Curvature constraints from large scale structure
NASA Astrophysics Data System (ADS)
Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien
2016-06-01
We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.
Large scale structure forecast constraints on particle production during inflation
Chantavat, Teeraparb; Gordon, Christopher; Silk, Joseph
2011-05-15
Bursts of particle production during inflation provide a well-motivated mechanism for creating bumplike features in the primordial power spectrum. Current data constrain these features to be less than about 5% the size of the featureless primordial power spectrum at wave numbers of about 0.1h Mpc{sup -1}. We forecast that the Planck cosmic microwave background experiment will be able to strengthen this constraint to the 0.5% level. We also predict that adding data from a square kilometer array galaxy redshift survey would improve the constraint to about the 0.1% level. For features at larger wave numbers, Planck will be limited by Silk damping and foregrounds, while the square kilometer array will be limited by nonlinear effects. We forecast, for a cosmic inflation probe galaxy redshift survey, that similar constraints can be achieved up to about a wave number of 1.0h Mpc{sup -1}.
Stability constraints on large-scale structural brain networks
Gray, Richard T.; Robinson, Peter A.
2013-01-01
Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure and physiology. Using a physiologically-based model of brain electrical activity, we investigated the stability and dispersion solutions of networks of neuronal populations with propagation time delays and dendritic time constants. We find that stability is determined by the spectrum of the network's matrix of connection strengths and is independent of the temporal damping rate of axonal propagation with stability restricting the spectrum to a region in the complex plane. Time delays and dendritic time constants modify the shape of this region but it always contains the unit disk. Instabilities resulting from changes in connection strength initially have frequencies less than a critical frequency. For physiologically plausible parameter values based on the corticothalamic system, this critical frequency is approximately 10 Hz. For excitatory networks and networks with randomly distributed excitatory and inhibitory connections, time delays and non-zero dendritic time constants have no impact on network stability but do effect dispersion frequencies. Random networks with both excitatory and inhibitory connections can have multiple marginally stable modes at low delta frequencies. PMID:23630490
Serra, Paolo; Cooray, Asantha; Zalamea, Federico; Mangano, Gianpiero; Melchiorri, Alessandro
2010-02-15
We update a previous investigation of cosmological effects of a nonstandard interaction between neutrinos and dark matter. Parametrizing the elastic-scattering cross section between the two species as a function of the temperature of the Universe, the resulting neutrino-dark matter fluid has a nonzero pressure, which determines diffusion-damped oscillations in the matter power spectrum similar to the acoustic oscillations generated by the photon-baryon fluid. Using cosmic microwave background data in combination with large scale structure experiment results, we then put constraints on the fraction of the interacting dark matter component as well as on the corresponding opacity.
Effects of unstable dark matter on large-scale structure and constraints from future surveys
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Zentner, Andrew R.
2012-02-01
In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or “kick” velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression can be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles ℓ<300), surveys like Euclid or the Large Synoptic Survey Telescope can be sensitive to vk≳90km/s for lifetimes τ˜1-5Gyr. To estimate more aggressive constraints, we model nonlinear corrections to lensing power using a simple halo evolution model that is in good agreement with numerical simulations. In our most ambitious forecasts, using multipoles ℓ<3000, we find that imaging surveys can be sensitive to vk˜10km/s for lifetimes τ≲10Gyr. Lensing will provide a particularly interesting complement to existing constraints in that they will probe the long lifetime regime (τ≫H0-1) far better than contemporary techniques. A caveat to these ambitious forecasts is that the evolution of perturbations on nonlinear scales will need to be well calibrated by numerical simulations before they can be realized. This work motivates the pursuit of such a numerical simulation campaign to constrain dark matter with cosmological weak lensing.
Constraints on primordial non-Gaussianity from large scale structure probes
Xia, Jun-Qing; Baccigalupi, Carlo; Matarrese, Sabino; Verde, Licia; Viel, Matteo E-mail: bacci@sissa.it E-mail: liciaverde@icc.ub.edu
2011-08-01
In this paper we measure the angular power spectra C{sub l} of three high-redshift large-scale structure probes: the radio sources from the NRAO VLA Sky Survey (NVSS), the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs) and the MegaZ-LRG (DR7), the final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey. We perform a global analysis of the constraints on the amplitude of primordial non-Gaussianity from these angular power spectra, as well as from their cross-correlation power spectra with the cosmic microwave background (CMB) temperature map. In particular, we include non-Gaussianity of the type arising from single-field slow roll, multifields, curvaton (local type), and those which effects on the halo clustering can be described by the equilateral template (related to higher-order derivative type non-Gaussianity) and by the enfolded template (related to modified initial state or higher-derivative interactions). When combining all data sets, we obtain limits of f{sub NL} = 48±20, f{sub NL} = 50±265 and f{sub NL} = 183±95 at 68% confidence level for local, equilateral and enfolded templates, respectively. Furthermore, we explore the constraint on the cubic correction g{sub NL}φ{sup 3} on the bias of dark matter haloes and obtain a limit of −1.2 × 10{sup 5} < g{sub NL} < 11.3 × 10{sup 5} at 95% confidence level.
Putter, Roland de; Verde, Licia; Jimenez, Raul E-mail: liciaverde@icc.ub.edu
2013-02-01
We present new observational constraints on inhomogeneous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for the homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
Constraints on dark-matter properties from large-scale structure
NASA Astrophysics Data System (ADS)
Kunz, Martin; Nesseris, Savvas; Sawicki, Ignacy
2016-07-01
We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background anisotropies constrain the equation of state and sound speed of the dark matter (DM) at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like a-2 absent shell crossing, we infer that today w(DM )<1 0-10.0 , cs,(DM ) 2<1 0-10.7 and cvis,(DM) 2<1 0-10.3 at the 99% confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: For warm dark matter these constraints imply m >70 eV , assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that m >100 eV . We separately constrain the properties of the DM fluid on linear scales at late times and find upper bounds cs,(DM ) 2<1 0-5.9 and cvis,(DM) 2<1 0-5.7 , with no detection of nondust properties for the DM.
NASA Astrophysics Data System (ADS)
Böhringer, Hans; Chon, Gayoung
2016-07-01
The high precision measurements of the cosmic microwave background by the Planck survey yielded tight constraints on cosmological parameters and the statistics of the density fluctuations at the time of recombination. This provides the means for a critical study of structure formation in the Universe by comparing the microwave background results with present epoch measurements of the cosmic large-scale structure. It can reveal subtle effects such as how different forms of Dark Matter may modify structure growth. Currently most interesting is the damping effect of structure growth by massive neutrinos. Different observations of low redshift matter density fluctuations provided evidence for a signature of massive neutrinos. Here we discuss the study of the cosmic large-scale structure with a complete sample of nearby, X-ray luminous clusters from our REFLEX cluster survey. From the observed X-ray luminosity function and its reproduction for different cosmological models, we obtain tight constraints on the cosmological parameters describing the matter density, Ωm, and the density fluctuation amplitude, σ8. A comparison of these constraints with the Planck results shows a discrepancy in the framework of a pure ΛCDM model, but the results can be reconciled, if we allow for a neutrino mass in the range of 0.17 eV to 0.7 eV. Also some others, but not all of the observations of the nearby large-scale structure provide evidence or trends for signatures of massive neutrinos. With further improvement in the systematics and future survey projects, these indications will develop into a definitive measurement of neutrino masses.
Rosenfeld, Rogerio; Frieman, Joshua A.; /Fermilab /Chicago U., Astron. Astrophys. Ctr.
2006-11-01
We derive constraints on a simple quintessential inflation model, based on a spontaneously broken {Phi}{sup 4} theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation-of-state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.
Neutrino constraints: what large-scale structure and CMB data are telling us?
NASA Astrophysics Data System (ADS)
Costanzi, Matteo; Sartoris, Barbara; Viel, Matteo; Borgani, Stefano
2014-10-01
We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ mν =0.29+0.18-0.21 eV and ∑ mν =0.22+0.17-0.18 eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get mseff=0.44+0.28-0.26 eV and Δ Neff=0.78+0.60-0.59 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass as motivated by accelerator anomaly is within the 2σ errors. Conversely, the Ly
Neutrino constraints: what large-scale structure and CMB data are telling us?
Costanzi, Matteo; Sartoris, Barbara; Borgani, Stefano; Viel, Matteo E-mail: sartoris@oats.inaf.it E-mail: borgani@oats.inaf.it
2014-10-01
We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ m{sub ν} =0.29{sup +0.18}{sub -0.21} eV and ∑ m{sub ν} =0.22{sup +0.17}{sub -0.18} eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get m{sub s}{sup eff}=0.44{sup +0.28}{sub -0.26} eV and Δ N{sub eff}=0.78{sup +0.60}{sub -0.59} 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass
Fractals and cosmological large-scale structure
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1992-01-01
Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.
Constraints on large-scale dark acoustic oscillations from cosmology
NASA Astrophysics Data System (ADS)
Cyr-Racine, Francis-Yan; de Putter, Roland; Raccanelli, Alvise; Sigurdson, Kris
2014-03-01
If all or a fraction of the dark matter (DM) were coupled to a bath of dark radiation (DR) in the early Universe, we expect the combined DM-DR system to give rise to acoustic oscillations of the dark matter until it decouples from the DR. Much like the standard baryon acoustic oscillations, these dark acoustic oscillations (DAO) imprint a characteristic scale, the sound horizon of dark matter, on the matter power spectrum. We compute in detail how the microphysics of the DM-DR interaction affects the clustering of matter in the Universe and show that the DAO physics also gives rise to unique signatures in the temperature and polarization spectra of the cosmic microwave background (CMB). We use cosmological data from the CMB, baryon acoustic oscillations, and large-scale structure to constrain the possible fraction of interacting DM as well as the strength of its interaction with DR. Like nearly all knowledge we have gleaned about DM since inferring its existence this constraint rests on the betrayal by gravity of the location of otherwise invisible DM. Although our results can be straightforwardly applied to a broad class of models that couple dark matter particles to various light relativistic species, in order to make quantitative predictions, we model the interacting component as dark atoms coupled to a bath of dark photons. We find that linear cosmological data and CMB lensing put strong constraints on the existence of DAO features in the CMB and the large-scale structure of the Universe. Interestingly, we find that at most ˜5% of all DM can be very strongly interacting with DR. We show that our results are surprisingly constraining for the recently proposed double-disk DM model, a novel example of how large-scale precision cosmological data can be used to constrain galactic physics and subgalactic structure.
Nonthermal Components in the Large Scale Structure
NASA Astrophysics Data System (ADS)
Miniati, Francesco
2004-12-01
I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.
Neutrinos and large-scale structure
Eisenstein, Daniel J.
2015-07-15
I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.
Large-scale wind turbine structures
NASA Technical Reports Server (NTRS)
Spera, David A.
1988-01-01
The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.
Large-scale wind turbine structures
NASA Astrophysics Data System (ADS)
Spera, David A.
1988-05-01
The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.
The challenge of large-scale structure
NASA Astrophysics Data System (ADS)
Gregory, S. A.
1996-03-01
The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.
The XMM Large Scale Structure Survey
NASA Astrophysics Data System (ADS)
Pierre, Marguerite
2005-10-01
We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.
Grid sensitivity capability for large scale structures
NASA Technical Reports Server (NTRS)
Nagendra, Gopal K.; Wallerstein, David V.
1989-01-01
The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.
Local gravity and large-scale structure
NASA Technical Reports Server (NTRS)
Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.
1990-01-01
The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.
Large-Scale Constraint-Based Pattern Mining
ERIC Educational Resources Information Center
Zhu, Feida
2009-01-01
We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…
Efficient multiobjective optimization scheme for large scale structures
NASA Astrophysics Data System (ADS)
Grandhi, Ramana V.; Bharatram, Geetha; Venkayya, V. B.
1992-09-01
This paper presents a multiobjective optimization algorithm for an efficient design of large scale structures. The algorithm is based on generalized compound scaling techniques to reach the intersection of multiple functions. Multiple objective functions are treated similar to behavior constraints. Thus, any number of objectives can be handled in the formulation. Pseudo targets on objectives are generated at each iteration in computing the scale factors. The algorithm develops a partial Pareto set. This method is computationally efficient due to the fact that it does not solve many single objective optimization problems in reaching the Pareto set. The computational efficiency is compared with other multiobjective optimization methods, such as the weighting method and the global criterion method. Trusses, plate, and wing structure design cases with stress and frequency considerations are presented to demonstrate the effectiveness of the method.
Probes of large-scale structure in the universe
NASA Technical Reports Server (NTRS)
Suto, Yasushi; Gorski, Krzysztof; Juszkiewicz, Roman; Silk, Joseph
1988-01-01
A general formalism is developed which shows that the gravitational instability theory for the origin of the large-scale structure of the universe is now capable of critically confronting observational results on cosmic background radiation angular anisotropies, large-scale bulk motions, and large-scale clumpiness in the galaxy counts. The results indicate that presently advocated cosmological models will have considerable difficulty in simultaneously explaining the observational results.
Unification and large-scale structure.
Laing, R A
1995-01-01
The hypothesis of relativistic flow on parsec scales, coupled with the symmetrical (and therefore subrelativistic) outer structure of extended radio sources, requires that jets decelerate on scales observable with the Very Large Array. The consequences of this idea for the appearances of FRI and FRII radio sources are explored. PMID:11607609
Large-scale structural monitoring systems
NASA Astrophysics Data System (ADS)
Solomon, Ian; Cunnane, James; Stevenson, Paul
2000-06-01
Extensive structural health instrumentation systems have been installed on three long-span cable-supported bridges in Hong Kong. The quantities measured include environment and applied loads (such as wind, temperature, seismic and traffic loads) and the bridge response to these loadings (accelerations, displacements, and strains). Measurements from over 1000 individual sensors are transmitted to central computing facilities via local data acquisition stations and a fault- tolerant fiber-optic network, and are acquired and processed continuously. The data from the systems is used to provide information on structural load and response characteristics, comparison with design, optimization of inspection, and assurance of continued bridge health. Automated data processing and analysis provides information on important structural and operational parameters. Abnormal events are noted and logged automatically. Information of interest is automatically archived for post-processing. Novel aspects of the instrumentation system include a fluid-based high-accuracy long-span Level Sensing System to measure bridge deck profile and tower settlement. This paper provides an outline of the design and implementation of the instrumentation system. A description of the design and implementation of the data acquisition and processing procedures is also given. Examples of the use of similar systems in monitoring other large structures are discussed.
Real or virtual large-scale structure?
Evrard, August E.
1999-01-01
Modeling the development of structure in the universe on galactic and larger scales is the challenge that drives the field of computational cosmology. Here, photorealism is used as a simple, yet expert, means of assessing the degree to which virtual worlds succeed in replicating our own. PMID:10200243
Large-Scale Structures of Planetary Systems
NASA Astrophysics Data System (ADS)
Murray-Clay, Ruth; Rogers, Leslie A.
2015-12-01
A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.
Large Scale Turbulent Structures in Supersonic Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1997-01-01
Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean
Large Scale Turbulent Structures in Supersonic Jets
NASA Technical Reports Server (NTRS)
Rao, Ram Mohan; Lundgren, Thomas S.
1997-01-01
Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities
Large Scale Constraints on Methane Emissions Determined from Observations
NASA Astrophysics Data System (ADS)
Dlugokencky, E. J.; Lang, P.; Masarie, K.; Crotwell, A. M.; Bruhwiler, L.
2011-12-01
Measurements of atmospheric CH4 from the NOAA Global Monitoring Division's, Global Cooperative Air Sampling Network began in 1983. These high-precision observations offer key constraints on CH4's budget including the global burden, the rate of increase, and the spatial distribution of CH4 at the surface. These observations allow estimates of total global CH4 emissions without using a chemical transport model. A surprising result of this analysis is that, if the CH4 lifetime has been constant, then total global emissions have been approximately constant since the mid-1980s. This result is difficult to reconcile with bottom-up inventories that report increasing anthropogenic emissions, unless natural emissions have decreased considerably. Analysis of anomalies in CH4 growth rate also allow us to test our understanding of the processes that affect the atmospheric CH4 burden. Large anomalies have been attributed to decreased CH4 sink after the eruption of Mt. Pinatubo in 1992, decreased emissions from wetlands because of cooler than normal temperatures in 1992, and increased emissions from biomass burning and wetlands in 1997/98. The most recent anomaly, starting in 2007 and continuing into early-2011 with an average rate of increase of ~6 ppb yr-1, is more persistent than previous ones and may indicate a permanent change to the global CH4 budget. Dlugokencky et al. [Geophys. Res. Lett., 36, 2009] attributed the increases in 2007 and 2008 to anomalously high temperatures in the Arctic (2007) and greater than average precipitation in the tropics (2007 and 2008). Continuing increases in 2009 and 2010 may be related to a very strong La Niña starting in 2010, the same climate pattern responsible for large positive precipitation anomalies in tropical wetland regions in 2007 and 2008. Indeed, strong precipitation anomalies were observed in SE Asia during 2010. This is a likely cause of continued CH4 increase, and it is consistent with the observation that the largest growth
A relativistic signature in large-scale structure
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David
2016-09-01
In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.
