through a web mapping service (WMS). GEMS can be used to provide open access to model results. Additionally, environmental models in GEMS can be employed by users with no extensive experience with writing code, which is for example valuable for using models

  19. Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii.

    PubMed

    Mitamura, Masako; Yamamura, Yasuo; Nakano, Takashi

    2009-01-01

    Although the environmental change by canopy gap formation in a forest improves the light availability for the saplings on the forest floor, it may result in stresses on the saplings due to high radiation and drought. In large-scale gaps, the photosynthesis of shade-tolerant species may be inhibited by high radiation and drought stress if they lack effective tolerance or avoidance mechanisms for the stresses. We investigated the photosynthetic traits and water relations of Abies veitchii Lindl. saplings in an open habitat created by an avalanche and in a nearby forest floor habitat undisturbed by the avalanche. We analyzed the influence of exposed conditions on sapling photosynthesis. The maximum photosynthetic rate of the saplings in the open habitat was lower than that in the forest habitat. The ratio of variable to maximum chlorophyll fluorescence (F(v)/F(m)) was lower in the open habitat than that in the forest habitat during the late growing season, indicating that the open habitat saplings suffer photoinhibition of photosystem II for a long period. A lower Rubisco concentration in needles in the open habitat indicated the breakdown of this photosynthetic protein because of excess solar energy resulting from serious photoinhibition. The shoot water potential of the saplings in the open habitat at daytime was higher than that of the saplings in the forest habitat because of less transpiration caused by the remarkable stomatal closure in the open habitat. Although these acclimations to high radiation improve the tolerance of A. veitchii saplings to high radiation and drought stress, they would result in low gain of daily carbon and a reduction in growth in the open habitat. PMID:19203939

  20. Design of a large-scale vertical open-structure cylindrical shield employing magnetic shaking

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro; Paperno, Eugene; Koide, Hiroyuki

    2000-05-01

    The shield developed consists of four concentric magnetic shells positioned on the outer surfaces of paper pipes of ˜2.7 m length, ˜1 cm thickness, and with outer diameters of 67, 72, 82.2, and 97.4 cm, respectively. The first (innermost) shell is a Permalloy shell of 2.1 mm thickness and 1.8 m length. The second, third, and fourth shells are made of ˜50 mm wide, ˜22 μm thick Metglas 2705M amorphous ribbons. The second shell, which is a 2.2 m long helical structure, consists of 48 layers of Metglas ribbon divided into four equal sections by ˜1 cm thick flexible Styrofoam sheets. The third shell, 2.43 m in length, and fourth shell, 2.7 m in length, consist of 26 and 30 layers, respectively. A thin polyethylene film is tightly wound on each section of the second shell as well as on the third and fourth shells. It increases the friction between the Metglas ribbons and prevents them from sliding down; there is no foreign material in between the layers of the ribbon. All shells are enclosed by toroidal coils which are used to demagnetize the Permalloy shell and to apply magnetic shaking to the amorphous magnetic shells. The gross weight of the shield is ˜400 kg including ˜65 kg of Permalloy and ˜110 kg of Metglas. An ˜105 transverse shielding factor and a relatively large ˜380 axial shielding factor, despite the effect of the openings, are achieved for a 10 μT external field in the extremely low frequency region. The measured shaking leakage and magnetic noise field strengths at the shield's center are less than 1 nT. As these low field strengths, it is possible to operate highly sensitive SQUID magnetometers for biomagnetic measurements.

  1. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Tan, Jing; Zou, Rui; Zhang, Jie; Li, Wang; Zhang, Liqun; Yue, Dongmei

    2016-02-01

    An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors.An easy, large-scale synthesis of N-doped carbon quantum dots (CQDs) was developed by using isophorone diisocyanate (IPDI) as a single carbon source under microwave irradiation. The yield of raw N-doped CQDs was about 83%, which is suitable for industrial-scale production. A detailed formation mechanism for N-doped CQDs involving self-polymerization and condensation of IPDI was demonstrated. Moreover, the obtained N-doped CQDs can be homogeneously dispersed in various organic monomers and do not need toxic organic solvents as dispersing agents. This advantage expands the range of applications of CQDs in composites. The N-doped CQDs dispersed in polyurethane (PU) matrixes emit not only fluorescence but also phosphorescence and delayed fluorescence at room temperature upon excitation with ultraviolet (UV) light. Furthermore, the phosphorescence of CQD/PU composites is sensitive to oxygen and therefore, the obtained-CQDs could be exploited in the development of novel oxygen sensors. Electronic

  2. Partition-of-unity finite-element method for large scale quantum molecular dynamics on massively parallel computational platforms

    SciTech Connect

    Pask, J E; Sukumar, N; Guney, M; Hu, W

    2011-02-28

    Over the course of the past two decades, quantum mechanical calculations have emerged as a key component of modern materials research. However, the solution of the required quantum mechanical equations is a formidable task and this has severely limited the range of materials systems which can be investigated by such accurate, quantum mechanical means. The current state of the art for large-scale quantum simulations is the planewave (PW) method, as implemented in now ubiquitous VASP, ABINIT, and QBox codes, among many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points in space, and in which every basis function overlaps every other at every point, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires substantial nonlocal communications in parallel implementations, placing critical limits on scalability. In recent years, real-space methods such as finite-differences (FD) and finite-elements (FE) have been developed to address these deficiencies by reformulating the required quantum mechanical equations in a strictly local representation. However, while addressing both resolution and parallel-communications problems, such local real-space approaches have been plagued by one key disadvantage relative to planewaves: excessive degrees of freedom (grid points, basis functions) needed to achieve the required accuracies. And so, despite critical limitations, the PW method remains the standard today. In this work, we show for the first time that this key remaining disadvantage of real-space methods can in fact be overcome: by building known atomic physics into the solution process using modern partition-of-unity (PU) techniques in finite element analysis. Indeed, our results show order-of-magnitude reductions in basis size relative to state-of-the-art planewave based methods. The method developed here is

  3. A Scalable Open-Source Pipeline for Large-Scale Root Phenotyping of Arabidopsis[W][OPEN

    PubMed Central

    Slovak, Radka; Göschl, Christian; Su, Xiaoxue; Shimotani, Koji; Shiina, Takashi; Busch, Wolfgang

    2014-01-01

    Large-scale phenotyping of multicellular organisms is one of the current challenges in biology. We present a comprehensive and scalable pipeline that allows for the efficient phenotyping of root growth traits on a large scale. This includes a high-resolution, low-cost acquisition setup as well as the automated image processing software BRAT. We assess the performance of this pipeline in Arabidopsis thaliana under multiple growth conditions and show its utility by performing genome-wide association studies on 16 root growth traits quantified by BRAT each day during a 5-d time-course experiment. The most significantly associated genome region for root growth rate is a locus encoding a calcium sensing receptor. We find that loss of function and overexpression of this gene can significantly alter root growth in a growth condition dependent manner and that the minor natural allele of the Calcium Sensor Receptor locus is highly significantly enriched in populations in coastal areas, demonstrating the power of our approach to identify regulators of root growth that might have adaptive relevance. PMID:24920330

  4. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and

  5. From C60 to Infinity: Large-Scale Quantum Chemistry Calculations of the Heats of Formation of Higher Fullerenes.

    PubMed

    Chan, Bun; Kawashima, Yukio; Katouda, Michio; Nakajima, Takahito; Hirao, Kimihiko

    2016-02-01

    We have carried out large-scale computational quantum chemistry calculations on the K computer to obtain heats of formation for C60 and some higher fullerenes with the DSD-PBE-PBE/cc-pVQZ double-hybrid density functional theory method. Our best estimated values are 2520.0 ± 20.7 (C60), 2683.4 ± 17.7 (C70), 2862.0 ± 18.5 (C76), 2878.8 ± 13.3 (C78), 2946.4 ± 14.5 (C84), 3067.3 ± 15.4 (C90), 3156.6 ± 16.2 (C96), 3967.7 ± 33.4 (C180), 4364 (C240) and 5415 (C320) kJ mol(-1). In our assessment, we also find that the B3-PW91-D3BJ and BMK-D3(BJ) functionals perform reasonably well. Using the convergence behavior for the calculated per-atom heats of formation, we obtained the formula ΔfH per carbon = 722n(-0.72) + 5.2 kJ mol(-1) (n = the number of carbon atoms), which enables an estimation of ΔfH for higher fullerenes more generally. A slow convergence to the graphene limit is observed, which we attribute to the relatively small proportion of fullerene carbons that are in "low-strain" regions. We further propose that it would take tens, if not hundreds, of thousands of carbons for a fullerene to roughly approach the limit. Such a distinction may be a contributing factor to the discrete properties between the two types of nanomaterials. During the course of our study, we also observe a fairly reliable means for the theoretical calculation of heats of formation for medium-sized fullerenes. This involves the use of isodesmic-type reactions with fullerenes of similar sizes to provide a good balance of the chemistry and to minimize the use of accompanying species. PMID:26799740

  6. Fabrication and optical characterization of large scale membrane containing InP/AlGaInP quantum dots

    NASA Astrophysics Data System (ADS)

    Niederbracht, H.; Hargart, F.; Schwartz, M.; Koroknay, E.; Kessler, C. A.; Jetter, M.; Michler, P.

    2015-06-01

    Single-photon sources with a high extraction efficiency are a prerequisite for applications in quantum communication and quantum computation schemes. One promising approach is the fabrication of a quantum dot containing membrane structure in combination with a solid immersion lens and a metal mirror. We have fabricated an 80 nm thin semiconductor membrane with incorporated InP quantum dots in an AlGaInP double hetero barrier via complete substrate removal. In addition, a gold layer was deposited on one side of the membrane acting as a mirror. The optical characterization shows in detail that the unique properties of the quantum dots are preserved in the membrane structure.

  7. Fabrication and optical characterization of large scale membrane containing InP/AlGaInP quantum dots.

    PubMed

    Niederbracht, H; Hargart, F; Schwartz, M; Koroknay, E; Kessler, C A; Jetter, M; Michler, P

    2015-06-12

    Single-photon sources with a high extraction efficiency are a prerequisite for applications in quantum communication and quantum computation schemes. One promising approach is the fabrication of a quantum dot containing membrane structure in combination with a solid immersion lens and a metal mirror. We have fabricated an 80 nm thin semiconductor membrane with incorporated InP quantum dots in an AlGaInP double hetero barrier via complete substrate removal. In addition, a gold layer was deposited on one side of the membrane acting as a mirror. The optical characterization shows in detail that the unique properties of the quantum dots are preserved in the membrane structure. PMID:25994204

  8. Three-Dimensional Architecture at Chip Level for Large-Scale-Integration of Superconducting Quantum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Göppl, Martin; Kurpiers, Philipp; Wallraff, Andreas

    We propose a novel way to realize three-dimensional circuit QED systems at chip level. System components such as qubits, transmission lines, capacitors, inductors or cross-overs can be implemented as suspended, electromagnetically shielded and optionally, as hermetically sealed structures. Compared to known state-of-the-art devices, volumes of dielectrics penetrated by electromagnetic fields can be drastically reduced. Our intention is to harness process technologies for very-large-scale-integration, reliably applied and improved over decades in micro-sensor- and semiconductor industry, for the realization of highly integrated circuit QED systems. Process capabilities are demonstrated by fabricating first exploratory devices using the back-end-of-line part of a commercial 180 nm CMOS foundry process in conjunction with HF vapor phase release etching.

  9. GATECloud.net: a platform for large-scale, open-source text processing on the cloud.

    PubMed

    Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina

    2013-01-28

    Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation. PMID:23230155

  10. Large scale traffic simulations

    SciTech Connect

    Nagel, K.; Barrett, C.L.; Rickert, M.

    1997-04-01

    Large scale microscopic (i.e. vehicle-based) traffic simulations pose high demands on computational speed in at least two application areas: (i) real-time traffic forecasting, and (ii) long-term planning applications (where repeated {open_quotes}looping{close_quotes} between the microsimulation and the simulated planning of individual person`s behavior is necessary). As a rough number, a real-time simulation of an area such as Los Angeles (ca. 1 million travellers) will need a computational speed of much higher than 1 million {open_quotes}particle{close_quotes} (= vehicle) updates per second. This paper reviews how this problem is approached in different projects and how these approaches are dependent both on the specific questions and on the prospective user community. The approaches reach from highly parallel and vectorizable, single-bit implementations on parallel supercomputers for Statistical Physics questions, via more realistic implementations on coupled workstations, to more complicated driving dynamics implemented again on parallel supercomputers. 45 refs., 9 figs., 1 tab.

  11. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy.

    PubMed

    Wang, Zhaofeng; Yu, Jingfang; Zhang, Xin; Li, Na; Liu, Bin; Li, Yanyan; Wang, Yuhua; Wang, Weixing; Li, Yezhou; Zhang, Lichun; Dissanayake, Shanka; Suib, Steven L; Sun, Luyi

    2016-01-20

    In this work, rice husk biomass was utilized as an abundant source to controllably prepare high-quality graphene quantum dots (GQDs) with a yield of ca. 15 wt %. The size, morphology, and structure of the rice-husk-derived GQDs were determined by high-resolution transmission electron microscopy, atomic force microscopy, and Raman spectroscopy. The as-fabricated GQDs can be stably dispersed in water, exhibiting bright and tunable photoluminescence. A cell viability test further confirmed that the GQDs possess excellent biocompatibility, and they can be easily adopted for cell imaging via a facile translocation into the cytoplasm. It is worth noting that mesoporous silica nanoparticles were also synthesized as a byproduct during the fabrication of GQDs. As such, our strategy achieves a comprehensive utilization of rice husks, exhibiting tremendous benefits on both the economy and environment. PMID:26710249

  12. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport.

    PubMed

    Komarov, Pavel V; Khalatur, Pavel G; Khokhlov, Alexei R

    2013-01-01

    Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25-50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. PMID:24205452

  13. Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable Quantum Cascade Laser (QCL) based microscope.

    PubMed

    Bassan, Paul; Weida, Miles J; Rowlette, Jeremy; Gardner, Peter

    2014-08-21

    Chemical imaging in the field of vibrational spectroscopy is developing into a promising tool to complement digital histopathology. Applications include screening of biopsy tissue via automated recognition of tissue/cell type and disease state based on the chemical information from the spectrum. For integration into clinical practice, data acquisition needs to be speeded up to implement a rack based system where specimens are rapidly imaged to compete with current visible scanners where 100's of slides can be scanned overnight. Current Fourier transform infrared (FTIR) imaging with focal plane array (FPA) detectors are currently the state-of-the-art instrumentation for infrared absorption chemical imaging, however recent development in broadly tunable lasers in the mid-IR range is considered the most promising potential candidate for next generation microscopes. In this paper we test a prototype quantum cascade laser (QCL) based spectral imaging microscope with a focus on discrete frequency chemical imaging. We demonstrate how a protein chemical image of the amide I band (1655 cm(-1)) of a 2 × 2.4 cm(2) breast tissue microarray (TMA) containing over 200 cores can be measured in 9 min. This result indicates that applications requiring chemical images from a few key wavelengths would be ideally served by laser-based microscopes. PMID:24965124

  14. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

    PubMed Central

    Komarov, Pavel V; Khokhlov, Alexei R

    2013-01-01

    Summary Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25–50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity. PMID:24205452

  15. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  16. The open quantum Brownian motions

    NASA Astrophysics Data System (ADS)

    Bauer, Michel; Bernard, Denis; Tilloy, Antoine

    2014-09-01

    Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H_z : orbital (walker) Hilbert space, {C}^{{Z}} in the discrete, L^2({R}) in the continuum H_c : internal spin (or gyroscope) Hilbert space H_sys=H_z\\otimesH_c : system Hilbert space H_p : probe (or quantum coin) Hilbert space, H_p={C}^2 \\rho^tot_t : density matrix for the total system (walker + internal spin + quantum coins) \\bar \\rho_t : reduced density matrix on H_sys : \\bar\\rho_t=\\int dxdy\\, \\bar\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | \\hat \\rho_t : system density matrix in a quantum trajectory: \\hat\\rho_t=\\int dxdy\\, \\hat\\rho_t(x,y)\\otimes | x \\rangle _z\\langle y | . If diagonal and localized in position: \\hat \\rho_t=\\rho_t\\otimes| X_t \\rangle _z\\langle X_t | ρt: internal density matrix in a simple quantum trajectory Xt: walker position in a simple quantum trajectory Bt: normalized Brownian motion ξt, \\xi_t^\\dagger : quantum noises

  17. CHASTE: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library.

    PubMed

    Bernabeu, Miguel O; Bordas, Rafel; Pathmanathan, Pras; Pitt-Francis, Joe; Cooper, Jonathan; Garny, Alan; Gavaghan, David J; Rodriguez, Blanca; Southern, James A; Whiteley, Jonathan P

    2009-05-28

    Recent work has described the software engineering and computational infrastructure that has been set up as part of the Cancer, Heart and Soft Tissue Environment (CHASTE) project. CHASTE is an open source software package that currently has heart and cancer modelling functionality. This software has been written using a programming paradigm imported from the commercial sector and has resulted in a code that has been subject to a far more rigorous testing procedure than that is usual in this field. In this paper, we explain how new functionality may be incorporated into CHASTE. Whiteley has developed a numerical algorithm for solving the bidomain equations that uses the multi-scale (MS) nature of the physiology modelled to enhance computational efficiency. Using a simple geometry in two dimensions and a purpose-built code, this algorithm was reported to give an increase in computational efficiency of more than two orders of magnitude. In this paper, we begin by reviewing numerical methods currently in use for solving the bidomain equations, explaining how these methods may be developed to use the MS algorithm discussed above. We then demonstrate the use of this algorithm within the CHASTE framework for solving the monodomain and bidomain equations in a three-dimensional realistic heart geometry. Finally, we discuss how CHASTE may be developed to include new physiological functionality--such as modelling a beating heart and fluid flow in the heart--and how new algorithms aimed at increasing the efficiency of the code may be incorporated. PMID:19380318

  18. Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    PubMed Central

    Zhang, Delong; Liang, Bishan; Wu, Xia; Wang, Zengjian; Xu, Pengfei; Chang, Song; Liu, Bo; Liu, Ming; Huang, Ruiwang

    2015-01-01

    The present study examined directional connections in the brain among resting-state networks (RSNs) when the participant had their eyes open (EO) or had their eyes closed (EC). The resting-state fMRI data were collected from 20 healthy participants (9 males, 20.17 ± 2.74 years) under the EO and EC states. Independent component analysis (ICA) was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-mode networks), and the Gaussian Bayesian network (BN) learning approach was then used to explore the conditional dependencies among these RSNs. The network-to-network directional connections related to EO and EC were depicted, and a support vector machine (SVM) was further employed to identify the directional connection patterns that could effectively discriminate between the two states. The results indicated that the connections among RSNs are directionally connected within a BN during the EO and EC states. The directional connections from the salience network (SN) to the anterior/posterior default-mode networks and the high-level to primary-level visual network were the obvious characteristics of both the EO and EC resting-state BNs. Of the directional connections in BN, the directional connections of the salience and dorsal attention network (DAN) were observed to be discriminative between the EO and EC states. In particular, we noted that the properties of the salience and DANs were in opposite directions. Overall, the present study described the directional connections of RSNs using a BN learning approach during the EO and EC states, and the results suggested that the directionality of the attention systems (i.e., mainly for the salience and the DAN) in resting state might have important roles in switching between the EO and EC conditions. PMID:25745394

  19. Large Scale Computing

    NASA Astrophysics Data System (ADS)

    Capiluppi, Paolo

    2005-04-01

    Large Scale Computing is acquiring an important role in the field of data analysis and treatment for many Sciences and also for some Social activities. The present paper discusses the characteristics of Computing when it becomes "Large Scale" and the current state of the art for some particular application needing such a large distributed resources and organization. High Energy Particle Physics (HEP) Experiments are discussed in this respect; in particular the Large Hadron Collider (LHC) Experiments are analyzed. The Computing Models of LHC Experiments represent the current prototype implementation of Large Scale Computing and describe the level of maturity of the possible deployment solutions. Some of the most recent results on the measurements of the performances and functionalities of the LHC Experiments' testing are discussed.

  20. A new technology of CO2 supplementary for microalgae cultivation on large scale - A spraying absorption tower coupled with an outdoor open runway pond.

    PubMed

    Zhang, Chun-Dan; Li, Wei; Shi, Yun-Hai; Li, Yuan-Guang; Huang, Jian-Ke; Li, Hong-Xia

    2016-06-01

    An effective CO2 supply system of a spraying absorption tower combined with an outdoor ORWP (open raceway pond) for microalgae photoautotrophic cultivation is developed in this paper. The microalgae yield, productivity and CO2 fixation efficiency were investigated, and compared with those of bubbling method. The maximum yield and productivity of biomass were achieved 0.927gL(-1) and 0.114gL(-1)day(-1), respectively. The fixation efficiency of CO2 by microalgae with the spraying tower reached 50%, whereas only 11.17% for bubbling method. Pure CO2 can be used in the spraying absorption tower, and the flow rate was only about one third of the bubbling cultivation. It shows that this new method of quantifiable control CO2 supply can meet the requirements of the growth of microalgae cultivation on large-scale. PMID:26998713

  1. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  2. Synthesis of small and large scale dynamos

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy

    Using a closure model for the evolution of magnetic correlations, we uncover an interesting plausible saturated state of the small-scale fluctuation dynamo (SSD) and a novel analogy between quantum mechanical tunnelling and the generation of large-scale fields. Large scale fields develop via the α-effect, but as magnetic helicity can only change on a resistive timescale, the time it takes to organize the field into large scales increases with magnetic Reynolds number. This is very similar to the results which obtain from simulations using the full MHD equations.

  3. Open fermionic quantum systems

    SciTech Connect

    Artacho, E.; Falicov, L.M. Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )

    1993-01-15

    A method to treat a quantum system in interaction with a fermionic reservoir is presented. Its most important feature is that the dynamics of the exchange of particles between the system and the reservoir is explicitly included via an effective interaction term in the Hamiltonian. This feature gives rise to fluctuations in the total number of particles in the system. The system is to be considered in its full structure, whereas the reservoir is described only in an effective way, as a source of particles characterized by a small set of parameters. Possible applications include surfaces, molecular clusters, and defects in solids, in particular in highly correlated electronic materials. Four examples are presented: a tight-binding model for an adsorbate on the surface of a one-dimensional lattice, the Anderson model of a magnetic impurity in a metal, a two-orbital impurity with interorbital hybridization (intermediate-valence center), and a two-orbital impurity with interorbital repulsive interactions.

  4. Challenges for Large Scale Simulations

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2010-03-01

    With computational approaches becoming ubiquitous the growing impact of large scale computing on research influences both theoretical and experimental work. I will review a few examples in condensed matter physics and quantum optics, including the impact of computer simulations in the search for supersolidity, thermometry in ultracold quantum gases, and the challenging search for novel phases in strongly correlated electron systems. While only a decade ago such simulations needed the fastest supercomputers, many simulations can now be performed on small workstation clusters or even a laptop: what was previously restricted to a few experts can now potentially be used by many. Only part of the gain in computational capabilities is due to Moore's law and improvement in hardware. Equally impressive is the performance gain due to new algorithms - as I will illustrate using some recently developed algorithms. At the same time modern peta-scale supercomputers offer unprecedented computational power and allow us to tackle new problems and address questions that were impossible to solve numerically only a few years ago. While there is a roadmap for future hardware developments to exascale and beyond, the main challenges are on the algorithmic and software infrastructure side. Among the problems that face the computational physicist are: the development of new algorithms that scale to thousands of cores and beyond, a software infrastructure that lifts code development to a higher level and speeds up the development of new simulation programs for large scale computing machines, tools to analyze the large volume of data obtained from such simulations, and as an emerging field provenance-aware software that aims for reproducibility of the complete computational workflow from model parameters to the final figures. Interdisciplinary collaborations and collective efforts will be required, in contrast to the cottage-industry culture currently present in many areas of computational

  5. Dynamics of the large-scale open solar magnetic field and its specific features in the zone of the main active longitudes in 2006-2012

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.; Kharshiladze, A. F.

    2013-11-01

    The dynamics of the absolute global values (Φ) of the large-scale open solar magnetic field (LOSMF) fluxes at an interval of one solar rotation in 2006-2012 has been studied based on the Wilcox Solar Observatory data and using the ISOPAK original package for modeling the solar magnetic field. The reference points and the duration of the final quasi-biennial interval in cycle 23 (January 2006-May 2007; 17 months) and the phases of the cycle 24 minimum (May 2007-November 2009; 30 months), growth (November 2009-May 2012; 30 months), and the beginning of the maximum (May 2012-January 2013) have been determined. It has been indicated that the absolute values (Φ) decreased sharply at the beginning of the minimum, growth, and the maximum phases to ˜(2, 1.25, 0.75) × 1022 Mx, respectively. During the entire minimum phase, LOSMF corotated super-quasi-rigidly westward in the direction of solar rotation; at the beginning of the growth phase, this field started corotating mostly eastward. The LOSMF polarity reversal in the current cycle 24 started in May-June 2012 (CR 2123-2124), when fields of southern polarity rushed from the Sun's southern hemisphere toward the north. The statement that the solar cycle is a continuous series of quasi-biennial LOSMF intervals is confirmed. In particular, the minimum and growth phases are characterized by opposite LOSMF rotation directions, i.e., super-quasi-rigid corotation (twisting) and detwisting, with identical duration at least in cycle 24.

  6. Large scale tracking algorithms.

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  7. Large Scale IR Evaluation

    ERIC Educational Resources Information Center

    Pavlu, Virgil

    2008-01-01

    Today, search engines are embedded into all aspects of digital world: in addition to Internet search, all operating systems have integrated search engines that respond even as you type, even over the network, even on cell phones; therefore the importance of their efficacy and efficiency cannot be overstated. There are many open possibilities for…

  8. Perturbative approach to Markovian open quantum systems

    PubMed Central

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2014-01-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607

  9. Quasiequilibria in open quantum systems

    SciTech Connect

    Walls, Jamie D.

    2010-03-15

    In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.

  10. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  11. Duality quantum algorithm efficiently simulates open quantum systems

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-07-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.

  12. Duality quantum algorithm efficiently simulates open quantum systems.

    PubMed

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  13. Adiabaticity in open quantum systems

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Lidar, Daniel A.; Zanardi, Paolo

    2016-03-01

    We provide a rigorous generalization of the quantum adiabatic theorem for open systems described by a Markovian master equation with time-dependent Liouvillian L (t ) . We focus on the finite system case relevant for adiabatic quantum computing and quantum annealing. Adiabaticity is defined in terms of closeness to the instantaneous steady state. While the general result is conceptually similar to the closed-system case, there are important differences. Namely, a system initialized in the zero-eigenvalue eigenspace of L (t ) will remain in this eigenspace with a deviation that is inversely proportional to the total evolution time T . In the case of a finite number of level crossings, the scaling becomes T-η with an exponent η that we relate to the rate of the gap closing. For master equations that describe relaxation to thermal equilibrium, we show that the evolution time T should be long compared to the corresponding minimum inverse gap squared of L (t ) . Our results are illustrated with several examples.

  14. Mechanism for quantum speedup in open quantum systems

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu

    2016-02-01

    The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.

  15. Repeated interactions in open quantum systems

    SciTech Connect

    Bruneau, Laurent; Joye, Alain; Merkli, Marco

    2014-07-15

    Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

  16. Quantum Entanglement and Quantum Discord in Gaussian Open Systems

    SciTech Connect

    Isar, Aurelian

    2011-10-03

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.

  17. Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN

    PubMed Central

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.

    2015-01-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818

  18. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

    2014-09-01

    Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine.Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. Electronic supplementary information (ESI) available: HRTEM images, GQD SAED patterns and EDAX analysis of Am-GQD@Ag. See DOI: 10.1039/c4nr02494j

  19. Structural and optical characteristics of graphene quantum dots size-controlled and well-aligned on a large scale by polystyrene-nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Duck Oh, Si; Kim, Jungkil; Lee, Dae Hun; Kim, Ju Hwan; Jang, Chan Wook; Kim, Sung; Choi, Suk-Ho

    2016-01-01

    Graphene quantum dots (GQDs) are one of the most attractive graphene nanostructures due to their potential optoelectronic device applications, but it is a challenge to accurately control the size and arrangement of GQDs. In this report, we fabricate well-aligned GQDs on a large area by polystyrene (PS)-nanosphere (NS) lithography and study their structural and optical properties. Single-layer graphene grown on a Cu foil by chemical vapour deposition is patterned by reactive ion etching employing aligned PS-NS arrays as an etching mask. The size (d) of the GQDs is controlled from 75 to 23 nm by varying the etching time, as proved by scanning electron microscopy and atomic force microscopy. This method is well valid for both rigid/flexible target substrates and even for multilayer graphene formed by piling up single layers. The absorption peak of the GQDs is blue-shifted with respect to that of a graphene sheet, and is sequentially shifted to higher energies by reducing d, consistent with the quantum confinement effect (QCE). The Raman D-to-G band intensity ratio shows an almost monotonic increase with decreasing d, resulting from the dominant contribution of the edge states at the periphery of smaller GQDs. The G-band frequency shows a three-step size-dependence: initial increase, interim saturation, and final decrease with decreasing d, thought to be caused by the competition between the QCE and edge-induced strain effect.

  20. Femtosecond laser ablation of highly oriented pyrolytic graphite: a green route for large-scale production of porous graphene and graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Russo, Paola; Hu, Anming; Compagnini, Giuseppe; Duley, Walter W.; Zhou, Norman Y.

    2014-01-01

    Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the solution. The sheets consist of one to six stacked layers of spongy graphene, which form an irregular 3D porous structure that displays pores with an average size of 15-20 nm. Several characterization techniques have confirmed the porous nature of the collected layers. The analyses of the aqueous solution confirmed the presence of GQDs with dimensions of about 2-5 nm. It is found that the formation of both PG and GQDs depends on the fs-laser ablation energy. At laser fluences less than 12 J cm-2, no evidence of either PG or GQDs is detected. However, polyynes with six and eight carbon atoms per chain are found in the solution. For laser energies in the 20-30 J cm-2 range, these polyynes disappeared, while PG and GQDs were found at the water-air interface and in the solution, respectively. The origin of these materials can be explained based on the mechanisms for water breakdown and coal gasification. The absence of PG and GQDs, after the laser ablation of HOPG in liquid nitrogen, confirms the proposed mechanisms.Porous graphene (PG) and graphene quantum dots (GQDs) are attracting attention due to their potential applications in photovoltaics, catalysis, and bio-related fields. We present a novel way for mass production of these promising materials. The femtosecond laser ablation of highly oriented pyrolytic graphite (HOPG) is employed for their synthesis. Porous graphene (PG) layers were found to float at the water-air interface, while graphene quantum dots (GQDs) were dispersed in the

  1. Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel

    NASA Astrophysics Data System (ADS)

    Thuy, Nguyen Thi Minh; Chi, Tran Thi Kim; Thuy, Ung Thi Dieu; Liem, Nguyen Quang

    2014-11-01

    In this paper, we present the results of the syntheses of CuInS2 (CIS) and CIS/ZnS core/shell quantum dots (QDs) by heating-up method using diesel as the high boiling-point reaction solvent. The influences of the synthesis parameters, namely the reaction temperature, growth time and the Cu:In molar ratio to the structure and optical properties of the obtained QDs were systematically investigated. CIS QDs were synthesised at the reaction temperatures of 200-230 °C for 5-45 min and the Cu:In molar ratios of 0.5:1-1.5:1. The optical characteristics from absorption and photoluminescence spectra have been used as indicators to the quality of the synthesised QDs, showing clearly that the highest quality CIS QDs were obtained at the reaction temperature of 210 °C for 15 min with the Cu:In molar ratio of 1:1. For such QDs, their mean size of 3.5 nm was determined directly from the transmission electron microscopy (TEM) image and calculated from their XRD pattern.

