Science.gov

Sample records for large-scale structure constraints

  1. Curvature constraints from large scale structure

    NASA Astrophysics Data System (ADS)

    Di Dio, Enea; Montanari, Francesco; Raccanelli, Alvise; Durrer, Ruth; Kamionkowski, Marc; Lesgourgues, Julien

    2016-06-01

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter ΩK with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependent power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.

  2. Large scale structure forecast constraints on particle production during inflation

    SciTech Connect

    Chantavat, Teeraparb; Gordon, Christopher; Silk, Joseph

    2011-05-15

    Bursts of particle production during inflation provide a well-motivated mechanism for creating bumplike features in the primordial power spectrum. Current data constrain these features to be less than about 5% the size of the featureless primordial power spectrum at wave numbers of about 0.1h Mpc{sup -1}. We forecast that the Planck cosmic microwave background experiment will be able to strengthen this constraint to the 0.5% level. We also predict that adding data from a square kilometer array galaxy redshift survey would improve the constraint to about the 0.1% level. For features at larger wave numbers, Planck will be limited by Silk damping and foregrounds, while the square kilometer array will be limited by nonlinear effects. We forecast, for a cosmic inflation probe galaxy redshift survey, that similar constraints can be achieved up to about a wave number of 1.0h Mpc{sup -1}.

  3. Stability constraints on large-scale structural brain networks

    PubMed Central

    Gray, Richard T.; Robinson, Peter A.

    2013-01-01

    Stability is an important dynamical property of complex systems and underpins a broad range of coherent self-organized behavior. Based on evidence that some neurological disorders correspond to linear instabilities, we hypothesize that stability constrains the brain's electrical activity and influences its structure and physiology. Using a physiologically-based model of brain electrical activity, we investigated the stability and dispersion solutions of networks of neuronal populations with propagation time delays and dendritic time constants. We find that stability is determined by the spectrum of the network's matrix of connection strengths and is independent of the temporal damping rate of axonal propagation with stability restricting the spectrum to a region in the complex plane. Time delays and dendritic time constants modify the shape of this region but it always contains the unit disk. Instabilities resulting from changes in connection strength initially have frequencies less than a critical frequency. For physiologically plausible parameter values based on the corticothalamic system, this critical frequency is approximately 10 Hz. For excitatory networks and networks with randomly distributed excitatory and inhibitory connections, time delays and non-zero dendritic time constants have no impact on network stability but do effect dispersion frequencies. Random networks with both excitatory and inhibitory connections can have multiple marginally stable modes at low delta frequencies. PMID:23630490

  4. Constraints on neutrino-dark matter interactions from cosmic microwave background and large scale structure data

    SciTech Connect

    Serra, Paolo; Cooray, Asantha; Zalamea, Federico; Mangano, Gianpiero; Melchiorri, Alessandro

    2010-02-15

    We update a previous investigation of cosmological effects of a nonstandard interaction between neutrinos and dark matter. Parametrizing the elastic-scattering cross section between the two species as a function of the temperature of the Universe, the resulting neutrino-dark matter fluid has a nonzero pressure, which determines diffusion-damped oscillations in the matter power spectrum similar to the acoustic oscillations generated by the photon-baryon fluid. Using cosmic microwave background data in combination with large scale structure experiment results, we then put constraints on the fraction of the interacting dark matter component as well as on the corresponding opacity.

  5. Effects of unstable dark matter on large-scale structure and constraints from future surveys

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Zentner, Andrew R.

    2012-02-01

    In this paper we explore the effect of decaying dark matter (DDM) on large-scale structure and possible constraints from galaxy imaging surveys. DDM models have been studied, in part, as a way to address apparent discrepancies between the predictions of standard cold dark matter models and observations of galactic structure. Our study is aimed at developing independent constraints on these models. In such models, DDM decays into a less massive, stable dark matter (SDM) particle and a significantly lighter particle. The small mass splitting between the parent DDM and the daughter SDM provides the SDM with a recoil or “kick” velocity vk, inducing a free-streaming suppression of matter fluctuations. This suppression can be probed via weak lensing power spectra measured by a number of forthcoming imaging surveys that aim primarily to constrain dark energy. Using scales on which linear perturbation theory alone is valid (multipoles ℓ<300), surveys like Euclid or the Large Synoptic Survey Telescope can be sensitive to vk≳90km/s for lifetimes τ˜1-5Gyr. To estimate more aggressive constraints, we model nonlinear corrections to lensing power using a simple halo evolution model that is in good agreement with numerical simulations. In our most ambitious forecasts, using multipoles ℓ<3000, we find that imaging surveys can be sensitive to vk˜10km/s for lifetimes τ≲10Gyr. Lensing will provide a particularly interesting complement to existing constraints in that they will probe the long lifetime regime (τ≫H0-1) far better than contemporary techniques. A caveat to these ambitious forecasts is that the evolution of perturbations on nonlinear scales will need to be well calibrated by numerical simulations before they can be realized. This work motivates the pursuit of such a numerical simulation campaign to constrain dark matter with cosmological weak lensing.

  6. Constraints on primordial non-Gaussianity from large scale structure probes

    SciTech Connect

    Xia, Jun-Qing; Baccigalupi, Carlo; Matarrese, Sabino; Verde, Licia; Viel, Matteo E-mail: bacci@sissa.it E-mail: liciaverde@icc.ub.edu

    2011-08-01

    In this paper we measure the angular power spectra C{sub l} of three high-redshift large-scale structure probes: the radio sources from the NRAO VLA Sky Survey (NVSS), the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs) and the MegaZ-LRG (DR7), the final SDSS II Luminous Red Galaxy (LRG) photometric redshift survey. We perform a global analysis of the constraints on the amplitude of primordial non-Gaussianity from these angular power spectra, as well as from their cross-correlation power spectra with the cosmic microwave background (CMB) temperature map. In particular, we include non-Gaussianity of the type arising from single-field slow roll, multifields, curvaton (local type), and those which effects on the halo clustering can be described by the equilateral template (related to higher-order derivative type non-Gaussianity) and by the enfolded template (related to modified initial state or higher-derivative interactions). When combining all data sets, we obtain limits of f{sub NL} = 48±20, f{sub NL} = 50±265 and f{sub NL} = 183±95 at 68% confidence level for local, equilateral and enfolded templates, respectively. Furthermore, we explore the constraint on the cubic correction g{sub NL}φ{sup 3} on the bias of dark matter haloes and obtain a limit of −1.2 × 10{sup 5} < g{sub NL} < 11.3 × 10{sup 5} at 95% confidence level.

  7. Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages

    SciTech Connect

    Putter, Roland de; Verde, Licia; Jimenez, Raul E-mail: liciaverde@icc.ub.edu

    2013-02-01

    We present new observational constraints on inhomogeneous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for the homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.

  8. Constraints on dark-matter properties from large-scale structure

    NASA Astrophysics Data System (ADS)

    Kunz, Martin; Nesseris, Savvas; Sawicki, Ignacy

    2016-07-01

    We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background anisotropies constrain the equation of state and sound speed of the dark matter (DM) at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like a-2 absent shell crossing, we infer that today w(DM )<1 0-10.0 , cs,(DM ) 2<1 0-10.7 and cvis,(DM) 2<1 0-10.3 at the 99% confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: For warm dark matter these constraints imply m >70 eV , assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that m >100 eV . We separately constrain the properties of the DM fluid on linear scales at late times and find upper bounds cs,(DM ) 2<1 0-5.9 and cvis,(DM) 2<1 0-5.7 , with no detection of nondust properties for the DM.

  9. Constraints on neutrino masses from the study of the nearby large-scale structure and galaxy cluster counts

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Chon, Gayoung

    2016-07-01

    The high precision measurements of the cosmic microwave background by the Planck survey yielded tight constraints on cosmological parameters and the statistics of the density fluctuations at the time of recombination. This provides the means for a critical study of structure formation in the Universe by comparing the microwave background results with present epoch measurements of the cosmic large-scale structure. It can reveal subtle effects such as how different forms of Dark Matter may modify structure growth. Currently most interesting is the damping effect of structure growth by massive neutrinos. Different observations of low redshift matter density fluctuations provided evidence for a signature of massive neutrinos. Here we discuss the study of the cosmic large-scale structure with a complete sample of nearby, X-ray luminous clusters from our REFLEX cluster survey. From the observed X-ray luminosity function and its reproduction for different cosmological models, we obtain tight constraints on the cosmological parameters describing the matter density, Ωm, and the density fluctuation amplitude, σ8. A comparison of these constraints with the Planck results shows a discrepancy in the framework of a pure ΛCDM model, but the results can be reconciled, if we allow for a neutrino mass in the range of 0.17 eV to 0.7 eV. Also some others, but not all of the observations of the nearby large-scale structure provide evidence or trends for signatures of massive neutrinos. With further improvement in the systematics and future survey projects, these indications will develop into a definitive measurement of neutrino masses.

  10. Cosmic microwave background and large-scale structure constraints on a simple quintessential inflation model

    SciTech Connect

    Rosenfeld, Rogerio; Frieman, Joshua A.; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2006-11-01

    We derive constraints on a simple quintessential inflation model, based on a spontaneously broken {Phi}{sup 4} theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation-of-state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.

  11. Neutrino constraints: what large-scale structure and CMB data are telling us?

    SciTech Connect

    Costanzi, Matteo; Sartoris, Barbara; Borgani, Stefano; Viel, Matteo E-mail: sartoris@oats.inaf.it E-mail: borgani@oats.inaf.it

    2014-10-01

    We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ m{sub ν} =0.29{sup +0.18}{sub -0.21} eV and ∑ m{sub ν} =0.22{sup +0.17}{sub -0.18} eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get m{sub s}{sup eff}=0.44{sup +0.28}{sub -0.26} eV and Δ N{sub eff}=0.78{sup +0.60}{sub -0.59} 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass

  12. Neutrino constraints: what large-scale structure and CMB data are telling us?

    NASA Astrophysics Data System (ADS)

    Costanzi, Matteo; Sartoris, Barbara; Viel, Matteo; Borgani, Stefano

    2014-10-01

    We discuss the reliability of neutrino mass constraints, either active or sterile, from the combination of different low redshift Universe probes with measurements of CMB anisotropies. In our analyses we consider WMAP 9-year or Planck Cosmic Microwave Background (CMB) data in combination with Baryonic Acoustic Oscillations (BAO) measurements from BOSS DR11, galaxy shear measurements from CFHTLenS, SDSS Ly α forest constraints and galaxy cluster mass function from Chandra observations. At odds with recent similar studies, to avoid model dependence of the constraints we perform a full likelihood analysis for all the datasets employed. As for the cluster data analysis we rely on to the most recent calibration of massive neutrino effects in the halo mass function and we explore the impact of the uncertainty in the mass bias and re-calibration of the halo mass function due to baryonic feedback processes on cosmological parameters. We find that none of the low redshift probes alone provide evidence for massive neutrino in combination with CMB measurements, while a larger than 2σ detection of non zero neutrino mass, either active or sterile, is achieved combining cluster or shear data with CMB and BAO measurements. Yet, the significance of the detection exceeds 3σ if we combine all four datasets. For a three active neutrino scenario, from the joint analysis of CMB, BAO, shear and cluster data including the uncertainty in the mass bias we obtain ∑ mν =0.29+0.18-0.21 eV and ∑ mν =0.22+0.17-0.18 eV 95%CL) using WMAP9 or Planck as CMB dataset, respectively. The preference for massive neutrino is even larger in the sterile neutrino scenario, for which we get mseff=0.44+0.28-0.26 eV and Δ Neff=0.78+0.60-0.59 95%CL) from the joint analysis of Planck, BAO, shear and cluster datasets. For this data combination the vanilla ΛCDM model is rejected at more than 3σ and a sterile neutrino mass as motivated by accelerator anomaly is within the 2σ errors. Conversely, the Ly

  13. Fractals and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    Observations of galaxy-galaxy and cluster-cluster correlations as well as other large-scale structure can be fit with a 'limited' fractal with dimension D of about 1.2. This is not a 'pure' fractal out to the horizon: the distribution shifts from power law to random behavior at some large scale. If the observed patterns and structures are formed through an aggregation growth process, the fractal dimension D can serve as an interesting constraint on the properties of the stochastic motion responsible for limiting the fractal structure. In particular, it is found that the observed fractal should have grown from two-dimensional sheetlike objects such as pancakes, domain walls, or string wakes. This result is generic and does not depend on the details of the growth process.

  14. Constraints on large-scale dark acoustic oscillations from cosmology

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; de Putter, Roland; Raccanelli, Alvise; Sigurdson, Kris

    2014-03-01

    If all or a fraction of the dark matter (DM) were coupled to a bath of dark radiation (DR) in the early Universe, we expect the combined DM-DR system to give rise to acoustic oscillations of the dark matter until it decouples from the DR. Much like the standard baryon acoustic oscillations, these dark acoustic oscillations (DAO) imprint a characteristic scale, the sound horizon of dark matter, on the matter power spectrum. We compute in detail how the microphysics of the DM-DR interaction affects the clustering of matter in the Universe and show that the DAO physics also gives rise to unique signatures in the temperature and polarization spectra of the cosmic microwave background (CMB). We use cosmological data from the CMB, baryon acoustic oscillations, and large-scale structure to constrain the possible fraction of interacting DM as well as the strength of its interaction with DR. Like nearly all knowledge we have gleaned about DM since inferring its existence this constraint rests on the betrayal by gravity of the location of otherwise invisible DM. Although our results can be straightforwardly applied to a broad class of models that couple dark matter particles to various light relativistic species, in order to make quantitative predictions, we model the interacting component as dark atoms coupled to a bath of dark photons. We find that linear cosmological data and CMB lensing put strong constraints on the existence of DAO features in the CMB and the large-scale structure of the Universe. Interestingly, we find that at most ˜5% of all DM can be very strongly interacting with DR. We show that our results are surprisingly constraining for the recently proposed double-disk DM model, a novel example of how large-scale precision cosmological data can be used to constrain galactic physics and subgalactic structure.

  15. Neutrinos and large-scale structure

    SciTech Connect

    Eisenstein, Daniel J.

    2015-07-15

    I review the use of cosmological large-scale structure to measure properties of neutrinos and other relic populations of light relativistic particles. With experiments to measure the anisotropies of the cosmic microwave anisotropies and the clustering of matter at low redshift, we now have securely measured a relativistic background with density appropriate to the cosmic neutrino background. Our limits on the mass of the neutrino continue to shrink. Experiments coming in the next decade will greatly improve the available precision on searches for the energy density of novel relativistic backgrounds and the mass of neutrinos.

  16. Nonthermal Components in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2004-12-01

    I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

  17. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  18. Large-scale wind turbine structures

    NASA Astrophysics Data System (ADS)

    Spera, David A.

    1988-05-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  19. The challenge of large-scale structure

    NASA Astrophysics Data System (ADS)

    Gregory, S. A.

    1996-03-01

    The tasks that I have assumed for myself in this presentation include three separate parts. The first, appropriate to the particular setting of this meeting, is to review the basic work of the founding of this field; the appropriateness comes from the fact that W. G. Tifft made immense contributions that are not often realized by the astronomical community. The second task is to outline the general tone of the observational evidence for large scale structures. (Here, in particular, I cannot claim to be complete. I beg forgiveness from any workers who are left out by my oversight for lack of space and time.) The third task is to point out some of the major aspects of the field that may represent the clues by which some brilliant sleuth will ultimately figure out how galaxies formed.

  20. Grid sensitivity capability for large scale structures

    NASA Technical Reports Server (NTRS)

    Nagendra, Gopal K.; Wallerstein, David V.

    1989-01-01

    The considerations and the resultant approach used to implement design sensitivity capability for grids into a large scale, general purpose finite element system (MSC/NASTRAN) are presented. The design variables are grid perturbations with a rather general linking capability. Moreover, shape and sizing variables may be linked together. The design is general enough to facilitate geometric modeling techniques for generating design variable linking schemes in an easy and straightforward manner. Test cases have been run and validated by comparison with the overall finite difference method. The linking of a design sensitivity capability for shape variables in MSC/NASTRAN with an optimizer would give designers a powerful, automated tool to carry out practical optimization design of real life, complicated structures.

  1. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  2. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  3. Large-Scale Constraint-Based Pattern Mining

    ERIC Educational Resources Information Center

    Zhu, Feida

    2009-01-01

    We studied the problem of constraint-based pattern mining for three different data formats, item-set, sequence and graph, and focused on mining patterns of large sizes. Colossal patterns in each data formats are studied to discover pruning properties that are useful for direct mining of these patterns. For item-set data, we observed robustness of…

  4. Efficient multiobjective optimization scheme for large scale structures

    NASA Astrophysics Data System (ADS)

    Grandhi, Ramana V.; Bharatram, Geetha; Venkayya, V. B.

    1992-09-01

    This paper presents a multiobjective optimization algorithm for an efficient design of large scale structures. The algorithm is based on generalized compound scaling techniques to reach the intersection of multiple functions. Multiple objective functions are treated similar to behavior constraints. Thus, any number of objectives can be handled in the formulation. Pseudo targets on objectives are generated at each iteration in computing the scale factors. The algorithm develops a partial Pareto set. This method is computationally efficient due to the fact that it does not solve many single objective optimization problems in reaching the Pareto set. The computational efficiency is compared with other multiobjective optimization methods, such as the weighting method and the global criterion method. Trusses, plate, and wing structure design cases with stress and frequency considerations are presented to demonstrate the effectiveness of the method.

  5. Probes of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Suto, Yasushi; Gorski, Krzysztof; Juszkiewicz, Roman; Silk, Joseph

    1988-01-01

    A general formalism is developed which shows that the gravitational instability theory for the origin of the large-scale structure of the universe is now capable of critically confronting observational results on cosmic background radiation angular anisotropies, large-scale bulk motions, and large-scale clumpiness in the galaxy counts. The results indicate that presently advocated cosmological models will have considerable difficulty in simultaneously explaining the observational results.

  6. Unification and large-scale structure.

    PubMed Central

    Laing, R A

    1995-01-01

    The hypothesis of relativistic flow on parsec scales, coupled with the symmetrical (and therefore subrelativistic) outer structure of extended radio sources, requires that jets decelerate on scales observable with the Very Large Array. The consequences of this idea for the appearances of FRI and FRII radio sources are explored. PMID:11607609

  7. Large-scale structural monitoring systems

    NASA Astrophysics Data System (ADS)

    Solomon, Ian; Cunnane, James; Stevenson, Paul

    2000-06-01

    Extensive structural health instrumentation systems have been installed on three long-span cable-supported bridges in Hong Kong. The quantities measured include environment and applied loads (such as wind, temperature, seismic and traffic loads) and the bridge response to these loadings (accelerations, displacements, and strains). Measurements from over 1000 individual sensors are transmitted to central computing facilities via local data acquisition stations and a fault- tolerant fiber-optic network, and are acquired and processed continuously. The data from the systems is used to provide information on structural load and response characteristics, comparison with design, optimization of inspection, and assurance of continued bridge health. Automated data processing and analysis provides information on important structural and operational parameters. Abnormal events are noted and logged automatically. Information of interest is automatically archived for post-processing. Novel aspects of the instrumentation system include a fluid-based high-accuracy long-span Level Sensing System to measure bridge deck profile and tower settlement. This paper provides an outline of the design and implementation of the instrumentation system. A description of the design and implementation of the data acquisition and processing procedures is also given. Examples of the use of similar systems in monitoring other large structures are discussed.

  8. Real or virtual large-scale structure?

    PubMed Central

    Evrard, August E.

    1999-01-01

    Modeling the development of structure in the universe on galactic and larger scales is the challenge that drives the field of computational cosmology. Here, photorealism is used as a simple, yet expert, means of assessing the degree to which virtual worlds succeed in replicating our own. PMID:10200243

  9. Large-Scale Structures of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Murray-Clay, Ruth; Rogers, Leslie A.

    2015-12-01

    A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.

  10. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  11. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  12. Large Scale Constraints on Methane Emissions Determined from Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Lang, P.; Masarie, K.; Crotwell, A. M.; Bruhwiler, L.

    2011-12-01

    Measurements of atmospheric CH4 from the NOAA Global Monitoring Division's, Global Cooperative Air Sampling Network began in 1983. These high-precision observations offer key constraints on CH4's budget including the global burden, the rate of increase, and the spatial distribution of CH4 at the surface. These observations allow estimates of total global CH4 emissions without using a chemical transport model. A surprising result of this analysis is that, if the CH4 lifetime has been constant, then total global emissions have been approximately constant since the mid-1980s. This result is difficult to reconcile with bottom-up inventories that report increasing anthropogenic emissions, unless natural emissions have decreased considerably. Analysis of anomalies in CH4 growth rate also allow us to test our understanding of the processes that affect the atmospheric CH4 burden. Large anomalies have been attributed to decreased CH4 sink after the eruption of Mt. Pinatubo in 1992, decreased emissions from wetlands because of cooler than normal temperatures in 1992, and increased emissions from biomass burning and wetlands in 1997/98. The most recent anomaly, starting in 2007 and continuing into early-2011 with an average rate of increase of ~6 ppb yr-1, is more persistent than previous ones and may indicate a permanent change to the global CH4 budget. Dlugokencky et al. [Geophys. Res. Lett., 36, 2009] attributed the increases in 2007 and 2008 to anomalously high temperatures in the Arctic (2007) and greater than average precipitation in the tropics (2007 and 2008). Continuing increases in 2009 and 2010 may be related to a very strong La Niña starting in 2010, the same climate pattern responsible for large positive precipitation anomalies in tropical wetland regions in 2007 and 2008. Indeed, strong precipitation anomalies were observed in SE Asia during 2010. This is a likely cause of continued CH4 increase, and it is consistent with the observation that the largest growth

  13. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  14. Large-scale structure and matter in the Universe.

    PubMed

    Peacock, J A

    2003-11-15

    This paper summarizes the physical mechanisms that encode the type and quantity of cosmological matter in the properties of large-scale structure, and reviews the application of such tests to current datasets. The key lengths of the horizon size at matter-radiation equality and at last scattering determine the total matter density and its ratio to the relativistic density; acoustic oscillations can diagnose whether the matter is collisionless, and small-scale structure or its absence can limit the mass of any dark-matter relic particle. The most stringent constraints come from combining data on present-day galaxy clustering with data on CMB anisotropies. Such an analysis breaks the degeneracies inherent in either dataset alone, and proves that the Universe is very close to flat. The matter content is accurately consistent with pure cold dark matter, with ca. 25% of the critical density, and fluctuations that are scalar only, adiabatic and scale invariant. It is demonstrated that these conclusions cannot be evaded by adjusting either the equation of state of the vacuum, or the total relativistic density. PMID:14667313

  15. EINSTEIN'S SIGNATURE IN COSMOLOGICAL LARGE-SCALE STRUCTURE

    SciTech Connect

    Bruni, Marco; Hidalgo, Juan Carlos; Wands, David

    2014-10-10

    We show how the nonlinearity of general relativity generates a characteristic nonGaussian signal in cosmological large-scale structure that we calculate at all perturbative orders in a large-scale limit. Newtonian gravity and general relativity provide complementary theoretical frameworks for modeling large-scale structure in ΛCDM cosmology; a relativistic approach is essential to determine initial conditions, which can then be used in Newtonian simulations studying the nonlinear evolution of the matter density. Most inflationary models in the very early universe predict an almost Gaussian distribution for the primordial metric perturbation, ζ. However, we argue that it is the Ricci curvature of comoving-orthogonal spatial hypersurfaces, R, that drives structure formation at large scales. We show how the nonlinear relation between the spatial curvature, R, and the metric perturbation, ζ, translates into a specific nonGaussian contribution to the initial comoving matter density that we calculate for the simple case of an initially Gaussian ζ. Our analysis shows the nonlinear signature of Einstein's gravity in large-scale structure.

  16. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  17. Contribution of peculiar shear motions to large-scale structure

    NASA Technical Reports Server (NTRS)

    Mueler, Hans-Reinhard; Treumann, Rudolf A.

    1994-01-01

    Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.

  18. Cosmological constraints from the large-scale weak lensing of SDSS MaxBCG clusters

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Weinberg, David H.; Rozo, Eduardo; Sheldon, Erin S.; Tinker, Jeremy L.; Becker, Matthew R.

    2014-04-01

    We derive constraints on the matter density Ωm and the amplitude of matter clustering σ8 from measurements of large-scale weak lensing (projected separation R = 5-30 h-1 Mpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalogue. The weak lensing signal is proportional to the product of Ωm and the cluster-mass correlation function ξcm. With the relation between optical richness and cluster mass constrained by the observed cluster number counts, the predicted lensing signal increases with increasing Ωm or σ8, with mild additional dependence on the assumed scatter between richness and mass. The dependence of the signal on scale and richness partly breaks the degeneracies among these parameters. We incorporate external priors on the richness-mass scatter from comparisons to X-ray data and on the shape of the matter power spectrum from galaxy clustering, and we test our adopted model for ξcm against N-body simulations. Using a Bayesian approach with minimal restrictive priors, we find σ8(Ωm/0.325)0.501 = 0.828 ± 0.049, with marginalized constraints of Ω _m=0.325_{-0.067}^{+0.086} and σ _8=0.828_{-0.097}^{+0.111}, consistent with constraints from other MaxBCG studies that use weak lensing measurements on small scales (R ≤ 2 h-1 Mpc). The (Ωm, σ8) constraint is consistent with and orthogonal to the one inferred from Wilkinson Microwave Anisotropy Probe cosmic microwave background data, reflecting agreement with the structure growth predicted by General Relativity for a Λ cold dark matter (ΛCDM) cosmological model. A joint constraint assuming ΛCDM yields Ω _m=0.298_{-0.020}^{+0.019} and σ _8=0.831_{-0.020}^{+0.020}. For these parameters and our best-fitting scatter, we obtain a tightly constrained mean richness-mass relation of MaxBCG clusters, N200 = 25.4(M/3.61 × 1014 h-1 M⊙)0.74, with a normalization uncertainty of 1.5 per cent. Our cosmological parameter errors are dominated by the statistical uncertainties of the large-scale weak

  19. The Large-Scale Structure of Scientific Method

    ERIC Educational Resources Information Center

    Kosso, Peter

    2009-01-01

    The standard textbook description of the nature of science describes the proposal, testing, and acceptance of a theoretical idea almost entirely in isolation from other theories. The resulting model of science is a kind of piecemeal empiricism that misses the important network structure of scientific knowledge. Only the large-scale description of…

  20. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  1. Interloper bias in future large-scale structure surveys

    NASA Astrophysics Data System (ADS)

    Pullen, Anthony R.; Hirata, Christopher M.; Doré, Olivier; Raccanelli, Alvise

    2016-02-01

    Next-generation spectroscopic surveys will map the large-scale structure of the observable universe, using emission line galaxies as tracers. While each survey will map the sky with a specific emission line, interloping emission lines can masquerade as the survey's intended emission line at different redshifts. Interloping lines from galaxies that are not removed can contaminate the power spectrum measurement, mixing correlations from various redshifts and diluting the true signal. We assess the potential for power spectrum contamination, finding that an interloper fraction worse than 0.2% could bias power spectrum measurements for future surveys by more than 10% of statistical errors, while also biasing power spectrum inferences. We also construct a formalism for predicting cosmological parameter measurement bias, demonstrating that a 0.15%-0.3% interloper fraction could bias the growth rate by more than 10% of the error, which can affect constraints on gravity from upcoming surveys. We use the COSMOS Mock Catalog (CMC), with the emission lines rescaled to better reproduce recent data, to predict potential interloper fractions for the Prime Focus Spectrograph (PFS) and the Wide-Field InfraRed Survey Telescope (WFIRST). We find that secondary line identification, or confirming galaxy redshifts by finding correlated emission lines, can remove interlopers for PFS. For WFIRST, we use the CMC to predict that the 0.2% target can be reached for the WFIRST Hα survey, but sensitive optical and near-infrared photometry will be required. For the WFIRST [O III] survey, the predicted interloper fractions reach several percent and their effects will have to be estimated and removed statistically (e.g., with deep training samples). These results are optimistic as the CMC does not capture the full set of correlations of galaxy properties in the real Universe, and they do not include blending effects. Mitigating interloper contamination will be crucial to the next generation of

  2. From Systematic Errors to Cosmology Using Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Hunterer, Dragan

    We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".

  3. Turbulent large-scale structure effects on wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Y.-A.; Masson, C.; Aubrun, S.

    2015-06-01

    This work studies effects of large-scale turbulent structures on wake meandering using Large Eddy Simulations (LES) over an actuator disk. Other potential source of wake meandering such as the instablility mechanisms associated with tip vortices are not treated in this study. A crucial element of the efficient, pragmatic and successful simulations of large-scale turbulent structures in Atmospheric Boundary Layer (ABL) is the generation of the stochastic turbulent atmospheric flow. This is an essential capability since one source of wake meandering is these large - larger than the turbine diameter - turbulent structures. The unsteady wind turbine wake in ABL is simulated using a combination of LES and actuator disk approaches. In order to dedicate the large majority of the available computing power in the wake, the ABL ground region of the flow is not part of the computational domain. Instead, mixed Dirichlet/Neumann boundary conditions are applied at all the computational surfaces except at the outlet. Prescribed values for Dirichlet contribution of these boundary conditions are provided by a stochastic turbulent wind generator. This allows to simulate large-scale turbulent structures - larger than the computational domain - leading to an efficient simulation technique of wake meandering. Since the stochastic wind generator includes shear, the turbulence production is included in the analysis without the necessity of resolving the flow near the ground. The classical Smagorinsky sub-grid model is used. The resulting numerical methodology has been implemented in OpenFOAM. Comparisons with experimental measurements in porous-disk wakes have been undertaken, and the agreements are good. While temporal resolution in experimental measurements is high, the spatial resolution is often too low. LES numerical results provide a more complete spatial description of the flow. They tend to demonstrate that inflow low frequency content - or large- scale turbulent structures - is

  4. Lagrangian space consistency relation for large scale structure

    NASA Astrophysics Data System (ADS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.

  5. Cosmic string and formation of large scale structure.

    NASA Astrophysics Data System (ADS)

    Fang, L.-Z.; Xiang, S.-P.

    Cosmic string formed due to phase transition in the early universe may be the cause of galaxy formation and clustering. The advantage of string model is that it can give a consistent explanation of all observed results related to large scale structure, such as correlation functions of galaxies, clusters and superclusters, the existence of voids and/or bubbles, anisotropy of cosmic background radiation. A systematic review on string model has been done.

  6. Large-scale structure in f(T) gravity

    SciTech Connect

    Li Baojiu; Sotiriou, Thomas P.; Barrow, John D.

    2011-05-15

    In this work we study the cosmology of the general f(T) gravity theory. We express the modified Einstein equations using covariant quantities, and derive the gauge-invariant perturbation equations in covariant form. We consider a specific choice of f(T), designed to explain the observed late-time accelerating cosmic expansion without including an exotic dark energy component. Our numerical solution shows that the extra degree of freedom of such f(T) gravity models generally decays as one goes to smaller scales, and consequently its effects on scales such as galaxies and galaxies clusters are small. But on large scales, this degree of freedom can produce large deviations from the standard {Lambda}CDM scenario, leading to severe constraints on the f(T) gravity models as an explanation to the cosmic acceleration.

  7. Large scale structure in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Bond, J. Richard

    1986-01-01

    The theory of Gaussian random density field peaks is applied to a numerical study of the large-scale structure developing from adiabatic fluctuations in models of biased galaxy formation in universes with Omega = 1, h = 0.5 dominated by cold dark matter (CDM). The angular anisotropy of the cross-correlation function demonstrates that the far-field regions of cluster-scale peaks are asymmetric, as recent observations indicate. These regions will generate pancakes or filaments upon collapse. One-dimensional singularities in the large-scale bulk flow should arise in these CDM models, appearing as pancakes in position space. They are too rare to explain the CfA bubble walls, but pancakes that are just turning around now are sufficiently abundant and would appear to be thin walls normal to the line of sight in redshift space. Large scale streaming velocities are significantly smaller than recent observations indicate. To explain the reported 700 km/s coherent motions, mass must be significantly more clustered than galaxies with a biasing factor of less than 0.4 and a nonlinear redshift at cluster scales greater than one for both massive neutrino and cold models.

  8. Alignment of quasar polarizations with large-scale structures

    NASA Astrophysics Data System (ADS)

    Hutsemékers, D.; Braibant, L.; Pelgrims, V.; Sluse, D.

    2014-12-01

    We have measured the optical linear polarization of quasars belonging to Gpc scale quasar groups at redshift z ~ 1.3. Out of 93 quasars observed, 19 are significantly polarized. We found that quasar polarization vectors are either parallel or perpendicular to the directions of the large-scale structures to which they belong. Statistical tests indicate that the probability that this effect can be attributed to randomly oriented polarization vectors is on the order of 1%. We also found that quasars with polarization perpendicular to the host structure preferentially have large emission line widths while objects with polarization parallel to the host structure preferentially have small emission line widths. Considering that quasar polarization is usually either parallel or perpendicular to the accretion disk axis depending on the inclination with respect to the line of sight, and that broader emission lines originate from quasars seen at higher inclinations, we conclude that quasar spin axes are likely parallel to their host large-scale structures. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 092.A-0221.Table 1 is available in electronic form at http://www.aanda.org

  9. On the analysis of large-scale genomic structures.

    PubMed

    Oiwa, Nestor Norio; Goldman, Carla

    2005-01-01

    We apply methods from statistical physics (histograms, correlation functions, fractal dimensions, and singularity spectra) to characterize large-scale structure of the distribution of nucleotides along genomic sequences. We discuss the role of the extension of noncoding segments ("junk DNA") for the genomic organization, and the connection between the coding segment distribution and the high-eukaryotic chromatin condensation. The following sequences taken from GenBank were analyzed: complete genome of Xanthomonas campestri, complete genome of yeast, chromosome V of Caenorhabditis elegans, and human chromosome XVII around gene BRCA1. The results are compared with the random and periodic sequences and those generated by simple and generalized fractal Cantor sets. PMID:15858230

  10. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  11. Solving large scale structure in ten easy steps with COLA

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J.

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 109Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 1011Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  12. Solving large scale structure in ten easy steps with COLA

    SciTech Connect

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J. E-mail: matiasz@ias.edu

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  13. Complex modular structure of large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  14. Systematic renormalization of the effective theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Mirbabayi, Mehrdad; Pajer, Enrico

    2016-05-01

    A perturbative description of Large Scale Structure is a cornerstone of our understanding of the observed distribution of matter in the universe. Renormalization is an essential and defining step to make this description physical and predictive. Here we introduce a systematic renormalization procedure, which neatly associates counterterms to the UV-sensitive diagrams order by order, as it is commonly done in quantum field theory. As a concrete example, we renormalize the one-loop power spectrum and bispectrum of both density and velocity. In addition, we present a series of results that are valid to all orders in perturbation theory. First, we show that while systematic renormalization requires temporally non-local counterterms, in practice one can use an equivalent basis made of local operators. We give an explicit prescription to generate all counterterms allowed by the symmetries. Second, we present a formal proof of the well-known general argument that the contribution of short distance perturbations to large scale density contrast δ and momentum density π(k) scale as k2 and k, respectively. Third, we demonstrate that the common practice of introducing counterterms only in the Euler equation when one is interested in correlators of δ is indeed valid to all orders.

  15. Simulating the large-scale structure of HI intensity maps

    NASA Astrophysics Data System (ADS)

    Seehars, Sebastian; Paranjape, Aseem; Witzemann, Amadeus; Refregier, Alexandre; Amara, Adam; Akeret, Joel

    2016-03-01

    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc / h box with 20483 particles (particle mass 1.6 × 1011 Msolar / h). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 Msolar / h < Mhalo < 1013 Msolar / h), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 lesssim z lesssim 0.9 in redshift bins of width Δ z ≈ 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.

  16. The effective field theory of cosmological large scale structures

    SciTech Connect

    Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  17. Mass Efficiencies for Common Large-Scale Precision Space Structures

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2005-01-01

    This paper presents a mass-based trade study for large-scale deployable triangular trusses, where the longerons can be monocoque tubes, isogrid tubes, or coilable longeron trusses. Such structures are typically used to support heavy reflectors, solar panels, or other instruments, and are subject to thermal gradients that can vary a great deal based on orbital altitude, location in orbit, and self-shadowing. While multi layer insulation (MLI) blankets are commonly used to minimize the magnitude of these thermal disturbances, they subject the truss to a nonstructural mass penalty. This paper investigates the impact of these add-on thermal protection layers on selecting the lightest precision structure for a given loading scenario.

  18. Nonzero Density-Velocity Consistency Relations for Large Scale Structures.

    PubMed

    Rizzo, Luca Alberto; Mota, David F; Valageas, Patrick

    2016-08-19

    We present exact kinematic consistency relations for cosmological structures that do not vanish at equal times and can thus be measured in surveys. These rely on cross correlations between the density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift in the amplitude of the velocity field that could be measured. These consistency relations only rely on the weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the large-scale galaxy bias. PMID:27588842

  19. Nonzero Density-Velocity Consistency Relations for Large Scale Structures

    NASA Astrophysics Data System (ADS)

    Rizzo, Luca Alberto; Mota, David F.; Valageas, Patrick

    2016-08-01

    We present exact kinematic consistency relations for cosmological structures that do not vanish at equal times and can thus be measured in surveys. These rely on cross correlations between the density and velocity, or momentum, fields. Indeed, the uniform transport of small-scale structures by long-wavelength modes, which cannot be detected at equal times by looking at density correlations only, gives rise to a shift in the amplitude of the velocity field that could be measured. These consistency relations only rely on the weak equivalence principle and Gaussian initial conditions. They remain valid in the nonlinear regime and for biased galaxy fields. They can be used to constrain nonstandard cosmological scenarios or the large-scale galaxy bias.

  20. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  1. Large-scale testing of structural clay tile infilled frames

    SciTech Connect

    Flanagan, R.D.; Bennett, R.M.

    1993-03-18

    A summary of large-scale cyclic static tests of structural clay tile infilled frames is given. In-plane racking tests examined the effects of varying frame stiffness, varying infill size, infill offset from frame centerline, and single and double wythe infill construction. Out-of-plane tests examined infilled frame response to inertial loadings and inter-story drift loadings. Sequential in-plane and out-of-plane loadings were performed to determine the effects of orthogonal damage and degradation on both strength and stiffness. A combined out-of-plane inertial and in-plane racking test was conducted to investigate the interaction of multi-directional loading. To determine constitutive properties of the infills, prism compression, mortar compression and various unit tile tests were performed.

  2. Phase Correlations and Topological Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Coles, P.

    The process of gravitational instability initiated by small primordial density perturbations is a vital ingredient of cosmological models that attempt to explain how galaxies and large-scale structure formed in the Universe. In the standard picture (the "concordance" model), a period of accelerated expansion ("inflation") generated density fluctuations with simple statistical properties through quantum processes (Starobinsky [82], [83], [84]; Guth [39]; Guth & Pi [40]; Albrecht & Steinhardt [2]; Linde [55]). In this scenario the primordial density field is assumed to form a statistically homogeneous and isotropic Gaussian random field (GRF). Over years of observational scrutiny this paradigm has strengthened its hold in the minds of cosmologists and has survived many tests, culminating in those furnished by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. [7]; Hinshaw et al. [45].

  3. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  4. The large-scale radio structure of R Aquarii

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Michalitsianos, A. G.; Oliversen, R. J.; Yusef-Zadeh, F.; Kafatos, M.

    1987-01-01

    Radio continuum observations of the R Aqr symbiotic star system, using the compact D configuration of the VLA at 6-cm wavelength, reveal a large-scale about 2-arcmin structure engulfing the binary, which has long been known to have a similar optical nebula. This optical/radio nebula possesses about 4 x 10 to the 42nd ergs of kinetic energy which is typical of a recurrent nova outburst. Moreover, a cluster of a dozen additional 6-cm radio sources were observed in proximity to R Aqr, most of these discrete sources lie about 3 arcmin south and/or west of R Aqr and, coupled with previous 20-cm data, spectral indices limits suggest a thermal nature for some of these sources. If the thermal members of the cluster are associated with R Aqr, it may indicate a prehistoric eruption of the system's suspected recurrent nova. The nonthermal cluster members may be extragalactic background radio sources.

  5. Biased galaxy formation and large-scale structure

    NASA Astrophysics Data System (ADS)

    Berlind, Andreas Alan

    The biased relation between the galaxy and mass distributions lies at the intersection of large scale structure in the universe and the process of galaxy formation. I study the nature of galaxy bias and its connections to galaxy clustering and galaxy formation physics. Galaxy bias has traditionally been viewed as an obstacle to constraining cosmological parameters by studying galaxy clustering. I examine the effect of bias on measurements of the cosmological density parameter Wm by techniques that exploit the gravity-induced motions of galaxies. Using a variety of environmental bias models applied to N-body simulations, I find that, in most cases, the quantity estimated by these techniques is the value of W0.6m/bs , where bs is the ratio of rms galaxy fluctuations to rms mass fluctuations on large scales. Moreover, I find that different methods should, in principle, agree with each other and it is thus unlikely that non-linear or scale-dependent bias is responsible for the discrepancies that exist among current measurements. One can also view the influence of bias on galaxy clustering as a strength rather than a weakness, since it provides us with a potentially powerful way to constrain galaxy formation theories. With this goal in mind, I develop the "Halo Occupation Distribution" (HOD), a physically motivated and complete formulation of bias that is based on the distribution of galaxies within virialized dark matter halos. I explore the sensitivity of galaxy clustering statistics to features of the HOD and focus on how the HOD may be empirically constrained from galaxy clustering data. I make the connection to the physics of galaxy formation by studying the HOD predicted by the two main theoretical methods of modeling galaxy formation. I find that, despite many differences between them, the two methods predict the same HOD, suggesting that galaxy bias is determined by robust features of the hierarchical galaxy formation process rather than details of gas cooling

  6. Bias in the effective field theory of large scale structures

    SciTech Connect

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.

  7. Bias in the effective field theory of large scale structures

    DOE PAGESBeta

    Senatore, Leonardo

    2015-11-05

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local inmore » space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. Furthermore, we describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.« less

  8. Bias in the effective field theory of large scale structures

    NASA Astrophysics Data System (ADS)

    Senatore, Leonardo

    2015-11-01

    We study how to describe collapsed objects, such as galaxies, in the context of the Effective Field Theory of Large Scale Structures. The overdensity of galaxies at a given location and time is determined by the initial tidal tensor, velocity gradients and spatial derivatives of the regions of dark matter that, during the evolution of the universe, ended up at that given location. Similarly to what was recently done for dark matter, we show how this Lagrangian space description can be recovered by upgrading simpler Eulerian calculations. We describe the Eulerian theory. We show that it is perturbatively local in space, but non-local in time, and we explain the observational consequences of this fact. We give an argument for why to a certain degree of accuracy the theory can be considered as quasi time-local and explain what the operator structure is in this case. We describe renormalization of the bias coefficients so that, after this and after upgrading the Eulerian calculation to a Lagrangian one, the perturbative series for galaxies correlation functions results in a manifestly convergent expansion in powers of k/kNL and k/kM, where k is the wavenumber of interest, kNL is the wavenumber associated to the non-linear scale, and kM is the comoving wavenumber enclosing the mass of a galaxy.

  9. CONSTRAINTS ON IONIZING PHOTON PRODUCTION FROM THE LARGE-SCALE Lyα FOREST

    SciTech Connect

    Pontzen, Andrew; Peiris, Hiranya; Bird, Simeon; Verde, Licia

    2014-09-10

    Recent work has shown that the z ≅ 2.5 Lyα forest on large scales encodes information about the galaxy and quasar populations that keep the intergalactic medium photoionized. We present the first forecasts for constraining the populations with data from current and next-generation surveys. At a minimum, the forest should tell us whether galaxies or, conversely, quasars dominate the photon production. The number density and clustering strength of the ionizing sources might be estimated to sub-10% precision with a DESI-like survey if degeneracies (e.g., with the photon mean-free-path, small-scale clustering power normalization, and potentially other astrophysical effects) can be broken by prior information. We demonstrate that when inhomogeneous ionization is correctly handled, constraints on dark energy do not degrade.

  10. Constraints on Ionizing Photon Production from the Large-scale Lyα Forest

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Bird, Simeon; Peiris, Hiranya; Verde, Licia

    2014-09-01

    Recent work has shown that the z ~= 2.5 Lyα forest on large scales encodes information about the galaxy and quasar populations that keep the intergalactic medium photoionized. We present the first forecasts for constraining the populations with data from current and next-generation surveys. At a minimum, the forest should tell us whether galaxies or, conversely, quasars dominate the photon production. The number density and clustering strength of the ionizing sources might be estimated to sub-10% precision with a DESI-like survey if degeneracies (e.g., with the photon mean-free-path, small-scale clustering power normalization, and potentially other astrophysical effects) can be broken by prior information. We demonstrate that when inhomogeneous ionization is correctly handled, constraints on dark energy do not degrade.

  11. Nonlinear density fluctuation field theory for large scale structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Miao, Hai-Xing

    2009-05-01

    We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous universe with small density fluctuations. Keeping the density fluctuations up to second order, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solution is obtained in terms of the hypergeometric functions, which is checked numerically. With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(κ) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical perspective. The theory is worth extending to study the evolution effects in an expanding universe.

  12. Characterizing unknown systematics in large scale structure surveys

    SciTech Connect

    Agarwal, Nishant; Ho, Shirley; Myers, Adam D.; Seo, Hee-Jong; Ross, Ashley J.; Bahcall, Neta; Brinkmann, Jonathan; Eisenstein, Daniel J.; Muna, Demitri; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Petitjean, Patrick; Schneider, Donald P.; Streblyanska, Alina; Weaver, Benjamin A.

    2014-04-01

    Photometric large scale structure (LSS) surveys probe the largest volumes in the Universe, but are inevitably limited by systematic uncertainties. Imperfect photometric calibration leads to biases in our measurements of the density fields of LSS tracers such as galaxies and quasars, and as a result in cosmological parameter estimation. Earlier studies have proposed using cross-correlations between different redshift slices or cross-correlations between different surveys to reduce the effects of such systematics. In this paper we develop a method to characterize unknown systematics. We demonstrate that while we do not have sufficient information to correct for unknown systematics in the data, we can obtain an estimate of their magnitude. We define a parameter to estimate contamination from unknown systematics using cross-correlations between different redshift slices and propose discarding bins in the angular power spectrum that lie outside a certain contamination tolerance level. We show that this method improves estimates of the bias using simulated data and further apply it to photometric luminous red galaxies in the Sloan Digital Sky Survey as a case study.

  13. Investigation of Coronal Large Scale Structures Utilizing Spartan 201 Data

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Madhulika

    1998-01-01

    Two telescopes aboard Spartan 201, a small satellite has been launched from the Space Shuttles, on April 8th, 1993, September 8th, 1994, September 7th, 1995 and November 20th, 1997. The main objective of the mission was to answer some of the most fundamental unanswered questions of solar physics-What accelerates the solar wind and what heats the corona? The two telescopes are 1) Ultraviolet Coronal Spectrometer (UVCS) provided by the Smithsonian Astrophysical Observatory which uses ultraviolet emissions from neutral hydrogen and ions in the corona to determine velocities of the coronal plasma within the solar wind source region, and the temperature and density distributions of protons and 2) White Light Coronagraph (WLC) provided by NASA's Goddard Space Flight Center which measures visible light to determine the density distribution of coronal electrons within the same region. The PI has had the primary responsibility in the development and application of computer codes necessary for scientific data analysis activities, end instrument calibration for the white-light coronagraph for the entire Spartan mission. The PI was responsible for the science output from the WLC instrument. PI has also been involved in the investigation of coronal density distributions in large-scale structures by use of numerical models which are (mathematically) sufficient to reproduce the details of the observed brightness and polarized brightness distributions found in SPARTAN 201 data.

  14. The three-point function as a probe of models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1993-01-01

    The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  15. The three-point function as a probe of models for large-scale structure

    SciTech Connect

    Frieman, J.A.; Gaztanaga, E.

    1993-06-19

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard {Omega} = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R{sub p} {approximately}20 h{sup {minus}1} Mpc, e.g., low-matter-density (non-zero cosmological constant) models, {open_quote}tilted{close_quote} primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q{sub J} at large scales, r {approx_gt} R{sub p}. Current observational constraints on the three-point amplitudes Q{sub 3} and S{sub 3} can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  16. The three-point function as a probe of models for large-scale structure

    SciTech Connect

    Frieman, J.A. ); Gaztanaga, E. )

    1993-06-19

    The authors analyze the consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime. Several variations of the standard [Omega] = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R[sub p] [approximately]20 h[sup [minus]1] Mpc, e.g., low-matter-density (non-zero cosmological constant) models, [open quote]tilted[close quote] primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, et al. The authors show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q[sub J] at large scales, r [approx gt] R[sub p]. Current observational constraints on the three-point amplitudes Q[sub 3] and S[sub 3] can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  17. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; Calabrese, E.; Carlstrom, J.E.; Carvalho, C.S.; Chang, C.L.; Chiang, H.C.; Church, S.; Cooray, A.; Crawford, T.M.; Crill, B.P.; Dawson, K.S.; Das, S.; Devline, M.J.; Dobbs, M.; Dodelson, S; Wollack, E. J.