Large-scale structure and matter in the Universe.
Peacock, J A
2003-11-15
This paper summarizes the physical mechanisms that encode the type and quantity of cosmological matter in the properties of large-scale structure, and reviews the application of such tests to current datasets. The key lengths of the horizon size at matter-radiation equality and at last scattering determine the total matter density and its ratio to the relativistic density; acoustic oscillations can diagnose whether the matter is collisionless, and small-scale structure or its absence can limit the mass of any dark-matter relic particle. The most stringent constraints come from combining data on present-day galaxy clustering with data on CMB anisotropies. Such an analysis breaks the degeneracies inherent in either dataset alone, and proves that the Universe is very close to flat. The matter content is accurately consistent with pure cold dark matter, with ca. 25% of the critical density, and fluctuations that are scalar only, adiabatic and scale invariant. It is demonstrated that these conclusions cannot be evaded by adjusting either the equation of state of the vacuum, or the total relativistic density. PMID:14667313
EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE
Bruni, Marco; Hidalgo, Juan Carlos; Wands, David
2014-10-10
We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.
The Evolution of Baryons in Cosmic Large Scale Structure
NASA Astrophysics Data System (ADS)
Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna
2015-01-01
The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.
Contribution of peculiar shear motions to large-scale structure
NASA Technical Reports Server (NTRS)
Mueler, Hans-Reinhard; Treumann, Rudolf A.
1994-01-01
Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.
Cosmological constraints from the large-scale weak lensing of SDSS MaxBCG clusters
NASA Astrophysics Data System (ADS)
Zu, Ying; Weinberg, David H.; Rozo, Eduardo; Sheldon, Erin S.; Tinker, Jeremy L.; Becker, Matthew R.
2014-04-01
We derive constraints on the matter density Ωm and the amplitude of matter clustering σ8 from measurements of large-scale weak lensing (projected separation R = 5-30 h-1 Mpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalogue. The weak lensing signal is proportional to the product of Ωm and the cluster-mass correlation function ξcm. With the relation between optical richness and cluster mass constrained by the observed cluster number counts, the predicted lensing signal increases with increasing Ωm or σ8, with mild additional dependence on the assumed scatter between richness and mass. The dependence of the signal on scale and richness partly breaks the degeneracies among these parameters. We incorporate external priors on the richness-mass scatter from comparisons to X-ray data and on the shape of the matter power spectrum from galaxy clustering, and we test our adopted model for ξcm against N-body simulations. Using a Bayesian approach with minimal restrictive priors, we find σ8(Ωm/0.325)0.501 = 0.828 ± 0.049, with marginalized constraints of Ω _m=0.325_{-0.067}^{+0.086} and σ _8=0.828_{-0.097}^{+0.111}, consistent with constraints from other MaxBCG studies that use weak lensing measurements on small scales (R ≤ 2 h-1 Mpc). The (Ωm, σ8) constraint is consistent with and orthogonal to the one inferred from Wilkinson Microwave Anisotropy Probe cosmic microwave background data, reflecting agreement with the structure growth predicted by General Relativity for a Λ cold dark matter (ΛCDM) cosmological model. A joint constraint assuming ΛCDM yields Ω _m=0.298_{-0.020}^{+0.019} and σ _8=0.831_{-0.020}^{+0.020}. For these parameters and our best-fitting scatter, we obtain a tightly constrained mean richness-mass relation of MaxBCG clusters, N200 = 25.4(M/3.61 × 1014 h-1 M⊙)0.74, with a normalization uncertainty of 1.5 per cent. Our cosmological parameter errors are dominated by the statistical uncertainties of the large-scale weak
The Large-Scale Structure of Scientific Method
ERIC Educational Resources Information Center
Kosso, Peter
2009-01-01
The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…
Cosmic strings and the large-scale structure
NASA Technical Reports Server (NTRS)
Stebbins, Albert
1988-01-01
A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.
Interloper bias in future large-scale structure surveys
NASA Astrophysics Data System (ADS)
Pullen, Anthony R.; Hirata, Christopher M.; Doré, Olivier; Raccanelli, Alvise
2016-02-01
Next-generation spectroscopic surveys will map the large-scale structure of the observable universe, using emission line galaxies as tracers. While each survey will map the sky with a specific emission line, interloping emission lines can masquerade as the survey's intended emission line at different redshifts. Interloping lines from galaxies that are not removed can contaminate the power spectrum measurement, mixing correlations from various redshifts and diluting the true signal. We assess the potential for power spectrum contamination, finding that an interloper fraction worse than 0.2% could bias power spectrum measurements for future surveys by more than 10% of statistical errors, while also biasing power spectrum inferences. We also construct a formalism for predicting cosmological parameter measurement bias, demonstrating that a 0.15%-0.3% interloper fraction could bias the growth rate by more than 10% of the error, which can affect constraints on gravity from upcoming surveys. We use the COSMOS Mock Catalog (CMC), with the emission lines rescaled to better reproduce recent data, to predict potential interloper fractions for the Prime Focus Spectrograph (PFS) and the Wide-Field InfraRed Survey Telescope (WFIRST). We find that secondary line identification, or confirming galaxy redshifts by finding correlated emission lines, can remove interlopers for PFS. For WFIRST, we use the CMC to predict that the 0.2% target can be reached for the WFIRST Hα survey, but sensitive optical and near-infrared photometry will be required. For the WFIRST [O III] survey, the predicted interloper fractions reach several percent and their effects will have to be estimated and removed statistically (e.g., with deep training samples). These results are optimistic as the CMC does not capture the full set of correlations of galaxy properties in the real Universe, and they do not include blending effects. Mitigating interloper contamination will be crucial to the next generation of
From Systematic Errors to Cosmology Using Large-Scale Structure
NASA Astrophysics Data System (ADS)
Hunterer, Dragan
We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".
Turbulent large-scale structure effects on wake meandering
NASA Astrophysics Data System (ADS)
Muller, Y.-A.; Masson, C.; Aubrun, S.
2015-06-01
This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is
Lagrangian space consistency relation for large scale structure
NASA Astrophysics Data System (ADS)
Horn, Bart; Hui, Lam; Xiao, Xiao
2015-09-01
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.
Cosmic string and formation of large scale structure.
NASA Astrophysics Data System (ADS)
Fang, L.-Z.; Xiang, S.-P.
Cosmic string formed due to phase transition in the early universe may be the cause of galaxy formation and clustering. The advantage of string model is that it can give a consistent explanation of all observed results related to large scale structure, such as correlation functions of galaxies, clusters and superclusters, the existence of voids and/or bubbles, anisotropy of cosmic background radiation. A systematic review on string model has been done.
Large-scale structure in f(T) gravity
Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.
2011-05-15
In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.
Large scale structure in universes dominated by cold dark matter
NASA Technical Reports Server (NTRS)
Bond, J. Richard
1986-01-01
The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.
Alignment of quasar polarizations with large-scale structures
NASA Astrophysics Data System (ADS)
Hutsemékers, D.; Braibant, L.; Pelgrims, V.; Sluse, D.
2014-12-01
We have measured the optical linear polarization of quasars belonging to Gpc scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is on the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 092.A-0221.Table 1 is available in electronic form at http://www.aanda.org
On the analysis of large-scale genomic structures.
Oiwa, Nestor Norio; Goldman, Carla
2005-01-01
We apply methods from statistical physics (histograms, correlation functions, fractal dimensions, and singularity spectra) to characterize large-scale structure of the distribution of nucleotides along genomic sequences. We discuss the role of the extension of noncoding segments ("junk DNA") for the genomic organization, and the connection between the coding segment distribution and the high-eukaryotic chromatin condensation. The following sequences taken from GenBank were analyzed: complete genome of Xanthomonas campestri, complete genome of yeast, chromosome V of Caenorhabditis elegans, and human chromosome XVII around gene BRCA1. The results are compared with the random and periodic sequences and those generated by simple and generalized fractal Cantor sets. PMID:15858230
Laser Welding of Large Scale Stainless Steel Aircraft Structures
NASA Astrophysics Data System (ADS)
Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.
In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.
Solving large scale structure in ten easy steps with COLA
Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J. E-mail: matiasz@ias.edu
2013-06-01
We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.
Solving large scale structure in ten easy steps with COLA
NASA Astrophysics Data System (ADS)
Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J.
2013-06-01
We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 109Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 1011Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.
Complex modular structure of large-scale brain networks
NASA Astrophysics Data System (ADS)
Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.
2009-06-01
Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.
The effective field theory of cosmological large scale structures
Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo
2012-09-20
Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c^{2}_{s} ≈ 10^{–6}c^{2} and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)^{4}. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc^{–1}.
Systematic renormalization of the effective theory of Large Scale Structure
NASA Astrophysics Data System (ADS)
Akbar Abolhasani, Ali; Mirbabayi, Mehrdad; Pajer, Enrico
2016-05-01
A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.
Simulating the large-scale structure of HI intensity maps
NASA Astrophysics Data System (ADS)
Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel
2016-03-01
Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 20483 particles (particle mass 1.6 × 1011 Msolar / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 Msolar / h < Mhalo < 1013 Msolar / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 lesssim z lesssim 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.
Mass Efficiencies for Common Large-Scale Precision Space Structures
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Agnes, Gregory S.
2005-01-01
This paper presents a mass-based trade study for large-scale deployable triangular trusses, where the longerons can be monocoque tubes, isogrid tubes, or coilable longeron trusses. Such structures are typically used to support heavy reflectors, solar panels, or other instruments, and are subject to thermal gradients that can vary a great deal based on orbital altitude, location in orbit, and self-shadowing. While multi layer insulation (MLI) blankets are commonly used to minimize the magnitude of these thermal disturbances, they subject the truss to a nonstructural mass penalty. This paper investigates the impact of these add-on thermal protection layers on selecting the lightest precision structure for a given loading scenario.
Nonzero Density-Velocity Consistency Relations for Large Scale Structures.
Rizzo, Luca Alberto; Mota, David F; Valageas, Patrick
2016-08-19
We present exact kinematic consistency relations for cosmological structures that do not vanish at equal times and can thus be measured in surveys. These rely on cross correlations between the density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift in the amplitude of the velocity field that could be measured. These consistency relations only rely on the weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the large-scale galaxy bias. PMID:27588842
Nonzero Density-Velocity Consistency Relations for Large Scale Structures
NASA Astrophysics Data System (ADS)
Rizzo, Luca Alberto; Mota, David F.; Valageas, Patrick
2016-08-01
We present exact kinematic consistency relations for cosmological structures that do not vanish at equal times and can thus be measured in surveys. These rely on cross correlations between the density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift in the amplitude of the velocity field that could be measured. These consistency relations only rely on the weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the large-scale galaxy bias.
Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.
The large-scale radio structure of R Aquarii
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Michalitsianos, A. G.; Oliversen, R. J.; Yusef-Zadeh, F.; Kafatos, M.
1987-01-01
Radio continuum observations of the R Aqr symbiotic star system, using the compact D configuration of the VLA at 6-cm wavelength, reveal a large-scale about 2-arcmin structure engulfing the binary, which has long been known to have a similar optical nebula. This optical/radio nebula possesses about 4 x 10 to the 42nd ergs of kinetic energy which is typical of a recurrent nova outburst. Moreover, a cluster of a dozen additional 6-cm radio sources were observed in proximity to R Aqr, most of these discrete sources lie about 3 arcmin south and/or west of R Aqr and, coupled with previous 20-cm data, spectral indices limits suggest a thermal nature for some of these sources. If the thermal members of the cluster are associated with R Aqr, it may indicate a prehistoric eruption of the system's suspected recurrent nova. The nonthermal cluster members may be extragalactic background radio sources.
Large-scale cortical correlation structure of spontaneous oscillatory activity
Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.
2013-01-01
Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454
Large-scale testing of structural clay tile infilled frames
Flanagan, R.D.; Bennett, R.M.
1993-03-18
A summary of large-scale cyclic static tests of structural clay tile infilled frames is given. In-plane racking tests examined the effects of varying frame stiffness, varying infill size, infill offset from frame centerline, and single and double wythe infill construction. Out-of-plane tests examined infilled frame response to inertial loadings and inter-story drift loadings. Sequential in-plane and out-of-plane loadings were performed to determine the effects of orthogonal damage and degradation on both strength and stiffness. A combined out-of-plane inertial and in-plane racking test was conducted to investigate the interaction of multi-directional loading. To determine constitutive properties of the infills, prism compression, mortar compression and various unit tile tests were performed.
Phase Correlations and Topological Measures of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Coles, P.
The process of gravitational instability initiated by small primordial density perturbations is a vital ingredient of cosmological models that attempt to explain how galaxies and large-scale structure formed in the Universe. In the standard picture (the "concordance" model), a period of accelerated expansion ("inflation") generated density fluctuations with simple statistical properties through quantum processes (Starobinsky [82], [83], [84]; Guth [39]; Guth & Pi [40]; Albrecht & Steinhardt [2]; Linde [55]). In this scenario the primordial density field is assumed to form a statistically homogeneous and isotropic Gaussian random field (GRF). Over years of observational scrutiny this paradigm has strengthened its hold in the minds of cosmologists and has survived many tests, culminating in those furnished by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. [7]; Hinshaw et al. [45].
Biased galaxy formation and large-scale structure
NASA Astrophysics Data System (ADS)
Berlind, Andreas Alan
The biased relation between the galaxy and mass distributions lies at the intersection of large scale structure in the universe and the process of galaxy formation. I study the nature of galaxy bias and its connections to galaxy clustering and galaxy formation physics. Galaxy bias has traditionally been viewed as an obstacle to constraining cosmological parameters by studying galaxy clustering. I examine the effect of bias on measurements of the cosmological density parameter Wm by techniques that exploit the gravity-induced motions of galaxies. Using a variety of environmental bias models applied to N-body simulations, I find that, in most cases, the quantity estimated by these techniques is the value of W0.6m/bs , where bs is the ratio of rms galaxy fluctuations to rms mass fluctuations on large scales. Moreover, I find that different methods should, in principle, agree with each other and it is thus unlikely that non-linear or scale-dependent bias is responsible for the discrepancies that exist among current measurements. One can also view the influence of bias on galaxy clustering as a strength rather than a weakness, since it provides us with a potentially powerful way to constrain galaxy formation theories. With this goal in mind, I develop the "Halo Occupation Distribution" (HOD), a physically motivated and complete formulation of bias that is based on the distribution of galaxies within virialized dark matter halos. I explore the sensitivity of galaxy clustering statistics to features of the HOD and focus on how the HOD may be empirically constrained from galaxy clustering data. I make the connection to the physics of galaxy formation by studying the HOD predicted by the two main theoretical methods of modeling galaxy formation. I find that, despite many differences between them, the two methods predict the same HOD, suggesting that galaxy bias is determined by robust features of the hierarchical galaxy formation process rather than details of gas cooling
Bias in the effective field theory of large scale structures
Senatore, Leonardo
2015-11-05
We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/k_{NL} and k/k_{M}, where k is the wavenumber of interest, k_{NL} is the wavenumber associated to the non-linear scale, and k_{M} is the comoving wavenumber enclosing the mass of a galaxy.
Bias in the effective field theory of large scale structures
Senatore, Leonardo
2015-11-05
We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local inmore » space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.« less
Bias in the effective field theory of large scale structures
NASA Astrophysics Data System (ADS)
Senatore, Leonardo
2015-11-01
We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. We describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.
Constraints on Ionizing Photon Production from the Large-scale Lyα Forest
NASA Astrophysics Data System (ADS)
Pontzen, Andrew; Bird, Simeon; Peiris, Hiranya; Verde, Licia
2014-09-01
Recent work has shown that the z ~= 2.5 Lyα forest on large scales encodes information about the galaxy and quasar populations that keep the intergalactic medium photoionized. We present the first forecasts for constraining the populations with data from current and next-generation surveys. At a minimum, the forest should tell us whether galaxies or, conversely, quasars dominate the photon production. The number density and clustering strength of the ionizing sources might be estimated to sub-10% precision with a DESI-like survey if degeneracies (e.g., with the photon mean-free-path, small-scale clustering power normalization, and potentially other astrophysical effects) can be broken by prior information. We demonstrate that when inhomogeneous ionization is correctly handled, constraints on dark energy do not degrade.
CONSTRAINTS ON IONIZING PHOTON PRODUCTION FROM THE LARGE-SCALE Lyα FOREST
Pontzen, Andrew; Peiris, Hiranya; Bird, Simeon; Verde, Licia
2014-09-10
Recent work has shown that the z ≅ 2.5 Lyα forest on large scales encodes information about the galaxy and quasar populations that keep the intergalactic medium photoionized. We present the first forecasts for constraining the populations with data from current and next-generation surveys. At a minimum, the forest should tell us whether galaxies or, conversely, quasars dominate the photon production. The number density and clustering strength of the ionizing sources might be estimated to sub-10% precision with a DESI-like survey if degeneracies (e.g., with the photon mean-free-path, small-scale clustering power normalization, and potentially other astrophysical effects) can be broken by prior information. We demonstrate that when inhomogeneous ionization is correctly handled, constraints on dark energy do not degrade.
