Science.gov

Sample records for large-volume injections coupled

  1. Large Volume Injection Techniques in Capillary Gas Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large volume injection (LVI) is a prerequisite of modern gas chromatographic (GC) analysis, especially when trace sample components have to be determined at very low concentration levels. Injection of larger than usual sample volumes increases sensitivity and/or reduces (or even eliminates) the need...

  2. Selective determination of estrogenic compounds in water by microextraction by packed sorbents and a molecularly imprinted polymer coupled with large volume injection-in-port-derivatization gas chromatography-mass spectrometry.

    PubMed

    Prieto, A; Vallejo, A; Zuloaga, O; Paschke, A; Sellergen, B; Schillinger, E; Schrader, S; Möder, M

    2011-10-01

    A fully automated protocol consisting of microextraction by packed sorbents (MEPS) coupled with large volume injection-in-port-derivatization-gas chromatography-mass spectrometry (LVI-derivatization-GC-MS) was developed to determine endocrine disrupting compounds (EDCs) such as alkylphenols, bisphenol A, and natural and synthetic hormons in river and waste water samples. During method optimization, the extraction parameters as ion strength of the water sample, the MEPS extraction regime, the volume of organic solvent used for the elution/injection step, the type of elution solvents and the selectivity of the sorbents were studied. For optimum in-port-derivatization, 10 μL of the derivatization reagent N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA+1% TMCS) was used. 17β-Estradiol-molecularly imprinted polymer (MIP) and silica gel (modified with C-18) sorbents were examined for the enrichment of the target analytes from water samples and the obtained results revealed the high selectivity of the MIP material for extraction of substances with estrogen-like structures. Recovery values for most of the analytes ranged from 75 to 109% for the C18 sorbent and from 81 to 103% for the MIP material except for equilin (on C18 with only 57-66% recovery). Precision (n=4) of the entire analysis protocol ranged between 4% and 22% with both sorbents. Limits of detection (LODs) were at the low ngL(-1) level (0.02-87, C18 and 1.3-22, MIP) for the target analytes. PMID:21843673

  3. Determination of organic priority pollutants and emerging compounds in wastewater and snow samples using multiresidue protocols on the basis of microextraction by packed sorbents coupled to large volume injection gas chromatography-mass spectrometry analysis.

    PubMed

    Prieto, A; Schrader, S; Moeder, M

    2010-09-17

    This paper describes the development and validation of a new procedure for the simultaneous determination of 41 multi-class priority and emerging organic pollutants in water samples using microextraction by packed sorbent (MEPS) followed by large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS). Apart from method parameter optimization the influence of humic acids as matrix components on the extraction efficiency of MEPS procedure was also evaluated. The list of target compounds includes polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esters (PEs), nonylphenols (NPs), bisphenol A (BPA) and selected steroid hormones. The performance of the new at-line microextraction-LVI-GC-MS protocol was compared to standard solid-phase extraction (SPE) and LVI-GC-MS analysis. LODs for 100 mL samples (SPE) ranged from 0.2 to 736 ng L(-1) were obtained. LODs for 800 microL of sample (MEPS) were between 0.2 and 266 ng L(-1). In the case of MEPS methodology even a sample volume of only 800 microL allowed to detect the target compounds. These results demonstrate the high sensitivity of both procedures which permitted to obtain good recoveries (>75%) for all cases. The precision of the methods, calculated as relative standard deviation (RSD) was below 21% for all compounds and both methodologies. Finally, the developed methods were applied to the determination of target analytes in various samples, including snow and wastewater. PMID:20719318

  4. Understanding Subcutaneous Tissue Pressure for Engineering Injection Devices for Large-Volume Protein Delivery.

    PubMed

    Doughty, Diane V; Clawson, Corbin Z; Lambert, William; Subramony, J Anand

    2016-07-01

    Subcutaneous injection allows for self-administration of monoclonal antibodies using prefilled syringes, autoinjectors, and on-body injector devices. However, subcutaneous injections are typically limited to 1 mL due to concerns of injection pain from volume, viscosity, and formulation characteristics. Back pressure can serve as an indicator for changes in subcutaneous mechanical properties leading to pain during injection. The purpose of this study was to investigate subcutaneous pressures and injection site reactions as a function of injection volume and flow rate. A pressure sensor in the fluid path recorded subcutaneous pressures in the abdomen of Yorkshire swine. The subcutaneous tissue accommodates large-volume injections and with little back pressure as long as low flow rates are used. A 1 mL injection in 10 seconds (360 mL/h flow rate) generated a pressure of 24.0 ± 3.4 kPa, whereas 10 mL delivered in 10 minutes (60 mL/h flow rate) generated a pressure of 7.4 ± 7.8 kPa. After the injection, the pressure decays to 0 over several seconds. The subcutaneous pressures and mechanical strain increased with increasing flow rate but not increasing dose volume. These data are useful for the design of injection devices to mitigate back pressure and pain during subcutaneous large-volume injection. PMID:27287520

  5. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE PAGESBeta

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less

  6. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Raman, R.

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  7. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE VOLUME INJECTION GCMS

    EPA Science Inventory

    This paper describes the method development for the determination of ultra-low level pesticides from high-elevation lake waters by large-volume injection programmable temperature vaporizer (LVI-PTV) GC/MS. This analytical method is developed as a subtask of a larger study, backgr...

  8. Resonant RF network antennas for large-area and large-volume inductively coupled plasma sources

    NASA Astrophysics Data System (ADS)

    Hollenstein, Ch; Guittienne, Ph; Howling, A. A.

    2013-10-01

    Large-area and large-volume radio frequency (RF) plasmas are produced by different arrangements of an elementary electrical mesh consisting of two conductors interconnected by a capacitor at each end. The obtained cylindrical and planar RF networks are resonant and generate very high RF currents. The input impedance of such RF networks shows the behaviour of an RLC parallel resonance equivalent circuit. The real impedance at the resonance frequency is of great advantage for power matching compared with conventional inductive devices. Changes in the RLC equivalent circuit during the observed E-H transition will allow future interpretation of the plasma-antenna coupling. Furthermore, high power transfer efficiencies are found during inductively coupled plasma (ICP) operation. For the planar RF antenna network it is shown that the E-H transition occurs simultaneously over the entire antenna. The underlying physics of these discharges induced by the resonant RF network antenna is found to be identical to that of the conventional ICP devices described in the literature. The resonant RF network antenna is a new versatile plasma source, which can be adapted to applications in industry and research.

  9. A novel stacking method of repetitive large volume sample injection and sweeping MEKC for determination of androgenic steroids in urine.

    PubMed

    Wang, Chun-Chi; Chen, Jia-Ling; Chen, Yen-Ling; Cheng, Hui-Ling; Wu, Shou-Mei

    2012-09-26

    In this research, a novel stacking capillary electrophoresis method, repetitive large volume sample injection and sweeping MEKC (rLVSI-sweeping MEKC) were developed to analyze the presence of three androgenic steroids considered as sport doping drugs, testosterone (T), epitestosterone (E) and epitestosterone glucuronide (EG) in urine. This method provides better sensitivity enhancement than the traditional large volume sample stacking-sweeping strategies due to sensitivity enhancement by repetitive injections. This multiple sampling method enhances sensitivity of monitoring of urine samples by UV detection (254 nm). Firstly, the phosphate buffer was filled into an uncoated fused silica capillary and the samples were injected into the capillary at 10 psi for 20s, and then stacked at -10 kV for 1 min using phosphate buffer containing SDS. The above injecting and stacking steps were repeated five times. Finally, separation was performed at -20 kV, using phosphate buffer containing methanol, SDS and (2-hydroxypropyl)-β-cyclodextrin. Method validation showed that calibration plots were linear (r≥0.997) over a range of 5-200 ng mL(-1) for T, 20-200 ng mL(-1) for E and 0.5-500 ng mL(-1) for EG. The limits of detection were 1.0 ng mL(-1) for T, 5.0 ng mL(-1) for E and 200.0 pg mL(-1) for EG. When evaluating precision and accuracy, values of RSD and RE in intra-day (n=3) and inter-day (n=5) analysis were found to be less than 10.0%. Compared with the simple LVSS-sweeping, which is also a stacking strategy, this method further improves sensitivity up to 25 folds (~2500 folds with MEKC without preconcentration). This method was applied to monitor 10 athletes' urine, and did not detect any analyte. The novel stacking method was feasible for monitoring of doping by sportsmen. PMID:22935380

  10. Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-06-01

    Three synthetic phenolic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ), were determined in different edible vegetable oil samples. The analyses were carried out by gas chromatography-mass spectrometry (GC-MS) using microvial insert large volume injection (LVI). Several parameters affecting this sample introduction step, such as temperatures, times and gas flows, were optimised. Quantification was carried out by the matrix-matched calibration method using carvacrol as internal standard, providing quantification limits between 0.08 and 0.10 ng g(-1), depending on the compound. The three phenolic compounds were detected in several of the samples, BHT being the most frequently found. Recovery assays for oil samples spiked at two concentration levels, 2.5 and 10 ng g(-1), provided recoveries in the 86-115% range. PMID:26830586

  11. Gas chromatographic-tandem mass spectrometric analysis of pesticides residues in produce using concurrent solvent recondensation-large volume injection.

    PubMed

    Walorczyk, Stanisław

    2012-01-27

    In the present work, the feasibility of the combined use of concurrent solvent recondensation-large volume injection (CSR-LVI) and interspersed calibration for pesticide residue analysis was investigated. Splitless injections of 5-20 μL extracts containing 0.25-1g sample per mL(-1) were made into a Carbofrit packed liner and a 0.53 mm I.D., uncoated and deactivated retention gap. The determination was achieved by gas chromatography-tandem quadrupole mass spectrometry (GC-QqQ-MS/MS). The evaluation of the proposed approach was based on analysis of real samples representing a diverse range of commodities such as apples, barley malt, blackcurrants, carrots, clemetines, grapes, leek, plums, rapeseed (green plants) rucola, strawberries and tomatoes. The samples contained a total of 36 different incurred pesticides at different concentration levels. Also, analyses were carried out of artificial samples representing six differing matrices (apples, blackcurrants, carrots, huckleberry, strawberry and tomatoes) which were spiked with pesticides at known concentrations before proceeding with the extraction. When using 15 and 20 μL CSR-LVI injection, a decrease of about 30% in peak heights compared with injection of 5 μL was observed. In the case of 5 and 10 μL injections, no significant difference was observed when employing to the quantification of the incurred and spiked pesticide residues. In the evaluated experimental variants, overall recoveries of the pesticides were 92 ± 5% with relative standard deviations of 12 ± 4% on average. All individual recoveries were in the range between 72 and 103 with RSD between 4 and 21%. About 15% of the instrument run time was saved by the application of interspersed calibration with standards injected between sample extracts. PMID:22204933

  12. Rapid determination of technetium-99 in large volume seawater samples using sequential injection extraction chromatographic separation and ICP-MS measurement.

    PubMed

    Shi, Keliang; Qiao, Jixin; Wu, Wangsuo; Roos, Per; Hou, Xiaolin

    2012-08-01

    An automated method was developed for rapid determination of (99)Tc in large volume seawater samples. The analytical procedure involves preconcentration of technetium with coprecipitation, online separation using extraction chromatography (two TEVA columns) implemented in a sequential injection setup, and measurement of (99)Tc by inductively coupled plasma mass spectrometry (ICP-MS). Chromatographic behaviors of technetium, molybdenum, and ruthenium were investigated, and the mechanism of adsorption and elution of TcO(4)(-) on a TEVA column using HNO(3) was explored. The results show that not only NO(3)(-) but also acidity (or concentration of H(+)) of the loading or eluting solution affect the adsorption and desorption of TcO(4)(-) on TEVA resin. Decontamination factors of more than 1 × 10(6) for ruthenium and 5 × 10(5) for molybdenum are achieved. Chemical yields of technetium in the overall procedure range from 60% to 75% depending on the sample volumes, and a detection limit of 7.5 mBq/m(3) (or 11.5 pg/m(3)) for 200 L of seawater was obtained. Compared with the conventional analytical procedure, the developed method significantly reduces analytical time. A batch of samples (n > 4) can be analyzed within 24 h. The method has been successfully applied for rapid and automated determination of low level (99)Tc in large volume seawater samples. The analytical results of seawater samples collected in Denmark show a good agreement with the values obtained using the conventional method. PMID:22783983

  13. Detection of s-triazine pesticides in natural waters by modified large-volume direct injection HPLC.

    PubMed

    Beale, David J; Kaserzon, Sarit L; Porter, Nichola A; Roddick, Felicity A; Carpenter, Peter D

    2010-07-15

    There is a need for simple and inexpensive methods to quantify potentially harmful persistent pesticides often found in our water-ways and water distribution systems. This paper presents a simple, relatively inexpensive method for the detection of a group of commonly used pesticides (atrazine, simazine and hexazinone) in natural waters using large-volume direct injection high performance liquid chromatography (HPLC) utilizing a monolithic column and a single wavelength ultraviolet-visible light (UV-vis) detector. The best results for this system were obtained with a mobile phase made up of acetonitrile and water in a 30:70 ratio, a flow rate of 2.0 mL min(-1), and a detector wavelength of 230 nm. Using this method, we achieved retention times of less than three minutes, and detection limits of 5.7 microg L(-1) for atrazine, 4.7 microg L(-1) for simazine and 4.0 microg L(-1) for hexazinone. The performance of this method was validated with an inter-laboratory trial against a National Association of Testing Authorities (NATA) accredited liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method commonly used in commercial laboratories. PMID:20602952

  14. Analysis of Androgenic Steroids in Environmental Waters by Large-volume Injection Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Backe, Will J.; Ort, Christoph; Brewer, Alex J.; Field, Jennifer A.

    2014-01-01

    A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrices using direct large-volume injection (LVI) high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 88 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1-hr composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated five to seven percent of the total androstenedione mass. PMID:21391574

  15. Determination of pesticides in vegetables using large-volume injection column liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Hogenboom, A C; Hofman, M P; Kok, S J; Niessen, W M; Brinkman, U A

    2000-09-15

    Direct injection of a large volume (900 microl) of a sample extract onto a liquid chromatographic (LC) column, LC separation and electrospray tandem mass spectrometric detection were used for the quantitative analysis of a wide polarity range of pesticides in carrots and potatoes. Rapid sample preparation involved extraction of a small amount of sample (2 g) with a small volume of organic solvent (3 ml), clean-up over a filter and dilution of the organic extract with the aqueous LC eluent. The extraction efficiency for the selected pesticides was studied using methanol, acetone and acetonitrile as solvents. Evaluation of the performance of the overall method, using extraction with acetonitrile and detection in the selected-reaction-monitoring mode, showed excellent linearity in the range of 2-100 microg/kg with limits of detection of 0.5-2 microg/kg for both types of vegetable. With relative standard deviations of the MS peak area measurements of less than 6.5% (n=8) the repeatability of the method was fully satisfactory. PMID:11045499

  16. Development of a bar adsorptive micro-extraction-large-volume injection-gas chromatography-mass spectrometric method for pharmaceuticals and personal care products in environmental water matrices.

    PubMed

    Neng, N R; Nogueira, J M F

    2012-01-01

    The combination of bar adsorptive micro-extraction using activated carbon (AC) and polystyrene-divinylbenzene copolymer (PS-DVB) sorbent phases, followed by liquid desorption and large-volume injection gas chromatography coupled to mass spectrometry, under selected ion monitoring mode acquisition, was developed for the first time to monitor pharmaceutical and personal care products (PPCPs) in environmental water matrices. Assays performed on 25 mL water samples spiked (100 ng L(-1)) with caffeine, gemfibrozil, triclosan, propranolol, carbamazepine and diazepam, selected as model compounds, yielded recoveries ranging from 74% to 99% under optimised experimental conditions (equilibrium time, 16 h (1,000 rpm); matrix characteristics: pH 5, 5% NaCl for AC phase; LD: methanol/acetonitrile (1:1), 45 min). The analytical performance showed good precision (RSD < 18%), convenient detection limits (5-20 ng L(-1)) and excellent linear dynamic range (20-800 ng L(-1)) with remarkable determination coefficients (r(2) > 0.99), where the PS-DVB sorbent phase showed a much better efficiency. By using the standard addition methodology, the application of the present analytical approach on tap, ground, sea, estuary and wastewater samples allowed very good performance at the trace level. The proposed method proved to be a suitable sorption-based micro-extraction alternative for the analysis of priority pollutants with medium-polar to polar characteristics, showing to be easy to implement, reliable, sensitive and requiring a low sample volume to monitor PPCPs in water matrices. PMID:22076312

  17. Optimisation of programmable temperature vaporizer-based large volume injection for determination of pesticide residues in fruits and vegetables using gas chromatography-mass spectrometry.

    PubMed

    Stajnbaher, Darinka; Zupancic-Kralj, Lucija

    2008-05-01

    The applicability of programmable temperature vaporizer (PTV) solvent vent injection to the gas chromatographic (GC) determination of pesticide residues in fruits and vegetables was evaluated with the aim of miniaturizing the current multiresidue method. For that purpose 24 pesticides representing different chemical classes were initially chosen for optimisation of the large volume injection (LVI) parameters. Various parameters related to the optimum injector performance were tested for several types of packed and empty liners using both fast (at-once) and speed-controlled PTV solvent vent injection of standard solutions in ethyl acetate. In the next step, several packed and empty liners were evaluated for their suitability for pesticide multiresidue analysis. Parameters identified as optimal were then applied for PTV solvent vent injection of sample extracts prepared using the miniaturized multiresidue method to assess the long-term stability of the system. The combined use of large volume injection of 10 microl ethyl acetate extract into an empty multi-baffled or a CarboFrit packed liner using PTV injectors and GC-MS analysis enabled the detection and quantification of 124 pesticides in fruit and vegetable samples at the 0.01 mg/kg level using miniaturized reversed-phase solid-phase extraction (RP-SPE) of diluted acetone extract and clean-up on a small anion-exchange SPE column. PMID:18367194

  18. Monitoring a large volume CO2 injection: Year two results from SECARB project at Denbury's Cranfield, Mississippi, USA

    USGS Publications Warehouse

    Hovorka, S.D.; Meckel, T.A.; Trevino, R.H.; Lu, J.; Nicot, J.-P.; Choi, J.-W.; Freeman, D.; Cook, P.; Daley, T.M.; Ajo-Franklin, J. B.; Freifeild, B.M.; Doughty, C.; Carrigan, C.R.; La-Brecque, D.; Kharaka, Y.K.; Thordsen, J.J.; Phelps, T.J.; Yang, C.; Romanak, K.D.; Zhang, T.; Holt, R.M.; Lindler, J.S.; Butsch, R.J.

    2011-01-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) early project in western Mississippi has been testing monitoring tools and approaches to document storage efficiency and storage permanence under conditions of CO2 EOR as well as downdip injection into brine. Denbury Onshore LLC is host for the study and has brought a depleted oil and gas reservoir, Cranfield Field, under CO2 flood. Injection was started in July 2008 and has now achieved injection rates greater than 1.2 million tons/year though 23 wells, with cumulative mass injected as of August, 2010 of 2.2 million metric tons. Injection is into coarse grained fluvial deposits of the Cretaceous lower Tuscaloosa Formation in a gentle anticline at depths of 3300 m. A team of researchers from 10 institutions has collected data from five study areas, each with a different goal and different spatial and temporal scale. The Phase 2 study began at the start of injection and has been using pressure and temperature as a tool for assessing permanence mostly in the oil productive interval. Real-time read-out shows high sensitivity to distant changes in injection rate and confirms the geologic model of reservoir compartmentalization. Above-zone pressure monitoring ???120 m above the injection interval is used to test the sensitivity of this approach for documentation of integrity of the confining system in an area of numerous well completions as pressure increase is induced in the reservoir by more than 70 bar. Monitoring of the High Volume Injection Test (HiVIT) area includes repeat measurements of aqueous geochemistry in the injection zone. Rock-water-CO 2 interactions in the reservoir as CO2 dissolves are minimized by mineral "armoring" by abundant chlorite cement in high permeability reservoir sandstone. Geochemical monitoring of confined freshwater aquifers at depths of 70-100 m is underway. Groundwater analysis focuses on assessment of the sensitivity of this method to detect leakage above background

  19. Determination of nifuroxazide in biological fluids by automated high-performance liquid chromatography with large-volume injection.

    PubMed

    Guinebault, P R; Broquaire, M; Braithwaite, R A

    1981-01-16

    A high-performance liquid chromatographic method for the measurement of nifuroxazide in plasma is described. The technique is based on the single extraction of the drug from buffered plasma with chloroform, using nifuratel as internal standard. The chromatographic system consisted of a 15 cm x 4.6 mm I.D. stainless-steel column packed with Spherisorb ODS, 5 micrometer, and the mobile phase was acetonitrile-orthophosphoric acid (pH 2.5) (30:70). The method was able to measure accurately plasma nifuroxazide concentrations down to 2 ng . ml-1 using 2 ml of sample with no interference from endogenous compounds. The coefficients of variation of the method at 200 and 2 ng . ml-1 were 3% and 15%, respectively, and the calibration graph was linear in this range. The use of automatic injection makes the method suitable for the routine analysis of large numbers of samples. PMID:7217261

  20. Dispersive liquid-liquid microextraction for the determination of nitrophenols in soils by microvial insert large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-07-22

    A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range. PMID:27317004

  1. Pre-column dilution large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages.

    PubMed

    Zhong, Qisheng; Shen, Lingling; Liu, Jiaqi; Yu, Dianbao; Li, Siming; Yao, Jinting; Zhan, Song; Huang, Taohong; Hashi, Yuki; Kawano, Shin-ichi; Liu, Zhaofeng; Zhou, Ting

    2016-04-15

    Pre-column dilution large volume injection (PD-LVI), a novel sample injection technique for reverse phase ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was developed in this study. The PD-LVI UHPLC-MS/MS system was designed by slightly modifying the commercial UHPLC-MS/MS equipment with a mixer chamber. During the procedure of PD-LVI, sample solution of 200μL was directly carried by the organic mobile phase to the mixer and diluted with the aqueous mobile phase. After the mixture was introduced to the UHPLC column in a mobile phase of acetonitrile-water (15/85, v/v), the target analytes were stacked on the head of the column until following separation. Using QuEChERS extraction, no additional steps such as solvent evaporation or residue redissolution were needed before injection. The features of PD-LVI UHPLC-MS/MS system were systematically investigated, including the injection volume, the mixer volume, the precondition time and the gradient elution. The efficiency of this approach was demonstrated by direct analysis of 24 pesticides in cabbages. Under the optimized conditions, low limits of detection (0.00074-0.8 ng/kg) were obtained. The recoveries were in the range of 63.3-109% with relative standard deviations less than 8.1%. Compared with common UHPLC-MS/MS technique, PD-LVI UHPLC-MS/MS showed significant advantages such as excellent sensitivity and reliability. The mechanism of PD-LVI was demonstrated to be based on the column-head stacking effect with pre-column dilution. Based on the results, PD-LVI as a simple and effective sample injection technique of reverse phase UHPLC-MS/MS for the analysis of trace analytes in complex samples showed a great promising prospect. PMID:26979268

  2. Plasma properties in a large-volume, cylindrical and asymmetric radio-frequency capacitively coupled industrial-prototype reactor

    NASA Astrophysics Data System (ADS)

    Lazović, Saša; Puač, Nevena; Spasić, Kosta; Malović, Gordana; Cvelbar, Uroš; Mozetič, Miran; Radetić, Maja; Petrović, Zoran Lj

    2013-02-01

    We have developed a large-volume low-pressure cylindrical plasma reactor with a size that matches industrial reactors for treatment of textiles. It was shown that it efficiently produces plasmas with only a small increase in power as compared with a similar reactor with 50 times smaller volume. Plasma generated at 13.56 MHz was stable from transition to streamers and capable of long-term continuous operation. An industrial-scale asymmetric cylindrical reactor of simple design and construction enabled good control over a wide range of active plasma species and ion concentrations. Detailed characterization of the discharge was performed using derivative, Langmuir and catalytic probes which enabled determination of the optimal sets of plasma parameters necessary for successful industry implementation and process control. Since neutral atomic oxygen plays a major role in many of the material processing applications, its spatial profile was measured using nickel catalytic probe over a wide range of plasma parameters. The spatial profiles show diffusion profiles with particle production close to the powered electrode and significant wall losses due to surface recombination. Oxygen atom densities range from 1019 m-3 near the powered electrode to 1017 m-3 near the wall. The concentrations of ions at the same time are changing from 1016 to the 1015 m-3 at the grounded chamber wall.

  3. Quantitation of fluoride ion released sarin in red blood cell samples by gas chromatography-chemical ionization mass spectrometry using isotope dilution and large-volume injection.

    PubMed

    Jakubowski, E M; McGuire, J M; Evans, R A; Edwards, J L; Hulet, S W; Benton, B J; Forster, J S; Burnett, D C; Muse, W T; Matson, K; Crouse, C L; Mioduszewski, R J; Thomson, S A

    2004-01-01

    A new method for measuring fluoride ion released isopropyl methylphosphonofluoridate (sarin, GB) in the red blood cell fraction was developed that utilizes an autoinjector, a large-volume injector port (LVI), positive ion ammonia chemical ionization detection in the SIM mode, and a deuterated stable isotope internal standard. This method was applied to red blood cell (RBC) and plasma ethyl acetate extracts from spiked human and animal whole blood samples and from whole blood of minipigs, guinea pigs, and rats exposed by whole-body sarin inhalation. Evidence of nerve agent exposure was detected in plasma and red blood cells at low levels of exposure. The linear method range of quantitation was 10-1000 pg on-column with a detection limit of approximately 2-pg on-column. In the course of method development, several conditions were optimized for the LVI, including type of injector insert, injection volume, initial temperature, pressure, and flow rate. RBC fractions had advantages over the plasma with respect to assessing nerve agent exposure using the fluoride ion method especially in samples with low serum butyrylcholinesterase activity. PMID:15239856

  4. Polycyclic aromatic hydrocarbon emissions in diesel exhaust using gas chromatography-mass spectrometry with programmed temperature vaporization and large volume injection

    NASA Astrophysics Data System (ADS)

    Vieira de Souza, Carolina; Corrêa, Sergio Machado

    2015-02-01

    Diesel engines are significant sources of Polycyclic Aromatic Compounds (PAHs) in urban atmospheres. These compounds are widely known for their carcinogenic potential and mutagenic properties. In this study, a method was developed for the analysis of 16 priorities PAHs using gas chromatography-mass spectrometry (GC-MS) with programmable temperature vaporizer large volume injection (PTV-LVI), which allowed to be obtained detection limits below 2.0 ng mL-1. This method was evaluated in samples from stratified particulate matter and gas phase from the emissions of diesel vehicle employing diesel commercial S10 (sulfur 10 mg L-1) and B5 (biodiesel 5% v/v). A sampling system that does not employ exhaust products dilution was used to evaluate the PAHs gas-particle partition. Six PAHs were identified in extracts and gas-phase PAHs took percentage of 80% in the total PAHs emissions. The sampling system without dilution not caused a strong nucleation/condensation of the most volatile PAHs. PAHs size-particle distribution was found in higher levels in the accumulation mode.

  5. Direct analysis of eight chlorophenols in urine by large volume injection online turbulent flow solid-phase extraction liquid chromatography with multiple wavelength ultraviolet detection.

    PubMed

    Guo, Feng; Liu, Qian; Shi, Jian-bo; Wei, Fu-sheng; Jiang, Gui-bin

    2014-02-01

    A novel method for determining eight chlorophenols (CPs) by large volume injection online turbulent flow solid-phase extraction high performance liquid chromatography in urine samples was developed. An aliquot of 1.0 mL urine sample could be analyzed directly after centrifugation. The analytes were preconcentrated online on a Turboflow C18-P SPE column, eluted in back-flush mode, and then separated on an Acclaim PA2 analytical column. Major parameters such as SPE column type, sample loading flow rate and elution time were optimized in detail. Eight CPs from monochlorophenol to pentacholophenol were measured by multiple-wavelength UV detection at four different wavelengths. The limits of detection (LODs) were between 0.5 and 2 ng/mL. The linearity range was from the limit of quantification to 1000 ng/mL for each compound, with the coefficients of determination (r(2)) ranging from 0.9990 to 0.9996. The reproducibility of intraday and interday relative standard deviations (RSDs) ranged from 0.6% to 4.5% (n=5). The method was successfully applied to analyze eight CPs in urine samples. Good recoveries, ranging from 76.3% to 122.9%, were obtained. This simple, sensitive and accurate method provides an alternative way to rapidly analyze and monitor CPs in urine samples, especially for matters of occupational exposure. PMID:24401430

  6. Determination of polybrominated diphenyl ethers and polychlorinated biphenyls in fishery and aquaculture products using sequential solid phase extraction and large volume injection gas chromatography/tandem mass spectrometry.