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  18. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  19. Soft-Pion theorems for large scale structure

    SciTech Connect

    Horn, Bart; Hui, Lam; Xiao, Xiao E-mail: lhui@astro.columbia.edu

    2014-09-01

    Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias and Riotto and Peloso and Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS.

  20. Large Scale Electronic Structure Calculations using Quantum Chemistry Methods

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.

    1998-03-01

    This talk will address our recent efforts in developing fast, linear scaling electronic structure methods for large scale applications. Of special importance is our fast multipole method( M. C. Strain, G. E. Scuseria, and M. J. Frisch, Science 271), 51 (1996). (FMM) for achieving linear scaling for the quantum Coulomb problem (GvFMM), the traditional bottleneck in quantum chemistry calculations based on Gaussian orbitals. Fast quadratures(R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, Chem. Phys. Lett. 257), 213 (1996). combined with methods that avoid the Hamiltonian diagonalization( J. M. Millam and G. E. Scuseria, J. Chem. Phys. 106), 5569 (1997) have resulted in density functional theory (DFT) programs that can be applied to systems containing many hundreds of atoms and ---depending on computational resources or level of theory-- to many thousands of atoms.( A. D. Daniels, J. M. Millam and G. E. Scuseria, J. Chem. Phys. 107), 425 (1997). Three solutions for the diagonalization bottleneck will be analyzed and compared: a conjugate gradient density matrix search (CGDMS), a Hamiltonian polynomial expansion of the density matrix, and a pseudo-diagonalization method. Besides DFT, our near-field exchange method( J. C. Burant, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 105), 8969 (1996). for linear scaling Hartree-Fock calculations will be discussed. Based on these improved capabilities, we have also developed programs to obtain vibrational frequencies (via analytic energy second derivatives) and excitation energies (through time-dependent DFT) of large molecules like porphyn or C_70. Our GvFMM has been extended to periodic systems( K. N. Kudin and G. E. Scuseria, Chem. Phys. Lett., in press.) and progress towards a Gaussian-based DFT and HF program for polymers and solids will be reported. Last, we will discuss our progress on a Laplace-transformed \\cal O(N^2) second-order pertubation theory (MP2) method.

  1. CME Interaction with Large-Scale Coronal Structures

    NASA Technical Reports Server (NTRS)

    Gopalswarny, Nat

    2012-01-01

    This talk presents some key observations that highlight the importance of CME interaction with other large scale structures such as CMEs and coronal holes . Such interactions depend on the phase of the solar cycle: during maximum, CMEs are ejected more frequently, so CME-CME interaction becomes dominant. During the rise phase, the polar coronal holes are strong, so the interaction between polar coronal holes and CMEs is important, which also leads to a possible increase in the number of interplanetary CMEs observed as magnetic clouds. During the declining phase, there are more equatorial coronal holes, so CMEs originating near these coronal holes are easily deflected. CMEs can be deflected toward and away from the Sun-Earth line resulting in interesting geospace consequences. For example, the largest geomagnetic storm of solar cycle 23 was due to a CME that was deflected towards the Sun-earth line from E22. CME deflection away from the Sun-Earth line diminishes the chance of a CME producing a geomagnetic storm. CME interaction in the coronagraphic field of view was first identified using enhanced radio emission, which is an indication of acceleration of low energy (approx.10 keV) electrons in the interaction site. CME interaction, therefore, may also have implications for proton acceleration. For example, solar energetic particle events typically occur with a higher intensity, whenever multiple CMEs occur in quick succession from the same source region. CME deflection may also have implications to the arrival of energetic particles to earth because magnetic connectivity may be changed by the interaction. I illustrate the above points using examples from SOHO, STEREO, Wind, and ACE data .

  2. Soft-Pion theorems for large scale structure

    NASA Astrophysics Data System (ADS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2014-09-01

    Consistency relations — which relate an N-point function to a squeezed (N+1)-point function — are useful in large scale structure (LSS) because of their non-perturbative nature: they hold even if the N-point function is deep in the nonlinear regime, and even if they involve astrophysically messy galaxy observables. The non-perturbative nature of the consistency relations is guaranteed by the fact that they are symmetry statements, in which the velocity plays the role of the soft pion. In this paper, we address two issues: (1) how to derive the relations systematically using the residual coordinate freedom in the Newtonian gauge, and relate them to known results in ζ-gauge (often used in studies of inflation); (2) under what conditions the consistency relations are violated. In the non-relativistic limit, our derivation reproduces the Newtonian consistency relation discovered by Kehagias & Riotto and Peloso & Pietroni. More generally, there is an infinite set of consistency relations, as is known in ζ-gauge. There is a one-to-one correspondence between symmetries in the two gauges; in particular, the Newtonian consistency relation follows from the dilation and special conformal symmetries in ζ-gauge. We probe the robustness of the consistency relations by studying models of galaxy dynamics and biasing. We give a systematic list of conditions under which the consistency relations are violated; violations occur if the galaxy bias is non-local in an infrared divergent way. We emphasize the relevance of the adiabatic mode condition, as distinct from symmetry considerations. As a by-product of our investigation, we discuss a simple fluid Lagrangian for LSS.

  3. Inflationary tensor fossils in large-scale structure

    SciTech Connect

    Dimastrogiovanni, Emanuela; Fasiello, Matteo; Jeong, Donghui; Kamionkowski, Marc E-mail: mrf65@case.edu E-mail: kamion@jhu.edu

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  4. Eddington-Born-Infeld gravity and the large scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Bañados, M.; Ferreira, P. G.; Skordis, C.

    2009-03-01

    It has been argued that a Universe governed by Eddington-Born-Infeld gravity can be compatible with current cosmological constraints. The extra fields introduced in this theory can behave as both dark matter and dark energy, unifying the dark sector in one coherent framework. We show the various roles the extra fields can play in the expansion of the Universe and study the evolution of linear perturbations in the various regimes. We find that, as a unified theory of the dark sector, Eddington-Born-Infeld gravity will lead to excessive fluctuations in the cosmic microwave background on large scales. In the presence of a cosmological constant, however, the extra fields can behave as a form of nonparticulate dark matter and can lead to a cosmology which is entirely compatible with current observations of large scale structure. We discuss the interpretation of this form of dark matter and how it can differ from standard, particulate dark matter.

  5. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  6. Tracing large-scale structures in circumstellar disks with ALMA

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Wolf, S.; Uribe, A. L.; Klahr, H. H.

    2013-01-01

    Context. Planets are supposed to form in circumstellar disks. The additional gravitational potential of a planet perturbs the disk and leads to characteristic structures, i.e. spiral waves and gaps, in the disk's density profile. Aims: We perform a large-scale parameter study of the observability of these planet-induced structures in circumstellar disks in the (sub)mm wavelength range for the Atacama Large (Sub)Millimeter Array (ALMA). Methods: On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disk-planet models, we calculated the disk temperature structure and (sub)mm images of these systems. These were used to derive simulated ALMA images. Because appropriate objects are frequent in the Taurus-Auriga region, we focused on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disk-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses), nine disk sizes with outer radii ranging from 9 AU to 225 AU, 15 total disk masses in the range between 2.67 × 10-7 M⊙ and 4.10 × 10-2 M⊙, six different central stars, and two different grain size distributions, resulting in 10 000 disk models. Results: On almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disk structures induced by planet-disk interaction or by the influence of magnetic fields on the wavelength range between 0.4 and 2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplanetary disks (0.1-0.001 M⊙) the disk mass has a minor impact on the observability. It is possible to resolve disks down to 2.67 × 10-6 M⊙ and trace gaps induced by a planet with Mp/M⋆ = 0.001 in disks with 2.67 × 10-4 M⊙ with a signal-to-noise ratio greater than three. The central star has a major impact on the observability of gaps, as well as the considered maximum grainsize of the dust

  7. The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation

    NASA Astrophysics Data System (ADS)

    Noh, Yookyung

    The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure. This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.

  8. Inclusive constraints on unified dark matter models from future large-scale surveys

    SciTech Connect

    Camera, Stefano; Carbone, Carmelita; Moscardini, Lauro E-mail: carmelita.carbone@unibo.it

    2012-03-01

    In the very last years, cosmological models where the properties of the dark components of the Universe — dark matter and dark energy — are accounted for by a single ''dark fluid'' have drawn increasing attention and interest. Amongst many proposals, Unified Dark Matter (UDM) cosmologies are promising candidates as effective theories. In these models, a scalar field with a non-canonical kinetic term in its Lagrangian mimics both the accelerated expansion of the Universe at late times and the clustering properties of the large-scale structure of the cosmos. However, UDM models also present peculiar behaviours, the most interesting one being the fact that the perturbations in the dark-matter component of the scalar field do have a non-negligible speed of sound. This gives rise to an effective Jeans scale for the Newtonian potential, below which the dark fluid does not cluster any more. This implies a growth of structures fairly different from that of the concordance ΛCDM model. In this paper, we demonstrate that forthcoming large-scale surveys will be able to discriminate between viable UDM models and ΛCDM to a good degree of accuracy. To this purpose, the planned Euclid satellite will be a powerful tool, since it will provide very accurate data on galaxy clustering and the weak lensing effect of cosmic shear. Finally, we also exploit the constraining power of the ongoing CMB Planck experiment. Although our approach is the most conservative, with the inclusion of only well-understood, linear dynamics, in the end we also show what could be done if some amount of non-linear information were included.

  9. Diffuse pionic gamma-ray emission from large-scale structures in the Fermi era

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2014-02-20

    For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  10. Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure

    SciTech Connect

    Peloso, Marco; Pietroni, Massimo E-mail: pietroni@pd.infn.it

    2013-05-01

    We discuss the constraints imposed on the nonlinear evolution of the Large Scale Structure (LSS) of the universe by galilean invariance, the symmetry relevant on subhorizon scales. Using Ward identities associated to the invariance, we derive fully nonlinear consistency relations between statistical correlators of the density and velocity perturbations, such as the power spectrum and the bispectrum. These relations are valid up to O(f{sub NL}{sup 2}) corrections. We then show that most of the semi-analytic methods proposed so far to resum the perturbative expansion of the LSS dynamics fail to fulfill the constraints imposed by galilean invariance, and are therefore susceptible to non-physical infrared effects. Finally, we identify and discuss a nonperturbative semi-analytical scheme which is manifestly galilean invariant at any order of its expansion.

  11. Constraining scale-dependent non-Gaussianity with future large-scale structure and the CMB

    SciTech Connect

    Becker, Adam; Huterer, Dragan; Kadota, Kenji E-mail: huterer@umich.edu

    2012-12-01

    We forecast combined future constraints from the cosmic microwave background and large-scale structure on the models of primordial non-Gaussianity. We study the generalized local model of non-Gaussianity, where the parameter f{sub NL} is promoted to a function of scale, and present the principal component analysis applicable to an arbitrary form of f{sub NL}(k). We emphasize the complementarity between the CMB and LSS by using Planck, DES and BigBOSS surveys as examples, forecast constraints on the power-law f{sub NL}(k) model, and introduce the figure of merit for measurements of scale-dependent non-Gaussianity.

  12. Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.

  13. Constraints on f(R) gravity from probing the large-scale structure

    SciTech Connect

    Lombriser, Lucas; Slosar, Anže; Seljak, Uroš; Hu, Wayne

    2012-06-01

    We study cosmological constraints on metric f(R) gravity models that are designed to reproduce the ΛCDM expansion history with modifications to gravity described by a supplementary cosmological freedom, the Compton wavelength parameter B0. We conduct a Markov chain Monte Carlo analysis on the parameter space, utilizing the geometrical constraints from supernovae distances, the baryon acoustic oscillation distances, and the Hubble constant, along with all of the cosmic microwave background data, including the largest scales, its correlation with galaxies, and a probe of the relation between weak gravitational lensing and galaxy flows. The strongest constraints, however, are obtained through the inclusion of data from cluster abundance. Using all of the data, we infer a bound of B0<1.1×10-3 at the 95% C.L.

  14. Probing the large scale structure with the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris

    2016-03-01

    I will present the latest cosmological results from the Dark Energy Survey (DES), a 5000 square degree optical galaxy survey in the Southern Hemisphere started in 2012. I will focus on the constraints on Baryon Acoustic Oscillations and other cosmological parameters obtained with galaxy clustering measurements from the first years of DES data. I will highlight the various tests and methods that make these results not only precise but also robust against observational systematics and modeling uncertainties. Finally, I will describe the future phases of the survey, the expected increase in constraining power, and the challenges that need to be addressed to fully exploit the data from surveys such as DES and LSST.

  15. Cosmological implications of the CMB large-scale structure

    SciTech Connect

    Melia, Fulvio

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ΛCDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ∼0.1% and the low-l multipole alignment would be unlikely at the ∼4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ∼0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the R{sub h}=ct universe would then be ∼7–10%, depending on the number of large-scale Sachs–Wolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ⩾7%, much more likely than in ΛCDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a

  16. Cosmological Implications of the CMB Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) and Planck may have uncovered several anomalies in the full cosmic microwave background (CMB) sky that could indicate possible new physics driving the growth of density fluctuations in the early universe. These include an unusually low power at the largest scales and an apparent alignment of the quadrupole and octopole moments. In a ΛCDM model where the CMB is described by a Gaussian Random Field, the quadrupole and octopole moments should be statistically independent. The emergence of these low probability features may simply be due to posterior selections from many such possible effects, whose occurrence would therefore not be as unlikely as one might naively infer. If this is not the case, however, and if these features are not due to effects such as foreground contamination, their combined statistical significance would be equal to the product of their individual significances. In the absence of such extraneous factors, and ignoring the biasing due to posterior selection, the missing large-angle correlations would have a probability as low as ˜0.1% and the low-l multipole alignment would be unlikely at the ˜4.9% level; under the least favorable conditions, their simultaneous observation in the context of the standard model could then be likely at only the ˜0.005% level. In this paper, we explore the possibility that these features are indeed anomalous, and show that the corresponding probability of CMB multipole alignment in the {{R}h}=ct universe would then be ˜7-10%, depending on the number of large-scale Sachs-Wolfe induced fluctuations. Since the low power at the largest spatial scales is reproduced in this cosmology without the need to invoke cosmic variance, the overall likelihood of observing both of these features in the CMB is ≥slant 7%, much more likely than in ΛCDM, if the anomalies are real. The key physical ingredient responsible for this difference is the existence in the former of a maximum

  17. A Large-Scale Structural Classification of Antimicrobial Peptides

    PubMed Central

    Lee, Chen-Che; Yang, Je-Ruei; Lai, Jim Z. C.

    2015-01-01

    Antimicrobial peptides (AMPs) are potent drug candidates against microbial organisms such as bacteria, fungi, parasites, and viruses. AMPs have abundant sequences and structures, two fundamental resources for bioinformatics researches, but analyses on how they associate with each other are either nonexistent or limited to partial classification and data. We thus present A Database of Anti-Microbial peptides (ADAM), which contains 7,007 unique sequences and 759 structures, to systematically establish comprehensive associations between AMP sequences and structures through structural folds and to provide an easy access to view their relationships. 30 distinct AMP structural fold clusters with more than one structure are detected and about a thousand AMPs are associated with at least one structural fold cluster. According to ADAM, AMP structural folds are limited—AMPs only cover about 3% of the overall protein fold space. PMID:26000295

  18. Design under Constraints: The Case of Large-Scale Assessment Systems

    ERIC Educational Resources Information Center

    Mislevy, Robert J.

    2010-01-01

    In "Updating the Duplex Design for Test-Based Accountability in the Twenty-First Century," Bejar and Graf (2010) propose extensions to the duplex design for large-scale assessment presented in Bock and Mislevy (1988). Examining the range of people who use assessment results--from students, teachers, administrators, curriculum designers,…

  19. Single-field consistency relations of large scale structure part III: test of the equivalence principle

    SciTech Connect

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Hui, Lam; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: msimonov@sissa.it

    2014-06-01

    The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a very tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.

  20. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  1. Solar cycle variation of large-scale coronal structures

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Duvall, T. L.

    1974-01-01

    A green line intensity variation is associated with the interplanetary and photospheric magnetic sector structure. This effect depends on the solar cycle and occurs with the same amplitude in the latitude range 60 deg N - 60 deg S. Extended longitudinal coronal structures are suggested, which indicate the existence of closed magnetic field lines over the neutral line, separating adjacent regions of opposite polarities on the photospheric surface.

  2. Primordial non-Gaussianity in the bispectra of large-scale structure

    SciTech Connect

    Tasinato, Gianmassimo; Tellarini, Matteo; Ross, Ashley J.; Wands, David E-mail: matteo.tellarini@port.ac.uk E-mail: david.wands@port.ac.uk

    2014-03-01

    The statistics of large-scale structure in the Universe can be used to probe non-Gaussianity of the primordial density field, complementary to existing constraints from the cosmic microwave background. In particular, the scale dependence of halo bias, which affects the halo distribution at large scales, represents a promising tool for analyzing primordial non-Gaussianity of local form. Future observations, for example, may be able to constrain the trispectrum parameter g{sub NL} that is difficult to study and constrain using the CMB alone. We investigate how galaxy and matter bispectra can distinguish between the two non-Gaussian parameters f{sub NL} and g{sub NL}, whose effects give nearly degenerate contributions to the power spectra. We use a generalization of the univariate bias approach, making the hypothesis that the number density of halos forming at a given position is a function of the local matter density contrast and of its local higher-order statistics. Using this approach, we calculate the halo-matter bispectra and analyze their properties. We determine a connection between the sign of the halo bispectrum on large scales and the parameter g{sub NL}. We also construct a combination of halo and matter bispectra that is sensitive to f{sub NL}, with little contamination from g{sub NL}. We study both the case of single and multiple sources to the primordial gravitational potential, discussing how to extend the concept of stochastic halo bias to the case of bispectra. We use a specific halo mass-function to calculate numerically the bispectra in appropriate squeezed limits, confirming our theoretical findings.

  3. Testing Early Universe Theories Using Large Scale Structure: Moving Beyond Phenomenology

    NASA Astrophysics Data System (ADS)

    Shandera, Sarah

    Current observational evidence favors inflation, a very early era of accelerated expansion, as the origin of the Large Scale Structure of the universe. Although compelling, this evidence comes mainly from the amplitude of primordial perturbations as a function of scale. More detailed and definitive information is contained in higher order statistics, collectively labelled `non- Gaussianity', which is of unparalleled importance to theorists who study inflation or its competitors. Analogously to collider physics studies, non-Gaussianity probes the interactions of the fields active in the very early universe and so will allow us to uncover the particle physics identity of the components that give rise to the very early pattern of density fluctuations. Primordial non-Gaussianity generates many non-trivial signals in Large Scale Structure, thanks largely to the non-linear evolution of the primordial perturbations. The distribution of objects in mass and redshift and their spatial clustering together contain information about the complete set of statistics of the primordial fluctuations. Predictions for those observables rely on numerical simulations of the dark matter evolution, which so far have been carried out almost entirely for a simple phenomenological model of primordial non-Gaussianity. However, it is now clear that interesting constraints or detection of non-Gaussianity are possible with next generation surveys: to use this data to its fullest extent we must understand clearly what those constraints will mean for fundamental theories of the origin of the perturbations. We propose to make a direct connection between theoretical ideas for the primordial fluctuations, including non-Gaussianity, and predictions from those theories for details of the Large Scale Structure of the Universe. Our goal is to find a prescription for setting up initial conditions for N-body simulations that match as closely as possible the predictions from a variety of particle physics

  4. Recent developments in large-scale structural optimization

    NASA Technical Reports Server (NTRS)

    Venkayya, Vipperla B.

    1989-01-01

    A brief discussion is given of mathematical optimization and the motivation for the development of more recent numerical search procedures. A review of recent developments and issues in multidisciplinary optimization is also presented. These developments are discussed in the context of the preliminary design of aircraft structures. A capability description of programs FASTOP, TSO, STARS, LAGRANGE, ELFINI and ASTROS is included.

  5. The large-scale structure of software-intensive systems.

    PubMed

    Booch, Grady

    2012-02-01

    The computer metaphor is dominant in most discussions of neuroscience, but the semantics attached to that metaphor are often quite naive. Herein, we examine the ontology of software-intensive systems, the nature of their structure and the application of the computer metaphor to the metaphysical questions of self and causation. PMID:23386964

  6. The large-scale structure of software-intensive systems

    PubMed Central

    Booch, Grady

    2012-01-01

    The computer metaphor is dominant in most discussions of neuroscience, but the semantics attached to that metaphor are often quite naive. Herein, we examine the ontology of software-intensive systems, the nature of their structure and the application of the computer metaphor to the metaphysical questions of self and causation. PMID:23386964

  7. Large scale structures and the cubic galileon model

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F.; Tomaras, Theodore N.

    2016-05-01

    The maximum size of a bound cosmic structure is computed perturbatively as a function of its mass in the framework of the cubic galileon, proposed recently to model the dark energy of our Universe. Comparison of our results with observations constrains the matter-galileon coupling of the model to 0.033lesssim α lesssim 0.17, thus improving previous bounds based solely on solar system physics.

  8. Geometric algorithms for electromagnetic modeling of large scale structures

    NASA Astrophysics Data System (ADS)

    Pingenot, James

    With the rapid increase in the speed and complexity of integrated circuit designs, 3D full wave and time domain simulation of chip, package, and board systems becomes more and more important for the engineering of modern designs. Much effort has been applied to the problem of electromagnetic (EM) simulation of such systems in recent years. Major advances in boundary element EM simulations have led to O(n log n) simulations using iterative methods and advanced Fast. Fourier Transform (FFT), Multi-Level Fast Multi-pole Methods (MLFMM), and low-rank matrix compression techniques. These advances have been augmented with an explosion of multi-core and distributed computing technologies, however, realization of the full scale of these capabilities has been hindered by cumbersome and inefficient geometric processing. Anecdotal evidence from industry suggests that users may spend around 80% of turn-around time manipulating the geometric model and mesh. This dissertation addresses this problem by developing fast and efficient data structures and algorithms for 3D modeling of chips, packages, and boards. The methods proposed here harness the regular, layered 2D nature of the models (often referred to as "2.5D") to optimize these systems for large geometries. First, an architecture is developed for efficient storage and manipulation of 2.5D models. The architecture gives special attention to native representation of structures across various input models and special issues particular to 3D modeling. The 2.5D structure is then used to optimize the mesh systems First, circuit/EM co-simulation techniques are extended to provide electrical connectivity between objects. This concept is used to connect independently meshed layers, allowing simple and efficient 2D mesh algorithms to be used in creating a 3D mesh. Here, adaptive meshing is used to ensure that the mesh accurately models the physical unknowns (current and charge). Utilizing the regularized nature of 2.5D objects and

  9. The large-scale structure of the Universe.

    PubMed

    Springel, Volker; Frenk, Carlos S; White, Simon D M

    2006-04-27

    Research over the past 25 years has led to the view that the rich tapestry of present-day cosmic structure arose during the first instants of creation, where weak ripples were imposed on the otherwise uniform and rapidly expanding primordial soup. Over 14 billion years of evolution, these ripples have been amplified to enormous proportions by gravitational forces, producing ever-growing concentrations of dark matter in which ordinary gases cool, condense and fragment to make galaxies. This process can be faithfully mimicked in large computer simulations, and tested by observations that probe the history of the Universe starting from just 400,000 years after the Big Bang. PMID:16641985

  10. The large-scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Springel, Volker; Frenk, Carlos S.; White, Simon D. M.

    2006-04-01

    Research over the past 25 years has led to the view that the rich tapestry of present-day cosmic structure arose during the first instants of creation, where weak ripples were imposed on the otherwise uniform and rapidly expanding primordial soup. Over 14 billion years of evolution, these ripples have been amplified to enormous proportions by gravitational forces, producing ever-growing concentrations of dark matter in which ordinary gases cool, condense and fragment to make galaxies. This process can be faithfully mimicked in large computer simulations, and tested by observations that probe the history of the Universe starting from just 400,000 years after the Big Bang.

  11. Large-scale computations in analysis of structures

    SciTech Connect

    McCallen, D.B.; Goudreau, G.L.

    1993-09-01

    Computer hardware and numerical analysis algorithms have progressed to a point where many engineering organizations and universities can perform nonlinear analyses on a routine basis. Through much remains to be done in terms of advancement of nonlinear analysis techniques and characterization on nonlinear material constitutive behavior, the technology exists today to perform useful nonlinear analysis for many structural systems. In the current paper, a survey on nonlinear analysis technologies developed and employed for many years on programmatic defense work at the Lawrence Livermore National Laboratory is provided, and ongoing nonlinear numerical simulation projects relevant to the civil engineering field are described.

  12. Simulations of the formation of large-scale structure

    NASA Astrophysics Data System (ADS)

    White, S. D. M.

    Numerical studies related to the simulation of structure growth are examined. The linear development of fluctuations in the early universe is studied. The research of Aarseth, Gott, and Turner (1979) based on N-body integrators that obtained particle accelerations by direct summation of the forces due to other objects is discussed. Consideration is given to the 'pancake theory' of Zel'dovich (1970) for the evolution from adiabatic initial fluctuation, the neutrino-dominated universe models of White, Frenk, and Davis (1983), and the simulations of Davis et al. (1985).

  13. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A. B.; Littlewood, R.; Andreotti, B.; Claudin, P.

    2013-10-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work and from field observations: (1) Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; (2) when dunes become sufficiently large, small dunes are born on their downwind sides (`calving'); and (3) when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first-order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  14. Modeling emergent large-scale structures of barchan dune fields

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Murray, A.; Littlewood, R. C.; Andreotti, B.; Claudin, P.

    2013-12-01

    In nature, barchan dunes typically exist as members of larger fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides ('calving'); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

  15. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  16. Large Scale Parallel Structured AMR Calculations using the SAMRAI Framework

    SciTech Connect

    Wissink, A M; Hornung, R D; Kohn, S R; Smith, S S; Elliott, N

    2001-08-01

    This paper discusses the design and performance of the parallel data communication infrastructure in SAMRAI, a software framework for structured adaptive mesh refinement (SAMR) multi-physics applications. We describe requirements of such applications and how SAMRAI abstractions manage complex data communication operations found in them. Parallel performance is characterized for two adaptive problems solving hyperbolic conservation laws on up to 512 processors of the IBM ASCI Blue Pacific system. Results reveal good scaling for numerical and data communication operations but poorer scaling in adaptive meshing and communication schedule construction phases of the calculations. We analyze the costs of these different operations, addressing key concerns for scaling SAMR computations to large numbers of processors, and discuss potential changes to improve our current implementation.

  17. Cosmic string wakes and large-scale structure

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.

    1988-01-01

    The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.

  18. On soft limits of large-scale structure correlation functions

    NASA Astrophysics Data System (ADS)

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2015-02-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: the time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) `equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and `equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the `equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.

  19. Renormalizing a viscous fluid model for large scale structure formation

    NASA Astrophysics Data System (ADS)

    Führer, Florian; Rigopoulos, Gerasimos

    2016-02-01

    Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher order vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.

  20. Auxiliary basis expansions for large-scale electronic structure calculations

    SciTech Connect

    Jung, Yousung; Sodt, Alexander; Gill, Peter W.M.; Head-Gordon, Martin

    2005-04-04

    One way to reduce the computational cost of electronic structure calculations is to employ auxiliary basis expansions to approximate 4 center integrals in terms of 2 and 3-center integrals, usually using the variationally optimum Coulomb metric to determine the expansion coefficients. However the long-range decay behavior of the auxiliary basis expansion coefficients has not been characterized. We find that this decay can be surprisingly slow. Numerical experiments on linear alkanes and a toy model both show that the decay can be as slow as 1/r in the distance between the auxiliary function and the fitted charge distribution. The Coulomb metric fitting equations also involve divergent matrix elements for extended systems treated with periodic boundary conditions. An attenuated Coulomb metric that is short-range can eliminate these oddities without substantially degrading calculated relative energies. The sparsity of the fit coefficients is assessed on simple hydrocarbon molecules, and shows quite early onset of linear growth in the number of significant coefficients with system size using the attenuated Coulomb metric. This means it is possible to design linear scaling auxiliary basis methods without additional approximations to treat large systems.

  1. Effects of heat release on the large-scale structure in turbulent mixing layers

    NASA Astrophysics Data System (ADS)

    McMurtry, P. A.; Riley, J. J.; Metcalfe, R. W.

    1989-02-01

    The effects of chemical heat release on the large-scale structure in a chemically reacting turbulent mixing layer have been studied using three-dimensional time-dependent simulations. Moderate heat release is found to slow the development of the large-scale structures and to shift their wavelengths to larger scales. The results suggest that previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers may be the result of vorticity generation by baroclinic torques.

  2. Double inflation - A possible resolution of the large-scale structure problem

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman

    1987-01-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.

  3. Large-scale structural transitions in supercoiled DNA revealed by coarse-grained simulations

    NASA Astrophysics Data System (ADS)

    Krajina, Brad; Spakowitz, Andrew

    Topological constraints, such as DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA structure and organization at biologically-relevant length-scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of supercoiled DNA. With this approach, we study the conformational transitions that arise due to supercoiling across the full range of supercoiling densities that are commonly explored by living systems. Simulations of ring DNA molecules with lengths up to the scale of topological domains in the E. coli chromosome (~10 kilobases) reveal large-scale structural transitions elicited by supercoiling, resulting in 3 supercoiling conformational regimes: chiral coils, extended plectonemes, and branched hyper-supercoils. These results capture the non-monotonic relationship of size versus degree of supercoiling observed in experimental sedimentation studies of supercoiled DNA, and our results provide a physical explanation of the structural transitions underlying this behavior.

  4. Neural encoding of large-scale three-dimensional space—properties and constraints

    PubMed Central

    Jeffery, Kate J.; Wilson, Jonathan J.; Casali, Giulio; Hayman, Robin M.

    2015-01-01

    How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and—for species that can swim or fly—large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems. PMID:26236246

  5. Neural encoding of large-scale three-dimensional space-properties and constraints.

    PubMed

    Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M

    2015-01-01

    How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems. PMID:26236246

  6. Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background

    SciTech Connect

    Sefusatti, Emiliano; Fergusson, James R.; Chen, Xingang; Shellard, E.P.S. E-mail: jf334@damtp.cam.ac.uk E-mail: E.P.S.Shellard@damtp.cam.ac.uk

    2012-08-01

    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.

  7. Spontaneous Formation of Surface Magnetic Structure from Large-scale Dynamo in Strongly Stratified Convection

    NASA Astrophysics Data System (ADS)

    Masada, Youhei; Sano, Takayoshi

    2016-05-01

    We report the first successful simulation of spontaneous formation of surface magnetic structures from a large-scale dynamo by strongly stratified thermal convection in Cartesian geometry. The large-scale dynamo observed in our strongly stratified model has physical properties similar to those in earlier weakly stratified convective dynamo simulations, indicating that the α 2-type mechanism is responsible for the dynamo. In addition to the large-scale dynamo, we find that large-scale structures of the vertical magnetic field are spontaneously formed in the convection zone (CZ) surface only in cases with a strongly stratified atmosphere. The organization of the vertical magnetic field proceeds in the upper CZ within tens of convective turnover time and band-like bipolar structures recurrently appear in the dynamo-saturated stage. We consider several candidates to be possibly be the origin of the surface magnetic structure formation, and then suggest the existence of an as-yet-unknown mechanism for the self-organization of the large-scale magnetic structure, which should be inherent in the strongly stratified convective atmosphere.

  8. Primordial Magnetic Field Effects on the CMB and Large-Scale Structure

    DOE PAGESBeta

    Yamazaki, Dai G.; Ichiki, Kiyotomo; Kajino, Toshitaka; Mathews, Grant J.

    2010-01-01

    Mmore » agnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude B λ and the power spectral index n B which have been deduced from the available CMB observational data by using our computational framework.« less

  9. Constraining dark matter-neutrino interactions using the CMB and large-scale structure

    NASA Astrophysics Data System (ADS)

    Wilkinson, Ryan J.; Bœhm, Céline; Lesgourgues, Julien

    2014-05-01

    We present a new study on the elastic scattering cross section of dark matter (DM) and neutrinos using the latest cosmological data from Planck and large-scale structure experiments. We find that the strongest constraints are set by the Lyman-α forest, giving σDM-ν lesssim 10-33(mDM/GeV) cm2 if the cross section is constant and a present-day value of σDM-ν lesssim 10-45(mDM/GeV) cm2 if it scales as the temperature squared. These are the most robust limits on DM-neutrino interactions to date, demonstrating that one can use the distribution of matter in the Universe to probe dark (``invisible") interactions. Additionally, we show that scenarios involving thermal MeV DM and a constant elastic scattering cross section naturally predict (i) a cut-off in the matter power spectrum at the Lyman-α scale, (ii) Neff ~ 3.5 ± 0.4, (iii) H0 ~ 71 ± 3km s-1Mpc-1 and (iv) the possible generation of neutrino masses.

  10. Constraining dark matter-neutrino interactions using the CMB and large-scale structure

    SciTech Connect

    Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch

    2014-05-01

    We present a new study on the elastic scattering cross section of dark matter (DM) and neutrinos using the latest cosmological data from Planck and large-scale structure experiments. We find that the strongest constraints are set by the Lyman-α forest, giving σ{sub DM−ν} ∼< 10{sup −33}(m{sub DM}/GeV) cm{sup 2} if the cross section is constant and a present-day value of σ{sub DM−ν} ∼< 10{sup −45}(m{sub DM}/GeV) cm{sup 2} if it scales as the temperature squared. These are the most robust limits on DM-neutrino interactions to date, demonstrating that one can use the distribution of matter in the Universe to probe dark (''invisible{sup )} interactions. Additionally, we show that scenarios involving thermal MeV DM and a constant elastic scattering cross section naturally predict (i) a cut-off in the matter power spectrum at the Lyman-α scale, (ii) N{sub eff} ∼ 3.5 ± 0.4, (iii) H{sub 0} ∼ 71 ± 3km s{sup −1}Mpc{sup −1} and (iv) the possible generation of neutrino masses.

  11. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  12. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  13. Initial condition effects on large scale structure in numerical simulations of plane mixing layers

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.; Garrett, S. J.

    2016-01-01

    In this paper, Large Eddy Simulations are performed on the spatially developing plane turbulent mixing layer. The simulated mixing layers originate from initially laminar conditions. The focus of this research is on the effect of the nature of the imposed fluctuations on the large-scale spanwise and streamwise structures in the flow. Two simulations are performed; one with low-level three-dimensional inflow fluctuations obtained from pseudo-random numbers, the other with physically correlated fluctuations of the same magnitude obtained from an inflow generation technique. Where white-noise fluctuations provide the inflow disturbances, no spatially stationary streamwise vortex structure is observed, and the large-scale spanwise turbulent vortical structures grow continuously and linearly. These structures are observed to have a three-dimensional internal geometry with branches and dislocations. Where physically correlated provide the inflow disturbances a "streaky" streamwise structure that is spatially stationary is observed, with the large-scale turbulent vortical structures growing with the square-root of time. These large-scale structures are quasi-two-dimensional, on top of which the secondary structure rides. The simulation results are discussed in the context of the varying interpretations of mixing layer growth that have been postulated. Recommendations are made concerning the data required from experiments in order to produce accurate numerical simulation recreations of real flows.

  14. The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth

    ERIC Educational Resources Information Center

    Steyvers, Mark; Tenenbaum, Joshua B.

    2005-01-01

    We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…

  15. Quasars as a Tracer of Large-scale Structures in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Song, Hyunmi; Park, Changbom; Lietzen, Heidi; Einasto, Maret

    2016-08-01

    We study the dependence of the number density and properties of quasars on the background galaxy density using the currently largest spectroscopic data sets of quasars and galaxies. We construct a galaxy number density field smoothed over the variable smoothing scale of between approximately 10 and 20 h ‑1 Mpc over the redshift range 0.46 < z < 0.59 using the Sloan Digital Sky Survey (SDSS) Data Release 12 (DR12) Constant MASS galaxies. The quasar sample is prepared from the SDSS-I/II DR7. We examine the correlation of incidence of quasars with the large-scale background density and the dependence of quasar properties such as bolometric luminosity, black hole mass, and Eddington ratio on the large-scale density. We find a monotonic correlation between the quasar number density and large-scale galaxy number density, which is fitted well with a power-law relation, {n}Q\\propto {ρ }G0.618. We detect weak dependences of quasar properties on the large-scale density such as a positive correlation between black hole mass and density, and a negative correlation between luminosity and density. We discuss the possibility of using quasars as a tracer of large-scale structures at high redshifts, which may be useful for studies of the growth of structures in the high-redshift universe.

  16. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  17. On the dynamics underlying the emergence of large scale structures in barotropic beta-plane turbulence

    NASA Astrophysics Data System (ADS)

    Bakas, Nikolaos; Constantinou, Navid; Ioannou, Petros

    2016-04-01

    Planetary turbulent flows are observed to self-organize into large scale structures such as zonal jets and coherent vortices. In this work, the eddy-mean flow dynamics underlying the formation of both zonal and nonzonal coherent structures in a barotropic turbulent flow is investigated within the statistical framework of stochastic structural stability theory (S3T). Previous studies have shown that the coherent structures emerge due to the instability of the homogeneous turbulent flow in the statistical dynamical S3T system and that the statistical predictions of S3T are reflected in direct numerical simulations. In this work, the dynamics underlying this S3T statistical instability are studied. It is shown that, for weak planetary vorticity gradient beta, both zonal jets and non-zonal large-scale structures form from upgradient momentum fluxes due to shearing of the eddies by the emerging flow. For large beta, the dynamics of the S3T instability differs for zonal and non-zonal flows. Shearing of the eddies by the mean flow continues to be the mechanism for the emergence of zonal jets while non-zonal large-scale flows emerge from resonant and near-resonant triad interactions between the large-scale flow and the stochastically forced eddies.

  18. Study of the structure and physical properties of quasicrystals using large scale facilities

    NASA Astrophysics Data System (ADS)

    de Boissieu, Marc

    2012-04-01

    Quasicrystals have been puzzling scientists since their discovery. In this article we review some of the recent advances in this field and show how the use of large scale facilities has brought in decisive information for the understanding of their structure and physical properties.

  19. Ultrahigh energy cosmic ray probes of large scale structure and magnetic fields

    NASA Astrophysics Data System (ADS)

    Sigl, Günter; Miniati, Francesco; Enßlin, Torsten A.

    2004-08-01

    We study signatures of a structured universe in the multi-pole moments, auto-correlation function, and cluster statistics of ultrahigh energy cosmic rays above 1019 eV. We compare scenarios where the sources are distributed homogeneously or according to the baryon density distribution obtained from a cosmological large scale structure simulation. The influence of extragalactic magnetic fields is studied by comparing the case of negligible fields with fields expected to be produced along large scale shocks with a maximal strength consistent with observations. We confirm that strongly magnetized observers would predict considerable anisotropy on large scales, which is already in conflict with current data. In the best fit scenario only the sources are strongly magnetized, although deflection can still be considerable, of order 20° up to 1020 eV, and a pronounced GZK cutoff is predicted. We then discuss signatures for future large scale full-sky detectors such as the Pierre Auger and EUSO projects. Auto-correlations are sensitive to the source density only if magnetic fields do not significantly affect propagation. In contrast, for a weakly magnetized observer, degree scale auto-correlations below a certain level indicate magnetized discrete sources. It may be difficult even for next generation experiments to distinguish between structured and unstructured source distributions.

  20. Searching for large scale structures over Lake Geneva using Wind-Lidars

    NASA Astrophysics Data System (ADS)

    Calaf, M.; Hultmark, M.; Oldroyd, H. J.; Parlange, M. B.

    2012-12-01

    Large-scale coherent structures in turbulent boundary layers have received much attention in laboratory studies during the last decade. Kim & Adrian (1999) found that the structures can extend up to 15 times the boundary layer thickness and that they are responsible for about 50% of the total turbulent kinetic energy. Thus, understanding the details of these large-scale structures is of great importance, both for fluid-structure interaction and energy harvesting techniques. Hutchins & Marusic (2007) conducted a very complete study of the large-scale structures where they also measured in the atmospheric surface layer (ASL). By using rakes of hot-wires in a near-ideal neutral boundary layer they were able to find evidence that these large structures exist also in the ASL, and the scaling of them is very similar to that shown in wind tunnel tests. However, Taylor's hypothesis is needed to convert time to space, when using hot-wire data to investigate the spatial structures. For unraveling the true spatial distribution of these structures one need to use distributed sensors or remote sensing technologies. Here, data taken over lake Geneva during the super-cold winter from 2012 will be presented. Unique photographs clearly illustrating the organization and coherency of these structures, together with data obtained from wind LIDARs will be shown. The field observations provide clear evidence of the existence of these large-scale structures in the atmospheric boundary layer (ABL) above the lake and their size to be correlated with the height of the ABL itself. The LIDAR data provide a unique possibility to compare space and time data to each other, allowing us to explore these structures from a spatial and temporal perspective.

  1. Large-scale power spectrum and structures from the ENEAR galaxy peculiar velocity catalogue

    NASA Astrophysics Data System (ADS)

    Zaroubi, S.; Bernardi, M.; da Costa, L. N.; Hoffman, Y.; Alonso, M. V.; Wegner, G.; Willmer, C. N. A.; Pellegrini, P. S.

    2001-09-01

    We estimate the mass density fluctuations power spectrum (PS) on large scales by applying a maximum likelihood technique to the peculiar velocity data of the recently completed redshift-distance survey of early-type galaxies (hereafter ENEAR). Parametric cold dark matter (CDM)-like models for the PS are assumed, and the best-fitting parameters are determined by maximizing the probability of the model given the measured peculiar velocities of the galaxies, their distances and estimated errors. The method has been applied to CDM models with and without COBE normalization. The general results are in agreement with the high-amplitude power spectra found from similar analyses of other independent all-sky catalogue of peculiar velocity data such as MARK III and SFI, in spite of the differences in the way these samples were selected, the fact that they probe different regions of space and galaxy distances are computed using different distance relations. For example, at k=0.1hMpc-1 the power spectrum value is P(k)Ω1.2=(6.5+/-3)×103(h- 1Mpc)3 and η8≡σ8Ω0.6=1.1- 0.35+0.2 the quoted uncertainties refer to 3σ error level. We also find that, for ΛCDM and OCDM COBE-normalized models, the best-fitting parameters are confined by a contour approximately defined by Ωh1.3=0.377+/-0.08 and Ωh0.88=0.517+/-0.083 respectively. Γ-shape models, free of COBE normalization, result in the weak constraint of Γ>=0.17 and in the rather stringent constraint of η8=1.0+/-0.25. All quoted uncertainties refer to 3σ confidence level (c.l.). The calculated PS has been used as a prior for Wiener reconstruction of the density field at different resolutions and the three-dimensional velocity field within a volume of radius ~80h-1Mpc. All major structures in the nearby Universe are recovered and are well matched to those predicted from all-sky redshift surveys. The robustness of these features has been tested with constrained realizations (CR). Analysis of the reconstructed three

  2. Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure

    SciTech Connect

    Ormand, W E; Navratil, P

    2003-08-18

    We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.

  3. The IR-resummed Effective Field Theory of Large Scale Structures

    SciTech Connect

    Senatore, Leonardo; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2015-02-01

    We present a new method to resum the effect of large scale motions in the Effective Field Theory of Large Scale Structures. Because the linear power spectrum in ΛCDM is not scale free the effects of the large scale flows are enhanced. Although previous EFT calculations of the equal-time density power spectrum at one and two loops showed a remarkable agreement with numerical results, they also showed a 2% residual which appeared related to the BAO oscillations. We show that this was indeed the case, explain the physical origin and show how a Lagrangian based calculation removes this differences. We propose a simple method to upgrade existing Eulerian calculations to effectively make them Lagrangian and compare the new results with existing fits to numerical simulations. Our new two-loop results agrees with numerical results up to k∼ 0.6 h Mpc{sup −1} to within 1% with no oscillatory residuals. We also compute power spectra involving momentum which is significantly more affected by the large scale flows. We show how keeping track of these velocities significantly enhances the UV reach of the momentum power spectrum in addition to removing the BAO related residuals. We compute predictions for the real space correlation function around the BAO scale and investigate its sensitivity to the EFT parameters and the details of the resummation technique.

  4. TOPOLOGY OF A LARGE-SCALE STRUCTURE AS A TEST OF MODIFIED GRAVITY

    SciTech Connect

    Wang Xin; Chen Xuelei; Park, Changbom

    2012-03-01

    The genus of the isodensity contours is a robust measure of the topology of a large-scale structure, and it is relatively insensitive to nonlinear gravitational evolution, galaxy bias, and redshift-space distortion. We show that the growth of density fluctuations is scale dependent even in the linear regime in some modified gravity theories, which opens a new possibility of testing the theories observationally. We propose to use the genus of the isodensity contours, an intrinsic measure of the topology of the large-scale structure, as a statistic to be used in such tests. In Einstein's general theory of relativity, density fluctuations grow at the same rate on all scales in the linear regime, and the genus per comoving volume is almost conserved as structures grow homologously, so we expect that the genus-smoothing-scale relation is basically time independent. However, in some modified gravity models where structures grow with different rates on different scales, the genus-smoothing-scale relation should change over time. This can be used to test the gravity models with large-scale structure observations. We study the cases of the f(R) theory, DGP braneworld theory as well as the parameterized post-Friedmann models. We also forecast how the modified gravity models can be constrained with optical/IR or redshifted 21 cm radio surveys in the near future.

  5. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  6. Formation of large-scale structure from cosmic-string loops and cold dark matter

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Scherrer, Robert J.

    1987-01-01

    Some results from a numerical simulation of the formation of large-scale structure from cosmic-string loops are presented. It is found that even though G x mu is required to be lower than 2 x 10 to the -6th (where mu is the mass per unit length of the string) to give a low enough autocorrelation amplitude, there is excessive power on smaller scales, so that galaxies would be more dense than observed. The large-scale structure does not include a filamentary or connected appearance and shares with more conventional models based on Gaussian perturbations the lack of cluster-cluster correlation at the mean cluster separation scale as well as excessively small bulk velocities at these scales.

  7. Scalar-fluid theories: cosmological perturbations and large-scale structure

    NASA Astrophysics Data System (ADS)

    Koivisto, Tomi S.; Saridakis, Emmanuel N.; Tamanini, Nicola

    2015-09-01

    Recently a new Lagrangian framework was introduced to describe interactions between scalar fields and relativistic perfect fluids. This allows two consistent generalizations of coupled quintessence models: non-vanishing pressures and a new type of derivative interaction. The implications of these to the formation of cosmological large-scale structure are uncovered here at the linear order. The full perturbation equations in the two cases are derived in a unified formalism and their Newtonian, quasi-static limit is studied analytically. Requiring the absence of an effective sound speed term in the coupled dark matter fluid restricts the Lagrangian to be a linear function of the matter number density. This leaves new potentially viable classes of both algebraically and derivatively interacting models wherein the coupling may impact the background expansion dynamics and imprint new signatures into the large-scale structure.

  8. Cosmological evolution of the gravitational entropy of the large-scale structure

    NASA Astrophysics Data System (ADS)

    Marozzi, Giovanni; Uzan, Jean-Philippe; Umeh, Obinna; Clarkson, Chris

    2015-10-01

    We consider the entropy associated with the large-scale structure of the Universe in the linear regime, where the Universe can be described by a perturbed Friedmann-Lemaître spacetime. In particular, we compare two different definitions proposed in the literature for the entropy using a spatial averaging prescription. For one definition, the entropy of the large-scale structure for a given comoving volume always grows with time, both for a CDM and a CDM model. In particular, while it diverges for a CDM model, it saturates to a constant value in the presence of a cosmological constant. The use of a light-cone averaging prescription in the context of the evaluation of the entropy is also discussed.

  9. Implications of a class of grand unified theories for large scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Shafi, Q.; Stecker, F. W.

    1983-01-01

    A class of grand unified theories in which cosmologicaly significant axion and neutrino energy densities arise naturally is discussed. To obtain large scale structure three scenarios are considered: (1) an inflationary scenario; (2) inflation followed by string production; and (3) a non-inflationary scenario with density fluctuations caused solely by strings. Inflation may be compatible with the recent observational indications that mega 1 on the scale of superclusters, particularly if strings are present.

  10. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  11. Ocean acoustic field simulations for monitoring large-scale ocean structures

    NASA Astrophysics Data System (ADS)

    Shang, E. C.; Wang, Y. Y.

    1991-04-01

    Substantial numerical simulations of low-frequency acoustic field under different ocean models have been carried out on the CYBER-205 at WPL/NOAA. The purpose of these numerical simulations is to investigate our potential ability to monitor large-scale ocean structures by using modal ocean acoustic tomography (MOAT). For example, the possibility of monitoring El Niño by using MOAT has been illustrated.

  12. Mapping 3D Large-Scale Structure at z ˜2 with Lyman-α Forest Tomographic Mapping

    NASA Astrophysics Data System (ADS)

    Lee, Khee-Gan; Hennawi, J. F.; White, M.; Croft, R. A.; Prochaska, J. X.; Schlegel, D. J.; Suzuki, N.; Kneib, J.; Bailey, S. J.; Spergel, D. N.; Rix, H.; Strauss, M. A.

