Science.gov

Sample records for laser ablation studies

  1. LASER ABLATION STUDIES OF CONCRETE

    EPA Science Inventory

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  2. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  3. Laser Ablation Propulsion A Study

    NASA Astrophysics Data System (ADS)

    Irfan, Sayed A.; Ugalatad, Akshata C.

    Laser Ablation Propulsion (LAP) will serve as an alternative propulsion system for development of microthrusters. The principle of LAP is that when a laser (pulsed or continuous wave) with sufficient energy (more than the vaporization threshold energy of material) is incident on material, ablation or vaporization takes place which leads to the generation of plasma. The generated plasma has the property to move away from the material hence pressure is generated which leads to the generation of thrust. Nowadays nano satellites are very common in different space and defence applications. It is important to build micro thruster which are useful for orienting and re-positioning small aircraft (like nano satellites) above the atmosphere. modelling of LAP using MATLAB and Mathematica. Schematic is made for the suitable optical configuration of LAP. Practical experiments with shadowgraphy and self emission techniques and the results obtained are analysed taking poly (vinyl-chloride) (PVC) as propellant to study the

  4. Status of the Ablative Laser Propulsion Studies

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Lin, Jun; Cohen, Tinothy; Pakhomov, Andrew V.; Thompson, M. Shane

    2004-01-01

    We present a short review of our laser-propulsion research as well as some of the current results of the Ablative Laser Propulsion (ALP) studies currently underway at the University of Alabama in Huntsville. It has been shown that direct surface ablation of a solid material produces high specific impulse (Isp) at relatively high energy conversion efficiency (20 - 40%). We detail measurements of specific impulse, thrust and coupling coefficients for elemental target materials both with single and with double pulse laser shots. We also present measurements taken using three independent methods for determination of Isp. The three methods produce consistent values from ion time-of-flight technique, impulse measurements and imaging of the expansion front of plasma plume. We present a demonstration of our ALP lightcraft, a small free-flying micro-vehicle that is propelled by ablation. For ALP lightcraft we use a subscale thin shell of nickel replicated over a diamond turned mandrel that produces a highly polished self-focusing, truncated at the focus parabolic mirror. The mass of the lightcraft is 54 mg and it is driven by 100-ps wide, 35-mJ laser pulses at 532 nm wavelength. This is an ongoing research. We also present the latest work on laserdriven micro-thrusters and detail some the near term goals of our program.

  5. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  6. Endometrial laser ablation in rabbits: A comparative study of three laser types

    SciTech Connect

    Rosenberg, C.; Tadir, Y.; Braslavsky, D.; Fisch, B.; Karni, Z.; Ovadia, J. )

    1990-01-01

    Endometrial laser ablation is one of the alternatives to hysterectomy in cases of intractable uterine bleeding. It is currently performed using the Nd:YAG laser at 1.06 microns. The aim of this study was to compare the tissue effect of three types of laser irradiation (Nd:YAG laser at 1.06 and 1.32 microns and holmium laser at 2.12 microns) on the rabbit endometrium. Crater formation, coagulation necrosis, and muscle necrosis were evaluated at the time of ablation, as well as at 1 week and 4 weeks postablation. The results were assessed by determining the depth and width of the affected portion in the uterine wall (lumen to serosa). It was shown that Nd:YAG laser at 1.32 microns caused more generalized and extended effects as compared with the other laser types examined. Endometrial regeneration was faster after ablation by the Nd:YAG laser at 1.06 microns and the holmium laser than by the Nd:YAG laser at 1.32 microns. The widest range of ablation energy (defined as that causing ablation without muscle damage) was achieved by applying the holmium laser. Further evaluation of the holmium laser for this indication is recommended.

  7. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  8. Study of Laser Ablation Efficiency for an Acrylic-Based Photopolymerizing Composition

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Yu.

    2014-05-01

    Results are presented from study of the effi ciency (ablated mass per unit energy, mechanical recoil momentum per unit energy) of laser ablation for a light-curable polymer. A substantial difference is seen between the thresholds and indicated criteria for laser ablation effi ciency in the liquid and cured phases. The highest energy effi ciency for laser ablation (~22.6 %) is achieved when the initially liquid polymer is exposed to radiation with the wavelength optimal for photopolymerization (365 ± 15 nm).

  9. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  10. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  11. A study of particle generation during laser ablation withapplications

    SciTech Connect

    Liu, Chunyi

    2005-08-12

    A study has been made of the generation of particles during laser ablation and has included size distribution measurements and observation of the formation processes. The particle size distribution with respect to different laser parameters was obtained in-line using a differential mobility analyzer (DMA) and a particle counter. The experimental results show that the particle size varies with laser energy, laser pulsewidth, ambient gas flow rate and sample properties. The results serve as a basis for controlling the size of nanoparticles generated by laser ablation. Laser shadowgraph imaging was used to study mass ejection processes and mechanisms. At higher laser irradiance, some particles were ejected in the liquid and even in the solid phase. Time-resolved images show the propagation of the shockwaves: external shockwaves propagate outward and decelerate, and internal shockwaves reflect back and forth between the gas contact surface and the sample surface. The internal shockwave is proposed to cause the ejection of liquid particles when the internal shockwave strikes the liquid molten layer. A simulation based on vapor plume expansion was carried out and provides satisfactory agreement with experimental results. Different material properties result in different particle ejection behavior:particle ejection for most materials including metals result in a conically shaped envelope for the ejected material while ejection for silicon resembles a liquid jet. The difference in density change when the materials melt was proposed to be an important factor in the different ejection behavior. The characteristics of particles generated by laser ablation have a strong influence on the chemical analysis of the irradiated sample. Large particles are more difficult to completely vaporize and ionize, and induced preferential vaporization causes fractionation (i.e. a detected chemical composition that differs from the sample material). Large particles also result in spikes in

  12. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  13. Spectroscopic and morphological study of laser ablated Titanium

    NASA Astrophysics Data System (ADS)

    Hayat, Asma; Bashir, Shazia; Rafique, Muahmamd Shahid; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Saman; Dawood, Asadullah; Arooj

    2016-07-01

    The laser-induced breakdown spectroscopy (LIBS) and surface morphology of Titanium (Ti) plasma as a function of laser irradiance have been investigated under ambient environment of argon at fixed pressure of 50 Torr. Ablation was performed by employing Q-switched Nd:YAG laser pulses (λ ≈ 1064 nm, τ ≈ 10 ns, repetition rate ≈ 10 Hz). Ti targets were exposed to various laser intensities ranging from 6 to 50 GW/cm2. LIBS analysis has been employed for the investigation of plasma parameters. Scanning Electron Microscope (SEM) analysis was employed for investigation of surface morphology. Ablation depth was measured by optical microscopy technique. It was observed that both plasma parameters, i.e., excitation temperature and electron density have been significantly influenced by laser irradiance. It is observed that with increasing laser irradiance up to 13 GW/cm2, the electron temperature decreases whereas number density significantly increases and attains its maxima. Afterwards by increasing irradiance electron temperature increases, attains its maxima and a decrease in electron number density is observed at irradiance of 19 GW/cm2. Further increase in irradiance causes saturation with insignificant changes in both electron temperature and electron number density. This saturation in both excitation temperature and electron number density is explainable on the basis of self-sustaining regime. SEM micrographs reveal the ripple and coneformation at the boundaries of ablated region of Ti. The height of cones as well as the ablation depth is maximum at irradiance of 13 GW/cm2 whereas electron number density is also maximum. The maximum electron number density is considered to be responsible for maximum ablation as well as mass removal. A strong correlation between plasma parameters and surface morphology is established.

  14. Laser-ablation processes

    SciTech Connect

    Dingus, R.S.

    1992-01-01

    The various mechanisms by which ablation of materials can be induced with lasers are discussed in this paper. The various ablation processes and potential applications are reviewed from the threshold for ablation up to fluxes of about 10{sup 13} W/cm{sup 2}, with emphasis on three particular processes; namely, front-surface spallation, two-dimensional blowoff, and contained vaporization.

  15. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation

    PubMed Central

    Abdel-Daiem, A. M.; Ansari, M. Shahnawaze; Babkair, Saeed S.; Salah, Numan A.; Al-Mujtaba, A.

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  16. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased. PMID:27228169

  17. Effects of Laser Irradiation on Artwork Pigments Studied by Laser Ablation and Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Torres, R.; Jadraque, M.; Castillejo, M.; Martín, M.

    Laser ablation and time-of-flight mass spectrometric analysis of the ablation plume is used to study the different response of several inorganic pigments to laser irradiation. Lead white and lead chromate in pellets and in a binding media are studied. Lead white is compared to azurite, of similar stoichiometry. For lead white the plume composition is rather independent on laser ablation wavelength and does not show important changes after repeated laser beam exposure opposite to that observed for azurite. Ablation of lead white pellets leads to ionized and neutral Pb and PbnOmHx clusters. Much less extent of aggregation in the plume is observed for lead chromate pellets and for the lead pigments in tempera. Similarities can be found between plume composition of ablated lead white and PbO, suggesting that laser/pigment interaction involves formation of PbO, therefore providing indications of the participation of a thermal decomposition mechanism.

  18. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  19. Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses

    SciTech Connect

    Kononenko, Taras V; Konov, Vitalii I; Garnov, Sergei V; Danielius, R; Piskarskas, A; Tamosauskas, G; Dausinger, F

    1999-08-31

    A series of studies was carried out on the ablation of steel, Si{sub 3}N{sub 4} ceramic, and diamond in air by femtosecond (200 and 900 fs) pulses of different wavelengths (532 and 266 nm) and in a wide energy density range (1 - 10{sup 3} J cm{sup -2}). The ablation rates were measured for different geometries of the irradiation surface [a shallow crater and a channel with a high (up to 10) aspect ratio]. The ablation rates (in a shallow crater) and the morphologies of the irradiated surface were compared for femtosecond and longer (220 ps, 7 ns) pulses. The role of the laser-generated plasma in the ablation of materials by subpicosecond pulses as well as the prospects for the practical application of ultrashort laser pulses in the processing of materials are analysed. (interaction of laser radiation with matter. laser plasma)

  20. Ultrasonic characterization of laser ablation

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Telschow, K. L.

    When a pulsed laser beam strikes the surface of an absorbing material, ultrasonic waves are generated due to thermoelectric expansion and, at higher laser power densities, ablation of the material. These sound generation mechanisms have been the subject of numerous theoretical and experimental studies and are now fairly well understood. In particular, it has been established that at low power densities the thermoelastic mechanism is well described by a surface center of expansion. This mechanism produces a characteristic waveform whose amplitude is proportional to the energy absorbed from the laser pulse and also dependent on the thermal and elastic properties of the material. The ablation ultrasonic source can be described by a point normal force acting on the material surface. For laser power densities near the ablation onset, the time dependence of the source is that of the laser pulse. The resultant waveform recorded on epicenter (source and detector collinear) has a sharp peak determined by the momentum impulse delivered to the material by the ablation process. Particularly in the near ablation onset region, this ultrasonic displacement peak can be used to characterize the ablation process occurring at the material surface. The onset power density for ablation and subsequent ablation dependence on power density are material dependent and thought to be a function of the heat capacity and thermal conductivity of the material. With this in mind, it is possible that these ablation signals could be used to characterize material microstructures, and perhaps material mechanical properties such as hardness, through microstructural changes of the material thermal parameters. This paper explores this question for samples of Type 304 stainless steel with microstructures controlled through work hardening and annealing.

  1. Laser ablation methods for analysis of urinary calculi: Comparison study based on calibration pellets

    NASA Astrophysics Data System (ADS)

    Štěpánková, K.; Novotný, K.; Vašinová Galiová, M.; Kanický, V.; Kaiser, J.; Hahn, D. W.

    2013-03-01

    Methods based on laser ablation, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass/Optical Emission Spectrometry (LA-ICP-MS/OES) are particularly suitable for urinary calculi bulk and micro analysis. Investigation of spatial distribution of matrix and trace elements can help to explain their emergence and growth. However, quantification is still very problematic and these methods are often used only for qualitative elemental mapping. There are no commercially available standards, which would correspond to the urinary calculi matrix. Internal standardization is also difficult, mainly due to different crystalline phases in one kidney stone. The aim of this study is to demonstrate the calibration capabilities and examine the limitations of laser ablation based techniques. Calibration pellets were prepared from powdered human urinary calculi with phosphate, oxalate and urate matrix. For this comparative study, the most frequently used laser-ablation based analytical techniques were chosen, such as LIBS and LA-ICP-MS. Moreover, some alternative techniques such as simultaneous LIBS-LA-ICP-OES and laser ablation LA-LIBS were also utilized.

  2. Numerical Study of Thrust Generation in the Process of Laser Ablated Doped Polymer

    NASA Astrophysics Data System (ADS)

    Li, Nanlei; Hong, Yanji; Li, Xiuqian

    2011-11-01

    Recoil impulse of ablation products is a dominant source of thrust during laser ablation of polymers in vacuum. Based on the experiment phenomenon, put forward the threshold energy model to described ablation process, used laser deposition energy in polymer as ablation criterion, and calculated the fluence of energy generation from polymer chemolysis. Take the doped polymer PVC as research object, analyzed and computed interested parameter in process of laser ablated polymer, such as exhaust velocities of ablated product, ablated mass of polymer, recoil momentum gained by polymer target. Consulted experiment data, the numerical model well revealed the propulsion capability of different polymers.

  3. Study of polymer ablation products obtained by ultraviolet laser ablation — inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Todolí, J.-L.; Mermet, J.-M.

    1998-10-01

    A study of the nature of aerosols following polymer laser ablation was performed. A glass sample was used for comparison. Aerosol fractions were analyzed by using simple methods based on transport efficiency and filters. Three different tube lengths, i.e. 4, 29 and 54 m, were inserted between the ablation cell and the inductively coupled plasma atomic emission spectrometry (ICP-AES) injector. For the glass sample, 10 elements were studied. Only Na and K exhibited different results as the particle size, i.e. tube length, was varied. The polymers used were poly(vinyl chloride), PVC, and poly(ethylene), PE. Three elements (Ca, Ti and Sn) under different chemical forms were measured. Unlike Ti and Sn the ablated aerosol particle size (mass) seemed to depend on the Ca chemical form. Another PVC sample containing 11 elements was also studied. Na, Al and C exhibited a different behavior with particle size with respect to the remaining elements. Then, the carbon signal was studied after a 0.3 μm pore size filter had been placed between the ablation cell and the ICP torch. The results indicated that carbon was mainly present under gaseous form and particles smaller than 0.3 μm size. The analysis of the aerosol gaseous phase by thermal desorption GC-MS confirmed the presence of polymer volatile thermal degradation products. These results explained why carbon could not be applied as an efficient internal standard.

  4. Laser Paint Interactions Studied by Optical Emission Spectroscopy and Pump and Probe Analysis of the Ablation Plume

    NASA Astrophysics Data System (ADS)

    Rebollar, E.; Oujja, M.; Martín, M.; Castillejo, M.

    The ablation plumes resulting from the laser irradiation of pigments in the form of pellets and as tempera paints were studied by optical spectroscopic methods including optical emission spectroscopy (OES) and laser induced fluorescence (LIF), using a probe laser, delayed with respect to the ablation laser. The differences observed between emissions from pellets and from tempera paints of a given pigment, and between organic and inorganic pigments, serve to discuss the mechanisms operating in the laser irradiation of the paint systems.

  5. Parametric Study of Carbon Nanotube Production by Laser Ablation Process

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl

    2002-01-01

    Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.

  6. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  7. Ablation of atheroma by laser energy: a comparative study of the efficacy of different temporal rates of energy deposition

    NASA Astrophysics Data System (ADS)

    Ramsay, Donald J.; Walker, Philip J.; Dadswell, Nicola G.; May, James; Piper, James A.; Wacher, Christine

    1990-06-01

    Laser angioplasty continues to attract interest as a potential method for treating atherosclerotic arterial disease. Current efforts are aimed at finding the most effective combination of laser and delivery system. High energy pulsed ultraviolet or infrared lasers demonstrate good photoablative properties but there remain practical difficulties with the optical fibre delivery. Continuous wave lasers are widely used in conjunction with "hot-tip" fibres for thermal ablation but their direct (optical) ablation efficiency is low, causing significant surrounding thermal damage in soft tissue. While considerable attention has been directed previously at the ablative effects for different laser wavelengths, little systematic study has been made of the efficacy for different temporal rates of energy deposition. We have compared the efficacy for tissue ablation in cadaveric human aorta of three different laser systems with similar wavelengths in the visible (green) but different temporal rates of energy deposition. The laser sources were the continuous wave argon ion laser (514.5 nm), the high pulse energy, frequency doubled Nd:YAG laser (532 nm) and the copper vapour laser. The copper vapour laser is a high repetition rate, high average power, pulsed laser emitting in the green (511 nm) and yellow (578 nm) which has temporal characteristics intermediate between those of the Nd:YAG laser and the argon ion laser, and has the potential to be effective both for direct optical ablation and hot-tip thermal ablation.

  8. A study of laser ablation propulsion using polyoxymethelyne and a high power diode laser

    NASA Astrophysics Data System (ADS)

    Kolesar, Michael D.

    With an increased interest by universities, government and commercial groups in using constellations of pico and nano satellites, the need for micro-thrusters to aid in the station-keeping capabilities has become strong. This report examines using polymers and a laser to ablate material as a potential propulsion option for station-keeping. Homopolymer polyoxymethelyne (POM), commonly known as Delrin(TM), was tested as a fuel for a high powered (20 Watt 980 nm) solid state diode laser ablation thruster to be used for station-keeping on pico and nano sized satellites. The experiments required a partial vacuum to reduce the effects of air decomposition and remove water vapor during the ablation event. The vacuum chamber, shadowgraph, and an impulse measurement system were all designed and built around the 20-Watt laser. Three different sample thicknesses were tested (.005", .010", and .020") to determine the behavior of the polymer. The laser was focused onto the POM sample, which was mounted to a load cell and calibrated to measure the impulse of the system imparted by the laser pulse. The calculated thrust values ranged from 600 microN to 1300 microN with a high uncertainty due to the small sample size. The exhaust plume from the ablation event was captured using a shadowgraph. A low velocity was recorded because the chamber was not a complete vacuum, causing the exhaust plume to collide with the air molecules in the test chamber. However the load cell results suggested that 1.30 mN per burst can be produced with an uncertainty of 30%. With the work outlined in this paper, POM shows the promise and challenge of being a good candidate as a fuel material. POM warrants further development and investment as a fuel to be used with a laser ablation micro-thruster.

  9. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  10. Computational study of nanosecond pulsed laser ablation and the application to momentum coupling

    SciTech Connect

    Yuan Hong; Tong Huifeng; Li Mu; Sun Chengwei

    2012-07-15

    During the evaporation and ablation of a matter induced by intensive laser radiation, the vapor plasma is ejected from the surface of the target which induces the recoil pressure and impulse in the target. Impulse coupling of laser beams with matter has been extensively studied as the basis of laser propulsion and laser clearing space debris. A one-dimensional (1D) bulk absorption model to simulate the solid target ablated directly by the laser beam is presented; numerical calculation of impulse acting on the target in vacuum with different laser parameters is performed with fluid dynamics theory and 1D Lagrange difference scheme. The calculated results of the impulse coupling coefficients are in good agreement with the experimental results and Phipps' empirical value. The simulated results show that the mechanical coupling coefficients decrease with the increment of laser intensity when the laser pulses generate plasma. The present model can be applied when the laser intensity is 10{sup 8} - 10{sup 10} W/cm{sup 2}, which will provide a guide to the study of momentum coupling of laser beams with matter.

  11. Ultraviolet femtosecond and nanosecond laser ablation of silicon: Ablation efficiency and laser-induced plasma expansion

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Greif, Ralph; Russo, Richard E.

    2004-03-23

    Femtosecond laser ablation of silicon in air was studied and compared with nanosecond laser ablation at ultraviolet wavelength (266 nm). Laser ablation efficiency was studied by measuring crater depth as a function of pulse number. For the same number of laser pulses, the fs-ablated crater was about two times deeper than the ns-crater. The temperature and electron number density of the pulsed laser-induced plasma were determined from spectroscopic measurements. The electron number density and temperature of fs-pulse plasmas decreased faster than ns-pulse plasmas due to different energy deposition mechanisms. Images of the laser-induced plasma were obtained with femtosecond time-resolved laser shadowgraph imaging. Plasma expansion in both the perpendicular and the lateral directions to the laser beam were compared for femtosecond and nanosecond laser ablation.

  12. Echocardiography-guided percutaneous per-ventricular laser ablation of ventricular septum: in vivo study in a canine model.

    PubMed

    He, Guangbin; Sun, Chao; Zhang, Xiangkong; Zuo, Lei; Qin, Haiying; Zheng, Minjuan; Zhou, Xiaodong; Liu, Liwen

    2016-05-01

    Surgical myectomy and ethanol ablation are established intervention strategies for left ventricular outflow obstruction in hypertrophic cardiomyopathy. Safety and efficacy limitations of these interventions call for a minimally invasive, potentially safer, and more efficacious strategy. In this study, we aimed to evaluate the feasibility of echocardiography-guided percutaneous per-ventricular laser ablation of a ventricular septum in a canine model. Six domestic dogs were chosen for the study. A 21G needle was inserted into the right ventricle with its tip reaching the targeted basal to mid-septum, after which laser ablation was performed as follows: 1-W laser for 3 min (180 J) at the basal segment and 5 min (300 J) at middle segment of the septum, respectively. Echocardiography, blood chemistry tests, and pathology examination were performed to assess the results of laser ablation. No death or major complications, i.e., tamponade, pericardial effusion, or ventricular fibrillation, occurred. The laser-ablated areas were well demarcated in the results of the pathological examination. The diameters of the ablated regions were 4.42 ± 0.57 and 5.28 ± 0.83 mm for 3 and 5 min ablation, respectively. Pre-ablation and post-ablation, cardiac enzymes were found to increase significantly while no significant differences were found among M-mode, 2D (LVEF), pulsed-wave (PW) Doppler, and tissue Doppler imaging (TDI) measurements. Contrast echocardiography confirmed the perfusion defects in the ablated regions. Microscopically, the ablated myocardium showed coagulative changes and a sparse distribution of disappearing nuclei and an increase in eosinophil number were observed. Our study suggests that percutaneous and per-ventricular laser ablation of the septum is feasible, potentially safe and efficacious, and warrants further investigation and validation. PMID:26861985

  13. Dynamics of Femtosecond Laser Ablation Plume Studied With Ultrafast X-ray Absorption Fine Structure Imaging

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2010-10-08

    We investigated the dynamic process of an expanding femtosecond laser ablation plume of aluminum generated in an irradiation intensity range of 10{sup 13}-10{sup 15} W/cm{sup 2} with the ultrafast x-ray absorption fine structure (XAFS) imaging technique. The XAFS spectra of the aluminum L{sub II,III} edge of the plume revealed that the plume consists of doubly and singly charged ions, neutral atoms, liquid particles, and possible atomic clusters. Scanning electron microscopy of deposited ablation particles confirmed that the liquid particles corresponds to the spherical nanoparticles with a size ranging from several tens nanometers to approximately 200 nm. The spatiotemporal evolution of the XAFS image of the plume shows the sequential appearance of each ablation particle from aluminum surface according to its ejection velocity. The result suggests that the photomechanical fragmentation process, which was theoretically proposed, is dominant mechanism for the nanoparticle ejection under the irradiation intensity far from the ablation threshold of aluminum. This study clearly demonstrates the potential of our technique for measuring the ultrafast dynamics of femtosecond laser ablation process.