Nonlinear density fluctuation field theory for large scale structure
NASA Astrophysics Data System (ADS)
Zhang, Yang; Miao, Hai-Xing
2009-05-01
We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous universe with small density fluctuations. Keeping the density fluctuations up to second order, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solution is obtained in terms of the hypergeometric functions, which is checked numerically. With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(κ) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical perspective. The theory is worth extending to study the evolution effects in an expanding universe.
Characterizing unknown systematics in large scale structure surveys
Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.
2014-04-01
Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.
Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data
NASA Technical Reports Server (NTRS)
Guhathakurta, Madhulika
1998-01-01
Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.
The three-point function as a probe of models for large-scale structure
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gaztanaga, Enrique
1993-01-01
The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
The three-point function as a probe of models for large-scale structure
Frieman, J.A.; Gaztanaga, E.
1993-06-19
The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard {Omega} = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R{sub p} {approximately}20 h{sup {minus}1} Mpc, e.g., low-matter-density (non-zero cosmological constant) models, {open_quote}tilted{close_quote} primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q{sub J} at large scales, r {approx_gt} R{sub p}. Current observational constraints on the three-point amplitudes Q{sub 3} and S{sub 3} can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
The three-point function as a probe of models for large-scale structure
Frieman, J.A. ); Gaztanaga, E. )
1993-06-19
The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard [Omega] = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R[sub p] [approximately]20 h[sup [minus]1] Mpc, e.g., low-matter-density (non-zero cosmological constant) models, [open quote]tilted[close quote] primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q[sub J] at large scales, r [approx gt] R[sub p]. Current observational constraints on the three-point amplitudes Q[sub 3] and S[sub 3] can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
Inflation physics from the cosmic microwave background and large scale structure
NASA Astrophysics Data System (ADS)
Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.
2015-03-01
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
Inflation Physics from the Cosmic Microwave Background and Large Scale Structure
NASA Technical Reports Server (NTRS)
Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.
2013-01-01
Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.
Soft-Pion theorems for large scale structure
NASA Astrophysics Data System (ADS)
Horn, Bart; Hui, Lam; Xiao, Xiao
2014-09-01
Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias & Riotto and Peloso & Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS.
Soft-Pion theorems for large scale structure
Horn, Bart; Hui, Lam; Xiao, Xiao E-mail: lhui@astro.columbia.edu
2014-09-01
Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS.
Large Scale Electronic Structure Calculations using Quantum Chemistry Methods
NASA Astrophysics Data System (ADS)
Scuseria, Gustavo E.
1998-03-01
This talk will address our recent efforts in developing fast, linear scaling electronic structure methods for large scale applications. Of special importance is our fast multipole method( M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271), 51 (1996). (FMM) for achieving linear scaling for the quantum Coulomb problem (GvFMM), the traditional bottleneck in quantum chemistry calculations based on Gaussian orbitals. Fast quadratures(R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257), 213 (1996). combined with methods that avoid the Hamiltonian diagonalization( J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106), 5569 (1997) have resulted in density functional theory (DFT) programs that can be applied to systems containing many hundreds of atoms and ---depending on computational resources or level of theory-- to many thousands of atoms.( A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys. 107), 425 (1997). Three solutions for the diagonalization bottleneck will be analyzed and compared: a conjugate gradient density matrix search (CGDMS), a Hamiltonian polynomial expansion of the density matrix, and a pseudo-diagonalization method. Besides DFT, our near-field exchange method( J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105), 8969 (1996). for linear scaling Hartree-Fock calculations will be discussed. Based on these improved capabilities, we have also developed programs to obtain vibrational frequencies (via analytic energy second derivatives) and excitation energies (through time-dependent DFT) of large molecules like porphyn or C_70. Our GvFMM has been extended to periodic systems( K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett., in press.) and progress towards a Gaussian-based DFT and HF program for polymers and solids will be reported. Last, we will discuss our progress on a Laplace-transformed \\cal O(N^2) second-order pertubation theory (MP2) method.
CME Interaction with Large-Scale Coronal Structures
NASA Technical Reports Server (NTRS)
Gopalswarny, Nat
2012-01-01
This talk presents some key observations that highlight the importance of CME interaction with other large scale structures such as CMEs and coronal holes . Such interactions depend on the phase of the solar cycle: during maximum, CMEs are ejected more frequently, so CME-CME interaction becomes dominant. During the rise phase, the polar coronal holes are strong, so the interaction between polar coronal holes and CMEs is important, which also leads to a possible increase in the number of interplanetary CMEs observed as magnetic clouds. During the declining phase, there are more equatorial coronal holes, so CMEs originating near these coronal holes are easily deflected. CMEs can be deflected toward and away from the Sun-Earth line resulting in interesting geospace consequences. For example, the largest geomagnetic storm of solar cycle 23 was due to a CME that was deflected towards the Sun-earth line from E22. CME deflection away from the Sun-Earth line diminishes the chance of a CME producing a geomagnetic storm. CME interaction in the coronagraphic field of view was first identified using enhanced radio emission, which is an indication of acceleration of low energy (approx.10 keV) electrons in the interaction site. CME interaction, therefore, may also have implications for proton acceleration. For example, solar energetic particle events typically occur with a higher intensity, whenever multiple CMEs occur in quick succession from the same source region. CME deflection may also have implications to the arrival of energetic particles to earth because magnetic connectivity may be changed by the interaction. I illustrate the above points using examples from SOHO, STEREO, Wind, and ACE data .
Inflationary tensor fossils in large-scale structure
Dimastrogiovanni, Emanuela; Fasiello, Matteo; Jeong, Donghui; Kamionkowski, Marc E-mail: mrf65@case.edu E-mail: kamion@jhu.edu
2014-12-01
Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.
Eddington-Born-Infeld gravity and the large scale structure of the Universe
NASA Astrophysics Data System (ADS)
Bañados, M.; Ferreira, P. G.; Skordis, C.
2009-03-01
It has been argued that a Universe governed by Eddington-Born-Infeld gravity can be compatible with current cosmological constraints. The extra fields introduced in this theory can behave as both dark matter and dark energy, unifying the dark sector in one coherent framework. We show the various roles the extra fields can play in the expansion of the Universe and study the evolution of linear perturbations in the various regimes. We find that, as a unified theory of the dark sector, Eddington-Born-Infeld gravity will lead to excessive fluctuations in the cosmic microwave background on large scales. In the presence of a cosmological constant, however, the extra fields can behave as a form of nonparticulate dark matter and can lead to a cosmology which is entirely compatible with current observations of large scale structure. We discuss the interpretation of this form of dark matter and how it can differ from standard, particulate dark matter.
Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure
Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )
1991-06-01
In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.
Tracing large-scale structures in circumstellar disks with ALMA
NASA Astrophysics Data System (ADS)
Ruge, J. P.; Wolf, S.; Uribe, A. L.; Klahr, H. H.
2013-01-01
Context. Planets are supposed to form in circumstellar disks. The additional gravitational potential of a planet perturbs the disk and leads to characteristic structures, i.e. spiral waves and gaps, in the disk's density profile. Aims: We perform a large-scale parameter study of the observability of these planet-induced structures in circumstellar disks in the (sub)mm wavelength range for the Atacama Large (Sub)Millimeter Array (ALMA). Methods: On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disk-planet models, we calculated the disk temperature structure and (sub)mm images of these systems. These were used to derive simulated ALMA images. Because appropriate objects are frequent in the Taurus-Auriga region, we focused on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disk-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses), nine disk sizes with outer radii ranging from 9 AU to 225 AU, 15 total disk masses in the range between 2.67 × 10-7 M⊙ and 4.10 × 10-2 M⊙, six different central stars, and two different grain size distributions, resulting in 10 000 disk models. Results: On almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disk structures induced by planet-disk interaction or by the influence of magnetic fields on the wavelength range between 0.4 and 2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplanetary disks (0.1-0.001 M⊙) the disk mass has a minor impact on the observability. It is possible to resolve disks down to 2.67 × 10-6 M⊙ and trace gaps induced by a planet with Mp/M⋆ = 0.001 in disks with 2.67 × 10-4 M⊙ with a signal-to-noise ratio greater than three. The central star has a major impact on the observability of gaps, as well as the considered maximum grainsize of the dust
The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation
NASA Astrophysics Data System (ADS)
Noh, Yookyung
The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure. This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.
Inclusive constraints on unified dark matter models from future large-scale surveys
Camera, Stefano; Carbone, Carmelita; Moscardini, Lauro E-mail: carmelita.carbone@unibo.it
2012-03-01
In the very last years, cosmological models where the properties of the dark components of the Universe — dark matter and dark energy — are accounted for by a single ''dark fluid'' have drawn increasing attention and interest. Amongst many proposals, Unified Dark Matter (UDM) cosmologies are promising candidates as effective theories. In these models, a scalar field with a non-canonical kinetic term in its Lagrangian mimics both the accelerated expansion of the Universe at late times and the clustering properties of the large-scale structure of the cosmos. However, UDM models also present peculiar behaviours, the most interesting one being the fact that the perturbations in the dark-matter component of the scalar field do have a non-negligible speed of sound. This gives rise to an effective Jeans scale for the Newtonian potential, below which the dark fluid does not cluster any more. This implies a growth of structures fairly different from that of the concordance ΛCDM model. In this paper, we demonstrate that forthcoming large-scale surveys will be able to discriminate between viable UDM models and ΛCDM to a good degree of accuracy. To this purpose, the planned Euclid satellite will be a powerful tool, since it will provide very accurate data on galaxy clustering and the weak lensing effect of cosmic shear. Finally, we also exploit the constraining power of the ongoing CMB Planck experiment. Although our approach is the most conservative, with the inclusion of only well-understood, linear dynamics, in the end we also show what could be done if some amount of non-linear information were included.
Diffuse pionic gamma-ray emission from large-scale structures in the Fermi era
Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs
2014-02-20
For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.
Peloso, Marco; Pietroni, Massimo E-mail: pietroni@pd.infn.it
2013-05-01
We discuss the constraints imposed on the nonlinear evolution of the Large Scale Structure (LSS) of the universe by galilean invariance, the symmetry relevant on subhorizon scales. Using Ward identities associated to the invariance, we derive fully nonlinear consistency relations between statistical correlators of the density and velocity perturbations, such as the power spectrum and the bispectrum. These relations are valid up to O(f{sub NL}{sup 2}) corrections. We then show that most of the semi-analytic methods proposed so far to resum the perturbative expansion of the LSS dynamics fail to fulfill the constraints imposed by galilean invariance, and are therefore susceptible to non-physical infrared effects. Finally, we identify and discuss a nonperturbative semi-analytical scheme which is manifestly galilean invariant at any order of its expansion.
Constraining scale-dependent non-Gaussianity with future large-scale structure and the CMB
Becker, Adam; Huterer, Dragan; Kadota, Kenji E-mail: huterer@umich.edu
2012-12-01
We forecast combined future constraints from the cosmic microwave background and large-scale structure on the models of primordial non-Gaussianity. We study the generalized local model of non-Gaussianity, where the parameter f{sub NL} is promoted to a function of scale, and present the principal component analysis applicable to an arbitrary form of f{sub NL}(k). We emphasize the complementarity between the CMB and LSS by using Planck, DES and BigBOSS surveys as examples, forecast constraints on the power-law f{sub NL}(k) model, and introduce the figure of merit for measurements of scale-dependent non-Gaussianity.
Planck 2013 results. XVII. Gravitational lensing by large-scale structure
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.
Constraints on $f(R)$ gravity from probing the large-scale structure
Lombriser, Lucas; Slosar, Anže; Seljak, Uroš; Hu, Wayne
2012-06-01
We study cosmological constraints on metric f(R) gravity models that are designed to reproduce the ΛCDM expansion history with modifications to gravity described by a supplementary cosmological freedom, the Compton wavelength parameter B0. We conduct a Markov chain Monte Carlo analysis on the parameter space, utilizing the geometrical constraints from supernovae distances, the baryon acoustic oscillation distances, and the Hubble constant, along with all of the cosmic microwave background data, including the largest scales, its correlation with galaxies, and a probe of the relation between weak gravitational lensing and galaxy flows. The strongest constraints, however, are obtained through the inclusion of data from cluster abundance. Using all of the data, we infer a bound of B_{0}<1.1×10^{-3} at the 95% C.L.
Probing the large scale structure with the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Leistedt, Boris
2016-03-01
I will present the latest cosmological results from the Dark Energy Survey (DES), a 5000 square degree optical galaxy survey in the Southern Hemisphere started in 2012. I will focus on the constraints on Baryon Acoustic Oscillations and other cosmological parameters obtained with galaxy clustering measurements from the first years of DES data. I will highlight the various tests and methods that make these results not only precise but also robust against observational systematics and modeling uncertainties. Finally, I will describe the future phases of the survey, the expected increase in constraining power, and the challenges that need to be addressed to fully exploit the data from surveys such as DES and LSST.
Cosmological implications of the CMB large-scale structure
Melia, Fulvio
2015-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ΛCDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ∼0.1% and the low-l multipole alignment would be unlikely at the ∼4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ∼0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the R{sub h}=ct universe would then be ∼7–10%, depending on the number of large-scale Sachs–Wolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ⩾7%, much more likely than in ΛCDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a
Cosmological Implications of the CMB Large-Scale Structure
NASA Astrophysics Data System (ADS)
Melia, Fulvio
2015-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ΛCDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ˜0.1% and the low-l multipole alignment would be unlikely at the ˜4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ˜0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the {{R}h}=ct universe would then be ˜7-10%, depending on the number of large-scale Sachs-Wolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ≥slant 7%, much more likely than in ΛCDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a maximum
A Large-Scale Structural Classification of Antimicrobial Peptides
Lee, Chen-Che; Yang, Je-Ruei; Lai, Jim Z. C.
2015-01-01
Antimicrobial peptides (AMPs) are potent drug candidates against microbial organisms such as bacteria, fungi, parasites, and viruses. AMPs have abundant sequences and structures, two fundamental resources for bioinformatics researches, but analyses on how they associate with each other are either nonexistent or limited to partial classification and data. We thus present A Database of Anti-Microbial peptides (ADAM), which contains 7,007 unique sequences and 759 structures, to systematically establish comprehensive associations between AMP sequences and structures through structural folds and to provide an easy access to view their relationships. 30 distinct AMP structural fold clusters with more than one structure are detected and about a thousand AMPs are associated with at least one structural fold cluster. According to ADAM, AMP structural folds are limited—AMPs only cover about 3% of the overall protein fold space. PMID:26000295
Design under Constraints: The Case of Large-Scale Assessment Systems
ERIC Educational Resources Information Center
Mislevy, Robert J.
2010-01-01
In "Updating the Duplex Design for Test-Based Accountability in the Twenty-First Century," Bejar and Graf (2010) propose extensions to the duplex design for large-scale assessment presented in Bock and Mislevy (1988). Examining the range of people who use assessment results--from students, teachers, administrators, curriculum designers,…
Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Hui, Lam; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: msimonov@sissa.it
2014-06-01
The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.
CSM Testbed Development and Large-Scale Structural Applications
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.
1989-01-01
A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.
Primordial non-Gaussianity in the bispectra of large-scale structure
Tasinato, Gianmassimo; Tellarini, Matteo; Ross, Ashley J.; Wands, David E-mail: matteo.tellarini@port.ac.uk E-mail: david.wands@port.ac.uk
2014-03-01
The statistics of large-scale structure in the Universe can be used to probe non-Gaussianity of the primordial density field, complementary to existing constraints from the cosmic microwave background. In particular, the scale dependence of halo bias, which affects the halo distribution at large scales, represents a promising tool for analyzing primordial non-Gaussianity of local form. Future observations, for example, may be able to constrain the trispectrum parameter g{sub NL} that is difficult to study and constrain using the CMB alone. We investigate how galaxy and matter bispectra can distinguish between the two non-Gaussian parameters f{sub NL} and g{sub NL}, whose effects give nearly degenerate contributions to the power spectra. We use a generalization of the univariate bias approach, making the hypothesis that the number density of halos forming at a given position is a function of the local matter density contrast and of its local higher-order statistics. Using this approach, we calculate the halo-matter bispectra and analyze their properties. We determine a connection between the sign of the halo bispectrum on large scales and the parameter g{sub NL}. We also construct a combination of halo and matter bispectra that is sensitive to f{sub NL}, with little contamination from g{sub NL}. We study both the case of single and multiple sources to the primordial gravitational potential, discussing how to extend the concept of stochastic halo bias to the case of bispectra. We use a specific halo mass-function to calculate numerically the bispectra in appropriate squeezed limits, confirming our theoretical findings.
Solar cycle variation of large-scale coronal structures
NASA Technical Reports Server (NTRS)
Antonucci, E.; Duvall, T. L.
1974-01-01
A green line intensity variation is associated with the interplanetary and photospheric magnetic sector structure. This effect depends on the solar cycle and occurs with the same amplitude in the latitude range 60 deg N - 60 deg S. Extended longitudinal coronal structures are suggested, which indicate the existence of closed magnetic field lines over the neutral line, separating adjacent regions of opposite polarities on the photospheric surface.