    PubMed

    Lu, Dasheng; Lin, Yuanjie; Feng, Chao; Wang, Dongli; Qiu, Xinlei; Jin, Yu'e; Xiong, Libei; Jin, Ying; Wang, Guoquan

    2014-01-15

    A new method was developed to determine polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in fishery and aquaculture products. Samples were extracted by an accelerated solvent extraction system and cleaned up by sequential solid phase extraction (SPE) including dispersive SPE (D-SPE) and tandem SPE. PBDEs and PCBs were analyzed by a large-volume injection gas chromatography triple quadrupole mass spectrometry (LVI-GC-QqQ-MS/MS). Good linearity (R(2)≥0.9958) was achieved. Method detection limits (MDLs) were 0.16-3.3pgg(-1) (wet weight, ww) for PBDEs and 0.13-0.97pgg(-1)ww for PCBs. Mean recoveries were 60-140% with relative standard deviations (RSDs) of less than 20% in weever fish, scallop and shrimp samples spiked at a lower level of 13-31pgg(-1)ww and a higher level of 50-125pgg(-1)ww. Certified reference materials were analyzed with acceptable results. The method reduced solvent consumption, analytical time and labor, and is suitable for the routine analysis of PBDEs and PCBs in fishery and aquaculture products. PMID:24321764

  7. Separation and online preconcentration by multistep stacking with large-volume injection of anabolic steroids by capillary electrokinetic chromatography using charged cyclodextrins and UV-absorption detection.

    PubMed

    Urban, Pawel L; García-Ruiz, Carmen; García, M Angeles; Marina, M Luisa

    2005-11-01

    The separation of three common anabolic steroids (methyltestosterone, methandrostenolone and testosterone) was performed for the first time by capillary EKC. Different charged CD derivatives and bile salts were tested as dispersed phases in order to achieve the separation. A mixture of 10 mmol/L succinylated-beta-CD with 1 mmol/L beta-CD in a 50 mmol/L borate buffer (pH 9) enabled the separation of the three anabolic steroids in less than 9 min. Concentration LODs, obtained for these compounds with low absorption of UV light, were approximately 5 x 10(-5) mol/L. The use of online reverse migrating sample stacking with large-volume injection (the effective length of the capillary) enabled to improve the detection sensitivity. Sensitivity enhancement factors (SEFs) ranging from 95 (for testosterone) to 149 (for methyltestosterone) were achieved by single stacking preconcentration. Then, the possibilities of multistep stacking to improve the sensitivity for these analytes were investigated. SEFs obtained by double stacking preconcentration ranged from 138 to 185, enabling concentration LODs of 2.79 x 10(-7) mol/L (for methyltestosterone), 3.47 x 10(-7) mol/L (for testosterone) and 3.56 x 10(-7) mol/L (for methandrostenolone). Although online triple stacking preconcentration was achieved, its repeatability was very poor and SEFs for the studied analytes were not calculated. PMID:16318218

  8. Multiresidue method for the analysis of five antifouling agents in marine and coastal waters by gas chromatography-mass spectrometry with large-volume injection.

    PubMed

    Agüera, A; Piedra, L; Hernando, M D; Fernández-Alba, A R

    2000-08-11

    A simple multiresidue method has been developed for the determination of five pesticides, commonly used as active ingredients in antifouling paints, in seawater samples. The pesticides studied were: chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile), dichlofluanid (N-dimethyl-N-phenylsulphamide), Sea-Nine 211 (4,5-dichloro-2-n-octyl-4-isothazolin-3-one), Irgarol 1051 (2-methylthio-4-tert.-butylamino-6-cyclopropylamino-s-triazine) and TCMTB (2-thiocyanomethylthiobenzothiazole). The analytes were extracted from 200 ml water samples, using solid-phase extraction. A copolymer with hydrophilic-lipophilic balance was used as sorbent yielding good recoveries (82-95%) for most compounds except dichlofluanid and Sea-Nine 211 (<60%). Large volume injection (10 microl) gas chromatography and electron impact ionization MS (selected ion monitoring mode) detection enabled these compounds to be identified and quantified at the 1.2-3.0 ng/l level. Analysis of samples performed in three marinas in Almería (Spain) revealed the presence of Irgarol 1051 in all the cases, at concentration levels between 25 and 450 ng/l. PMID:10985557

  9. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.

    PubMed

    Wu, Minghuo; Qian, Yichao; Boyd, Jessica M; Hrudey, Steve E; Le, X Chris; Li, Xing-Fang

    2014-09-12

    Acesulfame (ACE) and sucralose (SUC) have become recognized as ideal domestic wastewater contamination indicators. Liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis is commonly used; however, the sensitivity of SUC is more than two orders of magnitude lower than that of ACE, limiting the routine monitoring of SUC. To address this issue, we examined the ESI behavior of both ACE and SUC under various conditions. ACE is ionic in aqueous solution and efficiently produces simple [M-H](-) ions, but SUC produces multiple adduct ions, limiting its sensitivity. The formic acid (FA) adducts of SUC [M+HCOO](-) are sensitively and reproducibly generated under the LC-MS conditions. When [M+HCOO](-) is used as the precursor ion for SUC detection, the sensitivity increases approximately 20-fold compared to when [M-H](-) is the precursor ion. To further improve the limit of detection (LOD), we integrated the large volume injection approach (500μL injection) with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which reduced the method detection limit (MDL) to 0.2ng/L for ACE and 5ng/L for SUC. To demonstrate the applicability of this method, we analyzed 100 well water samples collected in Alberta. ACE was detected in 24 wells at concentrations of 1-1534ng/L and SUC in 8 wells at concentrations of 65-541ng/L. These results suggest that wastewater is the most likely source of ACE and SUC impacts in these wells, suggesting the need for monitoring the quality of domestic well water. PMID:25085815

  10. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry.

    PubMed

    Vergeynst, Leendert; Van Langenhove, Herman; Joos, Pieter; Demeestere, Kristof

    2014-04-01

    The ever-growing number of emerging micropollutants such as pharmaceuticals requests rapid and sensitive full-spectrum analytical techniques. Time-of-flight high-resolution mass spectrometry (TOF-HRMS) is a promising alternative for the state-of-the-art tandem mass spectrometry instruments because of its ability to simultaneously screen for a virtually unlimited number of suspect analytes and to perform target quantification. The challenge for such suspect screening is to develop a strategy, which minimizes the false-negative rate without restraining numerous false-positives. At the same time, omitting laborious sample enrichment through large-volume injection ultra-performance liquid chromatography (LVI-UPLC) avoids selective preconcentration. A suspect screening strategy was developed using LVI-UPLC-TOF-MS aiming the detection of 69 multi-class pharmaceuticals in surface water without the a priori availability of analytical standards. As a novel approach, the screening takes into account the signal-intensity-dependent accurate mass error of TOF-MS, hereby restraining 95 % of the measured suspect pharmaceuticals present in surface water. Application on five Belgian river water samples showed the potential of the suspect screening approach, as exemplified by a false-positive rate not higher than 15 % and given that 30 out of 37 restrained suspect compounds were confirmed by the retention time of analytical standards. Subsequently, this paper discusses the validation and applicability of the LVI-UPLC full-spectrum HRMS method for target quantification of the 69 pharmaceuticals in surface water. Analysis of five Belgian river water samples revealed the occurrence of 17 pharmaceuticals in a concentration range of 17 ng L(-1) up to 3.1 μg L(-1). PMID:24633561

  11. Improving the Sensitivity, Resolution, and Peak Capacity of Gradient Elution in Capillary Liquid Chromatography with Large-Volume Injections by Using Temperature-Assisted On-Column Solute Focusing.

    PubMed

    Wilson, Rachael E; Groskreutz, Stephen R; Weber, Stephen G

    2016-05-17

    Capillary HPLC (cLC) with gradient elution is the separation method of choice for the fields of proteomics and metabolomics. This is due to the complementary nature of cLC flow rates and electrospray or nanospray ionization mass spectrometry (ESI-MS). The small column diameters result in good mass sensitivity. Good concentration sensitivity is also possible by injection of relatively large volumes of solution and relying on solvent-based solute focusing. However, if the injection volume is too large or solutes are poorly retained during injection, volume overload occurs which leads to altered peak shapes, decreased sensitivity, and lower peak capacity. Solutes that elute early even with the use of a solvent gradient are especially vulnerable to this problem. In this paper, we describe a simple, automated instrumental method, temperature-assisted on-column solute focusing (TASF), that is capable of focusing large volume injections of small molecules and peptides under gradient conditions. By injecting a large sample volume while cooling a short segment of the column inlet at subambient temperatures, solutes are concentrated into narrow bands at the head of the column. Rapidly raising the temperature of this segment of the column leads to separations with less peak broadening in comparison to solvent focusing alone. For large volume injections of both mixtures of small molecules and a bovine serum albumin tryptic digest, TASF improved the peak shape and resolution in chromatograms. TASF showed the most dramatic improvements with shallow gradients, which is particularly useful for biological applications. Results demonstrate the ability of TASF with gradient elution to improve the sensitivity, resolution, and peak capacity of volume overloaded samples beyond gradient compression alone. Additionally, we have developed and validated a double extrapolation method for predicting retention factors at extremes of temperature and mobile phase composition. Using this method

  12. Stir-bar-sorptive extraction and liquid desorption combined with large-volume injection gas chromatography-mass spectrometry for ultra-trace analysis of musk compounds in environmental water matrices.

    PubMed

    Silva, Ana Rita M; Nogueira, J M F

    2010-03-01

    Stir-bar-sorptive extraction with liquid desorption followed by large-volume injection and capillary gas chromatography coupled to mass spectrometry in selected ion monitoring acquisition mode (SBSE-LD/LVI-GC-MS(SIM)) has been developed to monitor ultra-traces of four musks (celestolide (ADBI), galaxolide (HHCB), tonalide (AHTN) and musk ketone (MK)) in environmental water matrices. Instrumental calibration (LVI-GC-MS(SIM)) and experimental conditions that could affect the SBSE-LD efficiency are discussed. Assays performed on 30-mL water samples spiked at 200 ng L(-1) under optimized experimental conditions yielded recoveries ranging from 83.7 ± 8.1% (MK) to 107.6 ± 10.8% (HHCB). Furthermore, the experimental data were in very good agreement with predicted theoretical equilibria described by octanol-water partition coefficients (K (PDMS/W) ≈ K (O/W)). The methodology also showed excellent linear dynamic ranges for the four musks studied, with correlation coefficients higher than 0.9961, limits of detection and quantification between 12 and 19 ng L(-1) and between 41 and 62 ng L(-1), respectively, and suitable precision (< 20%). Application of this method for analysis of the musks in real water matrices such as tap, river, sea, and urban wastewater samples resulted in convenient selectivity, high sensitivity and accuracy using the standard addition methodology. The proposed method (SBSE-LD/LVI-GC-MS(SIM)) was shown to be feasible and sensitive, with a low-sample volume requirement, for determination of musk compounds in environmental water matrices at the ultra-trace level, overcoming several disadvantages presented by other sample-preparation techniques. PMID:20049588

  13. [Combination of programmable temperature vaporizer-large volume injection gas chromatography-mass spectrometry and automated mass spectral deconvolution and identification system for the determination of 32 pesticides in fruits and vegetables].

    PubMed

    Cao, Zhaoyun; Mou, Renxiang; Wu, Li; Lin Xiaoyan; Zhu, Zhiwei; Chen, Mingxue

    2014-12-01

    An analytical method was developed for the simultaneous determination of 32 pesticides including organophosphorus, organochlorine, pyrethroid and carbamate pesticides in fruits and vegetables using gas chromatography-mass spectrometry (GC-MS). The sample was extracted with acetonitrile, and the organic layer was cleaned up with ENVI-Carb and LC-NH2 cartridges. A large volume of 20 µL purified solution was injected into the GC system using programmable temperature vaporizer (PTV). The mass spectrometric detection was operated with full scan mode. The automated mass spectral deconvolution and identification system (AMDIS) and an isotopic internal standard were used for the qualitative and quantitative determination of the 32 pesticides, respectively. The conditions for PTV-large volume injection were studied. Furthermore, the selectivity and durability of the method were also assessed. Under the optimized conditions, the experimental results showed that all the linearities were good within their test ranges, with correlation coefficients more than 0. 995, and the method detection limits of the pesticides were 2.0-5.0 µg/kg. The spiked recoveries (n=6) at three levels in the 0. 010 - 0. 50 mg/kg using spinach, snap bean and cucumber samples as blank matrices were in the range of 65. 2% - 120. 3% with the relative standard deviations (RSDs) varying from 4. 1% to 22. 3%, showing good accuracy of the method. The advantages of the proposed method include high throughput, high sensitivity, reliability, robustness, and the ability to meet the demand of multi-residue pesticide analysis in fruits and vegetables. PMID:25902649

  14. Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry.

    PubMed

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Dovichi, Norman J

    2015-06-01

    A sulfonate-silica hybrid strong cation-exchange (SCX) monolith was synthesized at the proximal end of a capillary zone electrophoresis column and used for on-line solid-phase extraction (SPE) sample preconcentration. Sample was prepared in an acidic buffer and deposited onto the SCX-SPE monolith and eluted using a basic buffer. Electrophoresis was performed in an acidic buffer. This combination of buffers results in formation of a dynamic pH junction, which allows use of relatively large elution buffer volume while maintaining peak efficiency and resolution. All experiments were performed with a 50 µm ID capillary, a 1cm long SCX-SPE monolith, a 60cm long separation capillary, and a electrokinetically pumped nanospray interface. The volume of the capillary is 1.1 µL. By loading 21 µL of a 1×10(-7) M angiotensin II solution, an enrichment factor of 3000 compared to standard electrokinetic injection was achieved on this platform while retaining efficient electrophoretic performance (N=44,000 plates). The loading capacity of the sulfonate SCX hybrid monolith was determined to be ~15 pmol by frontal analysis with 10(-5) M angiotensin II. The system was also applied to the analysis of a 10(-4) mg/mL bovine serum albumin tryptic digest; the protein coverage was 12% and 11 peptides were identified. Finally, by loading 5.5 µL of a 10(-3) mg/mL E. coli digest, 109 proteins and 271 peptides were identified in a 20 min separation; the median separation efficiency generated by these peptides was 25,000 theoretical plates. PMID:25863379

  15. Determination of ethyl glucuronide in hair samples of Chinese people by protein precipitation (PPT) and large volume injection-gas chromatography-tandem mass spectrometry (LVI-GC/MS/MS).

    PubMed

    Shi, Yan; Shen, Baohua; Xiang, Ping; Yan, Hui; Shen, Min

    2010-11-15

    Ethyl glucuronide (EtG) has been shown to be a suitable marker of excessive alcohol consumption. Determination of EtG in hair samples may help to differentiate social drinkers from alcoholics, and this testing can be widely used in forensic science, treatment programs, workplaces, military bases as well as driving ability test to provide legal proof of drinking. A method for determination of EtG in hair samples using large volume injection-gas chromatography-tandem mass spectrometry (LVI-GC/MS/MS) was developed and validated. Hair samples (in 1 mL deionized water) were ultrasonicated for 1h and incubated overnight; these samples were then deproteinated to remove impurities and derivatisated with 15 μL of pyridine and 30 μL of BSTFA. EtG was detected using GC/MS/MS in multiple-reaction monitoring mode. This method exhibited good linearity: y=0.0036 x+0.0437, R²=0.9993, the limit of detection and the limit of quantification were 5 pg/mg and 10 pg/mg, respectively. The extraction recoveries were more than 60%, and the inter-day and intra-day relative standard deviations (RSD) were less than 15%. This method has been applied to the analysis of EtG in hair samples from 21 Chinese subjects. The results for samples obtained from all of those who were teetotallers were negative, and the results for the other 15 samples ranged from 10 to 78 pg/mg, except for one negative sample. These data are the basis for interpretation of alcohol abuse. PMID:20977979

  16. A novel method for the rapid determination of polyethoxylated tallow amine surfactants in water and sediment using large volume injection with high performance liquid chromatography and tandem mass spectrometry.

    PubMed

    Ross, Andrew R S; Liao, Xiangjun

    2015-08-19

    Polyethoxylated tallow amine (POEA) surfactants have been used in many glyphosate-based herbicide formulations for agricultural, industrial and residential weed control. The potential for release of these compounds into the environment is of increasing concern due to their toxicity towards aquatic organisms. Current methods for analysis of POEA surfactants require significant time and effort to achieve limits of quantification that are often higher than the concentrations at which biological effects have been observed (as low as 2 ng mL(-1)). We have developed a rapid and robust method for quantifying the POEA surfactant mixture MON 0818 at biologically relevant concentrations in fresh water, sea water and lake sediment using reversed phase high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry. Water samples preserved by 1:1 v/v dilution with methanol are analyzed directly following centrifugation. Sediment samples undergo accelerated solvent extraction in aqueous methanol prior to analysis. Large volume (100 μL) sample injection and multiple reaction monitoring of a subset of the most abundant POEA homologs provide limits of quantification of 0.5 and 2.9 ng mL(-1) for MON 0818 in fresh water and sea water, respectively, and 2.5 ng g(-1) for total MON 0818 in lake sediment. Average recoveries of 93 and 75% were achieved for samples of water and sediment, respectively spiked with known amounts of MON 0818. Precision and accuracy for the analysis of water and sediment samples were within 10 and 16%, respectively based upon replicate analyses of calibration standards and representative samples. Results demonstrate the utility of the method for quantifying undegraded MON 0818 in water and sediment, although a more comprehensive method may be needed to identify and determine other POEA mixtures and degradation profiles that might occur in the environment. PMID:26343437

  17. Enhancing Nutrient Cycling by Coupling Cover Crops with Manure Injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling winter small grain cover crops (CC) with liquid manure injection may increase manure nutrient capture. The objectives of this research were to quantify manure injection effects using target manure N rates of 112, 224, and 336 kg N ha-1 on CC plant density, fall and spring shoot biomass, N, ...

  18. Large volume axionic Swiss cheese inflation

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2008-09-01

    Continuing with the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi Yau's, arXiv: 0707.0105 [hep-th], Nucl. Phys. B, in press], after inclusion of perturbative and non-perturbative α corrections to the Kähler potential and (D1- and D3-) instanton generated superpotential, we show the possibility of slow roll axionic inflation in the large volume limit of Swiss cheese Calabi Yau orientifold compactifications of type IIB string theory. We also include one- and two-loop corrections to the Kähler potential but find the same to be subdominant to the (perturbative and non-perturbative) α corrections. The NS NS axions provide a flat direction for slow roll inflation to proceed from a saddle point to the nearest dS minimum.

  19. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  20. Upscaled modeling of CO2 injection with coupled thermal processes

    NASA Astrophysics Data System (ADS)

    Gasda, Sarah; Stephansen, Annette; Dahle, Helge; Aavatsmark, Ivar

    2013-04-01

    Large-scale models of CO2 storage in geological formations must capture the relevant physical, chemical and thermodynamical processes that affect the migration and ultimate fate of injected CO2. These processes should be modeled over the appropriate length and time scales. Some important mechanisms include convection-driven dissolution, caprock roughness, and local capillary effects, all of which can impact the direction and speed of the plume as well as long-term trapping efficiency. In addition, CO2 can be injected at a different temperature than reservoir conditions, leading to significant density variation within the plume over space and time. This impacts buoyancy and migration patterns, which becomes particularly important for injection sites with temperature and pressure conditions near the critical point. Therefore, coupling thermal processes with fluid flow should be considered in order to correctly capture plume migration and trapping within the reservoir. A practical modeling approach for CO2 storage over relatively large length and time scales is the vertical-equilibrium model, which solves partially integrated conservation equations for flow in two lateral dimensions. We couple heat transfer within the vertical equilibrium framework for fluid flow, focusing on the thermal processes that most impact the CO2 plume. We investigate a simplified representation of heat exchange between the plume and the reservoir that also includes transport of heat within the plume. In addition, we explore CO2 thermodynamic models for reliable prediction of density under different injection pressures, temperatures and composition. The model concept is demonstrated on simple systems and applied to a realistic storage aquifer.

  1. Pills, injections and audiotapes: reaching couples in Pakistan.

    PubMed

    Collumbien, Martine; Douthwaite, Megan

    2003-01-01

    An innovative social marketing intervention in Pakistan distributes audiocassettes via chemist shops and Lady Health Visitors (LHVs) to reach women in a segregated society with accurate information on hormonal contraceptives. Operations research was done to assess the utility of the cassette in knowledge dissemination and adoption of hormonal use. In total 187 structured questionnaires were completed with couples who had obtained a cassette. Listeners were significantly more knowledgeable than non-listeners about correct use of hormonals (OR = 8.6 for women and OR = 12.7 for men). Hormonal use increased from 12% to 25%. LHVs also organized discussion groups for women, and attending such a chat group was the strongest predictor for adoption of pills and injectables (OR = 4.15). Equivalent male groups are suggested to reach apprehensive men. By providing accurate information to urban couples and by acquiring a knowledgeable critical mass of satisfied users, the cassette could be a powerful catalyst to further contraceptive diffusion. PMID:12537155

  2. SUSY's Ladder: reframing sequestering at Large Volume

    NASA Astrophysics Data System (ADS)

    Reece, Matthew; Xue, Wei

    2016-04-01

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague other supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. This gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.

  3. Distributed shared memory for roaming large volumes.

    PubMed

    Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno

    2006-01-01

    We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming. PMID:17080865

  4. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving

  5. LARGE volume string compactifications at finite temperature

    NASA Astrophysics Data System (ADS)

    Anguelova, Lilia; Calò, Vincenzo; Cicoli, Michele

    2009-10-01

    We present a detailed study of the finite-temperature behaviour of the LARGE Volume type IIB flux compactifications. We show that certain moduli can thermalise at high temperatures. Despite that, their contribution to the finite-temperature effective potential is always negligible and the latter has a runaway behaviour. We compute the maximal temperature Tmax, above which the internal space decompactifies, as well as the temperature T*, that is reached after the decay of the heaviest moduli. The natural constraint T* < Tmax implies a lower bound on the allowed values of the internal volume Script V. We find that this restriction rules out a significant range of values corresponding to smaller volumes of the order Script V ~ 104ls6, which lead to standard GUT theories. Instead, the bound favours values of the order Script V ~ 1015ls6, which lead to TeV scale SUSY desirable for solving the hierarchy problem. Moreover, our result favours low-energy inflationary scenarios with density perturbations generated by a field, which is not the inflaton. In such a scenario, one could achieve both inflation and TeV-scale SUSY, although gravity waves would not be observable. Finally, we pose a two-fold challenge for the solution of the cosmological moduli problem. First, we show that the heavy moduli decay before they can begin to dominate the energy density of the Universe. Hence they are not able to dilute any unwanted relics. And second, we argue that, in order to obtain thermal inflation in the closed string moduli sector, one needs to go beyond the present EFT description.

  6. Large-volume sampling and preconcentration for trace explosives detection.

    SciTech Connect

    Linker, Kevin Lane

    2004-05-01

    A trace explosives detection system typically contains three subsystems: sample collection, preconcentration, and detection. Sample collection of trace explosives (vapor and particulate) through large volumes of airflow helps reduce sampling time while increasing the amount of dilute sample collected. Preconcentration of the collected sample before introduction into the detector improves the sensitivity of the detector because of the increase in sample concentration. By combining large-volume sample collection and preconcentration, an improvement in the detection of explosives is possible. Large-volume sampling and preconcentration is presented using a systems level approach. In addition, the engineering of large-volume sampling and preconcentration for the trace detection of explosives is explained.

  7. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  8. Coupling Cover Crops and Manure Injection: Soil Inorganic N Changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of a rye/oat cover crop with liquid swine manure application may enhance retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this study was to evaluate changes in soil inorganic N following injection of liquid swine manure to plots seeded with a rye/oat co...

  9. INJECTION OF GOLD IONS IN THE AGS BOOSTER WITH LINEAR COUPLING.

    SciTech Connect

    GARDNE,C.; AHRENS,L.; ROSER,T.; ZENO,K.

    1999-03-29

    Linear Coupling, introduced by skew quadrupoles, has been used for several years to enhance the multi-turn injection efficiency of gold and other heavy ions in the AGS Booster. In this paper we describe our latest measurements of the injection process and compare with models.

  10. Soil Nitrogen Response to Coupling Cover Crops with Manure Injection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coupling winter small grain cover crops (CC) with manure (M) application may increase retention of manure nitrogen (N) in corn-soybean cropping systems. The objective of this research was to quantify soil N changes after application of liquid swine M (Sus scrofa L.) at target N rates of 112, 224, an...

  11. THE COUPLING IMPEDANCE OF THE RHIC INJECTION KICKER SYSTEM.

    SciTech Connect

    HAHN,H.

    1999-06-28

    IN THIS PAPER, RESULTS FROM IMPEDANCE MEASUREMENTS ON THE RHIC INJECTION KICKERS ARE REPORTED. THE KICKER IS CONFIGURED AS A ''C'' CROSS SECTION MAGNET WITH INTERLEAVED FERRITE AND HIGH-PERMITTIVITY DIELECTRIC SECTIONS TO ACHIEVE A TRAVELLING WAVE STRUCTURE. THE IMPEDANCE WAS MEASURED USING THE WIRE METHOD, AND ACCURATE RESULTS ARE OBTAINED BY INTERPRETING THE FORWARD SCATTERING COEFFICIENT VIA THE LONG-FORMULA. THE FOUR KICKERS WITH THEIR CERAMIC BEAM TUBES CONTRIBUE AT Z/N-0.22 OMEGA/RING IN THE INTERESTING FREQUENCY RANGE FROM 0.1 TO 1 BHZ, AND LESS ABOVE.

  12. Evaluation of Bacillus oleronius as a Biological Indicator for Terminal Sterilization of Large-Volume Parenterals.

    PubMed

    Izumi, Masamitsu; Fujifuru, Masato; Okada, Aki; Takai, Katsuya; Takahashi, Kazuhiro; Udagawa, Takeshi; Miyake, Makoto; Naruyama, Shintaro; Tokuda, Hiroshi; Nishioka, Goro; Yoden, Hikaru; Aoki, Mitsuo

    2016-01-01

    In the production of large-volume parenterals in Japan, equipment and devices such as tanks, pipework, and filters used in production processes are exhaustively cleaned and sterilized, and the cleanliness of water for injection, drug materials, packaging materials, and manufacturing areas is well controlled. In this environment, the bioburden is relatively low, and less heat resistant compared with microorganisms frequently used as biological indicators such as Geobacillus stearothermophilus (ATCC 7953) and Bacillus subtilis 5230 (ATCC 35021). Consequently, the majority of large-volume parenteral solutions in Japan are manufactured under low-heat sterilization conditions of F0 <2 min, so that loss of clarity of solutions and formation of degradation products of constituents are minimized. Bacillus oleronius (ATCC 700005) is listed as a biological indicator in "Guidance on the Manufacture of Sterile Pharmaceutical Products Produced by Terminal Sterilization" (guidance in Japan, issued in 2012). In this study, we investigated whether B. oleronius is an appropriate biological indicator of the efficacy of low-heat, moist-heat sterilization of large-volume parenterals. Specifically, we investigated the spore-forming ability of this microorganism in various cultivation media and measured the D-values and z-values as parameters of heat resistance. The D-values and z-values changed depending on the constituents of large-volume parenteral products. Also, the spores from B. oleronius showed a moist-heat resistance that was similar to or greater than many of the spore-forming organisms isolated from Japanese parenteral manufacturing processes. Taken together, these results indicate that B. oleronius is suitable as a biological indicator for sterility assurance of large-volume parenteral solutions subjected to low-heat, moist-heat terminal sterilization. PMID:26889054

  13. AUTOMATED ANALYSIS OF AQUEOUS SAMPLES CONTAINING PESTICIDES, ACIDIC/BASIC/NEUTRAL SEMIVOLATILES AND VOLATILE ORGANIC COMPOUNDS BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GC/MS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line 10-m...

  14. A METHOD FOR AUTOMATED ANALYSIS OF 10 ML WATER SAMPLES CONTAINING ACIDIC, BASIC, AND NEUTRAL SEMIVOLATILE COMPOUNDS LISTED IN USEPA METHOD 8270 BY SOLID PHASE EXTRACTION COUPLED IN-LINE TO LARGE VOLUME INJECTION GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Data is presented showing the progress made towards the development of a new automated system combining solid phase extraction (SPE) with gas chromatography/mass spectrometry for the single run analysis of water samples containing a broad range of acid, base and neutral compounds...

  15. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    NASA Astrophysics Data System (ADS)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  16. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  17. Large volume continuous counterflow dialyzer has high efficiency

    NASA Technical Reports Server (NTRS)

    Mandeles, S.; Woods, E. C.

    1967-01-01

    Dialyzer separates macromolecules from small molecules in large volumes of solution. It takes advantage of the high area/volume ratio in commercially available 1/4-inch dialysis tubing and maintains a high concentration gradient at the dialyzing surface by counterflow.

  18. A Warm Magnetoactive Plasma in a Large Volume of Space

    NASA Technical Reports Server (NTRS)

    Heiles, C.