  2. Galaxy clustering on large scales.

    PubMed

    Efstathiou, G

    1993-06-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  3. Very Large Scale Integration (VLSI).

    ERIC Educational Resources Information Center

    Yeaman, Andrew R. J.

    Very Large Scale Integration (VLSI), the state-of-the-art production techniques for computer chips, promises such powerful, inexpensive computing that, in the future, people will be able to communicate with computer devices in natural language or even speech. However, before full-scale VLSI implementation can occur, certain salient factors must be…

  4. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa

    NASA Astrophysics Data System (ADS)

    Bianchelli, S.; Gambi, C.; Zeppilli, D.; Danovaro, R.

    2010-03-01

    Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for <1% of total meiofaunal abundance). Several taxa belonging to the temporary meiofauna, such as larvae/juveniles of Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.

  5. Uncertainty Relation for a Quantum Open System

    NASA Astrophysics Data System (ADS)

    Hu, B. L.; Zhang, Yuhong

    We derive the uncertainty relation for a quantum open system consisting of a Brownian particle interacting with a bath of quantum oscillators at finite temperature. We examine how the quantum and thermal fluctuations of the environment contribute to the uncertainty in the canonical variables of the system. We show that upon contact with the bath (assumed to be ohmic in this paper) the system evolves from a quantum-dominated state to a thermal-dominated state in a time which is the same as the decoherence time in similar models in the discussion of quantum to classical transition. This offers some insight into the physical mechanisms involved in the environment-induced decoherence process. We obtain closed analytic expressions for this generalized uncertainty relation under the conditions of high temperature and weak damping, separately. We also consider under these conditions an arbitrarily squeezed initial state and show how the squeeze parameter enters in the generalized uncertainty relation. Using these results we examine the transition of the system from a quantum pure state to a nonequilibrium quantum statistical state and to an equilibrium quantum statistical state. The three stages are marked by the decoherence time and the relaxation time, respectively. With these observations we explicate the physical conditions under which the two basic postulates of quantum statistical mechanics become valid. We also comment on the inappropriate usage of the word “classicality” in many decoherence studies of quantum to classical transition.

  6. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years

    NASA Astrophysics Data System (ADS)

    Meissner, K. J.; Lippmann, T.; Sen Gupta, A.

    2012-06-01

    One-third of the world's coral reefs have disappeared over the last 30 years, and a further third is under threat today from various stress factors. The main global stress factors on coral reefs have been identified as changes in sea surface temperature (SST) and changes in surface seawater aragonite saturation (Ωarag). Here, we use a climate model of intermediate complexity, which includes an ocean general circulation model and a fully coupled carbon cycle, in conjunction with present-day observations of inter-annual SST variability to investigate three IPCC representative concentration pathways (RCP 3PD, RCP 4.5, and RCP 8.5), and their impact on the environmental stressors of coral reefs related to open ocean SST and open ocean Ωarag over the next 400 years. Our simulations show that for the RCP 4.5 and 8.5 scenarios, the threshold of 3.3 for zonal and annual mean Ωarag would be crossed in the first half of this century. By year 2030, 66-85% of the reef locations considered in this study would experience severe bleaching events at least once every 10 years. Regardless of the concentration pathway, virtually every reef considered in this study (>97%) would experience severe thermal stress by year 2050. In all our simulations, changes in surface seawater aragonite saturation lead changes in temperatures.

  7. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  8. Microfluidic large-scale integration.

    PubMed

    Thorsen, Todd; Maerkl, Sebastian J; Quake, Stephen R

    2002-10-18

    We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory. PMID:12351675

  9. Current in open quantum systems.

    PubMed

    Gebauer, Ralph; Car, Roberto

    2004-10-15

    We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation. PMID:15524960

  10. Quantum mechanics of open systems

    NASA Astrophysics Data System (ADS)

    Melikidze, Akakii

    In quantum mechanics, there is a set of problems where the system of interest interacts with another system, usually called "environment". This interaction leads to the exchange of energy and information and makes the dynamics of the system of interest essentially non-unitary. Such problems often appeared in condensed matter physics and attracted much attention after recent advances in nanotechnology. As broadly posed as they are, these problems require a variety of different approaches. This thesis is an attempt to examine several of these approaches in applications to different condensed matter problems. The first problem concerns the so-called "Master equation" approach which is very popular in quantum optics. I show that analytic properties of environmental correlators lead to strong restrictions on the applicability of the approach to the strong-coupling regime of interest in condensed matter physics. In the second problem, I use path integrals to treat the localization of particles on attractive short-range potentials when the environment produces an effective viscous friction force. I find that friction changes drastically the localization properties and leads to much stronger localization in comparison to the non-dissipative case. This has implications for the motion of heavy particles in fermionic liquids and, as will be argued below, is also relevant to the problem of high-temperature superconductivity. Finally, the third problem deals with the interplay of geometric phases and energy dissipation which occurs in the motion of vortices in superconductors. It is shown that this interplay leads to interesting predictions for vortex tunneling in high-temperature superconductors which have been partially confirmed by experiments.

  11. Large scale topography of Io

    NASA Technical Reports Server (NTRS)

    Gaskell, R. W.; Synnott, S. P.

    1987-01-01

    To investigate the large scale topography of the Jovian satellite Io, both limb observations and stereographic techniques applied to landmarks are used. The raw data for this study consists of Voyager 1 images of Io, 800x800 arrays of picture elements each of which can take on 256 possible brightness values. In analyzing this data it was necessary to identify and locate landmarks and limb points on the raw images, remove the image distortions caused by the camera electronics and translate the corrected locations into positions relative to a reference geoid. Minimizing the uncertainty in the corrected locations is crucial to the success of this project. In the highest resolution frames, an error of a tenth of a pixel in image space location can lead to a 300 m error in true location. In the lowest resolution frames, the same error can lead to an uncertainty of several km.

  12. Displacement of large-scale open solar magnetic fields from the zone of active longitudes and the heliospheric storm of November 3-10, 2004: 2. "Explosion" of singularity and dynamics of sunspot formation and energy release

    NASA Astrophysics Data System (ADS)

    Ivanov, K. G.

    2010-12-01

    A more detailed scenario of one stage (August-November 2004) of the quasibiennial MHD process "Origination ... and dissipation of the four-sector structure of the solar magnetic field" during the decline phase of cycle 23 has been constructed. It has been indicated that the following working hypothesis on the propagation of an MHD disturbance westward (in the direction of solar rotation) and eastward (toward the zone of active longitudes) with the displacement of the large-scale open solar magnetic field (LOSMF) from this zone can be constructed based on LOSMF model representations and data on sunspot formation, flares, active filaments, and coronal ejections as well as on the estimated contribution of sporadic energy release to the flare luminosity and kinetic energy of ejections: (1) The "explosion" of the LOSMF singularity and the formation in the explosion zone of an anemone active region (AR), which produced the satellite sunspot formation that continued west and east of the "anemone," represented a powerful and energy-intensive source of MHD processes at this stage. (2) This resulted in the origination of two "governing" large-scale MHD processes, which regulated various usual manifestations of solar activity: the fast LOSMF along the neutral line in the solar atmosphere, strongly affecting the zone of active longitudes, and the slow LOSMF in the outer layers of the convection zone. The fronts of these processes were identified by powerful (about 1031 erg) coronal ejections. (3) The collision of a wave reflected from the zone of active longitudes with the eastern front of the hydromagnetic impulse of the convection zone resulted in an increase in LOSMF magnetic fluxes, origination of an active sector boundary in the zone of active longitudes, shear-convergent motions, and generation and destabilization of the flare-productive AR 10696 responsible for the heliospheric storm of November 3-10, 2004.

  13. Relativistic Quantum Metrology in Open System Dynamics

    PubMed Central

    Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang

    2015-01-01

    Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself. PMID:25609187

  14. Magnetoconductance fluctuations in open bismuth quantum dots

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Minet, J. P.; Farhi, G.; Crahay, A.; Faniel, S.; Gustin, C.; Bayot, V.

    2002-03-01

    We investigate the low temperature (300 mK - 10 K) magnetoconductance of open circular bismuth quantum dots (diameter: 500 nm). The structures are fabricated using a combination of electron beam lithography, lift off and plasma etching techniques on bismuth thin films evaporated on heated SiO2 substrates. We observe reproducible magnetoconductance fluctuations (UCFs) up to 5T, qualitatively similar to conductance fluctuations evidenced in open quantum dots patterned in high mobility semiconductor heterostructures. In our samples, UCFs are superposed on a slowly varying negative magnetoconductance background. We also observe a sharp conductance maximum centered in B=0, which is reminescent of the spin-orbit induced anti-localisation phenomenon. The behavior of UCFs and of the conductance maximum is discussed as a function of the temperature, thickness and degree of cristallinity of the cavity.

  15. Open quantum systems and random matrix theory

    SciTech Connect

    Mulhall, Declan

    2014-10-15

    A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.

  16. Large Scale Homing in Honeybees

    PubMed Central

    Pahl, Mario; Zhu, Hong; Tautz, Jürgen; Zhang, Shaowu

    2011-01-01

    Honeybee foragers frequently fly several kilometres to and from vital resources, and communicate those locations to their nest mates by a symbolic dance language. Research has shown that they achieve this feat by memorizing landmarks and the skyline panorama, using the sun and polarized skylight as compasses and by integrating their outbound flight paths. In order to investigate the capacity of the honeybees' homing abilities, we artificially displaced foragers to novel release spots at various distances up to 13 km in the four cardinal directions. Returning bees were individually registered by a radio frequency identification (RFID) system at the hive entrance. We found that homing rate, homing speed and the maximum homing distance depend on the release direction. Bees released in the east were more likely to find their way back home, and returned faster than bees released in any other direction, due to the familiarity of global landmarks seen from the hive. Our findings suggest that such large scale homing is facilitated by global landmarks acting as beacons, and possibly the entire skyline panorama. PMID:21602920

  17. Large Scale Nanolaminate Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K

    2005-11-30

    This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.

  18. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  19. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-08-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  20. Introducing Large-Scale Innovation in Schools

    NASA Astrophysics Data System (ADS)

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-02-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school education via a large-scale implementation of an open-scale methodology in using technology-supported innovation. The present paper describes this innovation scheme which involved schools and teachers all over Europe, embedded technology-enhanced learning into wider school environments and provided training to teachers. Our implementation scheme consisted of three phases: (1) stimulating interest, (2) incorporating the innovation into school settings and (3) accelerating the implementation of the innovation. The scheme's impact was monitored for a school year using five indicators: leadership and vision building, ICT in the curriculum, development of ICT culture, professional development support, and school resources and infrastructure. Based on about 400 schools, our study produced four results: (1) The growth in digital maturity was substantial, even for previously high scoring schools. This was even more important for indicators such as vision and leadership" and "professional development." (2) The evolution of networking is presented graphically, showing the gradual growth of connections achieved. (3) These communities became core nodes, involving numerous teachers in sharing educational content and experiences: One out of three registered users (36 %) has shared his/her educational resources in at least one community. (4) Satisfaction scores ranged from 76 % (offer of useful support through teacher academies) to 87 % (good environment to exchange best practices). Initiatives such as ODS add substantial value to schools on a large scale.

  1. Conductance Peaks in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ramos, J. G. G. S.; Bazeia, D.; Hussein, M. S.; Lewenkopf, C. H.

    2011-10-01

    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance T as a function of an arbitrary external parameter Z is directly related to the autocorrelation function of T(Z). The parameter Z can be associated with an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc. The average density of maxima is found to be ⟨ρZ⟩=αZ/Zc, where αZ is a universal constant and Zc is the conductance autocorrelation length, which is system specific. The analysis of ⟨ρZ⟩ does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as Zc.

  2. Evolution of Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, A.

    2010-08-04

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.

  3. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  4. Quantum arrival time for open systems

    SciTech Connect

    Yearsley, J. M.

    2010-07-15

    We extend previous work on the arrival time problem in quantum mechanics, in the framework of decoherent histories, to the case of a particle coupled to an environment. The usual arrival time probabilities are related to the probability current, so we explore the properties of the current for general open systems that can be written in terms of a master equation of the Lindblad form. We specialize to the case of quantum Brownian motion, and show that after a time of order the localization time of the current becomes positive. We show that the arrival time probabilities can then be written in terms of a positive operator-valued measure (POVM), which we compute. We perform a decoherent histories analysis including the effects of the environment and show that time-of-arrival probabilities are decoherent for a generic state after a time much greater than the localization time, but that there is a fundamental limitation on the accuracy {delta}t, with which they can be specified which obeys E{delta}t>>({h_bar}/2{pi}). We confirm that the arrival time probabilities computed in this way agree with those computed via the current, provided there is decoherence. We thus find that the decoherent histories formulation of quantum mechanics provides a consistent explanation for the emergence of the probability current as the classical arrival time distribution, and a systematic rule for deciding when probabilities may be assigned.

  5. Experiences from Participants in Large-Scale Group Practice of the Maharishi Transcendental Meditation and TM-Sidhi Programs and Parallel Principles of Quantum Theory, Astrophysics, Quantum Cosmology, and String Theory: Interdisciplinary Qualitative Correspondences

    NASA Astrophysics Data System (ADS)

    Svenson, Eric Johan

    Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.

  6. Creating a Large-Scale, Third Generation, Distance Education Course.

    ERIC Educational Resources Information Center

    Weller, Martin James

    2000-01-01

    Outlines the course development of an introductory large-scale distance education course offered via the World Wide Web at the Open University in the United Kingdom. Topics include developing appropriate student skills; maintaining quality control; facilitating easy updating of material; ensuring student interaction; and making materials…

  7. Quantum game theory and open access publishing

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Bernius, Steffen; Dugall, Berndt

    2007-08-01

    The digital revolution of the information age and in particular the sweeping changes of scientific communication brought about by computing and novel communication technology, potentiate global, high grade scientific information for free. The arXiv, for example, is the leading scientific communication platform, mainly for mathematics and physics, where everyone in the world has free access on. While in some scientific disciplines the open access way is successfully realized, other disciplines (e.g. humanities and social sciences) dwell on the traditional path, even though many scientists belonging to these communities approve the open access principle. In this paper we try to explain these different publication patterns by using a game theoretical approach. Based on the assumption, that the main goal of scientists is the maximization of their reputation, we model different possible game settings, namely a zero sum game, the prisoners’ dilemma case and a version of the stag hunt game, that show the dilemma of scientists belonging to “non-open access communities”. From an individual perspective, they have no incentive to deviate from the Nash equilibrium of traditional publishing. By extending the model using the quantum game theory approach it can be shown, that if the strength of entanglement exceeds a certain value, the scientists will overcome the dilemma and terminate to publish only traditionally in all three settings.

  8. Large-Scale Reform Comes of Age

    ERIC Educational Resources Information Center

    Fullan, Michael

    2009-01-01

    This article reviews the history of large-scale education reform and makes the case that large-scale or whole system reform policies and strategies are becoming increasingly evident. The review briefly addresses the pre 1997 period concluding that while the pressure for reform was mounting that there were very few examples of deliberate or…

  9. Large-scale infrared scene projectors

    NASA Astrophysics Data System (ADS)

    Murray, Darin A.

    1999-07-01

    Large-scale infrared scene projectors, typically have unique opto-mechanical characteristics associated to their application. This paper outlines two large-scale zoom lens assemblies with different environmental and package constraints. Various challenges and their respective solutions are discussed and presented.

  10. Identification of open quantum systems from observable time traces

    SciTech Connect

    Zhang, Jun; Sarovar, Mohan

    2015-05-27

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.

  11. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  12. Large-scale regions of antimatter

    SciTech Connect

    Grobov, A. V. Rubin, S. G.

    2015-07-15

    Amodified mechanism of the formation of large-scale antimatter regions is proposed. Antimatter appears owing to fluctuations of a complex scalar field that carries a baryon charge in the inflation era.

  13. Dynamics of open bosonic quantum systems in coherent state representation

    SciTech Connect

    Dalvit, D. A. R.; Berman, G. P.; Vishik, M.

    2006-01-15

    We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.

  14. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  15. Large-scale inhomogeneities and galaxy statistics

    NASA Technical Reports Server (NTRS)

    Schaeffer, R.; Silk, J.

    1984-01-01

    The density fluctuations associated with the formation of large-scale cosmic pancake-like and filamentary structures are evaluated using the Zel'dovich approximation for the evolution of nonlinear inhomogeneities in the expanding universe. It is shown that the large-scale nonlinear density fluctuations in the galaxy distribution due to pancakes modify the standard scale-invariant correlation function xi(r) at scales comparable to the coherence length of adiabatic fluctuations. The typical contribution of pancakes and filaments to the J3 integral, and more generally to the moments of galaxy counts in a volume of approximately (15-40 per h Mpc)exp 3, provides a statistical test for the existence of large scale inhomogeneities. An application to several recent three dimensional data sets shows that despite large observational uncertainties over the relevant scales characteristic features may be present that can be attributed to pancakes in most, but not all, of the various galaxy samples.

  16. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  17. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  18. Large-Scale Spacecraft Fire Safety Tests

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  19. Investigating non-Markovian dynamics of quantum open systems

    NASA Astrophysics Data System (ADS)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  20. Detecting quantum speedup in closed and open systems

    NASA Astrophysics Data System (ADS)

    Xu, Zhen-Yu

    2016-07-01

    We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.

  1. Driven harmonic oscillator as a quantum simulator for open systems

    SciTech Connect

    Piilo, Jyrki; Maniscalco, Sabrina

    2006-09-15

    We show theoretically how a driven harmonic oscillator can be used as a quantum simulator for the non-Markovian damped harmonic oscillator. In the general framework, our results demonstrate the possibility to use a closed system as a simulator for open quantum systems. The quantum simulator is based on sets of controlled drives of the closed harmonic oscillator with appropriately tailored electric field pulses. The non-Markovian dynamics of the damped harmonic oscillator is obtained by using the information about the spectral density of the open system when averaging over the drives of the closed oscillator. We consider single trapped ions as a specific physical implementation of the simulator, and we show how the simulator approach reveals physical insight into the open system dynamics, e.g., the characteristic quantum mechanical non-Markovian oscillatory behavior of the energy of the damped oscillator, usually obtained by the non-Lindblad-type master equation, can have a simple semiclassical interpretation.

  2. Large Scale Commodity Clusters for Lattice QCD

    SciTech Connect

    A. Pochinsky; W. Akers; R. Brower; J. Chen; P. Dreher; R. Edwards; S. Gottlieb; D. Holmgren; P. Mackenzie; J. Negele; D. Richards; J. Simone; W. Watson

    2002-06-01

    We describe the construction of large scale clusters for lattice QCD computing being developed under the umbrella of the U.S. DoE SciDAC initiative. We discuss the study of floating point and network performance that drove the design of the cluster, and present our plans for future multi-Terascale facilities.

  3. Management of large-scale technology

    NASA Technical Reports Server (NTRS)

    Levine, A.

    1985-01-01

    Two major themes are addressed in this assessment of the management of large-scale NASA programs: (1) how a high technology agency was a decade marked by a rapid expansion of funds and manpower in the first half and almost as rapid contraction in the second; and (2) how NASA combined central planning and control with decentralized project execution.

  4. A Large Scale Computer Terminal Output Controller.

    ERIC Educational Resources Information Center

    Tucker, Paul Thomas

    This paper describes the design and implementation of a large scale computer terminal output controller which supervises the transfer of information from a Control Data 6400 Computer to a PLATO IV data network. It discusses the cost considerations leading to the selection of educational television channels rather than telephone lines for…

  5. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-07-01

    The Jacksonville Electric Authority's large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy's Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process in included.

  6. Large-scale CFB combustion demonstration project

    SciTech Connect

    Nielsen, P.T.; Hebb, J.L.; Aquino, R.

    1998-04-01

    The Jacksonville Electric Authority`s large-scale CFB demonstration project is described. Given the early stage of project development, the paper focuses on the project organizational structure, its role within the Department of Energy`s Clean Coal Technology Demonstration Program, and the projected environmental performance. A description of the CFB combustion process is included.

  7. Evaluating Large-Scale Interactive Radio Programmes

    ERIC Educational Resources Information Center

    Potter, Charles; Naidoo, Gordon

    2009-01-01

    This article focuses on the challenges involved in conducting evaluations of interactive radio programmes in South Africa with large numbers of schools, teachers, and learners. It focuses on the role such large-scale evaluation has played during the South African radio learning programme's development stage, as well as during its subsequent…

  8. ARPACK: Solving large scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Lehoucq, Rich; Maschhoff, Kristi; Sorensen, Danny; Yang, Chao

    2013-11-01

    ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w

  9. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering

    NASA Astrophysics Data System (ADS)

    Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng

    2016-07-01

    Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.

  10. Dynamical and thermodynamical control of open quantum Brownian motion

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    Open quantum Brownian motion was introduced as a new type of quantum Brownian motion for Brownian particles with internal quantum degrees of freedom. Recently, an example of the microscopic derivation of open quantum Brownian motion has been presented [I. Sinayskiy and F. Petruccione, Phys. Scr. T165, 014017 (2015)]. The microscopic derivation allows to relate the dynamical properties of open Quantum Brownian motion and the thermodynamical properties of the environment. In the present work, we study the possibility of control of the external degrees of freedom of the ''walker'' (position) by manipulating the internal one, e.g. spin, polarization, occupation numbers. In the particular example of the known microscopic derivation the connection between dynamics of the ''walker'' and thermodynamical parameters of the system is established. For the system of open Brownian walkers coupled to the same environment controllable creation of quantum correlations is investigated. This work is based upon research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  11. Fractals and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.

  12. Condition Monitoring of Large-Scale Facilities

    NASA Technical Reports Server (NTRS)

    Hall, David L.

    1999-01-01

    This document provides a summary of the research conducted for the NASA Ames Research Center under grant NAG2-1182 (Condition-Based Monitoring of Large-Scale Facilities). The information includes copies of view graphs presented at NASA Ames in the final Workshop (held during December of 1998), as well as a copy of a technical report provided to the COTR (Dr. Anne Patterson-Hine) subsequent to the workshop. The material describes the experimental design, collection of data, and analysis results associated with monitoring the health of large-scale facilities. In addition to this material, a copy of the Pennsylvania State University Applied Research Laboratory data fusion visual programming tool kit was also provided to NASA Ames researchers.

  13. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  14. Large-scale extraction of proteins.

    PubMed

    Cunha, Teresa; Aires-Barros, Raquel

    2002-01-01

    The production of foreign proteins using selected host with the necessary posttranslational modifications is one of the key successes in modern biotechnology. This methodology allows the industrial production of proteins that otherwise are produced in small quantities. However, the separation and purification of these proteins from the fermentation media constitutes a major bottleneck for the widespread commercialization of recombinant proteins. The major production costs (50-90%) for typical biological product resides in the purification strategy. There is a need for efficient, effective, and economic large-scale bioseparation techniques, to achieve high purity and high recovery, while maintaining the biological activity of the molecule. Aqueous two-phase systems (ATPS) allow process integration as simultaneously separation and concentration of the target protein is achieved, with posterior removal and recycle of the polymer. The ease of scale-up combined with the high partition coefficients obtained allow its potential application in large-scale downstream processing of proteins produced by fermentation. The equipment and the methodology for aqueous two-phase extraction of proteins on a large scale using mixer-settlerand column contractors are described. The operation of the columns, either stagewise or differential, are summarized. A brief description of the methods used to account for mass transfer coefficients, hydrodynamics parameters of hold-up, drop size, and velocity, back mixing in the phases, and flooding performance, required for column design, is also provided. PMID:11876297

  15. Controlling open quantum systems: tools, achievements, and limitations

    NASA Astrophysics Data System (ADS)

    Koch, Christiane P.

    2016-06-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions.

  16. Controlling open quantum systems: tools, achievements, and limitations.

    PubMed

    Koch, Christiane P

    2016-06-01

    The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge of preserving relevant nonclassical features at the level of device operation. A major obstacle is decoherence, which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. Here we review recent advances in optimal control methodology that allow typical tasks in device operation for open quantum systems to be tackled and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions. PMID:27143501

  17. Quantum statistics of overlapping modes in open resonators

    SciTech Connect

    Hackenbroich, Gregor; Viviescas, Carlos; Haake, Fritz

    2003-12-01

    We study the quantum dynamics of optical fields in weakly confining resonators with overlapping modes. Employing a recently developed quantization scheme involving a discrete set of resonator modes and continua of external modes we derive Langevin equations and a master equation for the resonator modes. Langevin dynamics and the master equation are proved to be equivalent in the Markovian limit. Our open-resonator dynamics may be used as a starting point for a quantum theory of random lasers.

  18. Geometric phase for open quantum systems and stochastic unravelings

    SciTech Connect

    Bassi, Angelo; Ippoliti, Emiliano

    2006-06-15

    We analyze the geometric phase for an open quantum system when computed by resorting to a stochastic unraveling of the reduced density matrix (quantum jump approach or stochastic Schroedinger equations). We show that the resulting phase strongly depends on the type of unraveling used for the calculations: as such, this phase is not a geometric object since it depends on nonphysical parameters, which are not related to the path followed by the density matrix during the evolution of the system.

  19. Central limit theorem for reducible and irreducible open quantum walks

    NASA Astrophysics Data System (ADS)

    Sadowski, Przemysław; Pawela, Łukasz

    2016-07-01

    In this work we aim at proving central limit theorems for open quantum walks on {mathbb {Z}}^d. We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.

  20. Central limit theorem for reducible and irreducible open quantum walks

    NASA Astrophysics Data System (ADS)

    Sadowski, Przemysław; Pawela, Łukasz

    2016-04-01

    In this work we aim at proving central limit theorems for open quantum walks on {{Z}}^d . We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.

  1. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, C.P.; Olden, J.D.; Lytle, D.A.; Melis, T.S.; Schmidt, J.C.; Bray, E.N.; Freeman, Mary C.; Gido, K.B.; Hemphill, N.P.; Kennard, M.J.; McMullen, L.E.; Mims, M.C.; Pyron, M.; Robinson, C.T.; Williams, J.G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  2. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  3. Dissipation and entropy production in open quantum systems

    NASA Astrophysics Data System (ADS)

    Majima, H.; Suzuki, A.

    2010-11-01

    A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.

  4. Turbulent large-scale structure effects on wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  5. Periodic thermodynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Seifert, Udo

    2016-06-01

    The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.

  6. Periodic thermodynamics of open quantum systems.

    PubMed

    Brandner, Kay; Seifert, Udo

    2016-06-01

    The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. PMID:27415235

  7. Open systems dynamics for propagating quantum fields

    NASA Astrophysics Data System (ADS)

    Baragiola, Ben Quinn

    In this dissertation, I explore interactions between matter and propagating light. The electromagnetic field is modeled as a Markovian reservoir of quantum harmonic oscillators successively streaming past a quantum system. Each weak and fleeting interaction entangles the light and the system, and the light continues its course. In the context of quantum tomography or metrology one attempts, using measure- ments of the light, to extract information about the quantum state of the system. An inevitable consequence of these measurements is a disturbance of the system's quantum state. These ideas focus on the system and regard the light as ancillary. It serves its purpose as a probe or as a mechanism to generate interesting dynamics or system states but is eventually traced out, leaving the reduced quantum state of the system as the primary mathematical subject. What, then, when the state of light itself harbors intrinsic self-entanglement? One such set of states, those where a traveling wave packet is prepared with a defi- nite number of photons, is a focal point of this dissertation. These N-photon states are ideal candidates as couriers in quantum information processing device. In con- trast to quasi-classical states, such as coherent or thermal fields, N-photon states possess temporal mode entanglement, and local interactions in time have nonlocal consequences. The reduced state of a system probed by an N-photon state evolves in a non-Markovian way, and to describe its dynamics one is obliged to keep track of the field's evolution. I present a method to do this for an arbitrary quantum system using a set of coupled master equations. Many models set aside spatial degrees of freedom as an unnecessary complicating factor. By doing so the precision of predictions is limited. Consider a ensemble of cold, trapped atomic spins dispersively probed by a paraxial laser beam. Atom-light coupling across the ensemble is spatially inhomogeneous as is the radiation pattern of

  8. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  9. Large-scale planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Bidnyk, Serge; Zhang, Hua; Pearson, Matt; Balakrishnan, Ashok

    2011-01-01

    By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC) platform. We have combined hybrid integration of active components with monolithic integration of other critical functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process development has led to the integration of polarization controlling functionality. Most recently, all these technological advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical elements integrated on chips less than a square inch in size.

  10. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  11. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  12. Colloquium: Large scale simulations on GPU clusters

    NASA Astrophysics Data System (ADS)

    Bernaschi, Massimo; Bisson, Mauro; Fatica, Massimiliano

    2015-06-01

    Graphics processing units (GPU) are currently used as a cost-effective platform for computer simulations and big-data processing. Large scale applications require that multiple GPUs work together but the efficiency obtained with cluster of GPUs is, at times, sub-optimal because the GPU features are not exploited at their best. We describe how it is possible to achieve an excellent efficiency for applications in statistical mechanics, particle dynamics and networks analysis by using suitable memory access patterns and mechanisms like CUDA streams, profiling tools, etc. Similar concepts and techniques may be applied also to other problems like the solution of Partial Differential Equations.

  13. Nonthermal Components in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2004-12-01

    I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

  14. Large scale phononic metamaterials for seismic isolation

    SciTech Connect

    Aravantinos-Zafiris, N.; Sigalas, M. M.

    2015-08-14

    In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.

  15. Universal Braess paradox in open quantum dots.

    PubMed

    Barbosa, A L R; Bazeia, D; Ramos, J G G S

    2014-10-01

    We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior. PMID:25375575

  16. Universal Braess paradox in open quantum dots

    NASA Astrophysics Data System (ADS)

    Barbosa, A. L. R.; Bazeia, D.; Ramos, J. G. G. S.

    2014-10-01

    We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior.

  17. Large-scale Globally Propagating Coronal Waves

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2015-09-01

    Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the "classical" interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which "pseudo waves" are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.

  18. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  19. Parametric representation of open quantum systems and cross-over from quantum to classical environment.

    PubMed

    Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola

    2013-04-23

    The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field. PMID:23572581

  20. Eigenvalue problem of the Liouvillian of open quantum systems

    SciTech Connect

    Hatano, Naomichi; Petrosky, Tomio

    2015-03-10

    It is argued that the Liouvillian that appears in the Liouville-von Neumann equation for open quantum systems can have complex eigenvalues. Attention is paid to the question whether the Liouvillian has an eigenvalue that are not given by the difference of the two Hamiltonian eigenvalues.