Testing Early Universe Theories Using Large Scale Structure: Moving Beyond Phenomenology
NASA Astrophysics Data System (ADS)
Shandera, Sarah
Current observational evidence favors inflation, a very early era of accelerated expansion, as the origin of the Large Scale Structure of the universe. Although compelling, this evidence comes mainly from the amplitude of primordial perturbations as a function of scale. More detailed and definitive information is contained in higher order statistics, collectively labelled `non- Gaussianity', which is of unparalleled importance to theorists who study inflation or its competitors. Analogously to collider physics studies, non-Gaussianity probes the interactions of the fields active in the very early universe and so will allow us to uncover the particle physics identity of the components that give rise to the very early pattern of density fluctuations. Primordial non-Gaussianity generates many non-trivial signals in Large Scale Structure, thanks largely to the non-linear evolution of the primordial perturbations. The distribution of objects in mass and redshift and their spatial clustering together contain information about the complete set of statistics of the primordial fluctuations. Predictions for those observables rely on numerical simulations of the dark matter evolution, which so far have been carried out almost entirely for a simple phenomenological model of primordial non-Gaussianity. However, it is now clear that interesting constraints or detection of non-Gaussianity are possible with next generation surveys: to use this data to its fullest extent we must understand clearly what those constraints will mean for fundamental theories of the origin of the perturbations. We propose to make a direct connection between theoretical ideas for the primordial fluctuations, including non-Gaussianity, and predictions from those theories for details of the Large Scale Structure of the Universe. Our goal is to find a prescription for setting up initial conditions for N-body simulations that match as closely as possible the predictions from a variety of particle physics
The large-scale structure of software-intensive systems.
Booch, Grady
2012-02-01
The computer metaphor is dominant in most discussions of neuroscience, but the semantics attached to that metaphor are often quite naive. Herein, we examine the ontology of software-intensive systems, the nature of their structure and the application of the computer metaphor to the metaphysical questions of self and causation. PMID:23386964
Recent developments in large-scale structural optimization
NASA Technical Reports Server (NTRS)
Venkayya, Vipperla B.
1989-01-01
A brief discussion is given of mathematical optimization and the motivation for the development of more recent numerical search procedures. A review of recent developments and issues in multidisciplinary optimization is also presented. These developments are discussed in the context of the preliminary design of aircraft structures. A capability description of programs FASTOP, TSO, STARS, LAGRANGE, ELFINI and ASTROS is included.
The large-scale structure of software-intensive systems
Booch, Grady
2012-01-01
The computer metaphor is dominant in most discussions of neuroscience, but the semantics attached to that metaphor are often quite naive. Herein, we examine the ontology of software-intensive systems, the nature of their structure and the application of the computer metaphor to the metaphysical questions of self and causation. PMID:23386964
Large scale structures and the cubic galileon model
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav; Dialektopoulos, Konstantinos F.; Tomaras, Theodore N.
2016-05-01
The maximum size of a bound cosmic structure is computed perturbatively as a function of its mass in the framework of the cubic galileon, proposed recently to model the dark energy of our Universe. Comparison of our results with observations constrains the matter-galileon coupling of the model to 0.033lesssim α lesssim 0.17, thus improving previous bounds based solely on solar system physics.
Large-scale computations in analysis of structures
McCallen, D.B.; Goudreau, G.L.
1993-09-01
Computer hardware and numerical analysis algorithms have progressed to a point where many engineering organizations and universities can perform nonlinear analyses on a routine basis. Through much remains to be done in terms of advancement of nonlinear analysis techniques and characterization on nonlinear material constitutive behavior, the technology exists today to perform useful nonlinear analysis for many structural systems. In the current paper, a survey on nonlinear analysis technologies developed and employed for many years on programmatic defense work at the Lawrence Livermore National Laboratory is provided, and ongoing nonlinear numerical simulation projects relevant to the civil engineering field are described.
Simulations of the formation of large-scale structure
NASA Astrophysics Data System (ADS)
White, S. D. M.
Numerical studies related to the simulation of structure growth are examined. The linear development of fluctuations in the early universe is studied. The research of Aarseth, Gott, and Turner (1979) based on N-body integrators that obtained particle accelerations by direct summation of the forces due to other objects is discussed. Consideration is given to the 'pancake theory' of Zel'dovich (1970) for the evolution from adiabatic initial fluctuation, the neutrino-dominated universe models of White, Frenk, and Davis (1983), and the simulations of Davis et al. (1985).
Geometric algorithms for electromagnetic modeling of large scale structures
NASA Astrophysics Data System (ADS)
Pingenot, James
With the rapid increase in the speed and complexity of integrated circuit designs, 3D full wave and time domain simulation of chip, package, and board systems becomes more and more important for the engineering of modern designs. Much effort has been applied to the problem of electromagnetic (EM) simulation of such systems in recent years. Major advances in boundary element EM simulations have led to O(n log n) simulations using iterative methods and advanced Fast. Fourier Transform (FFT), Multi-Level Fast Multi-pole Methods (MLFMM), and low-rank matrix compression techniques. These advances have been augmented with an explosion of multi-core and distributed computing technologies, however, realization of the full scale of these capabilities has been hindered by cumbersome and inefficient geometric processing. Anecdotal evidence from industry suggests that users may spend around 80% of turn-around time manipulating the geometric model and mesh. This dissertation addresses this problem by developing fast and efficient data structures and algorithms for 3D modeling of chips, packages, and boards. The methods proposed here harness the regular, layered 2D nature of the models (often referred to as "2.5D") to optimize these systems for large geometries. First, an architecture is developed for efficient storage and manipulation of 2.5D models. The architecture gives special attention to native representation of structures across various input models and special issues particular to 3D modeling. The 2.5D structure is then used to optimize the mesh systems First, circuit/EM co-simulation techniques are extended to provide electrical connectivity between objects. This concept is used to connect independently meshed layers, allowing simple and efficient 2D mesh algorithms to be used in creating a 3D mesh. Here, adaptive meshing is used to ensure that the mesh accurately models the physical unknowns (current and charge). Utilizing the regularized nature of 2.5D objects and
The large-scale structure of the Universe.
Springel, Volker; Frenk, Carlos S; White, Simon D M
2006-04-27
Research over the past 25 years has led to the view that the rich tapestry of present-day cosmic structure arose during the first instants of creation, where weak ripples were imposed on the otherwise uniform and rapidly expanding primordial soup. Over 14 billion years of evolution, these ripples have been amplified to enormous proportions by gravitational forces, producing ever-growing concentrations of dark matter in which ordinary gases cool, condense and fragment to make galaxies. This process can be faithfully mimicked in large computer simulations, and tested by observations that probe the history of the Universe starting from just 400,000 years after the Big Bang. PMID:16641985
The large-scale structure of the Universe
NASA Astrophysics Data System (ADS)
Springel, Volker; Frenk, Carlos S.; White, Simon D. M.
2006-04-01
Research over the past 25 years has led to the view that the rich tapestry of present-day cosmic structure arose during the first instants of creation, where weak ripples were imposed on the otherwise uniform and rapidly expanding primordial soup. Over 14 billion years of evolution, these ripples have been amplified to enormous proportions by gravitational forces, producing ever-growing concentrations of dark matter in which ordinary gases cool, condense and fragment to make galaxies. This process can be faithfully mimicked in large computer simulations, and tested by observations that probe the history of the Universe starting from just 400,000 years after the Big Bang.
Modeling emergent large-scale structures of barchan dune fields
NASA Astrophysics Data System (ADS)
Worman, S. L.; Murray, A. B.; Littlewood, R.; Andreotti, B.; Claudin, P.
2013-10-01
In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work and from field observations: (1) Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; (2) when dunes become sufficiently large, small dunes are born on their downwind sides (`calving'); and (3) when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first-order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.
Modeling emergent large-scale structures of barchan dune fields
NASA Astrophysics Data System (ADS)
Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.
2013-12-01
In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.
An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys
NASA Astrophysics Data System (ADS)
Seijak, Uros
Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we
Large Scale Parallel Structured AMR Calculations using the SAMRAI Framework
Wissink, A M; Hornung, R D; Kohn, S R; Smith, S S; Elliott, N
2001-08-01
This paper discusses the design and performance of the parallel data communication infrastructure in SAMRAI, a software framework for structured adaptive mesh refinement (SAMR) multi-physics applications. We describe requirements of such applications and how SAMRAI abstractions manage complex data communication operations found in them. Parallel performance is characterized for two adaptive problems solving hyperbolic conservation laws on up to 512 processors of the IBM ASCI Blue Pacific system. Results reveal good scaling for numerical and data communication operations but poorer scaling in adaptive meshing and communication schedule construction phases of the calculations. We analyze the costs of these different operations, addressing key concerns for scaling SAMR computations to large numbers of processors, and discuss potential changes to improve our current implementation.
Cosmic string wakes and large-scale structure
NASA Technical Reports Server (NTRS)
Charlton, Jane C.
1988-01-01
The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.
Auxiliary basis expansions for large-scale electronic structure calculations
Jung, Yousung; Sodt, Alexander; Gill, Peter W.M.; Head-Gordon, Martin
2005-04-04
One way to reduce the computational cost of electronic structure calculations is to employ auxiliary basis expansions to approximate 4 center integrals in terms of 2 and 3-center integrals, usually using the variationally optimum Coulomb metric to determine the expansion coefficients. However the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules, and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. This means it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.
On soft limits of large-scale structure correlation functions
NASA Astrophysics Data System (ADS)
Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura
2015-02-01
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: the time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) `equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and `equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the `equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Renormalizing a viscous fluid model for large scale structure formation
NASA Astrophysics Data System (ADS)
Führer, Florian; Rigopoulos, Gerasimos
2016-02-01
Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher order vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.
Effects of heat release on the large-scale structure in turbulent mixing layers
NASA Astrophysics Data System (ADS)
McMurtry, P. A.; Riley, J. J.; Metcalfe, R. W.
1989-02-01
The effects of chemical heat release on the large-scale structure in a chemically reacting turbulent mixing layer have been studied using three-dimensional time-dependent simulations. Moderate heat release is found to slow the development of the large-scale structures and to shift their wavelengths to larger scales. The results suggest that previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers may be the result of vorticity generation by baroclinic torques.
Double inflation - A possible resolution of the large-scale structure problem
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman
1987-01-01
A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.
Large-scale structural transitions in supercoiled DNA revealed by coarse-grained simulations
NASA Astrophysics Data System (ADS)
Krajina, Brad; Spakowitz, Andrew
Topological constraints, such as DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA structure and organization at biologically-relevant length-scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of supercoiled DNA. With this approach, we study the conformational transitions that arise due to supercoiling across the full range of supercoiling densities that are commonly explored by living systems. Simulations of ring DNA molecules with lengths up to the scale of topological domains in the E. coli chromosome (~10 kilobases) reveal large-scale structural transitions elicited by supercoiling, resulting in 3 supercoiling conformational regimes: chiral coils, extended plectonemes, and branched hyper-supercoils. These results capture the non-monotonic relationship of size versus degree of supercoiling observed in experimental sedimentation studies of supercoiled DNA, and our results provide a physical explanation of the structural transitions underlying this behavior.
Neural encoding of large-scale three-dimensional space—properties and constraints
Jeffery, Kate J.; Wilson, Jonathan J.; Casali, Giulio; Hayman, Robin M.
2015-01-01
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and—for species that can swim or fly—large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems. PMID:26236246
Neural encoding of large-scale three-dimensional space-properties and constraints.
Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M
2015-01-01
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems. PMID:26236246
Sefusatti, Emiliano; Fergusson, James R.; Chen, Xingang; Shellard, E.P.S. E-mail: jf334@damtp.cam.ac.uk E-mail: E.P.S.Shellard@damtp.cam.ac.uk
2012-08-01
Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.
NASA Astrophysics Data System (ADS)
Masada, Youhei; Sano, Takayoshi
2016-05-01
We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α 2-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceeds in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.
Constraining dark matter-neutrino interactions using the CMB and large-scale structure
NASA Astrophysics Data System (ADS)
Wilkinson, Ryan J.; Bœhm, Céline; Lesgourgues, Julien
2014-05-01
We present a new study on the elastic scattering cross section of dark matter (DM) and neutrinos using the latest cosmological data from Planck and large-scale structure experiments. We find that the strongest constraints are set by the Lyman-α forest, giving σDM-ν lesssim 10-33(mDM/GeV) cm2 if the cross section is constant and a present-day value of σDM-ν lesssim 10-45(mDM/GeV) cm2 if it scales as the temperature squared. These are the most robust limits on DM-neutrino interactions to date, demonstrating that one can use the distribution of matter in the Universe to probe dark (``invisible") interactions. Additionally, we show that scenarios involving thermal MeV DM and a constant elastic scattering cross section naturally predict (i) a cut-off in the matter power spectrum at the Lyman-α scale, (ii) Neff ~ 3.5 ± 0.4, (iii) H0 ~ 71 ± 3km s-1Mpc-1 and (iv) the possible generation of neutrino masses.
Primordial Magnetic Field Effects on the CMB and Large-Scale Structure
Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.
2010-01-01
Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude B λ and the power spectral index n B which have been deduced from the available CMB observational data by using our computational framework.« less
Constraining dark matter-neutrino interactions using the CMB and large-scale structure
Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch
2014-05-01
We present a new study on the elastic scattering cross section of dark matter (DM) and neutrinos using the latest cosmological data from Planck and large-scale structure experiments. We find that the strongest constraints are set by the Lyman-α forest, giving σ{sub DM−ν} ∼< 10{sup −33}(m{sub DM}/GeV) cm{sup 2} if the cross section is constant and a present-day value of σ{sub DM−ν} ∼< 10{sup −45}(m{sub DM}/GeV) cm{sup 2} if it scales as the temperature squared. These are the most robust limits on DM-neutrino interactions to date, demonstrating that one can use the distribution of matter in the Universe to probe dark (''invisible{sup )} interactions. Additionally, we show that scenarios involving thermal MeV DM and a constant elastic scattering cross section naturally predict (i) a cut-off in the matter power spectrum at the Lyman-α scale, (ii) N{sub eff} ∼ 3.5 ± 0.4, (iii) H{sub 0} ∼ 71 ± 3km s{sup −1}Mpc{sup −1} and (iv) the possible generation of neutrino masses.
Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu
2009-09-01
The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.
NASA Technical Reports Server (NTRS)
Corke, T. C.; Guezennec, Y.; Nagib, H. M.
1981-01-01
The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
ERIC Educational Resources Information Center
Steyvers, Mark; Tenenbaum, Joshua B.
2005-01-01
We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…
Initial condition effects on large scale structure in numerical simulations of plane mixing layers
NASA Astrophysics Data System (ADS)
McMullan, W. A.; Garrett, S. J.
2016-01-01
In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.
Quasars as a Tracer of Large-scale Structures in the Distant Universe
NASA Astrophysics Data System (ADS)
Song, Hyunmi; Park, Changbom; Lietzen, Heidi; Einasto, Maret
2016-08-01
We study the dependence of the number density and properties of quasars on the background galaxy density using the currently largest spectroscopic data sets of quasars and galaxies. We construct a galaxy number density field smoothed over the variable smoothing scale of between approximately 10 and 20 h ‑1 Mpc over the redshift range 0.46 < z < 0.59 using the Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12) Constant MASS galaxies. The quasar sample is prepared from the SDSS-I/II DR7. We examine the correlation of incidence of quasars with the large-scale background density and the dependence of quasar properties such as bolometric luminosity, black hole mass, and Eddington ratio on the large-scale density. We find a monotonic correlation between the quasar number density and large-scale galaxy number density, which is fitted well with a power-law relation, {n}Q\\propto {ρ }G0.618. We detect weak dependences of quasar properties on the large-scale density such as a positive correlation between black hole mass and density, and a negative correlation between luminosity and density. We discuss the possibility of using quasars as a tracer of large-scale structures at high redshifts, which may be useful for studies of the growth of structures in the high-redshift universe.
NASA Astrophysics Data System (ADS)
Bakas, Nikolaos; Constantinou, Navid; Ioannou, Petros
2016-04-01
Planetary turbulent flows are observed to self-organize into large scale structures such as zonal jets and coherent vortices. In this work, the eddy-mean flow dynamics underlying the formation of both zonal and nonzonal coherent structures in a barotropic turbulent flow is investigated within the statistical framework of stochastic structural stability theory (S3T). Previous studies have shown that the coherent structures emerge due to the instability of the homogeneous turbulent flow in the statistical dynamical S3T system and that the statistical predictions of S3T are reflected in direct numerical simulations. In this work, the dynamics underlying this S3T statistical instability are studied. It is shown that, for weak planetary vorticity gradient beta, both zonal jets and non-zonal large-scale structures form from upgradient momentum fluxes due to shearing of the eddies by the emerging flow. For large beta, the dynamics of the S3T instability differs for zonal and non-zonal flows. Shearing of the eddies by the mean flow continues to be the mechanism for the emergence of zonal jets while non-zonal large-scale flows emerge from resonant and near-resonant triad interactions between the large-scale flow and the stochastically forced eddies.