    1984-01-01

    A diffuse ionized warm gas fills a large volume of space in the general direction of Radio Loop II. There are three types of observational evidence: Faraday rotation measures (RM's) of extragalactic sources; emission measures (EM's) derived from the H alpha emission line in the diffuse interstellar medium; and magnetic field strengths in HI clouds derived from Zeeman splitting observations.

  19. On Electromagnetic Field-to-Wire Coupling Versus Conducted Injection Techniques

    NASA Technical Reports Server (NTRS)

    Javor, Ken

    1997-01-01

    Since the inception of conducted injection techniques to model radiated susceptibility/immunity coupling, considerable debate has ensued regarding its validity. This paper affirms the viewpoint of Szentkuti, (1989) builds upon test results of Adams (1992) and Trout (1996), and discusses Perini's theoretical observations (1993, 1995A, 1995B). Analytical and test results are presented which further demonstrate under what specific conditions conducted and radiated techniques can be correlated, and how the work of Adams, Trout, and Perini fits into the general problem of modeling field-to-wire coupling. At frequencies where transmission line and antenna effects are minimal, conducted immunity techniques provide excellent correlation with analytical and empirical predictions of radiated coupling. From a practical standpoint, conducted injection techniques provide realistic coupling at frequencies and amplitude levels that would be uneconomical to achieve with traditional radiated techniques.

  20. Ultrafast spin tunneling and injection in coupled nanostructures of InGaAs quantum dots and quantum well

    SciTech Connect

    Yang, Xiao-Jie Kiba, Takayuki; Yamamura, Takafumi; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-01-06

    We investigate the electron-spin injection dynamics via tunneling from an In{sub 0.1}Ga{sub 0.9}As quantum well (QW) to In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) in coupled QW-QDs nanostructures. These coupled nanostructures demonstrate ultrafast (5 to 20 ps) spin injection into the QDs. The degree of spin polarization up to 45% is obtained in the QDs after the injection, essentially depending on the injection time. The spin injection and conservation are enhanced with thinner barriers due to the stronger electronic coupling between the QW and QDs.

  1. Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth

    1990-01-01

    Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.

  2. Technologies for imaging neural activity in large volumes.

    PubMed

    Ji, Na; Freeman, Jeremy; Smith, Spencer L

    2016-08-26

    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Conventional microscopy collects data from individual planes and cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point-spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for processing and analyzing volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics and helping elucidate how brain regions work in concert to support behavior. PMID:27571194

  3. Cosmological moduli problem in large volume scenario and thermal inflation

    SciTech Connect

    Choi, Kiwoon; Park, Wan-Il; Shin, Chang Sub E-mail: wipark@kias.re.kr

    2013-03-01

    We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.

  4. Large volume multiple-path nuclear pumped laser

    SciTech Connect

    Hohl, F.; Deyoung, R.J.

    1981-11-01

    Large volumes of gas are excited by using internal high reflectance mirrors that are arranged so that the optical path crosses back and forth through the excited gaseous medium. By adjusting the external dielectric mirrors of the laser, the number of paths through the laser cavity can be varied. Output powers were obtained that are substantially higher than the output powers of previous nuclear laser systems. Official Gazette of the U.S. Patent and Trademark Office

  5. Understanding decisions made about hepatitis C treatment by couples who inject drugs.

    PubMed

    Treloar, C; Rance, J; Bryant, J; Fraser, S

    2016-02-01

    Efforts to increase the number of people having hepatitis C virus (HCV) treatment require understanding how to best deliver services to meet consumers' needs. The general health literature has examined the role that partners can play in supporting health outcomes. This study examines the experiences of couples who inject drugs in relation to knowledge of, decisions about and management of HCV treatment. This is a qualitative interview study of people who inject drugs in couples. Participants were recruited from harm reduction services in two major Australian cities. Couples were interviewed separately. Data were examined using the couple as the unit of analysis and to identify patterns of experience related to the HCV serostatus of couples. Knowledge of HCV and HCV treatment was low and variable but showed some relationship to serostatus. Decisions about HCV treatment were deeply informed by concerns regarding treatment side effects. Positive concordant couples considered 'staging' treatment to ensure that each partner could (in turn) care for the other. People with HCV in serodiscordant relationships may need specific support regarding HCV treatment information. Within positive concordant partnerships, our data indicated the need to support the HCV-positive 'carer' during their partner's treatment. Changing treatment regimens, and their anticipated lower side effect profiles, will need to be actively promoted to ensure that couples understand how these changes affect their treatment options. PMID:26305873

  6. Novel injection methods for substitution of irradiation under different coupling routes of electromagnetic interference

    NASA Astrophysics Data System (ADS)

    Lu, Xinfu; Wei, Guanghui; Pan, Xiaodong

    2013-03-01

    At present, the maximum electromagnetic radiated field strength which can be simulated is not able to satisfy the requirements of electromagnetic environment effects tests on electronic systems. To broaden the effective frequency range of the current injection technique, new current injection methods were put forward for substitution of the radiation. A wide-band current injection device was designed based on the symmetric directional coupler principle. With a typical antenna receiving system under test, the validity of the methods were analyzed by theory and verified by experiments when the Equipment Under Test (EUT) had different coupling routes of electromagnetic interference (EMI). The results indicate that: firstly, the relationship between radiated fields and injected voltage is linear, even if the responses of the system are non-linear; secondly, the method is valid even if the test frequency is up to gigahertz; thirdly, the novel methods of current injection are able to substitute for irradiation effectively when the antenna and the interconnected cable are the main coupling routes of EMI respectively.

  7. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    SciTech Connect

    Rutqvist, J.; Vasco, D.W.; Myer, L.

    2009-11-01

    In Salah Gas Project in Algeria has been injecting 0.5-1 million tonnes CO{sub 2} per year over the past five years into a water-filled strata at a depth of about 1,800 to 1,900 m. Unlike most CO{sub 2} storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO{sub 2} flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1 to 1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modeling to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO{sub 2}-injection operation in relatively low permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO{sub 2} injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicates that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20 m thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100 m thick zone of shaly sands immediately above the injection zone.

  8. Large-Volume Gravid Traps Enhance Collection of Culex Vectors.

    PubMed

    Popko, David A; Walton, William E

    2016-06-01

    Gravid mosquito collections were compared among several large-volume (infusion volume ≥35 liters) gravid trap designs and the small-volume (infusion volume  =  6 liters) Centers for Disease Control and Prevention (CDC) gravid trap used routinely by vector control districts for vector and pathogen surveillance. The numbers of gravid Culex quinquefasciatus, Cx. tarsalis, and Cx. stigmatosoma collected by large gravid traps were greater than by the CDC gravid trap during nearly all overnight trials. Large-volume gravid traps collected on average 6.6-fold more adult female Culex mosquitoes compared to small-volume CDC gravid traps across 3 seasons during the 3 years of the studies. The differences in gravid mosquito collections between large-versus small-volume gravid traps were greatest during spring, when 8- to 56-fold more Culex individuals were collected using large-volume gravid traps. The proportion of gravid females in collections did not differ appreciably among the more effective trap designs tested. Important determinants of gravid trap performance were infusion container size and type as well as infusion volume, which determined the distance between the suction trap and the infusion surface. Of lesser importance for gravid trap performance were the number of suction traps, method of suction trap mounting, and infusion concentration. Fermentation of infusions between 1 and 4 wk weakly affected total mosquito collections, with Cx. stigmatosoma collections moderately enhanced by comparatively young and organically enriched infusions. A suction trap mounted above 100 liters of organic infusion housed in a 121-liter black plastic container collected the most gravid mosquitoes over the greatest range of experimental conditions, and a 35-liter infusion with side-mounted suction traps was a promising lesser-volume alternative design. PMID:27280347

  9. Spatial considerations during cryopreservation of a large volume sample.

    PubMed

    Kilbride, Peter; Lamb, Stephen; Milne, Stuart; Gibbons, Stephanie; Erro, Eloy; Bundy, James; Selden, Clare; Fuller, Barry; Morris, John

    2016-08-01

    There have been relatively few studies on the implications of the physical conditions experienced by cells during large volume (litres) cryopreservation - most studies have focused on the problem of cryopreservation of smaller volumes, typically up to 2 ml. This study explores the effects of ice growth by progressive solidification, generally seen during larger scale cryopreservation, on encapsulated liver hepatocyte spheroids, and it develops a method to reliably sample different regions across the frozen cores of samples experiencing progressive solidification. These issues are examined in the context of a Bioartificial Liver Device which requires cryopreservation of a 2 L volume in a strict cylindrical geometry for optimal clinical delivery. Progressive solidification cannot be avoided in this arrangement. In such a system optimal cryoprotectant concentrations and cooling rates are known. However, applying these parameters to a large volume is challenging due to the thermal mass and subsequent thermal lag. The specific impact of this to the cryopreservation outcome is required. Under conditions of progressive solidification, the spatial location of Encapsulated Liver Spheroids had a strong impact on post-thaw recovery. Cells in areas first and last to solidify demonstrated significantly impaired post-thaw function, whereas areas solidifying through the majority of the process exhibited higher post-thaw outcome. It was also found that samples where the ice thawed more rapidly had greater post-thaw viability 24 h post-thaw (75.7 ± 3.9% and 62.0 ± 7.2% respectively). These findings have implications for the cryopreservation of large volumes with a rigid shape and for the cryopreservation of a Bioartificial Liver Device. PMID:27256662

  10. Boron injection/dilution capabilities in TRACB/NEM coupled code

    SciTech Connect

    Jambrina, A.; Barrachina, T.; Miro, R.; Verdu, G.

    2012-07-01

    The coupled code TRAC-BF1/NEM is a thermal-hydraulic-neutronic code which allows transient simulations considering neutronic 3D and thermal-hydraulic process in multiple channels with one-dimensional geometry. TRAC-BF1 and NEM can be executed either in stand-alone mode, i.e. without coupling, as well as coupled. In stand-alone calculations NEM code is used without coupling and the thermal-hydraulic conditions (fuel temperature, moderator density and boron concentration) and xenon concentration for each node are taken from the SIMULATE3 output files. The NEM's source code has been modified to be able to read these conditions from external files when it is executed without being coupled. The coupling between TRAC-BF1 and NEM follows an integration scheme in which the thermal-hydraulic solution of TRAC-BF1 is sent to NEM to incorporate the feedback effects through the cross sections. TRAC-BF1 solves heat conduction equations inside of the heat structures using the 3D power distribution from NEM. The coupling is carried out through the communication protocol functions of PVM (Parallel Virtual Machine). The present article presents a study which constitutes an advance in the simulation of injection, transport and mix of boron in the reactor, increasing the capabilities of TRAC-BF1/NEM coupled code. This article shows the modifications introduced in the TRAC-BF1/NEM's source code to allow a more realistic simulation of boron injection transients. The qualification of these improvements in both codes is performed simulating a steady state of a generic BWR at nominal power. The results have been compared with SIMULATE3 which is used as a reference to obtain the cross sections through the SIMTAB methodology. (authors)

  11. Monitoring of binder removal from injection molded ceramics using air-coupled ultrasound at high temperature.

    PubMed

    Wright, W D; Hutchins, D A

    1999-01-01

    A pair of capacitance-type air-coupled ultrasonic transducers have been constructed that were capable of operating in air at temperatures of 500 to 600 degrees C. These devices were then used to monitor the pyrolytic removal of organic binder from injection molded silicon nitride ceramic components using air-coupled ultrasound inside a furnace at elevated temperatures. Through-thickness waveforms were obtained in the ceramic and compared with simultaneous measurements of the mass of the sample. Both the ultrasonic velocity and signal amplitudes could be used to monitor the change in mass of the injection molded ceramic, and other phenomena (such as softening and redistribution of the binder) were observed. PMID:18238465

  12. An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K

    NASA Astrophysics Data System (ADS)

    Razavipour, S. G.; Dupont, E.; Fathololoumi, S.; Chan, C. W. I.; Lindskog, M.; Wasilewski, Z. R.; Aers, G.; Laframboise, S. R.; Wacker, A.; Hu, Q.; Ban, D.; Liu, H. C.

    2013-05-01

    We designed and demonstrated a terahertz quantum cascade laser based on indirect pump injection to the upper lasing state and phonon scattering extraction from the lower lasing state. By employing a rate equation formalism and a genetic algorithm, an optimized active region design with four-well GaAs/Al0.25Ga0.75As cascade module was obtained and epitaxially grown. A figure of merit which is defined as the ratio of modal gain versus injection current was maximized at 150 K. A fabricated device with a Au metal-metal waveguide and a top n+ GaAs contact layer lased at 2.4 THz up to 128.5 K, while another one without the top n+ GaAs lased up to 152.5 K (1.3ℏω /kB). The experimental results have been analyzed with rate equation and nonequilibrium Green's function models. A high population inversion is achieved at high temperature using a small oscillator strength of 0.28, while its combination with the low injection coupling strength of 0.85 meV results in a low current. The carefully engineered wavefunctions enhance the quantum efficiency of the device and therefore improve the output optical power even with an unusually low injection coupling strength.

  13. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas.

    PubMed

    Cheuk, Lawrence W; Sommer, Ariel T; Hadzibabic, Zoran; Yefsah, Tarik; Bakr, Waseem S; Zwierlein, Martin W

    2012-08-31

    The coupling of the spin of electrons to their motional state lies at the heart of recently discovered topological phases of matter. Here we create and detect spin-orbit coupling in an atomic Fermi gas, a highly controllable form of quantum degenerate matter. We directly reveal the spin-orbit gap via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. We also create a spin-orbit coupled lattice and probe its spinful band structure, which features additional spin gaps and a fully gapped spectrum. In the presence of s-wave interactions, such systems should display induced p-wave pairing, topological superfluidity, and Majorana edge states. PMID:23002844

  14. Coupled Reactive Transport Modeling of CO2 Injection in Mt. Simon Sandstone Formation, Midwest USA

    NASA Astrophysics Data System (ADS)

    Liu, F.; Lu, P.; Zhu, C.; Xiao, Y.

    2009-12-01

    CO2 sequestration in deep geological formations is one of the promising options for CO2 emission reduction. While several large scale CO2 injections in saline aquifers have shown to be successful for the short-term, there is still a lack of fundamental understanding on key issues such as CO2 storage capacity, injectivity, and security over multiple spatial and temporal scales that need to be addressed. To advance these understandings, we applied multi-phase coupled reactive mass transport modeling to investigate the fate of injected CO2 and reservoir responses to the injection into Mt. Simon Formation. We developed both 1-D and 2-D reactive transport models in a radial region of 10,000 m surrounding a CO2 injection well to represent the Mt. Simon sandstone formation, which is a major regional deep saline reservoir in the Midwest, USA. Supercritical CO2 is injected into the formation for 100 years, and the modeling continues till 10,000 years to monitor both short-term and long-term behavior of injected CO2 and the associated rock-fluid interactions. CO2 co-injection with H2S and SO2 is also simulated to represent the flue gases from coal gasification and combustion in the Illinois Basin. The injection of CO2 results in acidified zones (pH ~3 and 5) adjacent to the wellbore, causing progressive water-rock interactions in the surrounding region. In accordance with the extensive dissolution of authigenic K-feldspar, sequential precipitations of secondary carbonates and clay minerals are predicted in this zone. The vertical profiles of CO2 show fingering pattern from the top of the reservoir to the bottom due to the density variation of CO2-impregnated brine, which facilitate convection induced mixing and solubility trapping. Most of the injected CO2 remains within a radial distance of 2500 m at the end of 10,000 years and is sequestered and immobilized by solubility and residual trapping. Mineral trapping via secondary carbonates, including calcite, magnesite

  15. Large volume water sprays for dispersing warm fogs

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.

    1986-01-01

    A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.

  16. Large volume water sprays for dispersing warm fogs

    NASA Astrophysics Data System (ADS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.

    A new method for dispersing of warm fogs which impede visibility and alter schedules is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray-induced air flow; the fog droplets are removed by coalescence/rainout. The efficiency of this fog droplet removal process depends on the size spectra of the spray drops and optimum spray drop size is calculated as between 0.3-1.0 mm in diameter. Water spray tests were conducted in order to determine the drop size spectra and temperature response of sprays produced by commercially available fire-fighting nozzles, and nozzle array tests were utilized to study air flow patterns and the thermal properties of the overall system. The initial test data reveal that the fog-dispersal procedure is effective.

  17. Efficient Large Volume Lentiviral Vector Production Using Flow Electroporation

    PubMed Central

    Witting, Scott R.; Li, Lin-Hong; Jasti, Aparna; Allen, Cornell; Cornetta, Kenneth; Brady, James; Shivakumar, Rama

    2012-01-01

    Abstract Lentiviral vectors are beginning to emerge as a viable choice for human gene therapy. Here, we describe a method that combines the convenience of a suspension cell line with a scalable, nonchemically based, and GMP-compliant transfection technique known as flow electroporation (EP). Flow EP parameters for serum-free adapted HEK293FT cells were optimized to limit toxicity and maximize titers. Using a third generation, HIV-based, lentiviral vector system pseudotyped with the vesicular stomatitis glycoprotein envelope, both small- and large-volume transfections produced titers over 1×108 infectious units/mL. Therefore, an excellent option for implementing large-scale, clinical lentiviral productions is flow EP of suspension cell lines. PMID:21933028

  18. Large-Volume High-Pressure Mineral Physics in Japan

    NASA Astrophysics Data System (ADS)

    Liebermann, Robert C.; Prewitt, Charles T.; Weidner, Donald J.

    American high-pressure research with large sample volumes developed rapidly in the 1950s during the race to produce synthetic diamonds. At that time the piston cylinder, girdle (or belt), and tetrahedral anvil devices were invented. However, this development essentially stopped in the late 1950s, and while the diamond anvil cell has been used extensively in the United States with spectacular success for high-pressure experiments in small sample volumes, most of the significant technological advances in large-volume devices have taken place in Japan. Over the past 25 years, these technical advances have enabled a fourfold increase in pressure, with many important investigations of the chemical and physical properties of materials synthesized at high temperatures and pressures that cannot be duplicated with any apparatus currently available in the United States.

  19. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the

  20. Strong Asymmetric Coupling of Two Parallel Exclusion Processes: Effect of Unequal Injection Rates

    NASA Astrophysics Data System (ADS)

    Xiao, Song; Dong, Peng; Zhang, Yingjie; Liu, Yanna

    2016-03-01

    In this letter, strong asymmetric coupling of two parallel exclusion processes: effect of unequal injection rates will be investigated. It is a generalization of the work of Xiao et al. (Phys. Lett. A 8, 374 (2009)), in which the particles only move on two lanes with rate 1 toward right. We can obtain the diverse phase diagram and density profiles of the system. The vertical cluster mean-field approach and extensively Monte Carlo simulations are used to study the system, and theoretical predictions are in excellent agreement with simulation results.

  1. Successful pregnancies with directional freezing of large volume buck semen.

    PubMed

    Gacitua, H; Arav, A

    2005-02-01

    Artificial insemination with frozen-thawed buck semen shows variable results which depend on many factors related to semen quality and the cryopreservation processing. We conducted experiments based on a new freezing method, directional freezing, of large volumes (8 ml). In the first experiment semen from three Saanen bucks, ages 1-2-years-old and genetically selected for milk improvement, was frozen individually. Two to three-years-old Saanen females (n = 164) were synchronized with controlled internal drug release (CIDR), pregnant mare serum gonadotrophin (PMSG) and prostaglandin. Double cervical inseminations were performed with frozen-thawed semen and fresh semen as control. In the second experiment we used pooled, washed frozen semen to examine the effect of washed seminal plasma. The motility after washing was 80-90% and after thawing was 55-65% for all bucks. The sperm concentration increased with the collections and the advance into the breeding season from 1.9 x 10(9) to 4.4 x 10(9) cell/ml average. Two inseminations were carried out at 8h intervals. The first insemination was performed at 32 h after CIDR withdrawal with fresh and frozen-thawed semen. Pregnancy rates were assessed by ultrasonography conducted 40 and 90 days post-insemination (from three bucks). Results were 58, 67, 50% with fresh semen, and for frozen semen were 33, 37 and 53%; these results were significantly different in one of the three bucks (P < 0.005). In the second experiment with pooled, washed semen the pregnancy rate was 41.6%, which compared with the average results of the frozen semen in the first experiment 38.9% no significant difference was found. We conclude that freezing buck semen in large volumes (8 ml) is possible. Cryobanking of buck semen will facilitate a genetic breeding program in goats and preservation of biodiversity. Washed semen did not improve the fertility of the semen when Andromed bull extender is used. PMID:15629809

  2. New Large Volume Press Beamlines at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Hormes, J.; Lauterjung, J.; Secco, R.; Hallin, E.

    2013-12-01

    The Canadian Light Source, the German Research Centre for Geosciences and the Western University recently agreed to establish two new large volume press beamlines at the Canadian Lightsource. As the first step a 250 tons DIA-LVP will be installed at the IDEAS beamline in 2014. The further development is associated with the construction of a superconducting wiggler beamline at the Brockhouse sector. A 1750 tons DIA LVP will be installed there about 2 years later. Up to the completion of this wiggler beamline the big press will be used for offline high pressure high temperature experiments under simulated Earth's mantle conditions. In addition to X-ray diffraction, all up-to-date high pressure techniques as ultrasonic interferometry, deformation analyses by X-radiography, X-ray densitometry, falling sphere viscosimetry, multi-staging etc. will be available at both beamlines. After the required commissioning the beamlines will be open to the worldwide user community from Geosciences, general material sciences, physics, chemistry, biology etc. based on the evaluation and ranking of the submitted user proposals by an international review panel.

  3. Large volume loss during cleavage formation, Hamburg sequence, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Beutner, Edward C.; Charles, Emmanuel G.

    1985-11-01

    Green reduction spots in red slate of the Hamburg sequence exposed near Shartlesville, Pennsylvania, have axial ratios of 1.42:1.0:0.28 on the limbs of near-isoclinal folds and 1.0:0.79:0.41 in fold hinge zones. Conodont cusps and denticles within the reduction spots have been brittlely pulled apart and give independent measures of extension in various directions. Comparison of conodont extensions with reduction spot shapes on limbs and hinges indicates that sedimentary compaction of 44% preceded the tectonic strain associated with cleavage formation. This strain, having identical maximum extensions but greater shortening in fold hinges as compared to limbs, was characterized by 41% extension in X, no change in Y, 50% to 59% shortening in Z, and 29% to 42% tectonic volume loss. The general lack of directed overgrowths on grains reflects the large volume loss and contrasts with other slates, where deformation was an almost constant volume process and extension in X compensated for shortening in Z. *Present address: Department of Geology, Miami University, Oxford, Ohio 45056

  4. SUSY’s Ladder: Reframing sequestering at Large Volume

    DOE PAGESBeta

    Reece, Matthew; Xue, Wei

    2016-04-07

    Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less

  5. Large volume high-pressure cell for inelastic neutron scattering.

    PubMed

    Wang, W; Sokolov, D A; Huxley, A D; Kamenev, K V

    2011-07-01

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm(3). The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe(2). PMID:21806195

  6. Analyses of Injection-Coupled Combustion Instability from J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Kenny, R. Jeremy; Protz, Chris; Casiano, Matthew

    2011-01-01

    During development of the gas generator for the liquid oxygen/liquid hydrogen propellant J-2X rocket engine, combustion instabilities were observed near the frequency of the first longitudinal acoustic mode of the hot gas combustion chamber duct. These instabilities were similar to intermediate-frequency or buzz-type instabilities as described in historical programs, except for several aspects: 1) the frequencies were low, in the realm of chug; 2) at times the instability oscillation amplitudes were quite large, with peak-to-peak amplitudes exceeding 50% of the mean chamber pressure along with the appearance of harmonics; 3) the chamber excitation was related to but not exactly at the first longitudinal combustion chamber acoustic mode; and 4) the injector provided mass flow rate oscillations induced by capacitance and inertance effects in the injector rather than by organ pipe resonances of the coaxial oxidizer posts. This type of combustion instability is referred to as "injection coupling" because one critical driving source of the instability is mass flow rate oscillations from the injector. However, the type of injection coupling observed here is different than observed in previous instances of buzz instability with coaxial injectors, because of the lower frequencies and lack of influence from the oxidizer post organ pipe resonances. Test data and preliminary analyses of the initial combustion instabilities were presented in several papers at the 5th Liquid Propulsion Subcommittee meeting. Since that time, additional hot-fire tests with several new hardware configurations have been conducted, and additional analyses have been completed. The analytical models described in previous papers have been updated to include the influences of new geometrical configurations, including a different oxidizer injector manifold configuration and a branch pipe in the hot gas duct that supplies gaseous helium during the start transient to pre-spin the turbine. In addition, the

  7. Studying coupled hydrological and micro-biological processes by means of tracer injections and mathematical models

    NASA Astrophysics Data System (ADS)

    Worman, A.; Kjellin, J. P.; Lindahl, A.; Johansson, H.

    2005-05-01

    To throw light on coupled hydrological, chemical and microbiological processes in treatment wetlands, this study uses both radioactive water and reactive tracers. A tracer mixture consisting of tritiated water, P-32 in the form of PO4- and N-15 in the form of N2O was injected to the 2.6 hectare large Ekeby wetland, Sweden. From the breakthrough curves of tritium, the mean residence time of water in pond 1 can be estimated to be about 3 to 3.5 days. The total injected activity of phosphorus was 17.98 GBq and about 13.73 GBq was recovered at the outlet during the investigation period ending 10 days and 16 hours after the start of the injection. This implies that 24% of the phosphate solution was removed in the November - December period in which the experiment was performed. The total injected amount of N-15 was 42.1 grams and 29.6 grams was retained at the effluent. This means that 30% of the nitrogen was either retained in the wetland or removed due to denitrification. An analysis of regular monitoring data shows that the annual removal rate in the entire wetland (each flow line passes two ponds in series) is about 50% for total phosphorus and 25% for total nitrogen. Probably, the most important mechanism for this removal is adsorption onto particulate matter and deposition. Analyses of vegetation material indicate that a certain (minor) fraction was adsorbed to submersed and emerging macrophytes, like Elodera Canadensis, Thypa sp. (Cattail) and Glyceria sp. (Manna grass). A 2D mathematical model for both water flow and solute transport could explain the N-transport through the wetland. The model accounts for the rate-limited exchange with bed sediments and denitrification in the water and bed sediment. Independent batch tests indicate a particularly high microbiological activity in the bed sediments. The rate-limited exchange with the bed limits also the denitrification capacity of the wetland.

  8. The Streaming Potential Coupling Coefficient of Liquid Carbon Dioxide Injected Into Water Saturated Berea Sandstone

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Glaser, S. D.; Morrison, H. F.

    2003-12-01

    The streaming potential coupling coefficient was determined for a liquid carbon dioxide flood of a water-saturated sample of Berea sandstone. The coupling coefficient for the rock/water case was determined both before and after each CO2 flood of three samples using a low-pressure static head method. Next, liquid CO2 was allowed to flow through each sample. As the CO2 displaced the water the coupling coefficient decreased. At longer times, when all mobile pore water was displaced, the coupling coefficient maintained a steady state, and was lower than that for water by about 10 times. The results of this testing reveal a coupling coefficient of 30 mV/0.1MPa, for 125 Ohm-m water flow through the sample, and 3.0 mV / 0.1 MPa for liquid CO2 flow. Calculated zeta potentials are -3.4 mV using water as the pore fluid and -1.7 x 10-6 mV for liquid CO2. We propose that the lower coupling coefficient for CO2 flow is primarily a result of changes in zeta potential, since changes in pore fluid resistivity and viscosity would act to increase the coupling coefficient. Zeta potential for the liquid CO2 / mineral interface is a function of the low polarity and lack of mobile ions associated with liquid CO2. We find no anomalous 2-phase liquid/gas effects, which may have augmented single-phase streaming potentials by many times. We propose that although CO2 gas may have been present for some of the higher pressure drop events, the low gas fraction (or quality) of the two-phase mixture did not lead to any significant anomalous or augmented observations. Implications of this work include spatial and temporal monitoring of CO2 injectate in subsurface reservoirs and the identification of flow paths, with the recommendation being to attempt to image the advancing CO2/water front, where the coupling coefficient is higher.

  9. Striped Bass, morone saxatilis, egg incubation in large volume jars

    USGS Publications Warehouse

    Harper, C.J.; Wrege, B.M.; Jeffery, Isely J.