  14. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  15. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  16. Study of ablation by laser irradiation of plane targets at wavelengths 1. 05, 0. 53, and 0. 35. mu. m

    SciTech Connect

    Key, M.H.; Toner, W.T.; Goldsack, T.J.; Kilkenny, J.D.; Veats, S.A.; Cunningham, P.F.; Lewis, C.L.S.

    1983-07-01

    Ablation by laser irradiation at wavelengths lambda = 1.05, 0.53, and 0.35 ..mu..m has been studied from analysis of time-resolved x-ray spectra of layered targets and of ion emission. Irradiance was varied in the range 2 x 10/sup 13/ to 2 x 10/sup 15/ W cm/sup -2/ with constant laser power and variable focal spot size. Deductions include the effect of lateral energy transport from small focal spots and ablation rates and ablation pressures obtained both in the limit of negligible transport and when lateral transport is significant. Advantages of short wavelengths for ablatively driven implosions are quantified.

  17. Er:YAG laser ablation: 5-11 years prospective study

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Nemec, Michal; Sulc, Jan; Miyagi, Mitsunobu

    2005-03-01

    The Er:YAG laser at 2940 nm has been proposed for use in dental cavity preparation and removal of carious enamel and dentin. The purpose of the present study was to determine the effect of the Er:YAG laser ablation in treating dental caries after a period from 5 to 11 years. For this study, 133 cavities were chosen, and for their reparation of it the three restorative materials were used. Baseline examination was made in the following intervals: one week, 1 year, and from 5 to 11 years after cavity preparation and placement of filling material. Clinical assessments were carried out in accordance with the US Public Health Service System. The follow-up included: the marginal ridge, marginal adaptation, anatomic form, caries, color match, cavo surface margin discoloration, surface smoothness, and postoperative sensitivity. Er:YAG laser ablation is an excellent method for treating frontal teeth, i.e., incisors, canines, premolars, and initial occlusal caries of molars. However, visual control of non-contact therapy is necessary. Er:YAG laser ablation is safe, and it strongly reduces pain. The laser treatment markedly decreases the unpleasant sound and vibration.

  18. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3/J when the laser fluence was set at 6.51 J/cm2. For enamel, the maximum ablation efficiency was 0.009 mm3/J at a fluence of 7.59 J/cm2. Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value.

  19. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study

    NASA Astrophysics Data System (ADS)

    Valverde-Alva, M. A.; García-Fernández, T.; Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R.; Esparza-Alegría, E.; Sánchez-Valdés, C. F.; Llamazares, J. L. Sánchez; Herrera, C. E. Márquez

    2015-11-01

    The pulsed photoacoustic (PA) technique was used to study the synthesis by laser ablation of silver nanoparticles (Ag-NPs) in ethanol. PA technique allowed to determine the production rate per laser pulse and concentration of synthesized Ag-NPs. The samples were produced by using a pulsed Nd:YAG laser with 1064 nm of wavelength and 7 ns of pulse duration. The laser pulse energy varied from 10 to 100 mJ. Transmission electron microscopy micrographs demonstrated that the obtained nanoparticles were spherical with an average size close to 10 nm. The absorption spectra of the colloids showed a plasmon absorption peak around 400 nm. The PA analyses showed a significant reduction of the production rate of Ag-NPs during the first hundreds of laser pulses. For a higher number of pulses this rate was kept almost constant. Finally, we found that the root mean square (RMS) value of the PA signal was proportional to the laser pulse fluence on the target surface. Thus PA technique was useful to monitor the ablation process.

  20. The impact of laser ablation on optical soft tissue differentiation for tissue specific laser surgery-an experimental ex vivo study

    PubMed Central

    2012-01-01

    Background Optical diffuse reflectance can remotely differentiate various bio tissues. To implement this technique in an optical feedback system to guide laser surgery in a tissue-specific way, the alteration of optical tissue properties by laser ablation has to be taken into account. It was the aim of this study to evaluate the general feasibility of optical soft tissue differentiation by diffuse reflectance spectroscopy under the influence of laser ablation, comparing the tissue differentiation results before and after laser intervention. Methods A total of 70 ex vivo tissue samples (5 tissue types) were taken from 14 bisected pig heads. Diffuse reflectance spectra were recorded before and after Er:YAG-laser ablation. The spectra were analyzed and differentiated using principal component analysis (PCA), followed by linear discriminant analysis (LDA). To assess the potential of tissue differentiation, area under the curve (AUC), sensitivity and specificity was computed for each pair of tissue types before and after laser ablation, and compared to each other. Results Optical tissue differentiation showed good results before laser exposure (total classification error 13.51%). However, the tissue pair nerve and fat yielded lower AUC results of only 0.75. After laser ablation slightly reduced differentiation results were found with a total classification error of 16.83%. The tissue pair nerve and fat showed enhanced differentiation (AUC: 0.85). Laser ablation reduced the sensitivity in 50% and specificity in 80% of the cases of tissue pair comparison. The sensitivity of nerve–fat differentiation was enhanced by 35%. Conclusions The observed results show the general feasibility of tissue differentiation by diffuse reflectance spectroscopy even under conditions of tissue alteration by laser ablation. The contrast enhancement for the differentiation between nerve and fat tissue after ablation is assumed to be due to laser removal of the surrounding lipid-rich nerve

  1. Deposition of hydroxyapatite thin films by Nd:YAG laser ablation: a microstructural study

    SciTech Connect

    Nistor, L.C.; Ghica, C.; Teodorescu, V.S.; Nistor, S.V. . E-mail: snistor@alpha1.infim.ro; Dinescu, M.; Matei, D.; Frangis, N.; Vouroutzis, N.; Liutas, C.

    2004-11-02

    Hydroxyapatite (HA) thin films has been successfully deposited by Nd:YAG laser ablation at {lambda} = 532 nm. The morphology and microstructure of the deposited layers was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). Polycrystalline HA films were directly obtained with the substrate at 300 deg. C and without introducing water vapors in the deposition chamber. Electron paramagnetic resonance (EPR) measurements show that the oxygen stoichiometry in the HA films is also maintained. Depositions performed at {lambda} = 335 nm laser wavelength and 300 deg. C substrate temperature resulted in polycrystalline layers of mixed composition of HA and tricalciumphosphate (TCP)

  2. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Comparative study of the ablation of materials by femtosecond and pico- or nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kononenko, Taras V.; Konov, Vitalii I.; Garnov, Sergei V.; Danielius, R.; Piskarskas, A.; Tamosauskas, G.; Dausinger, F.

    1999-08-01

    A series of studies was carried out on the ablation of steel, Si3N4 ceramic, and diamond in air by femtosecond (200 and 900 fs) pulses of different wavelengths (532 and 266 nm) and in a wide energy density range (1 — 103 J cm-2 ). The ablation rates were measured for different geometries of the irradiation surface [a shallow crater and a channel with a high (up to 10) aspect ratio]. The ablation rates (in a shallow crater) and the morphologies of the irradiated surface were compared for femtosecond and longer (220 ps, 7 ns) pulses. The role of the laser-generated plasma in the ablation of materials by subpicosecond pulses as well as the prospects for the practical application of ultrashort laser pulses in the processing of materials are analysed.

  3. Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere

    SciTech Connect

    Harilal, S. S.; Miloshevsky, G. V.; Diwakar, P. K.; LaHaye, N. L.; Hassanein, A.

    2012-08-15

    We investigated spatio-temporal evolution of ns laser ablation plumes at atmospheric pressure, a favored condition for laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass-spectrometry. The 1064 nm, 6 ns pulses from a Nd:YAG laser were focused on to an Al target and the generated plasma was allowed to expand in 1 atm Ar. The hydrodynamic expansion features were studied using focused shadowgraphy and gated 2 ns self-emission visible imaging. Shadowgram images showed material ejection and generation of shock fronts. A secondary shock is observed behind the primary shock during the time window of 100-500 ns with instabilities near the laser cone angle. By comparing the self-emission images obtained using fast photography, it is concluded that the secondary shocks observed in the shadowgraphy were generated by fast moving target material. The plume front estimates using fast photography exhibited reasonable agreement with data obtained from shadowgraphy at early times {<=}400 ns. However, at later times, fast photography images showed plume confinement while the shadowgraphic images showed propagation of the plume front even at greater times. The structure and dynamics of the plume obtained from optical diagnostic tools were compared to numerical simulations. We have shown that the main features of plume expansion in ambient Ar observed in the experiments can be reproduced using a continuum hydrodynamics model which provided valuable insight into the expansion dynamics and shock structure of the plasma plume.

  4. Experimental studies of laser-ablated zirconium carbide plasma plumes: Fuel corrosion diagnostic development

    SciTech Connect

    Wantuck, P.J.; Butt, D.P.; Sappey, A.D.

    1992-01-01

    Understanding the corrosion behavior of nuclear fuel materials, such as refractory carbides, in a high temperature hydrogen environment is critical for several proposed nuclear thermal propulsion (NTP) concepts. Monitoring the fuel corrosion products is important not only for understanding corrosion characteristics, but to assess the performance of an actual, operating nuclear propulsion system as well. In this paper, we describe an experimental study initiated to develop, test, and subsequently utilize non-intrusive, laser-based diagnostics to characterize the gaseous product species which are expected to evolve during the exposure of representative fuel samples to hydrogen. Laser ablation is used to produce high temperature, vapor plumes from solid solution, uranium-free, zirconium carbide (ZrC) forms for probing by other laser diagnostic methods; predominantly laser-induced fluorescence (LIF). We discuss the laser ablation technique, results of plume emission measurements, as well as the use of planar LIF to image both the ZrC plumes and actual NTP fuel corrosion constituents.

  5. Time-resolved imaging for the dynamic study of ablative laser propulsion

    NASA Astrophysics Data System (ADS)

    Lin, Jun

    Time-resolved imaging techniques have been developed and used for a study of plasma dynamics in Ablative Laser Propulsion (ALP), an advanced propulsion technique utilizing the momentum of laser-ablated solid propellants for rocket thrust. We used a gated Intensified Charge Coupled Device camera to record light emission from laser-induced plasma. The plasma was ignited by 100-ps wide laser pulses, of energy 35 mJ at 532 nm wavelength. The required algorithms for processing 2-D digital images of the plasma and deriving the plasma edge velocities were also developed. The 2-D angular distribution functions for both plasma velocity and emission intensity were deduced from these measurements for the first time. The fitting functions for observed angular distributions were derived for a wide range of elements, such as C (graphite), Al, Si, Cu, Fe, Zn, Sn and Pb. Results show that the specific impulses (I sp) vary between 2.6 x 103 s (carbon) and 1.2 x 103 s (zinc), which are in excellent agreement with previously conducted Force Measurements. We also developed a digital video imaging (DVI) technique to study the dynamics of a ballistic pendulum driven by TEA CO2 laser pulses. The pulses had 200 ns pulsewidth and 10.6 J energy at 10.6 mum wavelength. The experiment using the DVI technique in the range of pressures from 3.5 mTorr to 1 atmosphere has been developed for the first time. Coupling coefficients (Cm) and mass removal rates as functions of pressure were deduced from these measurements. The technique allowed the addressing of the partition of the energy and momentum between air breakdown and target ablation. The study was performed on Aluminum targets. The partition functions show a sharp transition region between 1.0 and 10 Torr, where the momentum and energy imparted to the target via ablation appear comparable to those due to air breakdown. Our observations show that currently developing air-breathing laser-propulsion schemes would hardly support launching

  6. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  7. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

  8. Optical time of flight studies of lithium plasma in double pulse laser ablation: Evidence of inverse Bremsstrahlung absorption

    SciTech Connect

    Sivakumaran, V.; Joshi, H. C.; Singh, R. K.; Kumar, Ajai

    2014-06-15

    The early stage of formation of lithium plasma in a collinear—double pulse laser ablation mode has been studied using optical time of flight (OTOF) spectroscopy as a function of inter-pulse delay time, the distance from the target surface and the fluence of the ablation lasers. The experimental TOF measurements were carried out for lithium neutral (670.8 nm and 610.3 nm), and ionic (548.4 nm and 478.8 nm) lines. These experimental observations have been compared with that for single pulse laser ablation mode. It is found that depending on the fluence and laser pulse shape of the first pre-ablation laser and the second main ablation laser, the plasma plume formation and its characteristic features can be described in terms of plume-plume or laser-plume interaction processes. Moreover, the enhancement in the intensity of Li neutral and ionic lines is observed when the laser-plume interaction is the dominant process. Here, we see the evidence of the role of inverse Bremsstrahlung absorption process in the initial stage of formation of lithium plasma in this case.

  9. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study.

    PubMed

    Gill, Ruby K; Smith, Zachary J; Lee, Changwon; Wachsmann-Hogiu, Sebastian

    2016-01-01

    The aim of this study is to understand the effect of varying laser repetition rate on thermal energy accumulation and dissipation as well as femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) signals, which may help create the framework for clinical translation of femtosecond lasers for surgical procedures. We study the effect of repetition rates on ablation widths, sample temperature, and LIBS signal of bone. SEM images were acquired to quantify the morphology of the ablated volume and fsLIBS was performed to characterize changes in signal intensity and background. We also report for the first time experimentally measured temperature distributions of bone irradiated with femtosecond lasers at repetition rates below and above carbonization conditions. While high repetition rates would allow for faster cutting, heat accumulation exceeds heat dissipation and results in carbonization of the sample. At repetition rates where carbonization occurs, the sample temperature increases to a level that is well above the threshold for irreversible cellular damage. These results highlight the importance of the need for careful selection of the repetition rate for a femtosecond laser surgery procedure to minimize the extent of thermal damage to surrounding tissues and prevent misclassification of tissue by fsLIBS analysis. PMID:26260774

  10. Study of superalloy topography during ultrahigh intensity nanosecond ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Wu, Qihong; Jie, Jiansheng; Ma, Yurong; Yu, Qingxuan; Miao, Bin; Wang, Guanzhong; Liao, Yuan; Fang, Rongchuan; Chen, Xiangli; Wang, Kelvin

    2002-05-01

    We report on the topography of holes ablated by an ultrahigh intensity 355 and 266 nm laser with 8 ns pulse width in Ni-base superalloy Inconel 718. The origin of droplets, micropores, and microcracks on the surface of hole is identified. Qualitative differences in the characteristics of microcracks indicate that the dominant continuous microcracks result from thermal effects in 355 nm laser ablation, and the dominant island-chain microcrack result from photochemical effects in 266 nm laser ablation. In ultrahigh intensity laser ablation (>200 GW/cm2), the mechanical load on the surface is very significant to the resulting topography, and the grain boundary plays an important role in the origin of the micropores.

  11. Synthesis and magnetic study of carbon coated iron oxide nanoparticles by laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Sharma, P.; Gonal, M. R.; Vatsa, R. K.; Singh, M. R.; Ravikumar, G.

    2016-05-01

    Magnetic Iron oxides nanoparticles (NPs) were prepared by Laser Ablation in Solution method. Formation and average size of iron oxide NPs (~8 nm) is confirmed by XRD pattern and magnetization studies. Detailed magnetic studies have been carried out using SQUID magnetometer. The saturation magnetization for the iron oxide NPs was found to be 60.07 emu/g. Below the blocking temperature of 150 K the hysteresis loop shows ferromagnetic nature, whereas it shows superparamagnetic behavior at 300 K, for the synthesized NPs.

  12. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Panda, Madhusmita; Krishnan, R.; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K.

    2016-05-01

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp3 bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp3 content and optical energy gap. The sp3 content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp3 content matches well with the evolution of ID/IG ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 - 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  13. Chemically assisted laser ablation ICP mass spectrometry.

    PubMed

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis. PMID:12553756

  14. Experimental study on 785 nm femtosecond laser ablation of sapphire in air

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-06-01

    Changes in surface morphology and ablation rate induced on sapphire were investigated after interaction with femtosecond laser pulses in air at variable fluence (2 to 77 J cm-2) and repetition rate (10 to 1000 Hz). Multiple laser pulses at a wavelength of 785 nm and pulse width of 130 fs were fired at the surface of sapphire to produce craters whose depth, size and morphology were evaluated using optical and scanning electron microscopy. Ablation rate was found to depend on laser fluence, number of laser pulses and repetition rate. A rapid increase in ablation rate with fluence was observed for fluences lower than 5.9 J cm-2, followed by a slow increase up to fluence of 40.7 J cm-2. A drop in ablation rate occurred at fluence greater than 40.7 J cm-2. Craters produced at high repetition rate (1000 Hz) at fluence of 11.8 J cm-2 were deeper than those produced at low repetition rate (10 Hz) during the first 40 to 50 pulses. The situation was reversed for craters produced by greater than 50 laser pulses. The drop in ablation rate observed at high fluence and repetition rate can be attributed to attenuation of the laser energy due to plasma and particle shielding that result from interactions with the laser-generated particles that cannot be completely removed from the ablated crater. Defocusing effects associated with the non-equilibrium ionization of air which causes a divergence to the laser beam and consequently a reduction in the laser intensity at the sample surface can be another reason for the observed drop in the ablation rate at high fluence.

  15. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  16. Subpicosecond laser ablation of dental enamel

    NASA Astrophysics Data System (ADS)

    Rode, A. V.; Gamaly, E. G.; Luther-Davies, B.; Taylor, B. T.; Dawes, J.; Chan, A.; Lowe, R. M.; Hannaford, P.

    2002-08-01

    Laser ablation of dental enamel with subpicosecond laser pulses has been studied over the intensity range of (0.1-1.4) x1014 W/cm2 using 95 and 150 fs pulses at a pulse repetition rate of 1 kHz. The experimentally determined ablation threshold of 2.2plus-or-minus0.1 J/cm2 was in good agreement with theoretical predictions based on an electrostatic ablation model. The ablation rate increased linearly with the laser fluence for up to 15 times the ablation threshold. The absence of collateral damage was observed using optical and scanning electron microscopy. Pulpal temperature measurements showed an increase of about 10 degC during the 200 s course of ablation. However, air cooling at a rate of 5 l/min resulted in the intrapulpal temperature being maintained below the pulpal damage threshhold of 5.5 degC. The material removal rates for subpicosecond precision laser ablation of dental enamel are compared with other techniques.

  17. Ablation of femural bone with femtosecond laser pulses--a feasibility study.

    PubMed

    Liu, Yifei; Niemz, Markolf

    2007-09-01

    Although lasers are nowadays widely accepted as a popular scalpel of minimally invasive surgery (MIS), one of the most common orthopedic surgeries-the replacement of the knee joint-is still performed using an ordinary oscillating saw. Since ultra-short laser pulses are usually considered to be inefficient regardless of their high precision, the newest development of femtosecond laser systems has not yet been clinically applied to any mass ablation situation. However, thin disk Yb:KYW lasers meanwhile provide sufficient output power to ablate bone tissue within a reasonable time frame. Our results mainly focus on ablation rates obtained at different spot distances, repetition rates and pulse energies. It is shown that femtosecond laser pulses at high repetition rates are a promising tool for orthopedic surgery. PMID:17242869

  18. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  19. High-speed photographic studies of dye-assisted pulsed Nd:YAG laser ablation of dental hard tissues

    NASA Astrophysics Data System (ADS)

    Lu, Quiang; Wallace, David B.; Hayes, Donald J.

    1997-06-01

    We have been evaluating the use of a pulsed Nd:YAG laser for ablating hard dental tissue. For this application we apply dye-drops of an IR absorptive fluid on the enamel, then irradiate with a laser pulse from the laser. By using ink- jet technology to deliver the dye-drops, we can attain micron- and millisecond-scale precision in drop delivery, with a 'burst' of drops preceding each laser pulse. To gain better understanding of the ablation process we have used a high- speed CCD camera system with 1 microsecond(s) exposure and 1 microsecond(s) inter-exposure-interval capability. Fast photography of the ablation process showed the following typical events. (i) The laser induced plasma plume erupts immediately after pulse onset, expands to maximum within 50 microsecond(s) , and lasts up to 200 microsecond(s) . (ii) Ejected particles flying away from the site of laser pulse/dye-drop impact are detected within 30 microsecond(s) of laser pulse onset, and continue up to 10 ms. These particles attain velocities up to 50 m/s with lower velocities from lower pulse power. (iii) The plasma plume has a peak height that increases with increasing laser fluence, ranging up to 10 mm for a fluence of 242 J/cm2 on enamel. From this study, the dye-assisted ablation mechanisms are inferred to be plasma-mediated and explosion- mediated tissue removal.

  20. Confocal microscopy to guide Erbium:yttrium aluminum garnet laser ablation of basal cell carcinoma: an ex vivo feasibility study

    PubMed Central

    Larson, Bjorg A.; Chen, Chih-Shan Jason; Rajadhyaksha, Milind

    2013-01-01

    Abstract. For the removal of superficial and nodular basal cell carcinomas (BCCs), laser ablation provides certain advantages relative to other treatment modalities. However, efficacy and reliability tend to be variable because tissue is vaporized such that none is available for subsequent histopathological examination for residual BCC (and to confirm complete removal of tumor). Intra-operative reflectance confocal microscopy (RCM) may provide a means to detect residual tumor directly on the patient and guide ablation. However, optimization of ablation parameters will be necessary to control collateral thermal damage and preserve sufficient viability in the underlying layer of tissue, so as to subsequently allow labeling of nuclear morphology with a contrast agent and imaging of residual BCC. We report the results of a preliminary study of two key parameters (fluence, number of passes) vis-à-vis the feasibility of labeling and RCM imaging in human skin ex vivo, following ablation with an erbium:yttrium aluminum garnet laser. PMID:24045654

  1. Laser ablation of human tooth

    NASA Astrophysics Data System (ADS)

    Franklin, Sushmita R.; Chauhan, P.; Mitra, A.; Thareja, R. K.

    2005-05-01

    We report the measurements of ablation threshold of human tooth in air using photo-thermal deflection technique. A third harmonic (355nm) of Nd:YAG (yttrium aluminum garnet) laser was used for irradiation and a low power helium neon laser as a probe beam. The experimental observations of ablation threshold in conjunction with theoretical model based on heat conduction equations for simulating the interaction of a laser radiation with a calcified tissue are used to estimate the absorption coefficient of human tooth.