    2014-01-01

    The Lyman-α (Lyα) forest absorption at z>2 traces the underlying dark-matter distribution, and with a sufficient density of background sightlines can be used to create 3D tomographic maps of large-scale structure. Since the useful Lyα forest in each sightline spans ˜400-500 h-1Mpc, Lyα forest tomography can efficiently map out large-scale structure at z˜2. The Cosmic Lyman-Alpha Program for the Tomographic Reconstruction of Absorption Probes (CLAPTRAP) will be the first survey to attempt this technique. We aim to obtain spectra for a background grid of faint quasars and bright LBGs at 2large-scale structure at z>1. In conjunction with the rich multi-wavelength data from the COSMOS survey, these maps will facilitate the study of galaxies in the context of the large-scale environment, reveal the topology of large-scale structure at high-redshifts, and allow the direct detection of galaxy protoclusters at the intersections of the cosmic web. The

  13. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  14. Spin Alignments of Spiral Galaxies within the Large-scale Structure from SDSS DR7

    NASA Astrophysics Data System (ADS)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Luo, Wentao; Mo, H. J.; van den Bosch, Frank C.

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  15. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    NASA Astrophysics Data System (ADS)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  16. Resurrecting hot dark matter - Large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1988-01-01

    These are the results of a numerical simulation of the formation of large-scale structure from cosmic-string loops in a universe dominated by massive neutrinos (hot dark matter). This model has several desirable features. The final matter distribution contains isolated density peaks embedded in a smooth background, producing a natural bias in the distribution of luminous matter. Because baryons can accrete onto the cosmic strings before the neutrinos, the galaxies will have baryon cores and dark neutrino halos. Galaxy formation in this model begins much earlier than in random-phase models. On large scales the distribution of clustered matter visually resembles the CfA survey, with large voids and filaments.

  17. SPIN ALIGNMENTS OF SPIRAL GALAXIES WITHIN THE LARGE-SCALE STRUCTURE FROM SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Luo, Wentao; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2015-01-01

    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 and Galaxy Zoo 2, we investigate the alignment of spin axes of spiral galaxies with their surrounding large-scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes only have weak tendencies to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and the local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.

  18. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1980-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are investigated by means of flow visualization and hot-wire measurements. The manipulator was found to be effective in inhibiting the intermittent large scale structure of the boundary layer, and the effect persists for at least 70 boundary-layer thicknesses downstream of the manipulator. With the removal of the large scale, there was an observed reduction in the streamwise turbulence intensity levels near the wall. The downstream distribution of the skin friction coefficient, determined from the stream wise change in fluid momentum, was also altered by the introduction of the manipulator. The data from both the visualization and hot wire studies are provided.

  19. LARGE-SCALE STRUCTURE OF THE UNIVERSE AS A COSMIC STANDARD RULER

    SciTech Connect

    Park, Changbom; Kim, Young-Rae

    2010-06-01

    We propose to use the large-scale structure (LSS) of the universe as a cosmic standard ruler. This is possible because the pattern of large-scale distribution of matter is scale-dependent and does not change in comoving space during the linear-regime evolution of structure. By examining the pattern of LSS in several redshift intervals it is possible to reconstruct the expansion history of the universe, and thus to measure the cosmological parameters governing the expansion of the universe. The features of the large-scale matter distribution that can be used as standard rulers include the topology of LSS and the overall shapes of the power spectrum and correlation function. The genus, being an intrinsic topology measure, is insensitive to systematic effects such as the nonlinear gravitational evolution, galaxy biasing, and redshift-space distortion, and thus is an ideal cosmic ruler when galaxies in redshift space are used to trace the initial matter distribution. The genus remains unchanged as far as the rank order of density is conserved, which is true for linear and weakly nonlinear gravitational evolution, monotonic galaxy biasing, and mild redshift-space distortions. The expansion history of the universe can be constrained by comparing the theoretically predicted genus corresponding to an adopted set of cosmological parameters with the observed genus measured by using the redshift-comoving distance relation of the same cosmological model.

  20. Weak gravitational lensing due to large-scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Jaroszynski, Michal; Park, Changbom; Paczynski, Bohdan; Gott, J. Richard, III

    1990-01-01

    The effect of the large-scale structure of the universe on the propagation of light rays is studied. The development of the large-scale density fluctuations in the omega = 1 universe is calculated within the cold dark matter scenario using a smooth particle approximation. The propagation of about 10 to the 6th random light rays between the redshift z = 5 and the observer was followed. It is found that the effect of shear is negligible, and the amplification of single images is dominated by the matter in the beam. The spread of amplifications is very small. Therefore, the filled-beam approximation is very good for studies of strong lensing by galaxies or clusters of galaxies. In the simulation, the column density was averaged over a comoving area of approximately (1/h Mpc)-squared. No case of a strong gravitational lensing was found, i.e., no 'over-focused' image that would suggest that a few images might be present. Therefore, the large-scale structure of the universe as it is presently known does not produce multiple images with gravitational lensing on a scale larger than clusters of galaxies.

  1. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  2. Extracting Primordial Non-Gaussianity from Large Scale Structure in the Post-Planck Era

    NASA Astrophysics Data System (ADS)

    Dore, Olivier

    Astronomical observations have become a unique tool to probe fundamental physics. Cosmology, in particular, emerged as a data-driven science whose phenomenological modeling has achieved great success: in the post-Planck era, key cosmological parameters are measured to percent precision. A single model reproduces a wealth of astronomical observations involving very distinct physical processes at different times. This success leads to fundamental physical questions. One of the most salient is the origin of the primordial perturbations that grew to form the large-scale structures we now observe. More and more cosmological observables point to inflationary physics as the origin of the structure observed in the universe. Inflationary physics predict the statistical properties of the primordial perturbations and it is thought to be slightly non-Gaussian. The detection of this small deviation from Gaussianity represents the next frontier in early Universe physics. To measure it would provide direct, unique and quantitative insights about the physics at play when the Universe was only a fraction of a second old, thus probing energies untouchable otherwise. En par with the well-known relic gravitational wave radiation -- the famous ``B-modes'' -- it is one the few probes of inflation. This departure from Gaussianity leads to very specific signature in the large scale clustering of galaxies. Observing large-scale structure, we can thus establish a direct connection with fundamental theories of the early universe. In the post-Planck era, large-scale structures are our most promising pathway to measuring this primordial signal. Current estimates suggests that the next generation of space or ground based large scale structure surveys (e.g. the ESA EUCLID or NASA WFIRST missions) might enable a detection of this signal. This potential huge payoff requires us to solidify the theoretical predictions supporting these measurements. Even if the exact signal we are looking for is of

  3. Large-Scale Flow Structure in Turbulent Nonpremixed Flames under Normal- And Low-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Idicheria, C. A.; Boxx, I. G.

    2001-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. Buoyancy acts by inducing baroclinic torques, which generate large-scale vortical structures that can significantly modify the flow field. Furthermore, some suggest that buoyancy can substantially influence the large-scale structure of even nominally momentum-dominated flames, since the low velocity flow outside of the flame will be more susceptible to buoyancy effects. Even subtle buoyancy effects may be important because changes in the large-scale structure affects the local entrainment and fluctuating strain rate, and hence the structure of the flame. Previous studies that have compared the structure of normal- and micro-gravity nonpremixed jet flames note that flames in microgravity are longer and wider than in normal-gravity. This trend was observed for jet flames ranging from laminar to turbulent regimes. Furthermore, imaging of the flames has shown possible evidence of helical instabilities and disturbances starting from the base of the flame in microgravity. In contrast, these characteristics were not observed in normal-gravity. The objective of the present study is to further advance our knowledge of the effects of weak levels of buoyancy on the structure of transitional and turbulent nonpremixed jet flames. In later studies we will utilize the drop tower facilities at NASA Glenn Research Center (GRC), but the preliminary work described in this paper was conducted using the 1.25-second drop tower located at the University of Texas at Austin. A more detailed description of these experiments can be found in Idicheria et al.

  4. Dark matter, long-range forces, and large-scale structure

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami; Frieman, Joshua A.

    1992-01-01

    If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.

  5. Bayesian large-scale structure inference: initial conditions and the cosmic web

    NASA Astrophysics Data System (ADS)

    Leclercq, Florent; Wandelt, Benjamin

    2014-05-01

    We describe an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the large-scale structure of the inhomogeneous Universe. Our algorithm explores the joint posterior distribution of the many millions of parameters involved via efficient Hamiltonian Markov Chain Monte Carlo sampling. We describe its application to the Sloan Digital Sky Survey data release 7 and an additional non-linear filtering step. We illustrate the use of our findings for cosmic web analysis: identification of structures via tidal shear analysis and inference of dark matter voids.

  6. Constructing perturbation theory kernels for large-scale structure in generalized cosmologies

    NASA Astrophysics Data System (ADS)

    Taruya, Atsushi

    2016-07-01

    We present a simple numerical scheme for perturbation theory (PT) calculations of large-scale structure. Solving the evolution equations for perturbations numerically, we construct the PT kernels as building blocks of statistical calculations, from which the power spectrum and/or correlation function can be systematically computed. The scheme is especially applicable to the generalized structure formation including modified gravity, in which the analytic construction of PT kernels is intractable. As an illustration, we show several examples for power spectrum calculations in f (R ) gravity and Λ CDM models.

  7. Giant radio galaxies as effective probes of X-ray gas in large-scale structure

    NASA Astrophysics Data System (ADS)

    Saripalli, Lakshmi; Subrahmanyan, Ravi; Malarecki, Jurek; Jones, Heath; Staveley-Smith, Lister

    2015-08-01

    Giant radio galaxies are AGNs with relativistic jets that dynamically evolve into Mpc scale synchrotron lobes around the host elliptical. The thermal gas environment influences the jet advance and lobe formation. Since the host ellipticals are in filamentary low-density galaxy environments, the ambient gas for the Mpc-scale radio structures is likely the warm-hot X-ray gas inhabiting the intergalactic medium. We have, therefore, used large radio galaxies as probes of the distribution of hot and tenuous gas on mega-parsec scales in these relatively low density large-scale structures.For a sample of 19 giant radio galaxies we obtained radio continuum images of the synchrotron structures, and redshifts of a total of nearly 9000 galaxies in their vicinity. The 2-degree field redshift data traces the large-scale galaxy structure around the radio sources. The radio-optical data allows an estimation of the pressure, temperature and distribution of hot thermal gas associated with the large-scale structure in the vicinity of the radio AGN (Malarecki, Staveley-Smith, Saripalli, Subrahmanyan, Jones, Duffy, Rioja 2013, MNRAS 432, 200).Strong correspondence between radio galaxy lobes and galaxy distribution is observed. The data suggests that galaxies trace gas, and that radio jets and lobes of giant radio galaxies are sensitive tracers of gas on mega-parsec scales and may be used as effective probes of the difficult-to-detect IGM (Malarecki, Jones, Saripalli, Stavele-Smith, Subrahmanyan, 2015, MNRAS in press; arXiv150203954).

  8. Large-scale Structure around a z=2.1 Cluster

    NASA Astrophysics Data System (ADS)

    Hung, Chao-Ling; Casey, Caitlin M.; Chiang, Yi-Kuan; Capak, Peter L.; Cowley, Michael J.; Darvish, Behnam; Kacprzak, Glenn G.; Kovač, K.; Lilly, Simon J.; Nanayakkara, Themiya; Spitler, Lee R.; Tran, Kim-Vy H.; Yuan, Tiantian

    2016-08-01

    The most prodigious starburst galaxies are absent in massive galaxy clusters today, but their connection with large-scale environments is less clear at z≳ 2. We present a search of large-scale structure around a galaxy cluster core at z = 2.095 using a set of spectroscopically confirmed galaxies. We find that both color-selected star-forming galaxies (SFGs) and dusty star-forming galaxies (DSFGs) show significant overdensities around the z = 2.095 cluster. A total of eight DSFGs (including three X-ray luminous active galactic nuclei, AGNs) and 34 SFGs are found within a 10‧ radius (corresponds to ˜15 cMpc at z˜ 2.1) from the cluster center and within a redshift range of {{Δ }}z=0.02, which leads to galaxy overdensities of {δ }{{DSFG}}˜ 12.3 and {δ }{{SFG}}˜ 2.8. The cluster core and the extended DSFG- and SFG-rich structures together demonstrate an active cluster formation phase, in which the cluster is accreting a significant amount of material from large-scale structure while the more mature core may begin to virialize. Our finding of this DSFG-rich structure, along with a number of other protoclusters with excess DSFGs and AGNs found to date, suggest that the overdensities of these rare sources indeed trace significant mass overdensities. However, it remains puzzling how these intense star formers are triggered concurrently. Although an increased probability of galaxy interactions and/or enhanced gas supply can trigger the excess of DSFGs, our stacking analysis based on 850 μm images and morphological analysis based on rest-frame optical imaging do not show such enhancements of merger fraction and gas content in this structure.

  9. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. T.

    1984-01-01

    Structure and evolution of large scale photospheric and coronal magnetic fields in the interval 1976-1983 were studied using observations from the Stanford Solar Observatory and a potential field model. The solar wind in the heliosphere is organized into large regions in which the magnetic field has a componenet either toward or away from the sun. The model predicts the location of the current sheet separating these regions. Near solar minimum, in 1976, the current sheet lay within a few degrees of the solar equator having two extensions north and south of the equator. Soon after minimum the latitudinal extent began to increase. The sheet reached to at least 50 deg from 1978 through 1983. The complex structure near maximum occasionally included multiple current sheets. Large scale structures persist for up to two years during the entire interval. To minimize errors in determining the structure of the heliospheric field particular attention was paid to decreasing the distorting effects of rapid field evolution, finding the optimum source surface radius, determining the correction to the sun's polar field, and handling missing data. The predicted structure agrees with direct interplanetary field measurements taken near the ecliptic and with coronameter and interplanetary scintillation measurements which infer the three dimensional interplanetary magnetic structure. During most of the solar cycle the heliospheric field cannot be adequately described as a dipole.

  10. Large-scale structure challenges dilaton gravity in a 5D brane scenario with AdS bulk

    NASA Astrophysics Data System (ADS)

    Konikowska, Dominika

    2014-02-01

    We study a theory of dilaton gravity in a five-dimensional brane scenario, with a non-minimal coupling of the dilaton to the matter content of the universe localized on the brane. The effective gravitational equations at the brane are derived in the Einstein frame in the covariant approach, addressing certain misconceptions in the literature. We then investigate whether the observed large-scale structure of the universe can exist on the brane in this dilaton gravity scenario with an exact anti de Sitter bulk, assuming that the matter energy-momentum tensor has the form of an inhomogeneous perfect fluid. The corresponding constraint on the spatial derivative of the matter energy density is derived, and subsequently quantified using the current limits resulting from searches for variation of the Newton's constant. By confronting it with the observational data from galaxy surveys, we show that up to scales of the order of 104 Mpc, the derived bound on the spatial derivative of the matter energy density does not allow for the existence of the large-scale structure as observed today. Thus, such a dilaton gravity brane scenario is ruled out.

  11. Coherent large-scale structures in high Reynolds number supersonic jets

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Burrin, R. H.

    1985-01-01

    The flow structure of a 50.8 mm (2 in) diameter jet operated at a full expanded Mach number of 1.37, with Reynolds numbers in the range 1.7 to 2.35 million, was examined for the first 20 jet diameters. To facilitate the study of the large scale structure, and determine any coherence, a discrete tone acoustic excitation method was used. Phase locked flow visualization as well as laser velocimeter quantitative measurements were made. The main conclusions derived from this study are: (1) large scale coherent like turbulence structures do exist in large Reynolds number supersonic jets, and they prevail even beyond the potential core; (2) the most preferential Strouhal number for these structures is in the vicinity of 0.4; and (3) quantitatively, the peak amplitudes of these structures are rather low, and are about 1% of the jet exit velocity. Finally, since a number of unique problems related to LV measurements in supersonic jets were encountered, a summary of these problems and lessons learned therefrom are also reported.

  12. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy

    PubMed Central

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.

    2014-01-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089

  13. Wave force on a large scale structure under the effects of current

    SciTech Connect

    Lin, M.C.; Hsiao, S.S.

    1993-12-31

    A numerical model is developed to calculate wave force on a large scale structure under the effects of current in waters of constant depth. With the fluid in wave-current coexisting field assumed incompressible and inviscid, and the flow irrotational, the flow motion can be described by a velocity potential. The velocity potential is separated into a steady current potential and an unsteady wave potential. The steady current potential can be expressed as a sum of a uniform current and a steady disturbance due to the presence of the structure. The surface vorticity method is employed to calculate the current velocity distribution on the structure, and for calculating the wave velocity potential including flow and structure effects, boundary element method is used. Results from these two numerical schemes are then combined to calculate wave force on the structure with the use of integrating the Bernoulli equation on the structure surface.

  14. Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure

    SciTech Connect

    Carbone, Carmelita; Mangilli, Anna; Verde, Licia E-mail: anna.mangilli@icc.ub.edu

    2011-09-01

    We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f{sub iso}, become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f{sub iso}) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys.

  15. The Effective Field Theory of Large Scale Structures at two loops

    SciTech Connect

    Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo E-mail: sfore@stanford.edu E-mail: senatore@stanford.edu

    2014-07-01

    Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.

  16. Dynamics of large-scale structures for jets in a crossflow

    SciTech Connect

    Muldoon, F.; Acharya, S.

    1999-07-01

    Results of a three-dimensional unsteady computational study of a row of jets injected normal to a crossflow are presented with the aim of understanding the dynamics of the large-scale structures in the region near the jet. The jet to crossflow velocity ratio is 0.5. A modified version of the computer program (INS3D), which utilizes the method of artificial compressibility, is used for the computations. Results obtained clearly indicate that the near-field large-scale structures are extremely dynamic in nature, and undergo breakup and reconnection processes. The dynamic near-field structures identified include the counterrotating vortex pair (CVP), the horseshoe vortex, wake vortex, wall vortex, and shear layer vortex. The dynamic features of these vortices are presented in this paper. The CVP is observed to be a convoluted structure interacting with the wall and horseshoe vortices. The shear layer vortices are stripped by the crossflow, and undergo pairing and stretching events in the leeward side of the jet. The wall vortex is reoriented into the upright wake system. Comparison of the predictions with mean velocity measurements are made. Reasonable agreement is observed.

  17. A fast method for large-scale de novo peptide and miniprotein structure prediction.

    PubMed

    Maupetit, Julien; Derreumaux, Philippe; Tufféry, Pierre

    2010-03-01

    Although peptides have many biological and biomedical implications, an accurate method predicting their equilibrium structural ensembles from amino acid sequences and suitable for large-scale experiments is still missing. We introduce a new approach-PEP-FOLD-to the de novo prediction of peptides and miniproteins. It first predicts, in the terms of a Hidden Markov Model-derived structural alphabet, a limited number of local conformations at each position of the structure. It then performs their assembly using a greedy procedure driven by a coarse-grained energy score. On a benchmark of 52 peptides with 9-23 amino acids, PEP-FOLD generates lowest-energy conformations within 2.8 and 2.3 A Calpha root-mean-square deviation from the full nuclear magnetic resonance structures (NMR) and the NMR rigid cores, respectively, outperforming previous approaches. For 13 miniproteins with 27-49 amino acids, PEP-FOLD reaches an accuracy of 3.6 and 4.6 A Calpha root-mean-square deviation for the most-native and lowest-energy conformations, using the nonflexible regions identified by NMR. PEP-FOLD simulations are fast-a few minutes only-opening therefore, the door to in silico large-scale rational design of new bioactive peptides and miniproteins. PMID:19569182

  18. Identification of large scale billows-like structure in the neutral Na layer over Arecibo

    NASA Astrophysics Data System (ADS)

    Sarkhel, S.; Raizada, S.; Tepley, C. A.; Gonzalez, S. A.; Mathews, J. D.

    2011-12-01

    This investigation is based on case studies of sodium (Na) concentration profiles that were obtained from Arecibo, Puerto Rico (18.4o N; 66.7o W). The data from one night reveal the presence of large scale billows-like structures in the Na layer occurring in an altitude range of 102-108 km. However, no large scale structures were observed in that altitude range on the following night. In order to explain the occurrence of these structures, Lomb-Scargle periodogram analyses were carried out. Based on these results, the role of different instability mechanisms will be discussed in light of mesospheric dynamics that can create billows-like structures. The simultaneous measurements of electron density obtained using the Arecibo Incoherent Scatter Radar will also be discussed to investigate the relation between electrons and neutrals. We also note the presence of ~1 hour period oscillations that may be related to continuous quasi-periodic processes of the same period noted at higher altitudes.

  19. Bias to CMB lensing measurements from the bispectrum of large-scale structure

    NASA Astrophysics Data System (ADS)

    Böhm, Vanessa; Schmittfull, Marcel; Sherwin, Blake D.

    2016-08-01

    The rapidly improving precision of measurements of gravitational lensing of the cosmic microwave background (CMB) also requires a corresponding increase in the precision of theoretical modeling. A commonly made approximation is to model the CMB deflection angle or lensing potential as a Gaussian random field. In this paper, however, we analytically quantify the influence of the non-Gaussianity of large-scale structure (LSS) lenses, arising from nonlinear structure formation, on CMB lensing measurements. In particular, evaluating the impact of the nonzero bispectrum of large-scale structure on the relevant CMB four-point correlation functions, we find that there is a bias to estimates of the CMB lensing power spectrum. For temperature-based lensing reconstruction with CMB stage III and stage IV experiments, we find that this lensing power spectrum bias is negative and is of order 1% of the signal. This corresponds to a shift of multiple standard deviations for these upcoming experiments. We caution, however, that our numerical calculation only evaluates two of the largest bias terms and, thus, only provides an approximate estimate of the full bias. We conclude that further investigation into lensing biases from nonlinear structure formation is required and that these biases should be accounted for in future lensing analyses.

  20. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

    NASA Astrophysics Data System (ADS)

    Keleş, Ümit; Liedke, Bartosz; Heinig, Karl-Heinz; Bulutay, Ceyhun

    2013-11-01

    Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

  1. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

    SciTech Connect

    Keleş, Ümit; Bulutay, Ceyhun; Liedke, Bartosz; Heinig, Karl-Heinz

    2013-11-11

    Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

  2. Iterative methods for large scale static analysis of structures on a scalable multiprocessor supercomputer

    NASA Technical Reports Server (NTRS)

    Sobh, Nahil Atef

    1992-01-01

    A parallel Preconditioned Conjugate Gradient (PCG) iterative solver has been developed and implemented on the iPSC-860 scalable hypercube. This new implementation makes use of the Parallel Automated Runtime Toolkit at ICASE (PARTI) primitives to efficiently program irregular communications patterns that exist in general sparse matrices and in particular in the finite element sparse stiffness matrices. The iterative PCG has been used to solve the finite element equations that result from discretizing large scale aerospace structures. In particular, the static response of the High Speed Civil Transport (HSCT) finite element model is solved on the iPSC-860.

  3. Could the electroweak scale be linked to the large scale structure of the Universe?

    NASA Technical Reports Server (NTRS)

    Chakravorty, Alak; Massarotti, Alessandro

    1991-01-01

    We study a model where the domain walls are generated through a cosmological phase transition involving a scalar field. We assume the existence of a coupling between the scalar field and dark matter and show that the interaction between domain walls and dark matter leads to an energy dependent reflection mechanism. For a simple Yakawa coupling, we find that the vacuum expectation value of the scalar field is theta approx. equals 30GeV - 1TeV, in order for the model to be successful in the formation of large scale 'pancake' structures.

  4. Light domain walls, massive neutrinos and the large scale structure of the Universe

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1991-01-01

    Domain walls generated through a cosmological phase transition are considered, which interact nongravitationally with light neutrinos. At a redshift z greater than or equal to 10(exp 4), the network grows rapidly and is virtually decoupled from the matter. As the friction with the matter becomes dominant, a comoving network scale close to that of the comoving horizon scale at z of approximately 10(exp 4) gets frozen. During the later phases, the walls produce matter wakes of a thickness d of approximately 10h(exp -1)Mpc, that may become seeds for the formation of the large scale structure observed in the Universe.

  5. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  6. Phase transitions as the origin of large scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    A review of the formation of large scale structure through gravitational growth of primordial perturbations is given. This is followed by a discussion of how symmetry breaking phase transitions in the early universe might have produced the required perturbations, in particular through the formation and evolution of a network of cosmic strings. Finally, the statistical mechanics of string networks, for both cosmic and fundamental strings is discussed, leading to some more speculative ideas on the possible role of fundamental strings (superstrings or heterotic strings) in the very early universe.

  7. Contributions to the understanding of large-scale coherent structures in developing free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Liu, J. T. C.

    1986-01-01

    Advances in the mechanics of boundary layer flow are reported. The physical problems of large scale coherent structures in real, developing free turbulent shear flows, from the nonlinear aspects of hydrodynamic stability are addressed. The presence of fine grained turbulence in the problem, and its absence, lacks a small parameter. The problem is presented on the basis of conservation principles, which are the dynamics of the problem directed towards extracting the most physical information, however, it is emphasized that it must also involve approximations.

  8. FROM FINANCE TO COSMOLOGY: THE COPULA OF LARGE-SCALE STRUCTURE

    SciTech Connect

    Scherrer, Robert J.; Berlind, Andreas A.; Mao, Qingqing; McBride, Cameron K.

    2010-01-01

    Any multivariate distribution can be uniquely decomposed into marginal (one-point) distributions, and a function called the copula, which contains all of the information on correlations between the distributions. The copula provides an important new methodology for analyzing the density field in large-scale structure. We derive the empirical two-point copula for the evolved dark matter density field. We find that this empirical copula is well approximated by a Gaussian copula. We consider the possibility that the full n-point copula is also Gaussian and describe some of the consequences of this hypothesis. Future directions for investigation are discussed.

  9. Highly ordered surface structure of large-scale porphyrin aggregates assembled from protonated TPP and water

    NASA Astrophysics Data System (ADS)

    Udal'tsov, Alexander V.; Bolshakova, Anastasia V.; Vos, Johannes G.

    2014-05-01

    Large-scale aggregates assembled from protonated meso-tetraphenylporphine (TPP) dimers and water have been investigated by IR and resonance Raman spectroscopy and also by scanning electron microscopy (SEM). It was found that the properties of water confined in the aggregates depend on the physical state of the support. When the aggregates were deposited on a solid CaF2 plate, they showed properties consistent with a quasi-crystalline structure. But when the aggregates were dispersed in oil, their IR characteristics were different; the vibration bands of the confined water were like those of water in liquid state. A doublet at about 1000 cm-1, components of which have been attributed to specific vibrations of H3O+ and H2O bound in the structure of water-porphyrin dimeric complex, was found in IR and resonance Raman spectra (λex = 441.6 nm) of protonated TPP aggregates. This doublet indicates the hydrogen ion involving in the vibrational system of water-porphyrin dimeric complex with hydrogen bonding by similar way as in so-called Zundel cation. The resonance Raman spectrum shows evidence for proton sharing between protonated water dimer and N groups of the pyrrole rings. SEM results indicate that the large-scale aggregates of the protonated porphyrin possess highly ordered structure, are only observed when using extremely pure water.

  10. The Signature of Large Scale Structures on the Very High Energy Gamma-Ray Sky

    SciTech Connect

    Cuoco, A.; Hannestad, S.; Haugbolle, T.; Miele, G.; Serpico, P.D.; Tu, H.; /Aarhus U. /UC, Irvine

    2006-12-01

    If the diffuse extragalactic gamma ray emission traces the large scale structures of the universe, peculiar anisotropy patterns are expected in the gamma ray sky. In particular, because of the cutoff distance introduced by the absorption of 0.1-10 TeV photons on the infrared/optical background, prominent correlations with the local structures within a range of few hundreds Mpc should be present. We provide detailed predictions of the signal based on the PSCz map of the local universe. We also use mock N-body catalogues complemented with the halo model of structures to study some statistical features of the expected signatures. The results are largely independent from cosmological details, and depend mostly on the index of correlation (or bias) of the sources with respect to the large scale distribution of galaxies. For instance, the predicted signal in the case of a quadratic correlation (as it may happen for a dark matter annihilation contribution to the diffuse gamma flux) differs substantially from a linear correlation case, providing a complementary tool to unveil the nature of the sources of the diffuse gamma ray emission. The chances of the present and future space and ground based observatories to measure these features are discussed.

  11. Measures of large-scale structure in the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.

  12. Measures of large-scale structure in the CfA redshift survey slices

    SciTech Connect

    De Lapparent, V.; Geller, M.J.; Huchra, J.P. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )

    1991-03-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs.

  13. Epitaxial B-Graphene: Large-Scale Growth and Atomic Structure.

    PubMed

    Usachov, Dmitry Yu; Fedorov, Alexander V; Petukhov, Anatoly E; Vilkov, Oleg Yu; Rybkin, Artem G; Otrokov, Mikhail M; Arnau, Andrés; Chulkov, Evgueni V; Yashina, Lada V; Farjam, Mani; Adamchuk, Vera K; Senkovskiy, Boris V; Laubschat, Clemens; Vyalikh, Denis V

    2015-07-28

    Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping. PMID:26121999

  14. Effect of Large-Scale Bathymetry on Internal Wave Structure in Lakes

    NASA Astrophysics Data System (ADS)

    Fricker, Paul D.; Nepf, Heidi M.

    1998-11-01

    Internal wave structure can be strongly influenced by large-scale bathymetry. In particular, analytic solutions suggest that seiche motion is amplified in shallow regions, so that seiche-induced mixing should be augmented over shelf bathymetry. A combination of field and numerical studies is used to examine the dynamic significance of simple bathymetric variation as well the potential impact on bed-source contamination. Internal wave eigensolutions are evaluated numerically for a model bathmetry which includes a shallow ledge and compared to simpler solutions such as the box-model lake. The predicted spatial structure of isotherm displacement predicted for a V1H1 mode is compared with actual thermistor chain data, collected in the Upper Mystic Lake, near Boston, MA. The comparison confirms the predicted modal structure, specifically including the amplification of seiche motions on the shelf. We consider how large-scale bathymetry of the lake may focus internal wave energy and create local 'hot spots' where the vertical flux of contaminant is accelerated. Because the spatial heterogeneity of internal wave motions can influence spatial distribution and redistribution of contaminants, these motions have important implications for long-term fate of watershed contamination and the interpretation of historic contamination through sediment records.

  15. Structure of exotic nuclei by large-scale shell model calculations

    SciTech Connect

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-11-02

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component.

  16. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  17. Symposium on Parallel Computational Methods for Large-scale Structural Analysis and Design, 2nd, Norfolk, VA, US

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O. (Editor); Housner, Jerrold M. (Editor)

    1993-01-01

    Computing speed is leaping forward by several orders of magnitude each decade. Engineers and scientists gathered at a NASA Langley symposium to discuss these exciting trends as they apply to parallel computational methods for large-scale structural analysis and design. Among the topics discussed were: large-scale static analysis; dynamic, transient, and thermal analysis; domain decomposition (substructuring); and nonlinear and numerical methods.

  18. On the soft limit of the large scale structure power spectrum: UV dependence

    NASA Astrophysics Data System (ADS)

    Garny, Mathias; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2015-11-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an `anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ~ 10% effect, and plausibly smaller.

  19. Overlapping communities reveal rich structure in large-scale brain networks during rest and task conditions.

    PubMed

    Najafi, Mahshid; McMenamin, Brenton W; Simon, Jonathan Z; Pessoa, Luiz

    2016-07-15

    Large-scale analysis of functional MRI data has revealed that brain regions can be grouped into stable "networks" or communities. In many instances, the communities are characterized as relatively disjoint. Although recent work indicates that brain regions may participate in multiple communities (for example, hub regions), the extent of community overlap is poorly understood. To address these issues, here we investigated large-scale brain networks based on "rest" and task human functional MRI data by employing a mixed-membership Bayesian model that allows each brain region to belong to all communities simultaneously with varying membership strengths. The approach allowed us to 1) compare the structure of disjoint and overlapping communities; 2) determine the relationship between functional diversity (how diverse is a region's functional activation repertoire) and membership diversity (how diverse is a region's affiliation to communities); 3) characterize overlapping community structure; 4) characterize the degree of non-modularity in brain networks; 5) study the distribution of "bridges", including bottleneck and hub bridges. Our findings revealed the existence of dense community overlap that was not limited to "special" hubs. Furthermore, the findings revealed important differences between community organization during rest and during specific task states. Overall, we suggest that dense overlapping communities are well suited to capture the flexible and task dependent mapping between brain regions and their functions. PMID:27129758

  20. A quantitative approach to the topology of large-scale structure. [for galactic clustering computation

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.

    1987-01-01

    A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.

  1. Time-sliced perturbation theory for large scale structure I: general formalism

    NASA Astrophysics Data System (ADS)

    Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  2. Large-scale structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Spergel, David N.; Turok, Nail

    1991-01-01

    This paper studies the formation of large-scale structure by global texture in a flat universe dominated by cold dark matter. A code for evolution of the texture fields was combined with an N-body code for evolving the dark matter. The results indicate some promising aspects: with only one free parameter, the observed galaxy-galaxy correlation function is reproduced, clusters of galaxies are found to be significantly clustered on a scale of 20-50/h Mpc, and coherent structures of over 50/h Mpc in the galaxy distribution were found. The large-scale streaming motions observed are in good agreement with the observations: the average magnitude of the velocity field smoothed over 30/h Mpc is 430 km/sec. Global texture produces a cosmic Mach number that is compatible with observation. Also, significant evolution of clusters at low redshift was seen. Possible problems for the theory include too high velocity dispersions in clusters, and voids which are not as empty as those observed.

  3. CMB lensing bispectrum from nonlinear growth of the large scale structure

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya

    2016-06-01

    We discuss detectability of the nonlinear growth of the large-scale structure in the cosmic microwave background (CMB) lensing. The lensing signals involved in the CMB fluctuations have been measured from multiple CMB experiments, such as Atacama Cosmology Telescope (ACT), Planck, POLARBEAR, and South Pole Telescope (SPT). The reconstructed CMB lensing signals are useful to constrain cosmology via their angular power spectrum, while detectability and cosmological application of their bispectrum induced by the nonlinear evolution are not well studied. Extending the analytic estimate of the galaxy lensing bispectrum presented by Takada and Jain (2004) to the CMB case, we show that even near term CMB experiments such as Advanced ACT, Simons Array and SPT3G could detect the CMB lensing bispectrum induced by the nonlinear growth of the large-scale structure. In the case of the CMB Stage-IV, we find that the lensing bispectrum is detectable at ≳50 σ statistical significance. This precisely measured lensing bispectrum has rich cosmological information, and could be used to constrain cosmology, e.g., the sum of the neutrino masses and the dark-energy properties.

  4. Swirling around filaments: are large-scale structure vortices spinning up dark haloes?

    NASA Astrophysics Data System (ADS)

    Laigle, C.; Pichon, C.; Codis, S.; Dubois, Y.; Le Borgne, D.; Pogosyan, D.; Devriendt, J.; Peirani, S.; Prunet, S.; Rouberol, S.; Slyz, A.; Sousbie, T.

    2015-01-01

    The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with, their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60° relative to random orientations. The cross-sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of haloes embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller haloes induced by this large-scale coherence, as argued in Codis et al. In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass haloes form) dominates the angular momentum budget of these haloes. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.

  5. Measuring the matter energy density and Hubble parameter from large scale structure

    SciTech Connect

    Lee, Seokcheon

    2014-02-01

    We investigate the method to measure both the present value of the matter energy density contrast and the Hubble parameter directly from the measurement of the linear growth rate which is obtained from the large scale structure of the Universe. From this method, one can obtain the value of the nuisance cosmological parameter Ω{sub m0} (the present value of the matter energy density contrast) within 3% error if the growth rate measurement can be reached z > 3.5. One can also investigate the evolution of the Hubble parameter without any prior on the value of H{sub 0} (the current value of the Hubble parameter). Especially, estimating the Hubble parameter are insensitive to the errors on the measurement of the normalized growth rate fσ{sub 8}. However, this method requires the high z (z > 3.5) measurement of the growth rate in order to get the less than 5% errors on the measurements of H(z) at z ≤ 1.2 with the redshift bin Δz = 0.2. Thus, this will be suitable for the next generation large scale structure galaxy surveys like WFMOS and LSST.

  6. Flaglets for studying the large-scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Peiris, Hiranya V.; McEwen, Jason D.

    2013-09-01

    Pressing questions in cosmology such as the nature of dark matter and dark energy can be addressed using large galaxy surveys, which measure the positions, properties and redshifts of galaxies in order to map the large-scale structure of the Universe. We review the Fourier-Laguerre transform, a novel transform in 3D spherical coordinates which is based on spherical harmonics combined with damped Laguerre polynomials and appropriate for analysing galaxy surveys. We also recall the construction of aglets, 3D wavelets obtained through a tiling of the Fourier-Laguerre space, which can be used to extract scale-dependent, spatially localised features on the ball. We exploit a sampling theorem to obtain exact Fourier-Laguerre and aglet transforms, such that band-limited signals can analysed and reconstructed at oating point accuracy on a nite number of voxels on the ball. We present a potential application of the aglet transform for nding voids in galaxy surveys and studying the large-scale structure of the Universe.

  7. Formation of large-scale magnetic structures associated with the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    Barkov, M. V.; Bosch-Ramon, V.

    2014-05-01

    Context. The Fermi bubbles are part of a complex region of the Milky Way. This region presents broadband extended non-thermal radiation, apparently coming from a physical structure rooted at the Galactic centre and with a partly ordered magnetic field threading it. Aims: We explore the possibility of an explosive origin for the Fermi bubble region to explain its morphology, in particular that of the large-scale magnetic fields, and provide context for the broadband non-thermal radiation. Methods: We performed 3D magnetohydrodynamical simulations of an explosion that occurred a few million years ago that pushed and sheared a surrounding magnetic loop, anchored in the molecular torus around the Galactic centre. Results: Our results can explain the formation of the large-scale magnetic structure in the Fermi bubble region. Consecutive explosive events may match the morphology of the region better. Faster velocities at the top of the shocks than at their sides may explain the hardening with distance from the Galactic plane found in the GeV emission. Conclusions: In the framework of our scenario, we estimate the lifetime of the Fermi bubbles as ≈2 × 106 yr, with a total energy injected in the explosion(s) of ≳1055 ergs. The broadband non-thermal radiation from the region may be explained by leptonic emission, which is more extended in radio and X-rays, and is confined to the Fermi bubbles in gamma rays.

  8. Large scale nonlinear numerical optimal control for finite element models of flexible structures

    NASA Technical Reports Server (NTRS)

    Shoemaker, Christine A.; Liao, Li-Zhi

    1990-01-01

    This paper discusses the development of large scale numerical optimal control algorithms for nonlinear systems and their application to finite element models of structures. This work is based on our expansion of the optimal control algorithm (DDP) in the following steps: improvement of convergence for initial policies in non-convex regions, development of a numerically accurate penalty function method approach for constrained DDP problems, and parallel processing on supercomputers. The expanded constrained DDP algorithm was applied to the control of a four-bay, two dimensional truss with 12 soft members, which generates geometric nonlinearities. Using an explicit finite element model to describe the structural system requires 32 state variables and 10,000 time steps. Our numerical results indicate that for constrained or unconstrained structural problems with nonlinear dynamics, the results obtained by our expanded constrained DDP are significantly better than those obtained using linear-quadratic feedback control.

  9. The dark mark of large-scale structure on the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Granett, Benjamin R.

    2010-10-01

    The cosmic microwave background (CMB) offers a screen to study the Universe in projection. Large-scale structures leave gravitational imprints on the background radiation through the integrated Sachs-Wolfe effect. In an accelerating universe, photons following trajectories across large clusters or voids are heated or cooled as the gravitational potential decays. The hot and cold marks left on the radiation field are a direct signature of dark energy in a spatially flat universe. We use the Sloan Digital Sky Survey to trace large-scale structures and confirm their effect on the cosmic microwave background. We construct a map of the anisotropy over the survey area and find that the pattern is present on the microwave sky. This detection demonstrates that the positive statistical correlation between the galaxy density and the CMB temperature reported in the literature is consistent with the integrated Sachs-Wolfe effect under dark energy. The imprints of individual voids and clusters can be isolated on the cosmic microwave background. By summing the signal from voids and clusters, we overcome the noise of primary fluctuations and produce an image of the average imprint left by the gravitational potential of the structures. Intriguingly, the detection level surpasses the all-sky integrated Sachs-Wolfe measurement. We suggest that the technique may be used as a new probe of dark energy. Supervoid and supercluster structures could be responsible for anomalous regions on the microwave background. We introduce the method of constrained realization to identify statistically anomalous regions on the sky. Of particular interest is the Cold Spot which could arise from a supervoid structure at low redshift. To test this idea, we conduct a photometric redshift survey of the region to moderate redshift. However, we find no strong evidence that a large void is responsible.

  10. Ward identities and consistency relations for the large scale structure with multiple species

    SciTech Connect

    Peloso, Marco; Pietroni, Massimo E-mail: pietroni@pd.infn.it

    2014-04-01

    We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistency relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field.

  11. Large-scale structure evolution in axisymmetric, compressible free-shear layers

    SciTech Connect

    Aeschliman, D.P.; Baty, R.S.

    1997-05-01

    This paper is a description of work-in-progress. It describes Sandia`s program to study the basic fluid mechanics of large-scale mixing in unbounded, compressible, turbulent flows, specifically, the turbulent mixing of an axisymmetric compressible helium jet in a parallel, coflowing compressible air freestream. Both jet and freestream velocities are variable over a broad range, providing a wide range mixing layer Reynolds number. Although the convective Mach number, M{sub c}, range is currently limited by the present nozzle design to values of 0.6 and below, straightforward nozzle design changes would permit a wide range of convective Mach number, to well in excess of 1.0. The use of helium allows simulation of a hot jet due to the large density difference, and also aids in obtaining optical flow visualization via schlieren due to the large density gradient in the mixing layer. The work comprises a blend of analysis, experiment, and direct numerical simulation (DNS). There the authors discuss only the analytical and experimental efforts to observe and describe the evolution of the large-scale structures. The DNS work, used to compute local two-point velocity correlation data, will be discussed elsewhere.

  12. Efficient Large-Scale Structure From Motion by Fusing Auxiliary Imaging Information.

    PubMed

    Cui, Hainan; Shen, Shuhan; Gao, Wei; Hu, Zhanyi

    2015-11-01

    One of the potentially effective means for large-scale 3D scene reconstruction is to reconstruct the scene in a global manner, rather than incrementally, by fully exploiting available auxiliary information on the imaging condition, such as camera location by Global Positioning System (GPS), orientation by inertial measurement unit (or compass), focal length from EXIF, and so on. However, such auxiliary information, though informative and valuable, is usually too noisy to be directly usable. In this paper, we present an approach by taking advantage of such noisy auxiliary information to improve structure from motion solving. More specifically, we introduce two effective iterative global optimization algorithms initiated with such noisy auxiliary information. One is a robust rotation averaging algorithm to deal with contaminated epipolar graph, the other is a robust scene reconstruction algorithm to deal with noisy GPS data for camera centers initialization. We found that by exclusively focusing on the estimated inliers at the current iteration, the optimization process initialized by such noisy auxiliary information could converge well and efficiently. Our proposed method is evaluated on real images captured by unmanned aerial vehicle, StreetView car, and conventional digital cameras. Extensive experimental results show that our method performs similarly or better than many of the state-of-art reconstruction approaches, in terms of reconstruction accuracy and completeness, but is more efficient and scalable for large-scale image data sets. PMID:26111397

  13. The structure of large-scale synchronized firing in primate retina

    PubMed Central

    Shlens, Jonathon; Field, Greg D.; Gauthier, Jeffrey L.; Greschner, Martin; Sher, Alexander; Litke, Alan M.; Chichilnisky, E.J.

    2009-01-01

    Synchronized firing among neurons has been proposed to constitute an elementary aspect of the neural code in sensory and motor systems. However, it remains unclear how synchronized firing affects the large-scale patterns of activity and redundancy of visual signals in a complete population of neurons. We recorded simultaneously from hundreds of retinal ganglion cells in primate retina, and examined synchronized firing in completely sampled populations of ~50–100 ON-parasol cells, which form a major projection to the magnocellular layers of the lateral geniculate nucleus. Synchronized firing in pairs of cells was a subset of a much larger pattern of activity that exhibited local, isotropic spatial properties. However, a simple model based solely on interactions between adjacent cells reproduced 99% of the spatial structure and scale of synchronized firing. No more than 20% of the variability in firing of an individual cell was predictable from the activity of its neighbors. These results held both for spontaneous firing and in the presence of independent visual modulation of the firing of each cell. In sum, large-scale synchronized firing in the entire population of ON-parasol cells appears to reflect simple neighbor interactions, rather than a unique visual signal or a highly redundant coding scheme. PMID:19369571

  14. Structural organization of large and very-large scales in turbulent pipe flow simulation

    NASA Astrophysics Data System (ADS)

    Baltzer, Jon; Adrian, Ronald; Wu, Xiaohua

    2012-11-01

    The physical structures of velocity are examined in a recent DNS of fully developed incompressible turbulent pipe flow at ReD = 24 580 (R+ = 684 . 8) with a periodic domain length of 30 pipe radii R (Wu, Baltzer, & Adrian, J. Fluid Mech., 2012). In this simulation, the long motions of negative velocity fluctuation correspond to large fractions of energy present at very long streamwise wavelengths (>= 3 R). We study how long motions are composed of smaller motions. We characterize the spatial arrangements of very large scale motions (VLSMs) and find that they possess dominant helix angles (azimuthal inclinations relative to streamwise) that are revealed by 2D and 3D two-point spatial correlations of velocity. The correlations also reveal that the shorter, large scale motions (LSMs) that concatenate to comprise the VLSMs are themselves more streamwise aligned. We show that the largest VLSMs possess a form similar to roll cells and that they appear to play an important role in organizing the flow, while smaller scales of motion are necessary to create the strong streaks of velocity fluctuation that characterize the flow. Supported by NSF Award CBET-0933848.

  15. Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures.

    PubMed

    Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-ju; Jang, Won Ick; Yu, Han Young

    2012-03-01

    Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm(-3) and 40-80 m(2) g(-1), respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface. PMID:22293666

  16. Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures

    NASA Astrophysics Data System (ADS)

    Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G.; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-Ju; Jang, Won Ick; Yu, Han Young

    2012-02-01

    Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm-3 and 40-80 m2 g-1, respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.

  17. Molecular clouds and the large-scale structure of the galaxy

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick; Stacy, J. Gregory

    1990-01-01

    The application of molecular radio astronomy to the study of the large-scale structure of the Galaxy is reviewed and the distribution and characteristic properties of the Galactic population of Giant Molecular Clouds (GMCs), derived primarily from analysis of the Columbia CO survey, and their relation to tracers of Population 1 and major spiral features are described. The properties of the local molecular interstellar gas are summarized. The CO observing programs currently underway with the Center for Astrophysics 1.2 m radio telescope are described, with an emphasis on projects relevant to future comparison with high-energy gamma-ray observations. Several areas are discussed in which high-energy gamma-ray observations by the EGRET (Energetic Gamma-Ray Experiment Telescope) experiment aboard the Gamma Ray Observatory will directly complement radio studies of the Milky Way, with the prospect of significant progress on fundamental issues related to the structure and content of the Galaxy.

  18. Large-scale structure from cosmic-string loops in a baryon-dominated universe

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Scherrer, Robert J.

    1988-01-01

    The results are presented of a numerical simulation of the formation of large-scale structure in a universe with Omega(0) = 0.2 and h = 0.5 dominated by baryons in which cosmic strings provide the initial density perturbations. The numerical model yields a power spectrum. Nonlinear evolution confirms that the model can account for 700 km/s bulk flows and a strong cluster-cluster correlation, but does rather poorly on smaller scales. There is no visual 'filamentary' structure, and the two-point correlation has too steep a logarithmic slope. The value of G mu = 4 x 10 to the -6th is significantly lower than previous estimates for the value of G mu in baryon-dominated cosmic string models.

  19. On a digital wireless impact-monitoring network for large-scale composite structures

    NASA Astrophysics Data System (ADS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-08-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network.

  20. Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow.

    PubMed

    Ritsema, J; Van Heijst, H J

    2000-01-01

    Systematic analyses of earthquake-generated seismic waves have resulted in models of three-dimensional elastic wavespeed structure in Earth's mantle. This paper describes the development and the dominant characteristics of one of the most recently developed models. This model is based on seismic wave travel times and wave shapes from over 100,000 ground motion recordings of earthquakes that occurred between 1980 and 1998. It shows signatures of plate tectonic processes to a depth of about 1,200 km in the mantle, and it demonstrates the presence of large-scale structure throughout the lower 2,000 km of the mantle. Seismological analyses make it increasingly more convincing that geologic processes shaping Earth's surface are intimately linked to physical processes in the deep mantle. PMID:11077479

  1. The Price of Precision: Large-Scale Mapping of Forest Structure and Biomass Using Airborne Lidar

    NASA Astrophysics Data System (ADS)

    Dubayah, R.