On the large-scale structures formed by wakes of open cosmic strings
NASA Technical Reports Server (NTRS)
Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru
1990-01-01
Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.
Study of the structure and physical properties of quasicrystals using large scale facilities
NASA Astrophysics Data System (ADS)
de Boissieu, Marc
2012-04-01
Quasicrystals have been puzzling scientists since their discovery. In this article we review some of the recent advances in this field and show how the use of large scale facilities has brought in decisive information for the understanding of their structure and physical properties.
Ultrahigh energy cosmic ray probes of large scale structure and magnetic fields
NASA Astrophysics Data System (ADS)
Sigl, Günter; Miniati, Francesco; Enßlin, Torsten A.
2004-08-01
We study signatures of a structured universe in the multi-pole moments, auto-correlation function, and cluster statistics of ultrahigh energy cosmic rays above 1019 eV. We compare scenarios where the sources are distributed homogeneously or according to the baryon density distribution obtained from a cosmological large scale structure simulation. The influence of extragalactic magnetic fields is studied by comparing the case of negligible fields with fields expected to be produced along large scale shocks with a maximal strength consistent with observations. We confirm that strongly magnetized observers would predict considerable anisotropy on large scales, which is already in conflict with current data. In the best fit scenario only the sources are strongly magnetized, although deflection can still be considerable, of order 20° up to 1020 eV, and a pronounced GZK cutoff is predicted. We then discuss signatures for future large scale full-sky detectors such as the Pierre Auger and EUSO projects. Auto-correlations are sensitive to the source density only if magnetic fields do not significantly affect propagation. In contrast, for a weakly magnetized observer, degree scale auto-correlations below a certain level indicate magnetized discrete sources. It may be difficult even for next generation experiments to distinguish between structured and unstructured source distributions.
Searching for large scale structures over Lake Geneva using Wind-Lidars
NASA Astrophysics Data System (ADS)
Calaf, M.; Hultmark, M.; Oldroyd, H. J.; Parlange, M. B.
2012-12-01
Large-scale coherent structures in turbulent boundary layers have received much attention in laboratory studies during the last decade. Kim & Adrian (1999) found that the structures can extend up to 15 times the boundary layer thickness and that they are responsible for about 50% of the total turbulent kinetic energy. Thus, understanding the details of these large-scale structures is of great importance, both for fluid-structure interaction and energy harvesting techniques. Hutchins & Marusic (2007) conducted a very complete study of the large-scale structures where they also measured in the atmospheric surface layer (ASL). By using rakes of hot-wires in a near-ideal neutral boundary layer they were able to find evidence that these large structures exist also in the ASL, and the scaling of them is very similar to that shown in wind tunnel tests. However, Taylor's hypothesis is needed to convert time to space, when using hot-wire data to investigate the spatial structures. For unraveling the true spatial distribution of these structures one need to use distributed sensors or remote sensing technologies. Here, data taken over lake Geneva during the super-cold winter from 2012 will be presented. Unique photographs clearly illustrating the organization and coherency of these structures, together with data obtained from wind LIDARs will be shown. The field observations provide clear evidence of the existence of these large-scale structures in the atmospheric boundary layer (ABL) above the lake and their size to be correlated with the height of the ABL itself. The LIDAR data provide a unique possibility to compare space and time data to each other, allowing us to explore these structures from a spatial and temporal perspective.
Large-scale power spectrum and structures from the ENEAR galaxy peculiar velocity catalogue
NASA Astrophysics Data System (ADS)
Zaroubi, S.; Bernardi, M.; da Costa, L. N.; Hoffman, Y.; Alonso, M. V.; Wegner, G.; Willmer, C. N. A.; Pellegrini, P. S.
2001-09-01
We estimate the mass density fluctuations power spectrum (PS) on large scales by applying a maximum likelihood technique to the peculiar velocity data of the recently completed redshift-distance survey of early-type galaxies (hereafter ENEAR). Parametric cold dark matter (CDM)-like models for the PS are assumed, and the best-fitting parameters are determined by maximizing the probability of the model given the measured peculiar velocities of the galaxies, their distances and estimated errors. The method has been applied to CDM models with and without COBE normalization. The general results are in agreement with the high-amplitude power spectra found from similar analyses of other independent all-sky catalogue of peculiar velocity data such as MARK III and SFI, in spite of the differences in the way these samples were selected, the fact that they probe different regions of space and galaxy distances are computed using different distance relations. For example, at k=0.1hMpc-1 the power spectrum value is P(k)Ω1.2=(6.5+/-3)×103(h- 1Mpc)3 and η8≡σ8Ω0.6=1.1- 0.35+0.2 the quoted uncertainties refer to 3σ error level. We also find that, for ΛCDM and OCDM COBE-normalized models, the best-fitting parameters are confined by a contour approximately defined by Ωh1.3=0.377+/-0.08 and Ωh0.88=0.517+/-0.083 respectively. Γ-shape models, free of COBE normalization, result in the weak constraint of Γ>=0.17 and in the rather stringent constraint of η8=1.0+/-0.25. All quoted uncertainties refer to 3σ confidence level (c.l.). The calculated PS has been used as a prior for Wiener reconstruction of the density field at different resolutions and the three-dimensional velocity field within a volume of radius ~80h-1Mpc. All major structures in the nearby Universe are recovered and are well matched to those predicted from all-sky redshift surveys. The robustness of these features has been tested with constrained realizations (CR). Analysis of the reconstructed three
Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure
Ormand, W E; Navratil, P
2003-08-18
We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.
The IR-resummed Effective Field Theory of Large Scale Structures
Senatore, Leonardo; Zaldarriaga, Matias E-mail: matiasz@ias.edu
2015-02-01
We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ΛCDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density power spectrum at one and two loops showed a remarkable agreement with numerical results, they also showed a 2% residual which appeared related to the BAO oscillations. We show that this was indeed the case, explain the physical origin and show how a Lagrangian based calculation removes this differences. We propose a simple method to upgrade existing Eulerian calculations to effectively make them Lagrangian and compare the new results with existing fits to numerical simulations. Our new two-loop results agrees with numerical results up to k∼ 0.6 h Mpc{sup −1} to within 1% with no oscillatory residuals. We also compute power spectra involving momentum which is significantly more affected by the large scale flows. We show how keeping track of these velocities significantly enhances the UV reach of the momentum power spectrum in addition to removing the BAO related residuals. We compute predictions for the real space correlation function around the BAO scale and investigate its sensitivity to the EFT parameters and the details of the resummation technique.
TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY
Wang Xin; Chen Xuelei; Park, Changbom
2012-03-01
The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.
Cosmological evolution of the gravitational entropy of the large-scale structure
NASA Astrophysics Data System (ADS)
Marozzi, Giovanni; Uzan, Jean-Philippe; Umeh, Obinna; Clarkson, Chris
2015-10-01
We consider the entropy associated with the large-scale structure of the Universe in the linear regime, where the Universe can be described by a perturbed Friedmann-Lemaître spacetime. In particular, we compare two different definitions proposed in the literature for the entropy using a spatial averaging prescription. For one definition, the entropy of the large-scale structure for a given comoving volume always grows with time, both for a CDM and a CDM model. In particular, while it diverges for a CDM model, it saturates to a constant value in the presence of a cosmological constant. The use of a light-cone averaging prescription in the context of the evaluation of the entropy is also discussed.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.
2003-01-01
An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.
Scalar-fluid theories: cosmological perturbations and large-scale structure
NASA Astrophysics Data System (ADS)
Koivisto, Tomi S.; Saridakis, Emmanuel N.; Tamanini, Nicola
2015-09-01
Recently a new Lagrangian framework was introduced to describe interactions between scalar fields and relativistic perfect fluids. This allows two consistent generalizations of coupled quintessence models: non-vanishing pressures and a new type of derivative interaction. The implications of these to the formation of cosmological large-scale structure are uncovered here at the linear order. The full perturbation equations in the two cases are derived in a unified formalism and their Newtonian, quasi-static limit is studied analytically. Requiring the absence of an effective sound speed term in the coupled dark matter fluid restricts the Lagrangian to be a linear function of the matter number density. This leaves new potentially viable classes of both algebraically and derivatively interacting models wherein the coupling may impact the background expansion dynamics and imprint new signatures into the large-scale structure.
Formation of large-scale structure from cosmic-string loops and cold dark matter
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1987-01-01
Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.
Ocean acoustic field simulations for monitoring large-scale ocean structures
NASA Astrophysics Data System (ADS)
Shang, E. C.; Wang, Y. Y.
1991-04-01
Substantial numerical simulations of low-frequency acoustic field under different ocean models have been carried out on the CYBER-205 at WPL/NOAA. The purpose of these numerical simulations is to investigate our potential ability to monitor large-scale ocean structures by using modal ocean acoustic tomography (MOAT). For example, the possibility of monitoring El Niño by using MOAT has been illustrated.
Implications of a class of grand unified theories for large scale structure in the universe
NASA Technical Reports Server (NTRS)
Shafi, Q.; Stecker, F. W.
1983-01-01
A class of grand unified theories in which cosmologicaly significant axion and neutrino energy densities arise naturally is discussed. To obtain large scale structure three scenarios are considered: (1) an inflationary scenario; (2) inflation followed by string production; and (3) a non-inflationary scenario with density fluctuations caused solely by strings. Inflation may be compatible with the recent observational indications that mega 1 on the scale of superclusters, particularly if strings are present.
Formation of large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund
1989-01-01
Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.
Mapping 3D Large-Scale Structure at z ˜2 with Lyman-α Forest Tomographic Mapping
NASA Astrophysics Data System (ADS)
Lee, Khee-Gan; Hennawi, J. F.; White, M.; Croft, R. A.; Prochaska, J. X.; Schlegel, D. J.; Suzuki, N.; Kneib, J.; Bailey, S. J.; Spergel, D. N.; Rix, H.; Strauss, M. A.
2014-01-01
The Lyman-α (Lyα) forest absorption at z>2 traces the underlying dark-matter distribution, and with a sufficient density of background sightlines can be used to create 3D tomographic maps of large-scale structure. Since the useful Lyα forest in each sightline spans ˜400-500 h-1Mpc, Lyα forest tomography can efficiently map out large-scale structure at z˜2. The Cosmic Lyman-Alpha Program for the Tomographic Reconstruction of Absorption Probes (CLAPTRAP) will be the first survey to attempt this technique. We aim to obtain spectra for a background grid of faint quasars and bright LBGs at 2
SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7
Zhang, Youcai; Yang, Xiaohu; Luo, Wentao; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn
2015-01-01
Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.
Spin Alignments of Spiral Galaxies within the Large-scale Structure from SDSS DR7
NASA Astrophysics Data System (ADS)
Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Luo, Wentao; Mo, H. J.; van den Bosch, Frank C.
2015-01-01
Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.
Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir
2014-01-01
In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.
NASA Technical Reports Server (NTRS)
Corke, T. C.; Guezennec, Y.; Nagib, H. M.
1980-01-01
The effects of placing a parallel-plate turbulence manipulator in a boundary layer are investigated by means of flow visualization and hot-wire measurements. The manipulator was found to be effective in inhibiting the intermittent large scale structure of the boundary layer, and the effect persists for at least 70 boundary-layer thicknesses downstream of the manipulator. With the removal of the large scale, there was an observed reduction in the streamwise turbulence intensity levels near the wall. The downstream distribution of the skin friction coefficient, determined from the stream wise change in fluid momentum, was also altered by the introduction of the manipulator. The data from both the visualization and hot wire studies are provided.
Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase
NASA Astrophysics Data System (ADS)
Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele
2015-02-01
Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.
Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1988-01-01
These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.
LARGE-SCALE STRUCTURE OF THE UNIVERSE AS A COSMIC STANDARD RULER
Park, Changbom; Kim, Young-Rae
2010-06-01
We propose to use the large-scale structure (LSS) of the universe as a cosmic standard ruler. This is possible because the pattern of large-scale distribution of matter is scale-dependent and does not change in comoving space during the linear-regime evolution of structure. By examining the pattern of LSS in several redshift intervals it is possible to reconstruct the expansion history of the universe, and thus to measure the cosmological parameters governing the expansion of the universe. The features of the large-scale matter distribution that can be used as standard rulers include the topology of LSS and the overall shapes of the power spectrum and correlation function. The genus, being an intrinsic topology measure, is insensitive to systematic effects such as the nonlinear gravitational evolution, galaxy biasing, and redshift-space distortion, and thus is an ideal cosmic ruler when galaxies in redshift space are used to trace the initial matter distribution. The genus remains unchanged as far as the rank order of density is conserved, which is true for linear and weakly nonlinear gravitational evolution, monotonic galaxy biasing, and mild redshift-space distortions. The expansion history of the universe can be constrained by comparing the theoretically predicted genus corresponding to an adopted set of cosmological parameters with the observed genus measured by using the redshift-comoving distance relation of the same cosmological model.
Weak gravitational lensing due to large-scale structure of the universe
NASA Technical Reports Server (NTRS)
Jaroszynski, Michal; Park, Changbom; Paczynski, Bohdan; Gott, J. Richard, III
1990-01-01
The effect of the large-scale structure of the universe on the propagation of light rays is studied. The development of the large-scale density fluctuations in the omega = 1 universe is calculated within the cold dark matter scenario using a smooth particle approximation. The propagation of about 10 to the 6th random light rays between the redshift z = 5 and the observer was followed. It is found that the effect of shear is negligible, and the amplification of single images is dominated by the matter in the beam. The spread of amplifications is very small. Therefore, the filled-beam approximation is very good for studies of strong lensing by galaxies or clusters of galaxies. In the simulation, the column density was averaged over a comoving area of approximately (1/h Mpc)-squared. No case of a strong gravitational lensing was found, i.e., no 'over-focused' image that would suggest that a few images might be present. Therefore, the large-scale structure of the universe as it is presently known does not produce multiple images with gravitational lensing on a scale larger than clusters of galaxies.
Thick strings, the liquid crystal blue phase, and cosmological large-scale structure
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1992-01-01
A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.
Extracting Primordial Non-Gaussianity from Large Scale Structure in the Post-Planck Era
NASA Astrophysics Data System (ADS)
Dore, Olivier
Astronomical observations have become a unique tool to probe fundamental physics. Cosmology, in particular, emerged as a data-driven science whose phenomenological modeling has achieved great success: in the post-Planck era, key cosmological parameters are measured to percent precision. A single model reproduces a wealth of astronomical observations involving very distinct physical processes at different times. This success leads to fundamental physical questions. One of the most salient is the origin of the primordial perturbations that grew to form the large-scale structures we now observe. More and more cosmological observables point to inflationary physics as the origin of the structure observed in the universe. Inflationary physics predict the statistical properties of the primordial perturbations and it is thought to be slightly non-Gaussian. The detection of this small deviation from Gaussianity represents the next frontier in early Universe physics. To measure it would provide direct, unique and quantitative insights about the physics at play when the Universe was only a fraction of a second old, thus probing energies untouchable otherwise. En par with the well-known relic gravitational wave radiation -- the famous ``B-modes'' -- it is one the few probes of inflation. This departure from Gaussianity leads to very specific signature in the large scale clustering of galaxies. Observing large-scale structure, we can thus establish a direct connection with fundamental theories of the early universe. In the post-Planck era, large-scale structures are our most promising pathway to measuring this primordial signal. Current estimates suggests that the next generation of space or ground based large scale structure surveys (e.g. the ESA EUCLID or NASA WFIRST missions) might enable a detection of this signal. This potential huge payoff requires us to solidify the theoretical predictions supporting these measurements. Even if the exact signal we are looking for is of
Large-Scale Flow Structure in Turbulent Nonpremixed Flames under Normal- And Low-Gravity Conditions
NASA Technical Reports Server (NTRS)
Clemens, N. T.; Idicheria, C. A.; Boxx, I. G.
2001-01-01
It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. Buoyancy acts by inducing baroclinic torques, which generate large-scale vortical structures that can significantly modify the flow field. Furthermore, some suggest that buoyancy can substantially influence the large-scale structure of even nominally momentum-dominated flames, since the low velocity flow outside of the flame will be more susceptible to buoyancy effects. Even subtle buoyancy effects may be important because changes in the large-scale structure affects the local entrainment and fluctuating strain rate, and hence the structure of the flame. Previous studies that have compared the structure of normal- and micro-gravity nonpremixed jet flames note that flames in microgravity are longer and wider than in normal-gravity. This trend was observed for jet flames ranging from laminar to turbulent regimes. Furthermore, imaging of the flames has shown possible evidence of helical instabilities and disturbances starting from the base of the flame in microgravity. In contrast, these characteristics were not observed in normal-gravity. The objective of the present study is to further advance our knowledge of the effects of weak levels of buoyancy on the structure of transitional and turbulent nonpremixed jet flames. In later studies we will utilize the drop tower facilities at NASA Glenn Research Center (GRC), but the preliminary work described in this paper was conducted using the 1.25-second drop tower located at the University of Texas at Austin. A more detailed description of these experiments can be found in Idicheria et al.
Dark matter, long-range forces, and large-scale structure
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami; Frieman, Joshua A.
1992-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.