  2. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  3. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  4. Comparative study of CO2- and Er:YAG laser ablation of multiple cutaneous neurofibromas in von Recklinghausen's disease.

    PubMed

    Kriechbaumer, Lukas K; Susani, Martin; Kircher, Susanne G; Distelmaier, Klaus; Happak, Wolfgang

    2014-05-01

    With a prevalence of 1 in 3,000 births, neurofibromatosis type 1 (NF1) is one of the most common genetic disorders and is characterized by an uninhibited expansion of neural tissue. Occasionally, severe deformities occur, but frequently considerable cosmetic disfigurement is caused by the development of hundreds of benign cutaneous neurofibromas. The objective of this study was to evaluate the erbium:yttrium-aluminium-garnet (Er:YAG) laser as a therapeutic option for the removal of multiple cutaneous neurofibromas. In this prospective, comparative, in vivo study, 15,580 neurofibromas (44 operations on 21 patients) were removed via electrosurgery, CO2- or Er:YAG laser ablation. In 12 adjacent test areas, we compared the zone of thermal necrosis, the postoperative pain, the time to reepithelialization, the duration of postoperative erythema and the cosmetic outcome of these surgical methods. When compared to electrosurgery and CO2 laser ablation, the Er:YAG laser ablation outperformed the other methods of tumor removal. Rapid healing by second intention as well as the minimal discomfort and scar formation following Er:YAG laser ablation were noted. After 36 months of follow-up, permanent dyspigmentation was rare and hypertrophic scarring was not observed. Er:YAG laser vaporization of multiple cutaneous neurofibromas is a simple and rapid procedure that results in significantly better cosmetic results than CO2 laser treatment or electrosurgery. PMID:24189926

  5. Excimer laser ablation of the lens.

    PubMed

    Nanevicz, T M; Prince, M R; Gawande, A A; Puliafito, C A

    1986-12-01

    Ablation of the bovine crystalline lens was studied using radiation from an excimer laser at four ultraviolet wave lengths as follows: 193 nm (argon fluoride), 248 nm (krypton fluoride), 308 nm (xenon chloride), and 351 nm (xenon fluoride). The ablation process was quantitated by measuring mass ablated with an electronic balance, and characterized by examining ablation craters with scanning electron microscopy. The highest ablation rate was observed at 248 nm with lower rates at 193 and 308 nm. No ablation was observed at 351 nm. Scanning electron microscopy revealed the smoothest craters at 193 nm while at 248 nm there was vacuolization in the crater walls and greater disruption of surrounding tissue. The craters made at 308 nm did not have as smooth a contour as the 193-nm lesions. The spectral absorbance of the bovine lens was calculated at the wavelengths used for ablation and correlated with ablation rates and thresholds. High peak-power, pulsed ultraviolet laser radiation may have a role in surgical removal of the lens. PMID:3789982

  6. Laser ablation in analytical chemistry.

    PubMed

    Russo, Richard E; Mao, Xianglei; Gonzalez, Jhanis J; Zorba, Vassilia; Yoo, Jong

    2013-07-01

    In 2002, we wrote an Analytical Chemistry feature article describing the Physics of Laser Ablation in Microchemical Analysis. In line with the theme of the 2002 article, this manuscript discusses current issues in fundamental research, applications based on detecting photons at the ablation site (LIBS and LAMIS) and by collecting particles for excitation in a secondary source (ICP), and directions for the technology. PMID:23614661

  7. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  8. Studying ultrafast laser parameters to deter self-focusing for deep tissue ablation

    NASA Astrophysics Data System (ADS)

    Martin, Chris; Ben-Yakar, Adela

    2016-03-01

    Ultrafast pulsed lasers are a promising tool for precise and noninvasive tissue surgery. The high peak intensity of the pulses allows nonlinear interaction with tissue, causing three-dimensional confined ablation without thermal damage. However, deep tissue ablation has been limited to a few scattering lengths due to laser beam extinction. As pulse energies are increased to overcome attenuation, unwanted side effects can occur such as self-focusing, where the highly intense pulse alters the refractive index of the material, causing a lensing effect and long filaments of damage or complete beam collapse before the focus. Here, we examine laser parameters to overcome self-focusing for deep tissue ablation. Through imaging ablation voids with third harmonic generation, we show that increasing the pulse width from 200-fs to 2-ps reduces self-focusing induced focal plane shifting and avoids multiple filamentation altogether, resulting in deeper ablation without extended axial damage. Additionally, we simulate beam propagation for pulses of different central wavelengths, and show that longer wavelengths can ablate deeper because of decreased scattering in tissue and a subsequent reduction in self-focusing.

  9. Determination of energy density threshold for laser ablation of bacteria. An in vitro study.

    PubMed

    Coffelt, D W; Cobb, C M; MacNeill, S; Rapley, J W; Killoy, W J

    1997-01-01

    The Nd:YAG and CO2 lasers have been shown to be bactericidal at relative low energy densities. However, at energy densities exceeding 120 J/cm2 (CO2) and 200 J/cm2 (Nd:YAG), laser irradiation also causes irreparable root surface damage. The purpose of this study was to determine, in vitro, the energy density threshold at which microbial ablation could be achieved while inflicting the least amount of damage to the root surfaces of human teeth. Pairs of Escherichia coli colonies cultured on broth agar were treated with a CO2 laser using a pulsed waveform at approximate energy densities ranging from 3 to 110 J/cm2. One of each colony-pair was then examined by scanning electron microscopy (SEM) and the other subcultured for viable microbes. Roots of extracted teeth were lightly scaled and treated by CO2 laser, again with pulsed beam using approximate energy densities of 3 to 110 J/cm2: and examined by SEM. Regardless of the level of energy density, residual bacteria could be subcultured from all laser treated microbial colonies. The inability of the laser to completely obliterate microbial colonies was likely due to: depth of energy penetration, difficulty in precisely overlapping beam focal spots, irregular beam profile, and presence of microbes at the periphery of the beam focal spot. The threshold energy density for bacterial obliteration was determined to be 11 J/cm2 and that for root damage was 41 J/cm2. Root damage was evident by charring, crater formation, melt-down and resolidification surface mineral, and increasing surface porosity. The results of this in vitro study indicate that when used at an energy density between 11 and 41 J/cm2 the CO2 laser may destroy microbial colonies without inflicting undue damage to the tooth root surface. PMID:9049791

  10. Photothermal ablation of liver tissue with 1940-nm thulium fiber laser: an ex vivo study on lamb liver

    NASA Astrophysics Data System (ADS)

    Alagha, Heba Z.; Gülsoy, Murat

    2016-01-01

    The purpose of this study was to investigate the ablation efficiency of 1940-nm thulium fiber laser on liver tissue, while utilizing a real-time measurement system to monitor the temperature rise in adjacent tissues. Thulium fiber laser was delivered to lamb liver tissue samples via 400-μm bare tip fiber in contact mode. Eight different laser parameter combinations [power, continuous-wave (cw)/pulsed-modulated (pm) mode, and exposure time] were used. Exposure times were chosen to give the same total applied energy of 4 J for comparative purposes. Following laser irradiations, tissues were processed and stained with hematoxylin and eosin for macroscopic evaluation of ablation areas and total altered areas, and ablation efficiencies were calculated. Temperature of the nearby tissue at a distance of 1 mm from the fiber was measured, and rate of temperature change was calculated. A strong correlation between the rate of temperature change and ablation area was noted. Thermal effects increased with increasing power for both modes. The continuous-wave mode yielded higher ablation efficiencies than the pulse-modulated mode. Histological evaluation revealed a narrow vacuolization zone and negligible carbonization for higher-power values.

  11. Infrared laser ablation study of pressed soil pellets with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Mikolás, J; Musil, P; Stuchliková, V; Novotný, K; Otruba, V; Kanický, V

    2002-09-01

    Potential of infrared laser ablation (LA) coupled with ICP-AES as a technique suitable for the determination of trace elements (Zn, Cu, Ni, Cr, and V) in agricultural soils was studied. Operating parameters such as laser beam energy, laser beam focusing with respect to the sample surface, and velocity of the sample translation in the plane perpendicular to the laser beam were optimized. Soil samples were mixed with powdered Ag as a binder, and an internal standard (GeO(2)), and pressed into pellets. Calibration samples were prepared by adding known amounts of oxides of elements of interest into soils of known elemental composition and then processed in the same way as the analyzed samples. Calibration curves were found to be linear at least up to several hundreds of mg kg(-1) for the elements of interest. The elemental contents obtained by using LA-ICP-AES were compared with those obtained by analysis using wet chemistry followed by ICP-AES with pneumatic nebulization (PN). The results were in good agreement. Accuracy was also tested using certified reference soils with a bias not exceeding 10% relative. PMID:12324844

  12. Study on the Long-Term Results of Endovenous Laser Ablation for Treating Varicose Veins.

    PubMed

    Go, Seung Je; Cho, Byung Sun; Mun, Yun Su; Kang, Yoon Jung; Ahn, Hye Young

    2016-06-01

    Background Endovenous laser ablation (EVLA) is widely performed since the early 2000s, but there are few long-term results. Objectives The aim of this study was to evaluate the long-term results of EVLA employed for treating varicose veins of the lower limbs by duplex ultrasonographic study. Methods A total of 24 limbs of 17 patients who underwent EVLA between 2004 and 2007 were examined with duplex ultrasonographic scans. The mean follow-up period was 66.1 months. Results There were five recurrences of saphenofemoral junction reflux. The occlusion rate was 79.2% at a mean follow-up of 66.1 months. There were 14 recanalizations and 5 recurrences of the great saphenous vein. Five partial and nine total recanalizations were observed. Conclusions EVLA is an effective and minimally invasive treatment for varicose veins. Our long-term result was acceptable, but the result was not outstanding. PMID:27231428

  13. In vivo study of necrosis on the liver tissue of Wistar rats: a combination of photodynamic therapy and carbon dioxide laser ablation

    NASA Astrophysics Data System (ADS)

    Rego, R. F.; Nicolodelli, G.; Araujo, M. T.; Tirapelli, L. F.; Araujo-Moreira, F. M.; Bagnato, V. S.

    2013-07-01

    Photodynamic therapy (PDT) is known to be limited to applications in large volume tumors due to its limited penetration. Therefore, a combination of PDT and carbon dioxide (CO2) laser ablation may constitute a potential protocol to destroy bulk tumors because it involves an association of these two techniques allowing the removal of visible lesions with a high selectivity of destruction of remnant tumors. The main aim of this study is to investigate the most appropriate procedure to combine use of a CO2 laser and PDT on livers of healthy rats, and to analyze different techniques of this treatment using three types of photosensitizers (PSs). Forty eight animals were separated to form six groups: (1) only CO2 laser ablation, (2) drug and CO2 laser ablation, (3) only PDT, (4) drug and light (PDT) followed by CO2 laser ablation, (5) ablated with CO2 laser followed by PDT, and (6) drug followed by CO2 laser ablation and light. For each group, three types of photosensitization were used: topical 5-aminolevulinic acid (ALA), intravenous ALA and intravenous Photogem®. Thirty hours after the treatments, the animals were sacrificed and the livers removed. The depth of necrosis was analyzed and measured, considering microscopic and macroscopic aspects. The results show that the effects of the PDT were considerably enhanced when combined with CO2 laser ablation, especially when the PDT was performed before the CO2 laser ablation.

  14. Time-Resolved Force and Schlieren Visualization Study of TEA CO2 Laser Ablation of Water Droplets

    NASA Astrophysics Data System (ADS)

    Li, Xiuqian; Hong, Yanji; Wen, Ming; Ye, Jifei; Cui, Cunyan

    2011-11-01

    Time-resolved force sensing technique was applied to the study of propulsive characteristics of water droplets for multi-pulse TEA (transversely excited at atmospheric pressure) CO2 laser propulsion. Laser-driven blast waves and associated flow dynamics in the impulse generation processes of ablation of water droplets were studied by Schlieren visualization. Experimental results showed that coupling coefficient and specific impulse decreased as the interval between laser pulses and pulse numbers was increased. The maximum speed of the blast wave in the opposite and same direction of laser propagation was respectively 10 km/s and 7 km/s.

  15. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Transient signal responses for ablated samples as a function of particle size and laser parameters are characterized. Data are acquired with time resolution of 5 or 6 ms per data point. Large positive spikes in signal are observed and increase in both amplitude and frequency with increasing particle size. Particle sizes are selected using a differential mobility analyzer. Spikes in the signal also increase with decreasing laser rastering rates. A comparison of lasers with pulse widths of 370 fs and 5 ns shows that shortening the pulse width significantly reduces the frequency and amplitude of positive spikes in signal. These large positive spikes are attributed to the vaporization, atomization, and ionization of individual large intact particles, which are considered to be a major cause of fractionation in laser ablation ICP-MS.

  16. Possible evidence of Coulomb explosion in the femtosecond laser ablation of metal at low laser fluence

    NASA Astrophysics Data System (ADS)

    Li, Shuchang; Li, Suyu; Zhang, Fangjian; Tian, Dan; Li, He; Liu, Dunli; Jiang, Yuanfei; Chen, Anmin; Jin, Mingxing

    2015-11-01

    We use a computational model to study the ablation mechanism of metal target irradiated by femtosecond pulse laser. It is confirmed that the Coulomb explosion can occur during femtosecond laser ablation of metal. The influence of thermal ablation and Coulomb explosion on the ablation depth is respectively investigated. Comparing the calculated results with the experimental ones, we find that the theoretical results which consider the thermal ablation only agree well with the experimental ones at high laser fluence, and those which take the Coulomb explosion into account fit well with the experimental ones at lower laser fluence, which exactly explains the ablation mechanism. In contrast with the previous theoretical results which only consider the thermal ablation, our theoretical simulation describes the ablation mechanism straightforward by making comparison of ablation depth, and provides a more reasonable explanation that fits with the actual ablation process.

  17. Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2009-04-01

    We studied the dynamics of the femtosecond laser ablation of aluminum in an energy range well above the ablation threshold with the ultrafast time-resolved x-ray-absorption fine structure imaging technique. Analyzing the spectral structures near the L absorption edge that appeared in one-dimensional images of soft-x-ray absorbance, we successfully identified doubly and singly charged ions, neutral atoms, liquid nanoparticles, and possible atomic clusters in the expanding ablation plume. We also clarified that the ejected particles depend strongly on the laser irradiation intensity. The spatiotemporal evolution of the ablation particles allows us to estimate the spatial distribution of atomic density and the ejection velocity of each type of particle. In particular, we discuss the temporal sequence of the particle ejection in the early stages of plume expansion. Our experimental results strongly support the idea that photomechanical fragmentation and vaporization are dominant mechanisms for the production of liquid nanoparticles and neutral atoms, respectively, in femtosecond laser ablation induced in an irradiation intensity range of 10{sup 14}-10{sup 15} W/cm{sup 2}.

  18. Laser ablation in titanium implants followed by biomimetic hydroxyapatite coating: Histomorphometric study in rabbits.

    PubMed

    Faeda, Rafael Silveira; Spin-Neto, Rubens; Marcantonio, Elcio; Guastaldi, Antonio Carlos; Marcantonio, Elcio

    2012-07-01

    Titanium surface texture and chemistry modification successfully improves the host response and consequently the bone-to-implant contact surrounding dental implants. The aim of the present study was to investigate, using histomorphometrical-analysis, the effects of titanium surface modification by laser-ablation (Nd:YAG) followed by thin chemical deposition of HA. Forty-eight rabbits received one implant by tibiae of AS-machined (MS), laser-modified (LMS), or biomimetic hydroxyapatite-coated (HA) surface. Bone-to-implant contact (BIC) and bone area (BBT) were evaluated after 4, 8, and 12 weeks, at cortical and cancellous regions. Average BIC in the cortical region was higher (P < 0.001) on the LMS and HA implants for all periods, with no differences between LMS and HA. For the cancellous area, the LMS and HA implants showed higher (P < 0.01) BIC than MS at the initial periods. The LMS and HA showed similar values in the cortical region, but a tendency of higher values for HA in the cancellous region was observed in all periods. For the BBT, the differences were found only between HA and MS after 4 weeks in the cortical region (P < 0.05), and after 12 weeks in the cancellous area (P < 0.05). Our results showed that HA biomimetic coating preceded by laser treatment induced the contact osteogenesis and allowed the formation of a more stable bone-implant interface, even in earlier periods. PMID:22389308

  19. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  20. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  1. Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation.

    PubMed

    Panighello, Serena; Van Elteren, Johannes T; Orsega, Emilio F; Moretto, Ligia M

    2015-05-01

    In general the analysis of archeological glass represents a challenge for a wide variety of objects because of the presence of physical and/or chemical damage on the surface of the artifact, also known as weathering or corrosion. To retrieve accurate bulk elemental information by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS), the original, pristine glass needs to be "reached", thereby penetrating the alteration layer which is often more than 10 μm thick. To study this alteration layer the laser was operated in the drilling mode, either with a low (1 Hz) or a high (10 Hz) pulse repetition rate for a period of 50 s yielding detailed spatial information for ca. 20 elements over a shallow depth (ca. 5 μm) or less-detailed spatial information for 50-60 elements over a greater depth (ca. 50 μm). Quantitative elemental depth profiles (in wt%) were obtained with the so-called sum normalization calibration protocol, based on summation of the elements as their oxides to 100 wt%. We were able to associate the increase of SiO2 (in wt%) in the alteration layer to the volumetric mass density change in the glass as a result of depletion of Na2O and K2O. Also the interaction of the number of laser shots with the alteration layer is shown experimentally via depth measurements using profilometry. Chemical and physical changes in four ancient glass artifacts, directly and indirectly measureable by laser drilling, were studied as a function of internal and external factors such as age, composition, and exposure conditions. PMID:25716469

  2. Experimental study on double-pulse laser ablation of steel upon multiple parallel-polarized ultrashort-pulse irradiations

    NASA Astrophysics Data System (ADS)

    Schille, Joerg; Schneider, Lutz; Kraft, Sebastian; Hartwig, Lars; Loeschner, Udo

    2016-07-01

    In this paper, double-pulse laser processing is experimentally studied with the aim to explore the influence of ultrashort pulses with very short time intervals on ablation efficiency and quality. For this, sequences of 50 double pulses of varied energy and inter-pulse delay, as adjusted between 400 fs and 18 ns by splitting the laser beam into two optical paths of different length, were irradiated to technical-grade stainless steel. The depth and the volume of the craters produced were measured in order to evaluate the efficiency of the ablation process; the crater quality was analyzed by SEM micrographs. The results obtained were compared with craters produced with sequences of 50 single pulses and energies equal to the double pulse. It is demonstrated that double-pulse processing cannot exceed the ablation efficiency of single pulses of optimal fluence, but the ablation crater surface formed smoother if inter-pulse delay was in the range between 10 ns and 18 ns. In addition, the influence of pulse duration and energy distribution between the individual pulses of the double pulse on ablation was studied. For very short inter-pulse delay, no significant effect of energy variation within the double pulse on removal rate was found, indicating that the double pulse acts as a big single pulse of equal energy. Further, the higher removal efficiency was achieved when double-pulse processing using femtosecond pulses instead of picosecond pulses.

  3. A Study of Burst-Mode Ultrafast-Pulse Laser Ablation on Soft Tissues and Tissue-Proxies

    NASA Astrophysics Data System (ADS)

    Qian, Zuoming

    This thesis research presents an experimental study of both the physics mechanisms and biological effects of burst-mode ultrafast-pulse laser ablation. A 3D living-cell-culture tissue-proxy based on agar hydrogel was developed, and this tissue-proxy was used to quantify the cellular necrosis range, to identify the types of cellular death, and to measure the volume of material removal post burst-mode laser ablation. The potential hazards of cellular DNA damage were also evaluated. A time-resolving energy-partition diagnostics system was designed and built for characterizing the dynamic scattering and absorption of pulses during burst-mode ablation. Such characterizations were carried out on soda-lime glass, aluminum, porcine tissues, distilled water, and agar gels using this diagnostic system. Each type of target materials displayed distinct features in their absorption patterns. An array of characteristics of the absorption and their relation to the ablation dynamics were analyzed, and valuable insight about the burst-mode ablation process was gained. The characterization of the dynamic absorptions allowed the evaluation of the roles of different physics mechanisms in the resulting cellular damage and material removal.

  4. Excimer laser ablation of ferrite ceramics

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    We study the ablation of Ni-Zn or Mn-7n ferrites by 248-nm KrF excimer laser irradiation for high-resolution patterning. A transfer lens system is used to project the image of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluente for ablation of the ferrite surface is about 0.3 J/cm2. A typical fluente of 1 J/cm2 is used to produce good-quality patterning. Scanning electron microscopy of the ablated area shows a "glassy" skin with extensive microcracks and solidified droplets being ejected that is frozen in action. This skin can be removed by ultrasonic cleaning.

  5. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  6. Numerical study of the ablative Richtmyer-Meshkov instability of laser-irradiated deuterium and deuterium-tritium targets

    NASA Astrophysics Data System (ADS)

    Marocchino, Alberto; Atzeni, Stefano; Schiavi, Angelo

    2010-11-01

    The Richtmyer-Meshkov instability (RMI) at the ablation front of laser-irradiated planar targets is investigated by two-dimensional numerical hydrodynamics simulations. The linear evolution of perturbations seeded either by surface roughness or target inhomogeneity is studied for perturbation wavelengths in the range 10≤λ≤400 μm and laser intensity 4×1012≤I≤4×1014 W/cm2 (with laser wavelength λlaser=0.35 μm). Thin and thick cryogenic deuterium or deuterium-tritium (DT) planar targets are considered. For targets irradiated at constant intensity, it is found that perturbations with wavelength below a given threshold perform damped oscillations, while perturbations above such a threshold are unstable and oscillate with growing amplitude. This is qualitatively in agreement with theoretical predictions by Goncharov et al. [Phys. Plasmas 13, 012702 (2006)], according to which ablation related processes stabilize perturbations with kDc≫1, where Dc is the distance between the ablation front and critical density for laser propagation. For kDc<1 a weakly growing Landau-Darrieus instability (LDI) is instead excited. The stability threshold increases substantially with laser intensity, given the dependence of Dc on laser intensity I (roughly Dc∝I, according to the present simulations). Direct-drive laser fusion targets are irradiated by time-shaped pulses, with a low intensity initial foot. In this case, perturbations with wavelengths below some threshold (about 10 μm, for typical ignition-class all-DT targets) are damped after an initial growth. In a thin target, initial perturbations, either damped or amplified by RMI and LDI, seed the subsequent Rayleigh-Taylor instability. Finally, it is shown that RMI growth of fusion targets can be reduced by using laser pulses including an initial adiabat-shaping picket (originally proposed to reduce the growth of Rayleigh-Taylor instability).