    2015-12-01

    Lidar remote sensing provides one of the best means for acquiring detailed information on forest structure. However, its application over large areas has been limited largely because of its expense. Nonetheless, extant data exist over many states in the U.S., funded largely by state and federal consortia and mainly for infrastructure, emergency response, flood plain and coastal mapping. These lidar data are almost always acquired in leaf-off seasons, and until recently, usually with low point count densities. Even with these limitations, they provide unprecedented wall-to-wall mappings that enable development of appropriate methodologies for large-scale deployment of lidar. In this talk we summarize our research and lessons learned in deriving forest structure over regional areas as part of NASA's Carbon Monitoring System (CMS). We focus on two areas: the entire state of Maryland and Sonoma County, California. The Maryland effort used low density, leaf-off data acquired by each county in varying epochs, while the on-going Sonoma work employs state-of-the-art, high density, wall-to-wall, leaf-on lidar data. In each area we combine these lidar coverages with high-resolution multispectral imagery from the National Agricultural Imagery Program (NAIP) and in situ plot data to produce maps of canopy height, tree cover and biomass, and compare our results against FIA plot data and national biomass maps. Our work demonstrates that large-scale mapping of forest structure at high spatial resolution is achievable but products may be complex to produce and validate over large areas. Furthermore, fundamental issues involving statistical approaches, plot types and sizes, geolocation, modeling scales, allometry, and even the definitions of "forest" and "non-forest" must be approached carefully. Ultimately, determining the "price of precision", that is, does the value of wall-to-wall forest structure data justify their expense, should consider not only carbon market applications

  2. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    SciTech Connect

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.

  3. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGESBeta

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  4. Large-scale internal structure in volcanogenic breakout flood deposits: Extensive GPR survey on volcaniclastic deposits

    NASA Astrophysics Data System (ADS)

    Kataoka, K.; Gomez, C. A.

    2012-12-01

    Large-scale outburst floods from volcanic lakes such as caldera lakes or volcanically dammed river-valleys tend to be voluminous with total discharge of > 1-10s km3 and peak discharge of >10000s to 100000s m3 s-1. Such a large flood can travel long distance and leave sediments and bedforms/landforms extensively with large-scale internal structures, which are difficult to assess from single local sites. Moreover, the sediments and bedforms/landforms are sometimes untraceable, and outcrop information obtained by classical geological and geomorphological field surveys is limited to the dissected/terraced parts of fan body, road cuts and/or large quarries. Therefore, GPR (Ground Penetrating Radar), using the properties of electromagnetic waves' propagation through media, seems best adapted for the appraisal of large-scale subsurface structures. Recently, studies on GPR applications to volcanic deposits have successfully captured images of lava flows and volcaniclastic deposits and proved the usefulness of this method even onto the volcanic areas which often encompass complicated stratigraphy and structures with variable material, grainsize, and ferromagnetic content. Using GPR, the present study aims to understand the large-scale internal structures of volcanogenic flood deposits. The survey was carried out over two volcanogenic flood fan (or apron) sediments in northeast Japan, at Numazawa and Towada volcanoes. The 5 ka Numazawa flood deposits in the Tadami river catchment that has been emplaced by a breakout flood from ignimbrite-dammed valley leaving pumiceous gravelly sediments with meter-sized boulders in the flow path. At Towada volcano, a comparable flood event originating from a breach in the caldera rim emplaced the 13-15 ka Sanbongi fan deposits in the Oirase river valley, which is characterized by a bouldery fan deposits. The GPR data was collected following 200 to 500 m long lateral and longitudinal transects, which were captured using a GPR Pulse

  5. Fingerprints of anomalous primordial Universe on the abundance of large scale structures

    SciTech Connect

    Baghram, Shant; Abolhasani, Ali Akbar; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: abolhasani@ipm.ir E-mail: MohammadHossein.Namjoo@utdallas.edu

    2014-12-01

    We study the predictions of anomalous inflationary models on the abundance of structures in large scale structure observations. The anomalous features encoded in primordial curvature perturbation power spectrum are (a): localized feature in momentum space, (b): hemispherical asymmetry and (c): statistical anisotropies. We present a model-independent expression relating the number density of structures to the changes in the matter density variance. Models with localized feature can alleviate the tension between observations and numerical simulations of cold dark matter structures on galactic scales as a possible solution to the missing satellite problem. In models with hemispherical asymmetry we show that the abundance of structures becomes asymmetric depending on the direction of observation to sky. In addition, we study the effects of scale-dependent dipole amplitude on the abundance of structures. Using the quasars data and adopting the power-law scaling k{sup n{sub A}-1} for the amplitude of dipole we find the upper bound n{sub A} < 0.6 for the spectral index of the dipole asymmetry. In all cases there is a critical mass scale M{sub c} in which for M M{sub c}) the enhancement in variance induced from anomalous feature decreases (increases) the abundance of dark matter structures in Universe.

  6. Large-Scale Screening of Zeolite Structures for CO2 Membrane Separations

    SciTech Connect

    Kim, JH; Abouelnasr, M; Lin, LC; Smit, B

    2013-05-22

    We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N-2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance of over 87 000 different zeolite structures, including the known IZA zeolite structures. Our novel, efficient algorithm using graphics processing units can accurately characterize both the adsorption and diffusion properties of a given structure in just a few seconds and accordingly find a set of optimal structures for different desired purity of separated gases from a large database of porous materials in reasonable wall time. Our analysis reveals that the optimal structures for separations usually consist of channels with adsorption sites spread relatively uniformly across the entire channel such that they feature well-balanced CO2 adsorption and diffusion properties. Our screening also shows that the top structures in the predicted zeolite database outperform the best known zeolite by a factor of 4-7. Finally, we have identified a completely different optimal set of zeolite structures that are suitable for an inverse process, in which the CO2 is retained while CH4 or N-2 is passed through a membrane.

  7. Large-scale screening of zeolite structures for CO2 membrane separations.

    PubMed

    Kim, Jihan; Abouelnasr, Mahmoud; Lin, Li-Chiang; Smit, Berend

    2013-05-22

    We have conducted large-scale screening of zeolite materials for CO2/CH4 and CO2/N2 membrane separation applications using the free energy landscape of the guest molecules inside these porous materials. We show how advanced molecular simulations can be integrated with the design of a simple separation process to arrive at a metric to rank performance of over 87,000 different zeolite structures, including the known IZA zeolite structures. Our novel, efficient algorithm using graphics processing units can accurately characterize both the adsorption and diffusion properties of a given structure in just a few seconds and accordingly find a set of optimal structures for different desired purity of separated gases from a large database of porous materials in reasonable wall time. Our analysis reveals that the optimal structures for separations usually consist of channels with adsorption sites spread relatively uniformly across the entire channel such that they feature well-balanced CO2 adsorption and diffusion properties. Our screening also shows that the top structures in the predicted zeolite database outperform the best known zeolite by a factor of 4-7. Finally, we have identified a completely different optimal set of zeolite structures that are suitable for an inverse process, in which the CO2 is retained while CH4 or N2 is passed through a membrane. PMID:23654217

  8. Herschel view of the large-scale structure in the Chamaeleon dark clouds

    NASA Astrophysics Data System (ADS)

    Alves de Oliveira, C.; Schneider, N.; Merín, B.; Prusti, T.; Ribas, Á.; Cox, N. L. J.; Vavrek, R.; Könyves, V.; Arzoumanian, D.; Puga, E.; Pilbratt, G. L.; Kóspál, Á.; André, Ph.; Didelon, P.; Men'shchikov, A.; Royer, P.; Waelkens, C.; Bontemps, S.; Winston, E.; Spezzi, L.

    2014-08-01

    Context. The Chamaeleon molecular cloud complex is one of the nearest star-forming sites and encompasses three molecular clouds (Cha I, II, and III) that have a different star-formation history, from quiescent (Cha III) to actively forming stars (Cha II), and one that reaches the end of star-formation (Cha I). Aims: We aim at characterising the large-scale structure of the three sub-regions of the Chamaeleon molecular cloud complex by analysing new far-infrared images taken with the Herschel Space Observatory. Methods: We derived column density and temperature maps using PACS and SPIRE observations from the Herschel Gould Belt Survey and applied several tools, such as filament tracing, power-spectra, Δ-variance, and probability distribution functions (PDFs) of the column density, to derive the physical properties. Results: The column density maps reveal a different morphological appearance for each of the three clouds, with a ridge-like structure for Cha I, a clump-dominated regime for Cha II, and an intricate filamentary network for Cha III. The filament width is measured to be about 0.12 ± 0.04 pc in the three clouds, and the filaments are found to be gravitationally unstable in Cha I and II, but mostly subcritical in Cha III. Faint filaments (striations) are prominent in Cha I and are mostly aligned with the large-scale magnetic field. The PDFs of all regions show a lognormal distribution at low column densities. For higher densities, the PDF of Cha I shows a turnover indicative of an extended higher density component and culminates in a power-law tail. Cha II shows a power-law tail with a slope characteristic of gravity. The PDF of Cha III can be best fit by a single lognormal. Conclusions: The turbulence properties of the three regions are found to be similar, pointing towards a scenario where the clouds are impacted by large-scale processes. The magnetic field might possibly play an important role for the star formation efficiency in the Chamaeleon clouds

  9. The topology of large-scale structure. VI - Slices of the universe

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. R., III; Melott, Adrian L.; Karachentsev, I. D.

    1992-01-01

    Results of an investigation of the topology of large-scale structure in two observed slices of the universe are presented. Both slices pass through the Coma cluster and their depths are 100 and 230/h Mpc. The present topology study shows that the largest void in the CfA slice is divided into two smaller voids by a statistically significant line of galaxies. The topology of toy models like the white noise and bubble models is shown to be inconsistent with that of the observed slices. A large N-body simulation was made of the biased cloud dark matter model and the slices are simulated by matching them in selection functions and boundary conditions. The genus curves for these simulated slices are spongelike and have a small shift in the direction of a meatball topology like those of observed slices.

  10. N-point statistics of large-scale structure in the Zel'dovich approximation

    SciTech Connect

    Tassev, Svetlin

    2014-06-01

    Motivated by the results presented in a companion paper, here we give a simple analytical expression for the matter n-point functions in the Zel'dovich approximation (ZA) both in real and in redshift space (including the angular case). We present numerical results for the 2-dimensional redshift-space correlation function, as well as for the equilateral configuration for the real-space 3-point function. We compare those to the tree-level results. Our analysis is easily extendable to include Lagrangian bias, as well as higher-order perturbative corrections to the ZA. The results should be especially useful for modelling probes of large-scale structure in the linear regime, such as the Baryon Acoustic Oscillations. We make the numerical code used in this paper freely available.

  11. Quantifying the colour-dependent stochasticity of large-scale structure

    NASA Astrophysics Data System (ADS)

    Patej, Anna; Eisenstein, Daniel

    2016-08-01

    We address the question of whether massive red and blue galaxies trace the same large-scale structure at z ˜ 0.6 using the CMASS sample of galaxies from Data Release 12 of the Sloan Digital Sky Survey III. After splitting the catalogue into subsamples of red and blue galaxies using a simple colour cut, we measure the clustering of both subsamples and construct the correlation coefficient, r, using two statistics. The correlation coefficient quantifies the stochasticity between the two subsamples, which we examine over intermediate scales (20 ≲ R ≲ 100 h-1 Mpc). We find that on these intermediate scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95 taking into account both statistics and r > 0.974 using the favoured statistic.

  12. The trispectrum in the Effective Field Theory of Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.; Zurek, Kathryn M.

    2016-06-01

    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporate vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.

  13. Quantifying the Colour-Dependent Stochasticity of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Patej, Anna; Eisenstein, Daniel

    2016-03-01

    We address the question of whether massive red and blue galaxies trace the same large-scale structure at z ˜ 0.6 using the CMASS sample of galaxies from Data Release 12 of the Sloan Digital Sky Survey III. After splitting the catalog into subsamples of red and blue galaxies using a simple colour cut, we measure the clustering of both subsamples and construct the correlation coefficient, r, using two statistics. The correlation coefficient quantifies the stochasticity between the two subsamples, which we examine over intermediate scales (20 ≲ R ≲ 100 h-1Mpc). We find that on these intermediate scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95 taking into account both statistics and r > 0.974 using the favored statistic.

  14. Large-scale structure and integrated Sachs-Wolfe effect in decaying vacuum cosmology

    NASA Astrophysics Data System (ADS)

    Velten, H.; Borges, H. A.; Carneiro, S.; Fazolo, R.; Gomes, S.

    2015-09-01

    The concordance particle creation model - a class of Λ(t) Cold Dark Matter (CDM) cosmologies - is studied using large-scale structure (LSS) formation, with particular attention to the integrated Sachs-Wolfe effect. The evolution of the gravitational potential and the amplitude of the cross-correlation of the cosmic microwave background (CMB) signal with LSS surveys are calculated in detail. We properly include in our analysis the peculiarities involving the baryonic dynamics of the Λ(t)CDM model which were not included in previous works. Although both the Λ(t)CDM and the standard cosmology are in agreement with available data for the CMB-LSS correlation, the former presents a slightly higher signal which can be identified with future data.

  15. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-01

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  16. Measuring the topology of large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1988-01-01

    An algorithm for quantitatively measuring the topology of large-scale structure has now been applied to a large number of observational data sets. The present paper summarizes and provides an overview of some of these observational results. On scales significantly larger than the correlation length, larger than about 1200 km/s, the cluster and galaxy data are fully consistent with a sponge-like random phase topology. At a smoothing length of about 600 km/s, however, the observed genus curves show a small shift in the direction of a meatball topology. Cold dark matter (CDM) models show similar shifts at these scales but not generally as large as those seen in the data. Bubble models, with voids completely surrounded on all sides by wall of galaxies, show shifts in the opposite direction. The CDM model is overall the most successful in explaining the data.

  17. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations.

    PubMed

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling's iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step. PMID:26133420

  18. The structure of the white-light corona and the large-scale solar magnetic field

    NASA Technical Reports Server (NTRS)

    Sime, D. G.; Mccabe, M. K.

    1990-01-01

    The large-scale density structure of the white-light solar corona is compared to the organization of the solar magnetic field as identified by the appearance of neutral lines in the photosphere to examine whether any consistent relationship exists between the two. During the period covering Carrington rotations 1717 to 1736 brightness enhancements in the low corona tend to lie over the global neutral sheet identified in the photospheric magnetic field. The brightest of these enhancements are associated with neutral lines throguh active regions. These associations are not 1-1, but do hold both in stable and evolving conditions of the corona. A significant number of long-lived neutral lines is found, including filaments seen in H-alpha, for which there are not coronal enhancements.

  19. Large-Scale Structures around Quasar Pairs at z ˜ 1

    NASA Astrophysics Data System (ADS)

    Sodré, L., Jr.; Boris, N. V.; Lima Neto, G. B.; Cypriano, E. S.; Santos, W. A.; Mendes de Oliveira, C.; West, M.

    2009-05-01

    We have used Gemini telescopes to study the photometric properties of four fields around the high-redshift quasar pairs QP1310+0007, QP1355-0032, QP0110-0219, and QP0114-3140z ˜ 1 with the aim of identifying large-scale structures -galaxy clusters or groups- around them. Our analysis reveals that QP0110-0219very strong and QP1310+0007 - QP1355-0032some evidence for the presence of rich galaxy clusters in direct vicinity of the pairs. On the other hand, QP0114-3140be an isolated pair in a poor environment. This work suggest that z ˜ 1 quasar pairs are excellent tracers of high density environments.

  20. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    NASA Technical Reports Server (NTRS)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  1. Automatic Three-Dimensional Measurement of Large-Scale Structure Based on Vision Metrology

    PubMed Central

    Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng

    2014-01-01

    All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods. PMID:24701143

  2. Automatic three-dimensional measurement of large-scale structure based on vision metrology.

    PubMed

    Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng

    2014-01-01

    All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods. PMID:24701143

  3. Efficient preconditioning of the electronic structure problem in large scale ab initio molecular dynamics simulations

    SciTech Connect

    Schiffmann, Florian; VandeVondele, Joost

    2015-06-28

    We present an improved preconditioning scheme for electronic structure calculations based on the orbital transformation method. First, a preconditioner is developed which includes information from the full Kohn-Sham matrix but avoids computationally demanding diagonalisation steps in its construction. This reduces the computational cost of its construction, eliminating a bottleneck in large scale simulations, while maintaining rapid convergence. In addition, a modified form of Hotelling’s iterative inversion is introduced to replace the exact inversion of the preconditioner matrix. This method is highly effective during molecular dynamics (MD), as the solution obtained in earlier MD steps is a suitable initial guess. Filtering small elements during sparse matrix multiplication leads to linear scaling inversion, while retaining robustness, already for relatively small systems. For system sizes ranging from a few hundred to a few thousand atoms, which are typical for many practical applications, the improvements to the algorithm lead to a 2-5 fold speedup per MD step.

  4. Mantle convection and the large scale structures of the Earth's gravitational field

    NASA Technical Reports Server (NTRS)

    Peltier, W. R.

    1985-01-01

    The connection between the observed large scale structure of the Earths' gravitational field, as represented by the GEM10 model, and the surface kinematic manifestations of plate tectonics, as represented by the absolute plate motion model of Minster and Jordan, is explored using a somewhat novel method of analysis. Two scalar derivatives of the field of surface plate velocities, namely the horizontal divergence and the radial vorticity, are computed from the plate motion data. These two scalars are respectively determined by the poloidal and toroidal scalars in terms of which any essentially solenoidal vector field may be completely represented. They provide a compact summary of the observed plate boundary types in nature, with oceanic ridges and trenches being essentially boundaries of divergence, and transform faults being essentially boundaries of vorticity.

  5. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure

    PubMed Central

    Therizols, Pierre

    2016-01-01

    Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes. PMID:27295501

  6. Large-Scale Predictive Drug Safety: From Structural Alerts to Biological Mechanisms.

    PubMed

    Garcia-Serna, Ricard; Vidal, David; Remez, Nikita; Mestres, Jordi

    2015-10-19

    The recent explosion of data linking drugs, proteins, and pathways with safety events has promoted the development of integrative systems approaches to large-scale predictive drug safety. The added value of such approaches is that, beyond the traditional identification of potentially labile chemical fragments for selected toxicity end points, they have the potential to provide mechanistic insights for a much larger and diverse set of safety events in a statistically sound nonsupervised manner, based on the similarity to drug classes, the interaction with secondary targets, and the interference with biological pathways. The combined identification of chemical and biological hazards enhances our ability to assess the safety risk of bioactive small molecules with higher confidence than that using structural alerts only. We are still a very long way from reliably predicting drug safety, but advances toward gaining a better understanding of the mechanisms leading to adverse outcomes represent a step forward in this direction. PMID:26360911

  7. First hints of large scale structures in the ultrahigh energy sky?

    SciTech Connect

    Cuoco, A.; Miele, G.; Serpico, Pasquale D.; /Fermilab

    2006-10-01

    The result of the recent publication [1] of a broad maximum around 25 degrees in the two-point autocorrelation function of ultra-high energy cosmic ray arrival directions has been intriguingly interpreted as the first imprint of the large scale structures (LSS) of baryonic matter in the near universe. We analyze this suggestion in light of the clustering properties expected from the PSCz astronomical catalogue of LSS. The chance probability of the signal is consistent within 2 {sigma} with the predictions based on the catalogue. No evidence for a significant cross-correlation of the observed events with known overdensities in the LSS is found, which may be due to the role of the galactic and extragalactic magnetic fields, and is however consistent with the limited statistics. The larger statistics to be collected by the Pierre Auger Observatory is needed to answer definitely the question.

  8. Gamma-rays from the Large Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2002-04-01

    Gamma-ray astronomy will play a crucial role in the investigation of nonthermal processes in the large scale structure of the universe. Particularly, galaxy clusters (GC) observations at this photon energy will help us understand the origin of radio emitting high energy particles, the possible level of cosmic-ray (CR) pressure in intracluster environment, and the strength of intracluster magnetic fields. In addition here we point out the importance of these observations for a possible detection of cluster accretion shocks and for constraining their CR acceleration efficiency. We model spatial and spectral properties of gamma-ray emission due to shock accelerated CRs in GC and emphasize the importance of imaging capability of upcoming gamma-ray facilities for a correct interpretation of observational results.

  9. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity.

    PubMed

    Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail

    2016-01-01

    With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework. PMID:27303272

  10. Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity

    PubMed Central

    Diaz-Pier, Sandra; Naveau, Mikaël; Butz-Ostendorf, Markus; Morrison, Abigail

    2016-01-01

    With the emergence of new high performance computation technology in the last decade, the simulation of large scale neural networks which are able to reproduce the behavior and structure of the brain has finally become an achievable target of neuroscience. Due to the number of synaptic connections between neurons and the complexity of biological networks, most contemporary models have manually defined or static connectivity. However, it is expected that modeling the dynamic generation and deletion of the links among neurons, locally and between different regions of the brain, is crucial to unravel important mechanisms associated with learning, memory and healing. Moreover, for many neural circuits that could potentially be modeled, activity data is more readily and reliably available than connectivity data. Thus, a framework that enables networks to wire themselves on the basis of specified activity targets can be of great value in specifying network models where connectivity data is incomplete or has large error margins. To address these issues, in the present work we present an implementation of a model of structural plasticity in the neural network simulator NEST. In this model, synapses consist of two parts, a pre- and a post-synaptic element. Synapses are created and deleted during the execution of the simulation following local homeostatic rules until a mean level of electrical activity is reached in the network. We assess the scalability of the implementation in order to evaluate its potential usage in the self generation of connectivity of large scale networks. We show and discuss the results of simulations on simple two population networks and more complex models of the cortical microcircuit involving 8 populations and 4 layers using the new framework. PMID:27303272

  11. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    DOE PAGESBeta

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 hmore » Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.« less

  12. The imprint of f(R) gravity on weak gravitational lensing I: Connection between observables and large-scale structure

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Shirasaki, Masato

    2016-04-01

    We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲ 10% difference between the standard ΛCDM and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e, underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 square degrees. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |f_R0| ≲ 10^{-5}. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.

  13. The imprint of f(R) gravity on weak gravitational lensing - I. Connection between observables and large-scale structure

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Shirasaki, Masato

    2016-07-01

    We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲10 per cent difference between the standard Λcold dark matter and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e. underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 deg2. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |fR0| ≲ 10-5. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.

  14. Extraction of very-large scale structures in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Roux, Stéphane; Kerhervé, Franck; Stanislas, Michel; Marc Foucaut, Jean; Delville, Joel; Team

    2012-11-01

    The examined flow is a zero-pressure gradient turbulent boundary layer. The data used are taken from the joined experimental campaign conducted during the european WALLTURB program in the large wind tunnel at Laboratoire de Mécanique de Lille (LML). The free-stream velocity is 10 m/s. At the investigated position, the boundary layer thickness is 30 cm and the Reynolds number based on the momentum thickness is 19100. A methodology for eduction of super-structures is presented. These structures are characterised by a large degree of persistance and are thought to participate actively to the turbulence regeneration in the near-wall region (Marusic et al. 2010). A time-resolved estimate of the three-dimensionnal structures is obtained by combining low-speed two-dimensional stereo-PIV at 4 Hz and a two-dimensionnal rake of 143 single hot-wire probes at 30 kHz. The very large scale structures are clearly reconstructed which exhibit a streamwise extent an order of magnitude larger than the boundary layer thickness. Interest is particulary focused on the low-speed species of these structures. Associated coounter-rotating vortices are also evidenced in good agreement with the litterature.

  15. Determining large-scale heliospheric structure using ultraviolet resonance line observations

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.

    1995-01-01

    Currently the Pioneer 10 and Voyager 1 and 2 spacecraft are beyond the orbit of Pluto, traveling outward from the Sun. Each is capable of detecting ultraviolet radiation resonantly scattered from hydrogen and helium atoms in the heliosphere and local interstellar medium. These observations are particularly well suited for the investigation of the large-scale heliospheric H and He distributions because the Voyager spacecraft are heading upstream, into the direction of local interstellar flow, whereas Pioneer 10 is heading downstream. Observations of the brightest resonance line, H Lyman-alpha, reveals that beyond about 20 AU from the Sun, upstream intensities decrease less quickly as a function of solar distance than downstream intensities. This implies that the heliospheric H distributions in the upstream and downstream directions are significantly different. Heliospheric H atoms originate in the local interstellar flow, and must penetrate through the heliospheric interface, where they are subject to charge exchange collisions with solar wind and interstellar protons. Models indicate that this process is probably responsible for the upstream/downstream difference in H Lyman-alpha. In addition, a recent spectroscopic determination of the H atom velocity distribution in the inner heliosphere implies a significant deceleration in the bulk flow speed of the heliospheric hydrogen gas relative to the helium flow, an effect that is also likely due to H-p charge exchange occurring in the upstream heliospheric interface region. In this presentation, recent heliospheric resonance line observations and their interpretations will be reviewed, focusing on their sensitivity to large-scale heliospheric structure.

  16. Herschel view of the large-scale structure in the Chamaeleon dark clouds

    NASA Astrophysics Data System (ADS)

    Alves de Oliveira, Catarina; Schneider, Nicola; Merín, Bruno; Prusti, Timo; Ribas, Álvaro; Cox, Nick; Vavrek, Roland; Könyves, Vera; Arzoumanian, Doris; Puga, Elena; Pilbratt, Göran; Kóspal, Ágnes; André, Philippe; Didelon, Pierre; Men'shchikov, Alexander; Royer, Pierre; Waelkens, Christoffel; Bontemps, Sylvain; Winston, Elaine

    2015-08-01

    The Chamaeleon molecular cloud complex is one of the nearest star-forming sites and encompasses three molecular clouds (Cha I, II, and III) that have a different star-formation history, from quiescent (Cha III) to actively forming stars (Cha II), and one that reaches the end of star-formation (Cha I). In this contribution we will present the analysis of the column density and temperature maps derived from PACS and SPIRE observations from the Herschel Gould Belt Survey. We find that the column density maps reveal a different morphological appearance for each of the three clouds, with a ridge-like structure for Cha I, a clump-dominated regime for Cha II, and an intricate filamentary network for Cha III. The filament width is measured to be about 0.12±0.04 pc in the three clouds, and the filaments are found to be gravitationally unstable in Cha I and II, but mostly subcritical in Cha III. Faint filaments (striations) are prominent in Cha I and are mostly aligned with the large-scale magnetic field. The PDFs of all regions show a lognormal distribution at low column densities. For higher densities, the PDF of Cha I shows a turnover indicative of an extended higher density component and culminates in a power-law tail. Cha II shows a power-law tail with a slope characteristic of gravity. The PDF of Cha III can be best fit by a single lognormal. The turbulence properties of the three regions are found to be similar, pointing towards a scenario where the clouds are impacted by large-scale processes.

  17. A Bayesian Estimate of the CMB–Large-scale Structure Cross-correlation

    NASA Astrophysics Data System (ADS)

    Moura-Santos, E.; Carvalho, F. C.; Penna-Lima, M.; Novaes, C. P.; Wuensche, C. A.

    2016-08-01

    Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs–Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB–LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.

  18. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    SciTech Connect

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  19. Kinematic Morphology of Large-scale Structure: Evolution from Potential to Rotational Flow

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-09-01

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  20. Polarimetric consequences of large-scale structure in the distribution of galaxies and quasars

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Y. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2010-12-01

    The problem of inhomogeneities in the distribution of galaxies and quasars over cosmological distances (cell structure) has been discussed in many papers. Here, in particular, we wish to draw attention to the polarimetric consequences of this structure. We discuss in detail the possibility of a large-scale rotation of the mean position angle of the observed polarization over the scale of the cellular structure. We mainly consider rotation mechanisms associated with polarized radiation from magnetized accretion disks near quasars and black holes. In that case the possible correlation of magnetic fields on cosmological scales will show up as a rotation of the mean position angle ranging from 0 to 45 degrees. Correlations in nonspherical formations of galaxies and quasars over cosmological distances also lead to rotation in the mean position angle over these distances. In principle, these two rotation mechanisms can, together, produce an arbitrary rotation of the mean position angle over distances corresponding to the inhomogeneous structure in the distribution of galaxies and quasars.

  1. Large-Scale Genetic Structuring of a Widely Distributed Carnivore - The Eurasian Lynx (Lynx lynx)

    PubMed Central

    Rueness, Eli K.; Naidenko, Sergei; Trosvik, Pål; Stenseth, Nils Chr.

    2014-01-01

    Over the last decades the phylogeography and genetic structure of a multitude of species inhabiting Europe and North America have been described. The flora and fauna of the vast landmasses of north-eastern Eurasia are still largely unexplored in this respect. The Eurasian lynx is a large felid that is relatively abundant over much of the Russian sub-continent and the adjoining countries. Analyzing 148 museum specimens collected throughout its range over the last 150 years we have described the large-scale genetic structuring in this highly mobile species. We have investigated the spatial genetic patterns using mitochondrial DNA sequences (D-loop and cytochrome b) and 11 microsatellite loci, and describe three phylogenetic clades and a clear structuring along an east-west gradient. The most likely scenario is that the contemporary Eurasian lynx populations originated in central Asia and that parts of Europe were inhabited by lynx during the Pleistocene. After the Last Glacial Maximum (LGM) range expansions lead to colonization of north-western Siberia and Scandinavia from the Caucasus and north-eastern Siberia from a refugium further east. No evidence of a Berinigan refugium could be detected in our data. We observed restricted gene flow and suggest that future studies of the Eurasian lynx explore to what extent the contemporary population structure may be explained by ecological variables. PMID:24695745

  2. Seismic Modelling of the Earth's Large-Scale Three-Dimensional Structure

    NASA Astrophysics Data System (ADS)

    Woodhouse, J. H.; Dziewonski, A. M.

    1989-07-01

    Several different kinds of seismological data, spanning more than three orders of magnitude in frequency, have been employed in the study of the Earth's large-scale three-dimensional structure. These yield different but overlapping information, which is leading to a coherent picture of the Earth's internal heterogeneity. In this article we describe several methods of seismic inversion and intercompare the resulting models. Models of upper-mantle shear velocity based upon mantle waveforms (Woodhouse & Dziewonski (J. geophys. Res. 89, 5953-5986 (1984))) (f lesssim 7 mHz) and long-period body waveforms (f lesssim 20 mHz; Woodhouse & Dziewonski (Eos, Wash. 67, 307 (1986))) show the mid-oceanic ridges to be the major low-velocity anomalies in the uppermost mantle, together with regions in the western Pacific, characterized by back-arc volcanism. High velocities are associated with the continents, and in particular with the continental shields, extending to depths in excess of 300 km. By assuming a given ratio between density and wave velocity variations, and a given mantle viscosity structure, such models have been successful in explaining some aspects of observed plate motion in terms of thermal convection in the mantle (Forte & Peltier (J. geophys. Res. 92, 3645-3679 (1987))). An important qualitative conclusion from such analysis is that the magnitude of the observed seismic anomalies is of the order expected in a convecting system having the viscosity, temperature derivatives and flow rates which characterize the mantle. Models of the lower mantle based upon P-wave arrival times (f ≈ 1 Hz; Dziewonski (J. geophys. Res. 89, 5929-5952 (1984)); Morelli & Dziewonski (Eos, Wash. 67, 311 (1986))) SH waveforms (f ≈ 20 mHz; Woodhouse & Dziewonski (1986)) and free oscillations (Giardini et al. (Nature, Lond. 325, 405-411 (1987); J. geophys. Res. 93, 13716-13742 (1988))) (f ≈ 0.5-5 mHz) show a very long wavelength pattern, largely contained in spherical harmonics of

  3. Symbolic and graphical representation scheme for sensors deployed in large-scale structures.

    PubMed

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-01-01

    As wireless sensor network (WSN)-based structural health monitoring (SHM) systems are increasingly being employed in civil infrastructures and building structures, the management of large numbers of sensing devices and the large amount of data acquired from WSNs will become increasingly difficult unless systematic expressions of the sensor network are provided. This study introduces a practical WSN for SHM that consists of sensors, wireless sensor nodes, repeater nodes, master nodes, and monitoring servers. This study also proposes a symbolic and graphical representation scheme (SGRS) for this system, in which the communication relationships and respective location information of the distributed sensing components are expressed in a concise manner. The SGRS was applied to the proposed WSN, which is employed in an actual large-scale irregular structure in which three types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) and customized wireless sensor nodes are installed. The application results demonstrate that prompt identification of sensing units and effective management of the distributed sensor network can be realized from the SGRS. The results also demonstrate the superiority of the SGRS over conventional expression methods in which a box diagram or tree diagram representing the ID of sensors and data loggers is used. PMID:23912426

  4. Symbolic and Graphical Representation Scheme for Sensors Deployed in Large-Scale Structures

    PubMed Central

    Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok

    2013-01-01

    As wireless sensor network (WSN)-based structural health monitoring (SHM) systems are increasingly being employed in civil infrastructures and building structures, the management of large numbers of sensing devices and the large amount of data acquired from WSNs will become increasingly difficult unless systematic expressions of the sensor network are provided. This study introduces a practical WSN for SHM that consists of sensors, wireless sensor nodes, repeater nodes, master nodes, and monitoring servers. This study also proposes a symbolic and graphical representation scheme (SGRS) for this system, in which the communication relationships and respective location information of the distributed sensing components are expressed in a concise manner. The SGRS was applied to the proposed WSN, which is employed in an actual large-scale irregular structure in which three types of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) and customized wireless sensor nodes are installed. The application results demonstrate that prompt identification of sensing units and effective management of the distributed sensor network can be realized from the SGRS. The results also demonstrate the superiority of the SGRS over conventional expression methods in which a box diagram or tree diagram representing the ID of sensors and data loggers is used. PMID:23912426

  5. Near linear time algorithm to detect community structures in large-scale networks

    NASA Astrophysics Data System (ADS)

    Raghavan, Usha Nandini; Albert, Réka; Kumara, Soundar

    2007-09-01

    Community detection and analysis is an important methodology for understanding the organization of various real-world networks and has applications in problems as diverse as consensus formation in social communities or the identification of functional modules in biochemical networks. Currently used algorithms that identify the community structures in large-scale real-world networks require a priori information such as the number and sizes of communities or are computationally expensive. In this paper we investigate a simple label propagation algorithm that uses the network structure alone as its guide and requires neither optimization of a predefined objective function nor prior information about the communities. In our algorithm every node is initialized with a unique label and at every step each node adopts the label that most of its neighbors currently have. In this iterative process densely connected groups of nodes form a consensus on a unique label to form communities. We validate the algorithm by applying it to networks whose community structures are known. We also demonstrate that the algorithm takes an almost linear time and hence it is computationally less expensive than what was possible so far.

  6. Thermally-induced bending-torsion coupling vibration of large scale space structures

    NASA Astrophysics Data System (ADS)

    Xue, Ming-De; Duan, Jin; Xiang, Zhi-Hai

    2007-09-01

    In this paper, a finite element scheme is developed to solve the problem of thermally-induced bending-torsion coupling vibration of large scale space structures, which are usually composed of thin-walled beams with open and closed cross-section. A two-noded finite element is proposed to analyze the transient temperature field over the longitudinal and circumferential direction of a beam. Since this temperature element can share the same mesh with the two-noded beam element of Euler-Bernoulli type, a unified finite element scheme is easily formulated to solve the thermal-structural coupling problem. This scheme is characterized with very strong nonlinear formulation, due to the consideration of the thermal radiation and the coupling effect between structural deformations and the incident normal heat flux. Moreover, because the warping is taken into account, not only the thermal axial force and thermal bending moments but also the thermal bi-moment are presented in the formulation. Consequently, the thermally-induced bending-torsion coupling vibration can be simulated. The performance of the proposed computational scheme is illustrated by the analysis of the well-known failure of Hubble space telescope solar arrays. The results reveal that the thermally-induced bending-torsion coupling vibration is obviously presented in that case and could be regarded as a cause of failure.

  7. Experimental Investigation of Large-Scale Flow Structures in Turbulent Mixed Convection

    NASA Astrophysics Data System (ADS)

    Koerner, Max; Resagk, Christian; Thess, Andre

    2014-11-01

    We report on experimental investigations of the temporal and spatial behavior of large-scale flow structures (LSC) in turbulent mixed convection. Using a reduced scale model room with a passenger cabin based geometry allows a global view on the LSCs, which are mainly responsible for thermal comfort and air quality within rooms. Moreover, the usage of pressurized working gases like air or sulfur hexafluoride (SF6) enables experimental investigations within broad ranges of the Reynolds number Re and Rayleigh number Ra. Thus, it is also possible to achieve realistic values of the dimensionless numbers allowing direct conclusions to be drawn about the LSCs in rooms similar to passenger cabins. The LSCs are determined by measurements of the 2D velocity field using a 2D2C particle image velocimetry system. In order to characterize three-dimensionally evolved flow structures, the measurement plane can be moved throughout the depth of the model room. We found very complex LSCs ranging from two-dimensional to three-dimensional structures and from one-roll systems over simple two-roll ones to chaotic behavior of the flow. The formation the LSCs has a strong dependency on the relation between Re and Ra and they often show distinct coherent oscillations. The authors gratefully acknowledge the DFG (Grant No. TH497-32-1) for financial support.

  8. COS-GTO: QSO Absorbers, Galaxies and Large-scale Structures in the Local Universe.

    NASA Astrophysics Data System (ADS)

    Green, James

    2009-07-01

    This is a program to probe the large scale structure of baryons in the universe, including addressing questions of baryon fraction, physical conditions and relationships between absorbers and large-scale structures of galaxies. Besides these specific goals, this proposed GTO program also probes a large enough total path length in Ly alpha and OVI to add significantly to what STIS/FUSE has already observed. Several Galactic High Velocity Cloud Complexes also are probed by these sightlines, particularly the M Complex. The total path length of this proposed program for Ly alpha large-scale structure surveys is delta_z 5.5. We have selected a variety of targets to address these questions, under the following subcategories:1. Target 8 bright BL Lac objects to search for low contrast Ly alpha absorbers from the warm-hot interstellar medium {WHIM}. Science drivers: What are physical conditions and extent of warm-hot IGM in the current epoch? Can we discover metal-poor WHIM using very broad Ly alpha lines? What is the number density of such lines {dN/dz} and what is their relationship if any with tentative Chandra detections of even hotter gas?2. Ly alpha cloud sizes: The targets are a bright AGN pair which yield tangential distance separations of 100-500 kpc at z=0.01-0.05, where galaxy surveys are excellent. This pair has two filaments and two voids in this distance range. Science drivers: What are the characteristic sizes of Ly alpha absorbers, weak metal-line absorbers and absorbers in voids? Better size determinations will tighten current estimates of the baryon content of the photoionzed IGM .3. Probes of starburst outflows: The targets are bright AGN, <= 100 kpc in projection out of the minor axis of nearby starburst galaxies. Science drivers: Outflowing, unbound winds have been implicated as a primary mechanism to enrich the IGM in mass, metals and energy. But do starburst winds from massive galaxies escape the galaxy's gravitational potential? If so, what is the

  9. Nonisothermal turbulent boundary-layer adverse pressure gradient large scale thermal structure measurements

    SciTech Connect

    Bagheri, N.; White, B.R.; Lei, T.

    1994-01-01

    Hot-wire anemometry measurements in an incompressible turbulent boundary-layer flow over a heated flat plate under equilibrium adverse-pressure-gradient conditions (beta = 1.8) were made for two different temperature difference cases (10 and 15 C) between the wall and the freestream. Space-time correlations of temperature fluctuations (T`) were obtained with a pair of subminiature temperature fluctuation probes. The mean convection velocities, the mean inclination angles, and coherence characteristics of the T` large-scale structure were determined. The present temperature structures measurements for a nonisothermal boundary layer are compared to the zero-pressure-gradient case with identical temperature differences previously reported, in which the mean convection velocity of the T` structure was a function of position y(sup +) and independent of the limited temperature-difference cases tested. The three major findings of the present study, as compared to the zero-pressure-gradient case, are (1) the mean convection speed of the T` structure under beta = 1.8 pressure-gradient conditions was found to be substantially lower in the logarithmic core region than the zero-pressure-gradient case. Additionally, the mean convection speed is felt by the authors to be a function of pressure-gradient parameter beta; (2) the mean inclination angle of the T` structure to the wall under the adverse-pressure-gradient flow was 32 deg, which compares favorably to the 30-deg value of the zero-pressure-gradient case; and (3) the limited data suggests that the mean convection velocity of the T` structure is a function of y(sup +) and independent of the limited temperature-difference cases tested. 11 refs.

  10. Analytical Study on the Cosmological Large-scale Structure in an Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    2012-01-01

    Motivated by the roughly log-normal probability density distribution function (PDF) of the small scale density field, we develop cosmological perturbation theory for the power spectrum of a logarithmically transformed density field with the formalism which is developed in the context of the cosmological renormalized perturbation theory. Compared with the standard perturbation theory, our approach help to regulate the convergence behavior of the perturbation series, and of the Taylor series expansion we use for the logarithmic mapping. The perturbation calculation achieved good agreement with simulation results. Then we consider the topology of the iso-density contour of the density field, especially the genus. The genus is relatively insensitive to nonlinear gravitational evolution, clustering bias and redshift distortion, and is approximately conserved over time as structures grow in Einstein's general relativity, hence it can be used as a robust standard ruler for cosmological measurements. However, in modified gravity models where structures grow with different rates on different scales, the genus should change over time, and therefore it can be used to test the gravity models on large scales. We studied the case of the f(R) theory, DGP brane-world theory as well as phenomenological models. We also forecast how the modified gravity models can be constrained with optical/IR or 21cm surveys in the near future.

  11. The topology of large-scale structure. III - Analysis of observations. [in universe

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  12. Large-Scale Structures in Earth Foreshock Waves during Radial IMF

    NASA Astrophysics Data System (ADS)

    Ganse, Urs; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian; Palmroth, Minna; Vainio, Rami

    2016-04-01

    Wave instabilities in the foreshock region of Earth's bow shock lead to formation of magnetic field and density fluctuations, commonly observed by spacecraft as 30-second waves. These waves are oblique to the interplanetary magnetic field, with the mechanism leading to oblique propagation still under discussion. Using the VLASIATOR (http://vlasiator.fmi.fi) global hybrid-Vlasov simulation code, we performed runs of radial and near-radial IMF conditions and were able to reproduce the development of these oblique foreshock wave instabilities, revealing a peculiar global structure, in which waves with different wave-vector directions are arranged around central spines, which are spatially offset from the bow shock's nose. We present analysis of the waves' growth behaviour and combine them with artificial observations, comparing to in-situ spacecraft data. Furthermore, we employed a test particle approach to investigate the formation mechanism of the instabilities' large-scale structure, and found that a coupling between the microphysics of wave-particle interaction and global-scale shock and foreshock geometry is essential to explain them.

  13. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies.

    PubMed

    Lai, Xuelei; Soler-Lopez, Montserrat; Wichers, Harry J; Dijkstra, Bauke W

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free) medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design. PMID:27551823

  14. Neural Schematics as a unified formal graphical representation of large-scale Neural Network Structures.

    PubMed

    Ehrlich, Matthias; Schüffny, René

    2013-01-01

    One of the major outcomes of neuroscientific research are models of Neural Network Structures (NNSs). Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of NNSs is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing NNSs in general, a set of current visualizations of models of NNSs is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale NNSs. PMID:24167490

  15. Multi-reflected echoes: Another ionogram signature of large-scale wave structure

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.

    2009-01-01

    One or more steeply sloped traces have been found in evening ionograms taken from the Kwajalein Atoll (4.3°N dip latitude) during July 1979. Their resemblance to the normal F trace suggests that they are echoes that have undergone a large number of reflections from the F layer. These multi-reflected echoes (MREs) are interpreted in terms of focusing produced by curved isodensity contours in the bottomside F layer, which appear to be associated with large-scale wave structure (LSWS) that develops in the bottomside F layer. MREs appear to be another signature for LSWS, together with satellite traces that appear later in time, closer to the onset of plasma structure referred to as equatorial spread F. MREs are interesting because they display, for the data set examined, a strong preference to occur during the post-sunset rise of the F layer, which includes E-region sunset. How this finding affects our understanding of LSWS is discussed.

  16. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies

    PubMed Central

    Lai, Xuelei; Soler-Lopez, Montserrat; Wichers, Harry J.

    2016-01-01

    Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free) medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design. PMID:27551823

  17. Neural Schematics as a unified formal graphical representation of large-scale Neural Network Structures

    PubMed Central

    Ehrlich, Matthias; Schüffny, René

    2013-01-01

    One of the major outcomes of neuroscientific research are models of Neural Network Structures (NNSs). Descriptions of these models usually consist of a non-standardized mixture of text, figures, and other means of visual information communication in print media. However, as neuroscience is an interdisciplinary domain by nature, a standardized way of consistently representing models of NNSs is required. While generic descriptions of such models in textual form have recently been developed, a formalized way of schematically expressing them does not exist to date. Hence, in this paper we present Neural Schematics as a concept inspired by similar approaches from other disciplines for a generic two dimensional representation of said structures. After introducing NNSs in general, a set of current visualizations of models of NNSs is reviewed and analyzed for what information they convey and how their elements are rendered. This analysis then allows for the definition of general items and symbols to consistently represent these models as Neural Schematics on a two dimensional plane. We will illustrate the possibilities an agreed upon standard can yield on sampled diagrams transformed into Neural Schematics and an example application for the design and modeling of large-scale NNSs. PMID:24167490

  18. Searching for a dipole modulation in the large-scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Pietrobon, D.; Balbi, A.; Martínez-González, E.; Barreiro, R. B.

    2014-07-01

    Several statistical anomalies in the cosmic microwave background (CMB) temperature anisotropies seem to defy the assumption of a homogeneous and isotropic universe. In particular, a dipole modulation has been detected both in WMAP and Planck data. We adapt the methodology proposed by Eriksen et al. on CMB data to galaxy surveys, tracing the large-scale structure. We analyse the National Radio Astronomy Observatory (NRAO) and Very Large Array (VLA) Sky Survey data at a resolution of ˜2° for three different flux thresholds: 2.5, 5.0 and 10.0 mJy, respectively. No evidence of a dipole modulation is found. This result suggests that the origin of the dipole asymmetry found in the CMB cannot be assigned to secondary anisotropies produced at redshifts around z = 1. However, it could still have been generated at redshifts higher or lower, such as the integrated Sachs-Wolfe effect produced by the local structures. Other all-sky surveys, like the infrared WISE catalogue, could help to explore with a high sensitivity a redshift interval closer than the one probed with NVSS.

  19. The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; Senatore, Leonardo

    2015-10-14

    With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/kNL, where k is the wavenumber of interest and kNL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃ 0.3 h Mpc–1 and k ≃ 0.6 h Mpc–1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc–1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc–1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.

  20. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    SciTech Connect

    Chang, C.Y.; Mok, C.M.; Power, M.S. )

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M{sub L} 4.5 to M{sub L} 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes.

  1. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  2. Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.

  3. A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative.

    PubMed

    Kaboski, Joseph P; Townsend, Robert M

    2011-09-01

    This paper uses a structural model to understand, predict, and evaluate the impact of an exogenous microcredit intervention program, the Thai Million Baht Village Fund program. We model household decisions in the face of borrowing constraints, income uncertainty, and high-yield indivisible investment opportunities. After estimation of parameters using pre-program data, we evaluate the model's ability to predict and interpret the impact of the village fund intervention. Simulations from the model mirror the data in yielding a greater increase in consumption than credit, which is interpreted as evidence of credit constraints. A cost-benefit analysis using the model indicates that some households value the program much more than its per household cost, but overall the program costs 20 percent more than the sum of these benefits. PMID:22162594

  4. A Structural Evaluation of a Large-Scale Quasi-Experimental Microfinance Initiative

    PubMed Central

    Kaboski, Joseph P.; Townsend, Robert M.

    2010-01-01

    This paper uses a structural model to understand, predict, and evaluate the impact of an exogenous microcredit intervention program, the Thai Million Baht Village Fund program. We model household decisions in the face of borrowing constraints, income uncertainty, and high-yield indivisible investment opportunities. After estimation of parameters using pre-program data, we evaluate the model’s ability to predict and interpret the impact of the village fund intervention. Simulations from the model mirror the data in yielding a greater increase in consumption than credit, which is interpreted as evidence of credit constraints. A cost-benefit analysis using the model indicates that some households value the program much more than its per household cost, but overall the program costs 20 percent more than the sum of these benefits. PMID:22162594

  5. Galaxy clustering on large scales.

    PubMed

    Efstathiou, G

    1993-06-01

    I describe some recent observations of large-scale structure in the galaxy distribution. The best constraints come from two-dimensional galaxy surveys and studies of angular correlation functions. Results from galaxy redshift surveys are much less precise but are consistent with the angular correlations, provided the distortions in mapping between real-space and redshift-space are relatively weak. The galaxy two-point correlation function, rich-cluster two-point correlation function, and galaxy-cluster cross-correlation function are all well described on large scales ( greater, similar 20h-1 Mpc, where the Hubble constant, H0 = 100h km.s-1.Mpc; 1 pc = 3.09 x 10(16) m) by the power spectrum of an initially scale-invariant, adiabatic, cold-dark-matter Universe with Gamma = Omegah approximately 0.2. I discuss how this fits in with the Cosmic Background Explorer (COBE) satellite detection of large-scale anisotropies in the microwave background radiation and other measures of large-scale structure in the Universe. PMID:11607400

  6. Lithospheric discontinuities beneath Australia: interaction of large-scale and fine scale structure

    NASA Astrophysics Data System (ADS)

    Kennett, Brian L. N.; Yoshizawa, Kazunori

    2016-04-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main information on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer scale structures comes though body wave studies, including detailed seismic tomography and P wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features there is not a need for strong fine-scale variations. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P wave reflectivity. The presence of reflections in the 0.5-3.0 Hz band in the uppermost mantle suggests variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. There are some indications of a change of reflection character in the lower part of the lithosphere in the transition to the asthenosphere. In some parts of central Australia there is a reasonable tie between a change in reflectivity and other information on mid-lithospheric discontinuities. Individual seismic probes illuminate different aspects of the heterogeneity, but the full spectrum has to be taken into account to understand the properties of apparent discontinuities and their geodynamic implications. Once fine-scale structure is taken into consideration it becomes apparent that wave interference plays a very important role in determining the nature of apparent discontinuities seen with lower frequency probes such as S wave receiver functions. Changes in the character of fine-scale heterogeneity can

  7. Large-Scale Structure Formation: From the First Non-linear Objects to Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Planelles, S.; Schleicher, D. R. G.; Bykov, A. M.