Bayesian large-scale structure inference: initial conditions and the cosmic web
NASA Astrophysics Data System (ADS)
Leclercq, Florent; Wandelt, Benjamin
2014-05-01
We describe an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the large-scale structure of the inhomogeneous Universe. Our algorithm explores the joint posterior distribution of the many millions of parameters involved via efficient Hamiltonian Markov Chain Monte Carlo sampling. We describe its application to the Sloan Digital Sky Survey data release 7 and an additional non-linear filtering step. We illustrate the use of our findings for cosmic web analysis: identification of structures via tidal shear analysis and inference of dark matter voids.
Constructing perturbation theory kernels for large-scale structure in generalized cosmologies
NASA Astrophysics Data System (ADS)
Taruya, Atsushi
2016-07-01
We present a simple numerical scheme for perturbation theory (PT) calculations of large-scale structure. Solving the evolution equations for perturbations numerically, we construct the PT kernels as building blocks of statistical calculations, from which the power spectrum and/or correlation function can be systematically computed. The scheme is especially applicable to the generalized structure formation including modified gravity, in which the analytic construction of PT kernels is intractable. As an illustration, we show several examples for power spectrum calculations in f (R ) gravity and Λ CDM models.
Giant radio galaxies as effective probes of X-ray gas in large-scale structure
NASA Astrophysics Data System (ADS)
Saripalli, Lakshmi; Subrahmanyan, Ravi; Malarecki, Jurek; Jones, Heath; Staveley-Smith, Lister
2015-08-01
Giant radio galaxies are AGNs with relativistic jets that dynamically evolve into Mpc scale synchrotron lobes around the host elliptical. The thermal gas environment influences the jet advance and lobe formation. Since the host ellipticals are in filamentary low-density galaxy environments, the ambient gas for the Mpc-scale radio structures is likely the warm-hot X-ray gas inhabiting the intergalactic medium. We have, therefore, used large radio galaxies as probes of the distribution of hot and tenuous gas on mega-parsec scales in these relatively low density large-scale structures.For a sample of 19 giant radio galaxies we obtained radio continuum images of the synchrotron structures, and redshifts of a total of nearly 9000 galaxies in their vicinity. The 2-degree field redshift data traces the large-scale galaxy structure around the radio sources. The radio-optical data allows an estimation of the pressure, temperature and distribution of hot thermal gas associated with the large-scale structure in the vicinity of the radio AGN (Malarecki, Staveley-Smith, Saripalli, Subrahmanyan, Jones, Duffy, Rioja 2013, MNRAS 432, 200).Strong correspondence between radio galaxy lobes and galaxy distribution is observed. The data suggests that galaxies trace gas, and that radio jets and lobes of giant radio galaxies are sensitive tracers of gas on mega-parsec scales and may be used as effective probes of the difficult-to-detect IGM (Malarecki, Jones, Saripalli, Stavele-Smith, Subrahmanyan, 2015, MNRAS in press; arXiv150203954).
Large-scale Structure around a z=2.1 Cluster
NASA Astrophysics Data System (ADS)
Hung, Chao-Ling; Casey, Caitlin M.; Chiang, Yi-Kuan; Capak, Peter L.; Cowley, Michael J.; Darvish, Behnam; Kacprzak, Glenn G.; Kovač, K.; Lilly, Simon J.; Nanayakkara, Themiya; Spitler, Lee R.; Tran, Kim-Vy H.; Yuan, Tiantian
2016-08-01
The most prodigious starburst galaxies are absent in massive galaxy clusters today, but their connection with large-scale environments is less clear at z≳ 2. We present a search of large-scale structure around a galaxy cluster core at z = 2.095 using a set of spectroscopically confirmed galaxies. We find that both color-selected star-forming galaxies (SFGs) and dusty star-forming galaxies (DSFGs) show significant overdensities around the z = 2.095 cluster. A total of eight DSFGs (including three X-ray luminous active galactic nuclei, AGNs) and 34 SFGs are found within a 10‧ radius (corresponds to ˜15 cMpc at z˜ 2.1) from the cluster center and within a redshift range of {{Δ }}z=0.02, which leads to galaxy overdensities of {δ }{{DSFG}}˜ 12.3 and {δ }{{SFG}}˜ 2.8. The cluster core and the extended DSFG- and SFG-rich structures together demonstrate an active cluster formation phase, in which the cluster is accreting a significant amount of material from large-scale structure while the more mature core may begin to virialize. Our finding of this DSFG-rich structure, along with a number of other protoclusters with excess DSFGs and AGNs found to date, suggest that the overdensities of these rare sources indeed trace significant mass overdensities. However, it remains puzzling how these intense star formers are triggered concurrently. Although an increased probability of galaxy interactions and/or enhanced gas supply can trigger the excess of DSFGs, our stacking analysis based on 850 μm images and morphological analysis based on rest-frame optical imaging do not show such enhancements of merger fraction and gas content in this structure.
Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hoeksema, J. T.
1984-01-01
Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.
Large-scale structure challenges dilaton gravity in a 5D brane scenario with AdS bulk
NASA Astrophysics Data System (ADS)
Konikowska, Dominika
2014-02-01
We study a theory of dilaton gravity in a five-dimensional brane scenario, with a non-minimal coupling of the dilaton to the matter content of the universe localized on the brane. The effective gravitational equations at the brane are derived in the Einstein frame in the covariant approach, addressing certain misconceptions in the literature. We then investigate whether the observed large-scale structure of the universe can exist on the brane in this dilaton gravity scenario with an exact anti de Sitter bulk, assuming that the matter energy-momentum tensor has the form of an inhomogeneous perfect fluid. The corresponding constraint on the spatial derivative of the matter energy density is derived, and subsequently quantified using the current limits resulting from searches for variation of the Newton's constant. By confronting it with the observational data from galaxy surveys, we show that up to scales of the order of 104 Mpc, the derived bound on the spatial derivative of the matter energy density does not allow for the existence of the large-scale structure as observed today. Thus, such a dilaton gravity brane scenario is ruled out.
Coherent large-scale structures in high Reynolds number supersonic jets
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Burrin, R. H.
1985-01-01
The flow structure of a 50.8 mm (2 in) diameter jet operated at a full expanded Mach number of 1.37, with Reynolds numbers in the range 1.7 to 2.35 million, was examined for the first 20 jet diameters. To facilitate the study of the large scale structure, and determine any coherence, a discrete tone acoustic excitation method was used. Phase locked flow visualization as well as laser velocimeter quantitative measurements were made. The main conclusions derived from this study are: (1) large scale coherent like turbulence structures do exist in large Reynolds number supersonic jets, and they prevail even beyond the potential core; (2) the most preferential Strouhal number for these structures is in the vicinity of 0.4; and (3) quantitatively, the peak amplitudes of these structures are rather low, and are about 1% of the jet exit velocity. Finally, since a number of unique problems related to LV measurements in supersonic jets were encountered, a summary of these problems and lessons learned therefrom are also reported.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.
2014-01-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089
Wave force on a large scale structure under the effects of current
Lin, M.C.; Hsiao, S.S.
1993-12-31
A numerical model is developed to calculate wave force on a large scale structure under the effects of current in waters of constant depth. With the fluid in wave-current coexisting field assumed incompressible and inviscid, and the flow irrotational, the flow motion can be described by a velocity potential. The velocity potential is separated into a steady current potential and an unsteady wave potential. The steady current potential can be expressed as a sum of a uniform current and a steady disturbance due to the presence of the structure. The surface vorticity method is employed to calculate the current velocity distribution on the structure, and for calculating the wave velocity potential including flow and structure effects, boundary element method is used. Results from these two numerical schemes are then combined to calculate wave force on the structure with the use of integrating the Bernoulli equation on the structure surface.
Carbone, Carmelita; Mangilli, Anna; Verde, Licia E-mail: anna.mangilli@icc.ub.edu
2011-09-01
We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f{sub iso}, become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f{sub iso}) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys.
The Effective Field Theory of Large Scale Structures at two loops
Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo E-mail: sfore@stanford.edu E-mail: senatore@stanford.edu
2014-07-01
Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.
Bias to CMB lensing measurements from the bispectrum of large-scale structure
NASA Astrophysics Data System (ADS)
Böhm, Vanessa; Schmittfull, Marcel; Sherwin, Blake D.
2016-08-01
The rapidly improving precision of measurements of gravitational lensing of the cosmic microwave background (CMB) also requires a corresponding increase in the precision of theoretical modeling. A commonly made approximation is to model the CMB deflection angle or lensing potential as a Gaussian random field. In this paper, however, we analytically quantify the influence of the non-Gaussianity of large-scale structure (LSS) lenses, arising from nonlinear structure formation, on CMB lensing measurements. In particular, evaluating the impact of the nonzero bispectrum of large-scale structure on the relevant CMB four-point correlation functions, we find that there is a bias to estimates of the CMB lensing power spectrum. For temperature-based lensing reconstruction with CMB stage III and stage IV experiments, we find that this lensing power spectrum bias is negative and is of order 1% of the signal. This corresponds to a shift of multiple standard deviations for these upcoming experiments. We caution, however, that our numerical calculation only evaluates two of the largest bias terms and, thus, only provides an approximate estimate of the full bias. We conclude that further investigation into lensing biases from nonlinear structure formation is required and that these biases should be accounted for in future lensing analyses.
Dynamics of large-scale structures for jets in a crossflow
Muldoon, F.; Acharya, S.
1999-07-01
Results of a three-dimensional unsteady computational study of a row of jets injected normal to a crossflow are presented with the aim of understanding the dynamics of the large-scale structures in the region near the jet. The jet to crossflow velocity ratio is 0.5. A modified version of the computer program (INS3D), which utilizes the method of artificial compressibility, is used for the computations. Results obtained clearly indicate that the near-field large-scale structures are extremely dynamic in nature, and undergo breakup and reconnection processes. The dynamic near-field structures identified include the counterrotating vortex pair (CVP), the horseshoe vortex, wake vortex, wall vortex, and shear layer vortex. The dynamic features of these vortices are presented in this paper. The CVP is observed to be a convoluted structure interacting with the wall and horseshoe vortices. The shear layer vortices are stripped by the crossflow, and undergo pairing and stretching events in the leeward side of the jet. The wall vortex is reoriented into the upright wake system. Comparison of the predictions with mean velocity measurements are made. Reasonable agreement is observed.
Identification of large scale billows-like structure in the neutral Na layer over Arecibo
NASA Astrophysics Data System (ADS)
Sarkhel, S.; Raizada, S.; Tepley, C. A.; Gonzalez, S. A.; Mathews, J. D.
2011-12-01
This investigation is based on case studies of sodium (Na) concentration profiles that were obtained from Arecibo, Puerto Rico (18.4o N; 66.7o W). The data from one night reveal the presence of large scale billows-like structures in the Na layer occurring in an altitude range of 102-108 km. However, no large scale structures were observed in that altitude range on the following night. In order to explain the occurrence of these structures, Lomb-Scargle periodogram analyses were carried out. Based on these results, the role of different instability mechanisms will be discussed in light of mesospheric dynamics that can create billows-like structures. The simultaneous measurements of electron density obtained using the Arecibo Incoherent Scatter Radar will also be discussed to investigate the relation between electrons and neutrals. We also note the presence of ~1 hour period oscillations that may be related to continuous quasi-periodic processes of the same period noted at higher altitudes.
A fast method for large-scale de novo peptide and miniprotein structure prediction.
Maupetit, Julien; Derreumaux, Philippe; Tufféry, Pierre
2010-03-01
Although peptides have many biological and biomedical implications, an accurate method predicting their equilibrium structural ensembles from amino acid sequences and suitable for large-scale experiments is still missing. We introduce a new approach-PEP-FOLD-to the de novo prediction of peptides and miniproteins. It first predicts, in the terms of a Hidden Markov Model-derived structural alphabet, a limited number of local conformations at each position of the structure. It then performs their assembly using a greedy procedure driven by a coarse-grained energy score. On a benchmark of 52 peptides with 9-23 amino acids, PEP-FOLD generates lowest-energy conformations within 2.8 and 2.3 A Calpha root-mean-square deviation from the full nuclear magnetic resonance structures (NMR) and the NMR rigid cores, respectively, outperforming previous approaches. For 13 miniproteins with 27-49 amino acids, PEP-FOLD reaches an accuracy of 3.6 and 4.6 A Calpha root-mean-square deviation for the most-native and lowest-energy conformations, using the nonflexible regions identified by NMR. PEP-FOLD simulations are fast-a few minutes only-opening therefore, the door to in silico large-scale rational design of new bioactive peptides and miniproteins. PMID:19569182
Could the electroweak scale be linked to the large scale structure of the Universe?
NASA Technical Reports Server (NTRS)
Chakravorty, Alak; Massarotti, Alessandro
1991-01-01
We study a model where the domain walls are generated through a cosmological phase transition involving a scalar field. We assume the existence of a coupling between the scalar field and dark matter and show that the interaction between domain walls and dark matter leads to an energy dependent reflection mechanism. For a simple Yakawa coupling, we find that the vacuum expectation value of the scalar field is theta approx. equals 30GeV - 1TeV, in order for the model to be successful in the formation of large scale 'pancake' structures.
Light domain walls, massive neutrinos and the large scale structure of the Universe
NASA Technical Reports Server (NTRS)
Massarotti, Alessandro
1991-01-01
Domain walls generated through a cosmological phase transition are considered, which interact nongravitationally with light neutrinos. At a redshift z greater than or equal to 10(exp 4), the network grows rapidly and is virtually decoupled from the matter. As the friction with the matter becomes dominant, a comoving network scale close to that of the comoving horizon scale at z of approximately 10(exp 4) gets frozen. During the later phases, the walls produce matter wakes of a thickness d of approximately 10h(exp -1)Mpc, that may become seeds for the formation of the large scale structure observed in the Universe.
Topology of large-scale structure. IV - Topology in two dimensions
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.
Phase transitions as the origin of large scale structure in the universe
NASA Technical Reports Server (NTRS)
Turok, Neil
1988-01-01
A review of the formation of large scale structure through gravitational growth of primordial perturbations is given. This is followed by a discussion of how symmetry breaking phase transitions in the early universe might have produced the required perturbations, in particular through the formation and evolution of a network of cosmic strings. Finally, the statistical mechanics of string networks, for both cosmic and fundamental strings is discussed, leading to some more speculative ideas on the possible role of fundamental strings (superstrings or heterotic strings) in the very early universe.
Networks of silicon nanowires: A large-scale atomistic electronic structure analysis
NASA Astrophysics Data System (ADS)
Keleş, Ümit; Liedke, Bartosz; Heinig, Karl-Heinz; Bulutay, Ceyhun
2013-11-01
Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.
Networks of silicon nanowires: A large-scale atomistic electronic structure analysis
Keleş, Ümit; Bulutay, Ceyhun; Liedke, Bartosz; Heinig, Karl-Heinz
2013-11-11
Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.
NASA Technical Reports Server (NTRS)
Sobh, Nahil Atef
1992-01-01
A parallel Preconditioned Conjugate Gradient (PCG) iterative solver has been developed and implemented on the iPSC-860 scalable hypercube. This new implementation makes use of the Parallel Automated Runtime Toolkit at ICASE (PARTI) primitives to efficiently program irregular communications patterns that exist in general sparse matrices and in particular in the finite element sparse stiffness matrices. The iterative PCG has been used to solve the finite element equations that result from discretizing large scale aerospace structures. In particular, the static response of the High Speed Civil Transport (HSCT) finite element model is solved on the iPSC-860.
NASA Technical Reports Server (NTRS)
Liu, J. T. C.
1986-01-01
Advances in the mechanics of boundary layer flow are reported. The physical problems of large scale coherent structures in real, developing free turbulent shear flows, from the nonlinear aspects of hydrodynamic stability are addressed. The presence of fine grained turbulence in the problem, and its absence, lacks a small parameter. The problem is presented on the basis of conservation principles, which are the dynamics of the problem directed towards extracting the most physical information, however, it is emphasized that it must also involve approximations.
FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE
Scherrer, Robert J.; Berlind, Andreas A.; Mao, Qingqing; McBride, Cameron K.
2010-01-01
Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function called the copula, which contains all of the information on correlations between the distributions. The copula provides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some of the consequences of this hypothesis. Future directions for investigation are discussed.
The Signature of Large Scale Structures on the Very High Energy Gamma-Ray Sky
Cuoco, A.; Hannestad, S.; Haugbolle, T.; Miele, G.; Serpico, P.D.; Tu, H.; /Aarhus U. /UC, Irvine
2006-12-01
If the diffuse extragalactic gamma ray emission traces the large scale structures of the universe, peculiar anisotropy patterns are expected in the gamma ray sky. In particular, because of the cutoff distance introduced by the absorption of 0.1-10 TeV photons on the infrared/optical background, prominent correlations with the local structures within a range of few hundreds Mpc should be present. We provide detailed predictions of the signal based on the PSCz map of the local universe. We also use mock N-body catalogues complemented with the halo model of structures to study some statistical features of the expected signatures. The results are largely independent from cosmological details, and depend mostly on the index of correlation (or bias) of the sources with respect to the large scale distribution of galaxies. For instance, the predicted signal in the case of a quadratic correlation (as it may happen for a dark matter annihilation contribution to the diffuse gamma flux) differs substantially from a linear correlation case, providing a complementary tool to unveil the nature of the sources of the diffuse gamma ray emission. The chances of the present and future space and ground based observatories to measure these features are discussed.