  1. Averaging in SU(2) open quantum random walk

    NASA Astrophysics Data System (ADS)

    Clement, Ampadu

    2014-03-01

    We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.

  2. Symmetry and the thermodynamics of currents in open quantum systems

    NASA Astrophysics Data System (ADS)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  3. Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Yang, Xia; Wong, Tai-Lun; Lee, Chun-Sing

    2012-09-01

    Exploration of new catalytic semiconductors with novel structures as counter electrode materials is a promising approach to improve performances of quantum dot sensitized solar cells (QDSSCs). In this work, nearly mono-disperse tetragonal Cu2SnS3 (CTS) and rhombohedral Cu1.8S hierarchical microspheres with nanometer-to-micrometer dimensions have been synthesized respectively via a simple solvothermal approach. These microspheres are also demonstrated as efficient counter electrode materials in solar cells using ZnO/ZnSe/CdSe nanocables as photoanode and polysulfide (Sn2-/S2-) solution as electrolyte. While copper sulfide is regarded as one of the most effective counter electrode materials in QDSSCs, we demonstrate the CTS microspheres to show higher electrocatalytic activity for the reduction of polysulfide electrolyte than the Cu1.8S microspheres. This contributes to obvious enhancement of photocurrent density (JSC) and fill factor (FF). Power conversion efficiency (PCE) is significantly enhanced from 0.25% for the cell using a pure FTO (SnO2:F) glass as counter electrode, to 3.65 and 4.06% for the cells using counter electrodes of FTO glasses coated respectively with Cu1.8S and CTS microspheres.Exploration of new catalytic semiconductors with novel structures as counter electrode materials is a promising approach to improve performances of quantum dot sensitized solar cells (QDSSCs). In this work, nearly mono-disperse tetragonal Cu2SnS3 (CTS) and rhombohedral Cu1.8S hierarchical microspheres with nanometer-to-micrometer dimensions have been synthesized respectively via a simple solvothermal approach. These microspheres are also demonstrated as efficient counter electrode materials in solar cells using ZnO/ZnSe/CdSe nanocables as photoanode and polysulfide (Sn2-/S2-) solution as electrolyte. While copper sulfide is regarded as one of the most effective counter electrode materials in QDSSCs, we demonstrate the CTS microspheres to show higher electrocatalytic

  4. Coarse grained open system quantum dynamics

    SciTech Connect

    Thanopulos, Ioannis; Brumer, Paul; Shapiro, Moshe

    2008-11-21

    We show that the quantum dynamics of a system comprised of a subspace Q coupled to a larger subspace P can be recast as a reduced set of 'coarse grained' ordinary differential equations with constant coefficients. These equations can be solved by a single diagonalization of a general complex matrix. The method makes no assumptions about the strength of the couplings between the Q and the P subspaces, nor is there any limitation on the initial population in P. The utility of the method is demonstrated via computations in three following areas: molecular compounds, photonic materials, and condensed phases.

  5. Systematic renormalization of the effective theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-05-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  6. Large scale water lens for solar concentration.

    PubMed

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation. PMID:26072893

  7. Large-scale simulations of reionization

    SciTech Connect

    Kohler, Katharina; Gnedin, Nickolay Y.; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  8. Large-scale databases of proper names.

    PubMed

    Conley, P; Burgess, C; Hage, D

    1999-05-01

    Few tools for research in proper names have been available--specifically, there is no large-scale corpus of proper names. Two corpora of proper names were constructed, one based on U.S. phone book listings, the other derived from a database of Usenet text. Name frequencies from both corpora were compared with human subjects' reaction times (RTs) to the proper names in a naming task. Regression analysis showed that the Usenet frequencies contributed to predictions of human RT, whereas phone book frequencies did not. In addition, semantic neighborhood density measures derived from the HAL corpus were compared with the subjects' RTs and found to be a better predictor of RT than was frequency in either corpus. These new corpora are freely available on line for download. Potentials for these corpora range from using the names as stimuli in experiments to using the corpus data in software applications. PMID:10495803

  9. Estimation of large-scale dimension densities.

    PubMed

    Raab, C; Kurths, J

    2001-07-01

    We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is based on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz attractor, and the Roessler attractor. PMID:11461376

  10. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  11. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  12. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  13. Batteries for Large Scale Energy Storage

    SciTech Connect

    Soloveichik, Grigorii L.

    2011-07-15

    In recent years, with the deployment of renewable energy sources, advances in electrified transportation, and development in smart grids, the markets for large-scale stationary energy storage have grown rapidly. Electrochemical energy storage methods are strong candidate solutions due to their high energy density, flexibility, and scalability. This review provides an overview of mature and emerging technologies for secondary and redox flow batteries. New developments in the chemistry of secondary and flow batteries as well as regenerative fuel cells are also considered. Advantages and disadvantages of current and prospective electrochemical energy storage options are discussed. The most promising technologies in the short term are high-temperature sodium batteries with β”-alumina electrolyte, lithium-ion batteries, and flow batteries. Regenerative fuel cells and lithium metal batteries with high energy density require further research to become practical.

  14. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  15. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  16. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  17. Estimation of large-scale dimension densities

    NASA Astrophysics Data System (ADS)

    Raab, Corinna; Kurths, Jürgen

    2001-07-01

    We propose a technique to calculate large-scale dimension densities in both higher-dimensional spatio-temporal systems and low-dimensional systems from only a few data points, where known methods usually have an unsatisfactory scaling behavior. This is mainly due to boundary and finite-size effects. With our rather simple method, we normalize boundary effects and get a significant correction of the dimension estimate. This straightforward approach is based on rather general assumptions. So even weak coherent structures obtained from small spatial couplings can be detected with this method, which is impossible by using the Lyapunov-dimension density. We demonstrate the efficiency of our technique for coupled logistic maps, coupled tent maps, the Lorenz attractor, and the Roessler attractor.

  18. Large-Scale Organization of Glycosylation Networks

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Lee, Dong-Yup; Jeong, Hawoong

    2009-03-01

    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are frequently attached to proteins and lipids. Glycans participate in fundamental biological processes including molecular trafficking and clearance, cell proliferation and apoptosis, developmental biology, immune response, and pathogenesis. N-linked glycans found on proteins are formed by sequential attachments of monosaccharides with the help of a relatively small number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thus generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigate the large-scale organization of such N-glycosylation pathways in a mammalian cell. The uncovered results give the experimentally-testable predictions for glycosylation process, and can be applied to the engineering of therapeutic glycoproteins.

  19. Large-scale sequential quadratic programming algorithms

    SciTech Connect

    Eldersveld, S.K.

    1992-09-01

    The problem addressed is the general nonlinear programming problem: finding a local minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequality constraints. The methods studied are in the class of sequential quadratic programming (SQP) algorithms, which have previously proved successful for problems of moderate size. Our goal is to devise an SQP algorithm that is applicable to large-scale optimization problems, using sparse data structures and storing less curvature information but maintaining the property of superlinear convergence. The main features are: 1. The use of a quasi-Newton approximation to the reduced Hessian of the Lagrangian function. Only an estimate of the reduced Hessian matrix is required by our algorithm. The impact of not having available the full Hessian approximation is studied and alternative estimates are constructed. 2. The use of a transformation matrix Q. This allows the QP gradient to be computed easily when only the reduced Hessian approximation is maintained. 3. The use of a reduced-gradient form of the basis for the null space of the working set. This choice of basis is more practical than an orthogonal null-space basis for large-scale problems. The continuity condition for this choice is proven. 4. The use of incomplete solutions of quadratic programming subproblems. Certain iterates generated by an active-set method for the QP subproblem are used in place of the QP minimizer to define the search direction for the nonlinear problem. An implementation of the new algorithm has been obtained by modifying the code MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm on a set of 92 test problems.

  20. Supporting large-scale computational science

    SciTech Connect

    Musick, R

    1998-10-01

    A study has been carried out to determine the feasibility of using commercial database management systems (DBMSs) to support large-scale computational science. Conventional wisdom in the past has been that DBMSs are too slow for such data. Several events over the past few years have muddied the clarity of this mindset: 1. 2. 3. 4. Several commercial DBMS systems have demonstrated storage and ad-hoc quer access to Terabyte data sets. Several large-scale science teams, such as EOSDIS [NAS91], high energy physics [MM97] and human genome [Kin93] have adopted (or make frequent use of) commercial DBMS systems as the central part of their data management scheme. Several major DBMS vendors have introduced their first object-relational products (ORDBMSs), which have the potential to support large, array-oriented data. In some cases, performance is a moot issue. This is true in particular if the performance of legacy applications is not reduced while new, albeit slow, capabilities are added to the system. The basic assessment is still that DBMSs do not scale to large computational data. However, many of the reasons have changed, and there is an expiration date attached to that prognosis. This document expands on this conclusion, identifies the advantages and disadvantages of various commercial approaches, and describes the studies carried out in exploring this area. The document is meant to be brief, technical and informative, rather than a motivational pitch. The conclusions within are very likely to become outdated within the next 5-7 years, as market forces will have a significant impact on the state of the art in scientific data management over the next decade.

  1. Supporting large-scale computational science

    SciTech Connect

    Musick, R., LLNL

    1998-02-19

    Business needs have driven the development of commercial database systems since their inception. As a result, there has been a strong focus on supporting many users, minimizing the potential corruption or loss of data, and maximizing performance metrics like transactions per second, or TPC-C and TPC-D results. It turns out that these optimizations have little to do with the needs of the scientific community, and in particular have little impact on improving the management and use of large-scale high-dimensional data. At the same time, there is an unanswered need in the scientific community for many of the benefits offered by a robust DBMS. For example, tying an ad-hoc query language such as SQL together with a visualization toolkit would be a powerful enhancement to current capabilities. Unfortunately, there has been little emphasis or discussion in the VLDB community on this mismatch over the last decade. The goal of the paper is to identify the specific issues that need to be resolved before large-scale scientific applications can make use of DBMS products. This topic is addressed in the context of an evaluation of commercial DBMS technology applied to the exploration of data generated by the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). The paper describes the data being generated for ASCI as well as current capabilities for interacting with and exploring this data. The attraction of applying standard DBMS technology to this domain is discussed, as well as the technical and business issues that currently make this an infeasible solution.

  2. Limit Theorem and Applications of the Pauli Open Quantum Random Walk on Z

    NASA Astrophysics Data System (ADS)

    Ampadu, Clement

    2013-04-01

    Following the recent talk in the ``Workshop of Quantum Dynamics and Quantum Walks'' held at Okazaki Conference Center, Okazaki, Japan. This talk clarifies the relationship between the convergent behavior of the Pauli quantum walk on the line, and the open quantum random walk obtained from the Pauli quantum walk.

  3. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736

  4. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  5. Dynamical and thermodynamical control of Open Quantum Walks

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    2014-03-01

    Over the last few years dynamical properties and limit distributions of Open Quantum Walks (OQWs), quantum walks driven by dissipation, have been intensely studied [S. Attal et. al. J. Stat. Phys. 147, Issue 4, 832 (2012)]. For some particular cases of OQWs central limit theorems have been proven [S. Attal, N. Guillotin, C. Sabot, ``Central Limit Theorems for Open Quantum Random Walks,'' to appear in Annales Henri Poincaré]. However, only recently the connection between the rich dynamical behavior of OQWs and the corresponding microscopic system-environment models has been established. The microscopic derivation of an OQW as a reduced system dynamics on a 2-nodes graph [I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)] and its generalization to arbitrary graphs allow to explain the dependance of the dynamical behavior of the OQW on the temperature and coupling to the environment. For thermal environments we observe Gaussian behaviour, whereas at zero temperature population trapping and ``soliton''-like behaviour are possible. Physical realizations of OQWs in quantum optical setups will be also presented. This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.

  6. Phase Correlations and Topological Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Coles, P.

    The process of gravitational instability initiated by small primordial density perturbations is a vital ingredient of cosmological models that attempt to explain how galaxies and large-scale structure formed in the Universe. In the standard picture (the "concordance" model), a period of accelerated expansion ("inflation") generated density fluctuations with simple statistical properties through quantum processes (Starobinsky [82], [83], [84]; Guth [39]; Guth & Pi [40]; Albrecht & Steinhardt [2]; Linde [55]). In this scenario the primordial density field is assumed to form a statistically homogeneous and isotropic Gaussian random field (GRF). Over years of observational scrutiny this paradigm has strengthened its hold in the minds of cosmologists and has survived many tests, culminating in those furnished by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. [7]; Hinshaw et al. [45].

  7. Homogeneous Open Quantum Random Walks on a Lattice

    NASA Astrophysics Data System (ADS)

    Carbone, Raffaella; Pautrat, Yan

    2015-09-01

    We study open quantum random walks (OQRWs) for which the underlying graph is a lattice, and the generators of the walk are homogeneous in space. Using the results recently obtained in Carbone and Pautrat (Ann Henri Poincaré, 2015), we study the quantum trajectory associated with the OQRW, which is described by a position process and a state process. We obtain a central limit theorem and a large deviation principle for the position process. We study in detail the case of homogeneous OQRWs on the lattice , with internal space.

  8. Theory of short periodic orbits for partially open quantum maps.

    PubMed

    Carlo, Gabriel G; Benito, R M; Borondo, F

    2016-07-01

    We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009)PLEEE81539-375510.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R. These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R=0) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits. PMID:27575138

  9. Theory of short periodic orbits for partially open quantum maps

    NASA Astrophysics Data System (ADS)

    Carlo, Gabriel G.; Benito, R. M.; Borondo, F.

    2016-07-01

    We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009), 10.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R . These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R =0 ) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits.

  10. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields

    PubMed Central

    Long, Stephen P; Ainsworth, Elizabeth A; Leakey, Andrew D.B; Morgan, Patrick B

    2005-01-01

    Predictions of yield for the globe's major grain and legume arable crops suggest that, with a moderate temperature increase, production may increase in the temperate zone, but decline in the tropics. In total, global food supply may show little change. This security comes from inclusion of the direct effect of rising carbon dioxide (CO2) concentration, [CO2], which significantly stimulates yield by decreasing photorespiration in C3 crops and transpiration in all crops. Evidence for a large response to [CO2] is largely based on studies made within chambers at small scales, which would be considered unacceptable for standard agronomic trials of new cultivars or agrochemicals. Yet, predictions of the globe's future food security are based on such inadequate information. Free-Air Concentration Enrichment (FACE) technology now allows investigation of the effects of rising [CO2] and ozone on field crops under fully open-air conditions at an agronomic scale. Experiments with rice, wheat, maize and soybean show smaller increases in yield than anticipated from studies in chambers. Experiments with increased ozone show large yield losses (20%), which are not accounted for in projections of global food security. These findings suggest that current projections of global food security are overoptimistic. The fertilization effect of CO2 is less than that used in many models, while rising ozone will cause large yield losses in the Northern Hemisphere. Unfortunately, FACE studies have been limited in geographical extent and interactive effects of CO2, ozone and temperature have yet to be studied. Without more extensive study of the effects of these changes at an agronomic scale in the open air, our ever-more sophisticated models will continue to have feet of clay. PMID:16433090

  11. Gravity and large-scale nonlocal bias

    NASA Astrophysics Data System (ADS)

    Chan, Kwan Chuen; Scoccimarro, Román; Sheth, Ravi K.

    2012-04-01

    For Gaussian primordial fluctuations the relationship between galaxy and matter overdensities, bias, is most often assumed to be local at the time of observation in the large-scale limit. This hypothesis is however unstable under time evolution, we provide proofs under several (increasingly more realistic) sets of assumptions. In the simplest toy model galaxies are created locally and linearly biased at a single formation time, and subsequently move with the dark matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably nonlocal and nonlinear at large scales. We identify the nonlocal gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons), the main signature of which is a quadrupole field in second-order perturbation theory. In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear; these are related to the breaking of Galilean invariance of the bias relation, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed dark matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the nonlocal gravitationally induced fields identified by our formalism, suggesting that the halo distribution at the present time is indeed more closely related to the mass distribution at an earlier rather than present time. However, the nonlocality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. The effects on nonlocal bias seen in the simulations are most important for the most biased halos, as expected from our predictions. Accounting for these

  12. Large-Scale Statistics for Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hauschildt, M.; Gall, M.; Hernandez, R.

    2009-06-01

    Even after the successful introduction of Cu-based metallization, the electromigration failure risk has remained one of the important reliability concerns for advanced process technologies. The observation of strong bimodality for the electron up-flow direction in dual-inlaid Cu interconnects has added complexity, but is now widely accepted. The failure voids can occur both within the via ("early" mode) or within the trench ("late" mode). More recently, bimodality has been reported also in down-flow electromigration, leading to very short lifetimes due to small, slit-shaped voids under vias. For a more thorough investigation of these early failure phenomena, specific test structures were designed based on the Wheatstone Bridge technique. The use of these structures enabled an increase of the tested sample size close to 675000, allowing a direct analysis of electromigration failure mechanisms at the single-digit ppm regime. Results indicate that down-flow electromigration exhibits bimodality at very small percentage levels, not readily identifiable with standard testing methods. The activation energy for the down-flow early failure mechanism was determined to be 0.83±0.02 eV. Within the small error bounds of this large-scale statistical experiment, this value is deemed to be significantly lower than the usually reported activation energy of 0.90 eV for electromigration-induced diffusion along Cu/SiCN interfaces. Due to the advantages of the Wheatstone Bridge technique, we were also able to expand the experimental temperature range down to 150° C, coming quite close to typical operating conditions up to 125° C. As a result of the lowered activation energy, we conclude that the down-flow early failure mode may control the chip lifetime at operating conditions. The slit-like character of the early failure void morphology also raises concerns about the validity of the Blech-effect for this mechanism. A very small amount of Cu depletion may cause failure even before a

  13. Fluctuations of work in nearly adiabatically driven open quantum systems.

    PubMed

    Suomela, S; Salmilehto, J; Savenko, I G; Ala-Nissila, T; Möttönen, M

    2015-02-01

    We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows for an accurate account of the external driving in the system-environment interaction. Using this framework, we construct the corresponding trajectory-dependent work performed on the system and derive the integral fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable to capture some prominent features arising from driving, such as the continuity of the probability density of work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future experiments probing jump time distributions. PMID:25768477

  14. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  15. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  16. Large-scale carbon fiber tests

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1980-01-01

    A realistic release of carbon fibers was established by burning a minimum of 45 kg of carbon fiber composite aircraft structural components in each of five large scale, outdoor aviation jet fuel fire tests. This release was quantified by several independent assessments with various instruments developed specifically for these tests. The most likely values for the mass of single carbon fibers released ranged from 0.2 percent of the initial mass of carbon fiber for the source tests (zero wind velocity) to a maximum of 0.6 percent of the initial carbon fiber mass for dissemination tests (5 to 6 m/s wind velocity). Mean fiber lengths for fibers greater than 1 mm in length ranged from 2.5 to 3.5 mm. Mean diameters ranged from 3.6 to 5.3 micrometers which was indicative of significant oxidation. Footprints of downwind dissemination of the fire released fibers were measured to 19.1 km from the fire.

  17. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  18. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  19. Food appropriation through large scale land acquisitions

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2014-05-01

    The increasing demand for agricultural products and the uncertainty of international food markets has recently drawn the attention of governments and agribusiness firms toward investments in productive agricultural land, mostly in the developing world. The targeted countries are typically located in regions that have remained only marginally utilized because of lack of modern technology. It is expected that in the long run large scale land acquisitions (LSLAs) for commercial farming will bring the technology required to close the existing crops yield gaps. While the extent of the acquired land and the associated appropriation of freshwater resources have been investigated in detail, the amount of food this land can produce and the number of people it could feed still need to be quantified. Here we use a unique dataset of land deals to provide a global quantitative assessment of the rates of crop and food appropriation potentially associated with LSLAs. We show how up to 300-550 million people could be fed by crops grown in the acquired land, should these investments in agriculture improve crop production and close the yield gap. In contrast, about 190-370 million people could be supported by this land without closing of the yield gap. These numbers raise some concern because the food produced in the acquired land is typically exported to other regions, while the target countries exhibit high levels of malnourishment. Conversely, if used for domestic consumption, the crops harvested in the acquired land could ensure food security to the local populations.

  20. Large Scale Computer Simulation of Erthocyte Membranes

    NASA Astrophysics Data System (ADS)

    Harvey, Cameron; Revalee, Joel; Laradji, Mohamed

    2007-11-01

    The cell membrane is crucial to the life of the cell. Apart from partitioning the inner and outer environment of the cell, they also act as a support of complex and specialized molecular machinery, important for both the mechanical integrity of the cell, and its multitude of physiological functions. Due to its relative simplicity, the red blood cell has been a favorite experimental prototype for investigations of the structural and functional properties of the cell membrane. The erythrocyte membrane is a composite quasi two-dimensional structure composed essentially of a self-assembled fluid lipid bilayer and a polymerized protein meshwork, referred to as the cytoskeleton or membrane skeleton. In the case of the erythrocyte, the polymer meshwork is mainly composed of spectrin, anchored to the bilayer through specialized proteins. Using a coarse-grained model, recently developed by us, of self-assembled lipid membranes with implicit solvent and using soft-core potentials, we simulated large scale red-blood-cells bilayers with dimensions ˜ 10-1 μm^2, with explicit cytoskeleton. Our aim is to investigate the renormalization of the elastic properties of the bilayer due to the underlying spectrin meshwork.

  1. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  2. A pseudospectral method for optimal control of open quantum systems.

    PubMed

    Li, Jr-Shin; Ruths, Justin; Stefanatos, Dionisis

    2009-10-28

    In this paper, we present a unified computational method based on pseudospectral approximations for the design of optimal pulse sequences in open quantum systems. The proposed method transforms the problem of optimal pulse design, which is formulated as a continuous-time optimal control problem, to a finite-dimensional constrained nonlinear programming problem. This resulting optimization problem can then be solved using existing numerical optimization suites. We apply the Legendre pseudospectral method to a series of optimal control problems on open quantum systems that arise in nuclear magnetic resonance spectroscopy in liquids. These problems have been well studied in previous literature and analytical optimal controls have been found. We find an excellent agreement between the maximum transfer efficiency produced by our computational method and the analytical expressions. Moreover, our method permits us to extend the analysis and address practical concerns, including smoothing discontinuous controls as well as deriving minimum-energy and time-optimal controls. The method is not restricted to the systems studied in this article and is applicable to optimal manipulation of both closed and open quantum systems. PMID:19894930

  3. Sensitivity technologies for large scale simulation.

    SciTech Connect

    Collis, Samuel Scott; Bartlett, Roscoe Ainsworth; Smith, Thomas Michael; Heinkenschloss, Matthias; Wilcox, Lucas C.; Hill, Judith C.; Ghattas, Omar; Berggren, Martin Olof; Akcelik, Volkan; Ober, Curtis Curry; van Bloemen Waanders, Bart Gustaaf; Keiter, Eric Richard

    2005-01-01

    Sensitivity analysis is critically important to numerous analysis algorithms, including large scale optimization, uncertainty quantification,reduced order modeling, and error estimation. Our research focused on developing tools, algorithms and standard interfaces to facilitate the implementation of sensitivity type analysis into existing code and equally important, the work was focused on ways to increase the visibility of sensitivity analysis. We attempt to accomplish the first objective through the development of hybrid automatic differentiation tools, standard linear algebra interfaces for numerical algorithms, time domain decomposition algorithms and two level Newton methods. We attempt to accomplish the second goal by presenting the results of several case studies in which direct sensitivities and adjoint methods have been effectively applied, in addition to an investigation of h-p adaptivity using adjoint based a posteriori error estimation. A mathematical overview is provided of direct sensitivities and adjoint methods for both steady state and transient simulations. Two case studies are presented to demonstrate the utility of these methods. A direct sensitivity method is implemented to solve a source inversion problem for steady state internal flows subject to convection diffusion. Real time performance is achieved using novel decomposition into offline and online calculations. Adjoint methods are used to reconstruct initial conditions of a contamination event in an external flow. We demonstrate an adjoint based transient solution. In addition, we investigated time domain decomposition algorithms in an attempt to improve the efficiency of transient simulations. Because derivative calculations are at the root of sensitivity calculations, we have developed hybrid automatic differentiation methods and implemented this approach for shape optimization for gas dynamics using the Euler equations. The hybrid automatic differentiation method was applied to a first

  4. International space station. Large scale integration approach

    NASA Astrophysics Data System (ADS)

    Cohen, Brad

    The International Space Station is the most complex large scale integration program in development today. The approach developed for specification, subsystem development, and verification lay a firm basis on which future programs of this nature can be based. International Space Station is composed of many critical items, hardware and software, built by numerous International Partners, NASA Institutions, and U.S. Contractors and is launched over a period of five years. Each launch creates a unique configuration that must be safe, survivable, operable, and support ongoing assembly (assemblable) to arrive at the assembly complete configuration in 2003. The approaches to integrating each of the modules into a viable spacecraft and continue the assembly is a challenge in itself. Added to this challenge are the severe schedule constraints and lack of an "Iron Bird", which prevents assembly and checkout of each on-orbit configuration prior to launch. This paper will focus on the following areas: 1) Specification development process explaining how the requirements and specifications were derived using a modular concept driven by launch vehicle capability. Each module is composed of components of subsystems versus completed subsystems. 2) Approach to stage (each stage consists of the launched module added to the current on-orbit spacecraft) specifications. Specifically, how each launched module and stage ensures support of the current and future elements of the assembly. 3) Verification approach, due to the schedule constraints, is primarily analysis supported by testing. Specifically, how are the interfaces ensured to mate and function on-orbit when they cannot be mated before launch. 4) Lessons learned. Where can we improve this complex system design and integration task?

  5. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  6. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  7. Roary: rapid large-scale prokaryote pan genome analysis

    PubMed Central

    Page, Andrew J.; Cummins, Carla A.; Hunt, Martin; Wong, Vanessa K.; Reuter, Sandra; Holden, Matthew T.G.; Fookes, Maria; Falush, Daniel; Keane, Jacqueline A.; Parkhill, Julian

    2015-01-01

    Summary: A typical prokaryote population sequencing study can now consist of hundreds or thousands of isolates. Interrogating these datasets can provide detailed insights into the genetic structure of prokaryotic genomes. We introduce Roary, a tool that rapidly builds large-scale pan genomes, identifying the core and accessory genes. Roary makes construction of the pan genome of thousands of prokaryote samples possible on a standard desktop without compromising on the accuracy of results. Using a single CPU Roary can produce a pan genome consisting of 1000 isolates in 4.5 hours using 13 GB of RAM, with further speedups possible using multiple processors. Availability and implementation: Roary is implemented in Perl and is freely available under an open source GPLv3 license from http://sanger-pathogens.github.io/Roary Contact: roary@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26198102

  8. A mini review: photobioreactors for large scale algal cultivation.

    PubMed

    Gupta, Prabuddha L; Lee, Seung-Mok; Choi, Hee-Jeong

    2015-09-01

    Microalgae cultivation has gained much interest in terms of the production of foods, biofuels, and bioactive compounds and offers a great potential option for cleaning the environment through CO2 sequestration and wastewater treatment. Although open pond cultivation is most affordable option, there tends to be insufficient control on growth conditions and the risk of contamination. In contrast, while providing minimal risk of contamination, closed photobioreactors offer better control on culture conditions, such as: CO2 supply, water supply, optimal temperatures, efficient exposure to light, culture density, pH levels, and mixing rates. For a large scale production of biomass, efficient photobioreactors are required. This review paper describes general design considerations pertaining to photobioreactor systems, in order to cultivate microalgae for biomass production. It also discusses the current challenges in designing of photobioreactors for the production of low-cost biomass. PMID:26085485

  9. Control landscapes for observable preparation with open quantum systems

    SciTech Connect

    Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin

    2008-02-15

    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape.

  10. Large-Scale Graphene Film Deposition for Monolithic Device Fabrication

    NASA Astrophysics Data System (ADS)

    Al-shurman, Khaled

    Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors. The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an urgent need for a new platform material to replace Si. Graphene is considered a promising material with enormous potential applications in many electronic and optoelectronics devices due to its superior properties. There are several techniques to produce graphene films. Among these techniques, chemical vapor deposition (CVD) offers a very convenient method to fabricate films for large-scale graphene films. Though CVD method is suitable for large area growth of graphene, the need for transferring a graphene film to silicon-based substrates is required. Furthermore, the graphene films thus achieved are, in fact, not single crystalline. Also, graphene fabrication utilizing Cu and Ni at high growth temperature contaminates the substrate that holds Si CMOS circuitry and CVD chamber as well. So, lowering the deposition temperature is another technological milestone for the successful adoption of graphene in integrated circuits fabrication. In this research, direct large-scale graphene film fabrication on silicon based platform (i.e. SiO2 and Si3N4) at low temperature was achieved. With a focus on low-temperature graphene growth, hot-filament chemical vapor deposition (HF-CVD) was utilized to synthesize graphene film using 200 nm thick nickel film. Raman spectroscopy was utilized to examine graphene formation on the bottom side of the Ni film

  11. Introducing Large-Scale Innovation in Schools

    ERIC Educational Resources Information Center

    Sotiriou, Sofoklis; Riviou, Katherina; Cherouvis, Stephanos; Chelioti, Eleni; Bogner, Franz X.

    2016-01-01

    Education reform initiatives tend to promise higher effectiveness in classrooms especially when emphasis is given to e-learning and digital resources. Practical changes in classroom realities or school organization, however, are lacking. A major European initiative entitled Open Discovery Space (ODS) examined the challenge of modernizing school…

  12. Boundary driven open quantum many-body systems

    SciTech Connect

    Prosen, Tomaž

    2014-01-08

    In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.