    2010-01-01

    The standard McDonald jar was compared with a large volume jar for striped bass, Morone saxatilis, egg incubation. The McDonald jar measured 16 cm in diameter by 45 cm in height and had a volume of 6 L. The experimental jar measured 0.4 m in diameter by 1.3 m in height and had a volume of 200 L. The hypothesis is that there is no difference in percent survival of fry hatched in experimental jars compared with McDonald jars. Striped bass brood fish were collected from the Coosa River and spawned using the dry spawn method of fertilization. Four McDonald jars were stocked with approximately 150 g of eggs each. Post-hatch survival was estimated at 48, 96, and 144 h. Stocking rates resulted in an average egg loading rate (??1 SE) in McDonald jars of 21.9 ?? 0.03 eggs/mL and in experimental jars of 10.9 ?? 0.57 eggs/mL. The major finding of this study was that average fry survival was 37.3 ?? 4.49% for McDonald jars and 34.2 ?? 3.80% for experimental jars. Although survival in experimental jars was slightly less than in McDonald jars, the effect of container volume on survival to 48 h (F = 6.57; df = 1,5; P > 0.05), 96 h (F = 0.02; df = 1, 4; P > 0.89), and 144 h (F = 3.50; df = 1, 4; P > 0.13) was not statistically significant. Mean survival between replicates ranged from 14.7 to 60.1% in McDonald jars and from 10.1 to 54.4% in experimental jars. No effect of initial stocking rate on survival (t = 0.06; df = 10; P > 0.95) was detected. Experimental jars allowed for incubation of a greater number of eggs in less than half the floor space of McDonald jars. As hatchery production is often limited by space or water supply, experimental jars offer an alternative to extending spawning activities, thereby reducing labor and operations cost. As survival was similar to McDonald jars, the experimental jar is suitable for striped bass egg incubation. ?? Copyright by the World Aquaculture Society 2010.

  10. Maternal age and intracytoplasmic sperm injection outcome in infertile couples at Khartoum, Sudan

    PubMed Central

    Ahmed, Mohamed; Shareef, Osama; Adam, Ishag; Rayis, Duria

    2015-01-01

    Background Intracytoplasmic sperm injection (ICSI) was considered as the mainstay of treatment for male infertility. Nowadays, the scope of ICSI has been widened to include other causes of infertility. There are few published data on ICSI in countries with low incomes. Aims A cross-sectional study was conducted at Saad AbuAlla and Banoun Centers, Khartoum, Sudan to investigate outcomes of ICSI and to determine the parameters that might predict pregnancy success rate following ICSI. Methods The study included 191 infertile couples who underwent 296 ICSI cycles between 1st April 2013 and 31 March 2014. Results One hundred and ninety one couples (comprising 296 cycles of ICSI) were enrolled to the study. The mean (SD) number of retrieved oocytes was 9.7 (7.5).  The mean (SD) number of transferred embryos was 2.9 (1.0). Out of these, 50 (26.2%) and 40 (20.9%) had chemical and clinical pregnancy, respectively. Thirty–six couples (18.8%) and five couples (2.6%) had miscarriage and had ectopic pregnancy, respectively. Under logistic regression, younger age (OR = 0.8, 95% CI= 0.81 ─ 0.96, P = 0.004) and endometrial thickness (OR = 1.3, 95% CI= 1.07─1.60, P = 0.009) were the significant predictors for the success of ICSI in inducing pregnancy. Conclusion                 The rates of successful fertilisation and pregnancy-to-term rates in this setting depend mainly on the maternal age. PMID:27347370

  11. Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2009-10-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example, 100-200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin. The analytical results of Pu isotopes in the reference materials showed good agreement with the certified or reference values at the 0.05 significance level. Chemical yields of Pu ranged from 80 to 105%, and the decontamination factors for uranium, thorium, mercury and lead were all above 10(4). The duration of the in-line extraction chromatographic run was <1.5 h, and the proposed setup was able to handle up to 20 samples (14 mL each) in a fully automated mode using a single chromatographic column. The SI manifold is thus suitable for rapid and automated determination of Pu isotopes in environmental risk assessment and emergency preparedness scenarios. PMID:19722516

  12. COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270

    EPA Science Inventory

    Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.

    One SPE system, unique in the U.S., uses aut...

  13. Miniaturized fiber-coupled optical spectrometers with temperature compensation based on injection moulding

    NASA Astrophysics Data System (ADS)

    Gindele, Frank; Novotny, Christian

    2003-04-01

    A miniaturized optical spectrometer module has been developed and realized in polymer by injection moulding. The spectrometer is designed for the visible (VIS, 380 nm-750 nm) and near infrared spectral (NIR, 680 nm-1100 nm) range. The assembled module has a size of a match box with a spectral resolution (Rayleigh criterion) of <7 nm /10 nm for the visible and <7 nm/8 nm for the near infrared spectrum depending on the pixel width of the used detectors. The stray light has been reduced well below 0.5 % for the VIS-module (VIS: filter OG550, measured at 500 nm) and NIR-module (NIR: filter RG850, measured at 790 nm). To avoid a wavelength shift caused by a thermal expansion of the system, a passive temperature compensation unit is designed. As a result of this the temperature shift between -40 °C and +70 °C can be reduced to <0.03 nm/K. To guarantee a flexible application of the spectrometer the measurement signal is coupled into the spectrometer by a fibre to free-space coupling unit with a 90° beam deflection. In order to use injection moulded components for optical sensors, mould inserts with a high optical quality are required. A toroidal optical mirror with an average surface roughness of Ra<20 nm and a radial shape accuracy as high as 0.2 % (0.1 mm) and optical gratings for the visible and near infrared spectral range with a planarity of 4 μm/cm and an absolute diffraction efficiency as high as 80 % can be fabricated. LIGA-technology, ultra-precision machining and electro-forming processes are applied. All optical elements have been replicated in polycarbonate (PC) with comparable characteristics. The spectrometer set up is based on a modular concept. This enables a high position accuracy of the elements to each other (few tens of μm) and a variation of specification (wavelength and resolution).

  14. Simple in-house flow-injection capillary electrophoresis with capacitively coupled contactless conductivity method for the determination of colistin.

    PubMed

    Chaisuwan, Patcharin; Moonta, Thararat; Sangcakul, Areeporn; Nacapricha, Duangjai; Wilairat, Prapin; Uraisin, Kanchana

    2015-03-01

    An in-house flow-injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2-morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow-injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r(2) ) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time. PMID:25641810

  15. Effect of feedback elements on the phase locking properties of fiber lasers via mutual injection coupling

    NASA Astrophysics Data System (ADS)

    Lei, Bing; Liu, Wei; Shi, Jianhua; Yao, Tianfu; Feng, Ying

    2015-10-01

    Coherent combining of several multi-wavelength fiber lasers is a promising approach to suppress the nonlinear effects and improve the output power. Passive phase locking of two multi-wavelength fiber lasers has been demonstrated by using mutual injection coupling and spatial filtering technique, and the effect of feedback elements on the phase locking properties has been investigated in detail. Three different kinds of feedback elements, fiber Bragg grating (FBG), fiber loop mirror (FLM) and fiber reflection mirror (FRM) are employed as the component laser's high reflection mirror to construct the phase locking array respectively. Compared with the traditional feedback element FBG, the FLM is made of a 3dB fiber coupler and provide high reflection feedback in a wide spectral range for fiber laser, and the FRM is also a wide-band reflector with the fiber end coated by multilayer dielectric film. When the FLM and FRM are employed as the component laser's feedback elements, a large number of longitudinal modes operate simultaneously and the spectra vary continuously. Fortunately, stable phase locking has been obtained as long as the single-mode filtering fiber is introduced into the feedback loop, and obvious interference patterns with high fringe visibility have been observed in far field. The phased array's output power can also keep stable at the same time, and its amount is higher than the case of using FBG. In conclusion, the research results indicate that efficient phase locking of several multi-wavelength fiber lasers can also be achieved by passive self-adjusting method and higher output power can be obtained compared with the usual coherent combining of narrow-band laser beams, as long as necessary optical coupling is introduced among component lasers and proper spatial filtering measures are adopted.

  16. Twinning in vapour-grown, large volume Cd1-xZnxTe crystals

    NASA Astrophysics Data System (ADS)

    Tanner, B. K.; Mullins, J. T.; Pym, A. T. G.; Maneuski, D.

    2016-08-01

    The onset of twinning from (2 bar 1 bar 1 bar) to (1 bar 3 bar 3 bar) in large volume Cd1-xZnxTe crystals, grown by vapour transport on (2 bar 1 bar 1 bar) , often referred to as (211)B, oriented GaAs seeds, has been investigated using X-ray diffraction imaging (X-ray topography). Twinning is not associated with strains at the GaAs/CdTe interface as the initial growth was always in (2 bar 1 bar 1 bar) orientation. Nor is twinning related to lattice strains associated with injection of Zn subsequent to initial nucleation and growth of pure CdTe as in both cases twinning occurred after growth of several mm length of Cd1-xZnxTe. While in both cases examined, there was a region of disturbed growth prior to the twinning transition, in neither crystal does this strain appear to have nucleated the twinning process. In both cases, un-twinned material remained after twinning was observed, the scale of the resulting twin boundaries being sub-micron. Simultaneous twinning across the whole sample surface was observed in one sample, whereas in the other, twinning was nucleated at different points and times in the growth.

  17. Analysis of Nucleosides in Municipal Wastewater by Large-Volume Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Brewer, Alex J.; Lunte, Craig

    2015-01-01

    Nucleosides are components of both DNA and RNA, and contain either a ribose (RNA) or 2deoxyribose (DNA) sugar and a purine or pyrimidine base. In addition to DNA and RNA turnover, modified nucleosides found in urine have been correlated to a diminished health status associated with AIDS, cancers, oxidative stress and age. Nucleosides found in municipal wastewater influent are potentially useful markers of community health status, and as of now, remain uninvestigated. A method was developed to quantify nucleosides in municipal wastewater using large-volume injection, liquid chromatography, and mass spectrometry. Method accuracy ranged from 92 to 139% when quantified by using isotopically labeled internal standards. Precision ranged from 6.1 to 19% of the relative standard deviation. The method’s utility was demonstrated by the analysis of twenty-four hour composite wastewater influent samples that were collected over a week to investigate community nucleoside excretion. Nucleosides originating from RNA were more abundant that DNA over the study period, with total loads of nucleosides ranging from 2 to 25 kg/day. Given this relatively high amount of nucleosides found over the study period they present an attractive analyte for the investigation of community health. PMID:26322136

  18. Cannabis agonist injection effect on the coupling architecture in cortex of WAG/Rij rats during absence seizures

    NASA Astrophysics Data System (ADS)

    Sysoeva, Marina V.; Kuznetsova, Galina D.; van Rijn, Clementina M.; Sysoev, Ilya V.

    2016-04-01

    WAG/Rij rats are well known genetic model of absence epilepsy, which is traditionally considered as a nonconvulsive generalised epilepsy of unknown aetiology. In current study the effect of (R)-(+)-WIN 55,212-2 (cannabis agonist) injection on the coupling between different parts of cortex was studied on 27 male 8 month old rats using local field potentials. Recently developed non-linear adapted Granger causality approach was used as a primary method. It was shown that first 2 hours after the injection the coupling between most channel pairs rises in comparison with the spontaneous activity, whilst long after the injection (2-6 hours) it drops down. The coupling increase corresponds to the mentioned before treatment effect, when the number and the longitude of seizures significantly decreases. However the subsequent decrease of the coupling in the cortex is accompanied by the dramatic increase of the longitude and the number of seizures. This assumes the hypothesis that a relatively higher coupling in the cortical network can prevent the seizure propagation and generalisation.

  19. A large-volume microwave plasma source based on parallel rectangular waveguides at low pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhang, Guixin; Wang, Shumin; Wang, Liming

    2011-02-01

    A large-volume microwave plasma with good stability, uniformity and high density is directly generated and sustained. A microwave cavity is assembled by upper and lower metal plates and two adjacently parallel rectangular waveguides with axial slots regularly positioned on their inner wide side. Microwave energy is coupled into the plasma chamber shaped by quartz glass to enclose the space of working gas at low pressures. The geometrical properties of the source and the existing modes of the electric field are determined and optimized by a numerical simulation without a plasma. The calculated field patterns are in agreement with the observed experimental results. Argon, helium, nitrogen and air are used to produce a plasma for pressures ranging from 1000 to 2000 Pa and microwave powers above 800 W. The electron density is measured with a Mach-Zehnder interferometer to be on the order of 1014 cm-3 and the electron temperature is obtained using atomic emission spectrometry to be in the range 2222-2264 K at a pressure of 2000 Pa at different microwave powers. It can be seen from the interferograms at different microwave powers that the distribution of the plasma electron density is stable and uniform.

  20. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  1. Designing an elastomeric binder for large-volume-change electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Zonghai

    It is of commercial importance to develop high capacity negative and positive electrode materials for lithium-ion batteries to meet the energy requirements of portable electronic devices. Excellent capacity retention has been achieved for thin sputtered films of amorphous Si, Ge and Si-Sn alloys even when cycled to 2000 mAh/g and above, which suggests that amorphous alloys are capable of extended cycling. However, PVDF-based composite electrodes incorporating a-Si0.64Sn0.36/Ag powder (10 wt% silver coating) (˜10mum) still suffer from severe capacity fading because of the huge volumetric changes of a-Si0.64Sn0.36/Ag during charge/discharge cycling. It is the objective of this thesis to understand the problem scientifically and to propose practical solutions to solve this problem. Mechanical studies of binders for lithium battery electrodes have never been reported in the literature. The mechanical properties of commonly used binders, such as poly(vinylidene fluoride) (PVDF), haven't been challenged because commercially used active materials, such as LiCoO2 and graphite, have small volumetric changes (<10%) during charge/discharge cycling. However, the recently proposed metallic alloys have huge volumetric changes (up to 250%) during cycling. In this case, the mechanical properties of the binder become critical. A tether model is proposed to qualitatively understand the capacity fading of high-volume-change electrodes, and to predict the properties of a good binder system. A crosslinking/coupling route was used to modify the binder system according to the requirements of the tether model. A poly(vinylidene fluoride-tetrafluoroethylenepropylene)-based elastomeric binder system was designed to successfully improve the capacity retention of a-Si0.64 Sn0.36/Ag composite electrodes. In this thesis, it has also proven nontrivial to maximize the capacity retention of large-volume-change electrodes even when a fixed elastomeric binder system was used. The parameters that

  2. Drag reduction by coupled systems: microbubble injection with homogeneous polymer and surfactant solutions

    NASA Astrophysics Data System (ADS)

    Fontaine, A. A.; Deutsch, S.; Brungart, T. A.; Petrie, H. L.; Fenstermacker, M.

    The influence of homogeneous surfactant and homogeneous polymer solutions on the performance of microbubble skin friction reduction was investigated on an axisymmetric body. Carbon dioxide was injected into water, homogeneous surfactant (Aerosol OT) solutions, and homogeneous dilute polymer (Polyethylene oxide) solutions. Integrated skin friction measurements were obtained at two freestream velocities as a function of gas injection rate and polyethylene-oxide concentration. A moderate (50%) decrease in surface tension had little to no effect on the drag reducing characteristics of microbubble injection. At similar gas injection rates, microbubble injection exhibited more drag reduction in the polymer solutions than obtained with microbubble injection into water. However, the increased drag reduction obtained with polymer additives was no more than a multiplicative factor related to the baseline levels of drag reduction achieved by the individual methods, and suggests the mechanism for microbubble skin friction reduction acts independently of the polymer drag reduction.

  3. Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel.

    PubMed

    Del Buffa, Stefano; Rinaldi, Elia; Carretti, Emiliano; Ridi, Francesca; Bonini, Massimo; Baglioni, Piero

    2016-09-01

    The use of injectable materials in minimally invasive surgical procedures could help in facing the bone diseases connected to the ageing of world population. To this aim, materials integrating the rheological properties of biocompatible polymers with the mechanical properties of 1D inorganic nanostructures represent promising scaffolds. Here we describe the preparation of hydrogel composites made of carboxymethyl cellulose (CMC) and halloysite nanotubes (HNT) as injectable materials for the local treatment of bone defects. The rheology and injectability of the materials reflects their structural properties, showing the possibility of successfully injecting the prepared composites over a large range of operative conditions. PMID:27281242

  4. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-06-01

    A direct injection nebulizer (DIN) was designed, developed, and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methylisobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organometallic species contained in synthetic mixtures, vanilla extracts, and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered. 227 refs., 44 figs., 15 tabs.

  5. Evaluation of a direct injection nebulizer interface for flow injection analysis and high performance liquid chromatography with inductively coupled plasma-atomic emission spectroscopic detection

    SciTech Connect

    LaFreniere, K.E.

    1986-01-01

    A direct injection nebulizer (DIN) was designed, developed and evaluated to determine its potential utilization as an effective interface for flow injection analysis (FIA) and high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-atomic emission spectroscopic detection. The analytical figures of merit for the DIN when used as an interface for FIA-ICP-AES were found to be comparable to or better than those obtained with conventional pneumatic nebulization in terms of limits of detection (LODs), reproducibility, linearity, and interelement effects. In the HPLC mode, the LODDs were found to be comparable to those obtained by continuous-flow sample introduction into the ICP, or inferior by up to only a factor of four. Stable plasma operation was maintained for the DIN sample introduction of a variety of pure organic solvents, including acetonitrile, methanol, methyl-isobutylketone, and pyridine. The HPLC-DIN-ICP-AES facility was specifically applied for the speciation of inorganic and organo-metallic species contained in synthetic mixtures, vanilla extracts and a variety of energy-related materials, such as shale oil process water, coal extracts, shale oil, crude oil, and an SRC II. Suggestions for future research are also considered.

  6. Estimating maximum sustainable injection pressure duringgeological sequestration of CO2 using coupled fluid flow andgeomechanical fault-slip analysis

    SciTech Connect

    Rutqvist, J.; Birkholzer, J.; Cappa, F.; Tsang, C.-F.

    2006-10-17

    This paper demonstrates the use of coupled fluid flow andgeomechanical fault slip (fault reactivation) analysis to estimate themaximum sustainable injection pressure during geological sequestration ofCO2. Two numerical modeling approaches for analyzing faultslip areapplied, one using continuum stress-strain analysis and the other usingdiscrete fault analysis. The results of these two approaches to numericalfault-slip analyses are compared to the results of a more conventionalanalytical fault-slip analysis that assumes simplified reservoirgeometry. It is shown that the simplified analytical fault-slip analysismay lead to either overestimation or underestimation of the maximumsustainable injection pressure because it cannot resolve importantgeometrical factors associated with the injection induced spatialevolution of fluid pressure and stress. We conclude that a fully couplednumerical analysis can more accurately account for the spatial evolutionof both insitu stresses and fluid pressure, and therefore results in amore accurate estimation of the maximum sustainable CO2 injectionpressure.

  7. Coupling cover crops and manure injection: cover crop N and P uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Injecting manure into established cover crops may reduce N and P losses by increasing nutrient cycling. The objectives of this research were to quantify fall and spring cover crop shoot dry matter (DM) production and N and P uptake following manure injection at increasing target N rates. Liquid swin...

  8. Continuum Modeling of the Dynamics of Externally Injection-locked Coupled Oscillator Arrays

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.; Maccarini, Paolo F.; York, Robert A.

    1999-01-01

    Mutually injection-locked arrays of electronic oscillators provide a novel means of controlling the aperture phase of a phased-array antenna, thus achieving the advantages of spatial power combining while retaining the ability to steer the radiated beam. In a number of design concepts, one or more of the oscillators are injection locked to a signal from an external master-oscillator. The behavior of such a system has been analyzed by numerical solution of a system of nonlinear differential equations which, due to its complexity, yields limited insight into the relationship between the injection signals and the aperture phase. In this paper, we develop a continuum model, which results in a single partial differential equation for the aperture phase as a function of time. Solution of the equation is effected by means of the Laplace transformation and yields detailed information concerning the dynamics of the array under the influence of the external injection signals.

  9. Novel scheme of assist-light injection through waveguide coupling in a semiconductor optical amplifier for fast gain recovery

    NASA Astrophysics Data System (ADS)

    Nithin, V.; Kumar, Yogesh; Shenoy, M. R.

    2016-01-01

    We propose a novel scheme for injection of assist-light into the active region of a semiconductor optical amplifier (SOA) for fast gain recovery. In the proposed scheme, the assist-light is coupled into the active region of the SOA through an adjacent channel waveguide. Numerical results based on the well established model for carrier dynamics in SOA show that the gain recovery is faster in the proposed scheme as compared to the earlier reported scheme of counter-propagating assist-light injection. Our analysis shows that a desired power profile of the assist-light can be maintained in the active region of the SOA by tailoring the coupling through suitable design of the adjacent channel waveguide. The dependence of gain recovery on the input power of the assist-light in the proposed scheme has also been studied. Under typical operating conditions, it is found that 20 dBm of assist-light power injection in the proposed scheme is as effective as 27 dBm of assist-light power in the counter-propagating scheme.

  10. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    NASA Astrophysics Data System (ADS)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  11. Necessary conditions on Calabi-Yau manifolds for large volume vacua

    NASA Astrophysics Data System (ADS)

    Gray, James; He, Yang-Hui; Jejjala, Vishnu; Jurke, Benjamin; Nelson, Brent; Simón, Joan

    2012-11-01

    We describe an efficient, construction independent, algorithmic test to determine whether Calabi-Yau threefolds admit a structure compatible with the large volume moduli stabilization scenario of type IIB superstring theory. Using the algorithm, we scan complete intersection and toric hypersurface Calabi-Yau threefolds with 2≤h1,1≤4 and deduce that 418 among 4434 manifolds have a large volume limit with a single large four-cycle. We describe major extensions to this survey, which are currently underway.

  12. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  13. Large-volume data delivery from low-Earth orbit to ground using efficient single-mode optical receivers

    NASA Astrophysics Data System (ADS)

    Robinson, B. S.; Schieler, C. M.; Boroson, D. M.

    2016-03-01

    Space systems operating in low-Earth orbit are often constrained by how much data can be delivered from space to ground. Traditional data delivery approaches are often limited by either large link losses associated with transmission via a geosynchronous relay satellite or short contact times and spectrum-constrained data rates associated with direct-to-Earth radio-frequency links. Direct-to-Earth optical communication links from low-Earth orbit based on fiber telecommunications technologies that can operate at high data rates (> 100 Gb/s per wavelength channel) can enable the delivery of extremely large volumes of data from space to ground. We analyze the performance of such systems and discuss the performance gains that are enabled by coupling the received signal to an efficient single-mode-fiber-based receiver, even in the presence of turbulence-induced losses.

  14. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  15. Characterization of large volume 3.5″×8″ LaBr3:Ce detectors

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Pellegri, L.; Riboldi, S.; Camera, F.; Blasi, N.; Boiano, C.; Bracco, A.; Brambilla, S.; Ceruti, S.; Coelli, S.; Crespi, F. C. L.; Csatlòs, M.; Frega, S.; Gulyàs, J.; Krasznahorkay, A.; Lodetti, S.; Million, B.; Owens, A.; Quarati, F.; Stuhl, L.; Wieland, O.

    2013-11-01

    The properties of large volume cylindrical 3.5″×8″ (89 mm×203 mm) LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL photo-multiplier tube were investigated. These crystals are among the largest ones ever produced and still need to be fully characterized to determine how these detectors can be utilized and in which applications. We tested the detectors using monochromatic γ-ray sources and in-beam reactions producing γ rays up to 22.6 MeV; we acquired PMT signal pulses and calculated detector energy resolution and response linearity as a function of γ-ray energy. Two different voltage dividers were coupled to the Hamamatsu R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive network design, and the “LABRVD”, specifically designed for our large volume LaBr3:Ce scintillation detectors, which also includes active semiconductor devices. Because of the extremely high light yield of LaBr3:Ce crystals we observed that, depending on the choice of PMT, voltage divider and applied voltage, some significant deviation from the ideally proportional response of the detector and some pulse shape deformation appear. In addition, crystal non-homogeneities and PMT gain drifts affect the (measured) energy resolution especially in case of high-energy γ rays. We also measured the time resolution of detectors with different sizes (from 1″×1″ up to 3.5″×8″), correlating the results with both the intrinsic properties of PMTs and GEANT simulations of the scintillation light collection process. The detector absolute full energy efficiency was measured and simulated up to γ-rays of 30 MeV

  16. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  17. A New Electropositive Filter for Concentrating Enterovirus and Norovirus from Large Volumes of Water - MCEARD

    EPA Science Inventory

    The detection of enteric viruses in environmental water usually requires the concentration of viruses from large volumes of water. The 1MDS electropositive filter is commonly used for concentrating enteric viruses from water but unfortunately these filters are not cost-effective...

  18. On Coupling Models Using Model-Checking: Effects of Irinotecan Injections on the Mammalian Cell Cycle

    NASA Astrophysics Data System (ADS)

    de Maria, Elisabetta; Fages, François; Soliman, Sylvain

    In systems biology, the number of models of cellular processes increases rapidly, but re-using models in different contexts or for different questions remains a challenging issue. In this paper, we show how the validation of a coupled model and the optimization of its parameters with respect to biological properties formalized in temporal logics, can be done automatically by model-checking. More specifically, we illustrate this approach with the coupling of existing models of the mammalian cell cycle, the p53-based DNA-damage repair network, and irinotecan metabolism, with respect to the biological properties of this anticancer drug.

  19. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column.

    PubMed

    Satínský, Dalibor; Huclová, Jitka; Ferreira, Raquel L C; Montenegro, Maria Conceição B S M; Solich, Petr

    2006-02-13

    The porous monolithic columns show high performance at relatively low pressure. The coupling of short monoliths with sequential injection technique (SIA) results in a new approach to implementation of separation step to non-separation low-pressure method. In this contribution, a new separation method for simultaneous determination of ambroxol, methylparaben and benzoic acid was developed based on a novel reversed-phase sequential injection chromatography (SIC) technique with UV detection. A Chromolith SpeedROD RP-18e, 50-4.6 mm column with 10 mm precolumn and a FIAlab 3000 system with a six-port selection valve and 5 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-tetrahydrofuran-0.05M acetic acid (10:10:90, v/v/v), pH 3.75 adjusted with triethylamine, flow rate 0.48 mlmin(-1), UV-detection was at 245 nm. The analysis time was <11 min. A new SIC method was validated and compared with HPLC. The method was found to be useful for the routine analysis of the active compounds ambroxol and preservatives (methylparaben or benzoic acid) in various pharmaceutical syrups and drops. PMID:16165338

  20. Commonalities and Contrasts in Location, Morphology and Emplacement of Large-volume Evolved Lava Flows

    NASA Astrophysics Data System (ADS)

    Domagall, A. S.; Gregg, T. K.

    2008-12-01

    Observations of active dacite domes and evolved (SiO2 wt.% >65) plinian-style eruptions are considered to reveal typical behaviors of Si-rich volcanic systems. However, despite lack of mention in modern volcanology textbooks, large-volume (>4 km3) evolved lava flows exist globally. These large- volume evolved lava flows have many characteristics in common regardless of location and precise tectonic setting: they are associated with other large-volume deposits (both lava flow units and ignimbrites); are commonly found with large silicic systems; regionally, they are associated with bimodal volcanism and eruption of these large-volume evolved flows does not generate a caldera. Large-volume evolved lava flows have low aspect ratios, tend to be uniform in thickness from the vent to the distal margins and abruptly decrease in thickness at the flow front where they may form enormous pahoehoe-like lobes. A lack of pyroclastic textures such as bubble wall shards, pumice fragments, broken phenocrysts and lithics is taken as evidence for their lava flow origin rather than an ignimbrite origin despite their high SiO2 contents. Presence of a pervasive basal breccia and lobate distal margins also suggest a lava flow emplacement origin, that only the most intensely rheomorphic ignimbrite could potentially mimic. Our own studies and those from the literature suggest high eruption temperatures and peralkaline chemistries may be responsible for producing unusually low viscosities to account for large lateral extents; emplacement via fissure vents and insulations of the flow may also be key in attaining great volumes.

  1. Development of Desolvation System for Single-cell Analysis Using Droplet Injection Inductively Coupled Plasma Atomic Emission Spectroscopy.

    PubMed

    Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi

    2015-01-01

    With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES. PMID:26256601

  2. Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California

    SciTech Connect

    Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

    2008-11-01

    The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

  3. Coupling of STOMP and ABAQUS for Hydro-Geomechanical Modeling of Fluid Flow and Rock Deformation Associated with Subsurface CO2 Injection

    NASA Astrophysics Data System (ADS)

    Carroll, K. C.; Nguyen, B. N.; Fang, Y.; Richmond, M. C.; Murray, C. J.

    2011-12-01

    Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, geomechanical, and geochemical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objective of this study was to examine the coupling of hydraulic and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. The impact of nonisothermal multifluid flow and porous media deformation mechanics on CO2 migration and storage was evaluated. We present a sequentially coupled approach for multifluid and geomechanical simulation using STOMP and ABAQUS that has been developed and validated through comparison to the solutions for benchmark problems that were solved with a coupled TOUGH-FLAC simulator. The poroelastic model was implemented with user-subroutines in ABAQUS. We also compare the STOMP-ABAQUS simulator to a new version of STOMP that includes the fully coupled poroelastic simulation within the multifluid flow and transport simulator. The poroelastic model computes stiffness, stresses, and strains using aqueous and gas pressures as well as saturations from STOMP output, and provides STOMP with the updated permeability, porosity, and capillary pressure over time during the simulation. The hydraulic only (uncoupled from mechanics) simulation and the hydrogeomechanical (coupled) simulation results using STOMP-ABAQUS were comparable to the previous results of a TOUGH-FLAC simulator. Results from the STOMP-ABAQUS coupled simulator were essentially identical to the fully coupled STOMP hydrogeomechanical simulator when the sequential coupling occurred at small time steps, and deviations between results increased with

  4. Effects of coil location and injection flow rate in an inductively coupled RF plasma torch

    NASA Astrophysics Data System (ADS)

    Wei, D.; Apelian, D.; Farouk, B.