Measures of large-scale structure in the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1991-01-01
Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.
Measures of large-scale structure in the CfA redshift survey slices
De Lapparent, V.; Geller, M.J.; Huchra, J.P. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )
1991-03-01
Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs.
NASA Astrophysics Data System (ADS)
Udal'tsov, Alexander V.; Bolshakova, Anastasia V.; Vos, Johannes G.
2014-05-01
Large-scale aggregates assembled from protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by IR and resonance Raman spectroscopy and also by scanning electron microscopy (SEM). It was found that the properties of water confined in the aggregates depend on the physical state of the support. When the aggregates were deposited on a solid CaF2 plate, they showed properties consistent with a quasi-crystalline structure. But when the aggregates were dispersed in oil, their IR characteristics were different; the vibration bands of the confined water were like those of water in liquid state. A doublet at about 1000 cm-1, components of which have been attributed to specific vibrations of H3O+ and H2O bound in the structure of water-porphyrin dimeric complex, was found in IR and resonance Raman spectra (λex = 441.6 nm) of protonated TPP aggregates. This doublet indicates the hydrogen ion involving in the vibrational system of water-porphyrin dimeric complex with hydrogen bonding by similar way as in so-called Zundel cation. The resonance Raman spectrum shows evidence for proton sharing between protonated water dimer and N groups of the pyrrole rings. SEM results indicate that the large-scale aggregates of the protonated porphyrin possess highly ordered structure, are only observed when using extremely pure water.
Effect of Large-Scale Bathymetry on Internal Wave Structure in Lakes
NASA Astrophysics Data System (ADS)
Fricker, Paul D.; Nepf, Heidi M.
1998-11-01
Internal wave structure can be strongly influenced by large-scale bathymetry. In particular, analytic solutions suggest that seiche motion is amplified in shallow regions, so that seiche-induced mixing should be augmented over shelf bathymetry. A combination of field and numerical studies is used to examine the dynamic significance of simple bathymetric variation as well the potential impact on bed-source contamination. Internal wave eigensolutions are evaluated numerically for a model bathmetry which includes a shallow ledge and compared to simpler solutions such as the box-model lake. The predicted spatial structure of isotherm displacement predicted for a V1H1 mode is compared with actual thermistor chain data, collected in the Upper Mystic Lake, near Boston, MA. The comparison confirms the predicted modal structure, specifically including the amplification of seiche motions on the shelf. We consider how large-scale bathymetry of the lake may focus internal wave energy and create local 'hot spots' where the vertical flux of contaminant is accelerated. Because the spatial heterogeneity of internal wave motions can influence spatial distribution and redistribution of contaminants, these motions have important implications for long-term fate of watershed contamination and the interpretation of historic contamination through sediment records.
Epitaxial B-Graphene: Large-Scale Growth and Atomic Structure.
Usachov, Dmitry Yu; Fedorov, Alexander V; Petukhov, Anatoly E; Vilkov, Oleg Yu; Rybkin, Artem G; Otrokov, Mikhail M; Arnau, Andrés; Chulkov, Evgueni V; Yashina, Lada V; Farjam, Mani; Adamchuk, Vera K; Senkovskiy, Boris V; Laubschat, Clemens; Vyalikh, Denis V
2015-07-28
Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping. PMID:26121999
Structure of exotic nuclei by large-scale shell model calculations
Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio
2006-11-02
An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component.
Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure
NASA Astrophysics Data System (ADS)
Zemcov, Michael B.; CIBER, Herschel-SPIRE
2016-01-01
Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O. (Editor); Housner, Jerrold M. (Editor)
1993-01-01
Computing speed is leaping forward by several orders of magnitude each decade. Engineers and scientists gathered at a NASA Langley symposium to discuss these exciting trends as they apply to parallel computational methods for large-scale structural analysis and design. Among the topics discussed were: large-scale static analysis; dynamic, transient, and thermal analysis; domain decomposition (substructuring); and nonlinear and numerical methods.
Formation of large-scale magnetic structures associated with the Fermi bubbles
NASA Astrophysics Data System (ADS)
Barkov, M. V.; Bosch-Ramon, V.
2014-05-01
Context. The Fermi bubbles are part of a complex region of the Milky Way. This region presents broadband extended non-thermal radiation, apparently coming from a physical structure rooted at the Galactic centre and with a partly ordered magnetic field threading it. Aims: We explore the possibility of an explosive origin for the Fermi bubble region to explain its morphology, in particular that of the large-scale magnetic fields, and provide context for the broadband non-thermal radiation. Methods: We performed 3D magnetohydrodynamical simulations of an explosion that occurred a few million years ago that pushed and sheared a surrounding magnetic loop, anchored in the molecular torus around the Galactic centre. Results: Our results can explain the formation of the large-scale magnetic structure in the Fermi bubble region. Consecutive explosive events may match the morphology of the region better. Faster velocities at the top of the shocks than at their sides may explain the hardening with distance from the Galactic plane found in the GeV emission. Conclusions: In the framework of our scenario, we estimate the lifetime of the Fermi bubbles as ≈2 × 106 yr, with a total energy injected in the explosion(s) of ≳1055 ergs. The broadband non-thermal radiation from the region may be explained by leptonic emission, which is more extended in radio and X-rays, and is confined to the Fermi bubbles in gamma rays.
Flaglets for studying the large-scale structure of the Universe
NASA Astrophysics Data System (ADS)
Leistedt, Boris; Peiris, Hiranya V.; McEwen, Jason D.
2013-09-01
Pressing questions in cosmology such as the nature of dark matter and dark energy can be addressed using large galaxy surveys, which measure the positions, properties and redshifts of galaxies in order to map the large-scale structure of the Universe. We review the Fourier-Laguerre transform, a novel transform in 3D spherical coordinates which is based on spherical harmonics combined with damped Laguerre polynomials and appropriate for analysing galaxy surveys. We also recall the construction of aglets, 3D wavelets obtained through a tiling of the Fourier-Laguerre space, which can be used to extract scale-dependent, spatially localised features on the ball. We exploit a sampling theorem to obtain exact Fourier-Laguerre and aglet transforms, such that band-limited signals can analysed and reconstructed at oating point accuracy on a nite number of voxels on the ball. We present a potential application of the aglet transform for nding voids in galaxy surveys and studying the large-scale structure of the Universe.
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.
1987-01-01
A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.
Time-sliced perturbation theory for large scale structure I: general formalism
NASA Astrophysics Data System (ADS)
Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-07-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.
Large-scale structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Park, Changbom; Spergel, David N.; Turok, Nail
1991-01-01
This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.
CMB lensing bispectrum from nonlinear growth of the large scale structure
NASA Astrophysics Data System (ADS)
Namikawa, Toshiya
2016-06-01
We discuss detectability of the nonlinear growth of the large-scale structure in the cosmic microwave background (CMB) lensing. The lensing signals involved in the CMB fluctuations have been measured from multiple CMB experiments, such as Atacama Cosmology Telescope (ACT), Planck, POLARBEAR, and South Pole Telescope (SPT). The reconstructed CMB lensing signals are useful to constrain cosmology via their angular power spectrum, while detectability and cosmological application of their bispectrum induced by the nonlinear evolution are not well studied. Extending the analytic estimate of the galaxy lensing bispectrum presented by Takada and Jain (2004) to the CMB case, we show that even near term CMB experiments such as Advanced ACT, Simons Array and SPT3G could detect the CMB lensing bispectrum induced by the nonlinear growth of the large-scale structure. In the case of the CMB Stage-IV, we find that the lensing bispectrum is detectable at ≳50 σ statistical significance. This precisely measured lensing bispectrum has rich cosmological information, and could be used to constrain cosmology, e.g., the sum of the neutrino masses and the dark-energy properties.
On the soft limit of the large scale structure power spectrum: UV dependence
NASA Astrophysics Data System (ADS)
Garny, Mathias; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura
2015-11-01
We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an `anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ~ 10% effect, and plausibly smaller.
Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz
2016-07-15
Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. PMID:27129758
Measuring the matter energy density and Hubble parameter from large scale structure
Lee, Seokcheon
2014-02-01
We investigate the method to measure both the present value of the matter energy density contrast and the Hubble parameter directly from the measurement of the linear growth rate which is obtained from the large scale structure of the Universe. From this method, one can obtain the value of the nuisance cosmological parameter Ω{sub m0} (the present value of the matter energy density contrast) within 3% error if the growth rate measurement can be reached z > 3.5. One can also investigate the evolution of the Hubble parameter without any prior on the value of H{sub 0} (the current value of the Hubble parameter). Especially, estimating the Hubble parameter are insensitive to the errors on the measurement of the normalized growth rate fσ{sub 8}. However, this method requires the high z (z > 3.5) measurement of the growth rate in order to get the less than 5% errors on the measurements of H(z) at z ≤ 1.2 with the redshift bin Δz = 0.2. Thus, this will be suitable for the next generation large scale structure galaxy surveys like WFMOS and LSST.
Swirling around filaments: are large-scale structure vortices spinning up dark haloes?
NASA Astrophysics Data System (ADS)
Laigle, C.; Pichon, C.; Codis, S.; Dubois, Y.; Le Borgne, D.; Pogosyan, D.; Devriendt, J.; Peirani, S.; Prunet, S.; Rouberol, S.; Slyz, A.; Sousbie, T.
2015-01-01
The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with, their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60° relative to random orientations. The cross-sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of haloes embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller haloes induced by this large-scale coherence, as argued in Codis et al. In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass haloes form) dominates the angular momentum budget of these haloes. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.
Large scale nonlinear numerical optimal control for finite element models of flexible structures
NASA Technical Reports Server (NTRS)
Shoemaker, Christine A.; Liao, Li-Zhi
1990-01-01
This paper discusses the development of large scale numerical optimal control algorithms for nonlinear systems and their application to finite element models of structures. This work is based on our expansion of the optimal control algorithm (DDP) in the following steps: improvement of convergence for initial policies in non-convex regions, development of a numerically accurate penalty function method approach for constrained DDP problems, and parallel processing on supercomputers. The expanded constrained DDP algorithm was applied to the control of a four-bay, two dimensional truss with 12 soft members, which generates geometric nonlinearities. Using an explicit finite element model to describe the structural system requires 32 state variables and 10,000 time steps. Our numerical results indicate that for constrained or unconstrained structural problems with nonlinear dynamics, the results obtained by our expanded constrained DDP are significantly better than those obtained using linear-quadratic feedback control.
The dark mark of large-scale structure on the cosmic microwave background
NASA Astrophysics Data System (ADS)
Granett, Benjamin R.
2010-10-01
The cosmic microwave background (CMB) offers a screen to study the Universe in projection. Large-scale structures leave gravitational imprints on the background radiation through the integrated Sachs-Wolfe effect. In an accelerating universe, photons following trajectories across large clusters or voids are heated or cooled as the gravitational potential decays. The hot and cold marks left on the radiation field are a direct signature of dark energy in a spatially flat universe. We use the Sloan Digital Sky Survey to trace large-scale structures and confirm their effect on the cosmic microwave background. We construct a map of the anisotropy over the survey area and find that the pattern is present on the microwave sky. This detection demonstrates that the positive statistical correlation between the galaxy density and the CMB temperature reported in the literature is consistent with the integrated Sachs-Wolfe effect under dark energy. The imprints of individual voids and clusters can be isolated on the cosmic microwave background. By summing the signal from voids and clusters, we overcome the noise of primary fluctuations and produce an image of the average imprint left by the gravitational potential of the structures. Intriguingly, the detection level surpasses the all-sky integrated Sachs-Wolfe measurement. We suggest that the technique may be used as a new probe of dark energy. Supervoid and supercluster structures could be responsible for anomalous regions on the microwave background. We introduce the method of constrained realization to identify statistically anomalous regions on the sky. Of particular interest is the Cold Spot which could arise from a supervoid structure at low redshift. To test this idea, we conduct a photometric redshift survey of the region to moderate redshift. However, we find no strong evidence that a large void is responsible.
Ward identities and consistency relations for the large scale structure with multiple species
Peloso, Marco; Pietroni, Massimo E-mail: pietroni@pd.infn.it
2014-04-01
We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistency relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field.
Large-scale structure evolution in axisymmetric, compressible free-shear layers
Aeschliman, D.P.; Baty, R.S.
1997-05-01
This paper is a description of work-in-progress. It describes Sandia`s program to study the basic fluid mechanics of large-scale mixing in unbounded, compressible, turbulent flows, specifically, the turbulent mixing of an axisymmetric compressible helium jet in a parallel, coflowing compressible air freestream. Both jet and freestream velocities are variable over a broad range, providing a wide range mixing layer Reynolds number. Although the convective Mach number, M{sub c}, range is currently limited by the present nozzle design to values of 0.6 and below, straightforward nozzle design changes would permit a wide range of convective Mach number, to well in excess of 1.0. The use of helium allows simulation of a hot jet due to the large density difference, and also aids in obtaining optical flow visualization via schlieren due to the large density gradient in the mixing layer. The work comprises a blend of analysis, experiment, and direct numerical simulation (DNS). There the authors discuss only the analytical and experimental efforts to observe and describe the evolution of the large-scale structures. The DNS work, used to compute local two-point velocity correlation data, will be discussed elsewhere.
Efficient Large-Scale Structure From Motion by Fusing Auxiliary Imaging Information.
Cui, Hainan; Shen, Shuhan; Gao, Wei; Hu, Zhanyi
2015-11-01
One of the potentially effective means for large-scale 3D scene reconstruction is to reconstruct the scene in a global manner, rather than incrementally, by fully exploiting available auxiliary information on the imaging condition, such as camera location by Global Positioning System (GPS), orientation by inertial measurement unit (or compass), focal length from EXIF, and so on. However, such auxiliary information, though informative and valuable, is usually too noisy to be directly usable. In this paper, we present an approach by taking advantage of such noisy auxiliary information to improve structure from motion solving. More specifically, we introduce two effective iterative global optimization algorithms initiated with such noisy auxiliary information. One is a robust rotation averaging algorithm to deal with contaminated epipolar graph, the other is a robust scene reconstruction algorithm to deal with noisy GPS data for camera centers initialization. We found that by exclusively focusing on the estimated inliers at the current iteration, the optimization process initialized by such noisy auxiliary information could converge well and efficiently. Our proposed method is evaluated on real images captured by unmanned aerial vehicle, StreetView car, and conventional digital cameras. Extensive experimental results show that our method performs similarly or better than many of the state-of-art reconstruction approaches, in terms of reconstruction accuracy and completeness, but is more efficient and scalable for large-scale image data sets. PMID:26111397
The structure of large-scale synchronized firing in primate retina
Shlens, Jonathon; Field, Greg D.; Gauthier, Jeffrey L.; Greschner, Martin; Sher, Alexander; Litke, Alan M.; Chichilnisky, E.J.
2009-01-01
Synchronized firing among neurons has been proposed to constitute an elementary aspect of the neural code in sensory and motor systems. However, it remains unclear how synchronized firing affects the large-scale patterns of activity and redundancy of visual signals in a complete population of neurons. We recorded simultaneously from hundreds of retinal ganglion cells in primate retina, and examined synchronized firing in completely sampled populations of ~50–100 ON-parasol cells, which form a major projection to the magnocellular layers of the lateral geniculate nucleus. Synchronized firing in pairs of cells was a subset of a much larger pattern of activity that exhibited local, isotropic spatial properties. However, a simple model based solely on interactions between adjacent cells reproduced 99% of the spatial structure and scale of synchronized firing. No more than 20% of the variability in firing of an individual cell was predictable from the activity of its neighbors. These results held both for spontaneous firing and in the presence of independent visual modulation of the firing of each cell. In sum, large-scale synchronized firing in the entire population of ON-parasol cells appears to reflect simple neighbor interactions, rather than a unique visual signal or a highly redundant coding scheme. PMID:19369571
Structural organization of large and very-large scales in turbulent pipe flow simulation
NASA Astrophysics Data System (ADS)
Baltzer, Jon; Adrian, Ronald; Wu, Xiaohua
2012-11-01
The physical structures of velocity are examined in a recent DNS of fully developed incompressible turbulent pipe flow at ReD = 24 580 (R+ = 684 . 8) with a periodic domain length of 30 pipe radii R (Wu, Baltzer, & Adrian, J. Fluid Mech., 2012). In this simulation, the long motions of negative velocity fluctuation correspond to large fractions of energy present at very long streamwise wavelengths (>= 3 R). We study how long motions are composed of smaller motions. We characterize the spatial arrangements of very large scale motions (VLSMs) and find that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by 2D and 3D two-point spatial correlations of velocity. The correlations also reveal that the shorter, large scale motions (LSMs) that concatenate to comprise the VLSMs are themselves more streamwise aligned. We show that the largest VLSMs possess a form similar to roll cells and that they appear to play an important role in organizing the flow, while smaller scales of motion are necessary to create the strong streaks of velocity fluctuation that characterize the flow. Supported by NSF Award CBET-0933848.
Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow.
Ritsema, J; Van Heijst, H J
2000-01-01
Systematic analyses of earthquake-generated seismic waves have resulted in models of three-dimensional elastic wavespeed structure in Earth's mantle. This paper describes the development and the dominant characteristics of one of the most recently developed models. This model is based on seismic wave travel times and wave shapes from over 100,000 ground motion recordings of earthquakes that occurred between 1980 and 1998. It shows signatures of plate tectonic processes to a depth of about 1,200 km in the mantle, and it demonstrates the presence of large-scale structure throughout the lower 2,000 km of the mantle. Seismological analyses make it increasingly more convincing that geologic processes shaping Earth's surface are intimately linked to physical processes in the deep mantle. PMID:11077479
Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures.
Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-ju; Jang, Won Ick; Yu, Han Young
2012-03-01
Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm(-3) and 40-80 m(2) g(-1), respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface. PMID:22293666
Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures
NASA Astrophysics Data System (ADS)
Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G.; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-Ju; Jang, Won Ick; Yu, Han Young
2012-02-01
Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm-3 and 40-80 m2 g-1, respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.
Molecular clouds and the large-scale structure of the galaxy
NASA Technical Reports Server (NTRS)
Thaddeus, Patrick; Stacy, J. Gregory
1990-01-01
The application of molecular radio astronomy to the study of the large-scale structure of the Galaxy is reviewed and the distribution and characteristic properties of the Galactic population of Giant Molecular Clouds (GMCs), derived primarily from analysis of the Columbia CO survey, and their relation to tracers of Population 1 and major spiral features are described. The properties of the local molecular interstellar gas are summarized. The CO observing programs currently underway with the Center for Astrophysics 1.2 m radio telescope are described, with an emphasis on projects relevant to future comparison with high-energy gamma-ray observations. Several areas are discussed in which high-energy gamma-ray observations by the EGRET (Energetic Gamma-Ray Experiment Telescope) experiment aboard the Gamma Ray Observatory will directly complement radio studies of the Milky Way, with the prospect of significant progress on fundamental issues related to the structure and content of the Galaxy.
Large-scale structure from cosmic-string loops in a baryon-dominated universe
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Scherrer, Robert J.
1988-01-01
The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.
On a digital wireless impact-monitoring network for large-scale composite structures
NASA Astrophysics Data System (ADS)
Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang
2014-08-01
Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network.
The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar
NASA Astrophysics Data System (ADS)
Dubayah, R.
2015-12-01
Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications
Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE
Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua
2010-01-01
This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.
Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE
Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua
2010-01-01
This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less
NASA Astrophysics Data System (ADS)
Kataoka, K.; Gomez, C. A.
2012-12-01
Large-scale outburst floods from volcanic lakes such as caldera lakes or volcanically dammed river-valleys tend to be voluminous with total discharge of > 1-10s km3 and peak discharge of >10000s to 100000s m3 s-1. Such a large flood can travel long distance and leave sediments and bedforms/landforms extensively with large-scale internal structures, which are difficult to assess from single local sites. Moreover, the sediments and bedforms/landforms are sometimes untraceable, and outcrop information obtained by classical geological and geomorphological field surveys is limited to the dissected/terraced parts of fan body, road cuts and/or large quarries. Therefore, GPR (Ground Penetrating Radar), using the properties of electromagnetic waves' propagation through media, seems best adapted for the appraisal of large-scale subsurface structures. Recently, studies on GPR applications to volcanic deposits have successfully captured images of lava flows and volcaniclastic deposits and proved the usefulness of this method even onto the volcanic areas which often encompass complicated stratigraphy and structures with variable material, grainsize, and ferromagnetic content. Using GPR, the present study aims to understand the large-scale internal structures of volcanogenic flood deposits. The survey was carried out over two volcanogenic flood fan (or apron) sediments in northeast Japan, at Numazawa and Towada volcanoes. The 5 ka Numazawa flood deposits in the Tadami river catchment that has been emplaced by a breakout flood from ignimbrite-dammed valley leaving pumiceous gravelly sediments with meter-sized boulders in the flow path. At Towada volcano, a comparable flood event originating from a breach in the caldera rim emplaced the 13-15 ka Sanbongi fan deposits in the Oirase river valley, which is characterized by a bouldery fan deposits. The GPR data was collected following 200 to 500 m long lateral and longitudinal transects, which were captured using a GPR Pulse
Large-Scale Screening of Zeolite Structures for CO2 Membrane Separations
Kim, JH; Abouelnasr, M; Lin, LC; Smit, B
2013-05-22
We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N-2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance of over 87 000 different zeolite structures, including the known IZA zeolite structures. Our novel, efficient algorithm using graphics processing units can accurately characterize both the adsorption and diffusion properties of a given structure in just a few seconds and accordingly find a set of optimal structures for different desired purity of separated gases from a large database of porous materials in reasonable wall time. Our analysis reveals that the optimal structures for separations usually consist of channels with adsorption sites spread relatively uniformly across the entire channel such that they feature well-balanced CO2 adsorption and diffusion properties. Our screening also shows that the top structures in the predicted zeolite database outperform the best known zeolite by a factor of 4-7. Finally, we have identified a completely different optimal set of zeolite structures that are suitable for an inverse process, in which the CO2 is retained while CH4 or N-2 is passed through a membrane.
Fingerprints of anomalous primordial Universe on the abundance of large scale structures
Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu
2014-12-01
We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A} < 0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for M
Large-scale screening of zeolite structures for CO2 membrane separations.
Kim, Jihan; Abouelnasr, Mahmoud; Lin, Li-Chiang; Smit, Berend
2013-05-22
We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance of over 87,000 different zeolite structures, including the known IZA zeolite structures. Our novel, efficient algorithm using graphics processing units can accurately characterize both the adsorption and diffusion properties of a given structure in just a few seconds and accordingly find a set of optimal structures for different desired purity of separated gases from a large database of porous materials in reasonable wall time. Our analysis reveals that the optimal structures for separations usually consist of channels with adsorption sites spread relatively uniformly across the entire channel such that they feature well-balanced CO2 adsorption and diffusion properties. Our screening also shows that the top structures in the predicted zeolite database outperform the best known zeolite by a factor of 4-7. Finally, we have identified a completely different optimal set of zeolite structures that are suitable for an inverse process, in which the CO2 is retained while CH4 or N2 is passed through a membrane. PMID:23654217
Herschel view of the large-scale structure in the Chamaeleon dark clouds
NASA Astrophysics Data System (ADS)
Alves de Oliveira, C.; Schneider, N.; Merín, B.; Prusti, T.; Ribas, Á.; Cox, N. L. J.; Vavrek, R.; Könyves, V.; Arzoumanian, D.; Puga, E.; Pilbratt, G. L.; Kóspál, Á.; André, Ph.; Didelon, P.; Men'shchikov, A.; Royer, P.; Waelkens, C.; Bontemps, S.; Winston, E.; Spezzi, L.
2014-08-01
Context. The Chamaeleon molecular cloud complex is one of the nearest star-forming sites and encompasses three molecular clouds (Cha I, II, and III) that have a different star-formation history, from quiescent (Cha III) to actively forming stars (Cha II), and one that reaches the end of star-formation (Cha I). Aims: We aim at characterising the large-scale structure of the three sub-regions of the Chamaeleon molecular cloud complex by analysing new far-infrared images taken with the Herschel Space Observatory. Methods: We derived column density and temperature maps using PACS and SPIRE observations from the Herschel Gould Belt Survey and applied several tools, such as filament tracing, power-spectra, Δ-variance, and probability distribution functions (PDFs) of the column density, to derive the physical properties. Results: The column density maps reveal a different morphological appearance for each of the three clouds, with a ridge-like structure for Cha I, a clump-dominated regime for Cha II, and an intricate filamentary network for Cha III. The filament width is measured to be about 0.12 ± 0.04 pc in the three clouds, and the filaments are found to be gravitationally unstable in Cha I and II, but mostly subcritical in Cha III. Faint filaments (striations) are prominent in Cha I and are mostly aligned with the large-scale magnetic field. The PDFs of all regions show a lognormal distribution at low column densities. For higher densities, the PDF of Cha I shows a turnover indicative of an extended higher density component and culminates in a power-law tail. Cha II shows a power-law tail with a slope characteristic of gravity. The PDF of Cha III can be best fit by a single lognormal. Conclusions: The turbulence properties of the three regions are found to be similar, pointing towards a scenario where the clouds are impacted by large-scale processes. The magnetic field might possibly play an important role for the star formation efficiency in the Chamaeleon clouds
First hints of large scale structures in the ultrahigh energy sky?
Cuoco, A.; Miele, G.; Serpico, Pasquale D.; /Fermilab
2006-10-01
The result of the recent publication [1] of a broad maximum around 25 degrees in the two-point autocorrelation function of ultra-high energy cosmic ray arrival directions has been intriguingly interpreted as the first imprint of the large scale structures (LSS) of baryonic matter in the near universe. We analyze this suggestion in light of the clustering properties expected from the PSCz astronomical catalogue of LSS. The chance probability of the signal is consistent within 2 {sigma} with the predictions based on the catalogue. No evidence for a significant cross-correlation of the observed events with known overdensities in the LSS is found, which may be due to the role of the galactic and extragalactic magnetic fields, and is however consistent with the limited statistics. The larger statistics to be collected by the Pierre Auger Observatory is needed to answer definitely the question.
Measuring the topology of large-scale structure in the universe
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1988-01-01
An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step. PMID:26133420
The structure of the white-light corona and the large-scale solar magnetic field
NASA Technical Reports Server (NTRS)
Sime, D. G.; Mccabe, M. K.
1990-01-01
The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.
Large-Scale Structures around Quasar Pairs at z ˜ 1
NASA Astrophysics Data System (ADS)
Sodré, L., Jr.; Boris, N. V.; Lima Neto, G. B.; Cypriano, E. S.; Santos, W. A.; Mendes de Oliveira, C.; West, M.
2009-05-01
We have used Gemini telescopes to study the photometric properties of four fields around the high-redshift quasar pairs QP1310+0007, QP1355-0032, QP0110-0219, and QP0114-3140z ˜ 1 with the aim of identifying large-scale structures -galaxy clusters or groups- around them. Our analysis reveals that QP0110-0219very strong and QP1310+0007 - QP1355-0032some evidence for the presence of rich galaxy clusters in direct vicinity of the pairs. On the other hand, QP0114-3140be an isolated pair in a poor environment. This work suggest that z ˜ 1 quasar pairs are excellent tracers of high density environments.
Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos
NASA Technical Reports Server (NTRS)
Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.
1994-01-01
Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.
Automatic Three-Dimensional Measurement of Large-Scale Structure Based on Vision Metrology
Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng
2014-01-01
All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods. PMID:24701143
Automatic three-dimensional measurement of large-scale structure based on vision metrology.
Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng
2014-01-01
All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods. PMID:24701143
Gamma-rays from the Large Scale Structure of the Universe
NASA Astrophysics Data System (ADS)
Miniati, Francesco
2002-04-01
Gamma-ray astronomy will play a crucial role in the investigation of nonthermal processes in the large scale structure of the universe. Particularly, galaxy clusters (GC) observations at this photon energy will help us understand the origin of radio emitting high energy particles, the possible level of cosmic-ray (CR) pressure in intracluster environment, and the strength of intracluster magnetic fields. In addition here we point out the importance of these observations for a possible detection of cluster accretion shocks and for constraining their CR acceleration efficiency. We model spatial and spectral properties of gamma-ray emission due to shock accelerated CRs in GC and emphasize the importance of imaging capability of upcoming gamma-ray facilities for a correct interpretation of observational results.
The topology of large-scale structure. VI - Slices of the universe
NASA Technical Reports Server (NTRS)
Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.
1992-01-01
Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.
N-point statistics of large-scale structure in the Zel'dovich approximation
Tassev, Svetlin
2014-06-01
Motivated by the results presented in a companion paper, here we give a simple analytical expression for the matter n-point functions in the Zel'dovich approximation (ZA) both in real and in redshift space (including the angular case). We present numerical results for the 2-dimensional redshift-space correlation function, as well as for the equilateral configuration for the real-space 3-point function. We compare those to the tree-level results. Our analysis is easily extendable to include Lagrangian bias, as well as higher-order perturbative corrections to the ZA. The results should be especially useful for modelling probes of large-scale structure in the linear regime, such as the Baryon Acoustic Oscillations. We make the numerical code used in this paper freely available.
Quantifying the colour-dependent stochasticity of large-scale structure
NASA Astrophysics Data System (ADS)
Patej, Anna; Eisenstein, Daniel
2016-08-01
We address the question of whether massive red and blue galaxies trace the same large-scale structure at z ˜ 0.6 using the CMASS sample of galaxies from Data Release 12 of the Sloan Digital Sky Survey III. After splitting the catalogue into subsamples of red and blue galaxies using a simple colour cut, we measure the clustering of both subsamples and construct the correlation coefficient, r, using two statistics. The correlation coefficient quantifies the stochasticity between the two subsamples, which we examine over intermediate scales (20 ≲ R ≲ 100 h-1 Mpc). We find that on these intermediate scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95 taking into account both statistics and r > 0.974 using the favoured statistic.
The trispectrum in the Effective Field Theory of Large Scale Structure
NASA Astrophysics Data System (ADS)
Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M.
2016-06-01
We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporate vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.
Quantifying the Colour-Dependent Stochasticity of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Patej, Anna; Eisenstein, Daniel
2016-03-01
We address the question of whether massive red and blue galaxies trace the same large-scale structure at z ˜ 0.6 using the CMASS sample of galaxies from Data Release 12 of the Sloan Digital Sky Survey III. After splitting the catalog into subsamples of red and blue galaxies using a simple colour cut, we measure the clustering of both subsamples and construct the correlation coefficient, r, using two statistics. The correlation coefficient quantifies the stochasticity between the two subsamples, which we examine over intermediate scales (20 ≲ R ≲ 100 h-1Mpc). We find that on these intermediate scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95 taking into account both statistics and r > 0.974 using the favored statistic.
Large-scale structure and integrated Sachs-Wolfe effect in decaying vacuum cosmology
NASA Astrophysics Data System (ADS)
Velten, H.; Borges, H. A.; Carneiro, S.; Fazolo, R.; Gomes, S.
2015-09-01
The concordance particle creation model - a class of Λ(t) Cold Dark Matter (CDM) cosmologies - is studied using large-scale structure (LSS) formation, with particular attention to the integrated Sachs-Wolfe effect. The evolution of the gravitational potential and the amplitude of the cross-correlation of the cosmic microwave background (CMB) signal with LSS surveys are calculated in detail. We properly include in our analysis the peculiarities involving the baryonic dynamics of the Λ(t)CDM model which were not included in previous works. Although both the Λ(t)CDM and the standard cosmology are in agreement with available data for the CMB-LSS correlation, the former presents a slightly higher signal which can be identified with future data.
NASA Astrophysics Data System (ADS)
Schiffmann, Florian; VandeVondele, Joost
2015-06-01
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Large-Scale Predictive Drug Safety: From Structural Alerts to Biological Mechanisms.
Garcia-Serna, Ricard; Vidal, David; Remez, Nikita; Mestres, Jordi
2015-10-19
The recent explosion of data linking drugs, proteins, and pathways with safety events has promoted the development of integrative systems approaches to large-scale predictive drug safety. The added value of such approaches is that, beyond the traditional identification of potentially labile chemical fragments for selected toxicity end points, they have the potential to provide mechanistic insights for a much larger and diverse set of safety events in a statistically sound nonsupervised manner, based on the similarity to drug classes, the interaction with secondary targets, and the interference with biological pathways. The combined identification of chemical and biological hazards enhances our ability to assess the safety risk of bioactive small molecules with higher confidence than that using structural alerts only. We are still a very long way from reliably predicting drug safety, but advances toward gaining a better understanding of the mechanisms leading to adverse outcomes represent a step forward in this direction. PMID:26360911
Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure
Therizols, Pierre
2016-01-01
Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes. PMID:27295501
Schiffmann, Florian; VandeVondele, Joost
2015-06-28
We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.
Mantle convection and the large scale structures of the Earth's gravitational field
NASA Technical Reports Server (NTRS)
Peltier, W. R.
1985-01-01
The connection between the observed large scale structure of the Earths' gravitational field, as represented by the GEM10 model, and the surface kinematic manifestations of plate tectonics, as represented by the absolute plate motion model of Minster and Jordan, is explored using a somewhat novel method of analysis. Two scalar derivatives of the field of surface plate velocities, namely the horizontal divergence and the radial vorticity, are computed from the plate motion data. These two scalars are respectively determined by the poloidal and toroidal scalars in terms of which any essentially solenoidal vector field may be completely represented. They provide a compact summary of the observed plate boundary types in nature, with oceanic ridges and trenches being essentially boundaries of divergence, and transform faults being essentially boundaries of vorticity.
The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures
Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo
2015-10-14
With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 hmore » Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.« less
Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail
2016-01-01
With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework. PMID:27303272