  7. A study of phase explosion of metal using high power Nd:YAG laser ablation

    SciTech Connect

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.; Lee, K. C.; Kim, K. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar to spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.

  8. a Study of Phase Explosion of Metal Using High Power Nd:YAG Laser Ablation

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.; Lee, K. C.; Kim, K. H.

    2007-12-01

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 μm, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar to spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.

  9. Study of the fragmentation phenomena of TiO2 nanoparticles produced by femtosecond laser ablation in aqueous media

    NASA Astrophysics Data System (ADS)

    Alnassar, S. I.; Akman, E.; Oztoprak, B. G.; Kacar, E.; Gundogdu, O.; Khaleel, A.; Demir, A.

    2013-10-01

    Since last decade, Pulsed Laser Ablation in Liquid (PLAL) has become an increasingly important technique for the production of the nanoparticles (NPs) since it usually provides high purity nanoparticle systems. This paper reports on the production and fragmentation of titanium oxide TiO2 nanoparticles by pulsed laser ablation of a titanium target immersed in Sodium Dodecyl Sulfate (SDS) solution using an ultrafast Ti:Sapphire laser. After the production of TiO2 nanoparticles for 30 min of laser irradiation, second harmonics of the laser wavelength are re-applied for different energies (180,120, 60 µJ) to SDS solution containing TiO2 colloids in order to fragment relatively large pieces to obtain smaller ones. It was found that size of nanoparticles after the treatment is independent of the initial characteristics of colloids, but depends strongly on laser parameters especially pulse energy and on the presence of chemically active species in the solution. It was reported that particle size and size distribution range can be decreased using second harmonics of Ti:Sapphire laser wavelengths by using different values of energy. Re-irradiation process at average energy value of 180 μJ decreased average particle size from 185 nm to 110 nm. Characterization of the NPs was studied by applying various techniques such as UV-visible (UV-vis.), Transmission Electron Microscope (TEM), Dynamic Light Scattering (DLS) and Fourier Transform Infra-Red (FTIR).

  10. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  11. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  12. Depth profile studies of ZrTiN coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Kanický, Viktor; Kuhn, Hans-Rudolf; Guenther, Detlef

    2004-09-01

    The feasibility of depth profiling was studied by using a 193-nm ArF* excimer laser ablation system (GeoLas, MicroLas, Goettingen, Germany) with a lens array-based beam homogenizer in combination with an ICP-QMS Agilent 7500. Two ablation cells (20 and 1.5 cm3) were compared at the laser repetition rate of 1 Hz, laser beam energy of 135 mJ and the carrier gas flow rate 1.5 L min(-1) He + 0.78 L min(-1) Ar. The ablation cell dimensions are important parameters for signal tailing; however, very small cell volumes (e.g. 1.5 cm3) may cause memory effects, which can be probably explained by dominant inertial losses of aerosol on cell walls with its delayed mobilization. The 20-cm3 ablation cell seems to be appropriate for depth profiling by continuous single-hole drilling. The study of the influence of the pit diameter magnitude on the waning and emerging signals under small crater depth/diameter aspect ratios, which range between 0.75 and 0.0375 for the 3-microm-thick coatings and pit diameters 4-80 microm, revealed that the steady-state signals of pure coating and pure substrate (out of interface) were obtained at crater diameters between 20 and 40 microm. Depth resolution defined by means of slopes of tangents in the layer interface region depend on the pit diameter and has an optimum value between 20 and 40 microm and gives 0.6 microm for the 20-microm pit. In-depth variation of concentration of coating constituent (Ti) was proved to be almost identical with two different laser/ICP systems. PMID:15551076

  13. Femtosecond laser ablation of brass in air and liquid media

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-01

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  14. Endometrial ablation

    MedlinePlus

    Hysteroscopy-endometrial ablation; Laser thermal ablation; Endometrial ablation-radiofrequency; Endometrial ablation-thermal balloon ablation; Rollerball ablation; Hydrothermal ablation; Novasure ablation

  15. PULSED LASER ABLATION OF CEMENT AND CONCRETE

    EPA Science Inventory

    Laser ablation was investigated as a means of removing radioactive contaminants from the surface and near-surface regions of concrete from nuclear facilities. We present the results of ablation tests on cement and concrete samples using a pulsed Nd:YAG laser with fiber optic beam...

  16. Magnetic Colloids By Pulsed Laser Ablation

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Singh, M. K.; Agarwal, A.; Gopal, R.

    2011-06-01

    Colloidal magnetic nanoparticles have been successfully synthesized by nano second pules laser ablation of a cobalt slice immersed in liquid (distilled water) medium. The focused output of 1064 nm wavelength of pulsed Nd: YAG laser operating at 40 mJ/pulse is used for ablation. The liquid enviorment allows formation of colloids with nanoparticles in uniform particle diameter. Synchrotron X-ray powder diffraction (XRD) is used for the study of structural property of synthesized nanoparticles. The magnetic properties of cobalt nanoparticles are also investigated. The coercivity of is found to be 73 Oe. The optical properties have been determined by UV-visible absorption spectroscopy and band gap found to be 2.16 and 3.60 eV.

  17. Resonant holographic measurements of laser ablation plume expansion in vacuum and argon gas backgrounds

    SciTech Connect

    Lindley, R.A.

    1993-10-01

    This thesis discusses the following on resonant holographic measurements of laser ablation plume expansion: Introduction to laser ablation; applications of laser ablation; The study of plume expansion; holographic interferometry; resonant holographic interferometry; accounting for finite laser bandwidth; The solution for doppler broadening and finite bandwidth; the main optical table; the lumonics laser spot shape; developing and reconstructing the holograms; plume expansion in RF/Plasma Environments; Determining {lambda}{sub o}; resonant refraction effects; fringe shift interpretation; shot-to-shot consistency; laser ablation in vacuum and low pressure, inert, background gas; theoretically modeling plume expansion in vacuum and low pressure, inert, background gas; and laser ablation in higher pressure, inert, background gas.

  18. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study

    NASA Astrophysics Data System (ADS)

    Shepherd, T. J.; Chenery, S. R.

    1995-10-01

    Details are given of the elemental analysis of single fluid inclusions using a UV laser ablation microprobe interfaced to an inductively coupled plasma mass spectrometer. The UV laser, a frequency quadrupled Nd:YAG operating at 266 run, allows higher spatial resolution (<2 μm) than can be achieved using near-IR or visible wavelengths. Tests have been carried out on 10-100 μm diameter aqueous (liquid + vapour) inclusions in fluorite, quartz, and halite up to 60 μm beneath the surface. A key feature of the system is a novel high temperature ablation cell which substantially improves the efficiency and reproducibility of fluid release. Calibration was carried out using a dual gas flow system that allowed use of standard solutions and NIST glasses for tuning the instrument and for obtaining relative sensitivity factors. As an alternative to synthetic fluid inclusions, a new calibration approach is described involving the encapsulation of microdroplets of standard solutions in hydrophobic epoxy resins fluid inclusion analogues. To illustrate the scope and performance of the instrument, data are reported for Ba, Ca, Cs, Cu, K, Mg, Mn, Na, Pb, Rb, Sr, and Zn in saline aqueous inclusions associated with evaporite and low temperature base metal deposits. Element detection limits vary according to the mass of material released for analysis and are thus related to the volume and composition of each inclusion. Precision is estimated to be better than 30%.

  19. Ablation of crystalline oxides by infrared femtosecond laser pulses

    SciTech Connect

    Watanabe, Fumiya; Cahill, David G.; Gundrum, Bryan; Averback, R. S.

    2006-10-15

    We use focused laser pulses with duration of 180 fs and wavelength of 800 nm to study the interactions of high power near-infrared light with the surfaces of single-crystal transparent oxides (sapphire, LaAlO{sub 3}, SrTiO{sub 3}, yttria-stabilized ZrO{sub 2}, and MgO); the morphologies of the ablation craters are studied by atomic force microscopy and scanning electron microscopy. With the exception of LaAlO{sub 3}, the high temperature annealing of these oxide crystals produces atomically flat starting surfaces that enable studies of the morphology of ablation craters with subnanometer precision. The threshold fluence for ablation is determined directly from atomic-force microscopy images and increases approximately linearly with the band gap of the oxide. For all oxides except sapphire, the depth of the ablation crater increases approximately as the square root of the difference between the peak laser fluence and the threshold fluence for ablation. Sapphire shows unique behavior: (i) at laser fluences within 1 J/cm{sup 2} of the threshold for ablation, the depth of the ablation crater increases gradually instead of abruptly with laser fluence, and (ii) the rms roughness of the ablation crater shows a pronounced minimum of <0.2 nm at a laser fluence of 1 J/cm{sup 2} above the threshold.

  20. Influence of water environment on holmium laser ablation performance for hard tissues.

    PubMed

    Lü, Tao; Xiao, Qing; Li, Zhengjia

    2012-05-01

    This study clarifies the ablation differences in air and in water for hard biological tissues, which are irradiated by fiber-guided long-pulsed holmium lasers. High-speed photography is used to record the dynamic characteristics of ablation plumes and vaporization bubbles induced by pulsed holmium lasers. The ablation morphologies and depth of hard tissues are quantitatively measured by optical coherence microscopy. Explosive vaporization effects in water play a positive role in the contact ablation process and are directly responsible for significant ablation enhancement. Furthermore, water layer depth can also contribute to ablation performance. Under the same laser parameters for fiber-tissue contact ablation in air and water, ablation performances are comparable for a single-laser pulse, but for more laser pulses the ablation performances in water are better than those in air. Comprehensive knowledge of ablation differences under various environments is important, especially in medical procedures that are performed in a liquid environment. PMID:22614434

  1. [Research on cells ablation characters by laser plasma].

    PubMed

    Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen

    2012-08-01

    The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction. PMID:23156745

  2. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  3. Laser ablation dynamics in metals: The thermal regime

    SciTech Connect

    Mezzapesa, F. P.; Brambilla, M.; Dabbicco, M.; Scamarcio, G.; Columbo, L. L.; Ancona, A.; Sibillano, T.

    2012-07-02

    We studied the laser ablation dynamics of steel in the thermal regime both experimentally and theoretically. The real-time monitoring of the process shows that the ablation rate depends on laser energy density and ambient pressure during the exposure time. We demonstrated that the ablation efficiency can be enhanced when the pressure is reduced with respect to the atmospheric pressure for a given laser fluence, reaching an upper limit despite of high-vacuum conditions. An analytical model based on the Hertz-Knudsen law reproduces all the experimental results.

  4. A study of ablation, spatial, and temporal characteristics of laser-induced plasmas generated by multiple collinear pulses.

    PubMed

    Galbács, G; Jedlinszki, N; Herrera, K; Omenetto, N; Smith, B W; Winefordner, J D

    2010-02-01

    Multi-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear pulse configuration with time-integrating detection was performed on metallic samples in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with single-pulse excitation. Complementary experiments were also carried out on another LIBS setup using detection by an imaging spectrograph with high time resolution. The effects of laser bursts consisting of up to seven ns-range pulses from Nd-doped solid-state lasers operating at their fundamental wavelength and separated by 8.5-50 micros time gaps was studied. The ablation and emission characteristics of the generated plasmas were investigated using light profilometry, microscopy, plasma imaging, emission distribution mapping, time-resolved line emission monitoring, and plasma temperature calculations. The experimental data suggest that the two contributing processes mainly responsible for the signal enhancement effect are the plume reheating caused by the sequential laser pulses and, more dominantly, the increased material ablation attributed to the lower breakdown threshold for the preheated (molten) sample surface and/or the reduced background gas pressure behind the shockwave of preceding pulses. PMID:20149277

  5. Gas dynamic and time resolved imaging studies of single-wall carbon nanotubes growth in the laser ablation process

    NASA Astrophysics Data System (ADS)

    Sen, Rahul; Suzuki, S.; Kataura, H.; Achiba, Y.

    2001-10-01

    Single-wall carbon nanotubes (SWNTs) were synthesized by laser ablation of Ni-Co-graphite composite targets at 1200 °C under flowing argon. The effects of the temperature gradient near the target and the gas flow rate on the diameter distribution of SWNTs were studied in order to understand their growth dynamics. The diameter distribution of the SWNTs, analyzed by Raman spectroscopy, was dependent on the gas flow rate when there was a temperature gradient around the target. Time resolved scattering images from the ablated species at different flow rates indicated that velocities of backward moving species increased with increasing flow rate. These findings are used to estimate the time required for nucleation and the growth of SWNTs.

  6. Creation of silicon nanocrystals using the laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Perminov, P. A.; Dzhun, I. O.; Ezhov, A. A.; Zabotnov, S. V.; Golovan, L. A.; Ivlev, G. D.; Gatskevich, E. I.; Malevich, V. L.; Kashkarov, P. K.

    2011-04-01

    The method for the formation of silicon nanoparticles by picosecond laser pulses is studied upon the surface irradiation of the single-crystal silicon in various liquids. The ablation products are investigated using the atomic-force microscopy and Raman spectroscopy. The experimental results indicate the crystal-line structure of nanoparticles and the dependence of their size on the ablation medium.

  7. Precision ablation of dental enamel using a subpicosecond pulsed laser.

    PubMed

    Rode, A V; Gamaly, E G; Luther-Davies, B; Taylor, B T; Graessel, M; Dawes, J M; Chan, A; Lowe, R M; Hannaford, P

    2003-12-01

    In this study we report the use of ultra-short-pulsed near-infrared lasers for precision laser ablation of freshly extracted human teeth. The laser wavelength was approximately 800nm, with pulsewidths of 95 and 150fs, and pulse repetition rates of 1kHz. The laser beam was focused to an approximate diameter of 50microm and was scanned over the tooth surface. The rise in the intrapulpal temperature was monitored by embedded thermocouples, and was shown to remain below 5 degrees C when the tooth was air-cooled during laser treatment. The surface preparation of the ablated teeth, observed by optical and electron microscopy, showed no apparent cracking or heat effects, and the hardness and Raman spectra of the laser-treated enamel were not distinguishable from those of native enamel. This study indicates the potential for ultra-short-pulsed lasers to effect precision ablation of dental enamel. PMID:14738125

  8. Optical Effects on Laser Ablated Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Prabhu, R. D.; Govinthasamy, R.; Murthy, N. S.

    2006-03-01

    Laser ablation of poly (ethylene terephthalate) and polyimide films were investigated using Excimer-UV laser. SEM analyses indicate the presence of rings for a wide range of ablation parameters (fluence, frequency and number of pulses). It is proposed that the particles present in the plasma plume could cause the incident laser light to diffract, similar to the optical effects observed in the femtosecond laser ablation of solids. The polymer surface provides a perfect medium to register the optical signatures as seen in the SEM images. The fringe-spacings observed in the images are compared with the theoretical diffraction patterns and the height of the plasma particles above the surface is estimated using an optimization scheme. The results of the analysis are consistent with experimentally observed dynamics of the plasma plume. It is proposed that such optical effects could be a routine feature in the laser ablation of polymers. The significance of such artifacts for lithography is discussed.

  9. Laser ablation in analytical chemistry - A review

    SciTech Connect

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  10. Studies of aluminum oxide thin films deposited by laser ablation technique

    NASA Astrophysics Data System (ADS)

    Płóciennik, P.; Guichaoua, D.; Korcala, A.; Zawadzka, A.

    2016-06-01

    This paper presents the structural and optical investigations of the aluminum oxide nanocrystalline thin films. Investigated films were fabricated by laser ablation technique in high vacuum onto quartz substrates. The films were deposited at two different temperatures of the substrates equal to room temperature and 900 K. X-ray Diffraction spectra proved nanocrystalline character and the corundum phase of the film regardless on the substrate temperature during the deposition process. Values of the refractive indices, extinction and absorption coefficients were calculated by using Transmission and Reflection Spectroscopy in the UV-VIS-NIR range of the wavelength. Coupling Prism Method was used for films thickness estimations. Experimental measurements and theoretical calculations of the Third Harmonic Generation were also reported. Obtained results show that the lattice strain may affect obtained values of the third order nonlinear optical susceptibility.

  11. Photoemission Studies of Metallic Photocathodes Prepared by Pulsed Laser Ablation Deposition Technique

    SciTech Connect

    Fasano, V.; Lorusso, A.; Perrone, A.; De Rosa, H.; Cultrera, L.

    2010-11-10

    We present the results of our investigation on metallic films as suitable photocathodes for the production of intense electron beams in RF photoinjector guns. Pulsed laser ablation deposition technique was used for growing Mg and Y thin films onto Si and Cu substrates in high vacuum and at room temperature.Different diagnostic methods were used to characterize the thin films deposited on Si with the aim to optimize the deposition process. Photoelectron performances were investigated on samples deposited on Cu substrate in an ultra high vacuum photodiode chamber at 10{sup -7} Pa. Relatively high quantum efficiencies have been obtained for the deposited films, comparable to those of corresponding bulks. Samples could stay for several months in humid open air before being tested in a photodiode cell. The deposition process and the role of the photocathode surface contamination and its influence on the photoelectron performances are presented and discussed.

  12. Features of the synthesis of nanocolloid oxides by laser ablation of bulk metal targets in solutions

    NASA Astrophysics Data System (ADS)

    Lapin, Ivan N.; Svetlichnyi, Valery A.

    2015-12-01

    Laser ablation of bulk targets in a fluid -- a promising new method for the synthesis of "pure" nanocolloids. Nanocrystalline materials produced by laser ablation are widely used in biology, medicine, and catalysis. High local temperature during ablation and large surface area of the particles promote chemical reactions and the formation of a complex composition of nanoparticles. In this paper the characteristics of the process of ablation and the obtaining of nanoparticles in a liquid by laser ablation of active materials (Zn, Ce, Ti, Si) were studied. Ways of increasing the productivity of laser ablation were discussed. Characterization of nanocolloids and nanocrystalline powders were performed.

  13. Osteoid Osteoma: Experience with Laser- and Radiofrequency-Induced Ablation

    SciTech Connect

    Gebauer, Bernhard Tunn, Per-Ulf; Gaffke, Gunnar; Melcher, Ingo; Felix, Roland; Stroszczynski, Christian

    2006-04-15

    The purpose of this study was to analyze the clinical outcome of osteoid osteoma treated by thermal ablation after drill opening. A total of 17 patients and 20 procedures were included. All patients had typical clinical features (age, pain) and a typical radiograph showing a nidus. In 5 cases, additional histological specimens were acquired. After drill opening of the osteoid osteoma nidus, 12 thermal ablations were induced by laser interstitial thermal therapy (LITT) (9F Power-Laser-Set; Somatex, Germany) and 8 ablations by radiofrequency ablation (RFA) (RITA; StarBurst, USA). Initial clinical success with pain relief has been achieved in all patients after the first ablation. Three patients had an osteoid osteoma recurrence after 3, 9, and 10 months and were successfully re-treated by thermal ablation. No major complication and one minor complication (sensible defect) were recorded. Thermal ablation is a safe and minimally invasive therapy option for osteoid osteoma. Although the groups are too small for a comparative analysis, we determined no difference between laser- and radiofrequency-induced ablation in clinical outcome after ablation.

  14. Numerical study of the influence of picosecond laser spot size on ablated depth and threshold fluence of metal

    NASA Astrophysics Data System (ADS)

    Zhang, Yiming; Lauer, Benjamin; Neuenschwander, Beat; Romano, Valerio

    2016-03-01

    Picosecond laser systems have been widely used in industrial microprocessing applications since they are a cost-effective tool to achieve high throughput. To better understand the ablation process, firstly the dependence of the ablation depth and the threshold fluence on the laser spot size were determined experimentally by performing ablation with a 10ps pulsed laser system. Further, a 2D axisymmetric model was established to demonstrate the possible mechanism of the phenomena. Three sets of spot radii, namely 15.5μm, 31.5μm and 49.6μm, respectively with equal laser peak fluences ranging from 0.6J/cm2 to 4.5J/cm2 were applied on copper. It was found that the laser ablation depth increases while the threshold fluence decreases with decreasing spot size at identical peak fluence. A 2D axisymmetric thermomechanical model was developed to qualitatively illustrate the mechanism behind these phenomena. The numerical results of the position where the tensile stress exceed to ultimate tensile strength (UTS) of copper show the same trend as the experimental ones. The longitudinal tensile stress was seen to play a more crucial role than the radial tensile/compressive stress on laser ablation process. The impact of the thermal stress on the ablation depth and threshold fluence is derived from the lattice temperature gradient along the surface of the material, leading to spallation and possible modifications of the mechanical properties already at lower laser peak fluences. This is elucidated numerically and analytically. The deviation of the experimental results from the simulation might be attributed to the fact that this simulation model is static. Nevertheless, at low laser fluences, this static approach can provide good explanations of the cold ablation with ultrashort pulsed laser. The limitation of this model is also illustrated.

  15. Theoretical study on line source laser-induced surface acoustic waves in two-layer structure in ablative regime

    NASA Astrophysics Data System (ADS)

    Shen, Z. H.; Xu, B. Q.; Ni, X. W.; Lu, J.; Zhang, S. Y.

    2004-03-01

    The generation of ultrasound in film-substrate system by a laser line source is studied in the case of ablation mechanism, which can be realized by adding a liquid layer at the excitation point. The time domain displacement can be yielded by the numerical jointed inversed Laplace-Fourier transformation technique. The typical surface acoustic waves (SAW) of two layer structures, slow film on fast substrate and fast film on slow substrate, are obtained and the effect of the propagation distance and the thickness of the film on the SAW are given.

  16. Ablation characteristics of quantum square pulse mode dental erbium laser

    NASA Astrophysics Data System (ADS)

    Lukač, Nejc; Suhovršnik, Tomaž; Lukač, Matjaž; Jezeršek, Matija

    2016-01-01

    Erbium lasers are by now an accepted tool for performing ablative medical procedures, especially when minimal invasiveness is desired. Ideally, a minimally invasive laser cutting procedure should be fast and precise, and with minimal pain and thermal side effects. All these characteristics are significantly influenced by laser pulse duration, albeit not in the same manner. For example, high cutting efficacy and low heat deposition are characteristics of short pulses, while vibrations and ejected debris screening are less pronounced at longer pulse durations. We report on a study of ablation characteristics on dental enamel and cementum, of a chopped-pulse Er:YAG [quantum square pulse (QSP)] mode, which was designed to reduce debris screening during an ablation process. It is shown that in comparison to other studied standard Er:YAG and Er,Cr:YSGG laser pulse duration modes, the QSP mode exhibits the highest ablation drilling efficacy with lowest heat deposition and reduced vibrations, demonstrating that debris screening has a considerable influence on the ablation process. By measuring single-pulse ablation depths, we also show that tissue desiccation during the consecutive delivery of laser pulses leads to a significant reduction of the intrinsic ablation efficacy that cannot be fully restored under clinical settings by rehydrating the tooth using an external water spray.