    1985-07-01

    A numerical model has been developed to investigate the effects of central carrier gas flow rate and coil location in an inductively coupled RF plasma torch. Solution algorithm is based on the primitive variable formulation of the Navier-Stokes equations and includes a pseudo two-dimensional electromagnetic field model. Computational results have shown that with increasing carrier gas flow rate, the plasma plume is penetrated and the back flow due to the magnetic pumping effects is diminished. This facilitates the delivery of powder particles into the discharge region. However, the plasma plume is also disturbed significantly thus enhancing power loss.

  5. Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection

    SciTech Connect

    Siriwardane, Hema J; Gondle, Raj K; Bromhal, Grant S

    2013-08-01

    Understanding the transport of carbon dioxide (CO{sub 2}) during long-term CO{sub 2} injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behavior. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO{sub 2}, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO{sub 2} leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO{sub 2} injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO{sub 2} injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO{sub 2} migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signatures and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO{sub 2} injection. Pressure response and ground deformation behavior from sequestration modeling could be useful in the development of

  6. Coupled numerical simulations of CO2 injection into the carbonate aquifer of the Upper Muschelkalk, N-Switzerland

    NASA Astrophysics Data System (ADS)

    Alt-Epping, P.; Almqvist, B. S. G.; Diamond, L. W.

    2012-04-01

    The Triassic Trigodonus Dolomite unit of Upper Muschelkalk, a saline carbonate-hosted aquifer in Northerm Switzerland, is considered a possible target for sequestering CO2. The porosity of the aquifer ranges from 4-25 %. The porosity can be divided into macropores (mm to cm scale) and micropores (µm to nm scale). Intermittent bedding-parallel layers of macroscopic pores (cm scale) are readily visible, and originate from dissolution of anhydrite nodules and bivalve shells. The porosity of the Muschelkalk therefore exhibits a moderate layered anisotropy. Lab measurements indicate correlated permeabilities with values of 5.1 to 2.7e-18 m2 for low porosity samples to larger than 1e-15 m2 for samples with a large fraction of macropores. The Upper Muschekalk is overlain by the Gipskeuper, an anhydrite-bearing clay-rich rock of low porosity and permeability. The Gipskeuper constitutes a hydraulic barrier to the rising CO2 plume. We use fully coupled reactive transport simulations to assess the implications of injecting CO2 into the Trigodonus Dolomite of the Muschelkalk aquifer. We track the movement of the plume and evaluate the efficiency of physical and chemical trapping mechanisms. Computations show that mineral trapping in the Muschelkalk aquifer is not effective. The global CO2 mass balance indicates the release of additional CO2 due to carbonate dissolution. However, while during and shortly after injection the dissolution of carbonate minerals dominates, after all free CO2 has dissolved into the brine, a rebound in pH at the injection site leads to carbonate re-precipitation. Diffusive influx of HCO3- and H+ from the Muschelkalk aquifer into the Gipskeuper dominates the alteration reactions in the lower part of the Gipskeuper. Clay minerals such as illite dissolve under acidic conditions and the release of cations causes carbonate minerals to precipitate. This in turn reduces the pore-space, enhancing the sealing capacity of the lower Gipskeuper. Thus although

  7. The large volume calorimeter for measuring the pressure cooker'' shipping container

    SciTech Connect

    Kasperski, P.W.; Duff, M.F.; Wetzel, J.R. ); Baker, L.B.; MacMurdo, K.W. )

    1991-01-01

    A precise, low wattage, large volume calorimeter system has been developed at Mound to measure two configurations of the 12081 containment vessel. This system was developed and constructed to perform verification measurements at the Savannah River Site. The calorimeter system has performance design specifications of {plus minus}0.3% error above the 2-watt level, and {plus minus}(0.03% plus 0.006 watts) at power levels below 2 watts (one sigma). Data collected during performance testing shows measurement errors well within this range, even down to 0.1-watt power levels. The development of this calorimeter shows that ultra-precise measurements can be achieved on extremely large volume sample configurations. 1 ref., 5 figs.

  8. HYBRID BRIDGMAN ANVIL DESIGN: AN OPTICAL WINDOW FOR IN-SITU SPECTROSCOPY IN LARGE VOLUME PRESSES

    SciTech Connect

    Lipp, M J; Evans, W J; Yoo, C S

    2005-07-29

    The absence of in-situ optical probes for large volume presses often limits their application to high-pressure materials research. In this paper, we present a unique anvil/optical window-design for use in large volume presses, which consists of an inverted diamond anvil seated in a Bridgman type anvil. A small cylindrical aperture through the Bridgman anvil ending at the back of diamond anvil allows optical access to the sample chamber and permits direct optical spectroscopy measurements, such as ruby fluorescence (in-situ pressure) or Raman spectroscopy. This performance of this anvil-design has been demonstrated by loading KBr to a pressure of 14.5 GPa.

  9. The large volume radiometric calorimeter system: A transportable device to measure scrap category plutonium

    SciTech Connect

    Duff, M.F.; Wetzel, J.R.; Breakall, K.L.; Lemming, J.F.

    1987-01-01

    An innovative design concept has been used to design a large volume calorimeter system. The new design permits two measuring cells to fit in a compact, nonevaporative environmental bath. The system is mounted on a cart for transportability. Samples in the power range of 0.50 to 12.0 W can be measured. The calorimeters will receive samples as large as 22.0 cm in diameter by 43.2 cm high, and smaller samples can be measured without lengthening measurement time or increasing measurement error by using specially designed sleeve adapters. This paper describes the design considerations, construction, theory, applications, and performance of the large volume calorimeter system. 2 refs., 5 figs., 1 tab.

  10. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  11. Assembly, operation and disassembly manual for the Battelle Large Volume Water Sampler (BLVWS)

    SciTech Connect

    Thomas, V.W.; Campbell, R.M.

    1984-12-01

    Assembly, operation and disassembly of the Battelle Large Volume Water Sampler (BLVWS) are described in detail. Step by step instructions of assembly, general operation and disassembly are provided to allow an operator completely unfamiliar with the sampler to successfully apply the BLVWS to his research sampling needs. The sampler permits concentration of both particulate and dissolved radionuclides from large volumes of ocean and fresh water. The water sample passes through a filtration section for particle removal then through sorption or ion exchange beds where species of interest are removed. The sampler components which contact the water being sampled are constructed of polyvinylchloride (PVC). The sampler has been successfully applied to many sampling needs over the past fifteen years. 9 references, 8 figures.

  12. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  13. Intelligent Foreign Particle Inspection Machine for Injection Liquid Examination Based on Modified Pulse-Coupled Neural Networks

    PubMed Central

    Ge, Ji; Wang, YaoNan; Zhou, BoWen; Zhang, Hui

    2009-01-01

    A biologically inspired spiking neural network model, called pulse-coupled neural networks (PCNN), has been applied in an automatic inspection machine to detect visible foreign particles intermingled in glucose or sodium chloride injection liquids. Proper mechanisms and improved spin/stop techniques are proposed to avoid the appearance of air bubbles, which increases the algorithms' complexity. Modified PCNN is adopted to segment the difference images, judging the existence of foreign particles according to the continuity and smoothness properties of their moving traces. Preliminarily experimental results indicate that the inspection machine can detect the visible foreign particles effectively and the detection speed, accuracy and correct detection rate also satisfying the needs of medicine preparation. PMID:22412318

  14. A system for the disposal of large volumes of air containing oxygen-15

    NASA Astrophysics Data System (ADS)

    Peters, J. M.; Quaglia, L.; del Fiore, G.; Hannay, J.; Fissore, A.

    1991-01-01

    A method is described which permits large volumes of air containing the radionuclide 15O to be vented into the atmosphere. The short half-life of this isotope (124 s) enables use to be made of a large number of small vessels connected in series. Such a device has the effect of increasing the mean transit time. The system as installed results in a reduction of the radioactive concentration in the vented air to levels below the maximum permitted values.

  15. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  16. Characterization of stable brush-shaped large-volume plasma generated at ambient air

    SciTech Connect

    Tang Jie; Cao Wenqing; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-01-15

    A brush-shaped, large-volume plasma was generated at ambient pressure with a dc power supply and flowing argon gas, as well as a narrow outlet slit. Based on the V-I curve and emission profiles obtained in our experiment, the plasma shows some typical glow discharge characteristics. The electron density in the positive column close to the anode is about 1.4x10{sup 14}cm{sup -3} high, which is desirable for generating abundant amounts of reactive species in the plasma. Emission spectroscopy diagnosis indicates that many reactive species, such as excited argon atoms, excited oxygen atoms, excited nitrogen molecules, OH and C{sub 2} radicals, etc., generated within the plasma are distributed symmetrically and uniformly, which is preferable to some chemical reactions in practical applications. Spectral measurement also shows that the concentration of some excited argon atoms increases with the argon flow rate when the applied voltage is unvaried, while that of these excited argon atoms declines with the discharge current in the normal/subnormal glow discharge mode with the argon flow rate fixed. The plasma size is about 15 mm x 1 mm x 19 mm (L, W, H), when 38-W of discharge power is used. Such a laminar brush-shaped large-volume plasma device ensures not only efficient utilization of the plasma gas, but also effective processing of objects with large volume and complicated structure that are susceptible to high temperatures.

  17. Carrier injection properties in spin-orbit coupling structure based on a correlated electronic ferromagnetic system

    NASA Astrophysics Data System (ADS)

    Ren, R.; Wang, Weiren; Li, Xuan; Ren, Yijing; Sun, Yuanjun; Zhao, Zhongxia

    2014-03-01

    Carrier injection effects on phase-field domain structures are displayed between BiFeO3 and La0.4Gd0.1Sr0.5CoO3 thin films prepared by pulsed laser deposition, epitaxially grown on LaAlO3 (100) substrates. The leakage current and magnetoresistance (MR) in the fabricated BiFeO3/La0.4Gd0.1Sr0.5CoO3/LaAlO3 heterostructure were measured under 0.2, 0.4 and 0.6 T at 80-300 K. The BiFeO3/LGSCO heterojunction exhibits the carrier transfer of the metal-insulator transition and a positive MR effect at 219-250 K. The electric-conductivity mechanism below the Curie temperature, TC, is dominated by Poole-Frenkel emission. The BiFeO3/LGSCO pn junction shows rectifying behavior between 80-300 K. The energy bands of the heterojunction were modified by the morphology of the interface, the magnetic domain, spin polarization and interface tensile strain due to external magnetic perturbations. The strain and magnetic field-modified domain wall and the carrier density at the BiFeO3/LGCO interface were characterized by atomic force microscopy. The domain and phase separation of LGSCO/BiFeO3 changed with strain, structural defects, grain size and boundary and the modified concentration of carriers. Additionally, the BiFeO3/La1-xGdxSrCoO3 heterostructure shows a positive colossal MR effect at 80-300 K and an metal-insulator phase transition was observed around TC 219.5 K for 0.6 T, 220 K for 0.4 T and 249.7 K for 0.2 T.

  18. Opto-electrical characterization and X-ray mapping of large-volume cadmium zinc telluride radiation detectors

    SciTech Connect

    Yang, G.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Hossain, A.; Yao, H.W.; Kim, K.; and James, R.B.

    2009-04-13

    Large-volume cadmium zinc telluride (CZT) radiation detectors would greatly improve radiation detection capabilities and, therefore, attract extensive scientific and commercial interests. CZT crystals with volumes as large as hundreds of centimeters can be achieved today due to improvements in the crystal growth technology. However, the poor performance of large-volume CZT detectors is still a challenging problem affecting the commercialization of CZT detectors and imaging arrays. We have employed Pockels effect measurements and synchrotron X-ray mapping techniques to investigate the performance-limiting factors for large-volume CZT detectors. Experimental results with the above characterization methods reveal the non-uniform distribution of internal electric field of large-volume CZT detectors, which help us to better understand the responsible mechanism for the insufficient carrier collection in large-volume CZT detectors.

  19. Determination of Hg and Pb in fuels by inductively coupled plasma mass spectrometry using flow injection chemical vapor generation.

    PubMed

    Chen, Feng-yi; Jiang, Shiuh-Jen

    2009-12-01

    An isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Hg and Pb in fuels using flow injection vapor generation (VG) as the sample introduction system. A simple and inexpensive in-situ nebulizer/vapor generator was employed in this study. An emulsion containing 10% v/v fuel, 2% m/v Triton X-100 and 1.0% m/v tartaric acid was injected into VG-ICP-MS system for the determination of Hg and Pb. Sodium borohydride was used for vapor generation. Since the sensitivities of Hg and Pb in emulsion and those in aqueous solution are quite different, isotope dilution and standard addition methods were used for the determination of Hg and Pb in selected fuel samples. The influences of vapor generation conditions and emulsion preparation on the ion signals are reported. This method has been applied for the determination of Hg and Pb in various fuel samples such as diesel, gasoline and engine oil obtained locally. The analytical results obtained by isotope dilution and standard addition methods were in good agreement with each other and also with those of digested samples analyzed by pneumatic nebulization ICP-MS. Under the optimum operating conditions, the detection limits obtained were 0.02 and 0.03 ng mL(-1) for Hg and Pb, respectively, in prepared emulsified solutions, corresponding to 0.2 and 0.3 ng mL(-1) of Hg and Pb, respectively, in the original fuel samples. PMID:20009337

  20. Cryogenic loading of large volume presses for high-pressure experimentation and synthesis of novel materials

    SciTech Connect

    Lipp, M J; Evans, W J; Yoo, C S

    2005-01-21

    We present an efficient easily implemented method for loading cryogenic fluids in a large volume press. We specifically apply this method to the high-pressure synthesis of an extended solid derived from CO using a Paris-Edinburgh cell. This method employs cryogenic cooling of Bridgman type WC anvils well insulated from other press components, condensation of the load gas within a brass annulus surrounding the gasket between the Bridgman anvils. We demonstrate the viability of the described approach by synthesizing macroscopic amounts (several milligrams) of polymeric CO-derived material, which were recovered to ambient conditions after compression of pure CO to 5 GPa or above.

  1. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  2. Large-volume en-bloc staining for electron microscopy-based connectomics

    PubMed Central

    Hua, Yunfeng; Laserstein, Philip; Helmstaedter, Moritz

    2015-01-01

    Large-scale connectomics requires dense staining of neuronal tissue blocks for electron microscopy (EM). Here we report a large-volume dense en-bloc EM staining protocol that overcomes the staining gradients, which so far substantially limited the reconstructable volumes in three-dimensional (3D) EM. Our protocol provides densely reconstructable tissue blocks from mouse neocortex sized at least 1 mm in diameter. By relaxing the constraints on precise topographic sample targeting, it makes the correlated functional and structural analysis of neuronal circuits realistic. PMID:26235643

  3. Large volume/high horsepower submersible pumping problems in water source wells

    SciTech Connect

    Hoestenbach, R.D.

    1981-01-01

    Various problems are encountered in, or compounded by, installing large volume/high horsepower submersible pumping equipment in water source wells, in the range of 30,000 to 90,000 bbl of water/day at 320 to 1020 hp. This study discusses the many problems that have appeared during the past 12 yr in Shell Oil Co's W. Texas water supply system and the solutions that were subsequently applied. The majority of these problems will be encountered in almost any project of this type. Specifically detailed are motor, pump, and protector anomalies, accessory equipment, surface production facilities, and the protective schemes utilized to optimize equipment life.

  4. Large-volume, high-horsepower submersible pumping problems in water source wells

    SciTech Connect

    Hoestenbach, R.D.

    1982-10-01

    Little has been written concerning problems that can be encountered in, or compounded by, installing large volume, high-horsepower submersible pumping equipment in water source wells in the range of 30,000 to 90,000 BWPD at 320 to 1,020 hp. This report addresses many problems of the past 12 years in Shell Oil Co.'s west Texas water supply system and the solutions that subsequently were applied. We feel that the majority of these problems are encountered in almost any project of this type. Motor, pump, and protector anomalies, accessory equipment, surface production facilities, and the protective schemes to optimize equipment life are discussed in detail.

  5. Optimized algorithm module for large volume remote sensing image processing system

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Liu, Nan; Liu, Renyi; Wang, Jiawen; Zhang, Qin

    2007-12-01

    A new remote sensing image processing system's algorithm module has been introduced in this paper, which is coded with Visual C++ 6.0 program language and can process large volume of remote sensing image. At the same time, adopted key technologies in algorithm module are given. Two defects of American remote sensing image processing system called ERDAS has been put forward in image filter algorithm and the storage of pixel values that are out of data type range. In author's system two optimized methods has been implemented in these two aspects. By contrasted with ERDAS IMAGINE System, the two methods had been proved to be effective in image analysis.

  6. Leak testing of cryogenically pumped large-volume high-vacuum systems

    NASA Astrophysics Data System (ADS)

    Sherlock, Charles N.

    1988-01-01

    The problems that may occur in the cryogenically pumped large-volume high-vacuum chambers (LVHVCs), used for the environmental testing of aerospace components and systems, are examined. Consideration is given to the designs of the LVHVCs and the cryogenic pumps. In the procedure of leak testing with tracer gas, the success of testing depends on attaining the required test sensitivity with speed, economy, and reliability. The steps required to speed up the leak location phase of the leak testing procedure and to thoroughly clean every penetration (i.e., fitting or nozzle) of the system are discussed.

  7. Thickness scalability of large volume cadmium zinc telluride high resolution radiation detectors

    NASA Astrophysics Data System (ADS)

    Awadalla, S. A.; Chen, H.; Mackenzie, J.; Lu, P.; Iniewski, K.; Marthandam, P.; Redden, R.; Bindley, G.; He, Z.; Zhang, F.

    2009-06-01

    This work focuses on the thickness scalability of traveling heater method (THM) grown CdZnTe crystals to produce large volume detectors with optimized spectroscopic performance. To meet this challenge, we have tuned both our THM growth process, to grow 75 mm diameter ingots, and our postgrowth annealing process. We have increased the thickness of our sliced wafers from 6 to 12 and 18 mm allowing the production of 10 and 15 mm thick detectors. As the detectors' thickness is scaled up, the energy resolution of both types, as pseudo-Frisch grid and pixelated monolithic detectors showed no degradation indicating improved materials uniformity and transport properties.

  8. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  9. Energy transfer between injection-locked single-mode diode lasers by two-beam coupling in BaTiO/sub 3/

    SciTech Connect

    Christian, W.R.; Beckwith, P.H.; McMichael, I.

    1989-01-01

    Two-beam coupling in photorefractive BaTiO/sub 3/ is used to combine beams coherently from two injection-locked single-mode diode lasers operating at 830 nm. We are able to transfer more than 70% of the power in one beam to the other beam with this method.

  10. ANALYSIS OF LOW-LEVEL PESTICIDES FROM HIGH-ELEVATION LAKE WATERS BY LARGE-VOLUME INJECTION GCMS

    EPA Science Inventory

    Pesticides are among the factors being proposed as causal agents for amphibian population declines in the Sierra Nevada range of California, USA. We hypothesize that agricultural pesticides applied in the San Joaquin Valley west of the mountains are volatilized or eroded, transpo...

  11. Temperature-dependent spin injection dynamics in InGaAs/GaAs quantum well-dot tunnel-coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, S. L.; Kiba, T.; Yang, X. J.; Takayama, J.; Murayama, A.

    2016-03-01

    Time-resolved optical spin orientation spectroscopy was employed to investigate the temperature-dependent electron spin injection in In0.1Ga0.9As quantum well (QW) and In0.5Ga0.5As quantum dots (QDs) tunnel-coupled nanostructures with 4, 6, and 8 nm-thick GaAs barriers. The fast picosecond-ranged spin injection from QW to QD excited states (ES) was observed to speed up with temperature, as induced by pronounced longitudinal-optical (LO)-phonon-involved multiple scattering process, which contributes to a thermally stable and almost fully spin-conserving injection within 5-180 K. The LO-phonon coupling was also found to cause accelerated electron spin relaxation of QD ES at elevated temperature, mainly via hyperfine interaction with random nuclear field.

  12. Uncooled amorphous silicon 160 x 120 IRFPA with 25 μm pixel-pitch for large volume applications

    NASA Astrophysics Data System (ADS)

    Vilain, M.; Tissot, J. L.; Legras, O.; Yon, J. J.; Minassian, C.; Fièque, B.; Chiappa, J. M.

    2008-03-01

    This paper reviews the specifications and performances of a 160 × 120 uncooled infrared focal plane array made from amorphous silicon microbolometers with a pixel-pitch of 25 μm, integrated into a LCC TEC-less package. This detector has been specifically designed for large volume production, while keeping the main features of high end developments, at detection pixel level, as well as at ROIC level, like detector configuration by serial link in order to minimize the number of electrical inputs, low power, large dynamic range...) The main particular features of this achievement are the miniaturized very low weight package, along with easy TEC-less operation naturally afforded via the readout architecture, which leads to very low consumption levels, making it well adapted to low end hand held or helmet mounted thermal imaging cameras. We present in the last part of this paper the main electro-optical characteristics and TEC-less operation, demonstrating wide thermal dynamic range and low power, thanks to the simple single-level amorphous silicon technology, coupled with advanced ROIC design.

  13. Compact uncooled amorphous silicon 160x120 IRFPA with 25 μm pixel-pitch for large volume applications

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Legras, O.; Minassian, C.; Robert, P.; Fieque, B.; Tinnes, S.; Dupont, B.; Yon, J. J.; Arnaud, A.

    2007-10-01

    This paper reviews specifications and performances of a 160 x 120 uncooled infrared focal plane array made from amorphous silicon micro bolometer with a pixel-pitch of 25 μm, integrated in a LCC package. This detector has been specifically designed for being produced in large volume. The detector has kept all the innovations developed on the full TV format ROIC (detector configuration by serial link, low power consumption or wide electrical dynamic range... ) and offers an advanced TEC-less focal plane array well adapted to low end thermal imaging cameras. The specific appeal of this unit lies in the miniaturization of the packaging and its extremely light weight.In the last part of the paper, we will look more closely at electro-optical performances of this TEC-less product 160 x 120 as well as the other 25 μm products like the 384 x 288. We will insist on the wide thermal dynamic range and the low consumption achieved thanks to the mastering of the amorphous silicon technology coupled with the innovation in the ROIC design.

  14. Real-time visualization of large volume datasets on standard PC hardware.

    PubMed

    Xie, Kai; Yang, Jie; Zhu, Y M

    2008-05-01

    In medical area, interactive three-dimensional volume visualization of large volume datasets is a challenging task. One of the major challenges in graphics processing unit (GPU)-based volume rendering algorithms is the limited size of texture memory imposed by current GPU architecture. We attempt to overcome this limitation by rendering only visible parts of large CT datasets. In this paper, we present an efficient, high-quality volume rendering algorithm using GPUs for rendering large CT datasets at interactive frame rates on standard PC hardware. We subdivide the volume dataset into uniform sized blocks and take advantage of combinations of early ray termination, empty-space skipping and visibility culling to accelerate the whole rendering process and render visible parts of volume data. We have implemented our volume rendering algorithm for a large volume data of 512 x 304 x 1878 dimensions (visible female), and achieved real-time performance (i.e., 3-4 frames per second) on a Pentium 4 2.4GHz PC equipped with NVIDIA Geforce 6600 graphics card ( 256 MB video memory). This method can be used as a 3D visualization tool of large CT datasets for doctors or radiologists. PMID:18243401

  15. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  16. Colloids Versus Albumin in Large Volume Paracentesis to Prevent Circulatory Dysfunction: Evidence-based Case Report.

    PubMed

    Widjaja, Felix F; Khairan, Paramita; Kamelia, Telly; Hasan, Irsan

    2016-04-01

    Large volume paracentesis may cause paracentesis induced circulatory dysfunction (PICD). Albumin is recommended to prevent this abnormality. Meanwhile, the price of albumin is too expensive and there should be another alternative that may prevent PICD. This report aimed to compare albumin to colloids in preventing PICD. Search strategy was done using PubMed, Scopus, Proquest, dan Academic Health Complete from EBSCO with keywords of "ascites", "albumin", "colloid", "dextran", "hydroxyethyl starch", "gelatin", and "paracentesis induced circulatory dysfunction". Articles was limited to randomized clinical trial and meta-analysis with clinical question of "In hepatic cirrhotic patient undergone large volume paracentesis, whether colloids were similar to albumin to prevent PICD". We found one meta-analysis and four randomized clinical trials (RCT). A meta analysis showed that albumin was still superior of which odds ratio 0.34 (0.23-0.51). Three RCTs showed the same results and one RCT showed albumin was not superior than colloids. We conclude that colloids could not constitute albumin to prevent PICD, but colloids still have a role in patient who undergone paracentesis less than five liters. PMID:27550886

  17. Large-volume sample stacking for analysis of ethylenediaminetetraacetic acid by capillary electrophoresis.

    PubMed

    Zhu, Zhiwei; Zhang, Lifeng; Marimuthu, Arun; Yang, Zhaoguang

    2002-09-01

    A simple, quick, and sensitive capillary electrophoretic technique-large volume stacking using the electroosmotic flow (EOF) pump (LVSEP) - has been developed for determining ethylenediaminetetraacetic acid (EDTA) in drinking water for the first time. It is based on a precapillary complexation of EDTA with Fe(III) ions, followed by large-volume sample stacking and direct UV detection at 258 nm. The curve of peak response versus concentration was linear from 5.0 to 600.0 microg/L, and 0.7 to 30.0 mg/L. The regression coefficients were 0.9988 and 0.9990, respectively. The detection limit of the current technique for EDTA analysis was 0.2 microg/L with an additional 10-fold preconcentration procedure, based on the signal-to-noise ratio of 3. As opposed to the classical capillary zone electrophoresis (CE) method, the detection limit was improved about 1000-fold by using this LVSEP method. To the best of our knowledge, it represents the highest sensitivity for EDTA analysis via CE. Several drinking water samples were tested by this novel method with satisfactory results. PMID:12207295

  18. Controlled ice nucleation--Is it really needed for large-volume sperm cryopreservation?

    PubMed

    Saragusty, Joseph; Osmers, Jan-Hendrik; Hildebrandt, Thomas Bernd

    2016-04-15

    Controlled ice nucleation (CIN) is an integral stage of slow freezing process when relatively large volumes (usually 1 mL or larger) of biological samples in suspension are involved. Without it, a sample will supercool to way below its melting point before ice crystals start forming, resulting in multiple damaging processes. In this study, we tested the hypothesis that when freezing large volumes by the directional freezing technique, a CIN stage is not needed. Semen samples collected from ten bulls were frozen in 2.5-mL HollowTubes in a split-sample manner with and without a CIN stage. Thawed samples were evaluated for viability, acrosome integrity, rate of normal morphology, and, using computer-aided sperm analysis system, for a wide range of motility parameters that were also evaluated after 3 hours of incubation at 37 °C. Analysis of the results found no difference between freezing with and without CIN stage in any and all of the 29 parameters compared (P > 0.1 for all). This similarity was maintained through 3 hours of incubation at 37 °C. Possibly, because of its structure, the directional freezing device promotes continuous ice nucleation so a specific CIN stage is no longer needed, thus reducing costs, energy use, and carbon footprint. PMID:26806291

  19. Development of large volume double ring penning plasma discharge source for efficient light emissions

    SciTech Connect

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-15

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.

  20. Diethylaminoethyl-cellulose clean-up of a large volume naphthenic acid extract.

    PubMed

    Frank, Richard A; Kavanagh, Richard; Burnison, B Kent; Headley, John V; Peru, Kerry M; Der Kraak, Glen Van; Solomon, Keith R

    2006-08-01

    The Athabasca oil sands of Alberta, Canada contain an estimated 174 billion barrels of bitumen. During oil sands refining processes, an extraction tailings mixture is produced that has been reported as toxic to aquatic organisms and is therefore collected in settling ponds on site. Investigation into the toxicity of these tailings pond waters has identified naphthenic acids (NAs) and their sodium salts as the major toxic components, and a multi-year study has been initiated to identify the principal toxic components within NA mixtures. Future toxicity studies require a large volume of a NA mixture, however, a well-defined bulk extraction technique is not available. This study investigated the use of a weak anion exchanger, diethylaminoethyl-cellulose (DEAE-cellulose), to remove humic-like material present after collecting the organic acid fraction of oil sands tailings pond water. The NA extraction and clean-up procedure proved to be a fast and efficient method to process large volumes of tailings pond water, providing an extraction efficiency of 41.2%. The resulting concentrated NA solution had a composition that differed somewhat from oil sands fresh tailings, with a reduction in the abundance of lower molecular weight NAs being the most significant difference. This reduction was mainly due to the initial acidification of tailings pond water. The DEAE-cellulose treatment had only a minor effect on the NA concentration, no noticeable effect on the NA fingerprint, and no significant effect on the mixture toxicity towards Vibrio fischeri. PMID:16469358

  1. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.