  13. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  14. Population generation for large-scale simulation

    NASA Astrophysics Data System (ADS)

    Hannon, Andrew C.; King, Gary; Morrison, Clayton; Galstyan, Aram; Cohen, Paul

    2005-05-01

    Computer simulation is used to research phenomena ranging from the structure of the space-time continuum to population genetics and future combat.1-3 Multi-agent simulations in particular are now commonplace in many fields.4, 5 By modeling populations whose complex behavior emerges from individual interactions, these simulations help to answer questions about effects where closed form solutions are difficult to solve or impossible to derive.6 To be useful, simulations must accurately model the relevant aspects of the underlying domain. In multi-agent simulation, this means that the modeling must include both the agents and their relationships. Typically, each agent can be modeled as a set of attributes drawn from various distributions (e.g., height, morale, intelligence and so forth). Though these can interact - for example, agent height is related to agent weight - they are usually independent. Modeling relations between agents, on the other hand, adds a new layer of complexity, and tools from graph theory and social network analysis are finding increasing application.7, 8 Recognizing the role and proper use of these techniques, however, remains the subject of ongoing research. We recently encountered these complexities while building large scale social simulations.9-11 One of these, the Hats Simulator, is designed to be a lightweight proxy for intelligence analysis problems. Hats models a "society in a box" consisting of many simple agents, called hats. Hats gets its name from the classic spaghetti western, in which the heroes and villains are known by the color of the hats they wear. The Hats society also has its heroes and villains, but the challenge is to identify which color hat they should be wearing based on how they behave. There are three types of hats: benign hats, known terrorists, and covert terrorists. Covert terrorists look just like benign hats but act like terrorists. Population structure can make covert hat identification significantly more

  15. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  16. Large-scale growth of density-tunable aligned ZnO nanorods arrays on GaN QDs

    NASA Astrophysics Data System (ADS)

    Qi, Zhiqiang; Li, Senlin; Sun, Shichuang; Zhang, Wei; Ye, Wei; Fang, Yanyan; Tian, Yu; Dai, Jiangnan; Chen, Changqing

    2015-10-01

    An effective approach for growing large-scale, uniformly aligned ZnO nanorods arrays is demonstrated. The synthesis uses a GaN quantum dot (QD) template produced by a self-assembled Stranski-Krastanow mode in metal organic chemical vapor deposition, which serves as a nucleation site for ZnO owing to the QD’s high surface free energy. The resultant ZnO nanorods with uniform shape and length align vertically on the template, while their density is easily tunable by adjusting the density of GaN QDs, which can be adjusted by simply varying growth interruption. By controlling the density of ZnO nanorod arrays, their optical performance can also be improved. This approach opens the possibility of combining one-dimensional (1D) with 0D nanostructures for applications in sensor arrays, piezoelectric antenna arrays, optoelectronic devices, and interconnects.

  17. No large scale curvature perturbations during the waterfall phase transition of hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Firouzjahi, Hassan

    2011-03-15

    In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of the standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depends crucially on the competition between the classical and the quantum mechanical backreactions to terminate inflation. If one considers only the classical evolution of the system, we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum backreactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical backreactions. The cumulative quantum backreactions of very small scale tachyonic modes terminate inflation very efficiently and shut off the curvature perturbation evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.

  18. Quantum algorithm for simulating the dynamics of an open quantum system

    SciTech Connect

    Wang Hefeng; Ashhab, S.; Nori, Franco

    2011-06-15

    In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.

  19. Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations

    NASA Astrophysics Data System (ADS)

    Pellegrini, Clément

    2014-02-01

    A new type of quantum random walks, called Open Quantum Random Walks, has been developed and studied in Attal et al. (Open quantum random walks, preprint) and (Central limit theorems for open quantum random walks, preprint). In this article we present a natural continuous time extension of these Open Quantum Random Walks. This continuous time version is obtained by taking a continuous time limit of the discrete time Open Quantum Random Walks. This approximation procedure is based on some adaptation of Repeated Quantum Interactions Theory (Attal and Pautrat in Annales Henri Poincaré Physique Théorique 7:59-104, 2006) coupled with the use of correlated projectors (Breuer in Phys Rev A 75:022103, 2007). The limit evolutions obtained this way give rise to a particular type of quantum master equations. These equations appeared originally in the non-Markovian generalization of the Lindblad theory (Breuer in Phys Rev A 75:022103, 2007). We also investigate the continuous time limits of the quantum trajectories associated with Open Quantum Random Walks. We show that the limit evolutions in this context are described by jump stochastic differential equations. Finally we present a physical example which can be described in terms of Open Quantum Random Walks and their associated continuous time limits.

  20. Multitree Algorithms for Large-Scale Astrostatistics

    NASA Astrophysics Data System (ADS)

    March, William B.; Ozakin, Arkadas; Lee, Dongryeol; Riegel, Ryan; Gray, Alexander G.

    2012-03-01

    this number every week, resulting in billions of objects. At such scales, even linear-time analysis operations present challenges, particularly since statistical analyses are inherently interactive processes, requiring that computations complete within some reasonable human attention span. The quadratic (or worse) runtimes of straightforward implementations become quickly unbearable. Examples of applications. These analysis subroutines occur ubiquitously in astrostatistical work. We list just a few examples. The need to cross-match objects across different catalogs has led to various algorithms, which at some point perform an AllNN computation. 2-point and higher-order spatial correlations for the basis of spatial statistics, and are utilized in astronomy to compare the spatial structures of two datasets, such as an observed sample and a theoretical sample, for example, forming the basis for two-sample hypothesis testing. Friends-of-friends clustering is often used to identify halos in data from astrophysical simulations. Minimum spanning tree properties have also been proposed as statistics of large-scale structure. Comparison of the distributions of different kinds of objects requires accurate density estimation, for which KDE is the overall statistical method of choice. The prediction of redshifts from optical data requires accurate regression, for which kernel regression is a powerful method. The identification of objects of various types in astronomy, such as stars versus galaxies, requires accurate classification, for which KDA is a powerful method. Overview. In this chapter, we will briefly sketch the main ideas behind recent fast algorithms which achieve, for example, linear runtimes for pairwise-distance problems, or similarly dramatic reductions in computational growth. In some cases, the runtime orders for these algorithms are mathematically provable statements, while in others we have only conjectures backed by experimental observations for the time being

  1. Python for Large-Scale Electrophysiology

    PubMed Central

    Spacek, Martin; Blanche, Tim; Swindale, Nicholas

    2008-01-01

    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis (“neuropy”). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience. PMID:19198646

  2. Adaptive Texture Synthesis for Large Scale City Modeling

    NASA Astrophysics Data System (ADS)

    Despine, G.; Colleu, T.

    2015-02-01

    Large scale city models textured with aerial images are well suited for bird-eye navigation but generally the image resolution does not allow pedestrian navigation. One solution to face this problem is to use high resolution terrestrial photos but it requires huge amount of manual work to remove occlusions. Another solution is to synthesize generic textures with a set of procedural rules and elementary patterns like bricks, roof tiles, doors and windows. This solution may give realistic textures but with no correlation to the ground truth. Instead of using pure procedural modelling we present a method to extract information from aerial images and adapt the texture synthesis to each building. We describe a workflow allowing the user to drive the information extraction and to select the appropriate texture patterns. We also emphasize the importance to organize the knowledge about elementary pattern in a texture catalogue allowing attaching physical information, semantic attributes and to execute selection requests. Roofs are processed according to the detected building material. Façades are first described in terms of principal colours, then opening positions are detected and some window features are computed. These features allow selecting the most appropriate patterns from the texture catalogue. We experimented this workflow on two samples with 20 cm and 5 cm resolution images. The roof texture synthesis and opening detection were successfully conducted on hundreds of buildings. The window characterization is still sensitive to the distortions inherent to the projection of aerial images onto the facades.

  3. Ectopically tethered CP190 induces large-scale chromatin decondensation

    NASA Astrophysics Data System (ADS)

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.

  4. Ectopically tethered CP190 induces large-scale chromatin decondensation

    PubMed Central

    Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer

    2014-01-01

    Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF. PMID:24472778

  5. Dwell-time-limited coherence in open quantum dots.

    PubMed

    Hackens, B; Faniel, S; Gustin, C; Wallart, X; Bollaert, S; Cappy, A; Bayot, V

    2005-04-15

    We present measurements of the electron phase coherence time tau(varphi) on a wide range of open ballistic quantum dots (QDs) made from InGaAs heterostructures. The observed saturation of tau(varphi) below temperatures 0.5 Kopenings of the QDs. Combining our results with previous reports on tau(varphi) in GaAs QDs, we provide new insight into the long-standing problem of the saturation of tau(varphi) in these systems: the dwell time becomes the limiting factor for electron interference effects in QDs at low temperature. PMID:15904090

  6. Dwell-Time-Limited Coherence in Open Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hackens, B.; Faniel, S.; Gustin, C.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.

    2005-04-01

    We present measurements of the electron phase coherence time τϕ on a wide range of open ballistic quantum dots (QDs) made from InGaAs heterostructures. The observed saturation of τϕ below temperatures 0.5 Kopenings of the QDs. Combining our results with previous reports on τϕ in GaAs QDs, we provide new insight into the long-standing problem of the saturation of τϕ in these systems: the dwell time becomes the limiting factor for electron interference effects in QDs at low temperature.

  7. Probes of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Gorski, Krzysztof; Juszkiewicz, Roman; Silk, Joseph

    1988-01-01

    A general formalism is developed which shows that the gravitational instability theory for the origin of the large-scale structure of the universe is now capable of critically confronting observational results on cosmic background radiation angular anisotropies, large-scale bulk motions, and large-scale clumpiness in the galaxy counts. The results indicate that presently advocated cosmological models will have considerable difficulty in simultaneously explaining the observational results.

  8. Large-scale solvothermal synthesis of fluorescent carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Ku, Kahoe; Lee, Seung-Wook; Park, Jinwoo; Kim, Nayon; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2014-09-01

    The large-scale production of high-quality carbon nanomaterials is highly desirable for a variety of applications. We demonstrate a novel synthetic route to the production of fluorescent carbon nanoparticles (CNPs) in large quantities via a single-step reaction. The simple heating of a mixture of benzaldehyde, ethanol and graphite oxide (GO) with residual sulfuric acid in an autoclave produced 7 g of CNPs with a quantum yield of 20%. The CNPs can be dispersed in various organic solvents; hence, they are easily incorporated into polymer composites in forms such as nanofibers and thin films. Additionally, we observed that the GO present during the CNP synthesis was reduced. The reduced GO (RGO) was sufficiently conductive (σ ≈ 282 S m-1) such that it could be used as an electrode material in a supercapacitor; in addition, it can provide excellent capacitive behavior and high-rate capability. This work will contribute greatly to the development of efficient synthetic routes to diverse carbon nanomaterials, including CNPs and RGO, that are suitable for a wide range of applications.

  9. Large-scale GW software development

    NASA Astrophysics Data System (ADS)

    Kim, Minjung; Mandal, Subhasish; Mikida, Eric; Jindal, Prateek; Bohm, Eric; Jain, Nikhil; Kale, Laxmikant; Martyna, Glenn; Ismail-Beigi, Sohrab

    Electronic excitations are important in understanding and designing many functional materials. In terms of ab initio methods, the GW and Bethe-Saltpeter Equation (GW-BSE) beyond DFT methods have proved successful in describing excited states in many materials. However, the heavy computational loads and large memory requirements have hindered their routine applicability by the materials physics community. We summarize some of our collaborative efforts to develop a new software framework designed for GW calculations on massively parallel supercomputers. Our GW code is interfaced with the plane-wave pseudopotential ab initio molecular dynamics software ``OpenAtom'' which is based on the Charm++ parallel library. The computation of the electronic polarizability is one of the most expensive parts of any GW calculation. We describe our strategy that uses a real-space representation to avoid the large number of fast Fourier transforms (FFTs) common to most GW methods. We also describe an eigendecomposition of the plasmon modes from the resulting dielectric matrix that enhances efficiency. This work is supported by NSF through Grant ACI-1339804.

  10. A Large Scale Virtual Gas Sensor Array

    NASA Astrophysics Data System (ADS)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  11. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  12. Dissipation equation of motion approach to open quantum systems

    NASA Astrophysics Data System (ADS)

    Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao

    2016-08-01

    This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.

  13. Explorative Function in Williams Syndrome Analyzed through a Large-Scale Task with Multiple Rewards

    ERIC Educational Resources Information Center

    Foti, F.; Petrosini, L.; Cutuli, D.; Menghini, D.; Chiarotti, F.; Vicari, S.; Mandolesi, L.

    2011-01-01

    This study aimed to evaluate spatial function in subjects with Williams syndrome (WS) by using a large-scale task with multiple rewards and comparing the spatial abilities of WS subjects with those of mental age-matched control children. In the present spatial task, WS participants had to explore an open space to search nine rewards placed in…

  14. Using Large-Scale Databases in Evaluation: Advances, Opportunities, and Challenges

    ERIC Educational Resources Information Center

    Penuel, William R.; Means, Barbara

    2011-01-01

    Major advances in the number, capabilities, and quality of state, national, and transnational databases have opened up new opportunities for evaluators. Both large-scale data sets collected for administrative purposes and those collected by other researchers can provide data for a variety of evaluation-related activities. These include (a)…

  15. Agile in Large-Scale Development Workshop: Coaching, Transitioning and Practicing

    NASA Astrophysics Data System (ADS)

    Nilsson, Thomas; Larsson, Andreas

    Agile in large-scale and complex development presents its own set of problems, both how to practice, transition and coaching. This workshop aims at bringing persons interested in this topic together to share tools, techniques and insights. The workshop will follow the increasingly popular “lightning talk + open space” format.

  16. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials

    NASA Astrophysics Data System (ADS)

    Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L.; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P.; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M.

    2009-09-01

    QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

  17. A novel computational approach towards the certification of large-scale boson sampling

    NASA Astrophysics Data System (ADS)

    Huh, Joonsuk

    Recent proposals of boson sampling and the corresponding experiments exhibit the possible disproof of extended Church-Turning Thesis. Furthermore, the application of boson sampling to molecular computation has been suggested theoretically. Till now, however, only small-scale experiments with a few photons have been successfully performed. The boson sampling experiments of 20-30 photons are expected to reveal the computational superiority of the quantum device. A novel theoretical proposal for the large-scale boson sampling using microwave photons is highly promising due to the deterministic photon sources and the scalability. Therefore, the certification protocol of large-scale boson sampling experiments should be presented to complete the exciting story. We propose, in this presentation, a computational protocol towards the certification of large-scale boson sampling. The correlations of paired photon modes and the time-dependent characteristic functional with its Fourier component can show the fingerprint of large-scale boson sampling. This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(NRF-2015R1A6A3A04059773), the ICT R&D program of MSIP/IITP [2015-019, Fundamental Research Toward Secure Quantum Communication] and Mueunjae Institute for Chemistry (MIC) postdoctoral fellowship.

  18. The Challenge of Large-Scale Literacy Improvement

    ERIC Educational Resources Information Center

    Levin, Ben

    2010-01-01

    This paper discusses the challenge of making large-scale improvements in literacy in schools across an entire education system. Despite growing interest and rhetoric, there are very few examples of sustained, large-scale change efforts around school-age literacy. The paper reviews 2 instances of such efforts, in England and Ontario. After…

  19. INTERNATIONAL WORKSHOP ON LARGE-SCALE REFORESTATION: PROCEEDINGS

    EPA Science Inventory

    The purpose of the workshop was to identify major operational and ecological considerations needed to successfully conduct large-scale reforestation projects throughout the forested regions of the world. Large-scale" for this workshop means projects where, by human effort, approx...

  20. Using Large-Scale Assessment Scores to Determine Student Grades

    ERIC Educational Resources Information Center

    Miller, Tess

    2013-01-01

    Many Canadian provinces provide guidelines for teachers to determine students' final grades by combining a percentage of students' scores from provincial large-scale assessments with their term scores. This practice is thought to hold students accountable by motivating them to put effort into completing the large-scale assessment, thereby…

  1. Terminology of Large-Scale Waves in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan

    2005-03-01

    This is the fourth in a series of essays on terms used in solar-terrestrial physics that are thought to be in need of clarification. Terms are identified and essays are commissioned by a committee chartered by Division II (Sun and Heliosphere) of the International Astronomical Union. Terminology Committee members include Ed Cliver (chair), Jean-Louis Bougeret, Hilary Cane, Takeo Kosugi, Sara Martin, Rainer Schwenn, and Lidia van Driel-Gestelyi. Authors are asked to review the origins of terms and their current usage/misusage. The goals are to inform the community and to open a discussion. The following article by Bojan Vršnak focuses on terms used to describe large-scale waves in the solar atmosphere, an area of research that has been given great impetus by the images of waves from the Extreme ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO). The committee welcomes suggestions for other terms to address in this forum.

  2. The large-scale current system during auroral substorms

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Hoffman, R. A.

    2014-06-01

    We present an empirical model of the equivalent current system in the ionosphere during the peak of a classical bulge-type auroral substorm. This model is derived from measurements made by ~110 ground magnetometer stations during 116 substorms. The data are temporally and spatially organized using global auroral images obtained by the Polar Visible Imaging System Earth Camera. The empirical equivalent current system displays three key features: a poleward shift of the westward electrojet connecting the postmidnight and premidnight components; a polar cap swirl; and significantly different magnitudes of the postmidnight and premidnight westward electrojets. This leads us to propose a two-wedge current system linking the ionosphere to the magnetosphere. The bulge current wedge is located in the premidnight region just equatorward of the open-closed field line boundary while another three-dimensional current system is located in the postmidnight region well within the auroral oval. We use Biot and Savart calculations and Tsyganenko mapping and show that this new model is a likely solution for the large-scale current system.

  3. Judgments of exocentric direction in large-scale space.

    PubMed

    Kelly, Jonathan W; Loomis, Jack M; Beall, Andrew C

    2004-01-01

    Judgments of exocentric direction are quite common, especially when judging where others are looking or pointing. To investigate these judgments in large-scale space, observers were shown two targets in a large open field and were asked to judge the exocentric direction specified by the targets. The targets ranged in egocentric distance from 5 to 20 m with target-to-target angular separations of 45 degrees, 90 degrees, and 135 degrees. Observers judged exocentric direction using two methods: (i) by judging which point on a distant fence appeared collinear with the two targets, and (ii) by orienting their body in a direction parallel with the perceived line segment. In the collinearity task, observers had to imagine the line connecting the targets and then extrapolate this imagined line out to the fence. Observers indicated the perceived point of collinearity on a handheld 360 degrees panoramic cylinder representing their vista. The two judgment methods gave similar results except for a constant bias associated with the body-pointing response. Aside from this bias, the results of these two methods agree with other existing research indicating an effect of relative egocentric distance to the targets on judgment error--line segments are perceived as being rotated in depth. Additionally, verbal estimates of egocentric and exocentric distance suggest that perceived distance is not the cause for the systematic errors in judging exocentric direction. PMID:15222392

  4. Determining Environmental Impacts of Large Scale Irrigation in Turkey

    NASA Astrophysics Data System (ADS)

    Simpson, K.; Douglas, E. M.; Limbrunner, J. F.; Ozertan, G.

    2010-12-01

    In 1989, the Turkish government launched their most comprehensive regional development plan in history entitled the Southeastern Anatolia Project (SAP) which focuses on improving the quality of life and income level within the most underdeveloped region in Turkey. This project aims to integrate sustainable human development through agriculture, industry, transportation, education, health and rural and urban infrastructure building. In May 2008, a new action plan was announced for the region which includes the designation of almost 800,000 hectares of previously unirrigated land to be open for irrigation within the next five years. If not done in a sustainable manner, such a large-scale irrigation project could cause severe environmental impacts. The first objective of our research is to use computer simulations to reproduce the observed environmental impacts of irrigated agriculture in this arid region, primarily by simulating the effects of soil salinization. The second objective of our research is to estimate soil salinization that could result from expanded irrigation and suggest sustainable strategies for the newly irrigated land in Turkey in order to minimize these environmental impacts.

  5. Process control of large-scale finite element simulation software

    SciTech Connect

    Spence, P.A.; Weingarten, L.I.; Schroder, K.; Tung, D.M.; Sheaffer, D.A.

    1996-02-01

    We have developed a methodology for coupling large-scale numerical codes with process control algorithms. Closed-loop simulations were demonstrated using the Sandia-developed finite element thermal code TACO and the commercially available finite element thermal-mechanical code ABAQUS. This new capability enables us to use computational simulations for designing and prototyping advanced process-control systems. By testing control algorithms on simulators before building and testing hardware, enormous time and cost savings can be realized. The need for a closed-loop simulation capability was demonstrated in a detailed design study of a rapid-thermal-processing reactor under development by CVC Products Inc. Using a thermal model of the RTP system as a surrogate for the actual hardware, we were able to generate response data needed for controller design. We then evaluated the performance of both the controller design and the hardware design by using the controller to drive the finite element model. The controlled simulations provided data on wafer temperature uniformity as a function of ramp rate, temperature sensor locations, and controller gain. This information, which is critical to reactor design, cannot be obtained from typical open-loop simulations.

  6. Challenges and advances in large-scale DFT calculations on GPUs

    NASA Astrophysics Data System (ADS)

    Kulik, Heather

    2014-03-01

    Recent advances in reformulating electronic structure algorithms for stream processors such as graphical processing units have made DFT calculations on systems comprising up to O(103) atoms feasible. Simulations on such systems that previously required half a week on traditional processors can now be completed in only half an hour. Here, we leverage these GPU-accelerated quantum chemistry methods to investigate large-scale quantum mechanical features in protein structure, mechanochemical depolymerization, and the nucleation and growth of heterogeneous nanoparticle structures. In each case, large-scale and rapid evaluation of electronic structure properties is critical for unearthing previously poorly understood properties and mechanistic features of these systems. We will also discuss outstanding challenges in the use of Gaussian localized-basis-set codes on GPUs pertaining to limitations in basis set size and how we circumvent such challenges to computational efficiency with systematic, physics-based error corrections to basis set incompleteness.

  7. Large Scale Integrated Photonics for Twenty-First Century Information Technologies

    NASA Astrophysics Data System (ADS)

    Beausoleil, Raymond G.

    2014-08-01

    In this paper, we will review research done by the Large-Scale Integrated Photonics group at HP Laboratories, and in particular we will discuss applications of optical resonances in dielectric microstructures and nanostructures to future classical and quantum information technologies. Our goal is to scale photonic technologies over the next decade in much the same way as electronics over the past five, thereby establishing a Moore's Law for optics.

  8. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  9. Thermodynamics of trajectories of open quantum systems, step by step

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Xuereb, André

    2016-06-01

    Thermodynamics of trajectories promises to make possible the thorough analysis of the dynamical properties of an open quantum system, a sought-after goal in modern physics. Unfortunately, calculation of the relevant quantities presents severe challenges. Determining the large-deviation function that gives access to the full counting statistics associated with a dynamical order parameter is challenging, if not impossible, even for systems evolving in a restricted Liouville space. Acting on the realisation that the salient features of most dynamical systems are encoded in the first few moments of the counting statistics, in this article we present a method that gives sequential access to these moments. Our method allows for obtaining analytical result in several cases, as we illustrate, and allows using large deviation theory to reinterpret certain well-known results.

  10. Towards a Theory of Metastability in Open Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Macieszczak, Katarzyna; GuÅ£ǎ, Mǎdǎlin; Lesanovsky, Igor; Garrahan, Juan P.

    2016-06-01

    By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states—distinct from the asymptotic stationary state—is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.

  11. Towards a Theory of Metastability in Open Quantum Dynamics.

    PubMed

    Macieszczak, Katarzyna; Guţă, Mădălin; Lesanovsky, Igor; Garrahan, Juan P

    2016-06-17

    By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces. PMID:27367368

  12. Distribution probability of large-scale landslides in central Nepal

    NASA Astrophysics Data System (ADS)

    Timilsina, Manita; Bhandary, Netra P.; Dahal, Ranjan Kumar; Yatabe, Ryuichi

    2014-12-01

    Large-scale landslides in the Himalaya are defined as huge, deep-seated landslide masses that occurred in the geological past. They are widely distributed in the Nepal Himalaya. The steep topography and high local relief provide high potential for such failures, whereas the dynamic geology and adverse climatic conditions play a key role in the occurrence and reactivation of such landslides. The major geoscientific problems related with such large-scale landslides are 1) difficulties in their identification and delineation, 2) sources of small-scale failures, and 3) reactivation. Only a few scientific publications have been published concerning large-scale landslides in Nepal. In this context, the identification and quantification of large-scale landslides and their potential distribution are crucial. Therefore, this study explores the distribution of large-scale landslides in the Lesser Himalaya. It provides simple guidelines to identify large-scale landslides based on their typical characteristics and using a 3D schematic diagram. Based on the spatial distribution of landslides, geomorphological/geological parameters and logistic regression, an equation of large-scale landslide distribution is also derived. The equation is validated by applying it to another area. For the new area, the area under the receiver operating curve of the landslide distribution probability in the new area is 0.699, and a distribution probability value could explain > 65% of existing landslides. Therefore, the regression equation can be applied to areas of the Lesser Himalaya of central Nepal with similar geological and geomorphological conditions.

  13. A global review of large-scale experimental manipulations of streamflow

    NASA Astrophysics Data System (ADS)

    Konrad, C. P.; Olden, J. D.

    2010-12-01

    Ecological objectives have been integrated increasingly into the operation of water resources systems including dams, diversions, and pumps. In some cases, streamflow has been manipulated as a large-scale experiment aimed at both learning and improving river, floodplain, and estuarine resources. Our working group at the National Center for Ecological Analysis and Synthesis has conducted a global review of large-scale flow experiments to assess how these efforts can be effective both scientifically and socially. Rivers, floodplains, and estuaries are particularly challenging subjects for large-scale experiments because they are open systems with strong longitudinal connectivity and heterogeneity. These systems rarely can be isolated from their social context, thus stakeholders and water managers must be involved in experimental planning and implementation. Large-scale flow experiments have been effective for learning and informing management decisions when 1) treatments can be applied discretely - separate from other management interventions - and repeated, 2) directly measured responses have mechanistic links to broader resource objectives, and 3) there is institutional support for investigations and adoption of new information into operating policies. In focused applications with a clear nexus to decision-making, large-scale flow experiments complement longer term monitoring of aquatic ecosystems and evaluation of operations in adaptive management of water resources.

  14. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  15. Non-Markovian dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Fleming, Chris H.

    An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature

  16. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  17. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.

    2016-06-01

    Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.

  18. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems.

    PubMed

    Werner, A H; Jaschke, D; Silvi, P; Kliesch, M; Calarco, T; Eisert, J; Montangero, S

    2016-06-10

    Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies. PMID:27341253

  19. Quantum internet using code division multiple access.

    PubMed

    Zhang, Jing; Liu, Yu-xi; Ozdemir, Sahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  20. Quantum internet using code division multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Yu-Xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-07-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.

  1. Interpretation of large-scale deviations from the Hubble flow

    NASA Astrophysics Data System (ADS)

    Grinstein, B.; Politzer, H. David; Rey, S.-J.; Wise, Mark B.

    1987-03-01

    The theoretical expectation for large-scale streaming velocities relative to the Hubble flow is expressed in terms of statistical correlation functions. Only for objects that trace the mass would these velocities have a simple cosmological interpretation. If some biasing effects the objects' formation, then nonlinear gravitational evolution is essential to predicting the expected large-scale velocities, which also depend on the nature of the biasing.

  2. Large scale suppression of scalar power on a spatial condensation

    NASA Astrophysics Data System (ADS)

    Kouwn, Seyen; Kwon, O.-Kab; Oh, Phillial

    2015-03-01

    We consider a deformed single-field inflation model in terms of three SO(3) symmetric moduli fields. We find that spatially linear solutions for the moduli fields induce a phase transition during the early stage of the inflation and the suppression of scalar power spectrum at large scales. This suppression can be an origin of anomalies for large-scale perturbation modes in the cosmological observation.

  3. Large-scale motions in a plane wall jet

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer; Jonathan, Latim; Shibani, Bhatt

    2015-11-01

    The dynamic significance of large-scale motions in turbulent boundary layers have been the focus of several recent studies, primarily focussing on canonical flows - zero pressure gradient boundary layers, flows within pipes and channels. This work presents an investigation into the large-scale motions in a boundary layer that is used as the prototypical flow field for flows with large-scale mixing and reactions, the plane wall jet. An experimental investigation is carried out in a plane wall jet facility designed to operate at friction Reynolds numbers Reτ > 1000 , which allows for the development of a significant logarithmic region. The streamwise turbulent intensity across the boundary layer is decomposed into small-scale (less than one integral length-scale δ) and large-scale components. The small-scale energy has a peak in the near-wall region associated with the near-wall turbulent cycle as in canonical boundary layers. However, eddies of large-scales are the dominating eddies having significantly higher energy, than the small-scales across almost the entire boundary layer even at the low to moderate Reynolds numbers under consideration. The large-scales also appear to amplitude and frequency modulate the smaller scales across the entire boundary layer.

  4. Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2016-04-01

    Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.

  5. Vergence and facing patterns in large-scale sheath folds

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Holdsworth, R. E.

    1999-10-01

    The careful geometric analysis of minor structural detail elucidates the relationships and evolution of associated large-scale curvilinear hinge geometries, developed during WNW-directed Caledonian thrusting exposed in Neoproterozoic Moine psammites of the Moine Nappe. Reversals in the polarity of structural facing associated with minor folding, mark the position of major sheath folds which parallel transport. Upwardly convex sheaths (closing in the direction of thrust transport) cored by older gneissose basement inliers are termed culminations, whilst those opening in the transport direction (and cored by Moine psammites) are termed depressions. Sheath folds are bisected by transport parallel and foliation normal (culmination/depression) surfaces which separate not only the reversals in facing, but also delineate zones of minor fold hinge obliquity into clockwise and anticlockwise domains relative to the transport direction. The sense of obliquity of minor Z and S folds is thus dependent on position with respect to the surfaces of culmination and depression and not the fold axial surfaces. Surfaces of culmination and depression may be superimposed on original overturned antiformal and synformal folds to produce a variety of dome (culmination on antiform), saddle (depression on antiform), inverted saddle (culmination on synform) and basin (depression on synform) configurations. The curvilinear hinges of minor folds may also be asymmetrical about the transport direction and within the plane of the regional foliation to define patterns of fold hinge-line vergence. Classical concepts of fold limb vergence may thus relate to larger antiformal and synformal hinges, whilst the fold hinge-line vergence defines major curvilinear hinges associated with culminations and depressions. Major sheath folds may therefore be interpreted in terms of both minor fold hinge-line and limb vergence, coupled with fold axis obliquity and reversals in the polarity of structural facing. The

  6. Developments in large-scale coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Dottori, Francesco; Giardino, Alessio; Bouziotas, Dimitrios; Bianchi, Alessandra; Salamon, Peter; Feyen, Luc

    2016-08-01

    Coastal flooding related to marine extreme events has severe socioeconomic impacts, and even though the latter are projected to increase under the changing climate, there is a clear deficit of information and predictive capacity related to coastal flood mapping. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining (i) the contribution of waves to the total water level; (ii) improved inundation modeling; and (iii) an open, physics-based framework which can be constantly upgraded, whenever new and more accurate data become available. Four inundation approaches of gradually increasing complexity and computational costs were evaluated in terms of their applicability to large-scale coastal flooding mapping: static inundation (SM); a semi-dynamic method, considering the water volume discharge over the dykes (VD); the flood intensity index approach (Iw); and the model LISFLOOD-FP (LFP). A validation test performed against observed flood extents during the Xynthia storm event showed that SM and VD can lead to an overestimation of flood extents by 232 and 209 %, while Iw and LFP showed satisfactory predictive skill. Application at pan-European scale for the present-day 100-year event confirmed that static approaches can overestimate flood extents by 56 % compared to LFP; however, Iw can deliver results of reasonable accuracy in cases when reduced computational costs are a priority. Moreover, omitting the wave contribution in the extreme total water level (TWL) can result in a ˜ 60 % underestimation of the flooded area. The present findings have implications for impact assessment studies, since combination of the estimated inundation maps with population exposure maps revealed differences in the estimated number of people affected within the 20-70 % range.