  17. Spectroscopic characterization of laser ablated silicon plasma

    NASA Astrophysics Data System (ADS)

    Shakeel, Hira; Mumtaz, M.; Shahzada, S.; Nadeem, A.; Haq, S. U.

    2014-06-01

    We report plasma parameters of laser ablated silicon plasma using the fundamental (1064 nm) and second harmonics (532 nm) of a Nd : YAG laser. The electron temperature and electron number density are evaluated using the Boltzmann plot method and Stark broadened line profile, respectively. The electron temperature and electron number density are deduced using the same laser irradiance 2-16 GW cm-2 for 1064 nm and 532 nm as 6350-7000 K and (3.42-4.44) × 1016 cm-3 and 6000-6400 K and (4.20-5.72) × 1016 cm-3, respectively. The spatial distribution of plasma parameters shows a decreasing trend of 8200-6300 K and (4.00-3.60) × 1016 cm-3 for 1064 nm and 6400-5500 K and (5.10-4.50) × 1016 cm-3 for 532 nm laser ablation. Furthermore, plasma parameters are also investigated at low pressure from 45 to 550 mbar, yielding the electron temperature as 4580-5535 K and electron number density as (1.51-2.12) × 1016 cm-3. The trend of the above-mentioned results is in good agreement with previous investigations. However, wavelength-dependent studies and the spatial evolution of plasma parameters have been reported for the first time.

  18. Laser-ablation-induced refractive index fields studied using pulsed digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Amer, Eynas; Gren, Per; Sjödahl, Mikael

    2009-07-01

    Pulsed digital holographic interferometry has been used to investigate the plume and the shock wave generated in the ablation process of a Q-switched Nd-YAG ( λ=1064 nm and pulse duration=12 ns) laser pulse on a polycrystalline boron nitride (PCBN) target under atmospheric air pressure. A special setup based on two synchronised wavelengths from the same laser for simultaneous processing and measurement has been used. Digital holograms were recorded for different time delays using collimated laser light ( λ=532 nm) passed through the volume along the target. Numerical data of the integrated refractive index field were calculated and presented as phase maps showing the propagation of the shock wave and the plume generated by the process. Radon inversion has been used to estimate the 3D refractive index fields measured from the projections assuming rotational symmetry. The shock wave density has been calculated using the point explosion model and the shock wave condition equation and its behaviour with time at different power densities ranging from 1.4 to 9.1 GW/cm 2 is presented. Shock front densities have been calculated from the reconstructed refractive index fields using the Gladstone-Dale equation. A comparison of the shock front density calculated from the reconstructed data and that calculated using the point explosion model at different time delays has been done. The comparison shows quite good agreement between the model and the experimental data. Finally the reconstructed refractive index field has been used to estimate the electron number density distribution within the laser-induced plasma. The electron number density behaviour with distance from the target at different power densities and its behaviour with time are shown. The electron number densities are found to be in the order of 10 18 cm -3 and decay at a rate of 3×10 15 electrons/cm 3 ns.

  19. Laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Durrant, S.F.

    1996-07-01

    Laser ablation for solid sample introduction to inductively coupled plasma mass spectrometry for bulk and spatially-resolved elemental analysis is briefly reviewed. {copyright} {ital 1996 American Institute of Physics.}

  20. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  1. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  2. Reflection of femtosecond laser light in multipulse ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2011-08-15

    The shot-to-shot reflectance of high-intensity laser light is studied as a function of both the number of laser shots and laser fluence in multipulse ablation of a metal when the irradiated surface undergoes structural changes from an initially smooth surface to a deep crater. Our study shows that the reflectance of the irradiated surface significantly decreases due to the high intensity of laser pulses and the laser-induced surface structures in ablation regimes typically used for femtosecond laser processing of materials. The high-intensity effect dominates in the reflection reduction at low numbers of laser shots when laser-induced surface structures do not cause the reflectance to decrease noticeably. With increasing the number of laser shots, the structural effect comes into play, and both high-intensity and structural effects quickly reduce the reflectance of the sample to a low value.

  3. Laser Ablation of Alumina in Water

    SciTech Connect

    Musaev, O.; Midgley, A; Wrobel, J; Kruger, M

    2010-01-01

    Bulk {alpha}-alumina immersed in distilled water was ablated by pulsed UV laser radiation. The resulting colloidal solution contained micron and submicron size particles. X-ray diffraction and Raman spectra of the ablated and original material are similar. Hence, most of the ablated material is {alpha}-alumina. From transmission electron microscope images, most of the submicron and all of the micron-sized particles have sharp edges and do not have spherical shapes, indicating that the dominant ablation mechanism is due to crack propagation. Some spherical particles of diameter less than 100 nm are observed, indicating that they were formed from the liquid state.

  4. Optodynamic aspect of a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Hrovatin, Rok; Možina, Janez

    1995-02-01

    A study of a pulsed laser ablation process is presented from a novel, optodynamic aspect. By quantitative analysis of laser-induced bulk ultrasonic and blast waves in the air the ablation dynamics is characterized. In this way the influence of the laser pulse parameters and of the interacting material on the ablation process was assessed. By the analysis of the laser drilling process of thin layered samples the material influence was demonstrated. Besides the ultrasonic evaluation of the laser pulse power density the plasma shielding for 10 ns laser pulses was analyzed by the same method. All measurements were noncontact. Bulk waves in the solid and blast waves in the air were measured simultaneously, an interferometric and a probe beam deflection method were used, respectively.

  5. Novel Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.

  6. Near-infrared laser ablation of poly tetrafluoroethylene (Teflon) sensitized by nanoenergetic materials

    SciTech Connect

    Yang Yanqiang; Wang Shufeng; Sun Zhaoyong; Dlott, Dana D.

    2004-08-30

    Laser ablation of Teflon doped with size-selected (30-250 nm) Al nanoparticles is studied. Unlike pure Teflon, which requires a vacuum-ultraviolet or femtosecond excimer laser for ablation, this sensitized Teflon can be ablated with a near-infrared laser. Using 100 ps duration pulses, near-infrared ablation thresholds are lower by about a factor of 10 from excimer ablation of pure Teflon. A mechanism is discussed that involves Teflon decomposition by spherical shock fronts originating at each irradiated nanoparticle. Studies of the distance dependence of this process as a function of particle diameter and oxide layer thickness suggest ways of optimizing the ablation process.

  7. Laser ablation with applied magnetic field for electric propulsion

    NASA Astrophysics Data System (ADS)

    Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc

    2012-10-01

    Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  8. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  9. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  10. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  11. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  12. Pulse laser ablation at water-air interface

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro

    2010-06-01

    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  13. Laser Ablation of Biological Tissue Using Pulsed CO{sub 2} Laser

    SciTech Connect

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-10-13

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO{sub 2} laser (wavelength: 10.6 {mu}m; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  14. Cleaning of large area by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir I.; Uteza, Olivier P.

    2000-01-01

    Surface removal technologies are being challenged from environmental and economic perspectives. This paper is concerned with laser ablation applied to large surface cleaning with an automatized excimer laser unit. The study focused on metallic surfaces that are oxidized and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The whole system is described: laser, beam deliver, particle collection cell, real time control of cleaning processes. Results concerning surface laser interaction and substrate modifications are presented.

  15. Near infrared femtosecond laser ablation of urinary calculi in water

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M.; Kuranov, Roman V.; McElroy, Austin B.; Wang, Tianyi; Paranjape, Amit S.; Milner, Thomas E.

    2009-02-01

    Pulsed light emitted from a near infrared (λ=800nm) femtosecond laser is capable of plasma induced photodisruption of various materials. We used femtosecond laser pulses to ablate human urinary calculi. Femtosecond pulsed laser interaction with urinary calculi was investigated with various stone compositions, different incident fluences and number of applied pulses. Spectral-domain optical coherence tomography was used to image cross sections of ablation craters on the surface of urinary calculi. Our results indicate that femtosecond laser pulses can ablate various calculi compositions. Crater diameter and depth varies from tens of microns to several hundred microns when up to 1000 pulses were applied. Future studies are required to determine if pulsed near infrared femtosecond laser pulses can be applied clinically for lithotripsy of urinary calculi.

  16. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  17. Improved laser ablation model for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Gibbings, Alison; Watson, Ian; Hopkins, John-Mark

    2014-10-01

    This paper presents an improved laser ablation model and compares the performance - momentum coupling and deflection system mass - of laser ablation against contactless deflection methods based on ion-propulsion. The deflection of an asteroid through laser ablation is achieved by illuminating the surface of the asteroid with high intensity laser light. The absorbed energy induces the sublimation of the surface material and the generation of a plume of gas and ejecta. Similar to a rocket engine, the flow of expelled material produces a continuous and controllable thrust that could be used to modify the trajectory and tumbling motion of the asteroid. Recent results gained from a series of laser ablation experiments were used to improve the sublimation and deflection models. In each experiment a terrestrial olivine sample was ablated, under vacuum, with a 90 W continuous wave laser. The paper presents a model that better fits the outcomes of the experimental campaign, in particular in terms of mass flow rate and spot temperature.

  18. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Hamad, Syed; Krishna Podagatlapalli, G.; Mounika, R.; Nageswara Rao, S. V. S.; Pathak, A. P.; Venugopal Rao, S.

    2015-12-01

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ˜2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ˜9.5 nm, ˜37 nm, ˜45 nm and ˜42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO2 NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ˜150 fs (100 MHz) and ˜70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (˜10-14 e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the

  19. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    SciTech Connect

    Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P.; Krishna Podagatlapalli, G.; Mounika, R.; Venugopal Rao, S. E-mail: soma-venu@uohyd.ac.in

    2015-12-15

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm

  20. Ultrashort laser ablation of PMMA and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Makropoulou, M.; Fabrikesi, E.; Spyratou, E.; Bacharis, C.; Thomson, R. R.; Kar, A. K.

    2008-10-01

    The use of intraocular lenses (IOLs) is the most promising method to restore vision after cataract surgery. Several new materials, techniques, and patterns have been studied for forming and etching IOLs to improve their optical properties and reduce diffractive aberrations. This study is aimed at investigating the use of ultrashort laser pulses to ablate the surface of PMMA and intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were conducted using various polymer substrates (PMMA samples, hydrophobic acrylic IOL, yellow azo dye doped IOL, and hydrophilic acrylic IOL consist of 25% H2O). The irradiation was performed using 100 fs pulses of 800 nm radiation from a regeneratively amplified Ti:sapphire laser system. We investigated the ablation efficiency and the phenomenology of the ablated patterns by probing the ablation depth using a profilometer. The surface modification was examined using a high resolution optical microscope (IOLs) or atomic force microscope—AFM (PMMA samples). It was found that different polymers exhibited different ablation characteristics, a result that we attribute to the differing optical properties of the materials. In particular, it was observed that the topography of the ablation tracks created on the hydrophilic intraocular lenses was smoother in comparison to those created on the PMMA and hydrophobic lens. The yellow doped hydrophobic intraocular lenses show higher ablation efficiency than undoped hydrophobic acrylic lenses.

  1. Resonant laser ablation: Mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Bodla, R.; Eiden, G.C.; Nogar, N.S.; Smith, C.H.

    1994-06-01

    Ever since the first report of laser action, it has been recognized that laser ablation (evaporation/volatilization) may provide a useful sampling mechanism for chemical analysis. In particular, laser ablation is rapidly gaining popularity as a method of sample introduction for mass spectrometry. While most laser ablation/mass spectrometry has been performed with fixed frequency lasers operating at relatively high intensities/fluences ({ge}10{sup 8} W/cm{sup 2}, {ge}1 J/cm{sup 2}), there has been some recent interest in the use of tunable lasers to enhance the ionization yield of selected components in an analytical sample. This process has been termed resonant laser ablation (RLA), and typically relies on irradiation of a sample in a mass spectrometer with modest intensity laser pulses tuned to a one- or two-photon resonant transition in the analyte of interest. Potential advantages of RLA include: (1) simplification of the mass spectrum, by enhancement of signal from the analyte of interest; (2) improvement of the absolute detection limits by improving the ionization efficiency, and (3) improvement in relative sensitivity. The sensitivity enhancement results from reduction of spurious signal, and accompanying noise, in the detection channel. This spurious signal may be due to bleed through from adjacent mass channels, or from isobaric interferences. RLA tends to produce higher mass resolution because of minimal spatial spread in the ion source and small space charge effects. In this manuscript we present a survey of RLA attributes and applications.

  2. [Laser ablation of intervertebral disc: animal experiment].

    PubMed

    Qi, Q; Dang, G D; Cai, Q L

    1994-03-01

    The lumbar intervertebral discs (L3-6) were ablated through a transperitoneal approach in 12 adult dogs by using Nd: YAG laser (1.06 microns) with a 600 microns quartz fiber. The status of limbs motion and sphincter (bladder, bowel) was observed for evaluating the safety of laser irradiation. After irradiation, the animals were sacrificed at prescribed intervals of up to 40 weeks (2, 4, 8, 12 and 40 weeks after operation). The lumbar intervertebral discs were harvested and subjected to light microscopic observation. No dog had suffered from neurogenic dysfunction of limb motion and sphincter. Histological findings immediately after the irradiation showed the disc was vaporized and a cavity was made. After 2 and 4 weeks, fibrous tissues began to proliferate, but cartilaginous tissues replaced the fibrous tissues 12 weeks after the laser irradiation. No new bone formation was found within 40 weeks after operation. On the basis of this study and our previous cadaveric study, percutaneous laser disc decompression (PLDD) was applied in clinical practice in march of 1993. 10 patients underwent PLDD utilizing the same laser equipment. The average follow-up was 3 months. According to the Macnab's criteria, there was an excellent response in 7 patients and a good response in 3. PMID:7842915

  3. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    SciTech Connect

    Zhao, Xin; Shin, Yung C.

    2014-09-15

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse. The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.

  4. Saturation effects in femtosecond laser ablation of silicon-on-insulator

    SciTech Connect

    Zhang Hao; Oosten, D. van; Krol, D. M.; Dijkhuis, J. I.

    2011-12-05

    We report a surface morphology study on single-shot submicron features fabricated on silicon on insulator by tightly focused femtosecond laser pulses. In the regime just below single-shot ablation threshold nano-tips are formed, whereas in the regime just above single-shot ablation threshold, a saturation in the ablation depth is found. We attribute this saturation by secondary laser absorption in the laser-induced plasma. In this regime, we find excellent agreement between the measured depths and a simple numerical model. When the laser fluence is further increased, a sharp increase in ablation depth is observed accompanied by a roughening of the ablated hole.

  5. Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes

    NASA Technical Reports Server (NTRS)

    Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.

    2005-01-01

    Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.

  6. Resonant laser ablation: Mechanisms and applications

    SciTech Connect

    Anderson, J.E.; Allen, T.M.; Garrett, A.W.; Gill, C.G.; Hemberger, P.H.; Kelly, P.B.; Nogar, N.S.

    1997-01-01

    We will report on aspects of resonant laser ablation (RLA) behavior for a number of sample types: metals, alloys, thin films, zeolites and soil. The versatility of RLA is demonstrated, with results on a variety of samples and in several mass spectrometers. In addition, the application to depth profiling of thin films is described; absolute removal rates and detection limits are also displayed. A discussion of possible mechanisms for low-power ablation are presented. {copyright} {ital 1997 American Institute of Physics.}

  7. UV laser ablation patterns in intraocular lenses

    NASA Astrophysics Data System (ADS)

    Lagiou, D. P.; Evangelatos, Ch.; Apostolopoulos, A.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-03-01

    The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.

  8. A Simulation of Laser Ablation During the Laser Pulse

    NASA Astrophysics Data System (ADS)

    Suzuki, Motoyuki; Ventzek, Peter L. G.; Sakai, Y.; Date, H.; Tagashira, H.; Kitamori, K.

    1996-10-01

    Charge damage considerations in plasma assisted etching are prompting the development of neutral beam sources. Already, anisotropic etching of has been demonstrated by neutral beams generated by exhausting heated ecthing gases into vacuum via a nozzle. Laser ablation of condensed etching gases may also be an attractive alternative means of generating neutral beams. Laser ablation coupled with electrical breakdown of the ablation plume may afford some degree of control over a neutral beam's dissociation fraction and ion content. Results from a Monte Carlo simulation of the laser ablation plume as it expands into vacuum at time-scales during the laser pulse will be presented. The model includes both heavy particle interactions and photochemistry. In particular, the influence of the initial particle angular distribution on the beam spread will be demonstrated as will the relationship between laser beam energy and initial ionization and dissociation fraction.

  9. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  10. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    NASA Astrophysics Data System (ADS)

    Chen, H.; Li, H.; Sun, Yc.; Wang, Y.; Lü, Pj.

    2016-02-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  11. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors

    PubMed Central

    Chen, H.; Li, H.; Sun, YC.; Wang, Y.; Lü, PJ.

    2016-01-01

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application. PMID:26864679

  12. Optical properties measurement of the laser-ablated tissues for the combined laser ablation with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Ishii, Katsunori; Awazu, Kunio

    2012-03-01

    Laser ablation therapy combined with photodynamic therapy (PDT) is studied for treatment of advanced cancers. The clinical outcome of PDT may be improved by the accurate knowledge about the light distribution within tissue. Optical properties [absorption coefficient (μa), scattering coefficient (μs), anisotropy factor (g), refractive index, etc.] of tissues help us realizing a light propagation through the tissue. It is important to understand of the effect of laser coagulation formed by laser ablation to PDT. The aim of this study is to estimate of influence of coagulated region to PDT for effective PDT combined laser ablation therapy. We evaluated the optical property of mouse tumor tissue in native and coagulated state using a double integrating sphere system and an inverse Monte Carlo method in the wavelength range from 350 to 1000 nm. After laser ablation, the μa and reduced scattering coefficient spectra of coagulated tissues were increased in the wavelength range from 350 to 1000 nm. The optical penetration depth of coagulated tissues is 1.2-2.9 times lower than the native state in the wavelength range from 350 to 1000 nm. The intensity of the light energy inside the coagulated tissue falls to about 60% of its original value at the end of coagulated layer. The evaluation of light energy distribution by the determination of the tissues optical properties could be useful for optimization of the treatment procedure in combined laser ablation with PDT.

  13. Plasma mediated ablation of biological tissues with ultrashort laser pulses

    SciTech Connect

    Oraevsky, A.A. |; DaSilva, L.B.; Feit, M.D.

    1995-03-08

    Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range from 350 fs to 1 ns at 1,053 nm wavelength. A time resolved stress detection technique was employed to measure transient stress profiles and amplitudes. Optical microscopy was used to characterize ablation craters qualitatively, while a wide band acoustic transducer helped to quantify tissue mechanical response and the ablation threshold. The ablation threshold was measured as a function of laser pulse duration and linear absorption coefficient. For nanosecond pulses the ablation threshold was found to have a strong dependence on the linear absorption coefficient of the material. As the pulse length decreased into the subpicosecond regime the ablation threshold became insensitive to the linear absorption coefficient. The ablation efficiency was found to be insensitive to both the laser pulse duration and the linear absorption coefficient. High quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with 350 fs laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond regime, optical breakdown proceeds as an electron collisional avalanche ionization initiated by thermal seed electrons. These seed electrons are created by heating of the tissue by linear absorption. In the ultrashort pulse range, optical breakdown is initiated by the multiphoton ionization of the irradiated medium (6 photons in case of tissue irradiated at 1,053 nm wavelength), and becomes less sensitive to the linear absorption coefficient. The energy deposition profile is insensitive to both the laser pulse duration and the linear absorption coefficient.

  14. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  15. Laser systems for ablative fractional resurfacing.

    PubMed

    Paasch, Uwe; Haedersdal, Merete

    2011-01-01

    Ablative fractional resurfacing (AFR) creates microscopic vertical ablated channels that are surrounded by a thin layer of coagulated tissue, constituting the microscopic treatment zones (MTZs). AFR induces epidermal and dermal remodeling, which raises new possibilities for the treatment of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities with AFR incorporating our personal experience. AFR is still in the exploratory era, and systematic investigations of clinical outcomes related to various system settings are needed. PMID:21158542

  16. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  17. Laser ablation of optically thin absorbing liquid layer predeposited onto a transparent solid substrate

    SciTech Connect

    Kudryashov, S. I.; Lyon, K.; Shukla, S.; Murry, D.; Allen, S. D.

    2006-09-01

    Ablation of optically thin liquid 2-propanol layers of variable thickness on IR-transparent solid Si substrate by a nanosecond CO{sub 2} laser has been experimentally studied using time-resolved optical interferometric and microscopy techniques. Basic ablation parameters - threshold fluences for surface vaporization and explosive homogeneous boiling of the superheated liquid, ablation depths, vaporization (ablation) rates, and characteristic ablation times versus laser fluence - were measured as a function of alcohol layer thickness. The underlying ablation mechanisms, their thermodynamics, and microscopic details are discussed.