    PubMed

    Benkhedda, Karima; Epov, Vladimir N; Evans, R Douglas

    2005-04-01

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L(-1), respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L(-1), respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L(-1) levels, using the FI transient signal approach. PMID:15827719

  2. Multivariate optimization of mercury determination by flow injection-cold vapor generation-inductively coupled plasma optical emission spectrometry.

    PubMed

    dos Santos, Vanessa Cristina Gonçalves; Grassi, Marco Tadeu; de Campos, Mônica Soares; Peralta-Zamora, Patricio Guillermo; Abate, Gilberto

    2012-10-01

    In this work a procedure for mercury determination by Flow Injection-Cold Vapor Generation-Inductively Coupled Plasma Optical Emission Spectrometry (FI-CVG-ICP OES) has been developed. The system uses a small homemade glass separator constructed to drive the Hg vapor to the plasma. An evolutionary operation factorial design was used to evaluate the optimal experimental conditions for mercury vapor generation, aiming at the low consumption of reagents, the improvement of the analytical signal and consequently greater sensitivity. The procedure allowed the determination of mercury and showed excellent linearity for the concentration range from 0.50 μg L(-1) to 100.0 μg L(-1), with Limits of Detection (LOD) and Quantification (LOQ) of 0.11 μg L(-1) and 0.36 μg L(-1), respectively, and a sampling rate of 36 analyses per hour. The optimized procedure showed good accuracy and precision, and the method was validated by the analysis of two certified reference materials: Buffalo River Sediment (NIST 2704) and human hair (IAEA 085). A good agreement with the certified values was achieved, with recovery values of 99% and 98% and relative standard deviation close to 2%. PMID:22870503

  3. Global analysis of chemical constituents in Shengmai injection using high performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Li, Fei; Cheng, Tao-fang; Dong, Xin; Li, Ping; Yang, Hua

    2016-01-01

    This study aimed to develop a specific and reliable method to comprehensively analyze the chemical constituents in Shengmai injection (SMI) using high performance liquid chromatography coupled with tandem mass spectrometry. The qualitative analysis of SMI was achieved on a Kromasil 100-5C18 column, and the results demonstrated that a total of sixty-two compounds in SMI were unambiguously assigned or tentatively identified, and further, twenty-one compounds including fourteen saponins, six lignans and one L-borneol-7-O-[β-D-apiofuranosyl (1→6)]-β-D-gluco-pyranoside were quantified by HPLC-MS. Furthermore, L-borneol-7-O-[β-D-apio-furanosyl (1→6)]-β-D-glucopyranoside, originated from Radix ophiopogonis, was identified and quantified in SMI for the first time. The method validation results indicated that the methods were simple, specific and reliable. All the investigated compounds showed good linearity (r(2)≥0.9992) with a relatively wide concentration range and acceptable recovery at 90.13-109.09%. Consequently, the developed methods were successfully applied to ten batches of SMI samples analysis. The proposed methods may provide a useful and comprehensive reference for the quality control of SMI, and thus to provide supporting data for the quality control and application of SMI clinically. PMID:26342447

  4. Calcium Isolation from Large-Volume Human Urine Samples for 41Ca Analysis by Accelerator Mass Spectrometry

    PubMed Central

    Miller, James J; Hui, Susanta K; Jackson, George S; Clark, Sara P; Einstein, Jane; Weaver, Connie M; Bhattacharyya, Maryka H

    2013-01-01

    Calcium oxalate precipitation is the first step in preparation of biological samples for 41Ca analysis by accelerator mass spectrometry. A simplified protocol for large-volume human urine samples was characterized, with statistically significant increases in ion current and decreases in interference. This large-volume assay minimizes cost and effort and maximizes time after 41Ca administration during which human samples, collected over a lifetime, provide 41Ca:Ca ratios that are significantly above background. PMID:23672965

  5. Measurement of the velocity of neutrinos from the CNGS beam with the large volume detector.

    PubMed

    Agafonova, N Yu; Aglietta, M; Antonioli, P; Ashikhmin, V V; Bari, G; Bertoni, R; Bressan, E; Bruno, G; Dadykin, V L; Fulgione, W; Galeotti, P; Garbini, M; Ghia, P L; Giusti, P; Kemp, E; Mal'gin, A S; Miguez, B; Molinario, A; Persiani, R; Pless, I A; Ryasny, V G; Ryazhskaya, O G; Saavedra, O; Sartorelli, G; Shakyrianova, I R; Selvi, M; Trinchero, G C; Vigorito, C; Yakushev, V F; Zichichi, A; Razeto, A

    2012-08-17

    We report the measurement of the time of flight of ∼17 GeV ν(μ) on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8 × 10(-6) < (v(ν)-c)/c < 3.1 × 10(-6) (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements. PMID:23006352

  6. Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples.

    PubMed

    Azbouche, Ahmed; Belgaid, Mohamed; Mazrou, Hakim

    2015-08-01

    A fully detailed Monte Carlo geometrical model of a High Purity Germanium detector with a (152)Eu source, packed in Marinelli beaker, was developed for routine analysis of large volume environmental samples. Then, the model parameters, in particular, the dead layer thickness were adjusted thanks to a specific irradiation configuration together with a fine-tuning procedure. Thereafter, the calculated efficiencies were compared to the measured ones for standard samples containing (152)Eu source filled in both grass and resin matrices packed in Marinelli beaker. From this comparison, a good agreement between experiment and Monte Carlo calculation results was obtained highlighting thereby the consistency of the geometrical computational model proposed in this work. Finally, the computational model was applied successfully to determine the (137)Cs distribution in soil matrix. From this application, instructive results were achieved highlighting, in particular, the erosion and accumulation zone of the studied site. PMID:25982445

  7. Points based reconstruction and rendering of 3D shapes from large volume dataset

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchang; Tian, Jie; He, Huiguang; Li, Guangming

    2003-05-01

    In the field of medical imaging, researchers often need visualize lots of 3D datasets to get the informaiton contained in these datasets. But the huge data genreated by modern medical imaging device challenge the real time processing and rendering algorithms at all the time. Spurring by the great achievement of Points Based Rendering (PBR) in the fields of computer graphics to render very large meshes, we propose a new algorithm to use the points as basic primitive of surface reconstruction and rendering to interactively reconstruct and render very large volume dataset. By utilizing the special characteristics of medical image datasets, we obtain a fast and efficient points-based reconstruction and rendering algorithm in common PC. The experimental results show taht this algorithm is feasible and efficient.

  8. Dynamic dialysis: an efficient technique for large-volume sample desalting.

    PubMed

    Yuan, Peng; Le, Zhen; Zhong, Lipeng; Huang, Chunhong

    2015-08-18

    Dialysis is a well-known technique for laboratory separation. However, its efficiency is commonly restricted by the dialyzer volume and its passive diffusion manner. In addition, the sample is likely to be precipitated and inactive during a long dialysis process. To overcome these drawbacks, a dynamic dialysis method was described and evaluated. The dynamic dialysis was performed by two peristaltic pumps working in reverse directions, in order to drive countercurrent parallel flow of sample and buffer, respectively. The efficiency and capacity of this dynamic dialysis method was evaluated by recording and statistically comparing the variation of conductance from retentate under different conditions. The dynamic method was proven to be effective in dialyzing a large-volume sample, and its efficiency changes proportionally to the flow rate of sample. To sum up, circulating the sample and the buffer creates the highest possible concentration gradient to significantly improve dialysis capacity and shorten dialysis time. PMID:25036273

  9. Measurement of the Velocity of Neutrinos from the CNGS Beam with the Large Volume Detector

    NASA Astrophysics Data System (ADS)

    Agafonova, N. Yu.; Aglietta, M.; Antonioli, P.; Ashikhmin, V. V.; Bari, G.; Bertoni, R.; Bressan, E.; Bruno, G.; Dadykin, V. L.; Fulgione, W.; Galeotti, P.; Garbini, M.; Ghia, P. L.; Giusti, P.; Kemp, E.; Mal'gin, A. S.; Miguez, B.; Molinario, A.; Persiani, R.; Pless, I. A.; Ryasny, V. G.; Ryazhskaya, O. G.; Saavedra, O.; Sartorelli, G.; Shakyrianova, I. R.; Selvi, M.; Trinchero, G. C.; Vigorito, C.; Yakushev, V. F.; Zichichi, A.; Razeto, A.

    2012-08-01

    We report the measurement of the time of flight of ˜17GeV νμ on the CNGS baseline (732 km) with the Large Volume Detector (LVD) at the Gran Sasso Laboratory. The CERN-SPS accelerator has been operated from May 10th to May 24th 2012, with a tightly bunched-beam structure to allow the velocity of neutrinos to be accurately measured on an event-by-event basis. LVD has detected 48 neutrino events, associated with the beam, with a high absolute time accuracy. These events allow us to establish the following limit on the difference between the neutrino speed and the light velocity: -3.8×10-6<(vν-c)/c<3.1×10-6 (at 99% C.L.). This value is an order of magnitude lower than previous direct measurements.

  10. Digital fringe projection system for large-volume 360-deg shape measurement

    NASA Astrophysics Data System (ADS)

    Sitnik, Robert; Kujawinska, Malgorzata; Woznicki, Jerzy M.

    2002-02-01

    We present a system for 3-D shape measurement in large volumes based on combined digital-fringe--Gray-code projection. With the help of a new calibration procedure, the system provides accurate results despite its crossed-axis configuration and unknown aberrations of the digital light projector and CCD camera. Also, the separate clouds of points captured from different directions are automatically merged into the main cloud. The system delivers results in the form of (x,y,z) coordinates of the object points with additional (R,G,B) color information about their texture. Applicability of the system is proven by presenting sample results of measurements performed on complex objects. The uncertainty of the system was estimated at 10 -4 of the measurement volume.

  11. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry

    PubMed Central

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J.

    2015-01-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin–Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  12. First large volume characterization of the QIE10/11 custom front-end integrated circuits

    NASA Astrophysics Data System (ADS)

    Hare, D.; Baumbaugh, A.; Dal Monte, L.; Freeman, J.; Hirschauer, J.; Hughes, E.; Roy, T.; Whitbeck, A.; Yumiceva, F.; Zimmerman, T.

    2016-02-01

    The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. A central feature of this upgrade is the development of two new versions of the QIE (Charge Integrator and Encoder), a Fermilab-designed custom ASIC for measurement of charge from detectors in high-rate environments. These most recent additions to the QIE family feature 17-bits of dynamic range with 1% digitization precision for high charge and a time-to-digital converter (TDC) with half nanosecond resolution all with 16 bits of readout per bunch crossing. For the first time, the CMS experiment has produced and characterized in great detail a large volume of chips. The characteristics and performance of the new QIE and their related chip-to-chip variations as measured in a sample of 10,000 chips is described.

  13. Generation of large volume hydrostatic pressure to 8 GPa for ultrasonic studies

    NASA Astrophysics Data System (ADS)

    Kozuki, Yasushi; Yoneda, Akira; Fujimura, Akio; Sawamoto, Hiroshi; Kumazawa, Mineo

    1986-09-01

    The design and performance of a liquid-solid hybrid cell to generate high hydrostatic pressures in a relatively large volume (for use in measurements of the pressure dependence of the physical properties of materials) are reported. A 4:1 methanol-ethanol mixture is employed in 12-mm-side and 20-mm-side versions of an eight-cubic-anvil apparatus driven by a 10-kt press. Pressures up to 8 GPa are obtained safely in a 16-cu cm volume by applying uniaxial force of 3 kt. The cell is used to obtain measurements of the velocity of ultrasonic waves in fused quartz: the experimental setup is described, and sample results are presented graphically.

  14. Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2

    SciTech Connect

    Hull, E.L.

    2006-10-30

    Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

  15. Aerodynamics of the Large-Volume, Flow-Through Detector System. Final report

    SciTech Connect

    Reed, H.; Saric, W.; Laananen, D.; Martinez, C.; Carrillo, R.; Myers, J.; Clevenger, D.

    1996-03-01

    The Large-Volume Flow-Through Detector System (LVFTDS) was designed to monitor alpha radiation from Pu, U, and Am in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. Goal of this effort was to provide mechanical design information for installation of LVFTDS in an incinerator, with emphasis on ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: calculation of pressure drop through the system, materials testing to determine surrogate materials for wind-tunnel testing, and wind-tunnel testing of an actual configuration.

  16. Isolation of organic acids from large volumes of water by adsorption chromatography

    USGS Publications Warehouse

    Aiken, George R.

    1984-01-01

    The concentrations of dissolved organic carbon from most natural waters ranges from 1 to 20 milligrams carbon per liter, of which approximately 75 percent are organic acids. These acids can be chromatographically fractionated into hydrophobic organic acids, such as humic substances, and hydrophilic organic acids. To effectively study any of these organic acids, they must be isolated from other organic and inorganic species, and concentrated. Usually, large volumes of water must be processed to obtain sufficient quantities of material, and adsorption chromatography on synthetic, macroporous resins has proven to be a particularly effective method for this purpose. The use of the nonionic Amberlite XAD-8 and Amberlite XAD-4 resins and the anion exchange resin Duolite A-7 for isolating and concentrating organic acids from water is presented.

  17. The complex aerodynamic footprint of desert locusts revealed by large-volume tomographic particle image velocimetry.

    PubMed

    Henningsson, Per; Michaelis, Dirk; Nakata, Toshiyuki; Schanz, Daniel; Geisler, Reinhard; Schröder, Andreas; Bomphrey, Richard J

    2015-07-01

    Particle image velocimetry has been the preferred experimental technique with which to study the aerodynamics of animal flight for over a decade. In that time, hardware has become more accessible and the software has progressed from the acquisition of planes through the flow field to the reconstruction of small volumetric measurements. Until now, it has not been possible to capture large volumes that incorporate the full wavelength of the aerodynamic track left behind during a complete wingbeat cycle. Here, we use a unique apparatus to acquire the first instantaneous wake volume of a flying animal's entire wingbeat. We confirm the presence of wake deformation behind desert locusts and quantify the effect of that deformation on estimates of aerodynamic force and the efficiency of lift generation. We present previously undescribed vortex wake phenomena, including entrainment around the wing-tip vortices of a set of secondary vortices borne of Kelvin-Helmholtz instability in the shear layer behind the flapping wings. PMID:26040598

  18. Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection-anodic stripping voltammetry.

    PubMed

    Chaiyo, Sudkate; Chailapakul, Orawon; Siangproh, Weena

    2014-12-10

    A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection-anodic stripping voltammetry (SI-ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at -1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s(-1). An anodic stripping voltammogram was recorded from -0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at -0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1-30.0 ng mL(-1) and 5.0-60.0 ng mL(-1)). The limit of detection (S/N=3) obtained from the experiment was found to be 0.04 ng mL(-1). The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL(-1), respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level. PMID:25441879

  19. A pyramid-based approach to visual exploration of a large volume of vehicle trajectory data

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Li, Xiang

    2012-12-01

    Advances in positioning and wireless communicating technologies make it possible to collect large volumes of trajectory data of moving vehicles in a fast and convenient fashion. These data can be applied to traffic studies. Behind this application, a methodological issue that still requires particular attention is the way these data should be spatially visualized. Trajectory data physically consists of a large number of positioning points. With the dramatic increase of data volume, it becomes a challenge to display and explore these data. Existing commercial software often employs vector-based indexing structures to facilitate the display of a large volume of points, but their performance downgrades quickly when the number of points is very large, for example, tens of millions. In this paper, a pyramid-based approach is proposed. A pyramid method initially is invented to facilitate the display of raster images through the tradeoff between storage space and display time. A pyramid is a set of images at different levels with different resolutions. In this paper, we convert vector-based point data into raster data, and build a gridbased indexing structure in a 2D plane. Then, an image pyramid is built. Moreover, at the same level of a pyramid, image is segmented into mosaics with respect to the requirements of data storage and management. Algorithms or procedures on grid-based indexing structure, image pyramid, image segmentation, and visualization operations are given in this paper. A case study with taxi trajectory data in Shanghai is conducted. Results demonstrate that the proposed method outperforms the existing commercial software.

  20. Building high-performance system for processing a daily large volume of Chinese satellites imagery

    NASA Astrophysics Data System (ADS)

    Deng, Huawu; Huang, Shicun; Wang, Qi; Pan, Zhiqiang; Xin, Yubin

    2014-10-01

    The number of Earth observation satellites from China increases dramatically recently and those satellites are acquiring a large volume of imagery daily. As the main portal of image processing and distribution from those Chinese satellites, the China Centre for Resources Satellite Data and Application (CRESDA) has been working with PCI Geomatics during the last three years to solve two issues in this regard: processing the large volume of data (about 1,500 scenes or 1 TB per day) in a timely manner and generating geometrically accurate orthorectified products. After three-year research and development, a high performance system has been built and successfully delivered. The high performance system has a service oriented architecture and can be deployed to a cluster of computers that may be configured with high end computing power. The high performance is gained through, first, making image processing algorithms into parallel computing by using high performance graphic processing unit (GPU) cards and multiple cores from multiple CPUs, and, second, distributing processing tasks to a cluster of computing nodes. While achieving up to thirty (and even more) times faster in performance compared with the traditional practice, a particular methodology was developed to improve the geometric accuracy of images acquired from Chinese satellites (including HJ-1 A/B, ZY-1-02C, ZY-3, GF-1, etc.). The methodology consists of fully automatic collection of dense ground control points (GCP) from various resources and then application of those points to improve the photogrammetric model of the images. The delivered system is up running at CRESDA for pre-operational production and has been and is generating good return on investment by eliminating a great amount of manual labor and increasing more than ten times of data throughput daily with fewer operators. Future work, such as development of more performance-optimized algorithms, robust image matching methods and application

  1. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  2. Determination of phosphodiesterase type V inhibitors in wastewater by direct injection followed by liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Causanilles, Ana; Emke, Erik; de Voogt, Pim

    2016-09-15

    A simple, fast and reliable analytical method for the determination of phosphodiesterase type V inhibitors in wastewater was developed and validated. The method was based on direct injection followed by liquid chromatography coupled to tandem mass spectrometry with triple quadrupole as mass analyzer. Transformation products and analogues were included in the target list besides the three active pharmaceutical ingredients (sildenafil, vardenafil and tadalafil). The method performance was thoroughly investigated, including the analyte stability in wastewater and matrix effect. All target compounds presented linear fits between their LOD and 500ng/L. The quantification limits ranged from 1.6 to 30ng/L for all compounds except for n-octylnortadalafil (LOQ: 100ng/L); precision calculated as intraday repeatability was lower than 30%; accuracy calculated as procedural recovery ranged successfully between 85 and 105% in all cases. The method was applied to samples collected during three week-long monitoring campaigns performed in 2013, 2014 and 2015 in three Dutch cities. Only sildenafil and its two metabolites, desmethyl- and desethylsildenafil, were present with normalized loads ranging from LOQ to 8.3, 11.8 and 21.6mg/day/1000 inh, respectively. Two additional week-long sets of samples were collected in Amsterdam at the time that a festival event took place, bringing around 350,000 visitors to the city. The difference in drug usage patterns was statistically studied: "weekday" versus "weekend", "normal" versus "atypical" week; and results discussed. The metabolite to parent drug concentration ratio evolution during consecutive years was discussed, leading to several possible explanations that should be further investigated. Finally, wastewater-based epidemiology approach was applied to back-calculate sildenafil consumption. PMID:27161135

  3. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  4. Intracytoplasmic morphologically selected sperm injection results in improved clinical outcomes in couples with previous ICSI failures or male factor infertility: a meta-analysis.

    PubMed

    Setti, Amanda S; Braga, Daniela P A F; Figueira, Rita C S; Iaconelli, Assumpto; Borges, Edson

    2014-12-01

    The objective of this study was to perform the first meta-analysis to compare conventional intracytoplasmic sperm injection (ICSI) outcomes and intracytoplasmic morphologically selected sperm injection (IMSI) outcomes in couples with previous ICSI failures (IF) or male factor infertility (MF). A systematic review was performed by searching Medline database to identify articles reporting on the comparison between ICSI and IMSI outcomes in couples with IF or MF. The main outcome measures were the implantation, pregnancy and miscarriage rates. Thirteen studies fulfilled our predetermined criteria. The overall results of meta-analysis for implantation (OR: 2.88; CI: 2.13-3.89), pregnancy (OR: 2.07; CI: 1.22-3.50) and miscarriage rates (OR: 0.31; CI: 0.14-0.67) were in favor of IMSI in couples with IF. Additionally, the overall result of meta-analysis for implantation (OR: 1.56; CI: 1.11-2.18) and pregnancy rate (OR: 1.61; CI: 1.17-2.23) were in favor of IMSI in couples with MF. IMSI increases the odds of implantation by 50% and pregnancy by 60% in couples with MF. In light of improved clinical outcomes, we recommend promoting the IMSI method in couples with MF. Moreover, IMSI results in a 3-fold increase in implantation rate, a 2-fold increase in pregnancy rate and a 70% decrease in miscarriage rate as compared to ICSI in couples with IF, however, as no randomized evidence exists, randomized studies are needed to confirm the IMSI benefits in couples with IF. PMID:25461360

  5. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs)

    NASA Astrophysics Data System (ADS)

    Lehmann, Andreas; Höflich, Katharina; Post, Piia; Myrberg, Kai

    2016-04-01

    Large volume changes (LVCs) and major Baltic inflows (MBIs) are essential processes for the water exchange and renewal of the deep stagnant deep water in the Baltic Sea deep basins. MBIs are considered as subset of LVCs transporting with the large water volume a big amount of highly saline and oxygenated water into the Baltic Sea. Since the early 1980s the frequency of MBIs has dropped drastically from 5 to 7 events to only one inflow per decade, and long lasting periods without MBIs became the usual state. Only in January 1993, 2003 and December 2014 MBIs occurred that were able to interrupt the stagnation periods in the deep basins of the Baltic Sea. However, in spite of the decreasing frequency of MBIs, there is no obvious decrease of LVCs. Large volume changes have been calculated for the period 1887-2014 filtering daily time series of Landsort sea surface elevation anomalies. The Landsort sea level is known to reflect the mean sea level of the Baltic Sea very well. Thus, LVCs can be calculated from the mean sea level variations. The cases with local minimum and maximum difference resulting of at least 100 km³ of water volume change have been chosen for a closer study of characteristic pathways of deep cyclones. The average duration of a LVC is about 40 days. During this time, 5-6 deep cyclones will move along characteristic storm tracks. We obtained three main routes of deep cyclones which were associated with LVCs, but also with the climatology. One is approaching from the west at about 58-62°N, passing the northern North Sea, Oslo, Sweden and the Island of Gotland, while a second, less frequent one, is approaching from the west at about 65°N, crossing Scandinavia south-eastwards passing the Sea of Bothnia and entering Finland. A third very frequent one is entering the study area north of Scotland turning north-eastwards along the northern coast of Scandinavia. Thus, the conditions for a LVC to happen are a temporal clustering of deep cyclones in certain

  6. Multiple distal basin plains reveal a common distribution for large volume turbidity current recurrence intervals

    NASA Astrophysics Data System (ADS)

    Clare, M. A.; Talling, P. J.; Hunt, J.; Challenor, P. G.

    2013-12-01

    Remarkably large volume (>>1 km3) deposits emplaced by turbidity currents in distal basin plains result from large submarine landslides. Such landslides may generate tsunamis, and the turbidity currents pose threats to seafloor structures as well as being one of the most important processes for sediment transport across our planet. It is therefore important to understand the recurrence intervals and timing of landslides and the turbidity currents they generate. An understanding of their frequency provides information to assist in forward-looking geohazard analyses, including probabilistic modelling of potential damage. Analysis of their frequency distribution may also help to unravel links to triggering and conditioning mechanisms. We present long term records (up to 17 Ma) of landslide-triggered turbidity current recurrence intervals. We document the distribution of recurrence intervals for large volume turbidites in four basin-plains in disparate locations worldwide, including two recent systems and two outcrop studies. The recurrence times of turbidity currents is inferred from intervals of hemipelagic mud that form by fallout of background sediment between turbidity currents, and the average accumulation rate of hemipelagic mud between dated horizons. There is very little erosion below turbidite beds in the study locations; hence they represent an almost continuous sedimentary record. This method has the advantage of providing information on the timing of many different events from a small number of cores, with such large numbers (N> 100) of beds needed for robust statistical analysis. A common frequency distribution of turbidite recurrence intervals is observed, despite their variable ages and disparate locations, suggesting similar underlying controls on triggering mechanism and frequency. This common distribution closely approximates a temporally-random Poisson distribution, such that the probability of an event occurring along the basin margin is

  7. Determination of 235U enrichment with a large volume CZT detector

    NASA Astrophysics Data System (ADS)

    Mortreau, Patricia; Berndt, Reinhard

    2006-01-01

    Room-temperature CdZnTe and CdTe detectors have been routinely used in the field of Nuclear Safeguards for many years [Ivanov et al., Development of large volume hemispheric CdZnTe detectors for use in safeguards applications, ESARDA European Safeguards Research and Development Association, Le Corum, Montpellier, France, 1997, p. 447; Czock and Arlt, Nucl. Instr. and Meth. A 458 (2001) 175; Arlt et al., Nucl. Instr. and Meth. A 428 (1999) 127; Lebrun et al., Nucl. Instr. and Meth. A 448 (2000) 598; Aparo et al., Development and implementation of compact gamma spectrometers for spent fuel measurements, in: Proceedings, 21st Annual ESARDA, 1999; Arlt and Rudsquist, Nucl. Instr. and Meth. A 380 (1996) 455; Khusainov et al., High resolution pin type CdTe detectors for the verification of nuclear material, in: Proceedings, 17th Annual ESARDA European Safeguards Research and Development Association, 1995; Mortreau and Berndt, Nucl. Instr. and Meth. A 458 (2001) 183; Ruhter et al., UCRL-JC-130548, 1998; Abbas et al., Nucl. Instr. and Meth. A 405 (1998) 153; Ruhter and Gunnink, Nucl. Instr. and Meth. A 353 (1994) 716]. Due to their performance and small size, they are ideal detectors for hand-held applications such as verification of spent and fresh fuel, U/Pu attribute tests as well as for the determination of 235U enrichment. The hemispherical CdZnTe type produced by RITEC (Riga, Latvia) [Ivanov et al., 1997] is the most widely used detector in the field of inspection. With volumes ranging from 2 to 1500 mm 3, their spectral performance is such that the use of electronic processing to correct the pulse shape is not required. This paper reports on the work carried out with a large volume (15×15×7.5 mm 3) and high efficiency hemispherical CdZnTe detector for the determination of 235U enrichment. The measurements were made with certified uranium samples whose enrichment ranging from 0.31% to 92.42%, cover the whole range of in-field measurement conditions. The interposed

  8. A Novel Technique for Endovascular Removal of Large Volume Right Atrial Tumor Thrombus

    SciTech Connect

    Nickel, Barbara; McClure, Timothy Moriarty, John

    2015-08-15

    Venous thromboembolic disease is a significant cause of morbidity and mortality, particularly in the setting of large volume pulmonary embolism. Thrombolytic therapy has been shown to be a successful treatment modality; however, its use somewhat limited due to the risk of hemorrhage and potential for distal embolization in the setting of large mobile thrombi. In patients where either thrombolysis is contraindicated or unsuccessful, and conventional therapies prove inadequate, surgical thrombectomy may be considered. We present a case of percutaneous endovascular extraction of a large mobile mass extending from the inferior vena cava into the right atrium using the Angiovac device, a venovenous bypass system designed for high-volume aspiration of undesired endovascular material. Standard endovascular methods for removal of cancer-associated thrombus, such as catheter-directed lysis, maceration, and exclusion, may prove inadequate in the setting of underlying tumor thrombus. Where conventional endovascular methods either fail or are unsuitable, endovascular thrombectomy with the Angiovac device may be a useful and safe minimally invasive alternative to open resection.

  9. Performance of the Goulden large volume sampler for acidic compounds in natural waters

    SciTech Connect

    Headley, J.; Dickson, L.; Swyngedouw, C.; Crosley, D.; Whitley, G.

    1995-12-31

    The Goulden large volume sampler (LVX) has received extensive use for monitoring and surveillance surveys of natural waters impacted by pulp and paper mills, and agricultural run-off water. Despite this use, there is a lack of performance criteria for acidic contaminants, There are concerns about whether this sampler which was originally developed for extractions of OCs, PCBs and PAHs, was suitable for sampling polar acidic compounds. Performance tests conducted in this work, indicated that with the exception of 4-bromophenol and dichlorophenylacetic acid, surrogate compounds were recovered from pH 2 adjusted samples (20 1) at approximately 80 {+-} 15--35% recovery. Although these recoveries were comparable to values attainable for neutral pesticides, the standard deviations were up to four times greater than values reported for neutral compounds, for concentrations of analytes at low ppt levels. Specific performance criteria (percent recoveries where the number of determinations are given in parenthesis) observed for the proposed surrogates heptadecanoic acid, dichlorophenylacetic acid, 4-bromophenol, o-methylpodocarpic acid and 2,4,6-tribromophenol were: 86.6(19) {+-} 26.8; 46.1(18) {+-} 14.5; 31.6(19) {+-} 24.1; 78.4(18) {+-} 14.7; and95.2(18) {+-} 33.6 respectively. These values can be used to provide guidelines for acceptable surrogate recoveries, and validation of extractions of acidic polar compounds.