  7. Evidencing `Tight Bound States' in the Hydrogen Atom:. Empirical Manipulation of Large-Scale XD in Violation of QED

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.; Vigier, Jean-Pierre

    2013-09-01

    In this work we extend Vigier's recent theory of `tight bound state' (TBS) physics and propose empirical protocols to test not only for their putative existence, but also that their existence if demonstrated provides the 1st empirical evidence of string theory because it occurs in the context of large-scale extra dimensionality (LSXD) cast in a unique M-Theoretic vacuum corresponding to the new Holographic Anthropic Multiverse (HAM) cosmological paradigm. Physicists generally consider spacetime as a stochastic foam containing a zero-point field (ZPF) from which virtual particles restricted by the quantum uncertainty principle (to the Planck time) wink in and out of existence. According to the extended de Broglie-Bohm-Vigier causal stochastic interpretation of quantum theory spacetime and the matter embedded within it is created annihilated and recreated as a virtual locus of reality with a continuous quantum evolution (de Broglie matter waves) governed by a pilot wave - a `super quantum potential' extended in HAM cosmology to be synonymous with the a `force of coherence' inherent in the Unified Field, UF. We consider this backcloth to be a covariant polarized vacuum of the (generally ignored by contemporary physicists) Dirac type. We discuss open questions of the physics of point particles (fermionic nilpotent singularities). We propose a new set of experiments to test for TBS in a Dirac covariant polarized vacuum LSXD hyperspace suggestive of a recently tested special case of the Lorentz Transformation put forth by Kowalski and Vigier. These protocols reach far beyond the recent battery of atomic spectral violations of QED performed through NIST.

  8. Dynamics of incompatibility of quantum measurements in open systems

    NASA Astrophysics Data System (ADS)

    Addis, Carole; Heinosaari, Teiko; Kiukas, Jukka; Laine, Elsi-Mari; Maniscalco, Sabrina

    2016-02-01

    The nonclassical nature of quantum states, often illustrated using entanglement measures or quantum discord, constitutes a resource for quantum information protocols. However, the nonclassicality of a quantum system cannot be seen as a property of the state alone, as the set of available measurements used to extract information on the system is typically restricted. In this work we study how the nonclassicality of quantum measurements, quantified via their incompatibility, is influenced by quantum noise and how a non-Markovian environment can be useful for maintaining the measurement resources.

  9. The large-scale landslide risk classification in catchment scale

    NASA Astrophysics Data System (ADS)

    Liu, Che-Hsin; Wu, Tingyeh; Chen, Lien-Kuang; Lin, Sheng-Chi

    2013-04-01

    The landslide disasters caused heavy casualties during Typhoon Morakot, 2009. This disaster is defined as largescale landslide due to the casualty numbers. This event also reflects the survey on large-scale landslide potential is so far insufficient and significant. The large-scale landslide potential analysis provides information about where should be focused on even though it is very difficult to distinguish. Accordingly, the authors intend to investigate the methods used by different countries, such as Hong Kong, Italy, Japan and Switzerland to clarify the assessment methodology. The objects include the place with susceptibility of rock slide and dip slope and the major landslide areas defined from historical records. Three different levels of scales are confirmed necessarily from country to slopeland, which are basin, catchment, and slope scales. Totally ten spots were classified with high large-scale landslide potential in the basin scale. The authors therefore focused on the catchment scale and employ risk matrix to classify the potential in this paper. The protected objects and large-scale landslide susceptibility ratio are two main indexes to classify the large-scale landslide risk. The protected objects are the constructions and transportation facilities. The large-scale landslide susceptibility ratio is based on the data of major landslide area and dip slope and rock slide areas. Totally 1,040 catchments are concerned and are classified into three levels, which are high, medium, and low levels. The proportions of high, medium, and low levels are 11%, 51%, and 38%, individually. This result represents the catchments with high proportion of protected objects or large-scale landslide susceptibility. The conclusion is made and it be the base material for the slopeland authorities when considering slopeland management and the further investigation.

  10. Tomograms for open quantum systems: In(finite) dimensional optical and spin systems

    NASA Astrophysics Data System (ADS)

    Thapliyal, Kishore; Banerjee, Subhashish; Pathak, Anirban

    2016-03-01

    Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained from experimentally generated tomograms and nonclassicality observed from them.

  11. Unsaturated Hydraulic Conductivity for Evaporation in Large scale Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Sun, D.; Zhu, J.

    2014-12-01

    In this study we aim to provide some practical guidelines of how the commonly used simple averaging schemes (arithmetic, geometric, or harmonic mean) perform in simulating large scale evaporation in a large scale heterogeneous landscape. Previous studies on hydraulic property upscaling focusing on steady state flux exchanges illustrated that an effective hydraulic property is usually more difficult to define for evaporation. This study focuses on upscaling hydraulic properties of large scale transient evaporation dynamics using the idea of the stream tube approach. Specifically, the two main objectives are: (1) if the three simple averaging schemes (i.e., arithmetic, geometric and harmonic means) of hydraulic parameters are appropriate in representing large scale evaporation processes, and (2) how the applicability of these simple averaging schemes depends on the time scale of evaporation processes in heterogeneous soils. Multiple realizations of local evaporation processes are carried out using HYDRUS-1D computational code (Simunek et al, 1998). The three averaging schemes of soil hydraulic parameters were used to simulate the cumulative flux exchange, which is then compared with the large scale average cumulative flux. The sensitivity of the relative errors to the time frame of evaporation processes is also discussed.

  12. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  13. Visualization, documentation, analysis, and communication of large scale gene regulatory networks

    PubMed Central

    Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid

    2009-01-01

    Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046

  14. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT. PMID:27036438

  15. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  16. Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing

    SciTech Connect

    Brumfield, Brian E.; Phillips, Mark C.

    2015-07-01

    A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.

  17. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect

    Boehm, Swen; Elwasif, Wael R; Naughton, III, Thomas J; Vallee, Geoffroy R

    2014-01-01

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  18. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  19. Coupling between convection and large-scale circulation

    NASA Astrophysics Data System (ADS)

    Becker, T.; Stevens, B. B.; Hohenegger, C.

    2014-12-01

    The ultimate drivers of convection - radiation, tropospheric humidity and surface fluxes - are altered both by the large-scale circulation and by convection itself. A quantity to which all drivers of convection contribute is moist static energy, or gross moist stability, respectively. Therefore, a variance analysis of the moist static energy budget in radiative-convective equilibrium helps understanding the interaction of precipitating convection and the large-scale environment. In addition, this method provides insights concerning the impact of convective aggregation on this coupling. As a starting point, the interaction is analyzed with a general circulation model, but a model intercomparison study using a hierarchy of models is planned. Effective coupling parameters will be derived from cloud resolving models and these will in turn be related to assumptions used to parameterize convection in large-scale models.

  20. Large-scale current systems in the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Brace, L. H.

    1981-01-01

    The occasional observation of large-scale horizontal magnetic fields within the dayside ionosphere of Venus by the flux gate magnetometer on the Pioneer Venus orbiter suggests the presence of large-scale current systems. Using the measured altitude profiles of the magnetic field and the electron density and temperature, together with the previously reported neutral atmosphere density and composition, it is found that the local ionosphere can be described at these times by a simple steady state model which treats the unobserved quantities, such as the electric field, as parameters. When the model is appropriate, the altitude profiles of the ion and electron velocities and the currents along the satellite trajectory can be inferred. These results elucidate the configurations and sources of the ionospheric current systems which produce the observed large-scale magnetic fields, and in particular illustrate the effect of ion-neutral coupling in the determination of the current system at low altitudes.

  1. Do Large-Scale Topological Features Correlate with Flare Properties?

    NASA Astrophysics Data System (ADS)

    DeRosa, Marc L.; Barnes, Graham

    2016-05-01

    In this study, we aim to identify whether the presence or absence of particular topological features in the large-scale coronal magnetic field are correlated with whether a flare is confined or eruptive. To this end, we first determine the locations of null points, spine lines, and separatrix surfaces within the potential fields associated with the locations of several strong flares from the current and previous sunspot cycles. We then validate the topological skeletons against large-scale features in observations, such as the locations of streamers and pseudostreamers in coronagraph images. Finally, we characterize the topological environment in the vicinity of the flaring active regions and identify the trends involving their large-scale topologies and the properties of the associated flares.

  2. The three-point function as a probe of models for large-scale structure

    SciTech Connect

    Frieman, J.A.; Gaztanaga, E.

    1993-06-19

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard {Omega} = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R{sub p} {approximately}20 h{sup {minus}1} Mpc, e.g., low-matter-density (non-zero cosmological constant) models, {open_quote}tilted{close_quote} primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q{sub J} at large scales, r {approx_gt} R{sub p}. Current observational constraints on the three-point amplitudes Q{sub 3} and S{sub 3} can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  3. The three-point function as a probe of models for large-scale structure

    SciTech Connect

    Frieman, J.A. ); Gaztanaga, E. )

    1993-06-19

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard [Omega] = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R[sub p] [approximately]20 h[sup [minus]1] Mpc, e.g., low-matter-density (non-zero cosmological constant) models, [open quote]tilted[close quote] primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q[sub J] at large scales, r [approx gt] R[sub p]. Current observational constraints on the three-point amplitudes Q[sub 3] and S[sub 3] can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  4. Open-loop quantum control as a resource for secure communications

    NASA Astrophysics Data System (ADS)

    Pastorello, Davide

    2016-05-01

    Properties of unitary time evolution of quantum systems can be applied to define quantum cryptographic protocols. Dynamics of a qubit can be exploited as a data encryption/decryption procedure by means of timed measurements, implementation of an open-loop control scheme over a qubit increases robustness of a protocol employing this principle.

  5. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  6. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  7. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  8. Large-scale ER-damper for seismic protection

    NASA Astrophysics Data System (ADS)

    McMahon, Scott; Makris, Nicos

    1997-05-01

    A large scale electrorheological (ER) damper has been designed, constructed, and tested. The damper consists of a main cylinder and a piston rod that pushes an ER-fluid through a number of stationary annular ducts. This damper is a scaled- up version of a prototype ER-damper which has been developed and extensively studied in the past. In this paper, results from comprehensive testing of the large-scale damper are presented, and the proposed theory developed for predicting the damper response is validated.

  9. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  10. Clearing and Labeling Techniques for Large-Scale Biological Tissues

    PubMed Central

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-01-01

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  11. Large-scale liquid scintillation detectors for solar neutrinos

    NASA Astrophysics Data System (ADS)

    Benziger, Jay B.; Calaprice, Frank P.

    2016-04-01

    Large-scale liquid scintillation detectors are capable of providing spectral yields of the low energy solar neutrinos. These detectors require > 100 tons of liquid scintillator with high optical and radiopurity. In this paper requirements for low-energy neutrino detection by liquid scintillation are specified and the procedures to achieve low backgrounds in large-scale liquid scintillation detectors for solar neutrinos are reviewed. The designs, operations and achievements of Borexino, KamLAND and SNO+ in measuring the low-energy solar neutrino fluxes are reviewed.

  12. Contribution of peculiar shear motions to large-scale structure

    NASA Technical Reports Server (NTRS)

    Mueler, Hans-Reinhard; Treumann, Rudolf A.

    1994-01-01

    Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.

  13. Clearing and Labeling Techniques for Large-Scale Biological Tissues.

    PubMed

    Seo, Jinyoung; Choe, Minjin; Kim, Sung-Yon

    2016-06-30

    Clearing and labeling techniques for large-scale biological tissues enable simultaneous extraction of molecular and structural information with minimal disassembly of the sample, facilitating the integration of molecular, cellular and systems biology across different scales. Recent years have witnessed an explosive increase in the number of such methods and their applications, reflecting heightened interest in organ-wide clearing and labeling across many fields of biology and medicine. In this review, we provide an overview and comparison of existing clearing and labeling techniques and discuss challenges and opportunities in the investigations of large-scale biological systems. PMID:27239813

  14. Links between small-scale dynamics and large-scale averages and its implication to large-scale hydrology

    NASA Astrophysics Data System (ADS)

    Gong, L.

    2012-04-01

    pixels that could be used to represent the temporal dynamic of a large spatial domain. The derived points or pixels allow a decomposition of the average climate dynamic to a number of patterns of the internal variations and change signals. The coupling of sub-sets of climate input to a set of hydrological response units maintains the non-linear nature of the hydrological system. The possibility that the behavior of a large river basin could be studied from a small sub-set of the basin area, indicates that model setup, calibration and evaluation are not necessarily tied with downstream gauges. Instead, local observations could be used to setup and evaluate large-scale models. This work could potentially open up possibilities for better setting up and evaluate large-scale hydrological models, and study the climate-hydrology interaction with limited data. In the same time, the fact that multiple sets of points or pixels could equally well represent the dynamic of a large domain agreed with the equifinality theory: there exist multiple realisms of different climate-hydrology setttings that could lead to same average behavior. The difference among the multiple sets represents the inherent heterogeneity of the domain. This could indicate new ways to bracket uncertainty for current and future hydrological simulations.

  15. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  16. Assuring Quality in Large-Scale Online Course Development

    ERIC Educational Resources Information Center

    Parscal, Tina; Riemer, Deborah

    2010-01-01

    Student demand for online education requires colleges and universities to rapidly expand the number of courses and programs offered online while maintaining high quality. This paper outlines two universities respective processes to assure quality in large-scale online programs that integrate instructional design, eBook custom publishing, Quality…

  17. Large-scale search for dark-matter axions

    SciTech Connect

    Hagmann, C.A., LLNL; Kinion, D.; Stoeffl, W.; Van Bibber, K.; Daw, E.J.; McBride, J.; Peng, H.; Rosenberg, L.J.; Xin, H.; Laveigne, J.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Moltz, D.M.; Powell, J.; Clarke, J.; Nezrick, F.A.; Turner, M.S.; Golubev, N.A.; Kravchuk, L.V.

    1998-01-01

    Early results from a large-scale search for dark matter axions are presented. In this experiment, axions constituting our dark-matter halo may be resonantly converted to monochromatic microwave photons in a high-Q microwave cavity permeated by a strong magnetic field. Sensitivity at the level of one important axion model (KSVZ) has been demonstrated.

  18. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  19. Over-driven control for large-scale MR dampers

    NASA Astrophysics Data System (ADS)

    Friedman, A. J.; Dyke, S. J.; Phillips, B. M.

    2013-04-01

    As semi-active electro-mechanical control devices increase in scale for use in real-world civil engineering applications, their dynamics become increasingly complicated. Control designs that are able to take these characteristics into account will be more effective in achieving good performance. Large-scale magnetorheological (MR) dampers exhibit a significant time lag in their force-response to voltage inputs, reducing the efficacy of typical controllers designed for smaller scale devices where the lag is negligible. A new control algorithm is presented for large-scale MR devices that uses over-driving and back-driving of the commands to overcome the challenges associated with the dynamics of these large-scale MR dampers. An illustrative numerical example is considered to demonstrate the controller performance. Via simulations of the structure using several seismic ground motions, the merits of the proposed control strategy to achieve reductions in various response parameters are examined and compared against several accepted control algorithms. Experimental evidence is provided to validate the improved capabilities of the proposed controller in achieving the desired control force levels. Through real-time hybrid simulation (RTHS), the proposed controllers are also examined and experimentally evaluated in terms of their efficacy and robust performance. The results demonstrate that the proposed control strategy has superior performance over typical control algorithms when paired with a large-scale MR damper, and is robust for structural control applications.

  20. Large-scale search for dark-matter axions

    SciTech Connect

    Kinion, D; van Bibber, K

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a ''second-generation'' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  1. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  2. Global smoothing and continuation for large-scale molecular optimization

    SciTech Connect

    More, J.J.; Wu, Zhijun

    1995-10-01

    We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.

  3. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  4. Individual Skill Differences and Large-Scale Environmental Learning

    ERIC Educational Resources Information Center

    Fields, Alexa W.; Shelton, Amy L.

    2006-01-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited…

  5. Mixing Metaphors: Building Infrastructure for Large Scale School Turnaround

    ERIC Educational Resources Information Center

    Peurach, Donald J.; Neumerski, Christine M.

    2015-01-01

    The purpose of this analysis is to increase understanding of the possibilities and challenges of building educational infrastructure--the basic, foundational structures, systems, and resources--to support large-scale school turnaround. Building educational infrastructure often exceeds the capacity of schools, districts, and state education…

  6. Large-scale drift and Rossby wave turbulence

    NASA Astrophysics Data System (ADS)

    Harper, K. L.; Nazarenko, S. V.

    2016-08-01

    We study drift/Rossby wave turbulence described by the large-scale limit of the Charney–Hasegawa–Mima equation. We define the zonal and meridional regions as Z:= \\{{k} :| {k}y| \\gt \\sqrt{3}{k}x\\} and M:= \\{{k} :| {k}y| \\lt \\sqrt{3}{k}x\\} respectively, where {k}=({k}x,{k}y) is in a plane perpendicular to the magnetic field such that k x is along the isopycnals and k y is along the plasma density gradient. We prove that the only types of resonant triads allowed are M≤ftrightarrow M+Z and Z≤ftrightarrow Z+Z. Therefore, if the spectrum of weak large-scale drift/Rossby turbulence is initially in Z it will remain in Z indefinitely. We present a generalised Fjørtoft’s argument to find transfer directions for the quadratic invariants in the two-dimensional {k}-space. Using direct numerical simulations, we test and confirm our theoretical predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with cases when turbulence is strong. We demonstrate that the qualitative features of the large-scale limit survive when the typical turbulent scale is only moderately greater than the Larmor/Rossby radius.

  7. Large Scale Field Campaign Contributions to Soil Moisture Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large-scale field experiments have been an essential component of soil moisture remote sensing for over two decades. They have provided test beds for both the technology and science necessary to develop and refine satellite mission concepts. The high degree of spatial variability of soil moisture an...

  8. Large-scale V/STOL testing. [in wind tunnels

    NASA Technical Reports Server (NTRS)

    Koenig, D. G.; Aiken, T. N.; Aoyagi, K.; Falarski, M. D.

    1977-01-01

    Several facets of large-scale testing of V/STOL aircraft configurations are discussed with particular emphasis on test experience in the Ames 40- by 80-foot wind tunnel. Examples of powered-lift test programs are presented in order to illustrate tradeoffs confronting the planner of V/STOL test programs. It is indicated that large-scale V/STOL wind-tunnel testing can sometimes compete with small-scale testing in the effort required (overall test time) and program costs because of the possibility of conducting a number of different tests with a single large-scale model where several small-scale models would be required. The benefits of both high- and full-scale Reynolds numbers, more detailed configuration simulation, and number and type of onboard measurements increase rapidly with scale. Planning must be more detailed at large scale in order to balance the trade-offs between the increased costs, as number of measurements and model configuration variables increase and the benefits of larger amounts of information coming out of one test.

  9. Current Scientific Issues in Large Scale Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, T. L. (Compiler)

    1986-01-01

    Topics in large scale atmospheric dynamics are discussed. Aspects of atmospheric blocking, the influence of transient baroclinic eddies on planetary-scale waves, cyclogenesis, the effects of orography on planetary scale flow, small scale frontal structure, and simulations of gravity waves in frontal zones are discussed.

  10. Large-Scale Machine Learning for Classification and Search

    ERIC Educational Resources Information Center

    Liu, Wei

    2012-01-01

    With the rapid development of the Internet, nowadays tremendous amounts of data including images and videos, up to millions or billions, can be collected for training machine learning models. Inspired by this trend, this thesis is dedicated to developing large-scale machine learning techniques for the purpose of making classification and nearest…

  11. Considerations for Managing Large-Scale Clinical Trials.

    ERIC Educational Resources Information Center

    Tuttle, Waneta C.; And Others

    1989-01-01

    Research management strategies used effectively in a large-scale clinical trial to determine the health effects of exposure to Agent Orange in Vietnam are discussed, including pre-project planning, organization according to strategy, attention to scheduling, a team approach, emphasis on guest relations, cross-training of personnel, and preparing…

  12. Ecosystem resilience despite large-scale altered hydro climatic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  13. Lessons from Large-Scale Renewable Energy Integration Studies: Preprint

    SciTech Connect

    Bird, L.; Milligan, M.

    2012-06-01

    In general, large-scale integration studies in Europe and the United States find that high penetrations of renewable generation are technically feasible with operational changes and increased access to transmission. This paper describes other key findings such as the need for fast markets, large balancing areas, system flexibility, and the use of advanced forecasting.

  14. Probabilistic Cuing in Large-Scale Environmental Search

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Gilchrist, Iain D.

    2010-01-01

    Finding an object in our environment is an important human ability that also represents a critical component of human foraging behavior. One type of information that aids efficient large-scale search is the likelihood of the object being in one location over another. In this study we investigated the conditions under which individuals respond to…

  15. Extracting Useful Semantic Information from Large Scale Corpora of Text

    ERIC Educational Resources Information Center

    Mendoza, Ray Padilla, Jr.

    2012-01-01

    Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…

  16. Efficient On-Demand Operations in Large-Scale Infrastructures

    ERIC Educational Resources Information Center

    Ko, Steven Y.

    2009-01-01

    In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…

  17. Large-Scale Environmental Influences on Aquatic Animal Health

    EPA Science Inventory

    In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...

  18. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  19. Implicit solution of large-scale radiation diffusion problems

    SciTech Connect

    Brown, P N; Graziani, F; Otero, I; Woodward, C S

    2001-01-04

    In this paper, we present an efficient solution approach for fully implicit, large-scale, nonlinear radiation diffusion problems. The fully implicit approach is compared to a semi-implicit solution method. Accuracy and efficiency are shown to be better for the fully implicit method on both one- and three-dimensional problems with tabular opacities taken from the LEOS opacity library.

  20. Resilience of Florida Keys coral communities following large scale disturbances

    EPA Science Inventory

    The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...

  1. Large Scale Survey Data in Career Development Research

    ERIC Educational Resources Information Center

    Diemer, Matthew A.

    2008-01-01

    Large scale survey datasets have been underutilized but offer numerous advantages for career development scholars, as they contain numerous career development constructs with large and diverse samples that are followed longitudinally. Constructs such as work salience, vocational expectations, educational expectations, work satisfaction, and…

  2. Polymers in 2D Turbulence: Suppression of Large Scale Fluctuations

    NASA Astrophysics Data System (ADS)

    Amarouchene, Y.; Kellay, H.

    2002-08-01

    Small quantities of a long chain molecule or polymer affect two-dimensional turbulence in unexpected ways. Their presence inhibits the transfers of energy to large scales causing their suppression in the energy density spectrum. This also leads to the change of the spectral properties of a passive scalar which turns out to be highly sensitive to the presence of energy transfers.

  3. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  4. International Large-Scale Assessments: What Uses, What Consequences?

    ERIC Educational Resources Information Center

    Johansson, Stefan

    2016-01-01

    Background: International large-scale assessments (ILSAs) are a much-debated phenomenon in education. Increasingly, their outcomes attract considerable media attention and influence educational policies in many jurisdictions worldwide. The relevance, uses and consequences of these assessments are often the focus of research scrutiny. Whilst some…

  5. Measurement, Sampling, and Equating Errors in Large-Scale Assessments

    ERIC Educational Resources Information Center

    Wu, Margaret

    2010-01-01

    In large-scale assessments, such as state-wide testing programs, national sample-based assessments, and international comparative studies, there are many steps involved in the measurement and reporting of student achievement. There are always sources of inaccuracies in each of the steps. It is of interest to identify the source and magnitude of…

  6. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  7. Large-Scale Networked Virtual Environments: Architecture and Applications

    ERIC Educational Resources Information Center

    Lamotte, Wim; Quax, Peter; Flerackers, Eddy

    2008-01-01

    Purpose: Scalability is an important research topic in the context of networked virtual environments (NVEs). This paper aims to describe the ALVIC (Architecture for Large-scale Virtual Interactive Communities) approach to NVE scalability. Design/methodology/approach: The setup and results from two case studies are shown: a 3-D learning environment…

  8. Decomposition and coordination of large-scale operations optimization

    NASA Astrophysics Data System (ADS)

    Cheng, Ruoyu

    Nowadays, highly integrated manufacturing has resulted in more and more large-scale industrial operations. As one of the most effective strategies to ensure high-level operations in modern industry, large-scale engineering optimization has garnered a great amount of interest from academic scholars and industrial practitioners. Large-scale optimization problems frequently occur in industrial applications, and many of them naturally present special structure or can be transformed to taking special structure. Some decomposition and coordination methods have the potential to solve these problems at a reasonable speed. This thesis focuses on three classes of large-scale optimization problems: linear programming, quadratic programming, and mixed-integer programming problems. The main contributions include the design of structural complexity analysis for investigating scaling behavior and computational efficiency of decomposition strategies, novel coordination techniques and algorithms to improve the convergence behavior of decomposition and coordination methods, as well as the development of a decentralized optimization framework which embeds the decomposition strategies in a distributed computing environment. The complexity study can provide fundamental guidelines to practical applications of the decomposition and coordination methods. In this thesis, several case studies imply the viability of the proposed decentralized optimization techniques for real industrial applications. A pulp mill benchmark problem is used to investigate the applicability of the LP/QP decentralized optimization strategies, while a truck allocation problem in the decision support of mining operations is used to study the MILP decentralized optimization strategies.

  9. Response of Tradewind Cumuli to Large-Scale Processes.

    NASA Astrophysics Data System (ADS)

    Soong, S.-T.; Ogura, Y.

    1980-09-01

    The two-dimensional slab-symmetric numerical cloud model used by Soong and Ogura (1973) for studying the evolution of an isolated cumulus cloud is extended to investigate the statistical properties of cumulus clouds which would be generated under a given large-scale forcing composed of the horizontal advection of temperature and water vapor mixing ratio, vertical velocity, sea surface temperature and radiative cooling. Random disturbances of small amplitude are introduced into the model at low levels to provide random motion for cloud formation.The model is applied to a case of suppressed weather conditions during BOMEX for the period 22-23 June 1969 when a nearly steady state prevailed. The composited temperature and mixing ratio profiles of these two days are used as initial conditions and the time-independent large-scale forcing terms estimated from the observations are applied to the model. The result of numerical integration shows that a number of small clouds start developing after 1 h. Some of them decay quickly, but some of them develop and reach the tradewind inversion. After a few hours of simulation, the vertical profiles of the horizontally averaged temperature and moisture are found to deviate only slightly from the observed profiles, indicating that the large-scale effect and the feedback effects of clouds on temperature and mixing ratio reach an equilibrium state. The three major components of the cloud feedback effect, i.e., condensation, evaporation and vertical fluxes associated with the clouds, are determined from the model output. The vertical profiles of vertical heat and moisture fluxes in the subcloud layer in the model are found to be in general agreement with the observations.Sensitivity tests of the model are made for different magnitudes of the large-scale vertical velocity. The most striking result is that the temperature and humidity in the cloud layer below the inversion do not change significantly in spite of a relatively large

  10. A survey on routing protocols for large-scale wireless sensor networks.

    PubMed

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed. PMID:22163808

  11. Ultra-large-scale Cosmology in Next-generation Experiments with Single Tracers

    NASA Astrophysics Data System (ADS)

    Alonso, David; Bull, Philip; Ferreira, Pedro G.; Maartens, Roy; Santos, Mário G.

    2015-12-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for the most relevant future large-scale structure experiments: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and radio continuum surveys. Our forecasts show that next-generation experiments, reaching out to redshifts z≃ 4, will not be able to detect previously undetected general-relativistic effects by using individual tracers of the density field, although the contribution of weak lensing magnification on large scales should be clearly detectable. We also perform a rigorous joint forecast for the detection of primordial non-Gaussianity through the excess power it produces in the clustering of biased tracers on large scales, finding that uncertainties of σ ({f}{{NL}})∼ 1-2 should be achievable. We study the level of degeneracy of these large-scale effects with several tracer-dependent nuisance parameters, quantifying the minimal priors on the latter that are needed for an optimal measurement of the former. Finally, we discuss the systematic effects that must be mitigated to achieve this level of sensitivity, and some alternative approaches that should help to improve the constraints. The computational tools developed to carry out this study, which requires the full-sky computation of the theoretical angular power spectra for {O}(100) redshift bins, as well as realistic models of the luminosity function, are publicly available at http://intensitymapping.physics.ox.ac.uk/codes.html.

  12. Opening up three quantum boxes causes classically undetectable wavefunction collapse

    PubMed Central

    George, Richard E.; Robledo, Lucio M.; Maroney, Owen J. E.; Blok, Machiel S.; Bernien, Hannes; Markham, Matthew L.; Twitchen, Daniel J.; Morton, John J. L.; Briggs, G. Andrew D.; Hanson, Ronald

    2013-01-01

    One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here, we implement the “three-box” quantum game [Aharonov Y, et al. (1991) J Phys A Math Gen 24(10):2315–2328] by using state-of-the-art control and measurement of the nitrogen vacancy center in diamond. In this protocol, the back-action of quantum measurements adds no detectable disturbance to the classical description of the game. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure; however, classical observers are unable to invoke measurement-induced disturbance to explain the discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by ≳7.8 standard deviations, allowing us to exclude the property of macroscopic state definiteness from our system. Our experiment is then equivalent to the test of quantum noncontextuality [Kochen S, Specker E (1967) J Math Mech 17(1):59–87] that successfully addresses the measurement detectability loophole. PMID:23412336

  13. Linearity versus complete positivity of the evolution of open quantum systems

    NASA Astrophysics Data System (ADS)

    Ceballos, Russell R.

    The title may be a bit misleading. Perhaps, "On the Complete Positivity of Reduced Quantum Dynamics," would be a more fitting title. Determining whether or not completely positive (CP) maps are required to describe open system quantum dynamics is an extremely important issue concerning the fundamental mathematical foundations of QM, as well as many other areas of physics. it had been typically believed that only CP maps actually describe the dynamical evolution of open quantum systems, however there has been speculation as to whether this is a strict constraint on the mathematical and physical structure of stochastic quantum dynamical maps. The objective of this thesis is to demonstrate that given a particular unitary operator, an initial system state, a final system state, and the dimension of the environment state, there exists no CP map with a composite system-environment, product initial state that is compatible with the given constraints on the reduced quantum dynamics of the system under investigation.

  14. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

    NASA Astrophysics Data System (ADS)

    Keleş, Ümit; Liedke, Bartosz; Heinig, Karl-Heinz; Bulutay, Ceyhun

    2013-11-01

    Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

  15. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

    SciTech Connect

    Keleş, Ümit; Bulutay, Ceyhun; Liedke, Bartosz; Heinig, Karl-Heinz

    2013-11-11

    Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

  16. Large-scale production of Graphene Nanoribbons with controlled width: Electrical Properties of Graphene Nanoribbon Films

    NASA Astrophysics Data System (ADS)

    Berry, Vikas; Mohanty, Nihar; Nagaraja, Ashvin; Moore, David

    2011-03-01

    In this talk, we will demonstrate a novel large scale production (107 ribbons/ sec) scheme for several microns long, smooth-edged graphene nanoribbons (GNRs) with controlled widths (from 5 -- 50 nm). We will then present detailed structural, optical and electrical properties of GNR-films ~ 100 nm thick produced from 5, 15, and 45 nm wide GNRs; including their band-gap evolution and electrical transport mechanism. The high throughput method to synthesize GNR of high-quality will be a quantum leap in the graphene research. The work indents to bridge the gaps in the understanding of monodisperse-GNR film properties. NSF CMMI 0939523.