  18. Fractional Erbium laser in the treatment of photoaging: randomized comparative, clinical and histopathological study of ablative (2940nm) vs. non-ablative (1540nm) methods after 3 months*

    PubMed Central

    Borges, Juliano; Cuzzi, Tullia; Mandarim-de-Lacerda, Carlos Alberto; Manela-Azulay, Mônica

    2014-01-01

    BACKGROUND Fractional non-ablative lasers keep the epidermis intact, while fractional ablative lasers remove it, making them theoretically more effective. OBJECTIVES To evaluate the clinical and histological alterations induced by fractional photothermolysis for treating photoaging, comparing the possible equivalence of multiple sessions of 1540nm Erbium, to one session of 2940nm Erbium. METHODS Eighteen patients (mean age 55.9) completed the treatment with three sessions of 1540nm fractional Erbium laser on one side of the face (50 mJ/mB, 15ms, 2 passes), and one session of 2940nm on the other side (5mJ/mB, 0.25ms, 2 passes). Biopsies were performed before and 3 months after treatment. Clinical, histological and morphometric evaluations were carried out. RESULTS All patients presented clinical improvement with no statistically significant difference (p> 0.05) between the treated sides. Histopathology revealed a new organization of collagen and elastic fibers, accompanied by edema, which was more evident with the 2940nm laser. This finding was confirmed by morphometry, which showed a decrease in collagen density for both treatments, with a statistical significance for the 2940nm laser (p > 0.001). CONCLUSIONS Three 1540nm sessions were clinically equivalent to one 2940nm session. The edema probably contributed to the positive results after three months, togheter with the new collagen and elastic fibers organization. The greater edema after the 2940nm session indicates that dermal remodeling takes longer than with 1540nm. It is possible that this histological superiority relates to a more prolonged effect, but a cohort longer than three months is needed to confirm that supposition. PMID:24770501

  19. Dissolution in a supercritical liquid as a mechanism of laser ablation of sapphire

    SciTech Connect

    Dolgaev, Sergei I; Karasev, M E; Kulevskii, L A; Simakin, Aleksandr V; Shafeev, Georgii A

    2001-07-31

    The laser ablation of sapphire is studied by irradiating its interface with water and aqueous solutions of KOH, KCl and Na{sub 2}CO{sub 3} by 2.92-{mu}m 130-ns holmium laser pulses. The ablation rate depends on the concentration and type of the dissolved substance. The highest ablation rate is 2.5{mu}m per pulse for a laser fluence of 120 J cm{sup -2}. The ablation of sapphire is attributed to its dissolution in water or in aqueous solutions in the supercritical state. (interaction of laser radiation with matter. laser plasma)

  20. Laser Ablation for Small Hepatocellular Carcinoma

    PubMed Central

    Pacella, Claudio Maurizio; Francica, Giampiero; Di Costanzo, Giovanni Giuseppe

    2011-01-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and is increasingly detected at small size (<5 cm) owing to surveillance programmes in high-risk patients. For these cases, curative therapies such as resection, liver transplantation, or percutaneous ablation have been proposed. When surgical options are precluded, image-guided tumor ablation is recommended as the most appropriate therapeutic choice in terms of tumor local control, safety, and improvement in survival. Laser ablation (LA) represents one of currently available loco-ablative techniques: light is delivered via flexible quartz fibers of diameter from 300 to 600 μm inserted into tumor lesion through either fine needles (21g Chiba needles) or large-bore catheters. The thermal destruction of tissue is achieved through conversion of absorbed light (usually infrared) into heat. A range of different imaging modalities have been used to guide percutaneous laser ablation, but ultrasound and magnetic resonance imaging are most widely employed, according to local experience and resource availability. Available clinical data suggest that LA is highly effective in terms of tumoricidal capability with an excellent safety profile; the best results in terms of long-term survival are obtained in early HCC so that LA can be proposed not only in unresectable cases but, not differently from radiofrequency ablation, also as the first-line treatment. PMID:22191028

  1. Update On CO{sub 2} Laser Ablation Of Polyoxymethylene At 101 kPa

    SciTech Connect

    Sinko, John E.; Scharring, Stefan; Eckel, Hans-Albert; Ogita, Naoya; Sasoh, Akihiro; Roeser, Hans-Peter

    2010-10-08

    Recent work has brought about a renewed interest in CO{sub 2} laser ablation studies of polyoxymethylene, due to its potential as a test target for enhancing modern understanding of the laser ablation process. In this paper, new results taken in air at atmosphere pressure are reported, including data measured at institutions in Germany and Japan, which increase the body of literature data on CO{sub 2} laser ablation of polyoxymethylene. The results are discussed in terms of aerospace parameters such as the momentum coupling coefficient and specific impulse, and are compared to a previous literature study. The threshold fluence is specified for ablation of polyoxymethylene by CO{sub 2} laser radiation. Fluences higher (and lower) than previously tested for CO{sub 2} laser ablation were studied herein, and record specific impulse values for CO{sub 2} laser ablation of flat polyoxymethylene are also reported here.

  2. Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    SciTech Connect

    Da Silva, L.B.; Stuart, B.C.; Celliers, P.M.; Feit, M.D.; Glinsky, M.E.; Heredia, N.J.; Herman, S.; Lane, S.M.; London, R.A.; Matthews, D.L.; Perry, M.D.; Rubenchik, A.M.; Chang, T.D.; Neev, J.

    1996-05-01

    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented.

  3. A new perspective of ablative pulsed laser propulsion: study on different morphologies of nano-structured ZnO

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Raza; Jamil, Yasir; Saeed, Humaima; Hussain, Tousif

    2015-05-01

    We report for the first time a new application of four different morphologies including nano-noodles of zinc oxide as a laser ablation micro-thruster. Nano-noodles represent a unique class of materials in which the electrons are confined near the surface owing to the majority of the near surface atoms. The synthesized samples of ZnO were of single phase, having a wurtzite hexagonal structure. Three different morphologies, viz. initial (nanoparticles), intermediate (nano-noodles) and final (complete nano-noodles) of zinc oxide were ablated using a Nd : YAG laser operating at 1064 nm for the measurement of propulsion parameters. The momentum coupling coefficient (Cm) and the specific impulse (Isp) were evaluated using the non-contact optical triangulation method. It has been observed that the morphology of the material affects the laser ablation propulsion (LAP) parameters. For each sample, the laser fluence for the optimum coupling coefficient owing to the plasma shielding effect has also been found. The synthesized nanostructured zinc oxide samples have been found useful as efficient laser propellants that can be used in a variety of applications due to diversity in their momentum coupling coefficient and specific impulse values.

  4. Dynamical modeling of laser ablation processes

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-09-01

    Several physics and computational approaches have been developed to globally characterize phenomena important for film growth by pulsed laser deposition of materials. These include thermal models of laser-solid target interactions that initiate the vapor plume; plume ionization and heating through laser absorption beyond local thermodynamic equilibrium mechanisms; gas dynamic, hydrodynamic, and collisional descriptions of plume transport; and molecular dynamics models of the interaction of plume particles with the deposition substrate. The complexity of the phenomena involved in the laser ablation process is matched by the diversity of the modeling task, which combines materials science, atomic physics, and plasma physics.

  5. Visual servoing of a laser ablation based cochleostomy

    NASA Astrophysics Data System (ADS)

    Kahrs, Lüder A.; Raczkowsky, Jörg; Werner, Martin; Knapp, Felix B.; Mehrwald, Markus; Hering, Peter; Schipper, Jörg; Klenzner, Thomas; Wörn, Heinz

    2008-03-01

    The aim of this study is a defined, visually based and camera controlled bone removal by a navigated CO II laser on the promontory of the inner ear. A precise and minimally traumatic opening procedure of the cochlea for the implantation of a cochlear implant electrode (so-called cochleostomy) is intended. Harming the membrane linings of the inner ear can result in damage of remaining organ functions (e.g. complete deafness or vertigo). A precise tissue removal by a laser-based bone ablation system is investigated. Inside the borehole the pulsed laser beam is guided automatically over the bone by using a two mirror galvanometric scanner. The ablation process is controlled by visual servoing. For the detection of the boundary layers of the inner ear the ablation area is monitored by a color camera. The acquired pictures are analyzed by image processing. The results of this analysis are used to control the process of laser ablation. This publication describes the complete system including image processing algorithms and the concept for the resulting distribution of single laser pulses. The system has been tested on human cochleae in ex-vivo studies. Further developments could lead to safe intraoperative openings of the cochlea by a robot based surgical laser instrument.

  6. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  7. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  8. Dynamics of laser ablated colliding plumes

    SciTech Connect

    Gupta, Shyam L.; Pandey, Pramod K.; Thareja, Raj K.

    2013-01-15

    We report the dynamics of single and two collinearly colliding laser ablated plumes of ZnO studied using fast imaging and the spectroscopic measurements. Two dimensional imaging of expanding plume and temporal evolution of various species in interacting zones of plumes are used to calculate plume front velocity, electron temperature, and density of plasma. The two expanding plumes interact with each other at early stage of expansion ({approx}20 ns) resulting in an interaction zone that propagates further leading to the formation of stagnation layer at later times (>150 ns) at the lateral collision front of two plumes. Colliding plumes have larger concentration of higher ionic species, higher temperature, and increased electron density in the stagnation region. A one-to-one correlation between the imaging and optical emission spectroscopic observations in interaction zone of the colliding plumes is reported.

  9. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Hutchinson, Robert W.; McLachlin, Katherine M.; Riquelme, Paloma; Haarer, Jan; Broichhausen, Christiane; Ritter, Uwe; Geissler, Edward K.; Hutchinson, James A.

    2015-01-01

    ABSTRACT New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users. PMID:27500232

  10. NOVEL LASER ABLATION TECHNOLOGY FOR SURFACE DECONTAMINATION

    EPA Science Inventory

    The objective of this project is to develop a novel Laser Ablation Decontamination in Liquid (LADIL) technology for surface decontamination and safe removal of radioactive and/or toxic contaminants. It aims to achieve more efficient surface decontamination without secondary conta...

  11. Innovative Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Chen, Winston C. H.

    2003-06-01

    The objective of this project is to develop a novel laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination. Another aim is to make this surface decontamination technology becomes economically feasible for large scale decontamination.

  12. Laser ablated zirconium plasma: A source of neutral zirconium

    SciTech Connect

    Yadav, Dheerendra; Thareja, Raj K.

    2010-10-15

    The authors report spectroscopic investigations of laser produced zirconium (Zr) plasma at moderate laser fluence. At low laser fluence the neutral zirconium species are observed to dominate over the higher species of zirconium. Laser induced fluorescence technique is used to study the velocity distribution of ground state neutral zirconium species. Two-dimensional time-resolved density distributions of ground state zirconium is mapped using planner laser induced fluorescence imaging and total ablated mass of neutral zirconium atoms is estimated. Temporal and spatial evolutions of electron density and temperature are discussed by measuring Stark broadened profile and ratio of intensity of emission lines, respectively.

  13. Laser ablation of GaAs in liquid: the role of laser pulse duration

    NASA Astrophysics Data System (ADS)

    De Bonis, Angela; Galasso, Agostino; Santagata, Antonio; Teghil, Roberto

    2016-01-01

    The synthesis of gallium arsenide (GaAs) nanoparticles has attracted wide scientific and technological interest due to the possibility of tuning the GaAs NP (nanoparticle) band gap across the visible spectrum and their consequent use in optoelectronic devices. In recent years, laser ablation in liquid (LAL) has been widely used for the preparation of colloidal solutions of semiconducting and metallic nanoparticles, thanks to its flexibility. With the aim of highlighting the key role played by laser pulse duration on the ablation mechanism and on the properties of the obtained materials, laser ablation of a gallium arsenide target in acetone was performed using laser sources operating in two different temporal regimes: Nd:glass laser (λ   =  527 nm, pulse duration of 250 fs and frequency repetition rate of 10 Hz) and Nd:YAG laser (λ   =  532 nm, pulse duration of 7 ns and frequency repetition rate of 10 Hz). The ablation process was studied following the dynamics of the laser induced shock waves (SWs) and cavitation bubbles (CBs) by fast shadowgraphy, showing that CB dimension and lifetime is related to the laser pulse length. A characterization of the obtained materials by TEM (transmission electron microscopy) and microRaman spectroscopy have shown that quite spherical gallium oxide/GaAs nanoparticles can be obtained by nanosecond laser ablation. On the other hand, pure polycrystalline GaAs nanoparticles can be produced by using an ultrashort laser source.

  14. Microwave ablation versus laser ablation in occluding lateral veins in goats.

    PubMed

    Wang, Xu-hong; Wang, Xiao-ping; Su, Wen-juan; Yuan, Yuan

    2016-02-01

    Increasing number of endovenous techniques are available for the treatment of saphenous vein reflux and endovenous laser ablation (EVLA) is a frequently used method. A newly developed alternative, based on thermal therapy, is endovenous microwave ablation (EMA). This study evaluated the effect of the two procedures, in terms of coagulation and histological changes, in occluding lateral veins in goats. Twelve animals were randomized into two group, with 6 treated with EMA (EMA group), and the rest 6 with EVLA (EVLA group). Results of coagulation, including coagulation, fibrinolysis and platelet activation, were assessed at three or four different time points: before, immediately after, 24 h (and 48 h) after ablation. The diameter change, a measure of efficacy, was ultrasonographically measured before and 1 month after the ablation. Histological changes were grossly and microscopically evaluated immediately, 1 and 3 month(s) after the ablation. The length of the ablated vein and preoperative average diameter were comparable between the two groups. In both EMA and EVLA groups, several coagulation parameters, fibrinolysis and platelet activation parameters only underwent slight changes. Ultrasound imaging displayed that the diameter reduction of the veins treated by EMA was significantly larger than by EVLA, in consistent with the results of macroscopic examination. Microscopic examination revealed necrosis and thickening of the vein wall, and occlusion of the lumen within 3 months after ablation in both EMA and EVLA groups. It is concluded that EMA is a minimally invasive therapy, which appears to be safe and effective for treatment of lateral veins in goats. PMID:26838749

  15. Deposition of potassium oxygen on silicon surfaces by pulsed laser ablation of potassium superoxide: Study of work function changes

    NASA Astrophysics Data System (ADS)

    Choo, Cheow-Keong; Suzawa, Daisuke; Tanaka, Katsumi

    2006-04-01

    Potassium-oxygen species were deposited on pure, Si nanoparticles coated and H-terminated Si nanoparticles coated p-Si(1 0 0) surfaces by pulsed laser ablation of potassium superoxide (KO 2) target. The deposition properties, composition and the work function changes of the deposited species were investigated in situ using an X-ray photoelectron spectroscopy (XPS) and a Kelvin probe measurement. The deposited species were assigned to K 2O 2 and KO 2, and they can be selectively deposited by controlling the laser fluence: i.e., at 200 mJ/cm 2 and at those more than 300 mJ/cm 2, respectively. Experimental results showed that the work function decreased drastically with depositing of KO x ( x = 1 or 2), and the minimum work function values observed were 1.0 eV and 0.7 eV for pure p-Si(1 0 0) and Si nanoparticles coated substrates, respectively. The study demonstrates the formation of the surface species with minimum work function can be identified by XPS.

  16. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  17. Comparative study of femtosecond and nanosecond laser ablation for propulsion applications

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.

    2012-07-01

    Dependences of absolute vapor/plasma pressure on femtosecond and nanosecond laser intensities were obtained for graphitic materials using a non-contact broadband ultrasonic technique, and propulsion prospects of femtosecond and nanosecond laser launching approaches are discussed.

  18. A Review of Laser Ablation Propulsion

    SciTech Connect

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-10-08

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  19. Spectroscopic measurements of ablation plasma generated with laser-driven intense extreme ultraviolet (EUV) light

    NASA Astrophysics Data System (ADS)

    Tanaka, N.; Hane, K.; Shikata, H.; Masuda, M.; Nagatomi, K.; Sunahara, A.; Yoshida, M.; Fujioka, S.; Nishimura, H.

    2016-03-01

    Material ablation by a focused Extreme ultraviolet (EUV) light is studied by comparing expanding ion properties and plasma parameters with laser ablation. The kinetic energy distributions of expanding ions from EUV and laser ablation showed different spectra implying different geometries of plasma expansion. The calculation results of plasma parameters showed that EUV energy is mostly deposited in high electron density region close to the solid density, while laser energy is deposited in low energy density region. Plasma parameters experimentally obtained from visible spectra did not show noticeable difference between EUV and laser ablation due to the corresponding low cut off density.

  20. Laser-ablation processes (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dingus, Ronald S.

    1992-06-01

    The physical mechanisms associated with ablation of matter by laser irradiation are quite different in different regions of parameter space. The important parameters are the laser wavelength; the laser flux versus time, position, and angle of incidence at the target; and the target properties as well as the properties of the laser-transport medium adjacent to the irradiated target surface. Important target properties include surface contour, laser reflectivity and absorption depth, thermal diffusively, vaporization energy, Gruneisen coefficient, spall strength, ionization energies and plasma opacity versus temperature and density. As the flux increases, the process becomes less dependent on most of these target properties. Depending on the values of these various parameters, at relatively low fluxes targets can be vaporized and these vapors can be transparent to the laser beam. If a transparent liquid or solid transport medium exists in front of the vaporized target material, then a complicated contained- vaporization process takes place and the work done on the target by the vapors can be several orders of magnitude larger than with a gas or vacuum transport medium; the degree of work enhancement can depend strongly on the vapor condensability and condensed matter thermal conductivity. For short-pulselength irradiations of semi-transparent targets with a low- acoustic-impedance-laser-transport medium adjacent to the target, ablation needs to be a vacuum in order for the beam to be able to propagate to the target. For targets in a vacuum exposed to fluxes of this order (and considerably higher) and for long pulselengths, most of the laser energy will be absorbed (before reaching the critical surface) by inverse bremsstrahlung in material blown off from the target; at higher fluxes, the beam will be stopped at the critical surface producing localized absorption along with much higher energy densities and non-thermal equilibrium behavior. When the combination of

  1. Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the second in a series of three papers examining nanomaterial formation in laser ablation in liquids (LAL). Here we study the effect of the laser wavelength and fluence on the mass yield and size distribution of nanoparticles prepared by laser ablation of a platinum target immersed in water. For all wavelengths tested, laser fluences in the range of 10-70 J/cm{sup 2} resulted in spheroidal, nonagglomerated platinum nanoparticles with sizes ranging from 1 to 30 nm. Nanoparticle size distributions are found to be composed of two modes that are attributed to thermal vaporization and explosive boiling mechanisms. The peak of the smaller size mode remains nearly constant at 3 nm for all laser conditions, which is suggested to be due to the strong confinement of the vapor plume by the liquid. The larger size mode peaks in the range of 5-15 nm with a population that is strongly dependent on the laser parameters. It is concluded that changes in the mean size reported in many earlier studies on LAL of metal targets are a result of the relative quantity of nanoparticles from each mechanism rather than direct control over the ablation process. Additionally, it was observed that the yield of platinum nanoparticles was significantly larger for 1064 nm wavelength at fluences greater than 10 J/cm{sup 2}. The maximum ablation rate was approximately 4.4 mg/h, with an estimated ablation and collection efficiency of 0.9 {mu}g/J. Dependence of the mass yield on wavelength and fluence is seen to be dependent primarily on the extent of the explosive mechanism.

  2. Ultra-short pulsed laser tissue ablation using focused laser beam

    NASA Astrophysics Data System (ADS)

    Jaunich, Megan K.; Raje, Shreya; Mitra, Kunal; Grace, Michael S.; Fahey, Molly; Spooner, Greg

    2008-02-01

    Short pulse lasers are used for a variety of therapeutic applications in medicine. Recently ultra-short pulse lasers have gained prominence due to the reduction in collateral thermal damage to surrounding healthy tissue during tissue ablation. In this paper, ultra-short pulsed laser ablation of mouse skin tissue is analyzed by assessing the extent of damage produced due to focused laser beam irradiation. The laser used for this study is a fiber-based desktop laser (Raydiance, Inc.) having a wavelength of 1552 nm and a pulse width of 1.3 ps. The laser beam is focused on the sample surface to a spot size on the order of 10 microns, thus producing high peak intensity necessary for precise clean ablation. A parametric study is performed on in vitro mouse tissue specimens and live anaesthetized mice with mammary tumors through variation of laser parameters such as time-averaged laser power, repetition rate, laser scanning rate and irradiation time. Radial temperature distribution is measured using thermal camera to analyze the heat affected zone. Temperature measurements are performed to assess the peak temperature rise attained during ablation. A detailed histological study is performed using frozen section technique to observe the nature and extent of laser-induced damages.

  3. Ellipsometric study of YBa2Cu3O(7-x) laser ablated and co-evaporated films

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Warner, J. D.; Vitta, S.; Stan, M. A.; Sieg, R. M.

    1990-01-01

    High temperature superconducting films of YBa2Cu3O(7-x) (YBCO) were grown on SrTiO3, LaAl03, and YSZ substrates using two techniques: excimer laser ablation with in situ annealing and co-evaporation of Y, Cu, and BaF2 with ex-situ annealing. Film thicknesses were typically 5000 A, with predominant c-axis alignment perpendicular to the substrate. Critical temperatures up to Tc(R = 0) = 90 K were achieved by both techniques. Ellipsometric measurements were taken in the range 1.6 to 4.3 eV using a variable angle spectroscopic ellipsometer. The complex dielectric function of the laser ablated films was reproducible from run to run, and was found to be within 10 percent of that previously reported for (001) oriented single crystals. A dielectric overlayer was observed in these films, with an index of refraction of approximately 1.55 and nearly zero absorption. For the laser ablated films the optical properties were essentially independent of substrate material. The magnitude of the dielectric function obtained for the co-evaporated films was much lower than the value reported for single crystals, and was sample dependent.

  4. Ellipsometric study of YBa2Cu3O(7-x) laser ablated and co-evaporated films

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Warner, J. D.; Stan, M. A.; Vitta, S.

    1990-01-01

    High temperature superconducting films of YBa2Cu3O(7-x) (YBCO were grown on SrTiO3, LaA1O3, and YSZ substrates using two techniques: excimer laser ablation with in situ annealing and co-evaporation of Y, Cu, and BaF2 with ex-situ annealing. Film thicknesses were typically 5000 A, with predominant c-axis alignment perpendicular to the substrate. Critical temperatures up to Tc(R=O)=90 K were achieved by both techniques. Ellipsometric measurements were taken in the range 1.6 to 4.3 eV using a variable angle spectroscopic ellipsometer. The complex dielectric function of the laser ablated films was reproducible from run to run, and was found to be within 10 percent of that previously reported for (001) oriented single crystals. A dielectric overlayer was observed in these films, with an index of refraction of approximately 1.55 and nearly zero absorption. For the laser ablated films the optical properties were essentially independent of substrate material. The magnitude of the dielectric function obtained for the co-evaported films was much lower than the value reported for single crystals, and was sample dependent.

  5. Small glass particle cloud generation induced by laser ablation

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Kotsuka, Yuriko; Nakahara, Motonao; Kubota, Shiro

    2005-03-01

    Burst of small fragments of glass has been evidenced in the present study, when ground glass surface is laser ablated. Production of macro particles by laser ablation is an inherent characteristic of ground glass, and no similar phenomena have been observed in case of metal or polymer ablation. In this case, no additional metal coating has been made to further enhance absorption of laser pulse. Pulse laser shadowgraph has been taken to study the details of the phenomena in air and in vacuum. At least in vacuum, particle burst is found almost normal to the surface. By using ns-duration Nd:YAG laser of 100 mJ/pulse, observed particle velocity ranges 0.5 km/s to 1.5 km/s in case of in air and the maximum velocity is extended up to 1.5-2 km/s in vacuum. SEM observation of the ground surface reveals that glass surface is covered with micro cracks with several microns deep, which might attribute to macro particle production. In this sense, not surface roughness but also surface structure will be important in the ablation phenomena of glass. It is plausible that absorption of laser beam at the glass surface causes spallation like phenomena as well as production of an amount of plasma, and the plasma production might be responsible for the acceleration of broken fragments of glass. We applied the phenomena to ignite PETN powder explosive, and succeeded in igniting PETN powder only by laser ablation of ground glass.