  10. A scale down process for the development of large volume cryopreservation☆

    PubMed Central

    Kilbride, Peter; Morris, G. John; Milne, Stuart; Fuller, Barry; Skepper, Jeremy; Selden, Clare

    2014-01-01

    The process of ice formation and propagation during cryopreservation impacts on the post-thaw outcome for a sample. Two processes, either network solidification or progressive solidification, can dominate the water–ice phase transition with network solidification typically present in small sample cryo-straws or cryo-vials. Progressive solidification is more often observed in larger volumes or environmental freezing. These different ice phase progressions could have a significant impact on cryopreservation in scale-up and larger volume cryo-banking protocols necessitating their study when considering cell therapy applications. This study determines the impact of these different processes on alginate encapsulated liver spheroids (ELS) as a model system during cryopreservation, and develops a method to replicate these differences in an economical manner. It was found in the current studies that progressive solidification resulted in fewer, but proportionally more viable cells 24 h post-thaw compared with network solidification. The differences between the groups diminished at later time points post-thaw as cells recovered the ability to undertake cell division, with no statistically significant differences seen by either 48 h or 72 h in recovery cultures. Thus progressive solidification itself should not prove a significant hurdle in the search for successful cryopreservation in large volumes. However, some small but significant differences were noted in total viable cell recoveries and functional assessments between samples cooled with either progressive or network solidification, and these require further investigation. PMID:25219980

  11. Spectroscopic properties of large-volume virtual Frisch-grid CdMnTe detectors

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Park, Chansun; Kim, Pilsu; Cho, Shinhaeng; Lee, Jinseo; Hong, T. K.; Hossain, A.; Bolotnikov, A. E.; James, R. B.

    2015-06-01

    CdMnTe(CMT) is a promising alternative material for use as a room-temperature radiation detector. Frisch-grid detectors have a simple configuration and outstanding spectral performance compared with other single-carrier collection techniques. The energy resolution of large-volume virtual Frisch-grid CMT detectors was tested by using several isotopes such as 57Co, 22 Na, 133Ba, and 137Cs together or separately. Energy resolutions of 6.7% and 2.1% were obtained for 122-keV 57Co and 662-keV 137Cs gamma rays, respectively, without using any additional signal processing techniques. Also, a 12-mm-thick CMT detector detected the 511-keV and 1.277-MeV gamma peaks of 22Na with values of the full width at half maximum (FWHM) of 2.7% and 1.5%, respectively. In addition, multiple low- and high-energy gamma peaks of 133Ba were well separated. The mobilitylifetime product calculated from the shift of the 662-keV photo-peak vs. bias by using Hecht's equation was 7 × 10 -3 cm2/V. These results show the possibility of using CMT detectors in response to various requirements for gamma-ray detection at room-temperature.

  12. A new large-volume metal reference standard for radioactive waste management

    PubMed Central

    Tzika, F.; Hult, M.; Stroh, H.; Marissens, G.; Arnold, D.; Burda, O.; Kovář, P.; Suran, J.; Listkowska, A.; Tyminski, Z.

    2016-01-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of 60Co (0.290±0.006 Bq g−1) and 110mAg (3.05±0.09 Bq g−1) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which 60Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. PMID:25977349

  13. A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations

    NASA Astrophysics Data System (ADS)

    Xia, Fang; Qian, Gujie; Brugger, Joël; Studer, Andrew; Olsen, Scott; Pring, Allan

    2010-10-01

    A hydrothermal cell with 320 ml internal volume has been designed and constructed for in situ neutron diffraction studies of hydrothermal crystallizations. The cell design adopts a dumbbell configuration assembled with standard commercial stainless steel components and a zero-scattering Ti-Zr alloy sample compartment. The fluid movement and heat transfer are simply driven by natural convection due to the natural temperature gradient along the fluid path, so that the temperature at the sample compartment can be stably sustained by heating the fluid in the bottom fluid reservoir. The cell can operate at temperatures up to 300 °C and pressures up to 90 bars and is suitable for studying reactions requiring a large volume of hydrothermal fluid to damp out the negative effect from the change of fluid composition during the course of the reactions. The capability of the cell was demonstrated by a hydrothermal phase transformation investigation from leucite (KAlSi2O6) to analcime (NaAlSi2O6ṡH2O) at 210 °C on the high intensity powder diffractometer Wombat in ANSTO. The kinetics of the transformation has been resolved by collecting diffraction patterns every 10 min followed by Rietveld quantitative phase analysis. The classical Avrami/Arrhenius analysis gives an activation energy of 82.3±1.1 kJ mol-1. Estimations of the reaction rate under natural environments by extrapolations agree well with petrological observations.

  14. Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors

    SciTech Connect

    Berger, Joshua; Cui, Yanou; Zhao, Yue; /Stanford U., ITP /Stanford U., Phys. Dept.

    2015-04-02

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  15. Plasma response to electron energy filter in large volume plasma device

    SciTech Connect

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-15

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  16. A scale down process for the development of large volume cryopreservation.

    PubMed

    Kilbride, Peter; Morris, G John; Milne, Stuart; Fuller, Barry; Skepper, Jeremy; Selden, Clare

    2014-12-01

    The process of ice formation and propagation during cryopreservation impacts on the post-thaw outcome for a sample. Two processes, either network solidification or progressive solidification, can dominate the water-ice phase transition with network solidification typically present in small sample cryo-straws or cryo-vials. Progressive solidification is more often observed in larger volumes or environmental freezing. These different ice phase progressions could have a significant impact on cryopreservation in scale-up and larger volume cryo-banking protocols necessitating their study when considering cell therapy applications. This study determines the impact of these different processes on alginate encapsulated liver spheroids (ELS) as a model system during cryopreservation, and develops a method to replicate these differences in an economical manner. It was found in the current studies that progressive solidification resulted in fewer, but proportionally more viable cells 24h post-thaw compared with network solidification. The differences between the groups diminished at later time points post-thaw as cells recovered the ability to undertake cell division, with no statistically significant differences seen by either 48 h or 72 h in recovery cultures. Thus progressive solidification itself should not prove a significant hurdle in the search for successful cryopreservation in large volumes. However, some small but significant differences were noted in total viable cell recoveries and functional assessments between samples cooled with either progressive or network solidification, and these require further investigation. PMID:25219980

  17. Probing the Earth’s interior with a large-volume liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Hochmuth, Kathrin A.; Feilitzsch, Franz V.; Fields, Brian D.; Undagoitia, Teresa Marrodán; Oberauer, Lothar; Potzel, Walter; Raffelt, Georg G.; Wurm, Michael

    2007-02-01

    A future large-volume liquid scintillator detector would provide a high-statistics measurement of terrestrial antineutrinos originating from β-decays of the uranium and thorium chains. In addition, the forward displacement of the neutron in the detection reaction ν+p→n+e provides directional information. We investigate the requirements on such detectors to distinguish between certain geophysical models on the basis of the angular dependence of the geoneutrino flux. Our analysis is based on a Monte-Carlo simulation with different levels of light yield, considering both unloaded and gadolinium-loaded scintillators. We find that a 50 kt detector such as the proposed LENA (Low Energy Neutrino Astronomy) will detect deviations from isotropy of the geoneutrino flux significantly. However, with an unloaded scintillator the time needed for a useful discrimination between different geophysical models is too large if one uses the directional information alone. A Gd-loaded scintillator improves the situation considerably, although a 50 kt detector would still need several decades to distinguish between a geophysical reference model and one with a large neutrino source in the Earth’s core. However, a high-statistics measurement of the total geoneutrino flux and its spectrum still provides an extremely useful glance at the Earth’s interior.

  18. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  19. Evaluation of Large Volume SrI2(Eu) Scintillator Detectors

    SciTech Connect

    Sturm, B W; Cherepy, N J; Drury, O B; Thelin, P A; Fisher, S E; Magyar, A F; Payne, S A; Burger, A; Boatner, L A; Ramey, J O; Shah, K S; Hawrami, R

    2010-11-18

    There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packaged detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.

  20. A study on high strength concrete prepared with large volumes of low calcium fly ash

    SciTech Connect

    Poon, C.S.; Lam, L.; Wong, Y.L.

    2000-03-01

    This paper presents the results of a laboratory study on high strength concrete prepared with large volumes of low calcium fly ash. The parameters studied included compressive strength, heat of hydration, chloride diffusivity, degree of hydration, and pore structures of fly ash/cement concrete and corresponding pastes. The experimental results showed that concrete with a 28-day compressive strength of 80 MPA could be obtained with a water-to-binder (w/b) ratio of 0.24, with a fly ash content of 45%. Such concrete has lower heat of hydration and chloride diffusivity than the equivalent plain cement concrete or concrete prepared with lower fly ash contents. The test results showed that at lower w/b ratios, the contribution to strength by the fly ash was higher than in the mixes prepared with higher w/b ratios. The study also quantified the reaction rates of cement and fly ash in the cementitious materials. The results demonstrated the dual effects of fly ash in concrete: (1) act as a micro-aggregate and (2) being a pozzolana. It was also noted that the strength contribution of fly ash in concrete was better than in the equivalent cement/fly ash pastes suggesting the fly ash had improved the interfacial bond between the past and the aggregates in the concrete. Such an improvement was also reflected in the results of the mercury intrusion porosimetry (MIP) test.

  1. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    SciTech Connect

    Berger, Joshua; Cui, Yanou; Zhao, Yue E-mail: ycui@perimeterinstitute.ca

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  2. Development testing of large volume water sprays for warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.

    1986-01-01

    A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.

  3. A new large-volume metal reference standard for radioactive waste management.

    PubMed

    Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z

    2016-03-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. PMID:25977349

  4. Large volume flow electroporation of mRNA: clinical scale process.

    PubMed

    Li, Linhong; Allen, Cornell; Shivakumar, Rama; Peshwa, Madhusudan V

    2013-01-01

    Genetic modification for enhancing cellular function has been continuously pursued for fighting diseases. Messenger RNA (mRNA) transfection is found to be a promising solution in modifying hematopoietic and immune cells for therapeutic purpose. We have developed a flow electroporation-based system for large volume electroporation of cells with various molecules, including mRNA. This allows robust and scalable mRNA transfection of primary cells of different origin. Here we describe transfection of chimeric antigen receptor (CAR) mRNA into NK cells to modulate the ability of NK cells to target tumor cells. High levels of CAR expression in NK cells can be maintained for 3-7 days post transfection. CD19-specific CAR mRNA transfected NK cells demonstrate targeted lysis of CD19-expressing tumor cells OP-1, primary B-CLL tumor cells, and autologous CD19+ B cells in in vitro assays with enhanced potency: >80% lysis at effector-target ratio of 1:1. This allows current good manufacturing practices (cGMP) and regulatory compliant manufacture of CAR mRNA transfected NK cells for clinical delivery. PMID:23296932

  5. Curling probe measurement of large-volume pulsed plasma confined by surface magnetic field

    NASA Astrophysics Data System (ADS)

    Pandey, Anil; Sakakibara, Wataru; Matsuoka, Hiroyuki; Nakamura, Keiji; Sugai, Hideo; Chubu University Team; DOWA Thermotech Collaboration

    2015-09-01

    Curling probe (CP) has recently been developed which enables the local electron density measurement even in plasma for non-conducting film CVD. The electron density is obtained from a shift of resonance frequency of spiral antenna in discharge ON and OFF monitored by a network analyzer (NWA). In case of a pulsed glow discharge, synchronization of discharge pulse with frequency sweep of NWA must be established. In this paper, we report time and space-resolved CP measurement of electron density in a large volume plasma (80 cm diameter, 110 cm length) confined by surface magnetic field (multipole cusp field ~0.03 T). For plasma-aided modification of metal surface, the plasma is produced by 1 kV glow discharge at pulse frequency of 0.3 - 25 kHz with various duty ratio in gas (Ar, N2, C2H2) at pressure ~ 1 Pa. A radially movable CP revealed a remarkable effect of surface magnetic confinement: detach of plasma from the vessel wall and a fairly uniform plasma in the central region. In afterglow phase, the electron density was observed to decrease much faster in C2H2 discharge than in Ar discharge.

  6. High-density three-dimensional localization microscopy across large volumes.

    PubMed

    Legant, Wesley R; Shao, Lin; Grimm, Jonathan B; Brown, Timothy A; Milkie, Daniel E; Avants, Brian B; Lavis, Luke D; Betzig, Eric

    2016-04-01

    Extending three-dimensional (3D) single-molecule localization microscopy away from the coverslip and into thicker specimens will greatly broaden its biological utility. However, because of the limitations of both conventional imaging modalities and conventional labeling techniques, it is a challenge to localize molecules in three dimensions with high precision in such samples while simultaneously achieving the labeling densities required for high resolution of densely crowded structures. Here we combined lattice light-sheet microscopy with newly developed, freely diffusing, cell-permeable chemical probes with targeted affinity for DNA, intracellular membranes or the plasma membrane. We used this combination to perform high-localization precision, ultrahigh-labeling density, multicolor localization microscopy in samples up to 20 μm thick, including dividing cells and the neuromast organ of a zebrafish embryo. We also demonstrate super-resolution correlative imaging with protein-specific photoactivable fluorophores, providing a mutually compatible, single-platform alternative to correlative light-electron microscopy over large volumes. PMID:26950745

  7. Large-volume methacrylate monolith for plasmid purification. Process engineering approach to synthesis and application.

    PubMed

    Danquah, Michael K; Forde, Gareth M

    2008-04-25

    The extent of exothermicity associated with the construction of large-volume methacrylate monolithic columns has somewhat obstructed the realisation of large-scale rapid biomolecule purification especially for plasmid-based products which have proven to herald future trends in biotechnology. A novel synthesis technique via a heat expulsion mechanism was employed to prepare a 40 mL methacrylate monolith with a homogeneous radial pore structure along its thickness. Radial temperature gradient was recorded to be only 1.8 degrees C. Maximum radial temperature recorded at the centre of the monolith was 62.3 degrees C, which was only 2.3 degrees C higher than the actual polymerisation temperature. Pore characterisation of the monolithic polymer showed unimodal pore size distributions at different radial positions with an identical modal pore size of 400 nm. Chromatographic characterisation of the polymer after functionalisation with amino groups displayed a persistent dynamic binding capacity of 15.5 mg of plasmid DNA/mL. The maximum pressure drop recorded was only 0.12 MPa at a flow rate of 10 mL/min. The polymer demonstrated rapid separation ability by fractionating Escherichia coli DH5alpha-pUC19 clarified lysate in only 3 min after loading. The plasmid sample collected after the fast purification process was tested to be a homogeneous supercoiled plasmid with DNA electrophoresis and restriction analysis. PMID:18329651

  8. Major risk from rapid, large-volume landslides in Europe (EU Project RUNOUT)

    NASA Astrophysics Data System (ADS)

    Kilburn, Christopher R. J.; Pasuto, Alessandro

    2003-08-01

    Project RUNOUT has investigated methods for reducing the risk from large-volume landslides in Europe, especially those involving rapid rates of emplacement. Using field data from five test sites (Bad Goisern and Köfels in Austria, Tessina and Vajont in Italy, and the Barranco de Tirajana in Gran Canaria, Spain), the studies have developed (1) techniques for applying geomorphological investigations and optical remote sensing to map landslides and their evolution; (2) analytical, numerical, and cellular automata models for the emplacement of sturzstroms and debris flows; (3) a brittle-failure model for forecasting catastrophic slope failure; (4) new strategies for integrating large-area Global Positioning System (GPS) arrays with local geodetic monitoring networks; (5) methods for raising public awareness of landslide hazards; and (6) Geographic Information System (GIS)-based databases for the test areas. The results highlight the importance of multidisciplinary studies of landslide hazards, combining subjects as diverse as geology and geomorphology, remote sensing, geodesy, fluid dynamics, and social profiling. They have also identified key goals for an improved understanding of the physical processes that govern landslide collapse and runout, as well as for designing strategies for raising public awareness of landslide hazards and for implementing appropriate land management policies for reducing landslide risk.

  9. Effect of large volume paracentesis on plasma volume--a cause of hypovolemia

    SciTech Connect

    Kao, H.W.; Rakov, N.E.; Savage, E.; Reynolds, T.B.

    1985-05-01

    Large volume paracentesis, while effectively relieving symptoms in patients with tense ascites, has been generally avoided due to reports of complications attributed to an acute reduction in intravascular volume. Measurements of plasma volume in these subjects have been by indirect methods and have not uniformly confirmed hypovolemia. We have prospectively evaluated 18 patients (20 paracenteses) with tense ascites and peripheral edema due to chronic liver disease undergoing 5 liter paracentesis for relief of symptoms. Plasma volume pre- and postparacentesis was assessed by a /sup 125/I-labeled human serum albumin dilution technique as well as by the change in hematocrit and postural blood pressure difference. No significant change in serum sodium, urea nitrogen, hematocrit or postural systolic blood pressure difference was noted at 24 or 48 hr after paracentesis. Serum creatinine at 24 hr after paracentesis was unchanged but a small but statistically significant increase in serum creatinine was noted at 48 hr postparacentesis. Plasma volume changed -2.7% (n = 6, not statistically significant) during the first 24 hr and -2.8% (n = 12, not statistically significant) during the 0- to 48-hr period. No complications from paracentesis were noted. These results suggest that 5 liter paracentesis for relief of symptoms is safe in patients with tense ascites and peripheral edema from chronic liver disease.

  10. Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography.

    PubMed

    Eltsov, Mikhail; Dubé, Nadia; Yu, Zhou; Pasakarnis, Laurynas; Haselmann-Weiss, Uta; Brunner, Damian; Frangakis, Achilleas S

    2015-05-01

    The closure of epidermal openings is an essential biological process that causes major developmental problems such as spina bifida in humans if it goes awry. At present, the mechanism of closure remains elusive. Therefore, we reconstructed a model closure event, dorsal closure in fly embryos, by large-volume correlative electron tomography. We present a comprehensive, quantitative analysis of the cytoskeletal reorganization, enabling separated epidermal cells to seal the epithelium. After establishing contact through actin-driven exploratory filopodia, cells use a single lamella to generate 'roof tile'-like overlaps. These shorten to produce the force, 'zipping' the tissue closed. The shortening overlaps lack detectable actin filament ensembles but are crowded with microtubules. Cortical accumulation of shrinking microtubule ends suggests a force generation mechanism in which cortical motors pull on microtubule ends as for mitotic spindle positioning. In addition, microtubules orient filopodia and lamellae before zipping. Our 4D electron microscopy picture describes an entire developmental process and provides fundamental insight into epidermal closure. PMID:25893916

  11. Optimization of the electric field distribution in a large volume tissue-equivalent proportional counter.

    PubMed

    Verma, P K; Waker, A J

    1992-10-01

    Large volume tissue-equivalent proportional counters are of interest in radiation protection metrology, as the sensitivity in terms of counts per unit absorbed dose in these devices increases as the square of the counter diameter. Conventional solutions to the problem of maintaining a uniform electric field within a counter result in sensitive volume to total volume ratios which are unacceptably low when counter dimensions of the order of 15 cm diameter are considered and when overall compactness is an important design criterion. This work describes the design and optimization of an arrangement of field discs set at different potentials which enable sensitive volume to total volume ratios to approach unity. The method has been used to construct a 12.7 cm diameter right-cylindrical tissue-equivalent proportional counter in which the sensitive volume accounts for over 95% of the total device volume and the gas gain uniformity is maintained to within 3% along the entire length of the anode wire. PMID:1438550

  12. Plasma response to electron energy filter in large volume plasma device

    NASA Astrophysics Data System (ADS)

    Sanyasi, A. K.; Awasthi, L. M.; Mattoo, S. K.; Srivastava, P. K.; Singh, S. K.; Singh, R.; Kaw, P. K.

    2013-12-01

    An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma.

  13. On `light' fermions and proton stability in `big divisor' D3/ D7 large volume compactifications

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2011-06-01

    Building on our earlier work (Misra and Shukla, Nucl. Phys. B 827:112, 2010; Phys. Lett. B 685:347-352, 2010), we show the possibility of generating "light" fermion mass scales of MeV-GeV range (possibly related to the first two generations of quarks/leptons) as well as eV (possibly related to first two generations of neutrinos) in type IIB string theory compactified on Swiss-Cheese orientifolds in the presence of a mobile space-time filling D3-brane restricted to (in principle) stacks of fluxed D7-branes wrapping the "big" divisor Σ B . This part of the paper is an expanded version of the latter half of Sect. 3 of a published short invited review (Misra, Mod. Phys. Lett. A 26:1, 2011) written by one of the authors [AM]. Further, we also show that there are no SUSY GUT-type dimension-five operators corresponding to proton decay, and we estimate the proton lifetime from a SUSY GUT-type four-fermion dimension-six operator to be 1061 years. Based on GLSM calculations in (Misra and Shukla, Nucl. Phys. B 827:112, 2010) for obtaining the geometric Kähler potential for the "big divisor," using further the Donaldson's algorithm, we also briefly discuss in the first of the two appendices the metric for the Swiss-Cheese Calabi-Yau used, which we obtain and which becomes Ricci flat in the large-volume limit.

  14. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  15. Detection and Isolation of H5N1 Influenza virus from Large Volumes of Natural Water

    PubMed Central

    Khalenkov, Alexey; Laver, W. Graeme; Webster, Robert G.

    2009-01-01

    Various species of aquatic or wetlands birds can be the natural reservoir of avian influenza A viruses of all hemagglutinin (HA) subtypes. Shedding of the virus into water leads to transmission between waterfowl and is a major threat for epidemics in poultry and pandemics in humans. Concentrations of the influenza virus in natural water reservoirs are often too low to be detected by most methods. The procedure was designed to detect low concentrations of the influenza virus in large volumes of water without the need for costly installations and reagents. The virus was adsorbed onto formalin-fixed erythrocytes and subsequently isolated in chicken embryos. Sensitivity of the method was determined using a reverse-genetic H5N1 virus. A concentration as low as 0.03 of the 50% egg infection dose per milliliter (EID50/ml) of the initial volume of water was effectively detected. The probability of detection was ∼13%, which is comparable to that of detecting the influenza virus M-gene by PCR amplification. The method can be used by field workers, ecologists, ornithologists, and researchers who need a simple method to isolate H5N1 influenza virus from natural reservoirs. The detection and isolation of virus in embryonated chicken eggs may help epidemiologic, genetic, and vaccine studies. PMID:18325605

  16. Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection.

    PubMed

    Liu, Jiao; Wu, Zheng-Mao; Xia, Guang-Qiong

    2009-07-20

    A novel dual-channel chaotic synchronization configuration is proposed. This system is constructed on the basis of two unidirectionally coupled vertical-cavity surface-emitting lasers (VCSELs), where a VCSEL subjected to polarization-rotated optical feedback is used as a transmitter and the other VCSEL subjected to polarization-rotated optical injection is used as a receiver. The synchronization and communication performances of such a system are numerically investigated. The results show that, similar to polarization-preserved coupled system with polarization-preserved optical feedback at the T-VCSEL port and polarization-preserved optical injection at the R-VCSEL port, such polarization-rotated coupled system can also realize complete synchronization between each pair of linear polarization (LP) modes and the total output of T-VCSEL and R-VCSEL. Compared with the polarization-preserved coupled system, this proposed system has higher tolerance to mismatched parameters. Furthermore, the average intensities of two orthogonal LP modes are almost the same so that this framework may be used to realize dual-channel chaos communication. Under the additive chaos modulation (ACM) encryption scheme, the encoded messages can be successfully extracted for both of orthogonal LP modes. PMID:19654666

  17. Intravitreal injection

    MedlinePlus

    Retinal vein occlusion-intravitreal injection; Triamcinolone-intravitreal injection; Dexamethasone-intravitreal injection; Lucentis-intravitreal injection; Avastin-intravitreal injection; Bevacizumab-intravitreal injection; Ranibizumab- ...

  18. Evaluation of a laser scanner for large volume coordinate metrology: a comparison of results before and after factory calibration

    NASA Astrophysics Data System (ADS)

    Ferrucci, M.; Muralikrishnan, B.; Sawyer, D.; Phillips, S.; Petrov, P.; Yakovlev, Y.; Astrelin, A.; Milligan, S.; Palmateer, J.

    2014-10-01

    Large volume laser scanners are increasingly being used for a variety of dimensional metrology applications. Methods to evaluate the performance of these scanners are still under development and there are currently no documentary standards available. This paper describes the results of extensive ranging and volumetric performance tests conducted on a large volume laser scanner. The results demonstrated small but clear systematic errors that are explained in the context of a geometric error model for the instrument. The instrument was subsequently returned to the manufacturer for factory calibration. The ranging and volumetric tests were performed again and the results are compared against those obtained prior to the factory calibration.

  19. “Finite” non-Gaussianities and tensor-scalar ratio in large volume Swiss-cheese compactifications

    NASA Astrophysics Data System (ADS)

    Misra, Aalok; Shukla, Pramod

    2009-03-01

    Developing on the ideas of (Section 4 of) [A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without anti-D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's, Nucl. Phys. B 799 (2008) 165-198, arXiv: 0707.0105] and [A. Misra, P. Shukla, Large volume axionic Swiss-cheese inflation, Nucl. Phys. B 800 (2008) 384-400, arXiv: 0712.1260 [hep-th

  20. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  1. Annealing as grown large volume CZT single crystals increased spectral resolution

    SciTech Connect

    Dr. Longxia Li

    2008-03-19

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size < 1 {micro}m) CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became

  2. Pyrometry in the Multianvil Press: New approach for temperature measurement in large volume press experiments

    NASA Astrophysics Data System (ADS)

    Sanehira, T.; Wang, Y.; Prakapenka, V.; Rivers, M. L.

    2008-12-01

    Temperature measurement in large volume press experiments has been based on thermocouple emf, which has well known problems: unknown pressure dependence of emf [e.g., 1], chemical reaction between thermocouple and other materials, deformation related texture development in the thermocouple wires [2], and so on. Thus, different techniques to measure temperatures in large volume press experiments other than thermocouples are required to measure accurate temperatures under high pressures. Here we report a new development using pyrometry in the multianvil press, where temperatures are derived on the basis of spectral radiometry. Several high pressure runs were conducted using the 1000 ton press with a DIA module installed at 13 ID-D GSECARS beamline at Advanced Photon Source (APS) [3]. The cubic pressure medium, 14 mm edge length, was made of soft-fired pyrophyllite with a graphite furnace. A moissanite (SiC) single crystal was built inside the pressure medium as a window for the thermal emission signal to go through. An MgO disk with 1.0 mm thickness was inserted in a gap between the top of the SiC crystal and thermocouple hot junction. The bottom of the window crystal was in direct contact with the tip of the anvil, which had a 1.5 mm diameter hole drilled all the way through the anvil axis. An optical fiber was inserted in this hole and the open end of fiber was in contact with the SiC crystal. Thermal spectral radiance from the inner cell assembly was obtained via the fiber and recorded by an Ocean Optics HP2000 spectrometer. The system response of spectrometer was calibrated by a tungsten ribbon ramp (OL550S, Optronic Laboratories, Inc.) with standard of spectral radiance. The cell assembly was compressed up to target value of 15 tons and then temperature was increased up to 1573 K. Radiation spectra were mainly obtained above 873 K and typical integration time was 1 ms or 10 ms. Data collection was done in the process of increase and decrease of temperature. In

  3. Random forest classification of large volume structures for visuo-haptic rendering in CT images

    NASA Astrophysics Data System (ADS)

    Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz

    2016-03-01

    For patient-specific voxel-based visuo-haptic rendering of CT scans of the liver area, the fully automatic segmentation of large volume structures such as skin, soft tissue, lungs and intestine (risk structures) is important. Using a machine learning based approach, several existing segmentations from 10 segmented gold-standard patients are learned by random decision forests individually and collectively. The core of this paper is feature selection and the application of the learned classifiers to a new patient data set. In a leave-some-out cross-validation, the obtained full volume segmentations are compared to the gold-standard segmentations of the untrained patients. The proposed classifiers use a multi-dimensional feature space to estimate the hidden truth, instead of relying on clinical standard threshold and connectivity based methods. The result of our efficient whole-body section classification are multi-label maps with the considered tissues. For visuo-haptic simulation, other small volume structures would have to be segmented additionally. We also take a look into these structures (liver vessels). For an experimental leave-some-out study consisting of 10 patients, the proposed method performs much more efficiently compared to state of the art methods. In two variants of leave-some-out experiments we obtain best mean DICE ratios of 0.79, 0.97, 0.63 and 0.83 for skin, soft tissue, hard bone and risk structures. Liver structures are segmented with DICE 0.93 for the liver, 0.43 for blood vessels and 0.39 for bile vessels.