  17. Large-scale two-dimensional MoS₂ photodetectors by magnetron sputtering.

    PubMed

    Ling, Z P; Yang, R; Chai, J W; Wang, S J; Leong, W S; Tong, Y; Lei, D; Zhou, Q; Gong, X; Chi, D Z; Ang, K-W

    2015-05-18

    We report on the demonstration of photodetectors based on large scale two-dimensional molybdenum disulfide (MoS2) transition metal dichalcogenides. Excellent film uniformity and precise control of the MoS2 thickness down to a monolayer (~0.75nm) were achieved by magnetron sputtering synthesis approach. In particular, the photodetectors integrated with five MoS2 monolayers exhibit a high photoresponsivity of 1.8 A/W, an external quantum efficiency exceeding 260%, and a photodetectivity of ~5 x 10(8) Jones for a wavelength of 850 nm, surpassing the performance of mechanically exfoliated based photodetectors. PMID:26074606

  18. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations. PMID:27499026

  19. Real tunneling geometries and the large-scale topology of the universe

    SciTech Connect

    Gibbons, G.W. ); Hartle, J.B. )

    1990-10-15

    If the topology and geometry of spacetime are quantum-mechanically variable, then the particular classical large-scale topology and geometry observed in our universe must be statistical predictions of its initial condition. This paper examines the predictions of the no boundary'' initial condition for the present large-scale topology and geometry. Finite-action real tunneling solutions of Einstein's equation are important for such predictions. These consist of compact Riemannian (Euclidean) geometries joined to a Lorentzian cosmological geometry across a spacelike surface of vanishing extrinsic curvature. The classification of such solutions is discussed and general constraints on their topology derived. For example, it is shown that, if the Euclidean Ricci tensor is positive, then a real tunneling solution can nucleate only a single connected Lorentzian spacetime (the unique conception theorem). Explicit examples of real tunneling solutions driven by a cosmological constant are exhibited and their implications for cosmic baldness described. It is argued that the most probable large-scale spacetime predicted by the real tunneling solutions of the no-boundary'' initial condition has the topology {bold R}{times}{ital S}{sup 3} with the de Sitter metric.

  20. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  1. Large-scale quantification of CVD graphene surface coverage

    NASA Astrophysics Data System (ADS)

    Ambrosi, Adriano; Bonanni, Alessandra; Sofer, Zdeněk; Pumera, Martin

    2013-02-01

    The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale fabrication of graphene by the CVD process.The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale

  2. i QIST: An open source continuous-time quantum Monte Carlo impurity solver toolkit

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Meng, Zi Yang; Du, Liang; Werner, Philipp; Dai, Xi

    2015-10-01

    Quantum impurity solvers have a broad range of applications in theoretical studies of strongly correlated electron systems. Especially, they play a key role in dynamical mean-field theory calculations of correlated lattice models and realistic materials. Therefore, the development and implementation of efficient quantum impurity solvers is an important task. In this paper, we present an open source interacting quantum impurity solver toolkit (dubbed i QIST). This package contains several highly optimized quantum impurity solvers which are based on the hybridization expansion continuous-time quantum Monte Carlo algorithm, as well as some essential pre- and post-processing tools. We first introduce the basic principle of continuous-time quantum Monte Carlo algorithm and then discuss the implementation details and optimization strategies. The software framework, major features, and installation procedure for i QIST are also explained. Finally, several simple tutorials are presented in order to demonstrate the usage and power of i QIST.

  3. Real-time transport in open quantum systems from PT-symmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elenewski, Justin E.; Chen, Hanning

    2014-08-01

    Nanoscale electronic transport is of intense technological interest, with applications ranging from semiconducting devices and molecular junctions to charge migration in biological systems. Most explicit theoretical approaches treat transport using a combination of density functional theory (DFT) and nonequilibrium Green's functions. This is a static formalism, with dynamic response properties accommodated only through complicated extensions. To circumvent this limitation, the carrier density may be propagated using real-time time-dependent DFT (RT-TDDFT), with boundary conditions corresponding to an open quantum system. Complex absorbing potentials can emulate outgoing particles at the simulation boundary, although these do not account for introduction of charge density. It is demonstrated that the desired positive particle flux is afforded by a class of PT-symmetric generating potentials that are characterized by anisotropic transmission resonances. These potentials add density every time a particle traverses the cell boundary, and may be used to engineer a continuous pulse train for incident packets. This is a first step toward developing a complete transport formalism unique to RT-TDDFT.

  4. LARGE-SCALE MOTIONS IN THE PERSEUS GALAXY CLUSTER

    SciTech Connect

    Simionescu, A.; Werner, N.; Urban, O.; Allen, S. W.; Fabian, A. C.; Sanders, J. S.; Mantz, A.; Nulsen, P. E. J.; Takei, Y.

    2012-10-01

    By combining large-scale mosaics of ROSAT PSPC, XMM-Newton, and Suzaku X-ray observations, we present evidence for large-scale motions in the intracluster medium of the nearby, X-ray bright Perseus Cluster. These motions are suggested by several alternating and interleaved X-ray bright, low-temperature, low-entropy arcs located along the east-west axis, at radii ranging from {approx}10 kpc to over a Mpc. Thermodynamic features qualitatively similar to these have previously been observed in the centers of cool-core clusters, and were successfully modeled as a consequence of the gas sloshing/swirling motions induced by minor mergers. Our observations indicate that such sloshing/swirling can extend out to larger radii than previously thought, on scales approaching the virial radius.

  5. Generating Large-Scale Longitudinal Data Resources for Aging Research

    PubMed Central

    Hofer, Scott M.

    2011-01-01

    Objectives. The need for large studies and the types of large-scale data resources (LSDRs) are discussed along with their general scientific utility, role in aging research, and affordability. The diversification of approaches to large-scale data resourcing is described in order to facilitate their use in aging research. Methods. The need for LSDRs is discussed in terms of (a) large sample size; (b) longitudinal design; (c) as platforms for additional investigator-initiated research projects; and (d) broad-based access to core genetic, biological, and phenotypic data. Discussion. It is concluded that a “lite-touch, lo-tech, lo-cost” approach to LSDRs is a viable strategy for the development of LSDRs and would enhance the likelihood of LSDRs being established which are dedicated to the wide range of important aging-related issues. PMID:21743049

  6. Lagrangian space consistency relation for large scale structure

    NASA Astrophysics Data System (ADS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.

  7. Instrumentation Development for Large Scale Hypersonic Inflatable Aerodynamic Decelerator Characterization

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2011-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.

  8. The Large Scale Synthesis of Aligned Plate Nanostructures.

    PubMed

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-01-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ' phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential. PMID:27439672

  9. Large-scale processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, A. P.

    1994-01-01

    Theoretical models of the structure of a minimum mass solar nebula should be able to provide the physical context to help evaluate the efficacy of any mechanism proposed for the formation of chondrules or Ca, Al-rich inclusions (CAI's). These models generally attempt to use the equations of radiative hydrodynamics to calculate the large-scale structure of the solar nebula throughout the planet-forming region. In addition, it has been suggested that chondrules and CAI's (=Ch&CAI's) may have been formed as a direct result of large-scale nebula processing such as passage of material through high-temperature regions associated with the global structure of the nebula. In this report we assess the status of global models of solar nebula structure and of various related mechanisms that have been suggested for Ch and CAI formation.

  10. Planar Doppler Velocimetry for Large-Scale Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    McKenzie, Robert L.

    1998-01-01

    Planar Doppler Velocimetry (PDV) concepts using a pulsed laser are described and the obtainable minimum resolved velocities in large-scale wind tunnels are evaluated. Velocity-field measurements are shown to be possible at ranges of tens of meters and with single pulse resolutions as low as 2 m/s. Velocity measurements in the flow of a low-speed, turbulent jet are reported that demonstrate the ability of PDV to acquire both average velocity fields and their fluctuation amplitudes, using procedures that are compatible with large-scale facility operations. The advantages of PDV over current Laser Doppler Anemometry and Particle Image Velocimetry techniques appear to be significant for applications to large facilities.

  11. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  12. Large Scale Diffuse X-ray Emission from Abell 3571

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Observations of the Luman alpha forest suggest that there are many more baryons at high redshift than we can find in the Universe nearby. The largest known concentration of baryons in the nearby Universe is the Shapley supercluster. We scanned the Shapley supercluster to search for large scale diffuse emission with the Rossi X-ray Timing Explorer (RXTE), and found some evidence for such emission. Large scale diffuse emission may be associated to the supercluster, or the clusters of galaxies within the supercluster. In this paper we present results of scans near Abell 3571. We found that the sum of a cooling flow and an isothermal beta model adequately describes the X-ray emission from the cluster. Our results suggest that diffuse emission from A3571 extends out to about two virial radii. We briefly discuss the importance of the determination of the cut off radius of the beta model.

  13. Large Scale Deformation of the Western US Cordillera

    NASA Technical Reports Server (NTRS)

    Bennett, Richard A.

    2001-01-01

    Destructive earthquakes occur throughout the western US Cordillera (WUSC), not just within the San Andreas fault zone. But because we do not understand the present-day large-scale deformations of the crust throughout the WUSC, our ability to assess the potential for seismic hazards in this region remains severely limited. To address this problem, we are using a large collection of Global Positioning System (GPS) networks which spans the WUSC to precisely quantify present-day large-scale crustal deformations in a single uniform reference frame. Our work can roughly be divided into an analysis of the GPS observations to infer the deformation field across and within the entire plate boundary zone and an investigation of the implications of this deformation field regarding plate boundary dynamics.

  14. The Large Scale Synthesis of Aligned Plate Nanostructures

    PubMed Central

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-01-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ′ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential. PMID:27439672

  15. Large scale meteorological influence during the Geysers 1979 field experiment

    SciTech Connect

    Barr, S.

    1980-01-01

    A series of meteorological field measurements conducted during July 1979 near Cobb Mountain in Northern California reveals evidence of several scales of atmospheric circulation consistent with the climatic pattern of the area. The scales of influence are reflected in the structure of wind and temperature in vertically stratified layers at a given observation site. Large scale synoptic gradient flow dominates the wind field above about twice the height of the topographic ridge. Below that there is a mixture of effects with evidence of a diurnal sea breeze influence and a sublayer of katabatic winds. The July observations demonstrate that weak migratory circulations in the large scale synoptic meteorological pattern have a significant influence on the day-to-day gradient winds and must be accounted for in planning meteorological programs including tracer experiments.

  16. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  17. Large-scale objective phenotyping of 3D facial morphology

    PubMed Central

    Hammond, Peter; Suttie, Michael

    2012-01-01

    Abnormal phenotypes have played significant roles in the discovery of gene function, but organized collection of phenotype data has been overshadowed by developments in sequencing technology. In order to study phenotypes systematically, large-scale projects with standardized objective assessment across populations are considered necessary. The report of the 2006 Human Variome Project meeting recommended documentation of phenotypes through electronic means by collaborative groups of computational scientists and clinicians using standard, structured descriptions of disease-specific phenotypes. In this report, we describe progress over the past decade in 3D digital imaging and shape analysis of the face, and future prospects for large-scale facial phenotyping. Illustrative examples are given throughout using a collection of 1107 3D face images of healthy controls and individuals with a range of genetic conditions involving facial dysmorphism. PMID:22434506

  18. Electron drift in a large scale solid xenon

    SciTech Connect

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  19. Electron drift in a large scale solid xenon

    DOE PAGESBeta

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  20. Large-scale micropropagation system of plant cells.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    Plant micropropagation is an efficient method of propagating disease-free, genetically uniform and massive amounts of plants in vitro. The scale-up of the whole process for plant micropropagation should be established by an economically feasible technology for large-scale production of them in appropriate bioreactors. It is necessary to design suitable bioreactor configuration which can provide adequate mixing and mass transfer while minimizing the intensity of shear stress and hydrodynamic pressure. Automatic selection of embryogenic calli and regenerated plantlets using image analysis system should be associated with the system. The aim of this chapter is to identify the problems related to large-scale plant micropropagation via somatic embryogenesis, and to summarize the micropropagation technology and computer-aided image analysis. Viscous additive supplemented culture, which is including the successful results obtained by us for callus regeneration, is also introduced. PMID:15453194

  1. Individual skill differences and large-scale environmental learning.

    PubMed

    Fields, Alexa W; Shelton, Amy L

    2006-05-01

    Spatial skills are known to vary widely among normal individuals. This project was designed to address whether these individual differences are differentially related to large-scale environmental learning from route (ground-level) and survey (aerial) perspectives. Participants learned two virtual environments (route and survey) with limited exposure and tested on judgments about relative locations of objects. They also performed a series of spatial and nonspatial component skill tests. With limited learning, performance after route encoding was worse than performance after survey encoding. Furthermore, performance after route and survey encoding appeared to be preferentially linked to perspective and object-based transformations, respectively. Together, the results provide clues to how different skills might be engaged by different individuals for the same goal of learning a large-scale environment. PMID:16719662

  2. Large-scale flow generation in turbulent convection

    PubMed Central

    Krishnamurti, Ruby; Howard, Louis N.

    1981-01-01

    In a horizontal layer of fluid heated from below and cooled from above, cellular convection with horizontal length scale comparable to the layer depth occurs for small enough values of the Rayleigh number. As the Rayleigh number is increased, cellular flow disappears and is replaced by a random array of transient plumes. Upon further increase, these plumes drift in one direction near the bottom and in the opposite direction near the top of the layer with the axes of plumes tilted in such a way that horizontal momentum is transported upward via the Reynolds stress. With the onset of this large-scale flow, the largest scale of motion has increased from that comparable to the layer depth to a scale comparable to the layer width. The conditions for occurrence and determination of the direction of this large-scale circulation are described. Images PMID:16592996

  3. The Large Scale Synthesis of Aligned Plate Nanostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Nash, Philip; Liu, Tian; Zhao, Naiqin; Zhu, Shengli

    2016-07-01

    We propose a novel technique for the large-scale synthesis of aligned-plate nanostructures that are self-assembled and self-supporting. The synthesis technique involves developing nanoscale two-phase microstructures through discontinuous precipitation followed by selective etching to remove one of the phases. The method may be applied to any alloy system in which the discontinuous precipitation transformation goes to completion. The resulting structure may have many applications in catalysis, filtering and thermal management depending on the phase selection and added functionality through chemical reaction with the retained phase. The synthesis technique is demonstrated using the discontinuous precipitation of a γ‧ phase, (Ni, Co)3Al, followed by selective dissolution of the γ matrix phase. The production of the nanostructure requires heat treatments on the order of minutes and can be performed on a large scale making this synthesis technique of great economic potential.

  4. Large-scale behavior and statistical equilibria in rotating flows

    NASA Astrophysics Data System (ADS)

    Mininni, P. D.; Dmitruk, P.; Matthaeus, W. H.; Pouquet, A.

    2011-01-01

    We examine long-time properties of the ideal dynamics of three-dimensional flows, in the presence or not of an imposed solid-body rotation and with or without helicity (velocity-vorticity correlation). In all cases, the results agree with the isotropic predictions stemming from statistical mechanics. No accumulation of excitation occurs in the large scales, although, in the dissipative rotating case, anisotropy and accumulation, in the form of an inverse cascade of energy, are known to occur. We attribute this latter discrepancy to the linearity of the term responsible for the emergence of inertial waves. At intermediate times, inertial energy spectra emerge that differ somewhat from classical wave-turbulence expectations and with a trace of large-scale excitation that goes away for long times. These results are discussed in the context of partial two dimensionalization of the flow undergoing strong rotation as advocated by several authors.

  5. The workshop on iterative methods for large scale nonlinear problems

    SciTech Connect

    Walker, H.F.; Pernice, M.

    1995-12-01

    The aim of the workshop was to bring together researchers working on large scale applications with numerical specialists of various kinds. Applications that were addressed included reactive flows (combustion and other chemically reacting flows, tokamak modeling), porous media flows, cardiac modeling, chemical vapor deposition, image restoration, macromolecular modeling, and population dynamics. Numerical areas included Newton iterative (truncated Newton) methods, Krylov subspace methods, domain decomposition and other preconditioning methods, large scale optimization and optimal control, and parallel implementations and software. This report offers a brief summary of workshop activities and information about the participants. Interested readers are encouraged to look into an online proceedings available at http://www.usi.utah.edu/logan.proceedings. In this, the material offered here is augmented with hypertext abstracts that include links to locations such as speakers` home pages, PostScript copies of talks and papers, cross-references to related talks, and other information about topics addresses at the workshop.

  6. Prototype Vector Machine for Large Scale Semi-Supervised Learning

    SciTech Connect

    Zhang, Kai; Kwok, James T.; Parvin, Bahram

    2009-04-29

    Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of the kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.

  7. Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility

    NASA Astrophysics Data System (ADS)

    An, Qi; Goddard, William A.

    2015-09-01

    Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B4C ), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (˜200 000 atoms /cell ) reactive-molecular-dynamics simulations of shear deformations of B4C , using the quantum-mechanics-derived reactive force field simulation. We examined the (0001 )/⟨10 1 ¯ 0 ⟩ slip system related to deformation twinning and the (01 1 ¯ 1 ¯ )/⟨1 ¯ 101 ⟩ slip system related to amorphous band formation. We find that brittle failure in B4C arises from formation of higher density amorphous bands due to fracture of the icosahedra, a unique feature of these boron based materials. This leads to negative pressure and cavitation resulting in crack opening. Thus, to design ductile materials based on B4C we propose alloying aimed at promoting shear relaxation through intericosahedral slip that avoids icosahedral fracture.

  8. Large-Scale Optimization for Bayesian Inference in Complex Systems

    SciTech Connect

    Willcox, Karen; Marzouk, Youssef

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their

  9. Analysis plan for 1985 large-scale tests. Technical report

    SciTech Connect

    McMullan, F.W.

    1983-01-01

    The purpose of this effort is to assist DNA in planning for large-scale (upwards of 5000 tons) detonations of conventional explosives in the 1985 and beyond time frame. Primary research objectives were to investigate potential means to increase blast duration and peak pressures. This report identifies and analyzes several candidate explosives. It examines several charge designs and identifies advantages and disadvantages of each. Other factors including terrain and multiburst techniques are addressed as are test site considerations.

  10. Large-scale Alfvén vortices

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Pokhotelov, O. A.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-01

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  11. Large-Scale Weather Disturbances in Mars’ Southern Extratropics

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, Melinda A.

    2015-11-01

    Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre

  12. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  13. Cosmic string and formation of large scale structure.

    NASA Astrophysics Data System (ADS)

    Fang, L.-Z.; Xiang, S.-P.

    Cosmic string formed due to phase transition in the early universe may be the cause of galaxy formation and clustering. The advantage of string model is that it can give a consistent explanation of all observed results related to large scale structure, such as correlation functions of galaxies, clusters and superclusters, the existence of voids and/or bubbles, anisotropy of cosmic background radiation. A systematic review on string model has been done.

  14. Large-scale Alfvén vortices

    SciTech Connect

    Onishchenko, O. G.; Horton, W.; Scullion, E.; Fedun, V.

    2015-12-15

    The new type of large-scale vortex structures of dispersionless Alfvén waves in collisionless plasma is investigated. It is shown that Alfvén waves can propagate in the form of Alfvén vortices of finite characteristic radius and characterised by magnetic flux ropes carrying orbital angular momentum. The structure of the toroidal and radial velocity, fluid and magnetic field vorticity, the longitudinal electric current in the plane orthogonal to the external magnetic field are discussed.

  15. Climate: large-scale warming is not urban.

    PubMed

    Parker, David E

    2004-11-18

    Controversy has persisted over the influence of urban warming on reported large-scale surface-air temperature trends. Urban heat islands occur mainly at night and are reduced in windy conditions. Here we show that, globally, temperatures over land have risen as much on windy nights as on calm nights, indicating that the observed overall warming is not a consequence of urban development. PMID:15549087

  16. Relic vector field and CMB large scale anomalies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk

    2014-10-01

    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.

  17. Space transportation booster engine thrust chamber technology, large scale injector

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1993-01-01

    The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.

  18. Supporting large scale applications on networks of workstations

    NASA Technical Reports Server (NTRS)

    Cooper, Robert; Birman, Kenneth P.

    1989-01-01

    Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.

  19. Data management strategies for multinational large-scale systems biology projects

    PubMed Central

    Peuker, Martin; Regenbrecht, Christian R.A.

    2014-01-01

    Good accessibility of publicly funded research data is essential to secure an open scientific system and eventually becomes mandatory [Wellcome Trust will Penalise Scientists Who Don’t Embrace Open Access. The Guardian 2012]. By the use of high-throughput methods in many research areas from physics to systems biology, large data collections are increasingly important as raw material for research. Here, we present strategies worked out by international and national institutions targeting open access to publicly funded research data via incentives or obligations to share data. Funding organizations such as the British Wellcome Trust therefore have developed data sharing policies and request commitment to data management and sharing in grant applications. Increased citation rates are a profound argument for sharing publication data. Pre-publication sharing might be rewarded by a data citation credit system via digital object identifiers (DOIs) which have initially been in use for data objects. Besides policies and incentives, good practice in data management is indispensable. However, appropriate systems for data management of large-scale projects for example in systems biology are hard to find. Here, we give an overview of a selection of open-source data management systems proved to be employed successfully in large-scale projects. PMID:23047157

  20. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  1. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances

    PubMed Central

    Parker, V. Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  2. Reliability assessment for components of large scale photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir; Ghadimi, Noradin; Mirabbasi, Davar

    2014-10-01

    Photovoltaic (PV) systems have significantly shifted from independent power generation systems to a large-scale grid-connected generation systems in recent years. The power output of PV systems is affected by the reliability of various components in the system. This study proposes an analytical approach to evaluate the reliability of large-scale, grid-connected PV systems. The fault tree method with an exponential probability distribution function is used to analyze the components of large-scale PV systems. The system is considered in the various sequential and parallel fault combinations in order to find all realistic ways in which the top or undesired events can occur. Additionally, it can identify areas that the planned maintenance should focus on. By monitoring the critical components of a PV system, it is possible not only to improve the reliability of the system, but also to optimize the maintenance costs. The latter is achieved by informing the operators about the system component's status. This approach can be used to ensure secure operation of the system by its flexibility in monitoring system applications. The implementation demonstrates that the proposed method is effective and efficient and can conveniently incorporate more system maintenance plans and diagnostic strategies.

  3. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. PMID:25731989

  4. Large-scale flow generation by inhomogeneous helicity

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Brandenburg, A.

    2016-03-01

    The effect of kinetic helicity (velocity-vorticity correlation) on turbulent momentum transport is investigated. The turbulent kinetic helicity (pseudoscalar) enters the Reynolds stress (mirror-symmetric tensor) expression in the form of a helicity gradient as the coupling coefficient for the mean vorticity and/or the angular velocity (axial vector), which suggests the possibility of mean-flow generation in the presence of inhomogeneous helicity. This inhomogeneous helicity effect, which was previously confirmed at the level of a turbulence- or closure-model simulation, is examined with the aid of direct numerical simulations of rotating turbulence with nonuniform helicity sustained by an external forcing. The numerical simulations show that the spatial distribution of the Reynolds stress is in agreement with the helicity-related term coupled with the angular velocity, and that a large-scale flow is generated in the direction of angular velocity. Such a large-scale flow is not induced in the case of homogeneous turbulent helicity. This result confirms the validity of the inhomogeneous helicity effect in large-scale flow generation and suggests that a vortex dynamo is possible even in incompressible turbulence where there is no baroclinicity effect.

  5. Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances.

    PubMed

    Parker, V Thomas

    2015-01-01

    Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560

  6. Large-scale quantification of CVD graphene surface coverage.

    PubMed

    Ambrosi, Adriano; Bonanni, Alessandra; Sofer, Zdeněk; Pumera, Martin

    2013-03-21

    The extraordinary properties demonstrated for graphene and graphene-related materials can be fully exploited when a large-scale fabrication procedure is made available. Chemical vapor deposition (CVD) of graphene on Cu and Ni substrates is one of the most promising procedures to synthesize large-area and good quality graphene films. Parallel to the fabrication process, a large-scale quality monitoring technique is equally crucial. We demonstrate here a rapid and simple methodology that is able to probe the effectiveness of the growth process over a large substrate area for both Ni and Cu substrates. This method is based on inherent electrochemical signals generated by the underlying metal catalysts when fractures or discontinuities of the graphene film are present. The method can be applied immediately after the CVD growth process without the need for any graphene transfer step and represents a powerful quality monitoring technique for the assessment of large-scale fabrication of graphene by the CVD process. PMID:23396554

  7. Photorealistic large-scale urban city model reconstruction.

    PubMed

    Poullis, Charalambos; You, Suya

    2009-01-01

    The rapid and efficient creation of virtual environments has become a crucial part of virtual reality applications. In particular, civil and defense applications often require and employ detailed models of operations areas for training, simulations of different scenarios, planning for natural or man-made events, monitoring, surveillance, games, and films. A realistic representation of the large-scale environments is therefore imperative for the success of such applications since it increases the immersive experience of its users and helps reduce the difference between physical and virtual reality. However, the task of creating such large-scale virtual environments still remains a time-consuming and manual work. In this work, we propose a novel method for the rapid reconstruction of photorealistic large-scale virtual environments. First, a novel, extendible, parameterized geometric primitive is presented for the automatic building identification and reconstruction of building structures. In addition, buildings with complex roofs containing complex linear and nonlinear surfaces are reconstructed interactively using a linear polygonal and a nonlinear primitive, respectively. Second, we present a rendering pipeline for the composition of photorealistic textures, which unlike existing techniques, can recover missing or occluded texture information by integrating multiple information captured from different optical sensors (ground, aerial, and satellite). PMID:19423889

  8. Large scale structure in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard

    1986-01-01

    The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.

  9. Line segment extraction for large scale unorganized point clouds

    NASA Astrophysics Data System (ADS)

    Lin, Yangbin; Wang, Cheng; Cheng, Jun; Chen, Bili; Jia, Fukai; Chen, Zhonggui; Li, Jonathan

    2015-04-01

    Line segment detection in images is already a well-investigated topic, although it has received considerably less attention in 3D point clouds. Benefiting from current LiDAR devices, large-scale point clouds are becoming increasingly common. Most human-made objects have flat surfaces. Line segments that occur where pairs of planes intersect give important information regarding the geometric content of point clouds, which is especially useful for automatic building reconstruction and segmentation. This paper proposes a novel method that is capable of accurately extracting plane intersection line segments from large-scale raw scan points. The 3D line-support region, namely, a point set near a straight linear structure, is extracted simultaneously. The 3D line-support region is fitted by our Line-Segment-Half-Planes (LSHP) structure, which provides a geometric constraint for a line segment, making the line segment more reliable and accurate. We demonstrate our method on the point clouds of large-scale, complex, real-world scenes acquired by LiDAR devices. We also demonstrate the application of 3D line-support regions and their LSHP structures on urban scene abstraction.

  10. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  11. Large-scale data mining pilot project in human genome

    SciTech Connect

    Musick, R.; Fidelis, R.; Slezak, T.

    1997-05-01

    This whitepaper briefly describes a new, aggressive effort in large- scale data Livermore National Labs. The implications of `large- scale` will be clarified Section. In the short term, this effort will focus on several @ssion-critical questions of Genome project. We will adapt current data mining techniques to the Genome domain, to quantify the accuracy of inference results, and lay the groundwork for a more extensive effort in large-scale data mining. A major aspect of the approach is that we will be fully-staffed data warehousing effort in the human Genome area. The long term goal is strong applications- oriented research program in large-@e data mining. The tools, skill set gained will be directly applicable to a wide spectrum of tasks involving a for large spatial and multidimensional data. This includes applications in ensuring non-proliferation, stockpile stewardship, enabling Global Ecology (Materials Database Industrial Ecology), advancing the Biosciences (Human Genome Project), and supporting data for others (Battlefield Management, Health Care).

  12. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  13. New Large-scale Control Strategies for Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Schoppa, Wade; Hussain, Fazle

    1997-11-01

    Using direct numerical simulations of turbulent channel flow, we present robust strategies for drag reduction by prevention of streamwise vortex formation near the wall. Instability of lifted, vortex-free low-speed streaks is shown to generate new streamwise vortices, which dominate near-wall turbulence phenomena. The newly-found instability mechanism initiates streak waviness in the (x,z) plane which leads to ωx sheets. Streak waviness induces positive partial u/partial x (i.e. positive VISA) which causes these sheets to then collapse via stretching (rather than roll up) into streamwise vortices. Significantly, the 3D features of the (instantaneous) instability-generated vortices agree well with the coherent structures educed (i.e. ensemble-averaged) from fully turbulent flow, suggesting the prevalence of this instability mechanism. The new control via large-scale streak manipulation exploits this crucial role of streak instability in vortex generation. An x-independent forcing with a z wavelength of 4 streak spacings, with an amplitude of only 5% of the centerline velocity, produces a significant sustained drag reduction: 20% for imposed counterrotating large-scale swirls and 50% for colliding spanwise wall jet-like forcing. These results suggest promising drag reduction strategies, involving large-scale (hence more durable) actuation and requiring no wall sensors or feedback logic.

  14. Lateral stirring of large-scale tracer fields by altimetry

    NASA Astrophysics Data System (ADS)

    Dencausse, Guillaume; Morrow, Rosemary; Rogé, Marine; Fleury, Sara

    2014-01-01

    Ocean surface fronts and filaments have a strong impact on the global ocean circulation and biogeochemistry. Surface Lagrangian advection with time-evolving altimetric geostrophic velocities can be used to simulate the submesoscale front and filament structures in large-scale tracer fields. We study this technique in the Southern Ocean region south of Tasmania, a domain marked by strong meso- to submesoscale features such as the fronts of the Antarctic Circumpolar Current (ACC). Starting with large-scale surface tracer fields that we stir with altimetric velocities, we determine `advected' fields which compare well with high-resolution in situ or satellite tracer data. We find that fine scales are best represented in a statistical sense after an optimal advection time of ˜2 weeks, with enhanced signatures of the ACC fronts and better spectral energy. The technique works best in moderate to high EKE regions where lateral advection dominates. This technique may be used to infer the distribution of unresolved small scales in any physical or biogeochemical surface tracer that is dominated by lateral advection. Submesoscale dynamics also impact the subsurface of the ocean, and the Lagrangian advection at depth shows promising results. Finally, we show that climatological tracer fields computed from the advected large-scale fields display improved fine-scale mean features, such as the ACC fronts, which can be useful in the context of ocean modelling.

  15. Large scale anisotropy of UHECRs for the Telescope Array

    SciTech Connect

    Kido, E.