    2015-05-01

    The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 1015 M⊙ at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 105-108 M⊙ at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on intermediate cluster scales the self-similar model is in good agreement with the observations, deviations from such self-similarity are apparent in the core regions, where numerical simulations do not reproduce the current observational results. The latter indicates that the interaction of different feedback processes may not be correctly accounted for in current simulations. Both in the most massive clusters of galaxies as well as during the formation of the first objects in the Universe, turbulent structures and shock waves appear to be common, suggesting them to be ubiquitous in the non-linear regime.

  8. Characteristics of large-scale wave structure observed from African and Southeast Asian longitudinal sectors

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Yamamoto, M.; Tsunoda, R. T.; Chau, H. D.; Hoang, T. L.; Damtie, B.; Wassaie, M.; Yatini, C. Y.; Manik, T.; Tsugawa, T.

    2014-03-01

    The spatial large-scale wave structure (LSWS) at the base of F layer is the earliest manifestation of seed perturbation for Rayleigh-Taylor instability, hence, found to play a deterministic role in the development of Equatorial Plasma Bubbles (EPBs). Except for a few case studies, a comprehensive investigation has not been conducted on the characteristics of LSWS because of the complexity involved in detecting the LSWS, particularly, in spatial domain. In this scenario, a comprehensive study is carried out, for the first time, on the spatial and temporal characteristics of LSWS observed in spatial domain over African and Southeast Asian longitudinal sectors during the year 2011. The observations indicate that these wave structures can be detected a few degrees west of E region sunset terminator and found to grow significantly at longitudes past the sunset terminator. The phase fronts of these spatial structures are found to align with the geomagnetic field (B→) lines over a latitudinal belt for at least 5-6° (~500-600 km) centered on dip equator. The zonal wavelengths of these structures are found to vary from 100 to 700 km, which is consistent with the earlier reports, and the EPBs were consistently observed when the amplitudes of LSWS were grown to sufficient strengths. These results would provide better insights on the underlying physical processes involved in excitation of LSWS in terms of important roles being played by E region electrical loading and polarization electric fields induced via spatially varying dynamo current due to neutral wind perturbations associated with atmospheric gravity waves.

  9. Deep Imaging of large scale extensional structures in the SW South China Sea

    NASA Astrophysics Data System (ADS)

    Liang, Yao; Delescluse, Matthias; Wang, Jun; Pubellier, Manuel; Chamot-Rooke, Nicolas; Qiu, Yan; Savva, Dimitri; Meresse, Florian

    2016-04-01

    The South China Sea (SCS) is the largest marginal basin in SE Asia and exhibits hundreds of kilometres of extended continental crust on both conjugate margins. The structures and processes leading to the formation of the SCS are still debated at various levels (timing, mechanisms). A joint collaboration between French and Chinese scientists led to the acquisition of coincident refraction and reflection seismic data over the SW sub-basin. In 2011, a 1000-km-long refraction line was first shot using R/V Tan Bao and 50 Ocean Bottom Seismometers (OBS). Among the results was the homogeneous thickness (~12 km) of the thinned continental crust over hundreds of kilometres and the possible large scale normal faults rooting in a ductile lower crust which could explain the relatively flat Moho. The coincident multichannel seismic (MCS) profile is now available to us. The 1000-km-long MCS line was acquired using a ~7000 cu.in. tuned airgun array and 6 to 8 km long streamers. Here we focus on a 230-km-long section of the profile to the south of the V-shaped SW oceanic basin across Spratley Islands. Multiples attenuation and high density velocity analysis are performed to obtain a detailed imaging of the sediments and crust at depth. We apply pre-stack Kirchhoff time migration and superimpose the obtained reflectivity on the refraction velocity model. The processed section includes a basin bound by a large crustal normal fault already imaged in the refraction velocity model, although no information on the basement was used to model the refraction velocities. The results validate the interpretation of the refraction velocity lateral variations and emphasize the significant vertical offsets of the large scale normal faults. Deep crustal reflectivity may give additional hints at a lower crustal ductile flow. Future work will consist in using the geometry of the MCS profiles in the refraction velocity modelling and an attempt to use more advanced migration methods with the help of

  10. SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.

    PubMed

    Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P

    2013-12-01

    Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time. PMID:24136425

  11. SfM with MRFs: Discrete-Continuous Optimization for Large-Scale Structure from Motion.

    PubMed

    Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P

    2012-10-01

    Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization, and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time. PMID:23045369

  12. Measuring Lensing Magnification of Quasars by Large Scale Structure Using the Variability-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Bauer, Anne H.; Seitz, Stella; Jerke, Jonathan; Scalzo, Richard; Rabinowitz, David; Ellman, Nancy; Baltay, Charles

    2011-05-01

    We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey (SDSS), due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUEST Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R 200) from the nearest cluster; our measurements are consistent with expectations assuming Navarro-Frenk-White cluster profiles, particularly after accounting for the known uncertainty in the clusters' centers. Variability-based lensing measurements are a valuable complement to shape-based techniques because their systematic errors are very different, and also because the variability measurements are amenable to photometric errors of a few percent and to depths seen in current wide-field surveys. Given the volume data of the expected from current and upcoming surveys, this new technique has the potential to be competitive with weak lensing shear measurements of large-scale structure.

  13. A Large-scale Structure at Redshift 1.71 in the Lockman Hole

    NASA Astrophysics Data System (ADS)

    Henry, J. Patrick; Aoki, Kentaro; Finoguenov, Alexis; Fotopoulou, Sotiria; Hasinger, Günther; salvato, Mara; Suh, Hyewon; Tanaka, Masayuki

    2014-01-01

    We previously identified LH146, a diffuse X-ray source in the Lockman Hole, as a galaxy cluster at redshift 1.753. The redshift was based on one spectroscopic value, buttressed by seven additional photometric redshifts. We confirm here the previous spectroscopic redshift and present concordant spectroscopic redshifts for an additional eight galaxies. The average of these nine redshifts is 1.714 ± 0.012 (error on the mean). Scrutiny of the galaxy distribution in redshift space and the plane of the sky shows that there are two concentrations of galaxies near the X-ray source. In addition, there are three diffuse X-ray sources spread along the axis connecting the galaxy concentrations. LH146 is one of these three and lies approximately at the center of the two galaxy concentrations and the outer two diffuse X-ray sources. We thus conclude that LH146 is at the redshift initially reported but it is not a single virialized galaxy cluster, as previously assumed. Rather, it appears to mark the approximate center of a larger region containing more objects. For brevity, we refer to all these objects and their alignments as a large-scale structure. The exact nature of LH146 itself remains unclear.

  14. The Lagrangian-space Effective Field Theory of large scale structures

    SciTech Connect

    Porto, Rafael A.; Zaldarriaga, Matias; Senatore, Leonardo E-mail: senatore@stanford.edu

    2014-05-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in powers of the ratio of the wavenumber of interest k over the non-linear scale k{sub NL}. The multipoles encode the effects of the short distance modes on the long-wavelength universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  15. THE COSMIC HISTORY OF THE SPIN OF DARK MATTER HALOS WITHIN THE LARGE-SCALE STRUCTURE

    SciTech Connect

    Trowland, Holly E.; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2013-01-10

    We use N-body simulations to investigate the evolution of the orientation and magnitude of dark matter halo angular momentum within the large-scale structure since z = 3. We look at the evolution of the alignment of halo spins with filaments and with each other, as well as the spin parameter, which is a measure of the magnitude of angular momentum. It was found that the angular momentum vectors of dark matter halos at high redshift have a weak tendency to be orthogonal to filaments and high-mass halos have a stronger orthogonal alignment than low-mass halos. Since z = 1, the spins of low-mass halos have become weakly aligned parallel to filaments, whereas high-mass halos kept their orthogonal alignment. This recent parallel alignment of low-mass halos casts doubt on tidal torque theory as the sole mechanism for the buildup of angular momentum. We see evidence for bulk flows and the broadening of filaments over time in the alignments of halo spin and velocities. We find a significant alignment of the spin of neighboring dark matter halos only at very small separations, r < 0.3 Mpc h {sup -1}, which is driven by substructure. A correlation of the spin parameter with halo mass is confirmed at high redshift.

  16. Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations

    SciTech Connect

    Wang, Lin-Wang; Lee, Byounghak; Shan, Hongzhang; Zhao, Zhengji; Meza, Juan; Strohmaier, Erich; Bailey, David H.

    2008-07-01

    We present a new linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the system. As a consequence, the LS3DF program yields essentially the same results as direct density functional theory (DFT) calculations. The fragments of the LS3DF algorithm can be calculated separately with different groups of processors. This leads to almost perfect parallelization on tens of thousands of processors. After code optimization, we were able to achieve 35.1 Tflop/s, which is 39percent of the theoretical speed on 17,280 Cray XT4 processor cores. Our 13,824-atom ZnTeO alloy calculation runs 400 times faster than a direct DFTcalculation, even presuming that the direct DFT calculation can scale well up to 17,280 processor cores. These results demonstrate the applicability of the LS3DF method to material simulations, the advantage of using linearly scaling algorithms over conventional O(N3) methods, and the potential for petascale computation using the LS3DF method.

  17. Importance of Large-Scale Wave Structure to Equatorial Spread F

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    2008-12-01

    There is mounting evidence that large-scale wave structure (LSWS) is a more direct precursor of equatorial spread F (ESF) than the post-sunset rise (PSSR) of the equatorial F layer. Unambiguous experimental evidence, though limited, come from measurements by ALTAIR, a fully steerable incoherent-scatter radar, in situ measurements by low-altitude satellites in low-inclination orbits (AE-E, San Marco D), and total electron content measurements using satellites in low-inclination orbits. Less direct evidence is contained in seemingly extraneous traces in equatorial ionograms, which appear to be associated with LSWS and ESF. Clearly, a demonstration that these traces are indeed a direct consequence of LSWS is pivotal because such a demonstration would allow use of the extensive database of equatorial ionograms that exists to argue conclusively that LSWS is a central player in ESF generation. A demonstration of this kind will be presented, together with a description of experiments proposed for the Pacific sector, which involve the C/NOFS satellite, and how they will increase substantially our understanding of LSWS and ESF.

  18. The XMM-Large Scale Structure catalogue - II. X-ray sources and associated multiwavelength data

    NASA Astrophysics Data System (ADS)

    Chiappetti, L.; Clerc, N.; Pacaud, F.; Pierre, M.; Guéguen, A.; Paioro, L.; Polletta, M.; Melnyk, O.; Elyiv, A.; Surdej, J.; Faccioli, L.

    2013-02-01

    We present the final release of the multiwavelength XMM-Large Scale Structure (LSS) data set, covering the full survey area of 11.1 deg2, with X-ray data processed with the latest XMM-LSS pipeline version. The present publication supersedes the catalogue from the first paper in this series, pertaining to the initial 5 deg2. We provide X-ray source lists in the customary energy bands (0.5-2 and 2-10 keV) for a total of 6721 objects in the deep full-exposure catalogue and 5572 in the catalogue limited to 10 ks, above a detection likelihood of 15 in at least one band. We also provide a multiwavelength catalogue, cross-correlating our list with infrared, near-infrared, optical and ultraviolet catalogues. Customary data products, such as X-ray FITS images and thumbnail images from the Canada-France-Hawaii Telescope Legacy Survey and the Spitzer Wide-Area Infrared Extragalactic Survey, are made available, together with our data base in Milan, which can be queried interactively. Also, a static snapshot of the catalogues has been supplied to the Centre de Données astronomiques de Strasbourg (CDS).

  19. How can large-scale twisted magnetic structures naturally emerge from buoyancy instabilities?

    NASA Astrophysics Data System (ADS)

    Favier, B.; Jouve, L.; Edmunds, W.; Silvers, L. J.; Proctor, M. R. E.

    2012-11-01

    We consider the 3D instability of a layer of horizontal magnetic field in a polytropic atmosphere where, contrary to previous studies, the field lines in the initial state are not unidirectional. We show that if the twist is initially concentrated inside the unstable layer, the modifications of the instability reported by several authors are only observed when the calculation is restricted to two dimensions. In three dimensions, the usual interchange instability occurs in the direction fixed by the field lines at the interface between the layer and the field-free region. We therefore introduce a new configuration: the instability now develops in a weakly magnetized atmosphere where the direction of the field can vary with respect to the direction of the strong unstable field below, the twist being now concentrated at the upper interface. Both linear stability analysis and non-linear direct numerical simulations are used to study this configuration. We show that from the small-scale interchange instability, large-scale twisted coherent magnetic structures are spontaneously formed, with possible implications to the formation of active regions from a deep-seated solar magnetic field.

  20. Is there evidence for anomalous dipole anisotropy in the large-scale structure?

    NASA Astrophysics Data System (ADS)

    Bengaly, C. A. P.; Bernui, A.; Alcaniz, J. S.; Xavier, H. S.; Novaes, C. P.

    2016-09-01

    We probe the anisotropy of the large-scale structure (LSS) with the WISE-2MASS catalogue. This analysis is performed by a directional comparison of the galaxy number counts through the entire celestial sphere once systematic effects, such as star-galaxy separation and foregrounds contamination, are properly taken into account. We find a maximal hemispherical asymmetry whose dipolar component is A = 0.0507 ± 0.0014 toward the (l, b) = (323°, -5°) direction, whose result is consistent with previous estimations of our proper motion in low and intermediate redshifts, as those carried out with Type Ia Supernovae and similar LSS catalogues. Furthermore, this dipole amplitude is statistically consistent (p-value = 0.061) with mock catalogues simulated according to the expected ΛCDM matter density fluctuations, in addition to observational biases such as the incomplete celestial coverage and anisotropic sky exposure. Our results suggest, therefore, that there is no strong evidence for anomalous anisotropy in the LSS, given the limitations and systematics of current data, in the concordance model scenario.

  1. Measuring large-scale structure with quasars in narrow-band filter surveys

    NASA Astrophysics Data System (ADS)

    Abramo, L. Raul; Strauss, Michael A.; Lima, Marcos; Hernández-Monteagudo, Carlos; Lazkoz, Ruth; Moles, Mariano; de Oliveira, Claudia Mendes; Sendra, Irene; Sodré, Laerte; Storchi-Bergmann, Thaisa

    2012-07-01

    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i= 23, it could reach volumetric number densities as high as 10-4 h3 Mpc-3 (comoving) at z˜ 1.5. Such a catalogue would lead to precision measurements of the power spectrum up to z˜ 3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and non-linearities are much smaller than at z≲ 1. As a concrete example we study the future impact of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS), which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ˜100-Å full width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver excellent photometric redshifts, σz≃ 0.002 (1 +z), for millions of objects.

  2. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Stanev, Todor

    2006-10-01

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  3. Single-field consistency relations of large scale structure part II: resummation and redshift space

    SciTech Connect

    Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo; Simonović, Marko E-mail: jerome.gleyzes@cea.fr E-mail: filippo.vernizzi@cea.fr

    2014-02-01

    We generalize the recently derived single-field consistency relations of Large Scale Structure in two directions. First, we treat the effect of the long modes (with momentum q) on the short ones (with momentum k) non-perturbatively, by writing resummed consistency relations which do not require k/q⋅δ{sub q} << 1. These relations do not make any assumptions on the short-scales physics and are extended to include (an arbitrary number of) multiple long modes, internal lines with soft momenta and soft loops. We do several checks of these relations in perturbation theory and we verify that the effect of soft modes always cancels out in equal-time correlators. Second, we write the relations directly in redshift space, without assuming the single-stream approximation: not only the long mode affects the short scales as a homogeneous gravitational field, but it also displaces them by its velocity along the line-of-sight. Redshift space consistency relations still vanish when short modes are taken at equal time: an observation of a signal in the squeezed limit would point towards multifield inflation or a violation of the equivalence principle.

  4. The linearly scaling 3D fragment method for large scale electronic structure calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-28

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  5. The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations

    SciTech Connect

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-06-26

    The Linearly Scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  6. The linearly scaling 3D fragment method for large scale electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Zhengji; Meza, Juan; Lee, Byounghak; Shan, Hongzhang; Strohmaier, Erich; Bailey, David; Wang, Lin-Wang

    2009-07-01

    The linearly scaling three-dimensional fragment (LS3DF) method is an O(N) ab initio electronic structure method for large-scale nano material simulations. It is a divide-and-conquer approach with a novel patching scheme that effectively cancels out the artificial boundary effects, which exist in all divide-and-conquer schemes. This method has made ab initio simulations of thousand-atom nanosystems feasible in a couple of hours, while retaining essentially the same accuracy as the direct calculation methods. The LS3DF method won the 2008 ACM Gordon Bell Prize for algorithm innovation. Our code has reached 442 Tflop/s running on 147,456 processors on the Cray XT5 (Jaguar) at OLCF, and has been run on 163,840 processors on the Blue Gene/P (Intrepid) at ALCF, and has been applied to a system containing 36,000 atoms. In this paper, we will present the recent parallel performance results of this code, and will apply the method to asymmetric CdSe/CdS core/shell nanorods, which have potential applications in electronic devices and solar cells.

  7. MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION

    SciTech Connect

    Bauer, Anne H.; Jerke, Jonathan; Scalzo, Richard; Rabinowitz, David; Ellman, Nancy; Baltay, Charles

    2011-05-10

    We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey (SDSS), due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUEST Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R{sub 200}) from the nearest cluster; our measurements are consistent with expectations assuming Navarro-Frenk-White cluster profiles, particularly after accounting for the known uncertainty in the clusters' centers. Variability-based lensing measurements are a valuable complement to shape-based techniques because their systematic errors are very different, and also because the variability measurements are amenable to photometric errors of a few percent and to depths seen in current wide-field surveys. Given the volume data of the expected from current and upcoming surveys, this new technique has the potential to be competitive with weak lensing shear measurements of large-scale structure.

  8. Constraining the initial conditions of the Universe using large scale structure

    SciTech Connect

    Agarwal, Nishant; Ho, Shirley; Shandera, Sarah E-mail: shirleyh@andrew.cmu.edu

    2014-02-01

    Primordial non-Gaussianity induces a scale-dependent bias in large scale structure (LSS) data, proportional to f{sub NL}/k{sup 2} for the exact local ansatz. Recent work has shown that models of inflation that predict a large squeezed limit bispectrum, such as multi-field models and single field inflation with a modified initial state, typically give rise to a generalized local ansatz, with the scale-dependent bias now proportional to A{sub NL}/k{sup α}. We use photometric measurements of the angular power spectrum of luminous red galaxies and quasars in the Sloan Digital Sky Survey Data Release Eight (SDSS DR8) with the above parameterization to constrain the amplitude A{sub NL} and scale-dependence α. We find that the marginalized upper limit on α is 2.0 at the 95% confidence level, consistent with the local ansatz. We also present Fisher forecasts for a survey of the same size as DR8 to assess the role of systematics in current photometric LSS data. Moreover, we present analytic results on the expected mass dependence of A{sub NL} for different inflationary models, which can be an important observable for future surveys, if primordial non-Gaussianity is non-zero.

  9. CONSTRAINTS ON THE ORIGIN OF COSMIC RAYS ABOVE 10{sup 18} eV FROM LARGE-SCALE ANISOTROPY SEARCHES IN DATA OF THE PIERRE AUGER OBSERVATORY

    SciTech Connect

    Abreu, P.; Andringa, S.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Castillo, J. Alvarez; Alvarez-Muniz, J.; Alves Batista, R.; Ambrosio, M.; Aramo, C.; Aminaei, A.; Anchordoqui, L.; Antici'c, T.; Arganda, E.; Collaboration: Pierre Auger Collaboration; and others

    2013-01-01

    A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10{sup 18} eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10{sup 18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.

  10. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  11. Penumbral Fine Structure and Driving Mechanisms of Large-scale Flows in Simulated Sunspots

    NASA Astrophysics Data System (ADS)

    Rempel, M.

    2011-03-01

    We analyze in detail the penumbral structure found in a recent radiative magnetohydrodynamic simulation. Near τ = 1, the simulation produces penumbral fine structure consistent with the observationally inferred interlocking comb structure. Fast outflows exceeding 8 km s-1 are present along almost horizontal stretches of the magnetic field; in the outer half of the penumbra, we see opposite polarity flux indicating flux returning beneath the surface. The bulk of the penumbral brightness is maintained by small-scale motions turning over on scales shorter than the length of a typical penumbral filament. The resulting vertical rms velocity at τ = 1 is about half of that found in the quiet Sun. Radial outflows in the sunspot penumbra have two components. In the uppermost few 100 km, fast outflows are driven primarily through the horizontal component of the Lorentz force, which is confined to narrow boundary layers beneath τ = 1, while the contribution from horizontal pressure gradients is reduced in comparison to granulation as a consequence of anisotropy. The resulting Evershed flow reaches its peak velocity near τ = 1 and falls off rapidly with height. Outflows present in deeper layers result primarily from a preferred ring-like alignment of convection cells surrounding the sunspot. These flows reach amplitudes of about 50% of the convective rms velocity rather independent of depth. A preference for the outflow results from a combination of Lorentz force and pressure driving. While the Evershed flow dominates by velocity amplitude, most of the mass flux is present in deeper layers and likely related to a large-scale moat flow.

  12. A three-dimensional domain decomposition method for large-scale DFT electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Duy, Truong Vinh Truong; Ozaki, Taisuke

    2014-03-01

    With tens of petaflops supercomputers already in operation and exaflops machines expected to appear within the next 10 years, efficient parallel computational methods are required to take advantage of such extreme-scale machines. In this paper, we present a three-dimensional domain decomposition scheme for enabling large-scale electronic structure calculations based on density functional theory (DFT) on massively parallel computers. It is composed of two methods: (i) the atom decomposition method and (ii) the grid decomposition method. In the former method, we develop a modified recursive bisection method based on the moment of inertia tensor to reorder the atoms along a principal axis so that atoms that are close in real space are also close on the axis to ensure data locality. The atoms are then divided into sub-domains depending on their projections onto the principal axis in a balanced way among the processes. In the latter method, we define four data structures for the partitioning of grid points that are carefully constructed to make data locality consistent with that of the clustered atoms for minimizing data communications between the processes. We also propose a decomposition method for solving the Poisson equation using the three-dimensional FFT in Hartree potential calculation, which is shown to be better in terms of communication efficiency than a previously proposed parallelization method based on a two-dimensional decomposition. For evaluation, we perform benchmark calculations with our open-source DFT code, OpenMX, paying particular attention to the O(N) Krylov subspace method. The results show that our scheme exhibits good strong and weak scaling properties, with the parallel efficiency at 131,072 cores being 67.7% compared to the baseline of 16,384 cores with 131,072 atoms of the diamond structure on the K computer.

  13. Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization

    NASA Astrophysics Data System (ADS)

    Kitaura, F. S.; Enßlin, T. A.

    2008-09-01

    We address the inverse problem of cosmic large-scale structure reconstruction from a Bayesian perspective. For a linear data model, a number of known and novel reconstruction schemes, which differ in terms of the underlying signal prior, data likelihood and numerical inverse extraregularization schemes are derived and classified. The Bayesian methodology presented in this paper tries to unify and extend the following methods: Wiener filtering, Tikhonov regularization, ridge regression, maximum entropy and inverse regularization techniques. The inverse techniques considered here are the asymptotic regularization, the Jacobi, Steepest Descent, Newton-Raphson, Landweber-Fridman and both linear and non-linear Krylov methods based on Fletcher-Reeves, Polak-Ribière and Hestenes-Stiefel conjugate gradients. The structures of the up-to-date highest performing algorithms are presented, based on an operator scheme, which permits one to exploit the power of fast Fourier transforms. Using such an implementation of the generalized Wiener filter in the novel ARGO software package, the different numerical schemes are benchmarked with one-, two- and three-dimensional problems including structured white and Poissonian noise, data windowing and blurring effects. A novel numerical Krylov scheme is shown to be superior in terms of performance and fidelity. These fast inverse methods ultimately will enable the application of sampling techniques to explore complex joint posterior distributions. We outline how the space of the dark matter density field, the peculiar velocity field and the power spectrum can jointly be investigated by a Gibbs-sampling process. Such a method can be applied for the redshift distortions correction of the observed galaxies and for time-reversal reconstructions of the initial density field.

  14. The large scale structures of the Late Permian Zechstein 3 intra-salt stringer, northern Netherlands

    NASA Astrophysics Data System (ADS)

    van Gent, H.; Strozyk, F.; Urai, J. L.; de Keijzer, M.; Kukla, P. A.

    2012-04-01

    The three dimensional study of the internal structure of salt structures on the several different scales is of fundamental importance to understand mechanisms of salt tectonics, for intra-salt storage cavern stability, and for drilling in salt-prone petroleum systems with associated problems like borehole instability and overpressured fluids. While most salt-related studies depict salt as structureless bodies, detailed field-, well- and mining gallery mapping have shown an amazing spectrum of brittle, complexly folded, faulted and boudinaged intra-salt layers ("stringers"), but mostly on a very local scale. First detailed insights into these three-dimensionally heterogeneous and very complex structures of the layered evaporites were provided by observations in modern high-resolution 3D seismic data, such as across the Late Permian Zechstein in the Southern Permian Basin (SPB). In the northern Dutch onshore part of the SPB, the Z2 and Z3 halite interface is characterized by the seismically visible reflections of the 30-150 m thick Z3 anhydrite-carbonate layer that clearly resolves the complex intra-salt structure. This stringer shows a high fragmentation into blocks of several tens of meters to kilometres diameter with complexly folded and faulted structures that correlate to the regionally varying deformation stages of the Zechstein, as it is implied by the shape of Top Salt. After an extensive seismic mapping over the entire northern Netherlands, structures observed include an extensive network of thicker zones, inferred to result from early karstification. Later, this template of relatively strong zones was deformed into large scale folds and boudins as the result of salt tectonics. Non-plane-strain salt flow produced complex fold and boudin geometries that overprint each other. There are some indications of a feedback between the early internal evolution of this salt giant and the position of later salt structures. The stringer has a higher density then the

  15. On the convective velocity of large-scale structures in compressible axisymmetric jets

    NASA Astrophysics Data System (ADS)

    Thurow, Brian S.

    2005-12-01

    The role of compressibility on the convective velocity of large-scale structures in axisymmetric jets is studied using a home-built pulse burst laser system and newly developed high-repetition rate experimental diagnostics. In the last decade and a half, a number of researchers have made measurements of the convective velocity of large-scale structures within compressible free shear layers. These measurements, based entirely on flow visualization images, indicate a departure of the convective velocity from its theoretically expected value. This work attempts to explore this in further detail through the acquisition of time-correlated planar velocimetry data in two compressible axisymmetric flow fields. A pulse burst laser system was designed and constructed with the ability to produce a burst of short duration (10 nsec) pulses over a ˜150 microsecond period with inter-pulse timing as low as 1 microsecond (1 MHz). Pulse energies were increased by a factor of five through the addition of a phase conjugate mirror, which eliminates a gain robbing low-energy pedestal superimposed on the burst of pulses. The laser can produce individual pulse with energies over 100 mJ/pulse and 2nd and 3rd harmonic conversion efficiencies reaching 50% and 40%, respectively. In addition, the frequency of the laser is found to fluctuate less than 12 MHz, making it ideal for spectroscopic applications. The application of the pulse burst laser for flow measurements was investigated through the development of MHz rate flow visualization and MHz rate planar Doppler velocimetry (PDV). MHz rate flow visualization is achieved by using a high-repetition rate camera to image laser light scattered from particles in the flow. MHz rate PDV is a spectroscopic technique that uses the laser output at 532 nm, two ultra-high framing rate cameras and a molecular iodine vapor filter to measure the Doppler frequency shift of laser light scattered from seed particles contained in the flow field. The technique

  16. A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, part 2

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Crivelli, Luis

    1993-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallellize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet and perhaps will never be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient than explicit codes when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.

  17. A transient FETI methodology for large-scale parallel implicit computations in structural mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier

    1992-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.

  18. Relationship Between Large-Scale Functional and Structural Covariance Networks in Idiopathic Generalized Epilepsy

    PubMed Central

    Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Wang, Zhengge; Chen, Guanghui; Jiao, Qing; Zang, Yu-Feng

    2013-01-01

    Abstract The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We estimated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-based results revealed that the normal human brain is characterized by specific topological properties such as small worldness and highly-connected hub regions. The patients had an altered overall topology compared to the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the patients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in patients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mechanisms within functionally synchronous systems. They can also provide crucial information for understanding the interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures. PMID:23510272

  19. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes

    SciTech Connect

    Hu, Wei E-mail: linlin@lbl.gov E-mail: jlyang@ustc.edu.cn; Yang, Chao E-mail: linlin@lbl.gov E-mail: jlyang@ustc.edu.cn; Lin, Lin E-mail: linlin@lbl.gov E-mail: jlyang@ustc.edu.cn; Yang, Jinlong E-mail: linlin@lbl.gov E-mail: jlyang@ustc.edu.cn

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11 700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs’ edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E{sub g} of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  20. Large-scale turbulent structures in jets and in flows over cavities and their relationship to entrainment and mixing

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Massier, P. F.

    1979-01-01

    Large scale structures in jets and in flows over cavities were investigated experimentally to determine their role in entrainment, mixing, and noise production. The presence of these structures resulted in growth of the shear layer and entrainment. Merging of adjacent large scale structures caused the near field pressure signal in excited flows. It is believed that both the entrained fluid as well as its eventual mixing with the jet flow can be controlled by introducing pulsation in the jet flow at a frequency for which the flow is most unstable.

  1. Reorganisation of the large-scale structures in turbulent boundary layers using highly ordered and directional surface roughness

    NASA Astrophysics Data System (ADS)

    Kevin, -; Nugroho, Bagus; Pathikonda, Gokul; Barros, Julio; Christensen, Kenneth; Monty, Jason; Hutchins, Nicholas; UoM-UIUC riblets study Collaboration

    2014-11-01

    The potential of riblet-type surface roughness with converging-diverging (herring-bone type) arrangements to reorganise the large-scale coherent structures that populate the logarithmic region of turbulent boundary layers is investigated at moderate Reynolds number. The ability of this transitionally rough surface to generate large-scale counter rotating roll-modes suggests that a preferential arrangement of the naturally occurring large-scale structures may have been introduced. Prior analysis of the pre-multiplied energy spectra of streamwise velocity fluctuation indicates an increase (or decrease) in the large-scale streamwise turbulence energy over the converging region (or diverging) of the riblets. In this study we examine this possible spanwise redistribution of the coherent structures using instantaneous planar Particle Image Velocimetry (PIV) in the wall-parallel plane (within the logarithmic region) as well as cross-plane Stereoscopic PIV. The characteristics of the large-scale structure over the converging-diverging surface are compared with those of the corresponding smooth-wall case, revealing pronounced modification of the size, strength and alignment of these features over the directional surface. Collaboration between University of Melbourne and University of Illinois on converging-diverging riblets study.

  2. Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models

    PubMed Central

    2010-01-01

    Background In recent years large-scale computational models for the realistic simulation of epidemic outbreaks have been used with increased frequency. Methodologies adapt to the scale of interest and range from very detailed agent-based models to spatially-structured metapopulation models. One major issue thus concerns to what extent the geotemporal spreading pattern found by different modeling approaches may differ and depend on the different approximations and assumptions used. Methods We provide for the first time a side-by-side comparison of the results obtained with a stochastic agent-based model and a structured metapopulation stochastic model for the progression of a baseline pandemic event in Italy, a large and geographically heterogeneous European country. The agent-based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high-resolution census data worldwide, and integrating airline travel flow data with short-range human mobility patterns at the global scale. The model also considers age structure data for Italy. GLEaM and the agent-based models are synchronized in their initial conditions by using the same disease parameterization, and by defining the same importation of infected cases from international travels. Results The results obtained show that both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing on the order of a few days. The relative difference of the epidemic size depends on the basic reproductive ratio, R0, and on the fact that the metapopulation model consistently yields a larger incidence than the agent-based model, as expected due to the differences in the structure in the intra-population contact pattern of the approaches. The age breakdown analysis shows

  3. Predictions of a non-Gaussian model for large scale structure

    SciTech Connect

    Fan, Z.H.; Bardeen, J.M.

    1992-06-26

    A modified CDM model for the origin of structure in the universe based on an inflation model with two interacting scalar fields, is analyzed to make predictions for the statistical properties of the density and velocity fields and the microwave background anisotropy. The initial gauge-invariant potential {zeta} which is defined as {zeta} = {delta}{rho}/({rho} + p) + 3{var_phi}, where {var_phi} is the curvature perturbation amplitude and p is the pressure, is the sum of a Gaussian field {phi}{sub 1}, and the square of a Gaussian field {phi}{sub 2}. A Harrison-Zel`dovich scale-invariant power spectrum is assumed for {phi}{sub 1}; and a log-normal `peak` power spectrum for {phi}{sub 2}. The location and the width of the peak are described by parameters k{sub c} and a. respectively. The model is motivated to some extent by inflation models with two interacting scalar fields, but is mainly interesting as an example of a model whose statistical properties change with scale. On small scales, it is almost identical to a standard scale-invariant Gaussian CDM model. On scales near the location of the peak of the non-Gaussian field, the distributions have long tails in high positive values of the density and velocity fields. Thus, it is easier to get large-scale streaming velocities than the standard CDM model. The quadrupole amplitude of fluctuations of the cosmic microwave background radiation and the rms variation of the temperature field smoothed with a 10{degree} FWHM Gaussian are calculated; a reasonable agreement is found with the new COBE results.

  4. Predictions of a non-Gaussian model for large scale structure

    SciTech Connect

    Fan, Z.H.; Bardeen, J.M.

    1992-06-26

    A modified CDM model for the origin of structure in the universe based on an inflation model with two interacting scalar fields, is analyzed to make predictions for the statistical properties of the density and velocity fields and the microwave background anisotropy. The initial gauge-invariant potential [zeta] which is defined as [zeta] = [delta][rho]/([rho] + p) + 3[var phi], where [var phi] is the curvature perturbation amplitude and p is the pressure, is the sum of a Gaussian field [phi][sub 1], and the square of a Gaussian field [phi][sub 2]. A Harrison-Zel'dovich scale-invariant power spectrum is assumed for [phi][sub 1]; and a log-normal 'peak' power spectrum for [phi][sub 2]. The location and the width of the peak are described by parameters k[sub c] and a. respectively. The model is motivated to some extent by inflation models with two interacting scalar fields, but is mainly interesting as an example of a model whose statistical properties change with scale. On small scales, it is almost identical to a standard scale-invariant Gaussian CDM model. On scales near the location of the peak of the non-Gaussian field, the distributions have long tails in high positive values of the density and velocity fields. Thus, it is easier to get large-scale streaming velocities than the standard CDM model. The quadrupole amplitude of fluctuations of the cosmic microwave background radiation and the rms variation of the temperature field smoothed with a 10[degree] FWHM Gaussian are calculated; a reasonable agreement is found with the new COBE results.

  5. Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure

    SciTech Connect

    Banerji, Manda; Abdalla, Filipe B.; Lahav, Ofer; Lin, Huan; /Fermilab

    2007-11-01

    We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an artificial neural network code-ANNz. In particular, we examine how optical photometry in the DES grizY bands can be complemented with near infra-red photometry from the planned VISTA Hemisphere Survey (VHS) in the JHK{sub s} bands in order to improve the photometric redshift estimate by a factor of two at z > 1. We draw attention to the effects of galaxy formation scenarios such as reddening on the photo-z estimate and using our neural network code, calculate A{sub v} for these reddened galaxies. We also look at the impact of using different training sets when calculating photometric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective. However we need to be aware of uncertainties in the photometric redshift bias that arise when using different training sets as these will translate into errors in the dark energy equation of state parameter, w. Furthermore, we show that the neural network error estimate on the photometric redshift may be used to remove outliers from our samples before any kind of cosmological analysis, in particular for large-scale structure experiments. By removing all galaxies with a 1{sigma} photo-z scatter greater than 0.1 from our DES+VHS sample, we can constrain the galaxy power spectrum out to a redshift of 2 and reduce the fractional error on this power spectrum by {approx}15-20% compared to using the entire catalogue.

  6. Large-scale structure studies with the unresolved CXB - Challenges from XBOOTES

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2015-08-01

    The scientific significance of large-scale structure (LSS) studies with X-ray surveys can be greatly enhanced by analysis of the surface brightness fluctuations of the unresolved cosmic X-ray background (CXB). It enables us to study the clustering properties of source populations, which are otherwise inaccessible with clustering studies of resolved sources of current X-ray surveys due to the lack of deep-wide surveys and selection effects.We have conducted the most accurate measurement to date of the brightness fluctuations of the unresolved CXB in the 0.5-2.0keV band for angular scales of <~17', using XBOOTES, the currently largest continuous Chandra survey (~9 deg2).We find that on small angular scales (<~2') the observed power spectrum of the brightness fluctuations is broadly consistent with the conventional AGN clustering model, although with a ~30% deviation. This deviation demonstrates the current poor knowledge of the clustering properties of AGN within their dark matter halo (DMH). We provide possible explanations for this deviation.For angular scales of >~2' we measure a significant excess with up to an order of magnitude difference in comparison to the standard AGN clustering model. We demonstrate that an instrumental origin can be excluded but also that it can neither be explained with any known X-ray source population based on its clustering strength and the shape of its energy spectrum. We speculate that the excess is caused by more than one type of source and that its dominant source appears to have extragalactic origin.Finally, we make predictions on how the eROSITA all-sky survey (eRASS) will be able to advance the studies of the unresolved CXB.

  7. A Strong-Lens Survey in AEGIS: the Influence of Large Scale Structure

    SciTech Connect

    Moustakas, Leonidas A.; Marshall, Phil J.; Newman, Jeffrey A.; Coil, Alison L.; Cooper, Michael C.; Davis, Marc; Fassnacht, Christopher D.; Guhathakurta, Puragra; Hopkins, Andrew; Koekemoer, Anton; Konidaris, Nicholas P.; Lotz, Jennifer M.; Willmer, Christopher N.A.; /Arizona U., Astron. Dept. - Steward Observ.

    2006-07-14

    We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin2 of HST/ACS imaging in the Extended Groth Strip (EGS). These deep F606W- and F814W-band observations are in the DEEP2-EGS field. In addition to a previously-known Einstein Cross also found by our search (the ''Cross'', HSTJ141735+52264, with z{sub lens} = 0.8106 and a published z{sub source} = 3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HSTJ141820+52361 (the ''Dewdrop''; z{sub lens} = 0.5798), lenses two distinct extended sources into two pairs of arcs (z{sub source} = 0.9818 by nebular [O{sub II}] emission), while the second, HSTJ141833+52435 (the ''Anchor''; z{sub lens} = 0.4625), produces a single pair of arcs (source redshift not yet known). Four less convincing arc/counter-arc and two-image lens candidates are also found and presented for completeness. All three definite lenses are fit reasonably well by simple singular isothermal ellipsoid models including external shear, giving {chi}{sub {nu}}{sup 2}values close to unity. Using the three-dimensional line-of-sight (LOS) information on galaxies from the DEEP2 data, we calculate the convergence and shear contributions {kappa}{sub los} and {gamma}{sub los} to each lens, assuming singular isothermal sphere halos truncated at 200 h{sup -1} kpc. These are compared against a robust measure of local environment, {delta}{sub 3}, a normalized density that uses the distance to the third nearest neighbor. We find that even strong lenses in demonstrably underdense local environments may be considerably affected by LOS contributions, which in turn, under the adopted assumptions, may be underestimates of the effect of large scale structure.

  8. Rapid separable analysis of higher order correlators in large-scale structure

    NASA Astrophysics Data System (ADS)

    Fergusson, J. R.; Regan, D. M.; Shellard, E. P. S.

    2012-09-01

    We present an efficient separable approach to the estimation and reconstruction of the bispectrum and the trispectrum from observational (or simulated) large-scale structure data. This is developed from general cosmic microwave background (poly)spectra methods that exploit the fact that the bispectrum and trispectrum in the literature can be represented by a separable mode expansion that converges rapidly (with nmax⁡=O(30) terms). The underlying methodology can encompass a wide variety of modal types, including polynomials, trigonometric functions, wavelets, and bins. With an effective grid resolution lmax⁡ (number of particles/grid points N=lmax⁡3), we present a bispectrum estimator that requires only O(nmax⁡×lmax⁡3) operations, along with a corresponding method for direct bispectrum reconstruction. This method is extended to the trispectrum revealing an estimator that requires only O(nmax⁡4/3×lmax⁡3) operations. The complexity in calculating the trispectrum in this method is now involved in the original decomposition and orthogonalization process that need only be performed once for each model. However, for nondiagonal trispectra these processes present little extra difficulty and may be performed in O(lmax⁡4) operations. A discussion of how the methodology may be applied to the quadspectrum is also given. An efficient algorithm for the generation of arbitrary non-Gaussian initial conditions for use in N-body codes using this separable approach is described. This prescription allows for the production of non-Gaussian initial conditions for arbitrary bispectra and trispectra. A brief outline of the key issues involved in parameter estimation, particularly in the nonlinear regime, is also given.

  9. The EFT of Large Scale Structures at all redshifts: analytical predictions for lensing

    NASA Astrophysics Data System (ADS)

    Foreman, Simon; Senatore, Leonardo

    2016-04-01

    We study the prediction of the Effective Field Theory of Large Scale Structures (EFTofLSS) for the matter power spectrum at different redshifts. In previous work, we found that the two-loop prediction can match the nonlinear power spectrum measured from N-body simulations at redshift zero within approximately 2% up to k~ 0.6 h Mpc-1 after fixing a single free parameter, the so-called "speed of sound". We determine the time evolution of this parameter by matching the EFTofLSS prediction to simulation output at different redshifts, and find that it is well-described by a fitting function that only includes one additional parameter. After the two free parameters are fixed, the prediction agrees with nonlinear data within approximately 2% up to at least k~ 1 h Mpc-1 at z>= 1, and also within approximately 5% up to k~ 1.2 h Mpc-1 at z=1 and k~ 2.3 h Mpc-1 at z=3, a major improvement with respect to other perturbative techniques. We also develop an accurate way to estimate where the EFTofLSS predictions at different loop orders should fail, based on the sizes of the next-order terms that are neglected, and find agreement with the actual comparisons to data. Finally, we use our matter power spectrum results to perform analytical calculations of lensing potential power spectra corresponding to both CMB and galaxy lensing. This opens the door to future direct applications of the EFTofLSS to observations of gravitational clustering on cosmic scales.

  10. Large Scale Structure in Absorption up to z~0.4

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas

    2012-10-01

    We propose to observe and characterize IGM absorption systems associated with Large Scale Structure {LSS} in a statistical manner up to redshift 0.4. For this purpose, we have used a recently published cluster catalog {GMBCG; Hao et al., 2010} to identify massive nodes in the 'cosmic web'. Then, we used cluster pairs with small separations {<20 Mpc} at similar redshifts to identify zones where filaments should reside with high probabilities. Combining the GMBCG cluster catalog with the SDSS DR7 QSO catalog, we selected a single QSO whose sightline passes through a total of 6 predicted filaments {3 of which are independent} and 3 clusters with spectroscopic redshifts at impact parameters <1.5 Mpc. This will considerably increase the sample of known LSS {especially filaments} at low redshift. We propose to observe the QSO with HST/COS using the G130M and G160M gratings to cover the full FUV spectral range at high resolution {R 20000}. We require observations at S/N 10 to ensure a full characterization of HI and OVI lines at small column densities {N 10^13 cm^-2}. These low column densities will allow us to detect broad and shallow HI lines with OVI, believed to be associated with portions of the warm-hot intergalactic medium {WHIM}. Our results will also be suitable for testing an alternative hypothesis which states that the majority of OVI absorbers at low-z are confined within <300 kpc from galaxies and are not directly related to the WHIM {Prochaska et al., 2011; Tumlinson et al., 2011}. Our findings will test our understanding of galaxy formation and the importance of AGN/supernova feedbacks by comparing them with state-of-the-art hydrodynamical simulations.

  11. Coronal structure of the large scale magnetic field and its influence on stellar rotation.

    NASA Astrophysics Data System (ADS)

    Réville, Victor; Brun, Allan Sacha; Matt, Sean; Strugarek, Antoine; Bouvier, Jérôme

    2015-08-01

    The braking of magnetic stars through the extraction of angular momentum by stellar winds has been studied for decades, leading to several formulations as functions of stellar parameters. We recently demonstrated that the dependency of the braking law on the coronal magnetic field topology can be taken into account through a simple scalar parameter : the open magnetic flux. This parameter can be integrated anywhere beyond the last closed coronal loop in steady-state. The Zeeman-Doppler Imaging technique has brought the community a reliable and precise description of the surface magnetic field of distant stars. However reconstruction of the coronal structure of the large scale magnetic field without running costly numerical simulations of the stellar wind is not trivial. An alternative is to use the classical analytical potential field extrapolation to describe the opening of the field lines by the magnetized wind but this technique relies on knowing the so-called radius of the surface source term which must vary from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015, to provide a criteria for the field lines opening as well as a simple tool to assess the surface source term radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observations. We conclude our talk by discussing the case of 3D wind simulations of the BCool sample ; whose surface magnetic field has been obtained by ZDI and to discuss how non-axisymmetry modifies or not our recent findings.

  12. Horizon Run 4 Simulation: Coupled Evolution of Galaxies and Large-Scale Structures of the Universe

    NASA Astrophysics Data System (ADS)

    Kim, Juhan; Park, Changbom; L'Huillier, Benjamin; Hong, Sungwook E.

    2015-08-01

    The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 6300^3 gravitating particles in a cubic box of L_{box} = 3150 h^{-1} Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to M_s = 2.7 × 10^{11} h^{-1} M_⊙. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln (1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation funct-ion of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine mu compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4

  13. A Confirmatory Approach to Examining the Factor Structure of the Strengths and Difficulties Questionnaire (SDQ): A Large Scale Cohort Study

    ERIC Educational Resources Information Center

    Niclasen, Janni; Skovgaard, Anne Mette; Andersen, Anne-Marie Nybo; Somhovd, Mikael Julius; Obel, Carsten

    2013-01-01

    The aim of this study was to examine the factor structure of the Strengths and Difficulties Questionnaire (SDQ) using a Structural Confirmatory Factor Analytic approach. The Danish translation of the SDQ was distributed to 71,840 parents and teachers of 5-7 and 10-12-year-old boys and girls from four large scale cohorts. Three theoretical models…

  14. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  15. Imaging the mantle lithosphere of the Precambrian Grenville Province: large-scale electrical resistivity structures

    NASA Astrophysics Data System (ADS)

    Adetunji, Ademola Q.; Ferguson, Ian J.; Jones, Alan G.