  6. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  7. Thermal melting and ablation of silicon by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-01

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  8. Formation and characterization of nanoparticles via laser ablation in solution

    NASA Astrophysics Data System (ADS)

    Golightly, Justin Samuel

    isopropyl alcohol. Ablation in n-hexane also showed diffraction patterns correlating with carbides, and water showed oxygen incorporation. These results showed the ability to utilize the solvent in tailoring nanoparticles to achieve desired properties. Zirconium and nickel were ablated with the Nd:YAG at 532 nm. These studies utilized a stainless steel chamber designed and built to improve control over the experimental variables. The nickel study showcased the new chamber's ability for reproducibility in a size dependence study based upon laser fluence. The results of ablation with the Nd:YAG were compared to femtosecond ablation experiments performed with a titanium:sapphire femtosecond laser system. The Ti:sapphire femtosecond laser operated at 10 Hz, produced femtosecond pulses centered at ˜795 nm. The pulse duration was varied from 100 fs to 390 fs, the nanoparticles created from each condition were characterized, and the results are presented in chapters 5 and 6. Aluminum nanoparticles were made using both nanosecond and femtosecond laser ablation techniques. Aluminum nanoparticles have a great deal of potential for use as fuel additives as well as in paints and coatings. The nanosecond ablation process rendered large nanoparticles (over 200 nm) and the results are briefly shown in Appendix A. The femtosecond system produced a much smaller distribution of nanoparticles, with nanoparticles remaining in suspension for over a month's time, as evidenced by their unique UV-Vis absorbance. These nanoparticles were produced in isopropyl alcohol, and were stabilized by the solvent, as TEM analysis showed nanoparticles with very little oxygen incorporation. The solvent is bound to the nanoparticles as a result of the formation process and as a result forms a protective coating, which prevents further oxidation over time. The remarkable stability of these aluminum nanoparticles is a testament of employing the high energy scheme of the laser ablation process in a manner to

  9. Fundamentals and applications of polymers designed for laser ablation

    NASA Astrophysics Data System (ADS)

    Lippert, T.; Hauer, M.; Phipps, C. R.; Wokaun, A.

    The ablation characteristics of various polymers were studied at low and high fluences for an irradiation wavelength of 308 nm. The polymers can be divided into three groups, i.e. polymers containing triazene groups, designed ester groups, and reference polymers, such as polyimide. The polymers containing the photochemically most active group (triazene) exhibit the lowest thresholds of ablation (as low as 25 mJcm-2) and the highest etch rates (e.g. 250 nm/pulse at 100 mJcm-2), followed by the designed polyesters and then polyimide. Neither the linear nor the effective absorption coefficients have a clear influence on the ablation characteristics. The different behavior of polyimide might be explained by a pronounced thermal part in the ablation mechanism. The laser-induced decomposition of the designed polymers was studied by nanosecond interferometry and shadowgraphy. The etching of the triazene polymer starts and ends with the laser pulse, indicating photochemical ablation. Shadowgraphy reveals mainly gaseous products and a pronounced shockwave in air. The designed polymers were tested for an application as the polymer fuel in laser plasma thrusters.

  10. Femtosecond laser ablation of cadmium tungstate for scintillator arrays

    NASA Astrophysics Data System (ADS)

    Richards, S.; Baker, M. A.; Wilson, M. D.; Lohstroh, A.; Seller, P.

    2016-08-01

    Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm-2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.

  11. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    NASA Astrophysics Data System (ADS)

    Ouyang, Peixuan; Li, Peijie; Leksina, E. G.; Michurin, S. V.; He, Liangju

    2016-01-01

    In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  12. Simulation of Double-Pulse Laser Ablation

    SciTech Connect

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.; Itina, Tatian E.

    2010-10-08

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  13. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  14. Cluster Generation Under Pulsed Laser Ablation Of Compound Semiconductors

    SciTech Connect

    Bulgakov, Alexander V.; Evtushenko, Anton B.; Shukhov, Yuri G.; Ozerov, Igor; Marine, Wladimir

    2010-10-08

    A comparative experimental study of pulsed laser ablation in vacuum of two binary semiconductors, zinc oxide and indium phosphide, has been performed using IR- and visible laser pulses with particular attention to cluster generation. Neutral and cationic Zn{sub n}O{sub m} and In{sub n}P{sub m} particles of various stoichiometry have been produced and investigated by time-of-flight mass spectrometry. At ZnO ablation, large cationic (n>9) and all neutral clusters are mainly stoichiometric in the ablation plume. In contrast, indium phosphide clusters are strongly indium-rich with In{sub 4}P being a magic cluster. Analysis of the plume composition upon laser exposure has revealed congruent vaporization of ZnO and a disproportionate loss of phosphorus by the irradiated InP surface. Plume expansion conditions under ZnO ablation are shown to be favorable for stoichiometric cluster formation. A delayed vaporization of phosphorus under InP ablation has been observed that results in generation of off-stoichiometric clusters.

  15. Femtosecond laser ablation elemental mass spectrometry.

    PubMed

    Hergenröder, Roland; Samek, Ota; Hommes, Vanja

    2006-01-01

    Laser ablation mass spectrometry (LA-MS) has always been an interesting method for the elemental analysis of solid samples. Chemical analysis with a laser requires small amounts of material. Depending on the analytical detection system, subpicogram quantities may be sufficient. In addition, a focused laser beam permits the spatial characterization of heterogeneity in solid samples typically with micrometer resolution in terms of lateral and depth dimensions. With the advent of high-energy, ultra-short pulse lasers, new possibilities arise. The task of this review is to discuss the principle differences between the ablation process of short (>1 ps) and ultra-short (<1 ps) pulses. Based on the timescales and the energy balance of the process that underlies an ablation event, it will be shown that ultra-short pulses are less thermal and cause less collateral damages than longer pulses. The confinement of the pulse energy to the focal region guarantees a better spatial resolution in all dimensions and improves the analytical figures of merit (e.g., fractionation). Applications that demonstrate these features and that will be presented are in-depth profiling of multi-layer samples and the elemental analysis of biological materials. PMID:16477613

  16. Phase transitions in femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R.

    2009-03-01

    In this study we simulate an interaction of femtosecond laser pulses (100 fs, 800 nm, 0.1-10 J/cm 2) with metal targets of Al, Au, Cu, and Ni. For analysis of laser-induced phase transitions, melting and shock waves propagation as well as material decomposition we use an Eulerian hydrocode in conjunction with a thermodynamically complete two-temperature equation of state with stable and metastable phases. Isochoric heating, material evaporation from the free surface of the target and fast propagation of the melting and shock waves are observed. On rarefaction the liquid phase becomes metastable and its lifetime is estimated using the theory of homogeneous nucleation. Mechanical spallation of the target material at high strain rates is also possible as a result of void growth and confluence. In our simulation several ablation mechanisms are taken into account but the main issue of the material is found to originate from the metastable liquid state. It can be decomposed either into a liquid-gas mixture in the vicinity of the critical point, or into droplets at high strain rates and negative pressure. The simulation results are in agreement with available experimental findings.

  17. Study of Ablation and Implosion Stages of 1-MA Wire Array Z-Pinch using X-ray Laser-Based Backlighting

    NASA Astrophysics Data System (ADS)

    Anderson, Austin; Ivanov, Vladimir; Papp, Daniel; Talbot, Bjorn; Astanovitskiy, Alexey

    2013-10-01

    The ablation and implosion stages of wire array z-pinches were studied using laser-based x-ray imaging at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. X-ray backlighting at the wavelength of 6.65 Å was provided by hitting a Si target with the 50 TW Leopard laser. Laser-based radiography allows flexibility in both the timing and the position of the x-ray source. The issue of the method is the small energy of the laser pulse compared to radiation of the Z pinch. A spherically bent quartz crystal can give spatial resolution <10 microns and spectral linewidth of the x-ray on the order of 10-4. X-ray imaging allows viewing of the dense core of plasma column during the ablation stage. Wires with diameters 7.6-15 were resolved in test shots. Images of the wire-array at the ablation stage are discussed. Work was supported by the DOE grant DE-SC0008824 and DOE/NNSA UNR grant DE-FC52-06NA27616.

  18. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism. PMID:27056700

  19. Pulsed CO2 laser ablation of graphite and polymers

    NASA Astrophysics Data System (ADS)

    Wong, K. H.; Tou, T. Y.; Low, K. S.

    1998-02-01

    Spectroscopic analysis of the emission plumes of graphite, polyimide, polyethylene terepthalate, and polymethylmethacrylate that have been ablated by using a pulsed CO2 laser operating at 10.6 μm shows the presence of CN and C2, species not previously reported for CO2 laser ablation. The gross dynamics of the luminous plume, which was studied by using a streak camera, compares favorably with predictions from the snowplow model, which also accurately forecasts the time history of the plume expansion for a wide range of background gas pressures and laser fluences. Framing shadowgraphy reveals the onset of laser-supported detonation waves at approximately 50 mbar Ar, thus somewhat limiting the validity of this model.

  20. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  1. Modeling CO{sub 2} Laser Ablative Impulse with Polymers

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-10-08

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO{sub 2} laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO{sub 2} laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  2. Particle analysis using laser ablation mass spectroscopy

    DOEpatents

    Parker, Eric P.; Rosenthal, Stephen E.; Trahan, Michael W.; Wagner, John S.

    2003-09-09

    The present invention provides a method of quickly identifying bioaerosols by class, even if the subject bioaerosol has not been previously encountered. The method begins by collecting laser ablation mass spectra from known particles. The spectra are correlated with the known particles, including the species of particle and the classification (e.g., bacteria). The spectra can then be used to train a neural network, for example using genetic algorithm-based training, to recognize each spectra and to recognize characteristics of the classifications. The spectra can also be used in a multivariate patch algorithm. Laser ablation mass specta from unknown particles can be presented as inputs to the trained neural net for identification as to classification. The description below first describes suitable intelligent algorithms and multivariate patch algorithms, then presents an example of the present invention including results.

  3. Endovenous laser ablation with TM-fiber laser

    NASA Astrophysics Data System (ADS)

    Somunyudan, Meral Filiz; Topaloglu, Nermin; Ergenoglu, Mehmet Umit; Gulsoy, Murat

    2011-03-01

    Endovenous Laser Ablation (EVLA) has become a popular minimally invasive alternative to stripping in the treatment of saphenous vein reflux. Several wavelengths have been proposed; of which 810, 940 and 980- nm are the most commonly used. However, the most appropriate wavelength is still the subject of debate. Thermal shrinkage of collagenous tissue during EVLA plays a significant role in the early and late results of the treatment. The aim of this study is to compare the efficacy of 980 and 1940-nm laser wavelengths in the treatment of varicose veins. In this study, 980 and 1940-nm lasers at different power settings (8/10W for 980-nm, 2/3W for 1940-nm) were used to irradiate stripped human veins. The most prominent contraction and narrowing in outer and inner diameter were observed with the 1940-nm at 2W, following 980-nm at 8W, 1940-nm at 3W and finally 980-nm at 10W. The minimum carbonization was observed with the 1940-nm at 2W. As a conclusion, 1940-nm Tm-fiber laser which has a significant effect in the management of varicose veins due to more selective energy absorption in water and consequently in the vein is a promising method in the management of varicose veins.

  4. Pulsed dye laser application in ablation of vascular ectasias of the larynx: a preliminary animal study

    NASA Astrophysics Data System (ADS)

    Woo, Peak; Wang, Zhi; Perrault, Donald F., Jr.; McMillan, Kathleen; Pankratov, Michail M.

    1995-05-01

    Vascular ectasias (dilatation) and vascular lesions of the larynx are difficult to treat with exciting modalities. Varix (enlarged vessel) of the vocal folds, vocal fold hemorrhage, vascular polyp, hemangioma, intubation or contact granuloma are common problems which disturb voice. Current applications of CO2 laser and cautery often damage the delicate vocal fold cover. The 585 nm dermatologic pulsed dye laser may be an ideal substitute. Two adult canines were examined under anesthesia via microlaryngoscopy technique. Pulsed dye laser (SPTL-1a, Candela Laser Corp., Wayland, MA) energy was delivered via the micromanipulator with the 3.1-mm spot size in single pulses of 6, 8, and 10 Joules/cm2 and applied to the vessels of the vocal folds, epiglottis, and arytenoid cartilage. Endoscopic examination was carried out immediately after the treatment and at 4 weeks postoperatively. The animals were sacrificed at 3 weeks, larynges excised, and whole organ laryngeal section were prepared for histology. Pulsed dye laser thrombosed vessels of the vocal fold using 6 or 8 Joules/cm2. Vascular break and leakage occurred at 10 Joules/cm2. Follow up examination showed excellent vessel obliteration or thrombosis without scarring or injury to the overlying tissues. Histologic examination shows vascular thrombosis without inflammation and fibrosis in the vocal fold cover. Pulsed dye laser may have promise in treatment of vascular lesions of the larynx and upper airway.

  5. Comparative study of magnetite (Fe3O4) thin films grown by pulsed laser ablation and sputtering

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Varun Karthik Y., S.; Haveesh, G.; Tarun Y. S., N.; Prasad, D. V. B.; Chowdhury, D. Roy; Prasad, K. Eswar

    2016-05-01

    Comparative study of magnetite (Fe3O4) thin films grown by pulsed laser ablation (PLD) and radio frequency (RF)-sputtering of α-Fe2O3 target have been investigated. We have found strong correlation between RF power (P) of sputtering and substrate temperature (Ts) of PLD films on their structural and magnetic properties. Films grown at low P and Ts are dominated by antiferromagnetic α-Fe2O3 phase while ferrimagnetic Fe3O4 phase is dominant at high P and Ts Post-annealing in H2/H2O atmosphere at 450 °C, these films show single phase Fe3O4 but RF power and substrate temperature still play a significant role. With increasing P and Ts values, the orientation of Fe3O4 films change from (110) to (111) followed by complete randomizations. These (110) to (111) orientations affect magnetic properties differently above Verwey transition temperature of 120 K. The RF-power and substrate temperature have the same influence on the physical properties of Fe3O4 films, as both are related to thermal energy.

  6. Mathematical Modeling of Laser Ablation in Liquids with Applications to Laser Ultrasonics

    SciTech Connect

    Conant, R. J.; Telschow, Kenneth Louis; Walter, John Bradley

    2002-12-01

    The use of laser ablation as a means of generating ultrasonic waves in liquid metals is studied in this paper. A mathematical model for predicting the onset of ablation is developed, as is a model of the ablation process based on steady state, one-dimensional gas dynamics in which the vapor phase is treated as an ideal gas. The results of this model are then used in a quasi-two-dimensional model of laser ablation that accounts for the spatial distribution of intensity in the laser beam. Model predictions are compared with experiments conducted on liquid mercury and excellent agreement is obtained. Based on these results, a simplified model is developed that shows excellent agreement with both the theory and the experiments.

  7. Resolving Bias in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Bowring, James; Horstwood, Matthew; Gehrels, George

    2013-06-01

    Increasingly, scientific investigations requiring geochronology utilize laser ablation (LA)-inductively coupled plasma mass spectrometry (ICPMS), taking advantage of the efficiency and throughput possible for uranium-thorium-lead (U-Th-Pb) dating. A number of biases exist when comparing data among laboratories and an ongoing community-based effort is working to resolve and eliminate these biases to improve the accuracy of scientific interpretation based on these data.

  8. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Fattahi, Behzad

    2015-02-01

    In this paper, pulsed laser ablation method was used for synthesis of colloidal nanoparticles of aluminum and titanium targets in distilled water, ethanol, and acetone as liquid environments. Ultraviolet-visible (UV-vis) absorption spectrophotometer and scanning electron microscope (SEM) were used for characterization of produced nanoparticles. Using image processing technique and analyzing the SEM images, nanoparticles' mean size and size distribution were achieved. The results show that liquid medium has strong effect on size properties of produced nanoparticles. From the results, it was found that ablation of both metal targets in ethanol medium leads to formation of smaller size nanoparticles with narrower size distributions. The influence of laser fluence was also investigated. According to the results, higher laser fluence produces larger mean size nanoparticles with broader size distribution.

  9. Investigating Age Resolution in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, Matt; Kosler, Jan; Jackson, Simon; Pearson, Norman; Sylvester, Paul

    2009-02-01

    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; Vancouver, British Columbia, Canada, 12-13 July 2008; Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uranium-thorium-lead (U-Th-Pb) dating is an increasingly popular approach for determining the age of mineral grains and the timing of geological events. The spatial resolution offered by this technique allows detailed investigations of complex igneous and metamorphic processes, and the speed of data capture allows vast amounts of information to be gathered rapidly. Laser ablation U-Th-Pb dating is therefore becoming an increasingly influential technique to the geochronology community, providing cost-effective and ready access to age data for laboratories and end users worldwide. However, complications in acquiring, processing, and interpreting data can lead to inaccurate age information entering the literature. With the numbers of practitioners expanding rapidly, the need to standardize approaches and resolve difficulties (particularly involving the subjectivity in processing laser ablation U-Th-Pb data) is becoming important.

  10. KTP-532 laser ablation of urethral strictures.

    PubMed

    Turek, P J; Malloy, T R; Cendron, M; Carpiniello, V L; Wein, A J

    1992-10-01

    In 1988 the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision as in urethrotomy, strictures were treated with 360-degree contact photoradiation. Thirty-one male patients, average age 53.2 years, received thirty-seven treatments; 6 patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and postgonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of circumferential ablation, followed by Foley catheter placement (mean, 10 days). Follow-up on 29 of 31 patients ranged from one to sixteen months (mean 9.7). Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptom, but not stricture, recurrence. Six patients (20.5%) failed therapy, requiring additional surgery or regular dilations. No complications were seen. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious. PMID:1413350

  11. KTP-532 laser ablation of urethral strictures

    NASA Astrophysics Data System (ADS)

    Malloy, Terrence R.

    1991-07-01

    In 1988, the KTP-532 laser was used to ablate a series of benign urethral strictures. Rather than using a single incision, as in urethrotomy, strictures were treated with a 360$DEG contact photoradiation. Thirty-one males, average age 53.2 years, received 37 treatments. Six patients underwent a second laser treatment. Stricture etiology was commonly iatrogenic (32%), traumatic (16%), and post-gonococcal (10%). Stricture location included mainly bulbar (49%), membranous (20%), and penile (12%) areas. The surgical technique consisted of a circumferential ablation followed by foley catheter placement (mean 10 days). Follow-up on 29 of 31 patients ranged from 1 to 16 months (mean 9.7) Complete success occurred in 17 patients (59%) who had no further symptoms or instrumentation. Partial success was seen in 6 patients (20.5%) with symptoms but no stricture recurrence. Six patients (20.5%) failed therapy requiring additional surgery or regular dilatations. No complications were encountered. Although longer assessment is required, KTP-532 laser ablation of urethral strictures appears efficacious.

  12. FINAL REPORT. WASTE VOLUME REDUCTION USING SURFACE CHARACTERIZATION AND DECONTAMINATION BY LASER ABLATION

    EPA Science Inventory

    Laser ablation was studied as a method for removing contaminated surface layers from concrete. The objectives of this research were to determine the mechanism and efficacy of laser ablation, to understand the chemistry of contaminated concrete surfaces, and to chemically and phys...

  13. Endovenous Laser Ablation of Incompetent Perforator Veins: A New Technique in Treatment of Chronic Venous Disease

    SciTech Connect

    Ozkan, Ugur

    2009-09-15

    The aim of this study was to assess the feasibility of endovenous laser ablation of incompetent perforator veins in a patient with incompetency of the small saphenous vein and multiple perforator veins. Two different methods were used to ablate seven perforator veins with a laser giving 50-60 J/cm energy. Total occlusion was observed in six perforators, and partial ablation in one perforator, at 1-month follow-up. To our knowledge, endovenous laser ablation of incompetent perforator veins is easy and a good therapeutic method.

  14. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  15. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  16. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  17. Effect of Laser Wavelength and Ablation Time on Pulsed Laser Ablation Synthesis of AL Nanoparticles in Ethanol

    NASA Astrophysics Data System (ADS)

    Baladi, A.; Mamoory, R. Sarraf

    Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 5-15 minutes using the 1064 and 533 nm wavelengths of a Nd:YAG laser with energies of 280-320 mJ per pulse. It has been found that higher wavelength leads to significantly higher ablation efficiency, and finer spherical nanoparticles are also synthesized. Besides, it was obvious that higher ablation time resulted in higher ablated mass, while lower ablation rate was observed. Finer nanoparticles, moreover, are synthesized in higher ablation times.

  18. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  19. CO2 Laser Absorption in Ablation Plasmas

    SciTech Connect

    Eckel, Hans-Albert; Tegel, Jochen; Schall, Wolfgang O.

    2006-05-02

    The impulse formation by laser ablation is limited by the premature absorption of the incident laser radiation in the initially produced cloud of ablation products. The power fraction of a CO2 laser pulse transmitted through a small hole in a POM sample for pulse energies of 35 to 150 J focused on a spot of 2 cm2 has been compared with the incident power. The plasma formation in vacuum and in air of 3500 Pa and the spread of the shock wave with velocities of 1.6 to 2.4 km/s in the low pressure air was observed by Schlieren photography. A sharp edged dark zone with a maximum extension of 10 to 12 mm away from the target surface develops within 5 {mu}s independently of the pressure and is assumed to be a plasma. In order to find out, if this is also the zone where the majority of the incident laser radiation is absorbed, a CO2 probe laser beam was directed through the expansion cloud parallel to and at various distances from the sample surface. The time behavior of the absorption signal of the probe beam has been measured and an absorption wave could be observed.

  20. Recent advances in laser ablation modelling for asteroid deflection methods

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2014-09-01

    Over the past few years, a series of studies have demonstrated the theoretical benefits of using laser ablation in order to mitigate the threat of a potential asteroid on a collision course with earth. Compared to other slow-push mitigation strategies, laser ablation allows for a significant reduction in fuel consumption since the ablated material is used as propellant. A precise modelling of the ablation process is however difficult due to the high variability in the physical parameters encountered among the different asteroids as well as the scarcity of experimental studies available in the literature. In this paper, we derive a new thermal model to simulate the efficiency of a laser-based detector. The useful material properties are first derived from thermochemical tables and equilibrium thermodynamic considerations. These properties are then injected in a 3D axisymetrical thermal model developed in Matlab. A temperature-dependent conduction flux is imposed on the exterior boundary condition that takes into account the balance between the incident power and the power losses due to the vaporization process across the Knudsen layer and the radiations respectively. A non-linear solver is finally used and the solution integrated over the ablation front to reconstruct the net thrust and the global mass flow. Compared to an initial 1D model, this new approach shows the importance of the parietal radiation losses in the case of a CW laser. Despite the low energy conversion efficiency, this new model still demonstrates the theoretical benefit of using lasers over more conventional low-thrust strategies.