    2011-09-22

    The origin of Ultra High Energy Cosmic Rays (UHECRs) is one of the most interesting questions in astroparticle physics. Despite of the efforts by other previous measurements, there is no consensus of both of the origin and the mechanism of UHECRs generation and propagation yet. In this context, Telescope Array (TA) experiment is expected to play an important role as the largest detector in the northern hemisphere which consists of an array of surface particle detectors (SDs) and fluorescence detectors (FDs) and other important calibration devices. We searched for large scale anisotropy using SD data of TA. UHECRs are expected to be restricted in GZK horizon when the composition of UHECRs is proton, so the observed arrival directions are expected to exhibit local large scale anisotropy if UHECR sources are some astrophysical objects. We used the SD data set from 11 May 2008 to 7 September 2010 to search for large-scale anisotropy. The discrimination power between LSS and isotropy is not enough yet, but the statistics in TA is expected to discriminate between those in about 95% confidence level on average in near future.

  16. Large-scale functional connectivity networks in the rodent brain.

    PubMed

    Gozzi, Alessandro; Schwarz, Adam J

    2016-02-15

    Resting-state functional Magnetic Resonance Imaging (rsfMRI) of the human brain has revealed multiple large-scale neural networks within a hierarchical and complex structure of coordinated functional activity. These distributed neuroanatomical systems provide a sensitive window on brain function and its disruption in a variety of neuropathological conditions. The study of macroscale intrinsic connectivity networks in preclinical species, where genetic and environmental conditions can be controlled and manipulated with high specificity, offers the opportunity to elucidate the biological determinants of these alterations. While rsfMRI methods are now widely used in human connectivity research, these approaches have only relatively recently been back-translated into laboratory animals. Here we review recent progress in the study of functional connectivity in rodent species, emphasising the ability of this approach to resolve large-scale brain networks that recapitulate neuroanatomical features of known functional systems in the human brain. These include, but are not limited to, a distributed set of regions identified in rats and mice that may represent a putative evolutionary precursor of the human default mode network (DMN). The impact and control of potential experimental and methodological confounds are also critically discussed. Finally, we highlight the enormous potential and some initial application of connectivity mapping in transgenic models as a tool to investigate the neuropathological underpinnings of the large-scale connectional alterations associated with human neuropsychiatric and neurological conditions. We conclude by discussing the translational potential of these methods in basic and applied neuroscience. PMID:26706448

  17. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  18. Upscaling of elastic properties for large scale geomechanical simulations

    NASA Astrophysics Data System (ADS)

    Chalon, F.; Mainguy, M.; Longuemare, P.; Lemonnier, P.

    2004-09-01

    Large scale geomechanical simulations are being increasingly used to model the compaction of stress dependent reservoirs, predict the long term integrity of under-ground radioactive waste disposals, and analyse the viability of hot-dry rock geothermal sites. These large scale simulations require the definition of homogenous mechanical properties for each geomechanical cell whereas the rock properties are expected to vary at a smaller scale. Therefore, this paper proposes a new methodology that makes possible to define the equivalent mechanical properties of the geomechanical cells using the fine scale information given in the geological model. This methodology is implemented on a synthetic reservoir case and two upscaling procedures providing the effective elastic properties of the Hooke's law are tested. The first upscaling procedure is an analytical method for perfectly stratified rock mass, whereas the second procedure computes lower and upper bounds of the equivalent properties with no assumption on the small scale heterogeneity distribution. Both procedures are applied to one geomechanical cell extracted from the reservoir structure. The results show that the analytical and numerical upscaling procedures provide accurate estimations of the effective parameters. Furthermore, a large scale simulation using the homogenized properties of each geomechanical cell calculated with the analytical method demonstrates that the overall behaviour of the reservoir structure is well reproduced for two different loading cases. Copyright

  19. Developing A Large-Scale, Collaborative, Productive Geoscience Education Network

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Bralower, T. J.; Egger, A. E.; Fox, S.; Ledley, T. S.; Macdonald, H.; Mcconnell, D. A.; Mogk, D. W.; Tewksbury, B. J.

    2012-12-01

    Over the past 15 years, the geoscience education community has grown substantially and developed broad and deep capacity for collaboration and dissemination of ideas. While this community is best viewed as emergent from complex interactions among changing educational needs and opportunities, we highlight the role of several large projects in the development of a network within this community. In the 1990s, three NSF projects came together to build a robust web infrastructure to support the production and dissemination of on-line resources: On The Cutting Edge (OTCE), Earth Exploration Toolbook, and Starting Point: Teaching Introductory Geoscience. Along with the contemporaneous Digital Library for Earth System Education, these projects engaged geoscience educators nationwide in exploring professional development experiences that produced lasting on-line resources, collaborative authoring of resources, and models for web-based support for geoscience teaching. As a result, a culture developed in the 2000s in which geoscience educators anticipated that resources for geoscience teaching would be shared broadly and that collaborative authoring would be productive and engaging. By this time, a diverse set of examples demonstrated the power of the web infrastructure in supporting collaboration, dissemination and professional development . Building on this foundation, more recent work has expanded both the size of the network and the scope of its work. Many large research projects initiated collaborations to disseminate resources supporting educational use of their data. Research results from the rapidly expanding geoscience education research community were integrated into the Pedagogies in Action website and OTCE. Projects engaged faculty across the nation in large-scale data collection and educational research. The Climate Literacy and Energy Awareness Network and OTCE engaged community members in reviewing the expanding body of on-line resources. Building Strong

  20. Robust large-scale parallel nonlinear solvers for simulations.

    SciTech Connect

    Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson

    2005-11-01

    This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any existing linear solver, which makes it simple to write

  1. Foundational perspectives on causality in large-scale brain networks.

    PubMed

    Mannino, Michael; Bressler, Steven L

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  2. Large-scale magnetic topologies of early M dwarfs

    NASA Astrophysics Data System (ADS)

    Donati, J.-F.; Morin, J.; Petit, P.; Delfosse, X.; Forveille, T.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.

    2008-10-01

    We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0-M3), that is above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarized profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of six early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field resembling those found in mid-M dwarfs. This abrupt change in the large-scale magnetic topologies of M dwarfs (occurring at spectral type M3) has no related signature on X-ray luminosities (measuring the total amount of magnetic flux); it thus suggests that underlying dynamo processes become more efficient at producing large-scale fields (despite producing the same flux) at spectral types later than M3. We suspect that this change relates to the rapid decrease in the radiative cores of low-mass stars and to the simultaneous sharp increase of the convective turnover times (with decreasing stellar mass) that models predict to occur at M3; it may also be (at least partly) responsible for the reduced magnetic braking reported for fully convective stars. Based on observations obtained at the Télescope Bernard Lyot (TBL), operated by the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France. E-mail: donati@ast.obs-mip.fr (J-FD); jmorin@ast.obs-mip.fr (JM); petit

  3. Foundational perspectives on causality in large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Mannino, Michael; Bressler, Steven L.

    2015-12-01

    A profusion of recent work in cognitive neuroscience has been concerned with the endeavor to uncover causal influences in large-scale brain networks. However, despite the fact that many papers give a nod to the important theoretical challenges posed by the concept of causality, this explosion of research has generally not been accompanied by a rigorous conceptual analysis of the nature of causality in the brain. This review provides both a descriptive and prescriptive account of the nature of causality as found within and between large-scale brain networks. In short, it seeks to clarify the concept of causality in large-scale brain networks both philosophically and scientifically. This is accomplished by briefly reviewing the rich philosophical history of work on causality, especially focusing on contributions by David Hume, Immanuel Kant, Bertrand Russell, and Christopher Hitchcock. We go on to discuss the impact that various interpretations of modern physics have had on our understanding of causality. Throughout all this, a central focus is the distinction between theories of deterministic causality (DC), whereby causes uniquely determine their effects, and probabilistic causality (PC), whereby causes change the probability of occurrence of their effects. We argue that, given the topological complexity of its large-scale connectivity, the brain should be considered as a complex system and its causal influences treated as probabilistic in nature. We conclude that PC is well suited for explaining causality in the brain for three reasons: (1) brain causality is often mutual; (2) connectional convergence dictates that only rarely is the activity of one neuronal population uniquely determined by another one; and (3) the causal influences exerted between neuronal populations may not have observable effects. A number of different techniques are currently available to characterize causal influence in the brain. Typically, these techniques quantify the statistical

  4. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    SciTech Connect

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-03-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  5. Towards a self-consistent halo model for the nonlinear large-scale structure

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian

    2016-03-01

    The halo model is a theoretically and empirically well-motivated framework for predicting the statistics of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer from two major deficiencies: (i) they do not enforce the stress-energy conservation of matter; (ii) they are not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation of the halo model (EHM) that remedies both drawbacks in a consistent way, while attempting to maintain the predictivity of the approach. In the formulation presented here, mass and momentum conservation are guaranteed on large scales, and results of the perturbation theory and the effective field theory can, in principle, be matched to any desired order on large scales. We find that a key ingredient in the halo model power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than other ingredients such as mass function, bias, and profiles of halos. As written here, this approach still does not describe the transition regime between perturbation theory and halo scales realistically, which is left as an open problem. We also show explicitly that, when implemented consistently, halo model predictions do not depend on any properties of low-mass halos that are smaller than the scales of interest.

  6. Evidence for universal conductance fluctuations in an open quantum dot under a strictly parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Gustin, C.; Faniel, S.; Hackens, B.; De Poortere, E. P.; Shayegan, M.; Bayot, V.

    2003-04-01

    We investigate the transport properties of semiconductor ballistic cavities subject to a parallel magnetic field. Universal conductance fluctuations are observed on two GaAs/AlGaAs quantum well samples with one and two occupied carrier subbands, respectively. Large differences between the two open quantum dots in both the amplitude and frequency distribution of these fluctuations are analyzed in terms of electron orbital motion and magnetic subband depopulation.

  7. Experimental test of Jarzynski equality in a quasi-open quantum using a trapped ion

    NASA Astrophysics Data System (ADS)

    Lu, Yao; An, Shuoming; Zhang, Xiang; Zhang, Jing-Ning; Quan, H. T.; Smith, A. M.; Jarzynski, Christopher; Kim, Kihwan

    2015-05-01

    We report on an experimental test of the Jarzynski equality in a quantum system consisting of a single 171Yb+ ion that undergoes dephasing. The Jarzynski equality, which relates equilibrium free energy differences to nonequilibrium work distributions, has been tested in many classical open systems and recently in isolated quantum systems. For open quantum systems, however, the definitions of work and heat are not fully settled, which hinders experimental verification. Here, we study a quantum system that interacts with an environment which causes dephasing (or decoherence) without dissipation. We observe that although the work distribution varies with the strength of dephasing, the Jarzynski equality remains valid. Our investigation constitutes the first experimental test of the quantum Jarzynski equality in an effectively open quantum system. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China under Grants No. 11374178 and 11375012, and the US National Science Foundation under Grant No. DMR 1206971.

  8. A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    PubMed Central

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    and other metrics. Finally some open issues in routing protocol design in large-scale wireless sensor networks and conclusions are proposed. PMID:22163808

  9. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain

    PubMed Central

    Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  10. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain.

    PubMed

    Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  11. Four-terminal and two-terminal measurements on open square ballistic quantum dots.

    NASA Astrophysics Data System (ADS)

    Faniel, S.; Gustin, C.; Hackens, B.; Bayot, V.; Shayegan, M.

    2001-03-01

    We present magnetotransport measurements performed on open square quantum cavities realized by patterning high mobility GaAs/Al_0.3Ga_0.7As heterostructures. Our devices, defined by four independent electrostatic gates, have 2μ m long sides and have four quantum point contacts, one at each corner. Measurements are made down to 50 mK where electronic transport is in the ballistic regime. We study the effect of quantum point contacts on the electronic transport in the cavity and we compare two-terminal and four-terminal conductance measurements. Both the weak localization peak and conductance fluctuations are investigated.

  12. Sampling small-scale and large-scale conformational changes in proteins and molecular complexes

    NASA Astrophysics Data System (ADS)

    Yun, Mi-Ran; Mousseau, N.; Derreumaux, P.

    2007-03-01

    Sampling of small-scale and large-scale motions is important in various computational tasks, such as protein-protein docking and ligand binding. Here, we report further development and applications of the activation-relaxation technique for internal coordinate space trajectories (ARTIST). This method generates conformational moves of any complexity and size by identifying and crossing well-defined saddle points connecting energy minima. Simulations on two all-atom proteins and three protein complexes containing between 70 and 300 amino acids indicate that ARTIST opens the door to the full treatment of all degrees of freedom in dense systems such as protein-protein complexes.

  13. Large-scale smart passive system for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Jang, Dong-Doo; Lee, Heon-Jae; Cho, Sang-Won

    2008-03-01

    The smart passive system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) part has been recently proposed. An EMI part can generate the input current for an MR damper from vibration of a structure according to Faraday's law of electromagnetic induction. The control performance of the smart passive system has been demonstrated mainly by numerical simulations. It was verified from the numerical results that the system could be effective to reduce the structural responses in the cases of civil engineering structures such as buildings and bridges. On the other hand, the experimental validation of the system is not sufficiently conducted yet. In this paper, the feasibility of the smart passive system to real-scale structures is investigated. To do this, the large-scale smart passive system is designed, manufactured, and tested. The system consists of the large-capacity MR damper, which has a maximum force level of approximately +/-10,000N, a maximum stroke level of +/-35mm and the maximum current level of 3 A, and the large-scale EMI part, which is designed to generate sufficient induced current for the damper. The applicability of the smart passive system to large real-scale structures is examined through a series of shaking table tests. The magnitudes of the induced current of the EMI part with various sinusoidal excitation inputs are measured. According to the test results, the large-scale EMI part shows the possibility that it could generate the sufficient current or power for changing the damping characteristics of the large-capacity MR damper.

  14. Constraints on large-scale dark acoustic oscillations from cosmology

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; de Putter, Roland; Raccanelli, Alvise; Sigurdson, Kris

    2014-03-01

    If all or a fraction of the dark matter (DM) were coupled to a bath of dark radiation (DR) in the early Universe, we expect the combined DM-DR system to give rise to acoustic oscillations of the dark matter until it decouples from the DR. Much like the standard baryon acoustic oscillations, these dark acoustic oscillations (DAO) imprint a characteristic scale, the sound horizon of dark matter, on the matter power spectrum. We compute in detail how the microphysics of the DM-DR interaction affects the clustering of matter in the Universe and show that the DAO physics also gives rise to unique signatures in the temperature and polarization spectra of the cosmic microwave background (CMB). We use cosmological data from the CMB, baryon acoustic oscillations, and large-scale structure to constrain the possible fraction of interacting DM as well as the strength of its interaction with DR. Like nearly all knowledge we have gleaned about DM since inferring its existence this constraint rests on the betrayal by gravity of the location of otherwise invisible DM. Although our results can be straightforwardly applied to a broad class of models that couple dark matter particles to various light relativistic species, in order to make quantitative predictions, we model the interacting component as dark atoms coupled to a bath of dark photons. We find that linear cosmological data and CMB lensing put strong constraints on the existence of DAO features in the CMB and the large-scale structure of the Universe. Interestingly, we find that at most ˜5% of all DM can be very strongly interacting with DR. We show that our results are surprisingly constraining for the recently proposed double-disk DM model, a novel example of how large-scale precision cosmological data can be used to constrain galactic physics and subgalactic structure.

  15. Solving large scale structure in ten easy steps with COLA

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J.

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 109Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 1011Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  16. Large-Scale Hybrid Motor Testing. Chapter 10

    NASA Technical Reports Server (NTRS)

    Story, George

    2006-01-01

    Hybrid rocket motors can be successfully demonstrated at a small scale virtually anywhere. There have been many suitcase sized portable test stands assembled for demonstration of hybrids. They show the safety of hybrid rockets to the audiences. These small show motors and small laboratory scale motors can give comparative burn rate data for development of different fuel/oxidizer combinations, however questions that are always asked when hybrids are mentioned for large scale applications are - how do they scale and has it been shown in a large motor? To answer those questions, large scale motor testing is required to verify the hybrid motor at its true size. The necessity to conduct large-scale hybrid rocket motor tests to validate the burn rate from the small motors to application size has been documented in several place^'^^.^. Comparison of small scale hybrid data to that of larger scale data indicates that the fuel burn rate goes down with increasing port size, even with the same oxidizer flux. This trend holds for conventional hybrid motors with forward oxidizer injection and HTPB based fuels. While the reason this is occurring would make a great paper or study or thesis, it is not thoroughly understood at this time. Potential causes include the fact that since hybrid combustion is boundary layer driven, the larger port sizes reduce the interaction (radiation, mixing and heat transfer) from the core region of the port. This chapter focuses on some of the large, prototype sized testing of hybrid motors. The largest motors tested have been AMROC s 250K-lbf thrust motor at Edwards Air Force Base and the Hybrid Propulsion Demonstration Program s 250K-lbf thrust motor at Stennis Space Center. Numerous smaller tests were performed to support the burn rate, stability and scaling concepts that went into the development of those large motors.

  17. LARGE-SCALE CO2 TRANSPORTATION AND DEEP OCEAN SEQUESTRATION

    SciTech Connect

    Hamid Sarv

    1999-03-01

    Technical and economical feasibility of large-scale CO{sub 2} transportation and ocean sequestration at depths of 3000 meters or grater was investigated. Two options were examined for transporting and disposing the captured CO{sub 2}. In one case, CO{sub 2} was pumped from a land-based collection center through long pipelines laid on the ocean floor. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating structure for vertical injection to the ocean floor. In the latter case, a novel concept based on subsurface towing of a 3000-meter pipe, and attaching it to the offshore structure was considered. Budgetary cost estimates indicate that for distances greater than 400 km, tanker transportation and offshore injection through a 3000-meter vertical pipe provides the best method for delivering liquid CO{sub 2} to deep ocean floor depressions. For shorter distances, CO{sub 2} delivery by parallel-laid, subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines and tankers were 1.5 and 1.4 dollars per ton of stored CO{sub 2}, respectively. At these prices, economics of ocean disposal are highly favorable. Future work should focus on addressing technical issues that are critical to the deployment of a large-scale CO{sub 2} transportation and disposal system. Pipe corrosion, structural design of the transport pipe, and dispersion characteristics of sinking CO{sub 2} effluent plumes have been identified as areas that require further attention. Our planned activities in the next Phase include laboratory-scale corrosion testing, structural analysis of the pipeline, analytical and experimental simulations of CO{sub 2} discharge and dispersion, and the conceptual economic and engineering evaluation of large-scale implementation.

  18. Solving large scale structure in ten easy steps with COLA

    SciTech Connect

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J. E-mail: matiasz@ias.edu

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  19. Infectious diseases in large-scale cat hoarding investigations.

    PubMed

    Polak, K C; Levy, J K; Crawford, P C; Leutenegger, C M; Moriello, K A

    2014-08-01

    Animal hoarders accumulate animals in over-crowded conditions without adequate nutrition, sanitation, and veterinary care. As a result, animals rescued from hoarding frequently have a variety of medical conditions including respiratory infections, gastrointestinal disease, parasitism, malnutrition, and other evidence of neglect. The purpose of this study was to characterize the infectious diseases carried by clinically affected cats and to determine the prevalence of retroviral infections among cats in large-scale cat hoarding investigations. Records were reviewed retrospectively from four large-scale seizures of cats from failed sanctuaries from November 2009 through March 2012. The number of cats seized in each case ranged from 387 to 697. Cats were screened for feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) in all four cases and for dermatophytosis in one case. A subset of cats exhibiting signs of upper respiratory disease or diarrhea had been tested for infections by PCR and fecal flotation for treatment planning. Mycoplasma felis (78%), calicivirus (78%), and Streptococcus equi subspecies zooepidemicus (55%) were the most common respiratory infections. Feline enteric coronavirus (88%), Giardia (56%), Clostridium perfringens (49%), and Tritrichomonas foetus (39%) were most common in cats with diarrhea. The seroprevalence of FeLV and FIV were 8% and 8%, respectively. In the one case in which cats with lesions suspicious for dermatophytosis were cultured for Microsporum canis, 69/76 lesional cats were culture-positive; of these, half were believed to be truly infected and half were believed to be fomite carriers. Cats from large-scale hoarding cases had high risk for enteric and respiratory infections, retroviruses, and dermatophytosis. Case responders should be prepared for mass treatment of infectious diseases and should implement protocols to prevent transmission of feline or zoonotic infections during the emergency response and when

  20. Statistical Modeling of Large-Scale Scientific Simulation Data

    SciTech Connect

    Eliassi-Rad, T; Baldwin, C; Abdulla, G; Critchlow, T

    2003-11-15

    With the advent of massively parallel computer systems, scientists are now able to simulate complex phenomena (e.g., explosions of a stars). Such scientific simulations typically generate large-scale data sets over the spatio-temporal space. Unfortunately, the sheer sizes of the generated data sets make efficient exploration of them impossible. Constructing queriable statistical models is an essential step in helping scientists glean new insight from their computer simulations. We define queriable statistical models to be descriptive statistics that (1) summarize and describe the data within a user-defined modeling error, and (2) are able to answer complex range-based queries over the spatiotemporal dimensions. In this chapter, we describe systems that build queriable statistical models for large-scale scientific simulation data sets. In particular, we present our Ad-hoc Queries for Simulation (AQSim) infrastructure, which reduces the data storage requirements and query access times by (1) creating and storing queriable statistical models of the data at multiple resolutions, and (2) evaluating queries on these models of the data instead of the entire data set. Within AQSim, we focus on three simple but effective statistical modeling techniques. AQSim's first modeling technique (called univariate mean modeler) computes the ''true'' (unbiased) mean of systematic partitions of the data. AQSim's second statistical modeling technique (called univariate goodness-of-fit modeler) uses the Andersen-Darling goodness-of-fit method on systematic partitions of the data. Finally, AQSim's third statistical modeling technique (called multivariate clusterer) utilizes the cosine similarity measure to cluster the data into similar groups. Our experimental evaluations on several scientific simulation data sets illustrate the value of using these statistical models on large-scale simulation data sets.

  1. Improving Design Efficiency for Large-Scale Heterogeneous Circuits

    NASA Astrophysics Data System (ADS)

    Gregerson, Anthony

    Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency

  2. Solving Large-scale Eigenvalue Problems in SciDACApplications

    SciTech Connect

    Yang, Chao

    2005-06-29

    Large-scale eigenvalue problems arise in a number of DOE applications. This paper provides an overview of the recent development of eigenvalue computation in the context of two SciDAC applications. We emphasize the importance of Krylov subspace methods, and point out its limitations. We discuss the value of alternative approaches that are more amenable to the use of preconditioners, and report the progression using the multi-level algebraic sub-structuring techniques to speed up eigenvalue calculation. In addition to methods for linear eigenvalue problems, we also examine new approaches to solving two types of non-linear eigenvalue problems arising from SciDAC applications.

  3. Towards large scale production and separation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alvarez, Noe T.

    Since their discovery, carbon nanotubes (CNTs) have boosted the research and applications of nanotechnology; however, many applications of CNTs are inaccessible because they depend upon large-scale CNT production and separations. Type, chirality and diameter control of CNTs determine many of their physical properties, and such control is still not accesible. This thesis studies the fundamentals for scalable selective reactions of HiPCo CNTs as well as the early phase of routes to an inexpensive approach for large-scale CNT production. In the growth part, this thesis covers a complete wet-chemistry process of catalyst and catalyst support deposition for growth of vertically aligned (VA) CNTs. A wet-chemistry preparation process has significant importance for CNT synthesis through chemical vapor deposition (CVD). CVD is by far, the most suitable and inexpensive process for large-scale CNT production when compared to other common processes such as laser ablation and arc discharge. However, its potential has been limited by low-yielding and difficult preparation processes of catalyst and its support, therefore its competitiveness has been reduced. The wet-chemistry process takes advantage of current nanoparticle technology to deposit the catalyst and the catalyst support as a thin film of nanoparticles, making the protocol simple compared to electron beam evaporation and sputtering processes. In the CNT selective reactions part, this thesis studies UV irradiation of individually dispersed HiPCo CNTs that generates auto-selective reactions in the liquid phase with good control over their diameter and chirality. This technique is ideal for large-scale and continuous-process of separations of CNTs by diameter and type. Additionally, an innovative simple catalyst deposition through abrasion is demonstrated. Simple friction between the catalyst and the substrates deposit a high enough density of metal catalyst particles for successful CNT growth. This simple approach has

  4. Why large-scale seasonal streamflow forecasts are feasible

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Candogan Yossef, N.; Van Beek, L. P.

    2011-12-01

    Seasonal forecasts of precipitation and temperature, using either statistical or dynamic prediction, have been around for almost 2 decades. The skill of these forecasts differ both in space and time, with highest skill in areas heavily influenced by SST anomalies such as El Nino or areas where land surface properties have a major impact on e.g. Monsoon strength, such as the vegetation cover of the Sahel region or the snow cover of the Tibetan plateau. However, the skill of seasonal forecasts is limited in most regions, with anomaly correlation coefficients varying between 0.2 and 0.5 for 1-3 month precipitation totals. This raises the question whether seasonal hydrological forecasting is feasible. Here, we make the case that it is. Using the example of statistical forecasts of NAO-strength and related precipitation anomalies over Europe, we show that the skill of large-scale streamflow forecasts is generally much higher than the precipitation forecasts itself, provided that the initial state of the system is accurately estimated. In the latter case, even the precipitation climatology can produce skillful results. This is due to the inertia of the hydrological system rooted in the storage of soil moisture, groundwater and snow pack, as corroborated by a recent study using snow observations for seasonal streamflow forecasting in the Western US. These examples seem to suggest that for accurate seasonal hydrological forecasting, correct state estimation is more important than accurate seasonal meteorological forecasts. However, large-scale estimation of hydrological states is difficult and validation of large-scale hydrological models often reveals large biases in e.g. streamflow estimates. Fortunately, as shown with a validation study of the global model PCR-GLOBWB, these biases are of less importance when seasonal forecasts are evaluated in terms of their ability to reproduce anomalous flows and extreme events, i.e. by anomaly correlations or categorical quantile

  5. UAV Data Processing for Large Scale Topographical Mapping

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2014-06-01

    Large scale topographical mapping in the third world countries is really a prominent challenge in geospatial industries nowadays. On one side the demand is significantly increasing while on the other hand it is constrained by limited budgets available for mapping projects. Since the advent of Act Nr.4/yr.2011 about Geospatial Information in Indonesia, large scale topographical mapping has been on high priority for supporting the nationwide development e.g. detail spatial planning. Usually large scale topographical mapping relies on conventional aerial survey campaigns in order to provide high resolution 3D geospatial data sources. Widely growing on a leisure hobby, aero models in form of the so-called Unmanned Aerial Vehicle (UAV) bring up alternative semi photogrammetric aerial data acquisition possibilities suitable for relatively small Area of Interest (AOI) i.e. <5,000 hectares. For detail spatial planning purposes in Indonesia this area size can be used as a mapping unit since it usually concentrates on the basis of sub district area (kecamatan) level. In this paper different camera and processing software systems will be further analyzed for identifying the best optimum UAV data acquisition campaign components in combination with the data processing scheme. The selected AOI is covering the cultural heritage of Borobudur Temple as one of the Seven Wonders of the World. A detailed accuracy assessment will be concentrated within the object feature of the temple at the first place. Feature compilation involving planimetric objects (2D) and digital terrain models (3D) will be integrated in order to provide Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. By doing this research, incorporating the optimum amount of GCPs in the UAV photo data processing will increase the accuracy along with its high resolution in 5 cm Ground Sampling Distance (GSD). Finally this result will be used as the benchmark for alternative geospatial

  6. Inflation in de Sitter spacetime and CMB large scale anomaly

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Li, Ming-Hua; Wang, Ping; Chang, Zhe

    2015-09-01

    The influence of cosmological constant-type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fit to explore the cosmological parameter space by using the CosmoMC package with the recently released Planck TT and WMAP polarization datasets. Using the results from the global fit, we compute a new CMB temperature-temperature (TT) spectrum. The obtained TT spectrum has lower power compared with that based on the ACDM model at large scales. Supported by National Natural Science Foundation of China (11375203)

  7. Large-scale genotoxicity assessments in the marine environment.

    PubMed

    Hose, J E

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. PMID:7713029

  8. Synthesis and sensing application of large scale bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hong, Sung Ju; Yoo, Jung Hoon; Baek, Seung Jae; Park, Yung Woo

    2012-02-01

    We have synthesized large scale bilayer graphene by using Chemical Vapor Deposition (CVD) in atmospheric pressure. Bilayer graphene was grown by using CH4, H2 and Ar gases. The growth temperature was 1050^o. Conventional FET measurement shows ambipolar transfer characteristics. Results of Raman spectroscopy, Atomic Force microscope (AFM) and Transmission Electron Microscope (TEM) indicate the film is bilayer graphene. Especially, adlayer structure which interrupt uniformity was reduced in low methane flow condition. Furthermore, large size CVD bilayer graphene film can be investigated to apply sensor devices. By using conventional photolithography process, we have fabricated device array structure and studied sensing behavior.

  9. Implementation of Large Scale Integrated (LSI) circuit design software

    NASA Technical Reports Server (NTRS)

    Kuehlthau, R. L.; Pitts, E. R.

    1976-01-01

    Portions of the Computer Aided Design and Test system, a collection of Large Scale Integrated (LSI) circuit design programs were modified and upgraded. Major modifications were made to the Mask Analysis Program in the form of additional operating commands and file processing options. Modifications were also made to the Artwork Interactive Design System to correct some deficiencies in the original program as well as to add several new command features related to improving the response of AIDS when dealing with large files. The remaining work was concerned with updating various programs within CADAT to incorporate the silicon on sapphire silicon gate technology.

  10. Large-scale sodium spray fire code validation (SOFICOV) test

    SciTech Connect

    Jeppson, D.W.; Muhlestein, L.D.

    1985-01-01

    A large-scale, sodium, spray fire code validation test was performed in the HEDL 850-m/sup 3/ Containment System Test Facility (CSTF) as part of the Sodium Spray Fire Code Validation (SOFICOV) program. Six hundred fifty eight kilograms of sodium spray was sprayed in an air atmosphere for a period of 2400 s. The sodium spray droplet sizes and spray pattern distribution were estimated. The containment atmosphere temperature and pressure response, containment wall temperature response and sodium reaction rate with oxygen were measured. These results are compared to post-test predictions using SPRAY and NACOM computer codes.

  11. Radiative shocks on large scale lasers. Preliminary results

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehle, C.; Barroso, P.; Batani, D.; Benuzzi, A.; Cathala, B.; Chièze, J.-P.; Fleury, X.; Grandjouan, N.; Grenier, J.; Hall, T.; Henry, E.; Koenig, M.; Lafon, J. P. J.; Malka, V.; Marchet, B.; Merdji, H.; Michaut, C.; Poles, L.; Thais, F.

    2001-05-01

    Radiative shocks, those structure is strongly influenced by the radiation field, are present in various astrophysical objects (circumstellar envelopes of variable stars, supernovae ...). Their modeling is very difficult and thus will take benefit from experimental informations. This approach is now possible using large scale lasers. Preliminary experiments have been performed with the nanosecond LULI laser at Ecole Polytechnique (France) in 2000. A radiative shock has been obtained in a low pressure xenon cell. The preparation of such experiments and their interpretation is performed using analytical calculations and numerical simulations.