    2015-05-01

    The resistivity structure of the lithospheric mantle beneath the Proterozoic Grenville Province in southern Ontario, Canada is investigated using 84 magnetotelluric (MT) sites divided into four profiles. Depth-based regional geoelectric dimensionality analyses of the MT responses indicate that the mantle lithosphere north of Lake Ontario can be subdivided into upper (45-150 km) and deeper (>200 km) lithospheric mantle layers with regional strike azimuths of N85°E (±5°) and N65°E (±5°), respectively. MT responses from the Grenville Front and the northwest part of the Central Gneiss Belt are compatible with the presence of 2-D resistivity structures but farther to the southeast, in the southeast part of the Central Gneiss Belt and Central Metasedimentary Belt, they suggest the presence of localized 3-D structures. 2-D inversion of distortion-free MT responses images a large scale very resistive (>20 000 Ω m) region that extends 300 km southeast of the Grenville Front and for at least 800 km along-strike in the lithospheric mantle beneath the Grenville Province. This feature is interpreted to be Superior Province lithosphere and the corresponding N85°E geoelectric strike to be associated with the fabric of the Superior Province. The base of the resistor reaches depths of 280 km on two of the three MT profiles north of Lake Ontario and this depth is interpreted to be the base of the lithosphere. A large region of enhanced conductivity in the lower lithosphere, spatially correlated with decreased seismic velocity, is bounded to the northwest by a subvertical resistivity anomaly located near the Kirkland Lake and Cobalt kimberlite fields. The enhanced conductivity in the lower lithosphere is attributed to refertilization by fluids associated with Cretaceous kimberlite magmatism and can be explained by water content in olivine of 50 wt ppm in background areas with higher values in a localized anomaly beneath the kimberlite fields. Farther to the southeast the

  16. Large-Scale Structures in the Zone of Avoidance: The Galactic Anticenter Region

    NASA Technical Reports Server (NTRS)

    Lu, Nanyao Y.; Freudling, Wolfram

    1995-01-01

    We have selected a sample of 876 galaxy candidates from the IRAS Point Source Catalog in the region of 2(exp h) < alpha < 10(exp h) and 0 deg < delta < 36 deg, which crosses the Galactic anticenter part of the Zone of Avoidance (ZOA) and includes most of the highly obscured Orion-Taurus complex region. We have identified galaxies among the candidate sources by attempting to detect the 21 cm H I line of those sources which were not known to be galaxies at the beginning of the survey. In this manner, we constructed a galaxy sample which is largely free from Galactic reddening. Of the 272 observed candidates, 89 were detected in the H I line up to a heliocentric velocity of v(sub h) approximately 16,000 km/s. The resulting galaxy sample of 717 galaxies is fairly complete (within about 10%) and uniform (within about 4%) in the part of the survey area 10 deg away from the Galactic plane and for velocities up to at least 9000 km/s. This provides, for the first time, a largely unbiased view on the large-scale structures in much of the survey area. Our main results are the following: (1) Several large voids are identified. In particular, a void between alpha approximately equals 3(sup h) and 4(sup h), up to v(sub h) approximately 6000 km/s, separates the Pisces-Perseus supercluster at alpha < 3(sup h) from structures at alpha > 4(sup h); and a "nearby void" occupies most of our survey area and reaches out to a redshift of nearly 3000 km/s. (2) We found no nearby galaxy concentration that could significantly contribute to the "Local Velocity Anomoly" (LVA), but a general excess of galaxies around v(sub h) approximately 5000 km/s in the survey area. (3) The contrast between the "Great Wall" at v(sub h) approximately 8500 km/s and the void in front of it appears to gradually diffuse out after it enters the Zone of Avoidance from the northern Galactic hemisphere. (4) Our data combined with other galaxy surveys in or near the Galactic anticenter part of the ZOA suggest that the

  17. Tracing Planets in Circumstellar Discs. Observability of Large-scale Disc Structures with ALMA

    NASA Astrophysics Data System (ADS)

    Ruge, Jan Philipp; Wolf, Sebastian; Uribe, Ana L.; Klahr, Hubert H.

    2013-04-01

    Planets are assumed to form in circumstellar discs around young stellar objects. The additional gravitational potential of a planet perturbs the disc and leads to characteristic structures, i.e. spiral waves and gaps, in the disc density profile. We perform a large-scale parameter study on the observability of these planet-induced structures in circumstellar discs in the (sub)mm wavelength range for the Atacama Large (Sub)Millimeter Array (ALMA). On the basis of hydrodynamical and magneto-hydrodynamical simulations of star-disc-planet models we calculate the disc temperature structure and (sub)mm images of these systems. These are used to derive simulated ALMA maps. Because appropriate objects are frequent in the Taurus-Auriga region, we focus on a distance of 140 pc and a declination of ≈ 20°. The explored range of star-disc-planet configurations consists of six hydrodynamical simulations (including magnetic fields and different planet masses), nine disc sizes with outer radii ranging from 9 AU to 225 AU, 15 total disc masses in the range between 2.67·10-7 M⊙ and 4.10·10-2 M⊙, six different central stars and two different grain size distributions, resulting in 10 000 disc models. At almost all scales and in particular down to a scale of a few AU, ALMA is able to trace disc structures induced by planet-disc interaction or the influence of magnetic fields in the wavelength range between 0.4...2.0 mm. In most cases, the optimum angular resolution is limited by the sensitivity of ALMA. However, within the range of typical masses of protoplane tary discs (0.1 M⊙...0.001 M⊙) the disc mass has a minor impact on the observability. At the distance of 140 pc it is possible to resolve discs down to 2.67·10-6 M⊙ and trace gaps in discs with 2.67·10-4 M⊙ with a signal-to-noise ratio greater than three. In general, it is more likely to trace planet-induced gaps in magneto-hydrodynamical disc models, because gaps are wider in the presence of magnetic fields [1

  18. Using a wall-normal jet to modify the large-scale structures in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Talluru, Murali Krishna; Bishop, Brett; Hutchins, Nicholas; Manzie, Chris; Marusic, Ivan; The University of Melbourne Team

    2012-11-01

    We report on attempts to use a wall-normal jet to modify the large-scale structures (``super structures'') that are known to populate the logarithmic regions of high Reynolds number turbulent boundary layers. An upstream spanwise array of surface mounted shear-stress sensors detects the passage of the large-scale events. A rectangular wall-normal jet, located downstream of this array targets the identified event and a second spanwise array downstream of the jet monitors any alterations to the large-scale structure. A traversing hot wire probe is mounted above the downstream array to look for modifications across the depth of the boundary layer. As a first step, an off-line control strategy is investigated. In this case, there is no active controller, the jet is periodically fired with fixed parameters and during post-processing, the ``control'' strategy is emulated in a conditional sense to understand the interactions of an actuated jet with the larger turbulent structures. The results from off-line control scheme are used to develop a real-time control scheme to systematically target the large-scale high skin friction events. The outcome of this control approach on both the instantaneous coherent structures and also the time-averaged quantities is investigated.

  19. On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures

    DOE PAGESBeta

    Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; Vlah, Zvonimir

    2015-09-09

    With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describemore » the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of an N-body simulation where the normalization parameter of the linear power spectrum is set to σ8 = 0.9. For the lowest mass bin, we find percent level agreement up to k ≃ 0.3 h Mpc–1 for the one-loop two-point functions, and up to k ≃ 0.15 h Mpc–1 for the tree-level three-point functions, with the k-reach decreasing with higher mass bins. In conclusion, this is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.« less

  20. Covariance of cross-correlations: towards efficient measures for large-scale structure

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    2009-12-01

    We study the covariance of the cross-power spectrum of different tracers for the large-scale structure. We develop the counts-in-cells framework for the multitracer approach, and use this to derive expressions for the full non-Gaussian covariance matrix. We show that for the usual autopower statistic, besides the off-diagonal covariance generated through gravitational mode-coupling, the discreteness of the tracers and their associated sampling distribution can generate strong off-diagonal covariance, and that this becomes the dominant source of covariance as spatial frequencies become larger than the fundamental mode of the survey volume. On comparison with the derived expressions for the cross-power covariance, we show that the off-diagonal terms can be suppressed, if one cross-correlates a high tracer-density sample with a low one. Taking the effective estimator efficiency to be proportional to the signal-to-noise ratio (S/N), we show that, to probe clustering as a function of physical properties of the sample, i.e. cluster mass or galaxy luminosity, the cross-power approach can outperform the autopower one by factors of a few. We confront the theory with measurements of the mass-mass, halo-mass and halo-halo power spectra from a large ensemble of N-body simulations. We show that there is a significant S/N advantage to be gained from using the cross-power approach when studying the bias of rare haloes. The analysis is repeated in configuration space and again S/N improvement is found. We estimate the covariance matrix for these samples, and find strong off-diagonal contributions. The covariance depends on halo mass, with higher mass samples having stronger covariance. In agreement with theory, we show that the covariance is suppressed for the cross-power. This work points the way towards improved estimators for studying the clustering of tracers as a function of their physical properties.

  1. On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures

    SciTech Connect

    Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; Vlah, Zvonimir

    2015-09-09

    With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describe the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of an N-body simulation where the normalization parameter of the linear power spectrum is set to σ8 = 0.9. For the lowest mass bin, we find percent level agreement up to k ≃ 0.3 h Mpc–1 for the one-loop two-point functions, and up to k ≃ 0.15 h Mpc–1 for the tree-level three-point functions, with the k-reach decreasing with higher mass bins. In conclusion, this is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.

  2. Skewness-induced asymmetric modulation of small-scale turbulence by large-scale structures

    NASA Astrophysics Data System (ADS)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2016-01-01

    Several recent studies discuss of role of skewness of the turbulent velocity fluctuations in near-wall shear layers, in the context of quantifying the correlation between large-scale motions and amplitude variations of small-scale fluctuations—referred to as "modulation." The present study is based on the premise that the skewness of the small-scale fluctuations should be accounted for explicitly in the process of defining their envelope, which characterizes their amplitude variations. This leads to the notion of two envelopes, one for positive and the other for negative small-scale fluctuations, and hence also to two corresponding correlation coefficients. Justification for this concept is provided first by an examination of a high-frequency synthetic signal subjected to realistic skewness-inducing modulation. A new formalism is provided for deriving the two envelopes, and its fidelity is demonstrated for the synthetic test case. The method is then applied to a channel flow at a friction Reynolds number of 4200, for which direct numerical simulation (DNS) data are available. The large-scale and small-scale fields are separated by the empirical mode decomposition method, and the modulation of the small-scale fluctuations by the large scales is examined. Separate maps of the correlation coefficient and of two-point correlations, the latter linking the large-scale motions and the envelopes of the small-scale motions, are derived for the two envelopes pertaining to positive and negative small-scale fluctuations, and these demonstrate a significant sensitivity to the envelope-definition process, especially close to the wall where the skewness of the small-scale fluctuations is the dominant contributor to the total value.

  3. Reconstruction of the fine structure of an acoustic scatterer against the distorting influence of its large-scale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Grishina, I. M.; Lapshenkina, O. I.; Morozov, S. A.; Rumyantseva, O. D.; Sukhov, E. G.

    2003-11-01

    In the ultrasonic diagnostics of small-size neoplasms of biological tissues at the earliest stage of their development, an efficient way to eliminate the distorting influence of high-contrast or large inhomogeneities of the biological medium is to apply the iterative technique. A simple approach is proposed, which makes it possible with only two iteration steps to achieve an efficient focusing of the tomograph array. At the first step, the unknown distribution of the large-scale inhomogeneities of sound velocity and absorption over the scatterer is reconstructed, where the large-scale inhomogeneities are those whose size exceeds several wavelengths. At the second step, the fine structure of the scatterer is reconstructed against the large-scale background, which can be performed with a high accuracy owing to the evaluation of the background at the first step. The possibility of simultaneous reconstruction of the large-scale and fine structures by the noniterative Grinevich-Novikov algorithm is considered as an alternative. This algorithm reconstructs in an explicit form two-dimensional refractive-absorbing acoustic scatterers of almost arbitrary shape and strength. Taking into account the effects of multiple scattering, this algorithm provides resolution of the fine structure almost as good as that achieved in reconstructing the same structure against an undistorting homogeneous background. The results of numerical simulations of both algorithms are presented.

  4. Towards a self-consistent halo model for the nonlinear large-scale structure

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian

    2016-03-01

    The halo model is a theoretically and empirically well-motivated framework for predicting the statistics of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer from two major deficiencies: (i) they do not enforce the stress-energy conservation of matter; (ii) they are not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation of the halo model (EHM) that remedies both drawbacks in a consistent way, while attempting to maintain the predictivity of the approach. In the formulation presented here, mass and momentum conservation are guaranteed on large scales, and results of the perturbation theory and the effective field theory can, in principle, be matched to any desired order on large scales. We find that a key ingredient in the halo model power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than other ingredients such as mass function, bias, and profiles of halos. As written here, this approach still does not describe the transition regime between perturbation theory and halo scales realistically, which is left as an open problem. We also show explicitly that, when implemented consistently, halo model predictions do not depend on any properties of low-mass halos that are smaller than the scales of interest.

  5. Statistical Analysis of Large Scale Structure by the Discrete Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Pando, Jesus

    1997-10-01

    The discrete wavelet transform (DWT) is developed as a general statistical tool for the study of large scale structures (LSS) in astrophysics. The DWT is used in all aspects of structure identification including cluster analysis, spectrum and two-point correlation studies, scale-scale correlation analysis and to measure deviations from Gaussian behavior. The techniques developed are demonstrated on 'academic' signals, on simulated models of the Lymanα (Lyα) forests, and on observational data of the Lyα forests. This technique can detect clustering in the Ly-α clouds where traditional techniques such as the two-point correlation function have failed. The position and strength of these clusters in both real and simulated data is determined and it is shown that clusters exist on scales as large as at least 20 h-1 Mpc at significance levels of 2-4 σ. Furthermore, it is found that the strength distribution of the clusters can be used to distinguish between real data and simulated samples even where other traditional methods have failed to detect differences. Second, a method for measuring the power spectrum of a density field using the DWT is developed. All common features determined by the usual Fourier power spectrum can be calculated by the DWT. These features, such as the index of a power law or typical scales, can be detected even when the samples are geometrically complex, the samples are incomplete, or the mean density on larger scales is not known (the infrared uncertainty). Using this method the spectra of Ly-α forests in both simulated and real samples is calculated. Third, a method for measuring hierarchical clustering is introduced. Because hierarchical evolution is characterized by a set of rules of how larger dark matter halos are formed by the merging of smaller halos, scale-scale correlations of the density field should be one of the most sensitive quantities in determining the merging history. We show that these correlations can be completely

  6. Creating High Quality DEMs of Large Scale Fluvial Environments Using Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Javernick, L. A.; Brasington, J.; Caruso, B. S.; Hicks, M.; Davies, T. R.

    2012-12-01

    -linear transformation to convert the point clouds to the absolute NZTM coordinate system, with average errors of 0.06 m in the horizontal and 0.11 m in the vertical dimensions. The final point clouds extracted had typical point spacings of 0.25 m, well above the metric resolution of airborne LiDAR. To improve data handling, the final point cloud was decimated to point spacings of 0.5 m using a recently developed gridding procedure (Rychkov, Brasington, & Vericat, 2012), and finally converted into a DEM using a Delaunay constrained TIN in ArcGIS. Results reveal SfM's ability to produce high quality terrain products of large scale fluvial environments that can outperform LiDAR, and can potentially compare with TLS. PhotoScan offers a straightforward method to generate, transform, and export DEMs that requires little user knowledge of photogrammetric processes. Further, the affordability and reduced field work offer low budget researchers the ability to produce repeat surveys for in-depth temporal studies. Funding supported by the New Zealand Department of Conservation.

  7. The SRG/eROSITA All-Sky Survey: A new era of large-scale structure studies with AGN

    NASA Astrophysics Data System (ADS)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2015-08-01

    The four-year X-ray All-Sky Survey (eRASS) of the eROSITA telescope aboard the Spektrum-Roentgen-Gamma (SRG) satellite will detect about 3 million active galactic nuclei (AGN) with a median redshift of z~1 and typical luminosity of L0.5-2.0keV ~ 1044 erg/s. We demonstrate that this unprecedented AGN sample, complemented with redshift information, will supply us with outstanding opportunities for large-scale structure (LSS) studies.We show that with this sample of X-ray selected AGN, it will become possible for the first time to perform detailed redshift- and luminosity-resolved studies of the AGN clustering. This enable us to put strong constraints on different AGN triggering/fueling models as a function of AGN environment, which will dramatically improve our understanding of super-massive black hole growth and its correlation with the co-evolving LSS.Further, the eRASS AGN sample will become a powerful cosmological probe. We demonstrate for the first time that, given the breadth and depth of eRASS, it will become possible to convincingly detect baryonic acoustic oscillations (BAOs) with ~8σ confidence in the 0.8 < z < 2.0 range, currently uncovered by any existing BAO survey.Finally, we discuss the requirements for follow-up missions and demonstrate that in order to fully exploit the potential of the eRASS AGN sample, photometric and spectroscopic surveys of large areas and a sufficient depth will be needed.

  8. Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.

    1992-01-01

    Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.

  9. Detection of a large-scale structure of intracluster globular clusters in the Virgo cluster.

    PubMed

    Lee, Myung Gyoon; Park, Hong Soo; Hwang, Ho Seong

    2010-04-16

    Globular clusters are usually found in galaxies, and they are excellent tracers of dark matter. Long ago it was suggested that intracluster globular clusters (IGCs) may exist that are bound to a galaxy cluster rather than to any single galaxy. Here we present a map showing the large-scale distribution of globular clusters over the entire Virgo cluster. It shows that IGCs are found out to 5 million light years from the Virgo center and that they are concentrated in several substructures that are much larger than galaxies. These objects might have been mostly stripped off from low-mass dwarf galaxies. PMID:20223950

  10. Constraints on the power spectrum of the primordial density field from large-scale data - Microwave background and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    It is shown here that, by using galaxy catalog correlation data as input, measurements of microwave background radiation (MBR) anisotropies should soon be able to test two of the inflationary scenario's most basic predictions: (1) that the primordial density fluctuations produced were scale-invariant and (2) that the universe is flat. They should also be able to detect anisotropies of large-scale structure formed by gravitational evolution of density fluctuations present at the last scattering epoch. Computations of MBR anisotropies corresponding to the minimum of the large-scale variance of the MBR anisotropy are presented which favor an open universe with P(k) significantly different from the Harrison-Zeldovich spectrum predicted by most inflationary models.

  11. Extraction of large-scale coherent structure from plasma turbulence using rake probe and wavelet analysis in a tokamak

    SciTech Connect

    Xu, G. S.; Wan, B. N.; Zhang, W.

    2006-06-15

    In fusion plasmas, intermittently occurring large-scale coherent structures in electrostatic turbulence sometimes contribute more than 50% of total transport, so the investigation on these coherent structures is important for understanding plasma confinement. New experimental techniques are required to extract these coherent structures from fluctuating signals. In this work a 12-tip poloidal rake probe was used on the HT-7 superconducting tokamak to measure plasma turbulence in the plasma edge region. Several signal analysis methods based on a biorthogonal wavelet were developed and applied to the probe data. Since the structure of the selected wavelet is every similar to that of the turbulence wave packet, information about large-scale coherent structures can be selectively extracted from the ambient turbulence. The spatiotemporal patterns of the large-scale coherent structures were reconstructed using the selected wavelets as well as those of small-scale details. These wavelet-based techniques can be applied to all kinds of plasma fluctuation diagnostics, so they possibly present a new opportunity for uncovering the mechanism underlying plasma turbulent transport.

  12. Comparison of Prestellar Core Elongations and Large-scale Molecular Cloud Structures in the Lupus I Region

    NASA Astrophysics Data System (ADS)

    Poidevin, Frédérick; Ade, Peter A. R.; Angile, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Matthews, Tristan G.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Diego Soler, Juan; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-08-01

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  13. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    SciTech Connect

    Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Netterfield, Calvin B.; Chapin, Edward L.; Fissel, Laura M.; Gandilo, Natalie N.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Matthews, Tristan G.; Novak, Giles; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  14. Small-Scale Screening to Large-Scale Over-Expression of Human Membrane Proteins for Structural Studies.

    PubMed

    Chaudhary, Sarika; Saha, Sukanya; Thamminana, Sobrahani; Stroud, Robert M

    2016-01-01

    Membrane protein structural studies are frequently hampered by poor expression. The low natural abundance of these proteins implies a need for utilizing different heterologous expression systems. E. coli and yeast are commonly used expression systems due to rapid cell growth at high cell density, economical production, and ease of manipulation. Here we report a simplified, systematically developed robust strategy from small-scale screening to large-scale over-expression of human integral membrane proteins in the mammalian expression system for structural studies. This methodology streamlines small-scale screening of several different constructs utilizing fluorescence size-exclusion chromatography (FSEC) towards optimization of buffer, additives, and detergents for achieving stability and homogeneity. This is followed by the generation of stable clonal cell lines expressing desired constructs, and lastly large-scale expression for crystallization. These techniques are designed to rapidly advance the structural studies of eukaryotic integral membrane proteins including that of human membrane proteins. PMID:27485338

  15. Introduction of a test measurement for a monitoring technology inside a large-scale civil engineering structure using muon radiography

    NASA Astrophysics Data System (ADS)

    Sannomiya, A.; Tanaka, H.

    2012-04-01

    Akira Sannomiya1*, Koichiro Tada1*, Hiroyuki K.M. Tanaka2* Chigasaki Research Institute, Technology Development Center, Electric Power Development Co., Ltd.1, Earthquake Research Institute, University of Tokyo, Japan2 Introduction The technology that enables us to observe the internal structure of a volcano and the city foundation is being developed by utilizing the muon's significant penetration power. From the possibility to use this technology for the surveillance inside a large-scale civil engineering structure, we are planning an experimental measurement. General Instruction A final target is safety judgment of the condition of a large-scale civil engineering structure. It is important for safety judgment to grasp the internal density contract, such as the crack and slack levels of a base rock or the structure, and degradation and groundwater levels. However, feasibility of application of muon radiography to monitoring inside the large-scale civil engineering structure has not confirmed yet. Therefore, as a test experiment, we attempt to measure the fluctuation of the groundwater level in order to evaluate and examine the method. Measurement will be carried out from the inside of a scupper tunnel in the base rock. The result will be compared with the independent groundwater level measurement in order to perform quantitative evaluation of muon radiography. In addition, this test measurement will start the near future. About a detailed plan, it is under examination now.

  16. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOEpatents

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  17. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  18. Large-scale topography of Io - Implications for internal structure and heat transfer

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Synnott, Stephen P.; Mcewen, Alfred S.; Schaber, Gerald G.

    1988-01-01

    Recent stereographic methods have been applied to Voyager 1 images in order to determine the shape and large-scale topography of Io. The best triaxial figure of semiaxes of 1830.0, 1818.7, and 1815.3 kilometers is consistent with a differentiated satellite in hydrostatic equilibrium. It is suggested that many of the broad topographic swells and basins noted may be due to isostatic responses to thermal changes in the lithosphere-asthenosphere system. Results support the picture of increasing heat flow converting the basal lithosphere into a lower-density asthenosphere, resulting in isostatic uplift. It is shown that lithospheric thicknesses ranging from 5-100 km may results in elevation variations of up to 1 km.

  19. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  20. The topology of large-scale structure. II - Nonlinear evolution of Gaussian models

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Weinberg, David H.; Gott, J. Richard, III

    1988-01-01

    The evolution of non-Gaussian behavior in the large-scale universe from Gaussian initial conditions is studied. Topology measures developed in previous papers are applied to the smoothed initial, final, and biased matter distributions of cold dark matter, white noise, and massive neutrino simulations. When the smoothing length is approximately twice the mass correlation length or larger, the evolved models look like the initial conditions, suggesting that random phase hypotheses in cosmology can be tested with adequate data sets. When a smaller smoothing length is used, nonlinear effects are recovered, so nonlinear effects on topology can be detected in redshift surveys after smoothing at the mean intergalaxy separation. Hot dark matter models develop manifestly non-Gaussian behavior attributable to phase correlations, with a topology reminiscent of bubble or sheet distributions. Cold dark matter models remain Gaussian, and biasing does not disguise this.

  1. Large scale standing slow mode structures in MHD simulations of the hermean magnetosphere

    NASA Astrophysics Data System (ADS)

    Pantellini, Filippo; Meyrand, Romain; Varela, Jacobo

    2015-04-01

    Standing slow mode compressional fronts are seen to form upstream of the day side magnetopause in MHD simulations of Mercury's magnetosphere. These fronts are seen to form upstream of the portions of the magnetopause characterized by a near reversal of the magnetic field orientation. Their role is to bend the magnetosheath field lines towards the magnetopause. Besides these compressional fronts, already observed in space and theoretically discussed by various authors for the case of the Earth, large scale slow mode rarefaction waves are also seen to form in most parts of the magnetosheath. The rarefaction waves are essential to divert the interplanetary magnetic field lines and the solar wind plasma flow around the magnetopause.

  2. Implications of a class of grand-unified theories for large-scale structure in the universe

    NASA Technical Reports Server (NTRS)

    Shafi, Q.; Stecker, F. W.

    1984-01-01

    A class of grand-unified theories in which cosmologically significant axion and neutrino energy densities arise naturally is considered. To obtain large-scale structure, attention is given to (1) an inflationary scenario, (2) inflation followed by string production, and (3) a noninflationary scenario with density fluctuations caused solely by strings. It is shown that inflation may be compatible with the recent observational indications that Omega less than 1 on the scale of superclusters, particularly if strings are present.

  3. Large-scale shear velocity structure of the upper mantle beneath Europe and surrounding regions

    NASA Astrophysics Data System (ADS)

    Legendre, C. P.; Meier, T. M.; Lebedev, S.; Friederich, W.

    2009-12-01

    The automated multimode waveform inversion technique developed by Lebedev et al. (2005) was applied to available data of broadband stations in Europe and surrounding regions. It performs a fitting of the complete waveform starting from the S-wave onset to the surface wave. Assuming the location and focal mechanism of a considered earthquake as known, the first basic step is to consider each available seismogram separately and to find the 1D-model that can explain the filtered seismogram best. In a second step, each 1D-model serves as a linear constraint in an inversion for a 3D S-wave velocity model of the upper mantle. We collected data for the years from 1990 to 2006 from all permanent stations for which data were available via the data centers of ORFEUS, GEOFON amd IRIS, and from others that build the Virtual European Seismological Network (VEBSN). In addition, we incorporated data from temporary experiments like SVEKALAPKO, TOR and the Eifel plume project as well as permanent stations in France. Just recently we were also able to add the data recorded by the temporary broadband EGELADOS network in the southern Aegean. In this way, a huge data set of about 500000 seismograms came about from which about 60000 1D-models could be constructed. The resulting models exhibit an overwhelming structural detail in relation to the size of the region considered in the inversion. They are to our knowledge the most detailed models of shear wave velocity currently available for the European upper mantle and surroundings. Most prominent features are an extremely sharp demarcation of the East European platform from Western Europe. Narrow high velocity regions follow the Hellenic arc and the Ionian trench toward the north. Whereas high velocities are found beneath the western Alps between about 100 km to 200 km depth, the eastern Alps show a low velocity anomaly at these depths. Low velocity zones are found at depths around 150 km in the Pannonian basin, the back-arc of the

  4. Large-scale shear velocity structure of the upper mantle beneath Europe and surrounding regions

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric; Meier, Thomas; Lebedev, Sergei; Friederich, Wolfgang; Egelados Working Group

    2010-05-01

    The automated multimode waveform inversion technique developed by Lebedev et al. (2005) was applied to available data of broadband stations in Europe and surrounding regions. It performs a fitting of the complete waveform starting from the S-wave onset to the surface wave. Assuming the location and focal mechanism of a considered earthquake as known, the first basic step is to consider each available seismogram separately and to find the velocity perturbations that can explain the filtered seismogram best. In a second step, each velocity perturbations serves as a linear constraint in an inversion for a 3D S-wave velocity model of the upper mantle. We collected data for the years from 1990 to 2006 from all permanent stations for which data were available via the data centers of ORFEUS, GEOFON and IRIS, and from others that build the Virtual European Seismological Network (VEBSN). In addition, we incorporated data from temporary experiments like SVEKALAPKO, TOR and the Eifel plume project as well as permanent stations in France. Just recently we were also able to add the data recorded by the temporary broadband EGELADOS network in the southern Aegean. In this way, a huge data set of about 500000 seismograms came about from which about 60000 1D-models could be constructed. The resulting models exhibit an overwhelming structural detail in relation to the size of the region considered in the inversion. They are to our knowledge the most detailed models of shear wave velocity currently available for the European upper mantle and surroundings. Most prominent features are an extremely sharp demarcation of the East European platform from Western Europe. Narrow high velocity regions follow the Hellenic arc and the Ionian trench toward the north. Whereas high velocities are found beneath the western Alps between about 100 km to 200 km depth, the eastern Alps show a low velocity anomaly at these depths. Low velocity zones are found at depths around 150 km in the Pannonian

  5. Analyzing Large-Scale Structural Change in Proteins: Comparison of Principal Component Projection and Sammon Mapping

    SciTech Connect

    Mesentean, Sidonia; Fischer, S.; Smith, Jeremy C

    2006-04-01

    Effective analysis of large-scale conformational transitions in macromolecules requires transforming them into a lower dimensional representation that captures the dominant motions. Herein, we apply and compare two different dimensionality reduction techniques, namely, principal component analysis (PCA), a linear method, and Sammon mapping, which is nonlinear. The two methods are used to analyze four different protein transition pathways of varying complexity, obtained by using either the conjugate peak refinement method or constrained molecular dynamics. For the return-stroke in myosin, both Sammon mapping and PCA show that the conformational change is dominated by a simple rotation of a rigid body. Also, in the case of the T{yields}R transition in hemoglobin, both methods are able to identify the two main quaternary transition events. In contrast, in the cases of the unfolding transition of staphylococcal nuclease or the signaling switch of Ras p21, which are both more complex conformational transitions, only Sammon mapping is able to identify the distinct phases of motion.

  6. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    SciTech Connect

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.

  7. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a few orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. The method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.

  8. Constrained realizations of Gaussian fields - Reconstruction of the large-scale structure

    NASA Astrophysics Data System (ADS)

    Ganon, Galit; Hoffman, Yehuda

    1993-09-01

    The method of constrained realization (CR) of Gaussian random fields is applied to reconstruct our 'local' universe. A large observational data set is sampled and used as constraints imposed on realizations of an assumed primordial Gaussian perturbation field. To illustrate the method, the velocity potential as obtained by the POTENT algorithm from the observed velocity field is sampled at 181 different positions within a sphere of 40/h Mpc radius around us. Numerical realizations of the standard cold dark matter (CDM) model are constructed to yield the actual sampled values. These realizations do reconstruct the density perturbation field of the nearby universe. With only 181 constraints, the CR algorithm recovers the main features of POTENT's density field and, in particular, the Great Attractor region. The 12/h Mpc smoothed potential, which depends on the very long wavelengths of the underlying perturbation field, is used to constrain high-resolution (5/h Mpc smoothing) realizations. Thus, given an assumed model, high-resolution fields are created subject to low-resolution data. The method is easily applicable to the general case where any variable which depends linearly on the Gaussian field can be used to set the constraints.

  9. The scale-dependent signature of primordial non-Gaussianity in the large-scale structure of cosmic reionization

    NASA Astrophysics Data System (ADS)

    D'Aloisio, Anson; Zhang, Jun; Shapiro, Paul R.; Mao, Yi

    2013-08-01

    The rise of large-scale structure in the universe depends upon the statistical distribution of initial density fluctuations generated by inflation. While the simplest models of inflation predict an almost perfectly Gaussian distribution, more-general models predict primordial deviations from Gaussianity that observations might yet be sensitive enough to detect. Recent measurements of the cosmic microwave background (CMB) temperature anisotropy bispectrum by the Planck collaboration have significantly tightened observational limits on the level of primordial non-Gaussianity (PNG) in the Universe, but they are still far from the level predicted by the simplest models of inflation. Probing levels of PNG below CMB sensitivities will require other methods, such as searching for the statistical imprint of PNG on the clustering of galactic haloes. During the cosmic epoch of reionization (EoR), the first stars and galaxies released radiation into the intergalactic medium (IGM) that created ionized patches whose large-scale geometry and evolution reflected the underlying abundance and large-scale clustering of the star-forming galaxies. This statistical connection between ionized patches in the IGM and galactic haloes suggests that observations of reionization may provide another means of constraining PNG. We employ the linear perturbation theory of reionization and semi-analytic models based on the excursion-set formalism to model the effects of PNG on the EoR. We quantify the effects of PNG on the large-scale structure of reionization by deriving the ionized density bias, i.e. the ratio of the ionized atomic to total matter overdensities in Fourier space, at small wavenumber. Just as previous studies found that PNG creates a scale-dependent signature in the halo bias, so, too, we find a scale-dependent signature in the ionized density bias. Our results, which differ significantly from previous attempts in the literature to characterize this PNG signature, will be applied

  10. Improved L-BFGS diagonal preconditioners for a large-scale 4D-Var inversion system: application to CO2 flux constraints and analysis error calculation

    NASA Astrophysics Data System (ADS)

    Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng

    2013-04-01

    This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a

  11. Evolution of large-scale plasma structures in comets: Kinematics and physics

    NASA Technical Reports Server (NTRS)

    Brandt, John C.

    1993-01-01

    Cometary and solar wind data from December 1985 through April 1986 are presented for the purpose of determining the solar wind conditions associated with comet plasma tail disconnection events (DE's). The cometary data are from The International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In addition, we present the kinematic analysis of 4 DE's, those of Dec. 13.5 and 31.2, 1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DE's clearly illustrate the need to analyze DE's in groups. In situ solar wind measurements from IMP-8, ICE, and PVO were used to construct the variation of solar wind speed, density, and dynamic pressure during this interval. Data from these same spacecraft plus Vega-1 were used to determine the time of 48 current sheet crossings. These data were fitted to heliospheric current sheet curves extrapolated from the corona into the heliosphere in order to determine the best-fit source surface radius for each Carrington rotation. Comparison of the solar wind conditions and 16 DE's in Halley's comet (the four DE's discussed in this paper and 12 DE's in the literature) leaves little doubt that DE's are associated primarily with crossings of the heliospheric current sheet and apparently not with any other property of the solar wind. If we assume that there is a single or primary physical mechanism and that Halley's DE's are representative, efforts at simulation should concentrate on conditions at current sheet crossings. The mechanisms consistent with this result are sunward magnetic reconnection and tailward magnetic reconnection, if tailward reconnection can be triggered by the sector boundary crossing.

  12. VERTICAL STRUCTURE OF STATIONARY ACCRETION DISKS WITH A LARGE-SCALE MAGNETIC FIELD

    SciTech Connect

    Bisnovatyi-Kogan, G. S.; Lovelace, R. V. E. E-mail: RVL1@cornell.edu

    2012-05-10

    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the hydrodynamic and/or magnetorotational instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. Here, we calculate the vertical profiles of the stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Also, here we require that the radial accretion speed be zero at the disk's surface and we assume that the ratio of the turbulent viscosity to the turbulent magnetic diffusivity is of order unity. Thus, at the disk's surface there are three boundary conditions. As a result, for a fixed dimensionless viscosity {alpha}-value, we find that there is a definite relation between the ratio R of the accretion power going into magnetic disk winds to the viscous power dissipation and the midplane plasma-{beta}, which is the ratio of the plasma to magnetic pressure in the disk. For a specific disk model with R of order unity we find that the critical value required for a stationary solution is {beta}{sub c} Almost-Equal-To 2.4r/({alpha}h), where h is the disk's half thickness. For weaker magnetic fields, {beta} > {beta}{sub c}, we argue that the poloidal field will advect outward while for {beta} < {beta}{sub c} it will advect inward. Alternatively, if the disk wind is negligible (R<<1), there are stationary solutions with {beta} >> {beta}{sub c}.

  13. Applications of the Halo Model to Large Scale Structure Measurements of the Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reid, Beth A.; Spergel, D. N.; Bode, P.

    2009-01-01

    The power spectrum of density fluctuations in the evolved universe provides constraints on cosmological parameters that are complementary to the CMB and other astronomical probes. The Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample probes a volume of 3 Gpc3, and systematic errors in modeling the nonlinearities limit our ability to extract information on the shape of the linear power spectrum. In Chapter 2 of this dissertation we present the technique `Counts-in-Cylinders' (CiC) and use it to measure the multiplicity function of groups of LRGs in SDSS. We use the Halo Occupation Distribution description of the galaxy-matter mapping and N-body simulations to connect this observation with constraints on the distribution of LRGs in dark matter halos. In Chapter 3 we study the effects of resolution on statistics relating to both the large and small scale distributions and motions of matter and dark matter halos. We combine these results to produce a large set of high quality mock LRG catalogs that reproduce the higher order statistics in the density field probed by the CiC technique. Using these catalogs we present a detailed analysis of the method used in Tegmark et al. 2006 to estimate the LRG power spectrum, and find that the large nonlinear correction necessary for their analysis is degenerate with changes in the linear spectrum we wish to constrain. We show that the CiC group-finding method in Chapter 2 can be used to reconstruct the underlying halo density field. The power spectrum of this field has only percent-level deviations from the underlying matter power spectrum, and will therefore provided tighter constraints on cosmological parameters. Techniques presented in this dissertation will be useful for final analysis of the SDSS LRGs and upcoming surveys probing much larger volumes. B.A.R. gratefully acknowledges support from the NSF Graduate Research Fellowship.

  14. On the influence of outer large-scale structures on near-wall turbulence in channel flow

    NASA Astrophysics Data System (ADS)

    Agostini, L.; Leschziner, M. A.

    2014-07-01

    Direct Numerical Simulation (DNS) data for channel flow at 1025 are used to analyse the interaction between large outer scales in the log-law region - referred to as super-streaks - and the small-scale, streaky, streamwise-velocity fluctuations in the viscosity-affected near-wall layer. The study is inspired by extensive experimental investigations by Mathis, Marusic, and Hutchins, culminating in a predictive model that describes, in a supposedly universal manner, the "footprinting" and "modulating" effects of the outer structures on the small-scale near-wall motions. The approach used herein is based on the examination of joint PDFs for the small-scale fluctuations, conditioned on regions of large-scale footprints. The large and small scales are separated by means of the Huang-Hilbert empirical-mode decomposition, the validity of which is demonstrated by way of pre-multiplied energy spectra, correlation maps, and energy profiles for both scales. Observations derived from the PDFs then form the basis of assessing the validity of the assumptions underlying the model. Although the present observations support some elements of the model, the results imply that modulation by negative and positive large-scale fluctuations differ greatly - an asymmetric response that is not compatible with the model. The study is thus extended to examining the validity of an alternative proposal, which is based on the assumption that a universal description of the small-scale response to the large-scale motions has to rely on the velocity fluctuations being scaled with the large-scales-modified local friction velocity, rather than with the mean value. This proposal is partially supported by the present analysis. Finally, an alternative, new phenomenological model is proposed and examined.

  15. The solar wind structure that caused a large-scale disturbance of the plasma tail of comet Austin

    NASA Astrophysics Data System (ADS)

    Kozuka, Yukio; Konno, Ichishiro; Saito, Takao; Numazawa, Shigemi

    1992-12-01

    The plasma tail of Comet Austin (1989c1) showed remarkable disturbances because of the solar maximum periods and its orbit. Figure 1 shows photographs of Comet Austin taken in Shibata, Japan, on 29 Apr. 1990 UT, during about 20 minutes with the exposure times of 90 to 120 s. There are two main features in the disturbance; one is many bowed structures, which seem to move tailwards; and the other is a large-scale wavy structure. The bowed structures can be interpreted as arcade structures brushing the surface of both sides of the cometary plasma surrounding the nucleus. We identified thirteen structures of the arcades from each of the five photographs and calculated the relation between the distance of each structure from the cometary nucleus, chi, and the velocity, upsilon. The result is shown. This indicates that the velocity of the structures increases with distance. This is consistent with the result obtained from the observation at the Kiso Observatory.

  16. Applications of the halo model to large scale structure measurements of the Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Reid, Beth Ann

    The power spectrum of density fluctuations in the evolved universe provides constraints on cosmological parameters that are complementary to cosmic microwave background and other astronomical probes. The Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample probes a volume of ~ 3 (Gpc) 3 , and systematic errors in modeling the nonlinearities limit our ability to extract information on the shape of the linear power spectrum. There are three main effects that distort the observed power spectrum from the linear power spectrum: nonlinear gravitational evolution, redshift space distortions, and a nonlinear relation between the galaxy density field and the underlying matter density field. In this thesis we introduce a new method to mitigate the latter two distortions and rely on carefully tuned N-body simulations to model the first. In Chapter 2 we present the technique 'Counts-in-Cylinders' (CiC) and use it to measure the multiplicity function of groups of LRGs in SDSS. We use the Halo Occupation Distribution description of the galaxy-matter mapping and N -body simulations to connect this observation with constraints on the distribution of LRGs in dark matter halos. In Chapter 3 we study the effects of resolution on statistics relating to both the large and small scale distributions and motions of matter and dark matter halos. We combine these results to produce a large set of high quality mock LRG catalogs that reproduce the higher order statistics in the density field probed by the CiC technique. Using these catalogs we present a detailed analysis of the method used in Tegmark et al. (2006) to estimate the LRG power spectrum, and find that the large nonlinear correction necessary for their analysis is degenerate with changes in the linear spectrum we wish to constrain. We show that the CiC group-finding method in Chapter 2 can be used to reconstruct the underlying halo density field. The power spectrum of this field has only percent-level deviations from

  17. Does lower Omega allow a resolution of the large-scale structure problem?

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Vittorio, Nicola

    1987-01-01

    The intermediate angular scale anisotropy of the cosmic microwave background, peculiar velocities, density correlations, and mass fluctuations for both neutrino and baryon-dominated universes with Omega less than one are evaluated. The large coherence length associated with a low-Omega, hot dark matter-dominated universe provides substantial density fluctuations on scales up to 100 Mpc: there is a range of acceptable models that are capable of producing large voids and superclusters of galaxies and the clustering of galaxy clusters, with Omega roughly 0.3, without violating any observational constraint. Low-Omega, cold dark matter-dominated cosmologies are also examined. All of these models may be reconciled with the inflationary requirement of a flat universe by introducing a cosmological constant 1-Omega.

  18. Implications of cosmic strings with time-varying tension on the CMB and large scale structure

    SciTech Connect

    Ichikawa, Kazuhide; Takahashi, Tomo; Yamaguchi, Masahide

    2006-09-15

    We investigate cosmological evolution and implications of cosmic strings with time-dependent tension. We derive basic equations of time development of the correlation length and the velocity of such strings, based on the one-scale model. Then, we find that, in the case where the tension depends on some power of the cosmic time, cosmic strings with time-dependent tension goes into the scaling solution if the power is lower than a critical value. We also discuss cosmic microwave background anisotropy and matter power spectra produced by these strings. The constraints on their tensions from the Wilkinson microwave anisotropy probe (WMAP) 3 yr data and Sloan digital sky survey (SDSS) data are also given.

  19. Large-scale determination of previously unsolved protein structures using evolutionary information.

    PubMed

    Ovchinnikov, Sergey; Kinch, Lisa; Park, Hahnbeom; Liao, Yuxing; Pei, Jimin; Kim, David E; Kamisetty, Hetunandan; Grishin, Nick V; Baker, David

    2015-01-01

    The prediction of the structures of proteins without detectable sequence similarity to any protein of known structure remains an outstanding scientific challenge. Here we report significant progress in this area. We first describe de novo blind structure predictions of unprecendented accuracy we made for two proteins in large families in the recent CASP11 blind test of protein structure prediction methods by incorporating residue-residue co-evolution information in the Rosetta structure prediction program. We then describe the use of this method to generate structure models for 58 of the 121 large protein families in prokaryotes for which three-dimensional structures are not available. These models, which are posted online for public access, provide structural information for the over 400,000 proteins belonging to the 58 families and suggest hypotheses about mechanism for the subset for which the function is known, and hypotheses about function for the remainder. PMID:26335199

  20. Element-by-element model updating of large-scale structures based on component mode synthesis method

    NASA Astrophysics Data System (ADS)

    Yu, Jie-xin; Xia, Yong; Lin, Wei; Zhou, Xiao-qing

    2016-02-01

    Component mode synthesis (CMS) method is developed and applied to the element-by-element model updating of large-scale structures in this study. Several lowest frequencies and mode shapes of the global structure are obtained with the free interface CMS method by employing the several lowest frequencies and mode shapes of each substructure individually. In this process, the removal of higher modes is compensated by the residual modes. The eigensensitivity of the global structure is then assembled from the eigensensitivities of each substructure to the updating element parameters. Subsequently, the global model is updated using the sensitivity-based optimization technique. The application of the present method to an 11-floor frame structure and to a large-scale structure demonstrates its accuracy and efficiency. The computational time required by the substructuring method to calculate the eigensensitivity matrices is significantly reduced, as compared with that consumed by the conventional global-based approach. Selection of the number of master modes is also proposed.

  1. The Muenster Red Sky Survey: Large-scale structures in the universe

    NASA Astrophysics Data System (ADS)

    Ungruhe, R.; Seitter, W. C.; Duerbeck, H. W.

    2003-01-01

    We present a large-scale galaxy catalogue for the red spectral region which covers an area of 5 000 square degrees. It contains positions, red magnitudes, radii, ellipticities and position angles of about 5.5 million galaxies. Together with the APM catalogue (4,300 square degrees) in the blue spectral region, this catalogue forms at present the largest coherent data base for cosmological investigations in the southern hemisphere. 217 ESO Southern Sky Atlas R Schmidt plates with galactic latitudes -45 degrees were digitized with the two PDS microdensitometers of the Astronomisches Institut Münster, with a step width of 15 microns, corresponding to 1.01 arcseconds per pixel. All data were stored on different storage media and are available for further investigations. Suitable search parameters must be chosen in such a way that all objects are found on the plates, and that the percentage of artificial objects remains as low as possible. Based on two reference areas on different plates, a search threshold of 140 PDS density units and a minimum number of four pixels per object were chosen. The detected objects were stored, according to size, in frames of different size length. Each object was investigated in its frame, and 18 object parameters were determined. The classification of objects into stars, galaxies and perturbed objects was done with an automatic procedure which makes use of combinations of computed object parameters. In the first step, the perturbed objects are removed from the catalogue. Double objects and noise objects can be excluded on the basis of symmetry properties, while for satellite trails, a new classification criterium based on apparent magnitude, effective radius and apparent ellipticity, was developed. For the remaining objects, a star/galaxy separation was carried out. For bright objects, the relation between apparent magnitude and effective radius serves as the discriminating property, for fainter objects, the relation between effective

  2. Elucidating Common Structural Features of Human Pathogenic Variations Using Large-Scale Atomic-Resolution Protein Networks

    PubMed Central

    Das, Jishnu; Lee, Hao Ran; Sagar, Adithya; Fragoza, Robert; Liang, Jin; Wei, Xiaomu; Wang, Xiujuan; Mort, Matthew; Stenson, Peter D.; Cooper, David N.; Yu, Haiyuan

    2016-01-01

    With the rapid growth of structural genomics, numerous protein crystal structures have become available. However, the parallel increase in knowledge of the functional principles underlying biological processes, and more specifically the underlying molecular mechanisms of disease, has been less dramatic. This notwithstanding, the study of complex cellular networks has made possible the inference of protein functions on a large scale. Here, we combine the scale of network systems biology with the resolution of traditional structural biology to generate a large-scale atomic-resolution interactome-network comprising 3,398 interactions between 2,890 proteins with a well-defined interaction interface and interface residues for each interaction. Within the framework of this atomic-resolution network, we have explored the structural principles underlying variations causing human-inherited disease. We find that in-frame pathogenic variations are enriched at both the interface and in the interacting domain, suggesting that variations not only at interface “hot-spots,” but in the entire interacting domain can result in alterations of interactions. Further, the sites of pathogenic variations are closely related to the biophysical strength of the interactions they perturb. Finally, we show that biochemical alterations consequent to these variations are considerably more disruptive than evolutionary changes, with the most significant alterations at the protein interaction interface. PMID:24599843

  3. Frozen-in Fractals All Around: Inferring the Large-Scale Effects of Small-Scale Magnetic Structure

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. James

    2015-07-01

    The large-scale structure of the magnetic field in the solar corona provides the energy to power large-scale solar eruptive events. Our physical understanding of this structure, and hence our ability to predict these events, is limited by the type of data currently available. It is shown that the multifractal spectrum is a powerful tool to study this structure, by providing a physical connection between the details of photospheric magnetic gradients and current density at all size scales. This uses concepts associated with geometric measure theory and the theory of weakly differentiable functions to compare Ampère's law to the wavelet-transform modulus maximum method. The Hölder exponent provides a direct measure of the rate of change of current density across spatial size scales. As this measure is independent of many features of the data (pixel resolution, data size, data type, presence of quiet-Sun data), it provides a unique approach to studying magnetic-field complexity and hence a potentially powerful tool for a statistical prediction of solar-flare activity. Three specific predictions are provided to test this theory: the multifractal spectra will not be dependent on the data type or quality; quiet-Sun gradients will not persist with time; structures with high current densities at large size scales will be the source of energy storage for solar eruptive events.

  4. Large-scale determination of previously unsolved protein structures using evolutionary information

    PubMed Central

    Ovchinnikov, Sergey; Kinch, Lisa; Park, Hahnbeom; Liao, Yuxing; Pei, Jimin; Kim, David E; Kamisetty, Hetunandan; Grishin, Nick V; Baker, David

    2015-01-01

    The prediction of the structures of proteins without detectable sequence similarity to any protein of known structure remains an outstanding scientific challenge. Here we report significant progress in this area. We first describe de novo blind structure predictions of unprecendented accuracy we made for two proteins in large families in the recent CASP11 blind test of protein structure prediction methods by incorporating residue–residue co-evolution information in the Rosetta structure prediction program. We then describe the use of this method to generate structure models for 58 of the 121 large protein families in prokaryotes for which three-dimensional structures are not available. These models, which are posted online for public access, provide structural information for the over 400,000 proteins belonging to the 58 families and suggest hypotheses about mechanism for the subset for which the function is known, and hypotheses about function for the remainder. DOI: http://dx.doi.org/10.7554/eLife.09248.001 PMID:26335199

  5. Large-scale experimental and theoretical study of graphene grain boundary structures

    NASA Astrophysics Data System (ADS)

    Ophus, Colin; Shekhawat, Ashivni; Rasool, Haider; Zettl, Alex

    2015-11-01

    We have characterized the structure of 176 different single-layer graphene grain boundaries grown with chemical vapor deposition using >1000 experimental high-resolution transmission electron microscopy images using a semiautomated structure processing routine. We introduce an algorithm for generating grain boundary structures for a class of hexagonal two-dimensional materials and use this algorithm and molecular dynamics to simulate the structure of >79 000 linear graphene grain boundaries covering 4122 unique orientations distributed over the entire parameter space. The dislocation content and structural properties are extracted from all experimental and simulated boundaries, and various trends are explored. We find excellent agreement between the simulated and experimentally observed grain boundaries. Our analysis demonstrates the power of a statistically significant number of measurements as opposed to a small number of observations in atomic science.