  4. Testbed for large volume surveillance through distributed fusion and resource management

    NASA Astrophysics Data System (ADS)

    Valin, Pierre; Guitouni, Adel; Bossé, Éloi; Wehn, Hans; Yates, Richard; Zwick, Harold

    2007-04-01

    DRDC Valcartier has initiated, through a PRECARN partnership project, the development of an advanced simulation testbed for the evaluation of the effectiveness of Network Enabled Operations in a coastal large volume surveillance situation. The main focus of this testbed is to study concepts like distributed information fusion, dynamic resources and networks configuration management, and self synchronising units and agents. This article presents the requirements, design and first implementation builds, and reports on some preliminary results. The testbed allows to model distributed nodes performing information fusion, dynamic resource management planning and scheduling, as well as configuration management, given multiple constraints on the resources and their communications networks. Two situations are simulated: cooperative and non-cooperative target search. A cooperative surface target behaves in ways to be detected (and rescued), while an elusive target attempts to avoid detection. The current simulation consists of a networked set of surveillance assets including aircraft (UAVs, helicopters, maritime patrol aircraft), and ships. These assets have electrooptical and infrared sensors, scanning and imaging radar capabilities. Since full data sharing over datalinks is not feasible, own-platform data fusion must be simulated to evaluate implementation and performance of distributed information fusion. A special emphasis is put on higher-level fusion concepts using knowledge-based rules, with level 1 fusion already providing tracks. Surveillance platform behavior is also simulated in order to evaluate different dynamic resource management algorithms. Additionally, communication networks are modeled to simulate different information exchange concepts. The testbed allows the evaluation of a range of control strategies from independent platform search, through various levels of platform collaboration, up to a centralized control of search platforms.

  5. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.

    PubMed

    Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J

    2016-02-01

    Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. PMID:26683814

  6. NT-proBNP Changes in Patients with Ascites during Large Volume Paracentesis

    PubMed Central

    Zielinski, Rob; Harnett, Paul; Chan, Henry; Vootakuru, Nikitha; Khan, Montaha; Phillips, Shani; George, Jacob; van der Poorten, David

    2013-01-01

    Background. N-terminal probrain natriuretic peptide (NT-proBNP) is a hormone involved in the regulation of cardiovascular homeostasis. Changes in serum NT-proBNP during large volume paracentesis (LVP) in patients with ascites have never before been examined. Aims. To determine if significant changes in serum NT-proBNP occur in patients undergoing LVP and the associated clinical correlates in patients with cirrhosis. Method. A total of 45 patients with ascites were prospectively recruited. Serum NT-proBNP, biochemistry, and haemodynamics were determined at baseline and at key time points during and after paracentesis. Results. 34 patients were analysed; 19 had ascites due to cirrhosis and 15 from malignancy. In those with cirrhosis, NT-proBNP decreased by 77.3 pg/mL at 2 L of drainage and 94.3 pg/mL at the end of paracentesis, compared with an increase of 10.5 pg/mL and 77.2 pg/mL in cancer patients at the same time points (P = 0.05 and P = 0.03). Only congestive cardiac failure (CCF) was an independent predictor of significant NT-proBNP changes at the end of drainage in cirrhotic patients (P < 0.01). There were no significant changes in haemodynamics or renal biochemistry for either group. Conclusion. Significant reductions in serum NT-proBNP during LVP occur in patients with cirrhosis but not malignancy, and only comorbid CCF appeared to predict such changes.

  7. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    NASA Astrophysics Data System (ADS)

    Liu, Nian; Lu, Zhenda; Zhao, Jie; McDowell, Matthew T.; Lee, Hyun-Wook; Zhao, Wenting; Cui, Yi

    2014-03-01

    Silicon is an attractive material for anodes in energy storage devices, because it has ten times the theoretical capacity of its state-of-the-art carbonaceous counterpart. Silicon anodes can be used both in traditional lithium-ion batteries and in more recent Li-O2 and Li-S batteries as a replacement for the dendrite-forming lithium metal anodes. The main challenges associated with silicon anodes are structural degradation and instability of the solid-electrolyte interphase caused by the large volume change (~300%) during cycling, the occurrence of side reactions with the electrolyte, and the low volumetric capacity when the material size is reduced to a nanometre scale. Here, we propose a hierarchical structured silicon anode that tackles all three of these problems. Our design is inspired by the structure of a pomegranate, where single silicon nanoparticles are encapsulated by a conductive carbon layer that leaves enough room for expansion and contraction following lithiation and delithiation. An ensemble of these hybrid nanoparticles is then encapsulated by a thicker carbon layer in micrometre-size pouches to act as an electrolyte barrier. As a result of this hierarchical arrangement, the solid-electrolyte interphase remains stable and spatially confined, resulting in superior cyclability (97% capacity retention after 1,000 cycles). In addition, the microstructures lower the electrode-electrolyte contact area, resulting in high Coulombic efficiency (99.87%) and volumetric capacity (1,270 mAh cm-3), and the cycling remains stable even when the areal capacity is increased to the level of commercial lithium-ion batteries (3.7 mAh cm-2).

  8. Performance of large electron energy filter in large volume plasma device

    SciTech Connect

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K.; Singh, R.

    2014-03-15

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B{sub x}) of 100 G along its axis and transverse to the ambient axial field (B{sub z} ∼ 6.2 G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1 G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n{sub e} ∼ 2 × 10{sup 11} cm{sup −3} and T{sub e} ∼ 2 eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50 and 600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma.

  9. Trace analysis of semivolatile organic compounds in large volume samples of snow, lake water, and groundwater.

    PubMed

    Usenko, Sascha; Hageman, Kimberly J; Schmedding, Dave W; Wilson, Glenn R; Simonich, Staci L

    2005-08-15

    An analytical method was developed for the trace analysis of a wide range of semivolatile organic compounds (SOCs) in 50-L high-elevation snow and lake water samples. The method was validated for 75 SOCs from seven different chemical classes (polycyclic aromatic hydrocarbons, organochlorine pesticides, amides, triazines, polychlorinated biphenyls, thiocarbamates, and phosphorothioates) that covered a wide range of physical-chemical properties including 7 orders of magnitude of octanol-water partition coefficient (log K(ow) = 1.4-8.3). The SOCs were extracted using a hydrophobically and hydrophilically modified divinylbenzene solid-phase extraction device (modified Speedisk). The average analyte recovery from 50 L of reverse osmosis water, using the modified Speedisk, was 99% with an average relative standard deviation of 4.8%. Snow samples were collected from the field, melted, and extracted using the modified Speedisk and a poly(tetrafluoroethylene) remote sample adapter in the laboratory. Lake water was sampled, filtered, and extracted in situ using an Infiltrex 100 fitted with a 1-microm glass fiber filter to trap particulate matter and the modified Speedisk to trap dissolved SOCs. The extracts were analyzed by gas chromatographic mass spectrometry with electron impact ionization and electron capture negative ionization using isotope dilution and selective ion monitoring. Estimated method detection limits for snow and lake water ranged from 0.2 to 125 pg/L and 0.5-400 pg/L, respectively. U.S. historic and current-use pesticides were identified and quantified in snow and lake water samples collected from Rocky Mountain National Park, CO. The application of the analytical method to the analysis of SOCs in large-volume groundwater samples is also shown. PMID:16173557

  10. Measurements of Elastic and Inelastic Properties under Simulated Earth's Mantle Conditions in Large Volume Apparatus

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.

    2012-12-01

    The interpretation of highly resolved seismic data from Earths deep interior require measurements of the physical properties of Earth's materials under experimental simulated mantle conditions. More than decade ago seismic tomography clearly showed subduction of crustal material can reach the core mantle boundary under specific circumstances. That means there is no longer space for the assumption deep mantle rocks might be much less complex than deep crustal rocks known from exhumation processes. Considering this geophysical high pressure research is faced the challenge to increase pressure and sample volume at the same time to be able to perform in situ experiments with representative complex samples. High performance multi anvil devices using novel materials are the most promising technique for this exciting task. Recent large volume presses provide sample volumes 3 to 7 orders of magnitude bigger than in diamond anvil cells far beyond transition zone conditions. The sample size of several cubic millimeters allows elastic wave frequencies in the low to medium MHz range. Together with the small and even adjustable temperature gradients over the whole sample this technique makes anisotropy and grain boundary effects in complex systems accessible for elastic and inelastic properties measurements in principle. The measurements of both elastic wave velocities have also no limits for opaque and encapsulated samples. The application of triple-mode transducers and the data transfer function technique for the ultrasonic interferometry reduces the time for saving the data during the experiment to about a minute or less. That makes real transient measurements under non-equilibrium conditions possible. A further benefit is, both elastic wave velocities are measured exactly simultaneously. Ultrasonic interferometry necessarily requires in situ sample deformation measurement by X-radiography. Time-resolved X-radiography makes in situ falling sphere viscosimetry and even the

  11. Hepatic Arterial Embolization and Chemoembolization in the Management of Patients with Large-Volume Liver Metastases

    SciTech Connect

    Kamat, Paresh P.; Gupta, Sanjay Ensor, Joe E.; Murthy, Ravi; Ahrar, Kamran; Madoff, David C.; Wallace, Michael J.; Hicks, Marshall E.

    2008-03-15

    The purpose of this study was to assess the role of hepatic arterial embolization (HAE) and chemoembolization (HACE) in patients with large-volume liver metastases. Patients with metastatic neuroendocrine tumors, melanomas, or gastrointestinal stromal tumors (GISTs) with >75% liver involvement who underwent HAE or HACE were included in the study. Radiologic response, progression-free survival (PFS), overall survival (OS), and postprocedure complications were assessed. Sixty patients underwent 123 treatment sessions. Of the 48 patients for whom follow-up imaging was available, partial response was seen in 12 (25%) patients, minimal response in 6 (12%), stable disease in 22 (46%), and progressive disease in 8 (17%). Median OS and PFS were 9.3 and 4.9 months, respectively. Treatment resulted in radiologic response or disease stabilization in 82% and symptomatic response in 65% of patients with neuroendocrine tumors. Patients with neuroendocrine tumors had higher response rates (44% vs. 27% and 0%; p = 0.31) and longer PFS (9.2 vs. 2.0 and 2.3 months; p < 0.0001) and OS (17.9 vs. 2.4 and 2.3 months; p < 0.0001) compared to patients with melanomas and GISTs. Major complications occurred in 21 patients after 23 (19%) of the 123 sessions. Nine of the 12 patients who developed major complications resulting in death had additional risk factors-carcinoid heart disease, sepsis, rapidly worsening performance status, or anasarca. In conclusion, in patients with neuroendocrine tumors with >75% liver involvement, HAE/HACE resulted in symptom palliation and radiologic response or disease stabilization in the majority of patients. Patients with hepatic metastases from melanomas and GISTs, however, did not show any appreciable benefit from this procedure. Patients with massive liver tumor burden, who have additional risk factors, should not be subjected to HAE/HACE because of the high risk of procedure-related mortality.

  12. A Fully Coupled Simulation and Optimization Scheme for the Design of 3D Powder Injection Molding Processes

    SciTech Connect

    Ayad, G.; Barriere, T.; Gelin, J. C.; Liu, B.

    2007-05-17

    The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.

  13. Determination of ultratrace impurity elements in high purity niobium materials by on-line matrix separation and direct injection/inductively coupled plasma mass spectrometry.

    PubMed

    Kozono, Shuji; Haraguchi, Hiroki

    2007-07-31

    The determination of 52 impurity elements in niobium materials (niobium metal, niobium oxide (V), and niobium pentaethoxide) was performed by inductively coupled plasma mass spectrometry (ICP-MS) with on-line anion exchange matrix separation as well as direct nebulization. Niobium material samples were decomposed with a mixture of hydrofluoric acid and nitric acid to prepare 10% niobium solutions. In the on-line anion exchange matrix separation/ICP-MS, the niobium and hydrofluoric acid concentrations in sample solution were adjusted to 5% and ca. 8M, respectively. The solution was then injected into the carrier stream from the sample loop of injection valve to pass through an anion exchange resin column. In the anion exchange separation, niobium in the fluoro-complex form was adsorbed on the resin, while impurity elements were eluted. The eluted elements were introduced into ICP-MS for the determination of 25 impurity elements. On the other hand, 27 impurity elements could not be separated well from niobium matrix under the above anion exchange conditions, and then the sample solution with the niobium concentration of max. 0.2% containing internal standard elements was injected from the sample loop of injection valve directly to introduce into ICP-MS. As a result, 52 impurity elements in three kinds of niobium materials could be determined at the ng g(-1) level. PMID:19071834

  14. Particles in small volume injections.

    PubMed

    Taylor, S A; Spence, J

    1983-12-01

    The level of particulate contamination in small volume injections has been examined using the light blockage (HIAC) and electrical sensing zone (Coulter counter) techniques, the HIAC system being found to be the more suitable. Particle counts on the same batch of injection showed a large and variable difference between the HIAC and the Coulter counter results, especially below 5 micron. None of the injections examined complied with the British Pharmacopoeia limits for particulates in large volume parenterals, suggesting the unsuitability of the limits for small volume parenterals. PMID:6141237

  15. Effect of filtration rates on hollow fiber ultrafilter concentration of viruses and protozoans from large volumes of water

    EPA Science Inventory

    Aims: To describe the ability of tangential flow hollow-fiber ultrafiltration to recover viruses from large volumes of water when run either at high filtration rates or lower filtration rates and recover Cryptosporidium parvum at high filtration rates. Methods and Results: Wate...

  16. Tolerability of hypertonic injectables.

    PubMed

    Wang, Wei

    2015-07-25

    Injectable drug products are ideally developed as isotonic solutions. Often, hypertonic injectables may have to be marketed for a variety of reasons such as product solubilization and stabilization. A key concern during product formulation development is the local and systemic tolerability of hypertonic products upon injection. This report reviews and discusses the tolerability in terms of local discomfort, irritation, sensation of heat and pain, along with other observed side effects of hypertonicity in both in-vitro systems and in-vivo animal and human models. These side effects clearly depend on the degree of hypertonicity. The sensation of pain among different injection routes seems to follow this order: intramuscular>subcutaneous>intravenous or intravascular. It is recommended that the upper osmolality limit should be generally controlled under 600 mOsm/kg for drug products intended for intramuscular or subcutaneous injection. For drug products intended for intravenous or intravascular injection, the recommended upper limit should be generally controlled under 1,000 mOsm/kg for small-volume injections (≤ 100 mL) and 500 mOsm/kg for large-volume injections (>100mL). Several options are available for minimization of hypertonicity-induced pain upon product administration. PMID:26027488

  17. The Use of Cryogenically Cooled 5A Molecular Sieves for Large Volume Reduction of Tritiated Hydrogen Gas

    SciTech Connect

    Antoniazzi, A.B.; Bartoszek, F.E.; Sherlock, A.M.

    2006-07-01

    A commercial hydrogen isotope separation system based on gas chromatography (AGC-ISS) has been built. The system operates in two modes: stripping and volume reduction. The purpose of the stripping mode is to reduce a large volume of tritiated hydrogen gas to a small volume of tritium rich hydrogen gas. The results here illustrate the effectiveness of the AGC-ISS in the stripping and volume reduction phases. Column readiness for hydrogen isotope separation is confirmed by room temperature air separation tests. Production runs were initially carried out using natural levels of deuterium (110-160 ppm) in high purity hydrogen. After completion of the deuterium/hydrogen runs the system began operations with tritiated hydrogen. The paper presents details of the AGC-ISS design and results of tritium tests. The heart of the AGC-ISS consists of two packed columns (9 m long, 3.8 cm OD) containing 5A molecular sieve material of 40/60 mesh size. Each column has 5 individually controlled heaters along the length of the column and is coiled around an inverted inner dewar. The coiled column and inner dewar are both contained within an outer dewar. In this arrangement liquid nitrogen, used to cryogenically cool the columns, flows into and out off the annular space defined by the two dewars, allowing for alternate heating and cooling cycles. Tritiated hydrogen feed is injected in batch quantities. The batch size is variable with the maximum quantity restricted by the tritium concentration in the exhausted hydrogen. The stripping operations can be carried out in full automated mode or in full manual mode. The average cycle time between injections is about 75 minutes. To date, the maximum throughput achieved is 10.5 m{sup 3}/day. A total of 37.8 m{sup 3} of tritiated hydrogen has been processed during commissioning. The system has demonstrated that venting of >99.95% of the feed gas is possible while retaining 99.98% of the tritium. At a maximum tritium concentration of {approx}7 GBq

  18. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    μg/mL/24 h were obtained which, compared well with control ELS (viability −98.1%±0.9%; viable cell numbers −18.3±1.0 million nuclei/mL alginate; and protein secretion −18.7±1.8 μg/mL/24 h). Large volume GMP cryopreservation of ELS is possible with good functional recovery using the VIA Freeze and may also be applied to other regenerative medicine applications. PMID:24410575

  19. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.

    PubMed

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Fuller, Barry; Gibbons, Stephanie; Morris, G John

    2014-09-01

    μg/mL/24 h were obtained which, compared well with control ELS (viability -98.1% ± 0.9%; viable cell numbers -18.3 ± 1.0 million nuclei/mL alginate; and protein secretion -18.7 ± 1.8 μg/mL/24 h). Large volume GMP cryopreservation of ELS is possible with good functional recovery using the VIA Freeze and may also be applied to other regenerative medicine applications. PMID:24410575

  20. The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate

    NASA Astrophysics Data System (ADS)

    Maughan, Larissa L.; Christiansen, Eric H.; Best, Myron G.; Grommé, C. Sherman; Deino, Alan L.; Tingey, David G.

    2002-03-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (>1000 km 3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km 3. It was emplaced 29.02±0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase>quartz≈hornblende>biotite>Fe-Ti oxides≈sanidine>titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO 2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We postulate that

  1. Injection-port derivatization coupled to GC-MS/MS for the analysis of glycosylated and non-glycosylated polyphenols in fruit samples.

    PubMed

    Marsol-Vall, Alexis; Balcells, Mercè; Eras, Jordi; Canela-Garayoa, Ramon

    2016-08-01

    Polyphenols, including glycosylated polyphenols, were analyzed via a procedure based on injection-port derivatization coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS). The polyphenols in lyophilized fruit samples were extracted with an acidified MeOH mixture assisted by ultrasound. Samples were dried under vacuum, and carbonyl groups were protected with methoxylamine. Free hydroxyl groups were subsequently silylated in-port. Mass fragmentations of 17 polyphenol and glycosylated polyphenol standards were examined using Multiple Reaction Monitoring (MRM) as the acquisition mode. Furthermore, in-port derivatization was optimized in terms of optimal injection port temperature, derivatization time and sample: N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) volume ratio. A C18 solid-phase-extraction clean-up method was used to reduce matrix effects and injection liner degradation. Using this clean-up method, recoveries for samples spiked at 1 and 10μg/g ranged from 52% to 98%, depending on the chemical compound. Finally, the method was applied to real fruit samples containing the target compounds. The complete chromatographic runtime was 15min, which is faster than reported for recent HPLC methods able to analyze similar compounds. PMID:26988495

  2. Coupled reservoir-geomechanical analysis of the potential fortensile and shear failure associated with CO2 injection in multilayeredreservoir-caprock systems

    SciTech Connect

    Rutqvist, J.; Birkholzer, J.T.; Tsang, C.-F.

    2007-03-27

    Coupled reservoir-geomechanical simulations were conductedto study the potential for tensile and shear failure e.g., tensilefracturing and shear slip along pre-existing fractures associated withunderground CO2 injection in a multilayered geological system. Thisfailure analysis aimed to study factors affecting the potential forbreaching a geological CO2 storage system and to study methods forestimating the maximum CO2 injection pressure that could be sustainedwithout causing such a breach. We pay special attention to geomechanicalstress changes resulting from upward migration of the CO2 and how theinitial stress regime affects the potential for inducing failure. Weconclude that it is essential to have an accurate estimate of thethree-dimensional in situ stress field to support the design andperformance assessment of a geological CO2 injection operation. Moreover,we also conclude that it is important to consider mechanical stresschanges that might occur outside the region of increased reservoir fluidpressure (e.g., in the overburden rock) between the CO2-injectionreservoir and the ground surface.

  3. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  4. Dual cloud point extraction coupled with hydrodynamic-electrokinetic two-step injection followed by micellar electrokinetic chromatography for simultaneous determination of trace phenolic estrogens in water samples.

    PubMed

    Wen, Yingying; Li, Jinhua; Liu, Junshen; Lu, Wenhui; Ma, Jiping; Chen, Lingxin

    2013-07-01

    A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic-electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE-two-step injection-MEKC conditions, detection limits of 7.9-8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R(2) ≥ 0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108% were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n = 6) of 1.3-3.1%. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples. PMID:23657452

  5. Cloud point extraction of vanadium in parenteral solutions using a nonionic surfactant (PONPE 5.0) and determination by flow injection-inductively coupled plasma optical emission spectrometry.

    PubMed

    Wuilloud, Gustavo M; de Wuilloud, Jorgelina C A; Wuilloud, Rodolfo G; Silva, Maria F; Olsina, Roberto A; Martinez, Luis D

    2002-10-16

    A preconcentration and determination methodology for vanadium at trace levels in parenteral solutions was developed. Cloud point extraction was successfully employed for the preconcentration of vanadium prior to inductively coupled plasma atomic optical emission spectrometry (ICP-OES) coupled to a flow injection (FI) system. The vanadium was extracted as vanadium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol [V-(5-Br-PADAP)] complex, at pH 3.7 mediated by micelles of the nonionic surfactant polyoxyethylene (5.0) nonylphenol (PONPE 5.0). The extracted surfactant-rich phase (100 mul) was mixed with 100 mul of ethanol and this final volume injected into ICP-OES for the vanadium determination. Under these conditions, the 50 ml sample solution preconcentration allowed raising an enrichment factor of 250-fold; however, it was possible to obtain a theoretical enrichment factor of 500-fold. The lower limit of detection (LOD) obtained under the optimal conditions was 16 ng l(-1). The precision for 10 replicate determinations at the 2.0 mug l(-1) V level was 2.3% relative standard deviation (RSD), calculated with the peak heights. The calibration graph using the preconcentration system for vanadium was linear with a correlation coefficient of 0.9996 at levels near the detection limits up to at least 50 mug l(-1). The method was successfully applied to the determination of vanadium in parenteral solution samples. PMID:18968790

  6. Fabrics, Facies And Flow Through A Large-Volume Ignimbrite: Pampa De Oxaya, Chile.

    NASA Astrophysics Data System (ADS)

    Platzman, Ellen; Cooper, Frances

    2016-04-01

    Large volume pyroclastic currents form during some of the most destructive volcanic eruptions on the planet, yet because they are underrepresented in the geological record they remain poorly understood. The Miocene Oxaya ignimbrites, exposed along the western Andean slopes in northern Chile, form one of the largest ignimbrite provinces on earth. We use anisotropy of magnetic susceptibility (AMS) in conjunction with rock magnetic measurements to investigate flow behavior and depositional processes in one of the largest members of the Oxaya succession, the Cardones ignimbrite. Despite its prominence the location of the source caldera remains unknown and fundamental processes remain poorly constrained. During 2012 nearly 8km (7,773m) of core was recovered from the early Miocene ignimbrites in 11 holes at elevations ranging from 2336m to 3805m along the Andean escarpment east of Arica, Chile. The drill cores are remarkable in that they penetrate through the entirety of the ignimbrite sequence and into the basement below. Samples for this study were collected from a > 1 km long core drilled at an altitude 3692m. The core sampled 981 m of Cardones ignimbrite and 15 m of underlying sediments and volcaniclastics before penetrating 148 m of basement. Detailed measurements of the variation in bulk magnetic properties including natural remanent magnetization (NRM), susceptibility, ARM, and IRM, were used to monitor changes in concentration, composition and grainsize of the magnetic components though the ignimbrite. AMS in conjunction with detailed rock magnetic measurements were used to constrain flow processes. The data reveal a well-defined flow direction and systematic variations in flow processes with depth. Low field bulk magnetic susceptibility averages 3.2x10-3 SI. Rock magnetic studies and petrographic examination indicate that magnetite is likely to be the dominant magnetic phase although paramagnetic mineral phases also contribute to the magnetic fabric. The degree

  7. The oligocene Lund Tuff, Great Basin, USA: A very large volume monotonous intermediate

    USGS Publications Warehouse

    Maughan, L.L.; Christiansen, E.H.; Best, M.G.; Gromme, C.S.; Deino, A.L.; Tingey, D.G.

    2002-01-01

    Unusual monotonous intermediate ignimbrites consist of phenocryst-rich dacite that occurs as very large volume (> 1000 km3) deposits that lack systematic compositional zonation, comagmatic rhyolite precursors, and underlying plinian beds. They are distinct from countless, usually smaller volume, zoned rhyolite-dacite-andesite deposits that are conventionally believed to have erupted from magma chambers in which thermal and compositional gradients were established because of sidewall crystallization and associated convective fractionation. Despite their great volume, or because of it, monotonous intermediates have received little attention. Documentation of the stratigraphy, composition, and geologic setting of the Lund Tuff - one of four monotonous intermediate tuffs in the middle-Tertiary Great Basin ignimbrite province - provides insight into its unusual origin and, by implication, the origin of other similar monotonous intermediates. The Lund Tuff is a single cooling unit with normal magnetic polarity whose volume likely exceeded 3000 km3. It was emplaced 29.02 ?? 0.04 Ma in and around the coeval White Rock caldera which has an unextended north-south diameter of about 50 km. The tuff is monotonous in that its phenocryst assemblage is virtually uniform throughout the deposit: plagioclase > quartz ??? hornblende > biotite > Fe-Ti oxides ??? sanidine > titanite, zircon, and apatite. However, ratios of phenocrysts vary by as much as an order of magnitude in a manner consistent with progressive crystallization in the pre-eruption chamber. A significant range in whole-rock chemical composition (e.g., 63-71 wt% SiO2) is poorly correlated with phenocryst abundance. These compositional attributes cannot have been caused wholly by winnowing of glass from phenocrysts during eruption, as has been suggested for the monotonous intermediate Fish Canyon Tuff. Pumice fragments are also crystal-rich, and chemically and mineralogically indistinguishable from bulk tuff. We

  8. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  9. Nonmedical-grade Injections of Permanent Fillers

    PubMed Central

    Bayers, Stephanie; Beer, Michael; Beer, Kenneth

    2013-01-01

    Silicone injections may result in complications that bring patients to a dermatologist or plastic surgeon. These complications may be due to the use of nonmedical grade products, large volume injections, incorrect placement of the product, or a combination of the above. Frequently, complications result when injections are performed by unlicensed practitioners. Individuals who undergo large volume procedures may develop a variety of life-threatening problems ranging from infections to pulmonary emboli. Once they develop problems, these patients often present to licensed and board-certified physicians for treatment. Based on a review of the literature, this article provides a management algorithm for various complications. In addition, a medicolegal perspective is presented. Finally, the transgender experience as it relates to silicone injections is also reviewed. PMID:23630638

  10. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled flow cell reactor chemiluminometer.

    PubMed

    Nozaki, O; Kawamoto, H

    2000-01-01

    A novel flow cell reactor was developed for micro-flow injection determination of hydrogen peroxide (H(2)O(2)) using horseradish peroxide (HRP)-catalysed luminol chemiluminescence. The newly developed flow cell reactor for a chemiluminometer allowed mixing of the chemiluminescent reagents in front of a photomultiplier for maximum detection of the emitted light. The rapid mixing allowed a decrease in the flow rate of the pump to 0.1-0.01 mL/min, resulting in increased sensitivity of detection of light. The flow cell reactor was made by packing HRP-immobilized gels into a flow cell (Teflon tube; 6 cm x 0.98 mm i.d.) located in the cell holder of a chemiluminometer (flow-through type). The HRP-immobilized gels were made by immobilizing HRP onto the Chitopearl gel by the periodate method. H(2)O(2) specimens (50 microL) were injected into a stream of water delivered at a flow rate of 0.1 mL/min and mixed with a luminol solution (0.56 mmol/L in Tricine buffer, pH 9.2) delivered at 0.1 mL/min in the flow cell reactor. Within-run reproducibility of the assay of H(2)O(2) was 2.4% (4.85 micromol/L; flow rate 0.1 mL/min, injection interval 10 min). The reproducibility of the H(2)O(2) assay was influenced by the flow rates and the injection intervals of the H(2)O(2) specimens. As the flow rates decreased, both the light intensity and the light duration increased. Optimal light intensity was obtained at a luminol concentration of 3-8 mmol/L, but 0.56 mmol/L was sufficient for assay of H(2)O(2) in clinical specimens. At a luminol concentration of 0.56 mmol/L, the regression equation of the standard curve for H(2)O(2) (0-9.7 micromol/L) was Y = 27.5 X(2) + 394 X + 58.9 (Y = light intensity; X = concentration of H(2)O(2)) and the detection limit of H(2)O(2) was 0.2 micromol/L. This method was used to assay glucose (2.7-16.7 mmol/L) based on a glucose oxidase (20 U/mL, pH 7.4) reaction. The standard curve for glucose was Y = 167 X(2) - 351 X + 1484 (Y = light intensity; X = glucose