  12. On the analysis of large-scale genomic structures.

    PubMed

    Oiwa, Nestor Norio; Goldman, Carla

    2005-01-01

    We apply methods from statistical physics (histograms, correlation functions, fractal dimensions, and singularity spectra) to characterize large-scale structure of the distribution of nucleotides along genomic sequences. We discuss the role of the extension of noncoding segments ("junk DNA") for the genomic organization, and the connection between the coding segment distribution and the high-eukaryotic chromatin condensation. The following sequences taken from GenBank were analyzed: complete genome of Xanthomonas campestri, complete genome of yeast, chromosome V of Caenorhabditis elegans, and human chromosome XVII around gene BRCA1. The results are compared with the random and periodic sequences and those generated by simple and generalized fractal Cantor sets. PMID:15858230

  13. Large-scale genotoxicity assessments in the marine environment

    SciTech Connect

    Hose, J.E.

    1994-12-01

    There are a number of techniques for detecting genotoxicity in the marine environment, and many are applicable to large-scale field assessments. Certain tests can be used to evaluate responses in target organisms in situ while others utilize surrogate organisms exposed to field samples in short-term laboratory bioassays. Genotoxicity endpoints appear distinct from traditional toxicity endpoints, but some have chemical or ecotoxicologic correlates. One versatile end point, the frequency of anaphase aberrations, has been used in several large marine assessments to evaluate genotoxicity in the New York Bight, in sediment from San Francisco Bay, and following the Exxon Valdez oil spill. 31 refs., 2 tabs.

  14. Floodplain management in Africa: Large scale analysis of flood data

    NASA Astrophysics Data System (ADS)

    Padi, Philip Tetteh; Baldassarre, Giuliano Di; Castellarin, Attilio

    2011-01-01

    To mitigate a continuously increasing flood risk in Africa, sustainable actions are urgently needed. In this context, we describe a comprehensive statistical analysis of flood data in the African continent. The study refers to quality-controlled, large and consistent databases of flood data, i.e. maximum discharge value and times series of annual maximum flows. Probabilistic envelope curves are derived for the African continent by means of a large scale regional analysis. Moreover, some initial insights on the statistical characteristics of African floods are provided. The results of this study are relevant and can be used to get some indications to support flood management in Africa.

  15. Novel algorithm of large-scale simultaneous linear equations.

    PubMed

    Fujiwara, T; Hoshi, T; Yamamoto, S; Sogabe, T; Zhang, S-L

    2010-02-24

    We review our recently developed methods of solving large-scale simultaneous linear equations and applications to electronic structure calculations both in one-electron theory and many-electron theory. This is the shifted COCG (conjugate orthogonal conjugate gradient) method based on the Krylov subspace, and the most important issue for applications is the shift equation and the seed switching method, which greatly reduce the computational cost. The applications to nano-scale Si crystals and the double orbital extended Hubbard model are presented. PMID:21386384

  16. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  17. A multilevel optimization of large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Sundareshan, M. K.

    1976-01-01

    A multilevel feedback control scheme is proposed for optimization of large-scale systems composed of a number of (not necessarily weakly coupled) subsystems. Local controllers are used to optimize each subsystem, ignoring the interconnections. Then, a global controller may be applied to minimize the effect of interconnections and improve the performance of the overall system. At the cost of suboptimal performance, this optimization strategy ensures invariance of suboptimality and stability of the systems under structural perturbations whereby subsystems are disconnected and again connected during operation.

  18. Design of a large-scale CFB boiler

    SciTech Connect

    Darling, S.; Li, S.

    1997-12-31

    Many CFB boilers sized 100--150 MWe are in operation, and several others sized 150--250 MWe are in operation or under construction. The next step for CFB technology is the 300--400 MWe size range. This paper will describe Foster Wheeler`s large-scale CFB boiler experience and the design for a 300 MWe CFB boiler. The authors will show how the design incorporates Foster Wheeler`s unique combination of extensive utility experience and CFB boiler experience. All the benefits of CFB technology which include low emissions, fuel flexibility, low maintenance and competitive cost are now available in the 300--400 MWe size range.

  19. [National Strategic Promotion for Large-Scale Clinical Cancer Research].

    PubMed

    Toyama, Senya

    2016-04-01

    The number of clinical research by clinical cancer study groups has been decreasing this year in Japan. They say the reason is the abolition of donations to the groups from the pharmaceutical companies after the Diovan scandal. But I suppose fundamental problem is that government-supported large-scale clinical cancer study system for evidence based medicine (EBM) has not been fully established. An urgent establishment of the system based on the national strategy is needed for the cancer patients and the public health promotion. PMID:27220800

  20. Large-Scale periodic solar velocities: An observational study

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.

    1977-01-01

    Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.

  1. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  2. Enabling Large-Scale Biomedical Analysis in the Cloud

    PubMed Central

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  3. Generation of Large-Scale Winds in Horizontally Anisotropic Convection.

    PubMed

    von Hardenberg, J; Goluskin, D; Provenzale, A; Spiegel, E A

    2015-09-25

    We simulate three-dimensional, horizontally periodic Rayleigh-Bénard convection, confined between free-slip horizontal plates and rotating about a distant horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind. PMID:26451558

  4. Large-Scale Purification of Peroxisomes for Preparative Applications.

    PubMed

    Cramer, Jana; Effelsberg, Daniel; Girzalsky, Wolfgang; Erdmann, Ralf

    2015-09-01

    This protocol is designed for large-scale isolation of highly purified peroxisomes from Saccharomyces cerevisiae using two consecutive density gradient centrifugations. Instructions are provided for harvesting up to 60 g of oleic acid-induced yeast cells for the preparation of spheroplasts and generation of organellar pellets (OPs) enriched in peroxisomes and mitochondria. The OPs are loaded onto eight continuous 36%-68% (w/v) sucrose gradients. After centrifugation, the peak peroxisomal fractions are determined by measurement of catalase activity. These fractions are subsequently pooled and subjected to a second density gradient centrifugation using 20%-40% (w/v) Nycodenz. PMID:26330621

  5. Enabling large-scale biomedical analysis in the cloud.

    PubMed

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  6. Monochromatic waves induced by large-scale parametric forcing.

    PubMed

    Nepomnyashchy, A; Abarzhi, S I

    2010-03-01

    We study the formation and stability of monochromatic waves induced by large-scale modulations in the framework of the complex Ginzburg-Landau equation with parametric nonresonant forcing dependent on the spatial coordinate. In the limiting case of forcing with very large characteristic length scale, analytical solutions for the equation are found and conditions of their existence are outlined. Stability analysis indicates that the interval of existence of a monochromatic wave can contain a subinterval where the wave is stable. We discuss potential applications of the model in rheology, fluid dynamics, and optics. PMID:20365907

  7. On-manifold localization in open quantum maps

    NASA Astrophysics Data System (ADS)

    Lippolis, Domenico; Ryu, Jung-Wan; Lee, Soo-Young; Kim, Sang Wook

    2012-12-01

    A quantized chaotic map exhibiting localization of wave function intensity is opened. We investigate how such patterns as scars in the Husimi distributions are influenced by the losses through a number of numerical experiments. We find the scars to relocate on the stable or unstable manifolds depending on the position of the opening, and provide a classical argument to explain the observations. For asymmetrically introduced openings mode interaction contributes to determine the localization patterns. We finally show examples of similar localization in a simulated dielectric microcavity.

  8. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Pradhan, Sangram K.; Santiago, Kevin C.; Rutherford, Gugu N.; Pradhan, Aswini K.

    2016-04-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing.

  9. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  10. Development of large-scale functional brain networks in children.

    PubMed

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066

  11. Topographically Engineered Large Scale Nanostructures for Plasmonic Biosensing.

    PubMed

    Xiao, Bo; Pradhan, Sangram K; Santiago, Kevin C; Rutherford, Gugu N; Pradhan, Aswini K

    2016-01-01

    We demonstrate that a nanostructured metal thin film can achieve enhanced transmission efficiency and sharp resonances and use a large-scale and high-throughput nanofabrication technique for the plasmonic structures. The fabrication technique combines the features of nanoimprint and soft lithography to topographically construct metal thin films with nanoscale patterns. Metal nanogratings developed using this method show significantly enhanced optical transmission (up to a one-order-of-magnitude enhancement) and sharp resonances with full width at half maximum (FWHM) of ~15nm in the zero-order transmission using an incoherent white light source. These nanostructures are sensitive to the surrounding environment, and the resonance can shift as the refractive index changes. We derive an analytical method using a spatial Fourier transformation to understand the enhancement phenomenon and the sensing mechanism. The use of real-time monitoring of protein-protein interactions in microfluidic cells integrated with these nanostructures is demonstrated to be effective for biosensing. The perpendicular transmission configuration and large-scale structures provide a feasible platform without sophisticated optical instrumentation to realize label-free surface plasmon resonance (SPR) sensing. PMID:27072067

  12. NIC-based Reduction Algorithms for Large-scale Clusters

    SciTech Connect

    Petrini, F; Moody, A T; Fernandez, J; Frachtenberg, E; Panda, D K

    2004-07-30

    Efficient algorithms for reduction operations across a group of processes are crucial for good performance in many large-scale, parallel scientific applications. While previous algorithms limit processing to the host CPU, we utilize the programmable processors and local memory available on modern cluster network interface cards (NICs) to explore a new dimension in the design of reduction algorithms. In this paper, we present the benefits and challenges, design issues and solutions, analytical models, and experimental evaluations of a family of NIC-based reduction algorithms. Performance and scalability evaluations were conducted on the ASCI Linux Cluster (ALC), a 960-node, 1920-processor machine at Lawrence Livermore National Laboratory, which uses the Quadrics QsNet interconnect. We find NIC-based reductions on modern interconnects to be more efficient than host-based implementations in both scalability and consistency. In particular, at large-scale--1812 processes--NIC-based reductions of small integer and floating-point arrays provided respective speedups of 121% and 39% over the host-based, production-level MPI implementation.

  13. Alignment of quasar polarizations with large-scale structures

    NASA Astrophysics Data System (ADS)

    Hutsemékers, D.; Braibant, L.; Pelgrims, V.; Sluse, D.

    2014-12-01

    We have measured the optical linear polarization of quasars belonging to Gpc scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is on the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 092.A-0221.Table 1 is available in electronic form at http://www.aanda.org

  14. Evaluating Unmanned Aerial Platforms for Cultural Heritage Large Scale Mapping

    NASA Astrophysics Data System (ADS)

    Georgopoulos, A.; Oikonomou, C.; Adamopoulos, E.; Stathopoulou, E. K.

    2016-06-01

    When it comes to large scale mapping of limited areas especially for cultural heritage sites, things become critical. Optical and non-optical sensors are developed to such sizes and weights that can be lifted by such platforms, like e.g. LiDAR units. At the same time there is an increase in emphasis on solutions that enable users to get access to 3D information faster and cheaper. Considering the multitude of platforms, cameras and the advancement of algorithms in conjunction with the increase of available computing power this challenge should and indeed is further investigated. In this paper a short review of the UAS technologies today is attempted. A discussion follows as to their applicability and advantages, depending on their specifications, which vary immensely. The on-board cameras available are also compared and evaluated for large scale mapping. Furthermore a thorough analysis, review and experimentation with different software implementations of Structure from Motion and Multiple View Stereo algorithms, able to process such dense and mostly unordered sequence of digital images is also conducted and presented. As test data set, we use a rich optical and thermal data set from both fixed wing and multi-rotor platforms over an archaeological excavation with adverse height variations and using different cameras. Dense 3D point clouds, digital terrain models and orthophotos have been produced and evaluated for their radiometric as well as metric qualities.

  15. Exploring Cloud Computing for Large-scale Scientific Applications

    SciTech Connect

    Lin, Guang; Han, Binh; Yin, Jian; Gorton, Ian

    2013-06-27

    This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address these challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.

  16. The combustion behavior of large scale lithium titanate battery

    PubMed Central

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-01

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112–121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference. PMID:25586064

  17. Large scale reconstruction of the solar coronal magnetic field

    NASA Astrophysics Data System (ADS)

    Amari, T.; Aly, J.-J.; Chopin, P.; Canou, A.; Mikic, Z.

    2014-10-01

    It is now becoming necessary to access the global magnetic structure of the solar low corona at a large scale in order to understand its physics and more particularly the conditions of energization of the magnetic fields and the multiple connections between distant active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk magnetograms. We present a method recently developed for reconstructing the global solar coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing our previous results in Cartesian geometry. This method is implemented in the new code XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL. We apply our method by performing a reconstruction at a specific time for which we dispose of a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector magnetogram provided by the same instrument, finally embedded in a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure of the corona and its energetic contents, and also the AR scale, at which we recover the presence of a twisted flux rope in equilibrium.

  18. High Speed Networking and Large-scale Simulation in Geodynamics

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Gary, Patrick; Seablom, Michael; Truszkowski, Walt; Odubiyi, Jide; Jiang, Weiyuan; Liu, Dong

    2004-01-01

    Large-scale numerical simulation has been one of the most important approaches for understanding global geodynamical processes. In this approach, peta-scale floating point operations (pflops) are often required to carry out a single physically-meaningful numerical experiment. For example, to model convective flow in the Earth's core and generation of the geomagnetic field (geodynamo), simulation for one magnetic free-decay time (approximately 15000 years) with a modest resolution of 150 in three spatial dimensions would require approximately 0.2 pflops. If such a numerical model is used to predict geomagnetic secular variation over decades and longer, with e.g. an ensemble Kalman filter assimilation approach, approximately 30 (and perhaps more) independent simulations of similar scales would be needed for one data assimilation analysis. Obviously, such a simulation would require an enormous computing resource that exceeds the capacity of a single facility currently available at our disposal. One solution is to utilize a very fast network (e.g. 10Gb optical networks) and available middleware (e.g. Globus Toolkit) to allocate available but often heterogeneous resources for such large-scale computing efforts. At NASA GSFC, we are experimenting with such an approach by networking several clusters for geomagnetic data assimilation research. We shall present our initial testing results in the meeting.

  19. Large-scale anisotropy in stably stratified rotating flows

    SciTech Connect

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

  20. Online education in a large scale rehabilitation institution.

    PubMed

    Mazzoleni, M Cristina; Rognoni, Carla; Pagani, Marco; Imbriani, Marcello

    2012-01-01

    Large scale multiple venue institutions face problems when delivering educations to their healthcare staff. The present study is aimed at evaluating the feasibility of relying on e-learning for at least part of the training of the Salvatore Maugeri Foundation healthcare staff. The paper reports the results of the delivery of e-learning courses to the personnel during a span of time of 7 months in order to assess the attitude to online courses attendance, the proportion between administered online education and administered traditional education, the economic sustainability of the online education delivery process. 37% of the total healthcare staff have attended online courses and 46% of nurses have proved to be the very active. The ratio between total number of credits and total number of courses for online and traditional education are respectively 18268/5 and 20354/96. These results point out that eLearning is not at all a niche tool used (or usable) by a limited number of people. Economic sustainability, assessed via personnel work hour saving, has been demonstrated. When distance learning is appropriate, online education is an effective, sustainable, well accepted mean to support and promote healthcare staff's education in a large scale institution. PMID:22491113

  1. Semantic overlay network for large-scale spatial information indexing

    NASA Astrophysics Data System (ADS)

    Zou, Zhiqiang; Wang, Yue; Cao, Kai; Qu, Tianshan; Wang, Zhongmin

    2013-08-01

    The increased demand for online services of spatial information poses new challenges to the combined filed of Computer Science and Geographic Information Science. Amongst others, these include fast indexing of spatial data in distributed networks. In this paper we propose a novel semantic overlay network for large-scale multi-dimensional spatial information indexing, called SON_LSII, which has a hybrid structure integrating a semantic quad-tree and Chord ring. The SON_LSII is a small world overlay network that achieves a very competitive trade-off between indexing efficiency and maintenance overhead. To create SON_LSII, we use an effective semantic clustering strategy that considers two aspects, i.e., the semantic of spatial information that peer holds in overlay network and physical network performances. Based on SON_LSII, a mapping method is used to reduce the multi-dimensional features into a single dimension and an efficient indexing algorithm is presented to support complex range queries of the spatial information with a massive number of concurrent users. The results from extensive experiments demonstrate that SON_LSII is superior to existing overlay networks in various respects, including scalability, maintenance, rate of indexing hits, indexing logical hops, and adaptability. Thus, the proposed SON_LSII can be used for large-scale spatial information indexing.

  2. The large-scale morphology of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Starkman, Glenn D.; Strauss, Michael A.

    1993-01-01

    At present, visual inspection is the only method for comparing the large-scale morphologies in the distribution of galaxies to those in model universes generated by N-body simulations. To remedy the situation, we have developed a set of three structure functions (S1, S2, S3) that quantify the degree of large-scale prolateness, oblateness, and sphericity/uniformity of a 3-D particle distribution and have applied them to a volume-limited (less than = 4000 km/s) sample of 699 IRAS galaxies with f sub 60 greater than 1.2 Jy. To determine the structure functions, we randomly select 500 galaxies as origins of spherical windows of radius R sub w, locate the centroid of the galaxies in the window (assuming all galaxies have equal mass) and then, compute the principal moments of inertia (I sub 1, I sub 2, I sub 3) about the centroid. Each S sub i is a function of (I sub 2)/(I sub 1) and (I sub 3)/I sub 1). S1, S2, and S3 tend to unity for highly prolate, oblate, and uniform distributions, respectively and tend to zero otherwise. The resulting 500 values of S sub i at each scale R sub w are used to construct a histogram.

  3. Simulating the large-scale structure of HI intensity maps

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2016-03-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 20483 particles (particle mass 1.6 × 1011 Msolar / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 Msolar / h < Mhalo < 1013 Msolar / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 lesssim z lesssim 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  4. IP over optical multicasting for large-scale video delivery

    NASA Astrophysics Data System (ADS)

    Jin, Yaohui; Hu, Weisheng; Sun, Weiqiang; Guo, Wei

    2007-11-01

    In the IPTV systems, multicasting will play a crucial role in the delivery of high-quality video services, which can significantly improve bandwidth efficiency. However, the scalability and the signal quality of current IPTV can barely compete with the existing broadcast digital TV systems since it is difficult to implement large-scale multicasting with end-to-end guaranteed quality of service (QoS) in packet-switched IP network. China 3TNet project aimed to build a high performance broadband trial network to support large-scale concurrent streaming media and interactive multimedia services. The innovative idea of 3TNet is that an automatic switched optical networks (ASON) with the capability of dynamic point-to-multipoint (P2MP) connections replaces the conventional IP multicasting network in the transport core, while the edge remains an IP multicasting network. In this paper, we will introduce the network architecture and discuss challenges in such IP over Optical multicasting for video delivery.

  5. Maestro: an orchestration framework for large-scale WSN simulations.

    PubMed

    Riliskis, Laurynas; Osipov, Evgeny

    2014-01-01

    Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation. PMID:24647123

  6. Simulating subsurface heterogeneity improves large-scale water resources predictions

    NASA Astrophysics Data System (ADS)

    Hartmann, A. J.; Gleeson, T.; Wagener, T.; Wada, Y.

    2014-12-01

    Heterogeneity is abundant everywhere across the hydrosphere. It exists in the soil, the vadose zone and the groundwater. In large-scale hydrological models, subsurface heterogeneity is usually not considered. Instead average or representative values are chosen for each of the simulated grid cells, not incorporating any sub-grid variability. This may lead to unreliable predictions when the models are used for assessing future water resources availability, floods or droughts, or when they are used for recommendations for more sustainable water management. In this study we use a novel, large-scale model that takes into account sub-grid heterogeneity for the simulation of groundwater recharge by using statistical distribution functions. We choose all regions over Europe that are comprised by carbonate rock (~35% of the total area) because the well understood dissolvability of carbonate rocks (karstification) allows for assessing the strength of subsurface heterogeneity. Applying the model with historic data and future climate projections we show that subsurface heterogeneity lowers the vulnerability of groundwater recharge on hydro-climatic extremes and future changes of climate. Comparing our simulations with the PCR-GLOBWB model we can quantify the deviations of simulations for different sub-regions in Europe.

  7. Evaluating large scale orthophotos derived from high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Ioannou, Maria Teresa; Georgopoulos, Andreas

    2013-08-01

    For the purposes of a research project, for the compilation of the archaeological and environmental digital map of the island of Antiparos, the production of updated large scale orthophotos was required. Hence suitable stereoscopic high resolution satellite imagery was acquired. Two Geoeye-1 stereopairs were enough to cover this small island of the Cyclades complex in the central Aegean. For the orientation of the two stereopairs numerous ground control points were determined using GPS observations. Some of them would also serve as check points. The images were processed using commercial stereophotogrammetric software suitable to process satellite stereoscopic imagery. The results of the orientations are evaluated and the digital terrain model was produced using automated and manual procedures. The DTM was checked both internally and externally with comparison to other available DTMs. In this paper the procedures for producing the desired orthophotography are critically presented and the final result is compared and evaluated for its accuracy, completeness and efficiency. The final product is also compared against the orthophotography produced by Ktimatologio S.A. using aerial images in 2007. The orthophotography produced has been evaluated metrically using the available check points, while qualitative evaluation has also been performed. The results are presented and a critical approach for the usability of satellite imagery for the production of large scale orthophotos is attempted.

  8. Large-Scale Low-Boom Inlet Test Overview

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie

    2011-01-01

    This presentation provides a high level overview of the Large-Scale Low-Boom Inlet Test and was presented at the Fundamental Aeronautics 2011 Technical Conference. In October 2010 a low-boom supersonic inlet concept with flow control was tested in the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). The primary objectives of the test were to evaluate the inlet stability and operability of a large-scale low-boom supersonic inlet concept by acquiring performance and flowfield validation data, as well as evaluate simple, passive, bleedless inlet boundary layer control options. During this effort two models were tested: a dual stream inlet intended to model potential flight hardware and a single stream design to study a zero-degree external cowl angle and to permit surface flow visualization of the vortex generator flow control on the internal centerbody surface. The tests were conducted by a team of researchers from NASA GRC, Gulfstream Aerospace Corporation, University of Illinois at Urbana-Champaign, and the University of Virginia

  9. New methods for large scale local and global optimization

    NASA Astrophysics Data System (ADS)

    Byrd, Richard; Schnabel, Robert

    1994-07-01

    We have pursued all three topics described in the proposal during this research period. A large amount of effort has gone into the development of large scale global optimization methods for molecular configuration problems. We have developed new general purpose methods that combine efficient stochastic global optimization techniques with several new, more deterministic techniques that account for most of the computational effort, and the success, of the methods. We have applied our methods to Lennard-Jones problems with up to 75 atoms, to water clusters with up to 31, molecules, and polymers with up to 58 amino acids. The results appear to be the best so far by general purpose optimization methods, and appear to be leading to some interesting chemistry issues. Our research on the second topic, tensor methods, has addressed several areas. We have designed and implemented tensor methods for large sparse systems of nonlinear equations and nonlinear least squares, and have obtained excellent test results on a wide range of problems. We have also developed new tensor methods for nonlinearly constrained optimization problem, and have obtained promising theoretical and preliminary computational results. Finally, on the third topic, limited memory methods for large scale optimization, we have developed and implemented new, extremely efficient limited memory methods for bound constrained problems, and new limited memory trust regions methods, both using our-recently developed compact representations for quasi-Newton matrices. Computational test results for both methods are promising.

  10. Maestro: An Orchestration Framework for Large-Scale WSN Simulations

    PubMed Central

    Riliskis, Laurynas; Osipov, Evgeny

    2014-01-01

    Contemporary wireless sensor networks (WSNs) have evolved into large and complex systems and are one of the main technologies used in cyber-physical systems and the Internet of Things. Extensive research on WSNs has led to the development of diverse solutions at all levels of software architecture, including protocol stacks for communications. This multitude of solutions is due to the limited computational power and restrictions on energy consumption that must be accounted for when designing typical WSN systems. It is therefore challenging to develop, test and validate even small WSN applications, and this process can easily consume significant resources. Simulations are inexpensive tools for testing, verifying and generally experimenting with new technologies in a repeatable fashion. Consequently, as the size of the systems to be tested increases, so does the need for large-scale simulations. This article describes a tool called Maestro for the automation of large-scale simulation and investigates the feasibility of using cloud computing facilities for such task. Using tools that are built into Maestro, we demonstrate a feasible approach for benchmarking cloud infrastructure in order to identify cloud Virtual Machine (VM)instances that provide an optimal balance of performance and cost for a given simulation. PMID:24647123

  11. Power suppression at large scales in string inflation

    SciTech Connect

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar E-mail: sddownes@physics.tamu.edu

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  12. Detecting differential protein expression in large-scale population proteomics

    SciTech Connect

    Ryu, Soyoung; Qian, Weijun; Camp, David G.; Smith, Richard D.; Tompkins, Ronald G.; Davis, Ronald W.; Xiao, Wenzhong

    2014-06-17

    Mass spectrometry-based high-throughput quantitative proteomics shows great potential in clinical biomarker studies, identifying and quantifying thousands of proteins in biological samples. However, methods are needed to appropriately handle issues/challenges unique to mass spectrometry data in order to detect as many biomarker proteins as possible. One issue is that different mass spectrometry experiments generate quite different total numbers of quantified peptides, which can result in more missing peptide abundances in an experiment with a smaller total number of quantified peptides. Another issue is that the quantification of peptides is sometimes absent, especially for less abundant peptides and such missing values contain the information about the peptide abundance. Here, we propose a Significance Analysis for Large-scale Proteomics Studies (SALPS) that handles missing peptide intensity values caused by the two mechanisms mentioned above. Our model has a robust performance in both simulated data and proteomics data from a large clinical study. Because varying patients’ sample qualities and deviating instrument performances are not avoidable for clinical studies performed over the course of several years, we believe that our approach will be useful to analyze large-scale clinical proteomics data.

  13. Large-scale anisotropy in stably stratified rotating flows

    DOE PAGESBeta

    Marino, R.; Mininni, P. D.; Rosenberg, D. L.; Pouquet, A.

    2014-08-28

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up tomore » $1024^3$ grid points and Reynolds numbers of $$\\approx 1000$$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $$\\sim k_\\perp^{-5/3}$$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.« less

  14. Ecohydrological modeling for large-scale environmental impact assessment.

    PubMed

    Woznicki, Sean A; Nejadhashemi, A Pouyan; Abouali, Mohammad; Herman, Matthew R; Esfahanian, Elaheh; Hamaamin, Yaseen A; Zhang, Zhen

    2016-02-01

    Ecohydrological models are frequently used to assess the biological integrity of unsampled streams. These models vary in complexity and scale, and their utility depends on their final application. Tradeoffs are usually made in model scale, where large-scale models are useful for determining broad impacts of human activities on biological conditions, and regional-scale (e.g. watershed or ecoregion) models provide stakeholders greater detail at the individual stream reach level. Given these tradeoffs, the objective of this study was to develop large-scale stream health models with reach level accuracy similar to regional-scale models thereby allowing for impacts assessments and improved decision-making capabilities. To accomplish this, four measures of biological integrity (Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT), Family Index of Biotic Integrity (FIBI), Hilsenhoff Biotic Index (HBI), and fish Index of Biotic Integrity (IBI)) were modeled based on four thermal classes (cold, cold-transitional, cool, and warm) of streams that broadly dictate the distribution of aquatic biota in Michigan. The Soil and Water Assessment Tool (SWAT) was used to simulate streamflow and water quality in seven watersheds and the Hydrologic Index Tool was used to calculate 171 ecologically relevant flow regime variables. Unique variables were selected for each thermal class using a Bayesian variable selection method. The variables were then used in development of adaptive neuro-fuzzy inference systems (ANFIS) models of EPT, FIBI, HBI, and IBI. ANFIS model accuracy improved when accounting for stream thermal class rather than developing a global model. PMID:26595397

  15. Large scale CMB anomalies from thawing cosmic strings

    NASA Astrophysics Data System (ADS)

    Ringeval, Christophe; Yamauchi, Daisuke; Yokoyama, Jun'ichi; Bouchet, François R.

    2016-02-01

    Cosmic strings formed during inflation are expected to be either diluted over super-Hubble distances, i.e., invisible today, or to have crossed our past light cone very recently. We discuss the latter situation in which a few strings imprint their signature in the Cosmic Microwave Background (CMB) Anisotropies after recombination. Being almost frozen in the Hubble flow, these strings are quasi static and evade almost all of the previously derived constraints on their tension while being able to source large scale anisotropies in the CMB sky. Using a local variance estimator on thousand of numerically simulated Nambu-Goto all sky maps, we compute the expected signal and show that it can mimic a dipole modulation at large angular scales while being negligible at small angles. Interestingly, such a scenario generically produces one cold spot from the thawing of a cosmic string loop. Mixed with anisotropies of inflationary origin, we find that a few strings of tension GU = Script O(1) × 10-6 match the amplitude of the dipole modulation reported in the Planck satellite measurements and could be at the origin of other large scale anomalies.

  16. The combustion behavior of large scale lithium titanate battery

    NASA Astrophysics Data System (ADS)

    Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua

    2015-01-01

    Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112-121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference.

  17. Large-scale magnetic fields in magnetohydrodynamic turbulence.

    PubMed

    Alexakis, Alexandros

    2013-02-22

    High Reynolds number magnetohydrodynamic turbulence in the presence of zero-flux large-scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations, the energy dissipation rate [symbol: see text] follows the scaling [Symbol: see text] proportional U(rms)(3)/ℓ even when the large-scale magnetic field energy is twenty times larger than the kinetic energy. A further increase of the magnetic energy showed a transition to the [Symbol: see text] proportional U(rms)(2) B(rms)/ℓ scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form nonturbulent helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra support the Kolmogorov spectrum k(-5/3) while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k(-3/2) as observed in the solar wind. PMID:23473153

  18. Exact-Differential Large-Scale Traffic Simulation

    SciTech Connect

    Hanai, Masatoshi; Suzumura, Toyotaro; Theodoropoulos, Georgios; Perumalla, Kalyan S

    2015-01-01

    Analyzing large-scale traffics by simulation needs repeating execution many times with various patterns of scenarios or parameters. Such repeating execution brings about big redundancy because the change from a prior scenario to a later scenario is very minor in most cases, for example, blocking only one of roads or changing the speed limit of several roads. In this paper, we propose a new redundancy reduction technique, called exact-differential simulation, which enables to simulate only changing scenarios in later execution while keeping exactly same results as in the case of whole simulation. The paper consists of two main efforts: (i) a key idea and algorithm of the exact-differential simulation, (ii) a method to build large-scale traffic simulation on the top of the exact-differential simulation. In experiments of Tokyo traffic simulation, the exact-differential simulation shows 7.26 times as much elapsed time improvement in average and 2.26 times improvement even in the worst case as the whole simulation.

  19. Large-scale mapping of mutations affecting zebrafish development

    PubMed Central

    Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus PS; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane

    2007-01-01

    Background Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. Results We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. Conclusion By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations. PMID:17212827

  20. The effective field theory of cosmological large scale structures

    SciTech Connect

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.