  6. Large-scale coronal structures in EUV and soft X-rays in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Benevolenskaya, E. E.; Kosovichev, A. G.; Scherrer, P. H.; Lemen, J. R.; Slater, G. L.

    2002-06-01

    We have analyzed the EIT/SOHO data in four EUV lines (171 Å, 195 Å, 284 Å and 304 Å) and soft X-ray YOHKOH data in two filters (AlMg and Al) in the form of coronal synoptic maps for the period 1996 - 2001 yrs. Two types of the bright structures have been detected in EUV in the axisymmetrically averaged synoptic maps. The structures of the first type migrate equatorward as the solar cycle progresses. They are related to complexes of sunspot activity and display the "butterfly"-type distribution. The structures of the second type migrate polarward and are associated with footpoints of giant coronal loops, which connect the polar regions and the following parts of the active complexes. These structures of coronal activity are also pronounced in the soft X-ray maps. However, the whole structure of the giant polar loops is visible in X-rays, and reveals connections to the low-latitude coronal structures. The relationship between the soft X-rays emission and the photospheric magnetic flux obtained from SOHO/MDI and Kitt Peak Solar Observatory has been investigated. It has been found that the relationship depends on the phase of the solar cycle. We discuss the role of the magnetic flux in the formation and evolution of the stable coronal structures during the rising phase of cycle 23.

  7. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    SciTech Connect

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-09

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics.

  8. Observational requirements for Lyα forest tomographic mapping of large-scale structure at z ∼ 2

    SciTech Connect

    Lee, Khee-Gan; Hennawi, Joseph F.; White, Martin; Croft, Rupert A. C.; Ozbek, Melih

    2014-06-10

    The z ≳ 2 Lyα forest traces the underlying dark matter distribution on large scales and, given sufficient sightlines, can be used to create three-dimensional (3D) maps of large-scale structures. We examine the observational requirements to construct such maps and estimate the signal-to-noise as a function of exposure time and sightline density. Sightline densities at z = 2.25 are n {sub los} ≈ [360, 1200, 3300] deg{sup –2} at limiting magnitudes of g = [24.0, 24.5, 25.0], resulting in transverse sightline separations of (d ) ≈ [3.6, 1.9, 1.2] h {sup –1} Mpc, which roughly sets the reconstruction scale. We simulate these reconstructions using mock spectra with realistic noise properties and find that spectra with S/N ≈ 4 per angstrom can be used to generate maps that clearly trace the underlying dark matter at overdensities of ρ/(ρ) ∼ 1. For the VLT/VIMOS spectrograph, exposure times t {sub exp} = [4, 6, 10] hr are sufficient for maps with spatial resolution ε{sub 3D} = [5.0, 3.2, 2.3] h {sup –1} Mpc. Assuming ∼250 h {sup –1} Mpc is probed along the line of sight, 1 deg{sup 2} of survey area would cover a comoving volume of ≈10{sup 6} h {sup –3} Mpc{sup 3} at (z) ∼ 2.3, enabling the efficient mapping of large volumes with 8-10 m telescopes. These maps could be used to study galaxy environments, the topology of large-scale structures at high z, and to detect proto-clusters.

  9. Dynamic displacement measurement of large-scale structures based on the Lucas-Kanade template tracking algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhu, Chang`an

    2016-01-01

    The development of optics and computer technologies enables the application of the vision-based technique that uses digital cameras to the displacement measurement of large-scale structures. Compared with traditional contact measurements, vision-based technique allows for remote measurement, has a non-intrusive characteristic, and does not necessitate mass introduction. In this study, a high-speed camera system is developed to complete the displacement measurement in real time. The system consists of a high-speed camera and a notebook computer. The high-speed camera can capture images at a speed of hundreds of frames per second. To process the captured images in computer, the Lucas-Kanade template tracking algorithm in the field of computer vision is introduced. Additionally, a modified inverse compositional algorithm is proposed to reduce the computing time of the original algorithm and improve the efficiency further. The modified algorithm can rapidly accomplish one displacement extraction within 1 ms without having to install any pre-designed target panel onto the structures in advance. The accuracy and the efficiency of the system in the remote measurement of dynamic displacement are demonstrated in the experiments on motion platform and sound barrier on suspension viaduct. Experimental results show that the proposed algorithm can extract accurate displacement signal and accomplish the vibration measurement of large-scale structures.

  10. An improved method to characterise the modulation of small-scale turbulent by large-scale structures

    NASA Astrophysics Data System (ADS)

    Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta

    2015-11-01

    A key aspect of turbulent boundary layer dynamics is ``modulation,'' which refers to degree to which the intensity of coherent large-scale structures (LS) cause an amplification or attenuation of the intensity of the small-scale structures (SS) through large-scale-linkage. In order to identify the variation of the amplitude of the SS motion, the envelope of the fluctuations needs to be determined. Mathis et al. (2009) proposed to define this latter by low-pass filtering the modulus of the analytic signal built from the Hilbert transform of SS. The validity of this definition, as a basis for quantifying the modulated SS signal, is re-examined on the basis of DNS data for a channel flow. The analysis shows that the modulus of the analytic signal is very sensitive to the skewness of its PDF, which is dependent, in turn, on the sign of the LS fluctuation and thus of whether these fluctuations are associated with sweeps or ejections. The conclusion is that generating an envelope by use of a low-pass filtering step leads to an important loss of information associated with the effects of the local skewness of the PDF of the SS on the modulation process. An improved Hilbert-transform-based method is proposed to characterize the modulation of SS turbulence by LS structures

  11. Large-Scale Production and Structural and Biophysical Characterizations of the Human Hepatitis B Virus Polymerase

    PubMed Central

    Vörös, Judit; Urbanek, Annika; Rautureau, Gilles Jean Philippe; O'Connor, Maggie; Fisher, Henry C.; Ashcroft, Alison E.

    2014-01-01

    ABSTRACT Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies—broad-spectrum antivirals—are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of β-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in

  12. Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.

    PubMed

    Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

    2013-02-01

    Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution. PMID:23348779

  13. Robust classification of protein variation using structural modelling and large-scale data integration

    PubMed Central

    Baugh, Evan H.; Simmons-Edler, Riley; Müller, Christian L.; Alford, Rebecca F.; Volfovsky, Natalia; Lash, Alex E.; Bonneau, Richard

    2016-01-01

    Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR to de novo variants associated with autism spectrum disorders. PMID:26926108

  14. An algebraic sub-structuring method for large-scale eigenvaluecalculation

    SciTech Connect

    Yang, C.; Gao, W.; Bai, Z.; Li, X.; Lee, L.; Husbands, P.; Ng, E.

    2004-05-26

    We examine sub-structuring methods for solving large-scalegeneralized eigenvalue problems from a purely algebraic point of view. Weuse the term "algebraic sub-structuring" to refer to the process ofapplying matrix reordering and partitioning algorithms to divide a largesparse matrix into smaller submatrices from which a subset of spectralcomponents are extracted and combined to provide approximate solutions tothe original problem. We are interested in the question of which spectralcomponentsone should extract from each sub-structure in order to producean approximate solution to the original problem with a desired level ofaccuracy. Error estimate for the approximation to the small esteigen pairis developed. The estimate leads to a simple heuristic for choosingspectral components (modes) from each sub-structure. The effectiveness ofsuch a heuristic is demonstrated with numerical examples. We show thatalgebraic sub-structuring can be effectively used to solve a generalizedeigenvalue problem arising from the simulation of an acceleratorstructure. One interesting characteristic of this application is that thestiffness matrix produced by a hierarchical vector finite elements schemecontains a null space of large dimension. We present an efficient schemeto deflate this null space in the algebraic sub-structuringprocess.

  15. Robust classification of protein variation using structural modelling and large-scale data integration.

    PubMed

    Baugh, Evan H; Simmons-Edler, Riley; Müller, Christian L; Alford, Rebecca F; Volfovsky, Natalia; Lash, Alex E; Bonneau, Richard

    2016-04-01

    Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR tode novovariants associated with autism spectrum disorders. PMID:26926108

  16. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    PubMed Central

    Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285

  17. Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code

    NASA Technical Reports Server (NTRS)

    Lemonds, Jeffrey; Kumar, Virendra

    1995-01-01

    An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.

  18. A mixed time integration method for large scale acoustic fluid-structure interaction

    SciTech Connect

    Christon, M.A.; Wineman, S.J.; Goudreau, G.L.; Foch, J.D.

    1994-07-18

    The transient, coupled, interaction of sound with structures is a process in which an acoustic fluid surrounding an elastic body contributes to the effective inertia and elasticity of the body. Conversely, the presence of an elastic body in an acoustic medium influences the behavior of propagating disturbances. This paper details the application of a mixed explicit-implicit time integration algorithm to the fully coupled acoustic fluidstructure interaction problem. Based upon a dispersion analysis of the semi-discrete wave equation a second-order, explicit scheme for solving the wave equation is developed. The combination of a highly vectorized, explicit, acoustic fluid solver with an implicit structural code for linear elastodynamics has resulted in a simulation tool, PING, for acoustic fluid-structure interaction. PING`s execution rates range from 1{mu}s/Element/{delta}t for rigid scattering to 10{mu}s/Element/{delta}t for fully coupled problems. Several examples of PING`s application to 3-D problems serve in part to validate the code, and also to demonstrate the capability to treat complex geometry, acoustic fluid-structure problems which require high resolution meshes.

  19. Characterizing the nonlinear growth of large-scale structure in the Universe

    PubMed

    Coles; Chiang

    2000-07-27

    The local Universe displays a rich hierarchical pattern of galaxy clusters and superclusters. The early Universe, however, was almost smooth, with only slight 'ripples' as seen in the cosmic microwave background radiation. Models of the evolution of cosmic structure link these observations through the effect of gravity, because the small initially overdense fluctuations are predicted to attract additional mass as the Universe expands. During the early stages of this expansion, the ripples evolve independently, like linear waves on the surface of deep water. As the structures grow in mass, they interact with each other in nonlinear ways, more like waves breaking in shallow water. We have recently shown how cosmic structure can be characterized by phase correlations associated with these nonlinear interactions, but it was not clear how to use that information to obtain quantitative insights into the growth of structures. Here we report a method of revealing phase information, and show quantitatively how this relates to the formation of filaments, sheets and clusters of galaxies by nonlinear collapse. We develop a statistical method based on information entropy to separate linear from nonlinear effects, and thereby are able to disentangle those aspects of galaxy clustering that arise from initial conditions (the ripples) from the subsequent dynamical evolution. PMID:10935627

  20. Colossus: COsmology, haLO, and large-Scale StrUcture toolS

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt

    2015-01-01

    Colossus is a collection of Python modules for cosmology and dark matter halos calculations. It performs cosmological calculations with an emphasis on structure formation applications, implements general and specific density profiles, and provides a large range of models for the concentration-mass relation, including a conversion to arbitrary mass definitions.

  1. Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Yu, Qingkai; Colby, Robert; Pandey, Deepak; Park, C. S.; Lian, Jie; Zemlyanov, Dmitry; Childres, Isaac; Drachev, Vladimir; Stach, Eric A.; Hussain, Muhammad; Li, Hao; Pei, Steven S.; Chen, Yong P.

    2010-02-01

    We present a comprehensive study of the structural and electronic properties of ultrathin films containing graphene layers synthesized by chemical vapor deposition based surface segregation on polycrystalline Ni foils then transferred onto insulating SiO2/Si substrates. Films of size up to several mm's have been synthesized. Structural characterizations by atomic force microscopy, scanning tunneling microscopy, cross-sectional transmission electron microscopy (XTEM), and Raman spectroscopy confirm that such large-scale graphitic thin films (GTF) contain both thick graphite regions and thin regions of few-layer graphene. The films also contain many wrinkles, with sharply-bent tips and dislocations revealed by XTEM, yielding insights on the growth and buckling processes of the GTF. Measurements on mm-scale back-gated transistor devices fabricated from the transferred GTF show ambipolar field effect with resistance modulation ˜50% and carrier mobilities reaching ˜2000 cm2/V s. We also demonstrate quantum transport of carriers with phase coherence length over 0.2 μm from the observation of two-dimensional weak localization in low temperature magnetotransport measurements. Our results show that despite the nonuniformity and surface roughness, such large-scale, flexible thin films can have electronic properties promising for device applications.

  2. USNRC/ANL participation in the Lotung, Taiwan Large-Scale Soil-Structure-Interaction experiment: Validation of analysis methods

    SciTech Connect

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1987-01-01

    As part of an overall effort on the validation of seismic calculational methods, the US Nuclear Regulatory Commission, Office of Research (NRC/RES) is participating in a number of international cooperative experimental programs including the Large Scale Soil-Structure-Interaction (SSI) Experiment conducted in Lotung, Taiwan by the Electric Power Research Institute (EPRI) and the Taiwan Power Company (Taipower). Argonne National Laboratory (ANL) on behalf of NRC/RES coordinates the EPRI-NRC collaboration in these experiments. The primary objective for both NRC and EPRI in the Large Scale SSI experiment is the validation/evaluation of SSI analysis methods. In addition NRC/ANL also sponsored and carried out the vibration testing of the 1/4-scale containment model. This report presents the highlights of the NRC/ANL program approach for the validation of SSI methods which differs slightly in its implementation details from the approach taken by EPRI. Also described are the vibration experiments of the 1/4-scale containment and the results of a modal analysis of the test data. Finally an effort to determine the dynamic characteristics of the soil-structure system from the earthquake response data is outlined and preliminary results are discussed. 9 refs., 12 figs., 5 tabs.

  3. Large scale calculations for cluster structure of light nuclei with Skyrme interaction

    NASA Astrophysics Data System (ADS)

    Fukuoka, Y.; Funaki, Y.; Nakatsukasa, T.; Yabana, K.

    2013-04-01

    We present a computational approach to describe structure of light nuclei including cluster states. Apart from the use of an empirical nuclear force, Skyrme interaction, our scheme does not utilize any a priori knowledge on the structure of nuclei. In our framework, we first generate a number of Slater determinants in a stochastic way. We then make projections of parity and angular momentum, and perform configuration mixing calculation. We show results for 12C and 16O nuclei. Our calculation provides a reasonable description for the ground state rotational band, Hoyle state, and low-lying negative parity states of 12C. We may also describe the 0+2 rotational band of 16O, although excitation energies are slightly overestimated.

  4. Comparing large-scale computational approaches to epidemic modeling: agent based versus structured metapopulation models

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruno; Ajelli, Marco; Balcan, Duygu; Colizza, Vittoria; Hu, Hao; Ramasco, José; Merler, Stefano; Vespignani, Alessandro

    2010-03-01

    We provide for the first time a side by side comparison of the results obtained with a stochastic agent based model and a structured metapopulation stochastic model for the evolution of a baseline pandemic event in Italy. The Agent Based model is based on the explicit representation of the Italian population through highly detailed data on the socio-demographic structure. The metapopulation simulations use the GLobal Epidemic and Mobility (GLEaM) model, based on high resolution census data worldwide, and integrating airline travel flow data with short range human mobility patterns at the global scale. Both models provide epidemic patterns that are in very good agreement at the granularity levels accessible by both approaches, with differences in peak timing of the order of few days. The age breakdown analysis shows that similar attack rates are obtained for the younger age classes.

  5. State-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems

    NASA Astrophysics Data System (ADS)

    Vömel, Christof; Tomov, Stanimire Z.; Marques, Osni A.; Canning, A.; Wang, Lin-Wang; Dongarra, Jack J.

    2008-07-01

    The band edge states determine optical and electronic properties of semiconductor nano-structures which can be computed from an interior eigenproblem. We study the reliability and performance of state-of-the-art iterative eigensolvers on large quantum dots and wires, focusing on variants of preconditioned CG, Lanczos, and Davidson methods. One Davidson variant, the GD + k (Olsen) method, is identified to be as reliable as the commonly used preconditioned CG while consistently being between two and three times faster.

  6. Large-scale flows and coherent structure phenomena in flute turbulence

    SciTech Connect

    Sandberg, I.; Andrushchenko, Zh.N.; Pavlenko, V.P.

    2005-04-15

    The properties of zonal and streamer flows in the flute mode turbulence are investigated. The stability criteria and the frequency of these flows are determined in terms of the spectra of turbulent fluctuations. Furthermore, it is shown that zonal flows can undergo a further nonlinear evolution leading to the formation of long-lived coherent structures which consist of self-bound wave packets supporting stationary shear layers, and thus can be characterized as regions with a reduced level of anomalous transport.

  7. Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.

    PubMed

    Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs. PMID:26453902

  8. Large-scale structure of brown rat (Rattus norvegicus) populations in England: effects on rodenticide resistance

    PubMed Central

    Haniza, Mohd Z.H.; Adams, Sally; Jones, Eleanor P.; MacNicoll, Alan; Mallon, Eamonn B.; Smith, Robert H.

    2015-01-01

    The brown rat (Rattus norvegicus) is a relatively recent (<300 years) addition to the British fauna, but by association with negative impacts on public health, animal health and agriculture, it is regarded as one of the most important vertebrate pest species. Anticoagulant rodenticides were introduced for brown rat control in the 1950s and are widely used for rat control in the UK, but long-standing resistance has been linked to control failures in some regions. One thus far ignored aspect of resistance biology is the population structure of the brown rat. This paper investigates the role population structure has on the development of anticoagulant resistance. Using mitochondrial and microsatellite DNA, we examined 186 individuals (from 15 counties in England and one location in Wales near the Wales–England border) to investigate the population structure of rural brown rat populations. We also examined individual rats for variations of the VKORC1 gene previously associated with resistance to anticoagulant rodenticides. We show that the populations were structured to some degree, but that this was only apparent in the microsatellite data and not the mtDNA data. We discuss various reasons why this is the case. We show that the population as a whole appears not to be at equilibrium. The relative lack of diversity in the mtDNA sequences examined can be explained by founder effects and a subsequent spatial expansion of a species introduced to the UK relatively recently. We found there was a geographical distribution of resistance mutations, and relatively low rate of gene flow between populations, which has implications for the development and management of anticoagulant resistance. PMID:26664802

  9. Large-scale structure of brown rat (Rattus norvegicus) populations in England: effects on rodenticide resistance.

    PubMed

    Haniza, Mohd Z H; Adams, Sally; Jones, Eleanor P; MacNicoll, Alan; Mallon, Eamonn B; Smith, Robert H; Lambert, Mark S

    2015-01-01

    The brown rat (Rattus norvegicus) is a relatively recent (<300 years) addition to the British fauna, but by association with negative impacts on public health, animal health and agriculture, it is regarded as one of the most important vertebrate pest species. Anticoagulant rodenticides were introduced for brown rat control in the 1950s and are widely used for rat control in the UK, but long-standing resistance has been linked to control failures in some regions. One thus far ignored aspect of resistance biology is the population structure of the brown rat. This paper investigates the role population structure has on the development of anticoagulant resistance. Using mitochondrial and microsatellite DNA, we examined 186 individuals (from 15 counties in England and one location in Wales near the Wales-England border) to investigate the population structure of rural brown rat populations. We also examined individual rats for variations of the VKORC1 gene previously associated with resistance to anticoagulant rodenticides. We show that the populations were structured to some degree, but that this was only apparent in the microsatellite data and not the mtDNA data. We discuss various reasons why this is the case. We show that the population as a whole appears not to be at equilibrium. The relative lack of diversity in the mtDNA sequences examined can be explained by founder effects and a subsequent spatial expansion of a species introduced to the UK relatively recently. We found there was a geographical distribution of resistance mutations, and relatively low rate of gene flow between populations, which has implications for the development and management of anticoagulant resistance. PMID:26664802

  10. Compact groups in theory and practice - IV. The connection to large-scale structure

    NASA Astrophysics Data System (ADS)

    Mendel, J. Trevor; Ellison, Sara L.; Simard, Luc; Patton, David R.; McConnachie, Alan W.

    2011-12-01

    We investigate the properties of photometrically selected compact groups (CGs) in the Sloan Digital Sky Survey. In this paper, the fourth in a series, we focus on understanding the characteristics of our observed CG sample with particular attention paid to quantifying and removing contamination from projected foreground or background galaxies. Based on a simple comparison of pairwise redshift likelihoods, we find that approximately half of CGs in the parent sample contain one or more projected (interloping) members; our final clean sample contains 4566 galaxies in 1086 CGs. We show that half of the remaining CGs are associated with rich groups (or clusters), i.e. they are embedded sub-structure. The other half have spatial distributions and number-density profiles consistent with the interpretation that they are either independently distributed structures within the field (i.e. they are isolated) or associated with relatively poor structures. Comparisons of late-type and red-sequence fractions in radial annuli show that galaxies around apparently isolated CGs resemble the field population by 300 to 500 kpc from the group centre. In contrast, the galaxy population surrounding embedded CGs appears to remain distinct from the field out beyond 1 to 2 Mpc, consistent with results for rich groups. We take this as additional evidence that the observed distinction between CGs, i.e. isolated versus embedded, is a separation between different host environments.

  11. Modeling the Large-Scale Structure and Long-Term Evolution of a Barchan Dune Field

    NASA Astrophysics Data System (ADS)

    Worman, S.; Littlewood, R. C.; Murray, A.; Andreotti, B.; Claudin, P.

    2011-12-01

    Barchans are mobile, crescent-shaped dunes that form atop hard, flat surfaces in regions where sediment supply is limited and fluid flow is approximately unidirectional. At the dune-scale, coupled models of sand transport and fluid dynamics have successfully reproduced their characteristic behavior and morphology. However, in nature, dunes rarely exist as isolated individuals but are instead found in highly-structured fields: Within a dune field with a cross-wind dimension on the order of 10 kilometers, patches of dunes can alternate spatially with sparse or dune-free regions, and the patches may have different characteristic dune size and spacing. The origin of such enigmatic structures cannot seem to be explained by differences in external forcing and remains an open research question. We use a partly rule-based numerical model that treats single dunes as discrete entities, based on the results of a dune-scale fluid-dynamics/sediment transport model. Our model integrates all currently known processes through which dunes interact with one another (i.e. sand flux exchange, collision, and calving). A rich array of patterns similar to those observed in nature emerge from these relatively simple interactions, offering a potential explanation of field-scale phenomena. We also develop simple statistics to characterize these structures and furnish testable predictions for future empirical work.

  12. Large scale prop-fan structural design study. Volume 1: Initial concepts

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.

  13. Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.

  14. Large Scale Mapping of Vegetation Structure and Terrain Surface using Single Photon Lidar (SPL)

    NASA Astrophysics Data System (ADS)

    Tang, H.; Swatantran, A.; Barrett, T. C.; Decola, P.; Dubayah, R.

    2015-12-01

    Accurate measurements of vegetation structure are critical for reducing uncertainties in carbon science and biodiversity studies. In recent years, Lidar has emerged as a state-of-the-art technology for characterizing vegetation structure at various spatial scales. Single photon lidar (SPL) is one of the latest developments with much greater data acquisition efficiency than conventional lidar. SPL requires only one photon to record a detection for each ranging measurement as against thousands in the case of other lidar systems. In this study, we present results from an experimental SPL instrument- the High Resolution Quantum Lidar System (HRQLS). HRQLS was flown over an entire county in western Maryland, USA in September 2013 to acquire a dataset with a mean density of 13 pts/m2. We developed a multistage filtering method to remove solar noise in the raw HRQLS data, and derived a county-wide high-resolution Canopy Height (1m) and Digital Elevation Model (2 m) from the de-noised dataset. Next, we assessed the accuracy of HRQLS CHM and DEM with existing field data, National Geodetic Survey data, and an existing discrete return lidar (DRL) dataset. A comparison of canopy heights between SPL, DRL and field data showed similar results with much higher detail from SPL data. There was also a good agreement between ground elevations from SPL, DRL and geological survey data. Our results demonstrate SPL capabilities in acquiring accurate canopy structure and topographic measurements over large areas, which can greatly benefit forest carbon monitoring and habitat assessments.

  15. Large scale overturned structure of the Northern Chichibu Belt, western Shikoku, Japan.

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Sakakibara, M.

    2006-12-01

    The accretionary prism is a significant object to understand the mechanism of orogenesis and the development of island arc. We can investigate from shallow to deep accretionary complexes of southwestern Japan. Today, the tectonic influence of the seamount collision with the accretionary complex is thought to be important. Tectonic erosion and structures dragged into subduction provide examples. The Jurassic accretionary complex of the Northern Chichibu Belt contains a large amount of greenstone as seamount fragments. It is expected that the seamount collision and accretion had once structurally affected the accretionary complex. In this study, primary sedimentary structure, deformation structure and geological structure of the Northern Chichibu Belt in Yanadani area, western Shikoku have been investigated and the tectonic influence of the seamounts collision on the accretionary complex was discussed. The study area is divided into three units of northern Unit 1a, central Unit 1b and southern Unit 2. Each unit is in fault contact with each of the others with the northward dipping faults. Unit 1a is mixed phase formed by underplating of sequence sedimented around the skirts of seamounts. It is characterized by pelitic melange containing various blocks of greenstone, chert, limestone, sandstone and coherent sequence. It has received the prehnite pumpellyite facies metamorphism. Unit 1b is thought to be a forearc sediment sequence that contains breccia, conglomerate, and sandstone and sandstone mudstone alternation. The conglomerate contains pelagic and terrigenous rubbles and pebbles such as greenstone, limestone, chert, sandstone, and mudstone rip up clast. Unit 2 is deduced to be a piece of seamount including large blocks of greenstone limestone complex. Limestone conformably lies on the basaltic pillow lava. The greenstones are mainly comprised of pillow lava and a small amount of volcaniclastic rock. It has received the prehnite pumpellyite facies metamorphism. Up

  16. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  17. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  18. Observations of a large-scale vortex-like structure in the deep-tail plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Sanderson, T. R.; Daly, P.; Wenzel, K.-P.; Hones, E. W., Jr.; Smith, E. J.

    1986-01-01

    ISEE-3 observations of a large-scale vortexlike structure in the deep tail of the magnetosphere at X(GSM) = -217 earth radii are reported. The structure is characterized by two clockwise rotations of the energetic-ion anisotropy vector. Variations in the magnetic-field vector approximately 180 deg out of phase with the ion variations are observed. This structure is most likely the signature within the magnetosphere of a surface wave at the magnetopause driven by a Kelvin-Helmholtz instability. Conditions inside and outside of the magnetosphere, as observed by ISEE-3 and ISEE-2, respectively, are examined; these conditions suggest that the surface wave is most likely propagating in the slow mode.

  19. Hierarchical, decentralized control system for large-scale smart-structures

    NASA Astrophysics Data System (ADS)

    Algermissen, Stephan; Fröhlich, Tim; Monner, Hans Peter

    2014-08-01

    Active control of sound and vibration has gained much attention in all kinds of industries in the past decade. Future prospects for maximizing airline passenger comfort are especially promising. The objectives of recent research projects in this area are the reduction of noise transmission through thin walled structures such as fuselages, linings or interior elements. Besides different external noise sources, such as the turbulent boundary layer, rotor or jet noise, the actuator and sensor placement as well as different control concepts are addressed. Mostly, the work is focused on a single panel or section of the fuselage, neglecting the fact that for effective noise reduction the entire fuselage has to be taken into account. Nevertheless, extending the scope of an active system from a single panel to the entire fuselage increases the effort for control hardware dramatically. This paper presents a control concept for large structures using distributed control nodes. Each node has the capability to execute a vibration or noise controller for a specific part or section of the fuselage. For maintenance, controller tuning or performance measurement, all nodes are connected to a host computer via Universal Serial Bus (USB). This topology allows a partitioning and distributing of tasks. The nodes execute the low-level control functions. High-level tasks like maintenance, system identification and control synthesis are operated by the host using streamed data from the nodes. By choosing low-price nodes, a very cost effective way of implementing an active system for large structures is realized. Besides the system identification and controller synthesis on the host computer, a detailed view on the hardware and software concept for the nodes is given. Finally, the results of an experimental test of a system running a robust vibration controller at an active panel demonstrator are shown.

  20. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires.

    PubMed

    DeKosky, Brandon J; Lungu, Oana I; Park, Daechan; Johnson, Erik L; Charab, Wissam; Chrysostomou, Constantine; Kuroda, Daisuke; Ellington, Andrew D; Ippolito, Gregory C; Gray, Jeffrey J; Georgiou, George

    2016-05-10

    Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy- and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19(+)CD20(+)CD27(-) IgM-naive B cells, >120,000 antibody clusters from CD19(+)CD20(+)CD27(+) antigen-experienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease. PMID:27114511

  1. A Linear Scaling Three Dimensional Fragment Method for Large ScaleElectronic Structure Calculations

    SciTech Connect

    Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan

    2007-07-26

    We present a novel linear scaling ab initio total energyelectronic structure calculation method, which is simple to implement,easily to parallelize, and produces essentially thesame results as thedirect ab initio method, while it could be thousands of times faster.Using this method, we have studied the dipole moments of CdSe quantumdots, and found both significant bulk and surface contributions. The bulkdipole contribution cannot simply be estimated from the bulk spontaneouspolarization value by a proportional volume factor. Instead it has ageometry dependent screening effect. The dipole moment also produces astrong internal electric field which induces a strong electron holeseparation.

  2. Outdoor thermal monitoring of large scale structures by infrared thermography integrated in an ICT based architecture

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Crinière, Antoine; Averty, Rodolphe

    2015-04-01

    An infrared system has been developed to monitor transport infrastructures in a standalone configuration. Results obtained on bridges open to traffic allows to retrieve the inner structure of the decks. To complete this study, experiments were carried out over several months to monitor two reinforced concrete beams of 16 m long and 21 T each. Detection of a damaged area over one of the two beams was made by Pulse Phase Thermography approach. Measurements carried out over several months. Finally, conclusion on the robustness of the system is proposed and perspectives are presented.

  3. Probes of large-scale structure in the Corona Borealis region

    NASA Technical Reports Server (NTRS)

    Postman, M.; Huchra, J. P.; Geller, M. J.

    1986-01-01

    The present redshift survey of the Corona Borealis region encompasses redshifts, magnitudes and positions for 83 galaxies covering a 16.4 sq deg region; a complementary survey covers 39.2 sq deg, is complete to m(B)0 of 15.5, and encompasses 37 galaxies. The combined survey furnishes further support for the 'bubble-like' geometry revealed by the shallower CfA survey. The redshift distribution obtained is noted to be very similar to that in the neighboring Bootes region. The structure of voids and surfaces in the galaxy distribution is insensitive to luminosity for M(B)0 of less than about -17.4.

  4. Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles?

    PubMed

    Sedlák, Marián; Rak, Dmytro

    2013-02-28

    In textbooks, undersaturated solutions of low molar mass compounds and mixtures of freely miscible liquids are considered as homogeneous at larger length scales exceeding appreciably dimensions of individual molecules. However, growing experimental evidence reveals that it is not the case. Large-scale structures with sizes on the order of 100 nm are present in solutions and mixtures used in everyday life and research practice, especially in aqueous systems. These mesoscale inhomogeneities are long-lived, and (relatively slow) kinetics of their formation can be monitored upon mixing the components. Nevertheless, the nature of these structures and mechanisms behind their formation are not clear yet. Since it was previously suggested that these can be nanobubbles stabilized by adsorbed solute at the gas/solvent interface, we devote the current study to addressing this question. Static and dynamic light scattering was used to investigate solutions and mixtures prepared at ordinary conditions (equilibrated with air at 1 atm), prepared with degassed solvent, and solutions and mixtures degassed after formation of large structures. The behavior of large structures in strong gravitational centrifugal fields was also investigated. Systems from various categories were chosen for this study: aqueous solutions of an inorganic ionic compound (MgSO4), organic ionic compound (citric acid), uncharged organic compound (urea), and a mixture of water with organic solvent freely miscible with water (tert-butyl alcohol). Obtained results show that these structures are not nanobubbles in all cases. Visualization of large-scale structures via nanoparticle tracking analysis is presented. NTA results confirm conclusions from our previous light scattering work. PMID:23373595

  5. Design of electromagnetic energy harvesters for large-scale structural vibration applications

    NASA Astrophysics Data System (ADS)

    Cassidy, Ian L.; Scruggs, Jeffrey T.; Behrens, Sam

    2011-03-01

    This paper reports on the design and experimental validation of transducers for energy harvesting from largescale civil structures, for which the power levels can be above 100W, and disturbance frequencies below 1Hz. The transducer consists of a back-driven ballscrew, coupled to a permanent-magnet synchronous machine, and power harvesting is regulated via control of a four-quadrant power electronic drive. Design tradeoffs between the various subsystems (including the controller, electronics, machine, mechanical conversion, and structural system) are illustrated, and an approach to device optimization is presented. Additionally, it is shown that nonlinear dissipative behavior of the electromechanical system must be properly characterized in order to assess the viability of the technology, and also to correctly design the matched impedance to maximize harvested power. An analytical expression for the average power generated across a resistive load is presented, which takes the nonlinear dissipative behavior of the device into account. From this expression the optimal resistance is determined to maximize power for an example in which the transducer is coupled to base excited tuned mass damper (TMD). Finally, the results from the analytical model are compared to an experimental system that uses hybrid testing to simulated the dynamics of the TMD.

  6. Using stochastically-generated subcolumns to represent cloud structure in a large-scale model

    SciTech Connect

    Pincus, R; Hemler, R; Klein, S A

    2005-12-08

    A new method for representing subgrid-scale cloud structure, in which each model column is decomposed into a set of subcolumns, has been introduced into the Geophysical Fluid Dynamics Laboratory's global climate model AM2. Each subcolumn in the decomposition is homogeneous but the ensemble reproduces the initial profiles of cloud properties including cloud fraction, internal variability (if any) in cloud condensate, and arbitrary overlap assumptions that describe vertical correlations. These subcolumns are used in radiation and diagnostic calculations, and have allowed the introduction of more realistic overlap assumptions. This paper describes the impact of these new methods for representing cloud structure in instantaneous calculations and long-term integrations. Shortwave radiation computed using subcolumns and the random overlap assumption differs in the global annual average by more than 4 W/m{sup 2} from the operational radiation scheme in instantaneous calculations; much of this difference is counteracted by a change in the overlap assumption to one in which overlap varies continuously with the separation distance between layers. Internal variability in cloud condensate, diagnosed from the mean condensate amount and cloud fraction, has about the same effect on radiative fluxes as does the ad hoc tuning accounting for this effect in the operational radiation scheme. Long simulations with the new model configuration show little difference from the operational model configuration, while statistical tests indicate that the model does not respond systematically to the sampling noise introduced by the approximate radiative transfer techniques introduced to work with the subcolumns.

  7. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  8. Large-scale, Exhaustive Lattice-based Structural Auditing of SNOMED CT

    PubMed Central

    Zhang, Guo-Qiang; Bodenreider, Olivier

    2010-01-01

    One criterion for the well-formedness of ontologies is that their hierarchical structure forms a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT (> 300k concepts). We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the over 544k non-lattice pairs, among over 356 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. PMID:21347113

  9. Brans-Dicke Theory with Λ >0 : Black Holes and Large Scale Structures

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F.; Romano, Antonio Enea; Tomaras, Theodore N.

    2015-10-01

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω . First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ , but can exist only for ω =∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω >0 or ω ≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ =0 spacetimes.

  10. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.

    PubMed

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N

    2015-10-30

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes. PMID:26565454

  11. Large-Scale, Exhaustive Lattice-Based Structural Auditing of SNOMED CT

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Qiang

    One criterion for the well-formedness of ontologies is that their hierarchical structure form a lattice. Formal Concept Analysis (FCA) has been used as a technique for assessing the quality of ontologies, but is not scalable to large ontologies such as SNOMED CT. We developed a methodology called Lattice-based Structural Auditing (LaSA), for auditing biomedical ontologies, implemented through automated SPARQL queries, in order to exhaustively identify all non-lattice pairs in SNOMED CT. The percentage of non-lattice pairs ranges from 0 to 1.66 among the 19 SNOMED CT hierarchies. Preliminary manual inspection of a limited portion of the 518K non-lattice pairs, among over 34 million candidate pairs, revealed inconsistent use of precoordination in SNOMED CT, but also a number of false positives. Our results are consistent with those based on FCA, with the advantage that the LaSA computational pipeline is scalable and applicable to ontological systems consisting mostly of taxonomic links. This work is based on collaboration with Olivier Bodenreider from the National Library of Medicine, Bethesda, USA.

  12. An evolutionary theory of large-scale human warfare: Group-structured cultural selection.

    PubMed

    Zefferman, Matthew R; Mathew, Sarah

    2015-01-01

    When humans wage war, it is not unusual for battlefields to be strewn with dead warriors. These warriors typically were men in their reproductive prime who, had they not died in battle, might have gone on to father more children. Typically, they are also genetically unrelated to one another. We know of no other animal species in which reproductively capable, genetically unrelated individuals risk their lives in this manner. Because the immense private costs borne by individual warriors create benefits that are shared widely by others in their group, warfare is a stark evolutionary puzzle that is difficult to explain. Although several scholars have posited models of the evolution of human warfare, these models do not adequately explain how humans solve the problem of collective action in warfare at the evolutionarily novel scale of hundreds of genetically unrelated individuals. We propose that group-structured cultural selection explains this phenomenon. PMID:25914359

  13. Stochastic inflation lattice simulations - Ultra-large scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.

    1991-01-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.

  14. APOGEE: The New View of the Milky Way -- Large Scale Galactic Structure

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2016-06-01

    Observations of the structure and dynamics of different stellar populations in the Milky Way's disk provide a unique perspective on galactic growth, evolution, and dynamics over cosmic time. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has over the past five years collected almost 1 million high-resolution (R~22,500), high quality (S/N > 100) spectra in the near-infrared H-band (1.51-1.68 μm) for about 250,000 stars covering all stellar populations of the Milky Way. I will take the audience on a tour of the exciting results from APOGEE and show how its novel, global view of the Milky Way is reshaping our understanding of how galactic disks form and evolve.

  15. The topology of large-scale structure. V - Two-dimensional topology of sky maps

    NASA Technical Reports Server (NTRS)

    Gott, J. R., III; Mao, Shude; Park, Changbom; Lahav, Ofer

    1992-01-01

    A 2D algorithm is applied to observed sky maps and numerical simulations. It is found that when topology is studied on smoothing scales larger than the correlation length, the topology is approximately in agreement with the random phase formula for the 2D genus-threshold density relation, G2(nu) varies as nu(e) exp-nu-squared/2. Some samples show small 'meatball shifts' similar to those seen in corresponding 3D observational samples and similar to those produced by biasing in cold dark matter simulations. The observational results are thus consistent with the standard model in which the structure in the universe today has grown from small fluctuations caused by random quantum noise in the early universe.

  16. Low dielectric electromagnetic absorbing material in 18-40 GHz using large scale photonic crystal structures

    NASA Astrophysics Data System (ADS)

    Narita, T.; Matsumura, K.; Kagawa, Y.

    2007-02-01

    The interaction behavior between a monolithic low dielectric block with unidirectionally aligned through holes and an electromagnetic wave at a frequency range from 18to40GHz has been studied. Hexagonally aligned through holes, whose diameters are 8.0, 9.0, and 10.0mm, are introduced to a polymethylmethacrylate block. The electromagnetic wave reflection and transmission spectra perpendicular to the hole axis show a unique structure dependence, which is related to the diameter of the hole and its arrangement. A large decrease in the reflectance and transmittance appears in the spectra, which originates from the interference effect between the electromagnetic wave and material. It is concluded that the material has a potential for controlling the electromagnetic wave at a tailored target frequency and is expected to be usable as monolithic low dielectric electromagnetic wave absorbing material.

  17. Searching for filaments and large-scale structure around DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.

    2016-04-01

    Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (z< ~ 0.3). Aims: This project is aimed at searching for extensions and filaments around clusters, traced by galaxies selected to be at the cluster redshift based on the red sequence. In the 0.4 structures detected in this way. Whenever possible, we identified the other structures detected on the density maps with clusters listed in NED. Results: We find clear elongations in twelve clusters out of thirty, with sizes that can reach up to 7.6 Mpc. Eleven other clusters have neighbouring structures, but the zones linking them are not detected in the density maps at a 3σ level. Three clusters show no extended structure and no neighbours, and four clusters are of too low contrast to be clearly visible on our density maps. Conclusions: The simple method we have applied appears to work well to show the existence of filaments and/or extensions around a number of clusters in the redshift range 0.4

  18. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    PubMed Central

    Naughton, Catherine; Avlonitis, Nicolaos; Corless, Samuel; Prendergast, James G.; Mati, Ioulia K.; Eijk, Paul P.; Cockroft, Scott L.; Bradley, Mark; Ylstra, Bauke; Gilbert, Nick

    2013-01-01

    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes. PMID:23416946

  19. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures.

    PubMed

    Naughton, Catherine; Avlonitis, Nicolaos; Corless, Samuel; Prendergast, James G; Mati, Ioulia K; Eijk, Paul P; Cockroft, Scott L; Bradley, Mark; Ylstra, Bauke; Gilbert, Nick

    2013-03-01

    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling, we used biotinylated trimethylpsoralen as a DNA structure probe to show that the human genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF insulator protein-binding sites. Underwound domains are transcriptionally active and enriched in topoisomerase I, 'open' chromatin fibers and DNase I sites, but they are depleted of topoisomerase II. Furthermore, DNA supercoiling affects additional levels of chromatin compaction as underwound domains are cytologically decondensed, topologically constrained and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation, providing an evolutionary purpose for clustering genes along chromosomes. PMID:23416946

  20. A New Lumped Structure Photochemical Mechanism for Large-Scale Applications

    SciTech Connect

    Zaveri, Rahul A.; Peters, Leonard K.

    1999-12-20

    The lumped-structure approach for condensing organic chemical mechanisms is attractive, since it yields fewer species and reactions, and reduces computational costs. This paper leads through the development of a new lumped-structure mechanism, largely based on the widely used Carbon Bond Mechanism (CBM-IV) developed by Gery et al.[1989]. The new mechanism called CBM-Z, extends the original framework to function properly at larger spatial and longer time scales. The major modifications in the mechanism include: revised inorganic chemistry; explicit treatment of the lesser reactive paraffins - methane and ethane; revised parameterizations of the reactive paraffin, olefin and aromatic reactions; inclusion of alkyl and acyl peroxy radical interactions and their reactions with NO3; inclusion of organic nitrates and hydroperoxides; and refined isoprene chemistry based on the condensed one-product mechanism of Carter[1996a,b]. CBM-Z was successfully evaluated along with the CBM-IV, a partially revised CBM-IV and a revised RADM2 mechanism[Stockwell et al., 1990; Kirchner and Stockwell, 1996] using the low VOC and NOx concentration smog chamber experiments of Simonaitis et al.[1997]. Box-model versions of the four mechanisms were also evaluated under a variety of hypothetical urban and rural scenarios for a period of 30 days. Results from CBM-Z and revised RADM2 were found to be within (+/-) 20% of each other, while CBM-IV and revised CBM-IV results deviated significantly by up to 50-95%. Sensitivity tests were performed to elucidate the effects of some of the new features added in CBM-Z. Relative computational memory and time requirements of these mechanisms are also discussed.

  1. Clinical prediction from structural brain MRI scans: a large-scale empirical study.

    PubMed

    Sabuncu, Mert R; Konukoglu, Ender

    2015-01-01

    Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, revealing complex associations and yielding powerful prediction models. Despite methodological developments and novel application domains, there has been little effort to compile benchmark results that researchers can reference and compare against. This study takes a significant step in this direction. We employed three classes of state-of-the-art MVPA algorithms and common types of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an array of clinically relevant variables (diagnosis of Alzheimer's, schizophrenia, autism, and attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid-β levels and mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six publicly available datasets. The employed data and computational tools are freely distributed ( https://www.nmr.mgh.harvard.edu/lab/mripredict), making this the largest, most comprehensive, reproducible benchmark image-based prediction experiment to date in structural neuroimaging. Finally, we make several observations regarding the factors that influence prediction performance and point to future research directions. Unsurprisingly, our results suggest that the biological footprint (effect size) has a dramatic influence on prediction performance. Though the choice of image measurement and MVPA algorithm can impact the result, there was no universally optimal selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of measurement type. Finally, our results showed that cross-validation estimates of performance, while generally optimistic, correlate well with generalization accuracy on a new dataset. PMID:25048627

  2. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  3. LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2

    SciTech Connect

    Lee, Khee-Gan; Hennawi, Joseph F.; Eilers, Anna-Christina; Stark, Casey; White, Martin; Prochaska, J. Xavier; Schlegel, David J.; Arinyo-i-Prats, Andreu; Suzuki, Nao; Croft, Rupert A. C.; Caputi, Karina I.; Cassata, Paolo; Ilbert, Olivier; Le Brun, Vincent; Le Fèvre, Olivier; Garilli, Bianca; Koekemoer, Anton M.; Maccagni, Dario; Nugent, Peter; and others

    2014-11-01

    We present the first observations of foreground Lyα forest absorption from high-redshift galaxies, targeting 24 star-forming galaxies (SFGs) with z ∼ 2.3-2.8 within a 5' × 14' region of the COSMOS field. The transverse sightline separation is ∼2 h {sup –1} Mpc comoving, allowing us to create a tomographic reconstruction of the three-dimensional (3D) Lyα forest absorption field over the redshift range 2.20 ≤ z ≤ 2.45. The resulting map covers 6 h {sup –1} Mpc × 14 h {sup –1} Mpc in the transverse plane and 230 h {sup –1} Mpc along the line of sight with a spatial resolution of ≈3.5 h {sup –1} Mpc, and is the first high-fidelity map of a large-scale structure on ∼Mpc scales at z > 2. Our map reveals significant structures with ≳ 10 h {sup –1} Mpc extent, including several spanning the entire transverse breadth, providing qualitative evidence for the filamentary structures predicted to exist in the high-redshift cosmic web. Simulated reconstructions with the same sightline sampling, spectral resolution, and signal-to-noise ratio recover the salient structures present in the underlying 3D absorption fields. Using data from other surveys, we identified 18 galaxies with known redshifts coeval with our map volume, enabling a direct comparison with our tomographic map. This shows that galaxies preferentially occupy high-density regions, in qualitative agreement with the same comparison applied to simulations. Our results establish the feasibility of the CLAMATO survey, which aims to obtain Lyα forest spectra for ∼1000 SFGs over ∼1 deg{sup 2} of the COSMOS field, in order to map out the intergalactic medium large-scale structure at (z) ∼ 2.3 over a large volume (100 h {sup –1} Mpc){sup 3}.

  4. Structurally controlled 'teleconnection' of large-scale mass wasting (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Ostermann, Marc; Sanders, Diethard

    2015-04-01

    In the Brenner Pass area (Eastern Alps) , closely ahead of the most northward outlier ('nose') of the Southern-Alpine continental indenter, abundant deep-seated gravitational slope deformations and a cluster of five post-glacial rockslides are present. The indenter of roughly triangular shape formed during Neogene collision of the Southern-Alpine basement with the Eastern-Alpine nappe stack. Compression by the indenter activated a N-S striking, roughly W-E extensional fault northward of the nose of the indenter (Brenner-normal fault; BNF), and lengthened the Eastern-Alpine edifice along a set of major strike-slip faults. These fault zones display high seismicity, and are the preferred locus of catastrophic rapid slope failures (rockslides, rock avalanches) and deep-seated gravitational slope deformations. The seismotectonic stress field, earthquake activity, and structural data all indicate that the South-Alpine indenter still - or again - exerts compression; in consequence, the northward adjacent Eastern Alps are subject mainly to extension and strike-slip. For the rockslides in the Brenner Pass area, and for the deep-seated gravitational slope deformations, the fault zones combined with high seismic activity predispose massive slope failures. Structural data and earthquakes mainly record ~W-E extension within an Eastern Alpine basement block (Oetztal-Stubai basement complex) in the hangingwall of the BNF. In the Northern Calcareous Alps NW of the Oetztal-Stubai basement complex, dextral faults provide defacement scars for large rockfalls and rockslides. Towards the West, these dextral faults merge into a NNW-SSE striking sinistral fault zone that, in turn, displays high seismic activity and is the locus of another rockslide cluster (Fern Pass cluster; Prager et al., 2008). By its kinematics dictated by the South-Alpine indenter, the relatively rigid Oetztal-Stubai basement block relays faulting and associated mass-wasting over a N-S distance of more than 60

  5. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    USGS Publications Warehouse

    Alsina, D.; Woodward, R.L.; Snieder, R.K.

    1996-01-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  6. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-01

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ~4 Ω per square with ~78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non

  7. Shear wave velocity structure in North America from large-scale waveform inversions of surface waves

    NASA Astrophysics Data System (ADS)

    Alsina, D.; Woodward, R. L.; Snieder, R. K.