  1. Ablation processing of biomedical materials by ultrashort laser pulse ranging from 50 fs through 2 ps

    NASA Astrophysics Data System (ADS)

    Ozono, Kazue; Obara, Minoru; Sakuma, Jun

    2003-06-01

    In recent years, femtosecond laser processing of human hard/soft tissues has been studied. Here, we have demonstrated ablation etching of hydroxyapatite. Hydroxyapatite (Ca10(PO4)6(OH)2) is a key component of human tooth and human bone. The human bone is mainly made of hydroxyapatite oriented along the collagen. The micromachining of hydroxyapatite is highly required for orthopedics and dentistry. The important issue is to preserve the chemical property of the ablated surface. If chemical properties of hydroxyapatite change once, the human bone or tooth cannot grow again after laser processing. As for nanosecond laser ablation (for example excimer laser ablation), the relative content of calcium and phosphorus in (Ca10(PO4)6(OH)2) is found to change after laser ablation. We used here pulsewidth tunable output from 50 fs through 2 ps at 820 nm and 1 kpps. We measured calcium spectrum and phosphorus spectrum of the ablated surface of hydroxyapatite by XPS. As a result, the chemical content of calcium and phosphorus is kept unchanged before and after 50-fs - 2-ps laser ablation. We also demonstrated ablation processing of human tooth with Ti:sapphire laser, and precise ablation processing and microstructure fabrication are realized.

  2. A review of Thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Blackmon, Richard L.; Irby, Pierce B.

    2011-02-01

    The clinical solid-state Holmium:YAG laser lithotripter (λ=2120 nm) is capable of operating at high pulse energies, but its efficient operation is limited to low pulse rates during lithotripsy. The diode-pumped experimental Thulium Fiber Laser (λ=1908 nm) is limited to low pulse energies, but can operate at high pulse rates. This review compares stone ablation threshold, ablation rate, and retropulsion effects for Ho:YAG and TFL. Laser lithotripsy complications also include optical fiber bending failure resulting in endoscope damage and low irrigation rates leading to poor visibility. Both problems are related to fiber diameter and limited by Ho:YAG laser multimode spatial beam profile. This study exploits TFL spatial beam profile for higher power transmission through smaller fibers. A short taper is also studied for expanding TFL beam at the distal tip of a small-core fiber. Stone mass loss, stone crater depths, fiber transmission losses, fiber burn-back, irrigation rates, and deflection through a flexible ureteroscope were measured for tapered fiber and compared with conventional fibers. The stone ablation threshold for TFL was four times lower than for Ho:YAG. Stone retropulsion with Ho:YAG increased linearly with pulse energy. Retropulsion with TFL was minimal at pulse rates < 150 Hz, then rapidly increased at higher pulse rates. TFL beam profile provides higher laser power through smaller fibers than Ho:YAG laser, potentially reducing fiber failure and endoscope damage and allowing greater irrigation rates for improved visibility and safety. Use of a short tapered distal fiber tip also allows expansion of the laser beam, resulting in decreased fiber tip damage compared to conventional fibers, without compromising fiber bending, stone ablation efficiency, or irrigation rates.

  3. Laser ablation of Al-Ni alloys and multilayers

    NASA Astrophysics Data System (ADS)

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  4. Ablation dynamics in laser sclerotomy ab externo

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf; Droege, Gerit; Mohrenstecher, Dirk; Scheu, M.; Birngruber, Reginald

    1996-01-01

    Laser sclerostomy ab externo with flashlamp excited mid-IR laser systems emitting in the 2-3 micrometer spectral range is in phase II clinical trials. Although acutely high success rates were achieved, the restenosis rate after several months is about 40%. Laser pulses of several hundreds of microseconds, known to induce thermo-mechanical explosive evaporation were used for this procedure. We investigated the ablation dynamics in tissue and the cavitation bubble dynamics in water by means of an Er:YAG laser system to estimate the extent of mechanical damage zones in the sclera and in the anterior chamber, which may contribute to the clinical failure. We found substantial mechanical tissue deformation during the ablation process caused by the cavitation effects. Stress waves up to several bar generated by explosive evaporization were measured. The fast mechanical stretching and collapsing of the scleral tissue induced by cavitation resulted in tissue dissection as could be proved by flash photography and histology. The observed high restenosis might be a result of a subsequent enhanced wound healing process. Early fistula occlusions due to iris adherences, observed in about 20% of the clinical cases may be attributed to intraocular trauma induced by vapor bubble expansion through the anterior chamber after scleral perforation. An automatic feedback system minimizing adverse effects by steering and terminating the laser process during scleral fistulization is demonstrated. Moreover, a new approach in laser sclerostomy ab externo is presented using a cw-IR laser diode system emitting at the 1.94 micrometer mid-IR water absorption peak. This system was used in vitro and showed smaller damage zones compared to the pulsed laser radiation.

  5. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  6. Laser ablation of copper and aluminium in air

    NASA Astrophysics Data System (ADS)

    Xia, Yueyuan; Mei, Liangmo; Tan, Chunyu; Liu, Xiangdong; Wang, Qingpu; Yue, Shubin

    1991-06-01

    The ablation behavior of copper alloy and aluminium irradiated in air by 1.06 μm, 10 ns pulsed laser with power density of 6.4×109W/cm2 was studied using scanning electron microscopy (SEM), MCS-RBS and X-ray microanalysis. Evidence of bulk vaporization via bubble formation was observed for the copper alloy under the laser irradiation. Silver-enrichment microregions were found in the ablation crater created by the laser shots on the copper alloy sample. Material removal rates of these materials were determined by crater shape-profile measurement. Using self-similar solutions of the gas-dynamic equations, gas-dynamic parameters of the vaporization waves are obtained. These parameters are used to calculate material removal rates and impulse coupling coefficients of these materials under the pulsed laser irradiation. The calculated mass removal rates and the coupling coefficients are compared with the corresponding experimentally determined values. The surface kinetic energy of the irradiated area on the Al sample is estimated. Possible mechanisms for laser ablation of the materials under study are discussed.

  7. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold

    SciTech Connect

    Upadhyay, Arun K.; Inogamov, Nail A.; Rethfeld, Baerbel; Urbassek, Herbert M.

    2008-07-15

    Ultrafast laser irradiation of solids may ablate material off the surface. We study this process for thin films using molecular-dynamics simulation and thermodynamic analysis. Both metals and Lennard-Jones (LJ) materials are studied. We find that despite the large difference in thermodynamical properties between these two classes of materials--e.g., for aluminum versus LJ the ratio T{sub c}/T{sub tr} of critical to triple-point temperature differs by more than a factor of 4--the values of the ablation threshold energy E{sub abl} normalized to the cohesion energy, {epsilon}{sub abl}=E{sub abl}/E{sub coh}, are surprisingly universal: all are near 0.3 with {+-}30% scattering. The difference in the ratio T{sub c}/T{sub tr} means that for metals the melting threshold {epsilon}{sub m} is low, {epsilon}{sub m}<{epsilon}{sub abl}, while for LJ it is high, {epsilon}{sub m}>{epsilon}{sub abl}. This thermodynamical consideration gives a simple explanation for the difference between metals and LJ. It explains why despite the universality in {epsilon}{sub abl}, metals thermomechanically ablate always from the liquid state. This is opposite to LJ materials, which (near threshold) ablate from the solid state. Furthermore, we find that immediately below the ablation threshold, the formation of large voids (cavitation) in the irradiated material leads to a strong temporary expansion on a very slow time scale. This feature is easily distinguished from the acoustic oscillations governing the material response at smaller intensities, on the one hand, and the ablation occurring at larger intensities, on the other hand. This finding allows us to explain the puzzle of huge surface excursions found in experiments at near-threshold laser irradiation.

  8. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  9. Excimer laser photorefractive keratectomy with different ablation zones.

    PubMed

    Hassan, Z; Lampé, Z; Békési, L; Berta, A

    1997-01-01

    In this study we would like to introduce the excimer laser, and to demonstrate our results and complications by using different ablation zones during photorefractive keratectomy (PRK) in the correction of myopia and astigmatismus. In 1996 we performed photorefractive keratectomy on 100 myopic eyes of 52 patients (28 females, 24 males). Mean age was 26.21 years (ranged from 19 to 54 years). The preoperative refraction ranged from -1.0 D to -18.0 Diopters. The diameter of the ablation zones were between 5 and 6.5 mm. We evaluated the results and the complications of the surgeries of 100 eyes which were performed with Schwind keratom F excimer laser. After 2 days, 1 week, 1 month, 3 months, and 6 months postoperatively we tested the best uncorrected and corrected visual acuities, and performed intraocular pressure measurement, slit lamp examination as well as corneal topography. The postoperative refractions were between +/- 0.5 to +/- 1.0 Diopters. After six months postoperatively the slit lamp examination showed that 80% of the patients had no corneal haze while 20% had stage I (Hanna) corneal haze. The smaller the diameter of the ablation zone was, the more pronounced the corneal haze and the night-glare were. The photorefractive excimer laser keratectomy is judged to be a safe method, although it might have some side-effects. The different ablation zones of this treatment means an important modification, that not only allows the method to meet the individual requirements, but reduces the chance of the complications as well. Based on the authors' experiences PRK for moderate myopia with large diameter ablation zones appears more predictable than than with smaller ablation zone diameters. PMID:9408312

  10. Effect of nanosecond pulse laser ablation on the surface morphology of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-09-01

    In this study, we investigated the ripple patterns formation on the surface of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass using a nanosecond pulse laser ablation in air with a wavelength of 1064 nm. The strong thermal ablation phenomenon could be observed on vit1 BMG surface at laser energy of 200 mJ as a result of the adhibition of confining overlay. Many periodic ripples had formed on the edge of the ablated area at laser energy of 400 mJ because of the high intensity pulsed laser beam. The underlying mechanism of the periodic ripples formation could be explained by the K-H hydrodynamic instability theory. It had been shown that laser ablation with 600 mJ and 200 pulses results in the formation of many micro-cracks on the ablated area. Further analysis showed that the spatial occupation of the laser ablated area and the spacing between two adjacent ripples increased as the laser energy and the number of incident laser pulses increasing. The surface ripples feature on the edge of ablated area became more obvious with increasing laser pulses, but it was not correlated closely with the laser energies variation.

  11. Infrared laser ablation atmospheric pressure photoionization mass spectrometry.

    PubMed

    Vaikkinen, Anu; Shrestha, Bindesh; Kauppila, Tiina J; Vertes, Akos; Kostiainen, Risto

    2012-02-01

    In this paper we introduce laser ablation atmospheric pressure photoionization (LAAPPI), a novel atmospheric pressure ion source for mass spectrometry. In LAAPPI the analytes are ablated from water-rich solid samples or from aqueous solutions with an infrared (IR) laser running at 2.94 μm wavelength. Approximately 12 mm above the sample surface, the ablation plume is intercepted with an orthogonal hot solvent (e.g., toluene or anisole) jet, which is generated by a heated nebulizer microchip and directed toward the mass spectrometer inlet. The ablated analytes are desolvated and ionized in the gas-phase by atmospheric pressure photoionization using a 10 eV vacuum ultraviolet krypton discharge lamp. The effect of operational parameters and spray solvent on the performance of LAAPPI is studied. LAAPPI offers ~300 μm lateral resolution comparable to, e.g., matrix-assisted laser desorption ionization. In addition to polar compounds, LAAPPI efficiently ionizes neutral and nonpolar compounds. The bioanalytical application of the method is demonstrated by the direct LAAPPI analysis of rat brain tissue sections and sour orange (Citrus aurantium) leaves. PMID:22242626

  12. Laser ablation and high precision patterning of biomaterials and intraocular lenses

    NASA Astrophysics Data System (ADS)

    Serafetinides, A. A.; Spyratou, E.; Makropoulou, M.

    2010-10-01

    The use of intraocular lenses (IOL) is the most promising method for restoring excellent vision in cataract surgery. In addition, multifocal intraocular lenses for good distant and near vision are investigated. Several new materials, techniques and patterns are studied for the formation and etching of intraocular lenses in order to improve their optical properties and reduce the diffractive aberrations. As pulsed laser ablation is well established as a universal tool for surface processing of organic polymer materials, this study was focused in using laser ablation with short and ultra short laser pulses for surface modification of PMMA and intraocular lenses, instead of using other conventional techniques. The main advantage of using very short laser pulses, e.g. of ns, ps or fs duration, is that heat diffusion into the polymer material is negligible. As a result high precision patterning of the sample, without thermal damage of the surroundings, becomes possible. In this study, laser ablation was performed using commercially available hydrophobic acrylic IOLs, hydrophilic acrylic IOLs, and PMMA IOLs, with various diopters. We investigated the ablation efficiency and the phenomenology of the etched patterns by testing the ablation rate, versus laser energy fluence, at several wavelengths and the surface modification with atomic force microscopy (AFM), or scanning electron microscopy (SEM). The irradiated polymers have different optical properties, at the applied wavelengths, and therefore, present different ablation behaviour and morphology of the laser ablated crater walls and surrounding surfaces. The experimental results, some theoretical assumptions for mathematical modeling of the relevant ablation mechanisms are discussed.

  13. Deposition, characterization, and laser ablation patterning of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Vase, Per; Yueqiang, Shen; Freltoft, Torsten

    1990-12-01

    High quality epitaxial thin films of YBa 2Cu 3O 7 have been deposited on single-crystal MgO(001) substrates by 355 nm Nd:YAG laser ablation. Through a systematic optimization of the deposition parameters, it was found that for a target-substrate distance of 30 mm, the optimal laser intensity, substrate temperature, and deposition oxygen pressure were 300 MW/cm 2, 750 ° C, and 0.5-1.0 mbar, respectively. Microstrips with dimensions down to 10 μm across were fabricated using both a photoresist technique and laser ablation through a metal mask. The superconducting transition takes place over 1 K, and the critical temperature is reproducible within ±1.5 K, the best result being Tc,0 = 90 K. The highest critical current density measured on a 10 X 0.15 μm 2 strips was 4 X 10 6 A/cm 2 at 77 K . Film patterning using laser ablation through a metal mask was studied in detail to investigate the applicability of this method. Etch rates as a function of laser intensity were measured, and the process was followed in situ by on-line monitoring of the film resistivity.

  14. Ablation algorithms and corneal asphericity in myopic correction with excimer lasers

    NASA Astrophysics Data System (ADS)

    Iroshnikov, Nikita G.; Larichev, Andrey V.; Yablokov, Michail G.

    2007-06-01

    The purpose of this work is studying a corneal asphericity change after a myopic refractive correction by mean of excimer lasers. As the ablation profile shape plays a key role in the post-op corneal asphericity, ablation profiles of recent lasers should be studied. The other task of this research was to analyze operation (LASIK) outcomes of one of the lasers with generic spherical ablation profile and to compare an asphericity change with theoretical predictions. The several correction methods, like custom generated aspherical profiles, may be utilized for mitigation of unwanted effects of asphericity change. Here we also present preliminary results of such correction for one of the excimer lasers.

  15. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  16. An observation of ablation effect of soft biotissue by pulsed Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Xie, Shusen; Ye, Qing; Zhan, Zhenlin

    2007-02-01

    Because of the unique properties with regard to the absorption in organic tissue, pulsed Er:YAG laser has found most interest for various application in medicine, such as dermatology, dentistry, and cosmetic surgery. However, consensus regarding the optimal parameters for clinical use of this tool has not been reached. In this paper, the laser ablation characteristics of soft tissue by Er:YAG laser irradiation was studied. Porcine skin tissue in vitro was used in the experiment. Laser fluences ranged from 25mJ/mm2 to 200mJ/mm2, repetition rates was 5Hz, spot sizes on the tissue surface was 2mm. The ablation effects were assessed by the means of optical microscope, ablation diameters and depths were measured with reading microscope. It was shown that the ablation of soft biotissue by pulsed Er:YAG laser was a threshold process. With appropriate choice of irradiation parameters, high quality ablation with clean, sharp cuts following closely the spatial contour of the incident beam can be achieved. The curves of ablation crater diameter and depth versus laser fluence were obtained, then the ablation threshold and ablation yield were calculated subsequently, and the influence of the number of pulses fired into a crater on ablation crater depth was also discussed.

  17. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun Wang, Kedian; Mei, Xuesong

    2014-03-15

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.

  18. Surface-enhanced Raman scattering study of organic pigments using silver and gold nanoparticles prepared by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Trusso, S.; Ponterio, R. C.

    2013-05-01

    The identification of pigments used in ancient times represents an interesting task in order to discriminate a production of a precise geographic area or to trace out the ancient commercial networks. Conventional micro-Raman spectroscopy (MRS), being a non-destructiveness technique, has been largely used for the analysis of dyes. Nevertheless several pigments, especially of organic origin, show weak Raman activity beside a strong a fluorescence that prevents their identification. Surface enhanced Raman scattering (SERS) can address such difficulties. The presence of noble metal nanoparticles induces a giant amplification of the Raman signal beside the fluorescence quenching. In this work we present the use of gold and silver nanoparticles to enhance the Raman signal of some commercial red organic dyes: bazilwood, dragon's blood, carmine and madder lake. The nanoparticles were prepared adopting two approaches: (1) ablating metallic targets in water using a pulsed Nd:YAG laser at 532 nm and (2) depositing the nanoparticles on glass substrates by means of a KrF excimer laser ablation process, performed in a controlled argon atmosphere.

  19. Polarization of plastic targets by laser ablation

    NASA Astrophysics Data System (ADS)

    Giuffreda, E.; Delle Side, D.; Krasa, J.; Nassisi, V.

    2016-05-01

    Charge separation in plasmas produced on plastic targets by low laser irradiance, structure of the ion front, and the current of fast electrons expanding into the vacuum chamber ahead of ions are characterized. Of particular interest is the negative current flowing through the plastic targets to the grounded vacuum chamber during the period of laser-target interaction. The subsequent multi - peaked structure of positive target current is correlated with occurrence of double sheet layers. The late-time negative charging of targets provides evidence for production of very slow ions by ionization of neutrals ablated at the target crater by radiation from plasma produced by 23 ns excimer KrF laser. The experimental setting allowing the target current observation is discussed.

  20. Subsurface ablation of atherosclerotic plaque using ultrafast laser pulses

    PubMed Central

    Lanvin, Thomas; Conkey, Donald B.; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri

    2015-01-01

    We perform subsurface ablation of atherosclerotic plaque using ultrafast pulses. Excised mouse aortas containing atherosclerotic plaque were ablated with ultrafast near-infrared (NIR) laser pulses. Optical coherence tomography (OCT) was used to observe the ablation result, while the physical damage was inspected in histological sections. We characterize the effects of incident pulse energy on surface damage, ablation hole size, and filament propagation. We find that it is possible to ablate plaque just below the surface without causing surface damage, which motivates further investigation of ultrafast ablation for subsurface atherosclerotic plaque removal. PMID:26203381

  1. Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation conditions

    NASA Astrophysics Data System (ADS)

    Gouriet, K.; Zhigilei, L. V.; Itina, T. E.

    2009-03-01

    Long-time evolution of nanoparticles produced by short laser interactions is investigated for different materials. To better understand the mechanisms of the nanoparticle formation at a microscopic level, we use molecular dynamics (MD) simulations to analyse the evolution of a cluster in the presence of a background gas with different parameters (density and temperature). In particular, we compare the simulation results obtained for materials with different interaction potentials (Morse, Lennard-Jones, and Embedded Atom Model). Attention is focused on the evaporation and condensation processes of a cluster with different size and initial temperature. As a result of the MD calculations, we determinate the influence of both cluster properties and background gas parameters on the nanoparticle evolution. The role of the interaction potential is discussed based on the results of the simulations.

  2. Laser ablation of a platinum target in water. III. Laser-induced reactions

    SciTech Connect

    Nichols, William T.; Sasaki, Takeshi; Koshizaki, Naoto

    2006-12-01

    This is the third paper in our series studying the laser-target-liquid interactions occurring in laser ablation in liquids (LAL). Here, laser ablation of a platinum target in pure water at 355 nm wavelength is studied as a function of laser energy. We describe three distinct reaction regimes between the ablated target species and water at different laser focusing conditions. At low laser fluence (<10 J/cm{sup 2}), material removal is caused by laser heating of the platinum surface and the primary products are small clusters with a large percentage of platinum atoms in a nonzero oxidation state. At intermediate fluences (10-70 J/cm{sup 2}), platinum nanoparticles are the primary products. Our previous studies demonstrated that in this fluence regime ablation occurs through both thermal vaporization and explosive ejection of molten droplets. In both cases reactivity is small due to the low reactivity of platinum with water. At high fluences (>70 J/cm{sup 2}), we find large, faceted particles that are attributed to the drying of PtO{sub x} gels formed by reactive plasma etching of the target. Taken together these results demonstrate that significant tunability in the target-liquid interaction is possible during nanomaterial synthesis by LAL.

  3. Deflection of uncooperative targets using laser ablation

    NASA Astrophysics Data System (ADS)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  4. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    PubMed

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  5. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    PubMed Central

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  6. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  7. Fabrication of silver nanoparticles dispersed in palm oil using laser ablation.

    PubMed

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Sadrolhosseini, Amir Reza; Mahdi, Mohd Adzir

    2010-01-01

    In this study we used a laser ablation technique for preparation of silver nanoparticles. The fabrication process was carried out by ablation of a silver plate immersed in palm oil. A pulsed Nd:YAG laser at a wavelength of 1064 nm was used for ablation of the plate at different times. The palm coconut oil allowed formation of nanoparticles with very small and uniform particle size, which are dispersed very homogeneously within the solution. The obtained particle sizes for 15 and 30 minute ablation times were 2.5 and 2 nm, respectively. Stability study shows that all of the samples remained stable for a reasonable period of time. PMID:21151470

  8. Single-shot ablation threshold of chromium using UV femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Banerjee, S. P.; Fedosejevs, R.

    2014-07-01

    Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was 46 ± 5 mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.

  9. Printable Nanophotonic Devices via Holographic Laser Ablation.

    PubMed

    Zhao, Qiancheng; Yetisen, Ali K; Sabouri, Aydin; Yun, Seok Hyun; Butt, Haider

    2015-09-22

    Holography plays a significant role in applications such as data storage, light trapping, security, and biosensors. However, conventional fabrication methods remain time-consuming, costly, and complex, limiting the fabrication of holograms and their extensive use. Here, we demonstrate a single-pulse laser ablation technique to write parallel surface gratings and Fresnel zone plates. We utilized a 6 ns high-energy green laser pulse to form interference patterns to record a surface grating with 820 nm periodicity and asymmetric zone plate holograms on 4.5 nm gold-coated substrates. The holographic recording process was completed within seconds. The optical characteristics of the interference patterns have been computationally modeled, and well-ordered polychromatic diffraction was observed from the fabricated holograms. The zone plate showed a significant diffraction angle of 32° from the normal incident for the focal point. The nanosecond laser interference ablation for rapid hologram fabrication holds great potential in a vast range of optical devices. PMID:26301907

  10. Application of laser microdissection ICP-MS for high resolution elemental mapping in mouse brain tissue: a comparative study with laser ablation ICP-MS.

    PubMed

    Sussulini, Alessandra; Becker, J Sabine

    2015-01-01

    Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed. PMID:25476347