    1996-07-01

    A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the tectonically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After

  8. Morphology and large-scale structure within the Horologium-Reticulum supercluster of galaxies

    NASA Astrophysics Data System (ADS)

    Fleenor, Matthew Clay

    We have undertaken a comprehensive spectroscopic survey of the Horologium-Reticulum supercluster (HRS) of galaxies. With a concentration on the intercluster regions, our goal is to resolve the "cosmic web" of filaments, voids, and sheets within the HRS and to examine the interrelationship between them. What are the constituents of the HRS? What can be understood about the formation of such a behemoth from these current constituents? More locally, are there small-scale imprints of the larger, surrounding environment, and can we relate the two with any confidence? What is the relationship between the HRS and the other superclusters in the nearby universe? These are the questions driving our inquiry. To answer them, we have obtained over 2500 galaxy redshifts in the direction of the intercluster regions in the HRS. Specifically, we have developed a sample of galaxies with a limiting brightness of bJ < 17.5, which samples the galaxy luminosity function down to one magnitude below M* at the mean redshift of the HRS, z¯ ≈ 0.06. Exclusively, these intercluster redshifts were obtained with the six-degree field (6dF), multi-fiber spectrograph at the Anglo-Australian Observatory. In conjunction with the wide-field, 1.2m UK Schmidt, 6dF is the ideal supercluster observatory. Because it deploys the 150 fiber buttons over a 6-degree field, we are able to obtain coherent information over large areas of the sky, as is the case with a supercluster. In addition, we have obtained a complete sample of mean cluster redshifts and velocity dispersions for Abell clusters in the HRS using the Australian National University/2.3m, primarily. For most of the clusters, more than 10 galaxies were observed, and a reliable mean cluster redshift is determined. Furthermore, we have a near complete sample of bJ < 18.6 galaxies over a 4° x 4° region that encompasses several HRS clusters. With these datasets, we are able to "piece" together various structures over a large range of scales. We

  9. Neutrino physics from the cosmic microwave background and large scale structure

    SciTech Connect

    Abazajian, K. N.; Arnold, K.; Austermann, J. E.; Benson, B. A.; Bischoff, C.; Brock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Chang, C. L.

    2015-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν)(σmν) = 16 meV and σ (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of NeffNeff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that View the MathML sourceNeff=3.046.

  10. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    DOE PAGESBeta

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; et al

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020.more » Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.« less

  11. Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure

    SciTech Connect

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Dore, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C. -L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Wang, G.; Watson, S.; Wollack, E. J.; W. Wu; Yoon, K. W.; Zahn, O.

    2014-03-15

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmv) = 16 meV and σ (Neff)(Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmνσmν, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics — the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046.

  12. Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity

    SciTech Connect

    Bellini, Emilio; Sawicki, Ignacy E-mail: ignacy.sawicki@outlook.com

    2014-07-01

    We present a turnkey solution, ready for implementation in numerical codes, for the study of linear structure formation in general scalar-tensor models involving a single universally coupled scalar field. We show that the totality of cosmological information on the gravitational sector can be compressed — without any redundancy — into five independent and arbitrary functions of time only and one constant. These describe physical properties of the universe: the observable background expansion history, fractional matter density today, and four functions of time describing the properties of the dark energy. We show that two of those dark-energy property functions control the existence of anisotropic stress, the other two — dark-energy clustering, both of which are can be scale-dependent. All these properties can in principle be measured, but no information on the underlying theory of acceleration beyond this can be obtained. We present a translation between popular models of late-time acceleration (e.g. perfect fluids, f(R), kinetic gravity braiding, galileons), as well as the effective field theory framework, and our formulation. In this way, implementing this formulation numerically would give a single tool which could consistently test the majority of models of late-time acceleration heretofore proposed.

  13. Topography of the Galactic disk - Z-structure and large-scale star formation

    NASA Astrophysics Data System (ADS)

    Alfaro, Emilio J.; Cabrera-Cano, Jesus; Delgado, Antonio J.

    1991-09-01

    A 3D morphological description of the Galactic disk defined by the young stellar population is delineated using a sample of young open clusters with cataloged distances and treated with Kriging techniques. The values of the positional variable Z for the cluster sample are considered as prospectings of the displacement of the Galactic disk in respect to the equator in the plane. The Kriging technique is described with emphasis on its application to the automatic cartography problem. A view of the Galactic disk in a region of about 3 kpc around the sun emerges from this treatment and shows a trough-peak structure with four main depressions as the more striking features. The most prominent depression, named Big Dent, is apparent at about 1.8 kpc in an approximately 240-deg direction. It has an elliptical shape with axis sizes of 1.5 and 3 kpc, reaching a Z value of 200 pc below the formal Galactic plane. Two-dimensional sections across some selected directions of the topography show profiles in good agreement with previous observational studies based on different object samples.

  14. Flow over and within large-scale porous topography: Impact of surface heterogeneity on turbulence structure

    NASA Astrophysics Data System (ADS)

    Hamed, Ali M.; Ranjan, Prateek; Sadowski, Matthew J.; Nepf, Heidi M.; Chamorro, Leonardo P.

    2015-11-01

    An experimental investigation of the flow within and above model canopies was carried out to determine the effect of canopy height heterogeneity on the structure and spatial distribution of the turbulence. Two 800 mm long models with 20% blockage were placed in a 2.5 m long refractive-index-matching channel. The first model (base case) is constituted of equal height (h) square bar elements arranged in a staggered configuration. The other model bars had two heights (h +1/3h and h-1/3h) alternated every two rows. Particle image velocimetry was used to map the flow field at three locations spanning the length of the canopy under three confinement ratios H/h =2, 3, and 4, where H is the free surface height. The experiments were performed at Reynolds number ReH = 6800 , 10200, and 13600. Refractive index matching renders the canopy invisible and grants full optical access allowing the flow field within the canopy to be measured by PIV. Turbulence statistics complemented with POD, quadrant analysis, and LES decomposition reveal the distinctive effect of the height heterogeneity on the shear layer that forms on top of the canopy, and on the free flow over the canopies.

  15. Chaotic inflationary universe and the anisotropy of the large-scale structure

    NASA Technical Reports Server (NTRS)

    Chibisov, G. V.; Shtanov, Yu. V.

    1991-01-01

    It has been realized that the inflationary universe is in fact chaotic, that globally it is strongly inhomogeneous, and that the inflation in the universe as a whole is eternal. In such a picture the region available to modern observations is just a tiny part of the universe, in which inflation finished about 10(exp 10) years ago. In spite of the great popularity of the chaotic inflationary universe models, it is usually taken for granted that their specific features (such as strong global inhomogeneity of the universe) can hardly lead to any observable consequences. The argument is that all that is seen is just a tiny part of the universe, a region about 10(exp 28) cm, and the typical scales of considerable inhomogeneities are much greater than this size. In contrast to this opinion, an attempt is made to show that such observable consequences can really exist. The phenomenon closely connected with the origin of structure (galaxies, clusters, etc.) in the observable region is discussed. The main idea considered is the vacuum fluctuations evolution on the inhomogeneous background.

  16. Large-scale shell model calculations for structure of Ni and Cu isotopes

    NASA Astrophysics Data System (ADS)

    Tsunoda, Yusuke; Otsuka, Takaharu; Shimizu, Noritaka; Honma, Michio; Utsuno, Yutaka

    2014-09-01

    We study nuclear structure of Ni and Cu isotopes, especially neutron-rich ones in the N ~ 40 region by Monte Carlo shell model (MCSM) calculations in pfg9d5 model space (0f7 / 2 , 1p3 / 2 , 0f5 / 2 , 1p1 / 2 , 0g9 / 2 , 1d5 / 2). Effects of excitation across N = 40 and other gaps are important to describe properties such as deformation, and we include this effects by using the pfg9d5 model space. We can calculate in this large model space without any truncation, as an advantage of MCSM. In the MCSM, a wave function is represented as a linear combination of angular-momentum- and parity-projected deformed Slater determinants. We can study intrinsic shapes of nuclei by using quadrupole deformations of MCSM basis states before projection. In doubly-magic 68Ni, there are oblate and prolate deformed bands as well as the spherical ground state from the calculation. Such shape coexistence can be explained by introducing the mechanism called Type II shell evolution, driven by changes of configurations within the same nucleus mainly due to the tensor force.

  17. An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.

    PubMed

    Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung

    2015-04-21

    Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system. PMID:25790123

  18. Neutrino physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Errard, J.; Fraisse, A.; Gallicchio, J.; Halverson, N. W.; Hanany, S.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Hu, W.; Hubmayr, J.; Irwin, K.; Jones, W. C.; Kamionkowski, M.; Keating, B.; Keisler, R.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linder, E.; Lubin, P.; McMahon, J.; Miller, A.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.

    2015-03-01

    This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve σ (σmν) = 16 meV and σ (Neff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero σmν , whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics - the origin of mass. This precise a measurement of Neff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that Neff = 3.046 .

  19. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  20. Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mercolli, Lorenzo; Zaldarriaga, Matias

    2015-12-01

    We study the effective field theory (EFT) of large-scale structure for cosmic density and momentum fields. We show that the finite part of the two-loop calculation and its counterterms introduces an apparent scale dependence for the leading-order parameter cs2 of the EFT starting at k =0.1 h Mpc-1 . These terms limit the range over which one can trust the one-loop EFT calculation at the 1% level to k <0.1 h Mpc-1 at redshift z =0 . We construct a well-motivated one-parameter ansatz to fix the relative size of the one- and two-loop counterterms using their high-k sensitivity. Although this one-parameter model is a very restrictive choice for the counterterms, it explains the apparent scale dependence of cs2 seen in simulations. It is also able to capture the scale dependence of the density power spectrum up to k ≈0.3 h Mpc-1 at the 1% level at redshift z =0 . Considering a simple scheme for the resummation of large-scale motions, we find that the two-loop calculation reduces the need for this IR resummation at k <0.2 h Mpc-1 . Finally, we extend our calculation to momentum statistics and show that the same one-parameter model can also describe density-momentum and momentum-momentum statistics.

  1. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    NASA Technical Reports Server (NTRS)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  2. A coarse grained perturbation theory for the Large Scale Structure, with cosmology and time independence in the UV

    SciTech Connect

    Manzotti, Alessandro; Peloso, Marco; Pietroni, Massimo; Viel, Matteo; Villaescusa-Navarro, Francisco E-mail: peloso@physics.umn.edu E-mail: viel@oats.inaf.it

    2014-09-01

    Standard cosmological perturbation theory (SPT) for the Large Scale Structure (LSS) of the Universe fails at small scales (UV) due to strong nonlinearities and to multistreaming effects. In ref. [1] a new framework was proposed in which the large scales (IR) are treated perturbatively while the information on the UV, mainly small scale velocity dispersion, is obtained by nonlinear methods like N-body simulations. Here we develop this approach, showing that it is possible to reproduce the fully nonlinear power spectrum (PS) by combining a simple (and fast) 1-loop computation for the IR scales and the measurement of a single, dominant, correlator from N-body simulations for the UV ones. We measure this correlator for a suite of seven different cosmologies, and we show that its inclusion in our perturbation scheme reproduces the fully non-linear PS with percent level accuracy, for wave numbers up to k∼ 0.4 h Mpc{sup -1} down to 0z=. We then show that, once this correlator has been measured in a given cosmology, there is no need to run a new simulation for a different cosmology in the suite. Indeed, by rescaling this correlator by a proper function computable in SPT, the reconstruction procedure works also for the other cosmologies and for all redshifts, with comparable accuracy. Finally, we clarify the relation of this approach to the Effective Field Theory methods recently proposed in the LSS context.

  3. Design of a large-scale vertical open-structure cylindrical shield employing magnetic shaking

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro; Paperno, Eugene; Koide, Hiroyuki

    2000-05-01

    The shield developed consists of four concentric magnetic shells positioned on the outer surfaces of paper pipes of ˜2.7 m length, ˜1 cm thickness, and with outer diameters of 67, 72, 82.2, and 97.4 cm, respectively. The first (innermost) shell is a Permalloy shell of 2.1 mm thickness and 1.8 m length. The second, third, and fourth shells are made of ˜50 mm wide, ˜22 μm thick Metglas 2705M amorphous ribbons. The second shell, which is a 2.2 m long helical structure, consists of 48 layers of Metglas ribbon divided into four equal sections by ˜1 cm thick flexible Styrofoam sheets. The third shell, 2.43 m in length, and fourth shell, 2.7 m in length, consist of 26 and 30 layers, respectively. A thin polyethylene film is tightly wound on each section of the second shell as well as on the third and fourth shells. It increases the friction between the Metglas ribbons and prevents them from sliding down; there is no foreign material in between the layers of the ribbon. All shells are enclosed by toroidal coils which are used to demagnetize the Permalloy shell and to apply magnetic shaking to the amorphous magnetic shells. The gross weight of the shield is ˜400 kg including ˜65 kg of Permalloy and ˜110 kg of Metglas. An ˜105 transverse shielding factor and a relatively large ˜380 axial shielding factor, despite the effect of the openings, are achieved for a 10 μT external field in the extremely low frequency region. The measured shaking leakage and magnetic noise field strengths at the shield's center are less than 1 nT. As these low field strengths, it is possible to operate highly sensitive SQUID magnetometers for biomagnetic measurements.

  4. Cosmological N-body Simulation of Galaxy and Large-Scale Structure Formation: The Gravity Frontier

    NASA Astrophysics Data System (ADS)

    Klypin, Anatoly

    2015-04-01

    One of the first N-body simulations done almost 50 years ago had only 200 self-gravitating particles. Even this first baby step made substantial impact on understanding how astronomical objects should form. Now powerful supercomputers and new algorithms allow astronomers produce N-body simulations that employ up to a trillion dark matter particles and produce vital theoretical predictions regarding formation, evolution, structure and statistics of objects ranging from dwarf galaxies to clusters and superclusters of galaxies. With only gravity involved in these theoretical models, one would naively expect that by now we should know everything we need about N-body dynamics of cosmological fluctuations. Not the case. It appears that the Universe was not cooperative and gave us divergencies in the initial conditions generated during the Inflation epoch and subsequent expansion of the Universe - the infinite phase-space density and divergent density fluctuations. Ever increasing observational demands on statistics and accuracy of theoretical predictions is another driving force for more realistic and larger N-body simulations. Large current and new planned observational projects such as BOSS, eBOSS, Euclid, LSST will bring information on spatial distribution, motion, and properties of millions of galaxies at different redshifts. Direct simulations of evolution of gas and formation of stars for millions of forming galaxies will not be available for years leaving astronomers with the only option - to develop methods to combine large N-body simulations with models of galaxy formation to produce accurate theoretical predictions. I will discuss the current status of the field and directions of its development.

  5. Satellite traces: An ionogram signature for large-scale wave structure and a precursor for equatorial spread F

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.

    2008-10-01

    Although the source that controls day-to-day variability in the occurrence of equatorial plasma structure (i.e., equatorial spread F, or ESF) remains to be identified, progress is being made. There is evidence that the appearance of large-scale wave structure (LSWS) in the bottomside F layer, around the time of its post-sunset rise (PSSR), is a more-direct precursor of ESF than the PSSR itself. The bulk of the evidence, however, is in the form of ``satellite'' F traces in ionograms, which may be viewed as less than convincing, because these signatures have not been shown to be causally related to LSWS. In this paper, incoherent-scatter radar and ionosonde data, both collected on 24 July 1979 from the Kwajalein atoll, Marshall Islands, are used to show that this is indeed the case.

  6. Dark matter and formation of large scale structure in the universe - The test by distribution of quasars

    NASA Astrophysics Data System (ADS)

    Fang, L.; Chu, Y.; Zhu, X.

    1985-05-01

    According to the scenario, developed in the previous paper, on the formation of large scale structure in the universe, it would be expected that: (1) the distribution of quasars should differ from that of galaxies because it has no strong inhomogeneity on the scale of 10-100 Mpc; (2) the distributions of quasars with Z greater than 2 and Z less than 2 should differ from each other because of the absence of large structure in the former but its presence in the latter. Various analyses on quasar distribution are consistent with these predictions. Particularly, the nearest neighbor test for the complete quasar sample given by Savage and Bolton (1979) clearly shows that the distribution of Z greater than 2 quasars is rather homogeneous while the Z less than 2 quasars have a tendency to clustering.

  7. Large-scale structure: the Chile-UK uv-excess quasar survey

    NASA Astrophysics Data System (ADS)

    Clowes, R. G.; Newman, P. R.; Campusano, L. E.; Graham, M. J.

    1996-12-01

    We report the first results from a new-generation survey for quasars using the 2(deg) -field, 128-fibre, multi-object spectrograph on the 2.5-m du Pont telescope at Las Campanas Observatory in Chile. Survey candidates are all objects with (U-B)<-0.3 and B<=19.7 on digitized UK Schmidt plates. The survey will cover 140 deg(2) and produce a homogeneous, magnitude-limited catalogue of ~ 1500 quasars with redshifts 0.4<= z<=2.2. We have so far surveyed 18.7 deg(2) and identified 183 quasars, including all 43 previously-published quasars within the selection criteria. The survey will be used to study in detail the large ( ~ 200h(-1) Mpc) quasar group discovered at z =~ 1.3 by Clowes & Campusano (1991, MNRAS, 249, 218) -- the largest known structure in the early Universe -- and to study the clustering of quasars in general. The group was found with sparse sampling of quasar candidates across 25 deg(2) ; it strikes the boundaries of this area. Our spectroscopic survey will include all candidates in an area around the group of 100 deg(2) , plus a 40 deg(2) control area ~ 34(deg) away. This survey should allow the determination of the full extent, membership and statistical significance of the group, using the MST method of Graham, Clowes and Campusano (1995, MNRAS, 275, 790). Preliminary analysis of our new data shows that the group persists with increased membership. The measurement of the density contrast of the quasar group will be compared with theoretical expectations, and so determine the consistency of the group with formation from Gaussian density fluctuations. We will search for sub-clustering in the group and test the hypothesis that all small-scale (<=10h(-1) Mpc) quasar clustering is attributable to large groups. Our sample will allow further investigation of the clustering of quasars in general. We will also identify and characterise any other large quasar groups in the survey using the MST method.

  8. Large-scale shear velocity structure of the upper mantle beneath Europe and surrounding regions

    NASA Astrophysics Data System (ADS)

    Legendre, C.; Meier, T.; Lebedev, S.; Friederich, W.

    2009-04-01

    The automated multimode waveform inversion technique developed by Lebedev et al., (2005) was applied to available data of broadband stations in Europe and surrounding regions. The Automated Multimode Inversion Method (AMI) foots on an inversion technique originally invented by Nolet (1991) which he called partitioned waveform inversion. It performs a fitting of the complete waveform starting from the S-wave onset to the surface wave. Assuming that the location and focal mechanism of a considered earthquake are known, the first basic step is to consider each available seismogram separately and to to derive from it linear constrains, which are later used to construct the 3D-model. Inversion parameters are variations of shear velocity in the mantle and Moho depth. The theoretical background of AMI is the pure-path approximation which assumes propagation of waves in and around the vertical plane containing source and receiver. AMI extends the partitioned waveform inversion to a completely automated procedure with automated data quality checks and an automated assessment of the quality of fit obtain when determining the linear constrains from the observed seismogram. In this way, large volumes of data can be efficiently inverted for 3D-mantle structure. We collected all available data for the years from 1990 to 2007 from permanent stations in and around Europe via the data centers of ORFEUS, GEOFON and IRIS. In addition, we incorporated data from temporary experiments like ETSE array, SVEKALAPKO, TOR and the Eifel plume project. Just recently we were also able to add the data recorded by the EGELADOS network from the GEOFON data archive. In this way, a huge data set of about 500.000 seismograms came about from which about 65.000 1D-models could be constructed. The reduction of usable seismograms is caused by (1) mislocation or/and errors in the CMT solutions, (2) the rigorous automatic quality checks implemented in AMI, and (3) the elimination of seismograms for which

  9. GRASP92: a package for large-scale relativistic atomic structure calculations

    NASA Astrophysics Data System (ADS)

    Parpia, F. A.; Froese Fischer, C.; Grant, I. P.

    2006-12-01

    of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac-Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas-Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra. Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738-744. [7

  10. Exploring the limits of fold discrimination by structural alignment: A large scale benchmark using decoys of known fold

    PubMed Central

    Hollup, Siv Midtun; Sadowski, Michael I.; Jonassen, Inge; Taylor, William R.

    2011-01-01

    Protein structure comparison by pairwise alignment is commonly used to identify highly similar substructures in pairs of proteins and provide a measure of structural similarity based on the size and geometric similarity of the match. These scores are routinely applied in analyses of protein fold space under the assumption that high statistical significance is equivalent to a meaningful relationship, however the truth of this assumption has previously been difficult to test since there is a lack of automated methods which do not rely on the same underlying principles. As a resolution to this we present a method based on the use of topological descriptions of global protein structure, providing an independent means to assess the ability of structural alignment to maintain meaningful structural correspondances on a large scale. Using a large set of decoys of specified global fold we benchmark three widely used methods for structure comparison, SAP, TM-align and DALI, and test the degree to which this assumption is justified for these methods. Application of a topological edit distance measure to provide a scale of the degree of fold change shows that while there is a broad correlation between high structural alignment scores and low edit distances there remain many pairs of highly significant score which differ by core strand swaps and therefore are structurally different on a global level. Possible causes of this problem and its meaning for present assessments of protein fold space are discussed. PMID:21704264

  11. Impact of structural heterogeneity on upscaled models for large-scale CO2 migration and trapping in saline aquifers

    NASA Astrophysics Data System (ADS)

    Gasda, Sarah E.; Nilsen, Halvor M.; Dahle, Helge K.

    2013-12-01

    Structural heterogeneity of the caprock surface influences both migration patterns and trapping efficiency for CO2 injected in open saline aquifers. Understanding these mechanisms relies on appropriate modeling tools to simulate CO2 flow over hundreds of square kilometers and several hundred years during the postinjection period. Vertical equilibrium (VE) models are well suited for this purpose. However, topographical heterogeneity below the scale of model resolution requires upscaling, for example by using traditional flow-based homogenization techniques. This can significantly simplify the geologic model and reduce computational effort while still capturing the relevant physical processes. In this paper, we identify key structural parameters, such as dominant amplitude and wavelength of the traps, that determine the form of the upscaled constitutive functions. We also compare the strength of these geologic controls on CO2 migration and trapping to other mechanisms such as capillarity. This allows for a better understanding of the dominant physical processes and their impact on storage security. It also provides intuition on which upscaling approach is best suited for the system of interest. We apply these concepts to realistic structurally heterogeneous surfaces that have been developed using different geologic depositional models. We show that while amplitude is important for determining the amount of CO2 trapped, the spacing between the traps, distribution of spillpoint locations, large-scale formation dip angle affect the shape of the functions and thus the dynamics of plume migration. We also show for these cases that the topography characterized by shorter wavelength features is better suited for upscaling, while the longer wavelength surface can be sufficiently resolved. These results can inform the type of geological characterization that is required to build the most reliable upscaled models for large-scale CO2 migration.

  12. A topological analysis of large-scale structure, studied using the CMASS sample of SDSS-III

    SciTech Connect

    Parihar, Prachi; Gott, J. Richard III; Vogeley, Michael S.; Choi, Yun-Young; Kim, Juhan; Kim, Sungsoo S.; Speare, Robert; Brownstein, Joel R.; Brinkmann, J. E-mail: yy.choi@khu.ac.kr

    2014-12-01

    We study the three-dimensional genus topology of large-scale structure using the northern region of the CMASS Data Release 10 (DR10) sample of the SDSS-III Baryon Oscillation Spectroscopic Survey. We select galaxies with redshift 0.452 < z < 0.625 and with a stellar mass M {sub stellar} > 10{sup 11.56} M {sub ☉}. We study the topology at two smoothing lengths: R {sub G} = 21 h {sup –1} Mpc and R {sub G} = 34 h {sup –1} Mpc. The genus topology studied at the R {sub G} = 21 h {sup –1} Mpc scale results in the highest genus amplitude observed to date. The CMASS sample yields a genus curve that is characteristic of one produced by Gaussian random phase initial conditions. The data thus support the standard model of inflation where random quantum fluctuations in the early universe produced Gaussian random phase initial conditions. Modest deviations in the observed genus from random phase are as expected from shot noise effects and the nonlinear evolution of structure. We suggest the use of a fitting formula motivated by perturbation theory to characterize the shift and asymmetries in the observed genus curve with a single parameter. We construct 54 mock SDSS CMASS surveys along the past light cone from the Horizon Run 3 (HR3) N-body simulations, where gravitationally bound dark matter subhalos are identified as the sites of galaxy formation. We study the genus topology of the HR3 mock surveys with the same geometry and sampling density as the observational sample and find the observed genus topology to be consistent with ΛCDM as simulated by the HR3 mock samples. We conclude that the topology of the large-scale structure in the SDSS CMASS sample is consistent with cosmological models having primordial Gaussian density fluctuations growing in accordance with general relativity to form galaxies in massive dark matter halos.

  13. A Large-Scale Computational Analysis of Corneal Structural Response and Ectasia Risk in Myopic Laser Refractive Surgery

    PubMed Central

    Dupps, William Joseph; Seven, Ibrahim

    2016-01-01

    Purpose: To investigate biomechanical strain as a structural susceptibility metric for corneal ectasia in a large-scale computational trial. Methods: A finite element modeling study was performed using retrospective Scheimpflug tomography data from 40 eyes of 40 patients. LASIK and PRK were simulated with varied myopic ablation profiles and flap thickness parameters across eyes from LASIK candidates, patients disqualified for LASIK, subjects with atypical topography, and keratoconus subjects in 280 simulations. Finite element analysis output was then interrogated to extract several risk and outcome variables. We tested the hypothesis that strain is greater in known at-risk eyes than in normal eyes, evaluated the ability of a candidate strain variable to differentiate eyes that were empirically disqualified as LASIK candidates, and compared the performance of common risk variables as predictors of this novel susceptibility marker across multiple virtual subjects and surgeries. Results: A candidate susceptibility metric that expressed mean strains across the anterior residual stromal bed was significantly higher in eyes with confirmed ectatic predisposition in preoperative and all postoperative cases (P≤.003). The strain metric was effective at differentiating normal and at-risk eyes (area under receiver operating characteristic curve ≥ 0.83, P≤.002), was highly correlated to thickness-based risk metrics (as high as R2 = 95%, P<.001 for the percent of stromal tissue altered (PSTA)), and predicted large portions of the variance in predicted refractive response to surgery (R2 = 57%, P<.001). Conclusions: This study represents the first large-scale 3-dimensional structural analysis of ectasia risk and provides a novel biomechanical construct for expressing structural risk in refractive surgery. Mechanical strain is an effective marker of known ectasia risk and correlates to predicted refractive error after myopic photoablative surgery.

  14. Incremental learning of Bayesian sensorimotor models: from low-level behaviours to large-scale structure of the environment

    NASA Astrophysics Data System (ADS)

    Diard, Julien; Gilet, Estelle; Simonin, Éva; Bessière, Pierre

    2010-12-01

    This paper concerns the incremental learning of hierarchies of representations of space in artificial or natural cognitive systems. We propose a mathematical formalism for defining space representations (Bayesian Maps) and modelling their interaction in hierarchies of representations (sensorimotor interaction operator). We illustrate our formalism with a robotic experiment. Starting from a model based on the proximity to obstacles, we learn a new one related to the direction of the light source. It provides new behaviours, like phototaxis and photophobia. We then combine these two maps so as to identify parts of the environment where the way the two modalities interact is recognisable. This classification is a basis for learning a higher level of abstraction map that describes the large-scale structure of the environment. In the final model, the perception-action cycle is modelled by a hierarchy of sensorimotor models of increasing time and space scales, which provide navigation strategies of increasing complexities.

  15. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    NASA Astrophysics Data System (ADS)

    Oikawa, T.; Yokota, H.; Ohkubo, T.; Hono, K.

    2016-05-01

    Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD)-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  16. The Explorer of Diffuse Galactic Emission (EDGE): Determining the Large-Scale Structure Evolution in the Universe

    NASA Technical Reports Server (NTRS)

    Silverberg, R. F.; Cheng, E. S.; Cottingham, D. A.; Fixsen, D. J.; Meyer, S. S.; Knox, L.; Timbie, P.; Wilson, G.

    2003-01-01

    Measurements of the large-scale anisotropy of the Cosmic Infared Background (CIB) can be used to determine the characteristics of the distribution of galaxies at the largest spatial scales. With this information important tests of galaxy evolution models and primordial structure growth are possible. In this paper, we describe the scientific goals, instrumentation, and operation of EDGE, a mission using an Antarctic Long Duration Balloon (LDB) platform. EDGE will osbserve the anisotropy in the CIB in 8 spectral bands from 270 GHz-1.5 THz with 6 arcminute angular resolution over a region -400 square degrees. EDGE uses a one-meter class off-axis telescope and an array of Frequency Selective Bololeters (FSB) to provide the compact and efficient multi-colar, high sensitivity radiometer required to achieve its scientific objectives.

  17. Searching for a correlation between cosmic-ray sources above 10{sup 19} eV and large scale structure

    SciTech Connect

    Kashti, Tamar; Waxman, Eli E-mail: eli.waxman@weizmann.ac.il

    2008-05-15

    We study the anisotropy signature which is expected if the sources of ultrahigh energy, >10{sup 19} eV, cosmic rays (UHECRs) are extra-galactic and trace the large scale distribution of luminous matter. Using the PSCz galaxy catalog as a tracer of the large scale structure (LSS), we derive the expected all sky angular distribution of the UHECR intensity. We define a statistic that measures the correlation between the predicted and observed UHECR arrival direction distributions, and show that it is more sensitive to the expected anisotropy signature than the power spectrum and the two-point correlation function. The distribution of the correlation statistic is not sensitive to the unknown redshift evolution of UHECR source density and to the unknown strength and structure of inter-galactic magnetic fields. We show, using this statistic, that recently published >5.7 Multiplication-Sign 10{sup 19} eV Auger data are inconsistent with isotropy at Asymptotically-Equal-To 98% CL, and consistent with a source distribution that traces LSS, with some preference for a source distribution that is biased with respect to the galaxy distribution. The anisotropy signature should be detectable also at lower energy, >4 Multiplication-Sign 10{sup 19} eV. A few-fold increase of the Auger exposure is likely to increase the significance to >99% CL, but not to>99.9% CL (unless the UHECR source density is comparable to or larger than that of galaxies). In order to distinguish between different bias models, the systematic uncertainty in the absolute energy calibration of the experiments should be reduced to well below the current Asymptotically-Equal-To 25%.

  18. Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm.

    PubMed

    Ergül, Özgür; Gürel, Levent

    2013-03-01

    Accurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these challenges and to achieve rigorous and efficient electromagnetic modeling of three-dimensional optical composite structures, we have developed a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Precise formulation of composite structures is achieved with the so-called "electric and magnetic current combined-field integral equation." Surface integral equations are carefully discretized with piecewise linear basis functions, and the ensuing dense matrix equations are solved iteratively with parallel MLFMA. The hierarchical strategy is used for the efficient parallelization of MLFMA on distributed-memory architectures. In this paper, fast and accurate solutions of large-scale canonical and complicated real-life problems, such as optical metamaterials, discretized with tens of millions of unknowns are presented in order to demonstrate the capabilities of the proposed electromagnetic solver. PMID:23456127

  19. A Simple Evaporation Method for Large-Scale Production of Liquid Crystalline Lipid Nanoparticles with Various Internal Structures.

    PubMed

    Kim, Do-Hoon; Lim, Sora; Shim, Jongwon; Song, Ji Eun; Chang, Jong Soo; Jin, Kyeong Sik; Cho, Eun Chul

    2015-09-16

    We present a simple and industrially accessible method of producing liquid crystalline lipid nanoparticles with various internal structures based on phytantriol, Pluronic F127, and vitamin E acetate. Bilayer vesicles were produced when an ethanolic solution dissolving the lipid components was mixed with deionized water. After the evaporation of ethanol from the aqueous mixture, vesicles were transformed into lipid-filled liquid crystalline nanoparticles with well-defined internal structures such as hexagonal lattices (mostly inverted cubic Pn3m), lined or coiled pattern (inverted hexagonal H2), and disordered structure (inverse microemulsion, L2), depending on the compositions. Further studies suggested that their internal structures were also affected by temperature. The internal structures were characterized from cryo-TEM and small-angle X-ray scattering results. Microcalorimetry studies were performed to investigate the degree of molecular ordering/crystallinity of lipid components within the nanostructures. From the comparative studies, we demonstrated the present method could produce the lipid nanoparticles with similar characteristics to those made from a conventional method. More importantly, the production only requires simple tools for mixing and ethanol evaporation and it is possible to produce 10 kg or so per batch of aqueous lipid nanoparticles dispersions, enabling the large-scale production of the liquid crystalline nanoparticles for various biomedical applications. PMID:26305487

  20. The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Greig, Bradley; Sobacchi, Emanuele

    2016-07-01

    We introduce the Evolution Of 21 cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21 cm simulations. 21 cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Progress will depend on sophisticated data analysis pipelines, initially tested on large-scale mock observations. Here we present the 2016 EOS release: 10243, 1.6 Gpc, 21 cm simulations of the CD and EoR, calibrated to the Planck 2015 measurements. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photoheating suppression of star formation in small-mass galaxies. Leaving the efficiency of supernovae feedback as a free parameter, we present two runs which bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 ≲ Δzre ≲ 5.7. The large-scale 21 cm power during the advanced EoR stages can be different by up to a factor of ˜10, depending on the model. This difference has a comparable contribution from (i) the typical bias of sources and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also present detectability forecasts. With a 1000 h integration, Hydrogen Epoch of Reionization Array and (Square Kilometre Array phase 1) SKA1 should achieve a signal-to-noise of ˜few to hundreds throughout the EoR/CD. We caution that our ability to clean foregrounds determines the relative performance of narrow/deep versus wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.

  1. Constraints on fNL and gNL from the analysis of the N-pdf of the CMB large-scale anisotropies

    NASA Astrophysics Data System (ADS)

    Vielva, P.; Sanz, J. L.

    2010-05-01

    In this paper, we extend a previous work where we presented a method based on the N-point probability density function (pdf) to study the Gaussianity of the cosmic microwave background (CMB). We explore a local non-linear perturbative model up to third order as a general characterization of the CMB anisotropies. We focus our analysis in large-scale anisotropies (θ > 1°). At these angular scales (the Sachs-Wolfe regime), the non-Gaussian description proposed in this work defaults (under certain conditions) to an approximated local form of the weak non-linear coupling inflationary model. In particular, the quadratic and cubic terms are governed by the non-linear coupling parameters fNL and gNL, respectively. The extension proposed in this paper allows us to directly constrain these non-linear parameters. Applying the proposed methodology to Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data, we obtain -5.6 × 105 < gNL < 6.4 × 105, at 95 per cent confidence level. This result is in agreement with previous findings obtained for equivalent non-Gaussian models and with different non-Gaussian estimators, although this is the first direct constraint on gNL from CMB data. A model selection test is performed, indicating that a Gaussian model (i.e. fNL ≡ 0 and gNL ≡ 0) is preferred to the non-Gaussian scenario. When comparing different non-Gaussian models, we observe that a pure fNL model (i.e. gNL ≡ 0) is the most favoured case and that a pure gNL model (i.e. fNL ≡ 0) is more likely than a general non-Gaussian scenario (i.e. fNL ≠ 0 and gNL ≠ 0). Finally, we have analysed the WMAP data in two independent hemispheres, in particular the ones defined by the dipolar pattern found by Hoftuft et al. We show that, whereas the gNL value is compatible between both hemispheres, it is not the case for fNL (with a p-value of ~0.04). However, if, as suggested by Hoftuft et al., anisotropy of the data is assumed, the distance between the likelihood distributions for

  2. Structure of ADAFs in a general large-scale B-field: the role of wind and thermal conduction

    NASA Astrophysics Data System (ADS)

    Mosallanezhad, Amin; Khajavi, Mehdi; Abbassi, Shahram

    2013-01-01

    We have explored the structure of a hot flow bathed in a general large-scale magnetic field. The importance of outflow and thermal conduction on the self-similar structure of a hot accretion flow has been investigated. We consider the additional magnetic parameters βr,varphi,z[ = c2r,varphi,z/(2c2s)], where c2r,varphi,z are the Alfvén sound speeds in three directions of cylindrical coordinates. In comparison to the accretion disk without winds, our results show that the radial and rotational velocities of the disk become faster, but the disk becomes cooler because of the angular momentum and energy flux which are taken away by the winds. Moreover, thermal conduction opposes the effect of winds and not only decreases the rotational velocity but also increases the radial velocity as well as the sound speed of the disk. In addition, we study the effect of the global magnetic field on the structure of the disk. Our numerical results show that all the components of a magnetic field can be important and they have a considerable effect on velocities and vertical structure of the disk.

  3. Very-Large-Scale Coherent Structures in the Wall Pressure Field Beneath a Supersonic Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Beresh, Steven; Henfling, John; Spillers, Russell; Pruett, Brian

    2010-11-01

    Previous wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer, which essentially are flat at low frequency and do not exhibit the theorized φ^2 dependence. The flat portion of the spectrum extends over two orders of magnitude and represents structures reaching at least 100 δ in scale, raising questions about their physical origin. The spatial coherence required over these long lengths may arise from very-large-scale structures that have been detected in turbulent boundary layers due to groupings of hairpin vortices. To address this hypothesis, data have been acquired from a dense spanwise array of fluctuating wall pressure sensors, then invoking Taylor's Hypothesis and low-pass filtering the data allows the temporal signals to be converted into a spatial map of the wall pressure field. This reveals streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction and exhibiting spanwise alternation of positive and negative events that meander somewhat in tandem. As the low-pass filter cutoff is lowered, the fluctuating pressure magnitude of the coherent structures diminishes while their length increases.

  4. Very-large-scale coherent structures in the wall pressure field beneath a supersonic turbulent boundary layer.

    SciTech Connect

    Beresh, Steven Jay; Spillers, Russell Wayne; Henfling, John Francis; Pruett, Brian Owen Matthew

    2010-11-01

    Previous wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer, which essentially are flat at low frequency and do not exhibit the theorized {psi}{sup 2} dependence. The flat portion of the spectrum extends over two orders of magnitude and represents structures reaching at least 100 {delta} in scale, raising questions about their physical origin. The spatial coherence required over these long lengths may arise from very-large-scale structures that have been detected in turbulent boundary layers due to groupings of hairpin vortices. To address this hypothesis, data have been acquired from a dense spanwise array of fluctuating wall pressure sensors, then invoking Taylor's Hypothesis and low-pass filtering the data allows the temporal signals to be converted into a spatial map of the wall pressure field. This reveals streaks of instantaneously correlated pressure fluctuations elongated in the streamwise direction and exhibiting spanwise alternation of positive and negative events that meander somewhat in tandem. As the low-pass filter cutoff is lowered, the fluctuating pressure magnitude of the coherent structures diminishes while their length increases.

  5. Study of materials and machines for 3D printed large-scale, flexible electronic structures using fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon

    The 3 dimensional printing (3DP), called to additive manufacturing (AM) or rapid prototyping (RP), is emerged to revolutionize manufacturing and completely transform how products are designed and fabricated. A great deal of research activities have been carried out to apply this new technology to a variety of fields. In spite of many endeavors, much more research is still required to perfect the processes of the 3D printing techniques especially in the area of the large-scale additive manufacturing and flexible printed electronics. The principles of various 3D printing processes are briefly outlined in the Introduction Section. New types of thermoplastic polymer composites aiming to specified functional applications are also introduced in this section. Chapter 2 shows studies about the metal/polymer composite filaments for fused deposition modeling (FDM) process. Various metal particles, copper and iron particles, are added into thermoplastics polymer matrices as the reinforcement filler. The thermo-mechanical properties, such as thermal conductivity, hardness, tensile strength, and fracture mechanism, of composites are tested to figure out the effects of metal fillers on 3D printed composite structures for the large-scale printing process. In Chapter 3, carbon/polymer composite filaments are developed by a simple mechanical blending process with an aim of fabricating the flexible 3D printed electronics as a single structure. Various types of carbon particles consisting of multi-wall carbon nanotube (MWCNT), conductive carbon black (CCB), and graphite are used as the conductive fillers to provide the thermoplastic polyurethane (TPU) with improved electrical conductivity. The mechanical behavior and conduction mechanisms of the developed composite materials are observed in terms of the loading amount of carbon fillers in this section. Finally, the prototype flexible electronics are modeled and manufactured by the FDM process using Carbon/TPU composite filaments and

  6. Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics

    PubMed Central

    Cherkasov, Artem; Ho Sui, Shannan J; Brunham, Robert C; Jones, Steven JM

    2004-01-01

    Background We establish that the occurrence of protein folds among genomes can be accurately described with a Weibull function. Systems which exhibit Weibull character can be interpreted with reliability theory commonly used in engineering analysis. For instance, Weibull distributions are widely used in reliability, maintainability and safety work to model time-to-failure of mechanical devices, mechanisms, building constructions and equipment. Results We have found that the Weibull function describes protein fold distribution within and among genomes more accurately than conventional power functions which have been used in a number of structural genomic studies reported to date. It has also been found that the Weibull reliability parameter β for protein fold distributions varies between genomes and may reflect differences in rates of gene duplication in evolutionary history of organisms. Conclusions The results of this work demonstrate that reliability analysis can provide useful insights and testable predictions in the fields of comparative and structural genomics. PMID:15274750

  7. Patterns in ultra-high energy cosmic ray arrival directions: a possible footprint of large scale cosmic structures

    SciTech Connect

    Serpico, Pasquale Dario; /Fermilab

    2007-07-01

    The public available data of cosmic ray arrival directions with energies above 4 x 10{sup 19} eV present a broad maximum in the cumulative two-point autocorrelation function around 25 degrees. This has been interpreted as the first imprint of the filamentary pattern of large scale structures (LSS) of matter in the near universe. We analyze this suggestion in light of the clustering properties expected from a catalogue of galaxies of the local universe (redshift z {approx}< 0:06). The data reproduce particularly well the clustering properties of the nearby universe within z {approx}< 0:02. There is no statistically significant cross-correlation between data and structures, although intriguingly the nominal cross-correlation chance probability for displacements within {approx}50 degree drops from O(50%) to O(10%) using the catalogue with a smaller horizon. Our results suggest a relevant role of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in the ultra-high energy cosmic rays.

  8. Quasi-linear regime of gravitational instability as a clue to understanding the large-scale structure in the Universe

    NASA Technical Reports Server (NTRS)

    Shandarin, Sergei F.

    1992-01-01

    In the late seventies, an image of the large-scale structure in the Universe began to emerge as a result of the accumulation of the galaxy redshifts. Most of the galaxies are found to concentrate in large filaments and perhaps sheets leaving most of the volume empty. Similar structures were predicted theoretically in the frame of the adiabatic theory of galaxy formation (Zeldovich) and later in the hot dark matter cosmology. However, both scenarios have been ruled out by the observations. With these scenarios the dynamical part of the scenario was also erroneously rejected by many as well. In this talk, I derive the Zeldovich approximation from the exact dynamic equations and show that it is always better than the standard linear approximation. The advantage of the Zeldovich approximation is the greatest in the quasi-linear regime when delta(sub rms) is less than 1 (delta identical to delta(rho)/rho), but the displacement of the matter is essential. The range of scales in the quasi-linear regime depends upon the slope of the initial spectrum and increases with decreasing n, where n is the exponent, if the initial spectrum is approximated by a simple power law P(k) varies as k(exp n).

  9. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site. Final report

    SciTech Connect

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M{sub L} 4.5 to M{sub L} 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes.

  10. Constraints on strain rates during large-scale mid-crustal shearing: An example from the basal Vaddas shear zone, northern Caledonides

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Stünitz, Holger; Nasipuri, Pritam; Menegon, Luca

    2013-04-01

    The Caledonian orogen in Scandinavia is characterized by large-scale crustal nappe stacks which were emplaced east-/southeast-wards onto the Baltica shield. Whereas original thrust relationships are generally obscured by syn- to post-collisional extensional deformation in the southern and central Scandinavian Caledonides, several large-scale thrust systems are well-preserved in the northern Scandinavian Caledonides in Troms and Finnmark. One example is the mid-crustal Vaddas shear zone, which emplaced the Vaddas nappe on top of the Kalak nappe complex. In this contribution we present a structural, petrological and geochronological analysis of the rocks under- and overlying the Vaddas shear zone in northern Troms, in order to estimate the strain rate associated with thrusting along this major shear zone. The Vaddas nappe above the investigated shear zone consists mainly of Upper Ordovician to Silurian metasediments, which were deposited in a marine environment and which were intruded by voluminous gabbroic intrusions, before they were sheared off from their substratum and transported on top of the Kalak nappe complex during the Caledonian orogeny. PT conditions from one of these gabbroic bodies indicate that the body intruded the metasediments at ~9 kbar (Getsinger et al., subm to G3), which corresponds to a depth of ~34 km. U-Pb SIMS dating of zircons from this gabbro indicate that intrusion occurred at 439±2 Ma. The Vaddas nappe is separated from the Kalak nappe by an at least ~150 m thick, amphibolite-facies shear zone with a subhorizontal fabric and top-to-the-SE shear sense. It has developed within the lowest part of the Vaddas nappe as well as the upper part of the Kalak nappe complex and PT calculations indicate that final shearing occurred at ~450° C and ~6 kbar (depth of ~23 km). U-Pb TIMS dating of titanites, which grow parallel to the shear fabric in the Kalak nappe complex, gives 206Pb/238U ages ranging from 442±1 to 429±1 Ma, indicating that

  11. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Rutkauskas, M.; Danilevičius, P.; Paipulas, D.; Bičkauskaitė, G.; Bukelskis, L.; Baltriukienė, D.; Širmenis, R.; Gaidukevičiutė, A.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-11-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY—ALS130-100, Z—ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software "3D-Poli" specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  12. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    SciTech Connect

    Malinauskas, M.; Purlys, V.; Zukauskas, A.; Rutkauskas, M.; Danilevicius, P.; Paipulas, D.; Bickauskaite, G.; Gadonas, R.; Piskarskas, A.; Bukelskis, L.; Baltriukiene, D.; Bukelskiene, V.; Sirmenis, R.; Gaidukeviciute, A.; Sirvydis, V.

    2010-11-10

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY--ALS130-100, Z--ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software ''3D-Poli'' specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  13. Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure.

    PubMed

    Marini, Lorenzo; Nascimbene, Juri; Nimis, Pier Luigi

    2011-09-15

    Lichens are composite organisms consisting of a symbiotic association of a fungus with a photosynthetic partner. Although the photobiont type is a key life-history trait, tests of the potential differential role of the main photobiont types in shaping large-scale patterns of lichen species richness are still absent. The aim of the study was to test the influences of forest structure and climate on epiphytic lichen species richness across Italy and to see whether these relationships change for groups of species sharing different photobiont types. Regional species richness of epiphytic lichens divided into three main photobiont types (i.e. chlorococcoid green algae, cyanobacteria, and Trentepohlia algae) was retrieved for each of the 20 administrative regions. Multiple linear regression was used to quantify the effect of climate and forest structure, and their potential interaction, on the regional species richness for the three photobiont types, accounting also for the effect of regional area. Regional species richness was associated with both climate and forest structure variables but the relationships with both factors were largely photobiont dependent. Regional area and precipitation were the only predictors included in all the models, confirming the strong dependence of lichens on atmospheric water supply, irrespective of the photobiont type. Number of species with chlorococcoid green algae were further positively associated with cover of high forest, whilst lichens with Trentepohlia were further enhanced by warm temperatures. Cyanolichen species richness was only related to area and precipitation. Our study shed light on the relative importance of climate and forest structure on lichen species richness patterns at the macroscale, showing a differential response of the photobiont types to various environmental determinants. This differential response suggested that the current and future impacts of global change on lichens cannot be generalized and that species

  14. Structure Constraints in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Pang, Wan-Lin; Golden, Keith

    2004-01-01

    In this paper we report our work on a new constraint domain, where variables can take structured values. Earth-science data processing (ESDP) is a planning domain that requires the ability to represent and reason about complex constraints over structured data, such as satellite images. This paper reports on a constraint-based planner for ESDP and similar domains. We discuss our approach for translating a planning problem into a constraint satisfaction problem (CSP) and for representing and reasoning about structured objects and constraints over structures.

  15. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    SciTech Connect

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; Sanchez, Ariel G.; Schlegel, David; Sheldon, Erin; Strauss, Michael A.; Thomas, Daniel; Wake, David; Beutler, Florian; Bizyaev, Dmitry; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia -Hsun; Dawson, Kyle; Harding, Paul; Kitaura, Francisco -Shu; Leauthaud, Alexie; Masters, Karen; McBride, Cameron K.; More, Surhud; Olmstead, Matthew D.; Oravetz, Daniel; Nuza, Sebastian E.; Pan, Kaike; Parejko, John; Pforr, Janine; Prada, Francisco; Rodriguez-Torres, Sergio; Salazar-Albornoz, Salvador; Samushia, Lado; Schneider, Donald P.; Scoccola, Claudia G.; Simmons, Audrey; Vargas-Magana, Mariana

    2015-11-17

    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. Furthermore, the code used, designated mksample, is released with this paper.

  16. SDSS-III Baryon Oscillation Spectroscopic Survey data release 12: Galaxy target selection and large-scale structure catalogues

    DOE PAGESBeta

    Reid, Beth; Ho, Shirley; Padmanabhan, Nikhil; Percival, Will J.; Tinker, Jeremy; Tojeiro, Rito; White, Marin; Daniel J. Einstein; Maraston, Claudia; Ross, Ashley J.; et al

    2015-11-17

    The Baryo