Sample records for laser applications final

  1. Final Report for High Precision Short-Pulse Laser Ablation System for Medical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B.M.; Feit, M.; Rubenchik, A.

    2000-03-04

    During the three year LDRD funding period, we studied the ablation characteristics of biological tissues using ultrashort pulse lasers (USPL) with pulse widths varying from 100 femtoseconds to tens of picoseconds. During the first year, we performed extensive theoretical studies to develop an improved understanding of the USPL ablation process. Two optical signals were tested for feasibility of use in real-time feedback systems during high repetition rate ablation. In the second year, we devised a real-time, feedback-controlled USPL ablation system, based on luminescence, which may be useful for sensitive micro-spinal surgeries. Effective laser parameters were identified to reduce collateral damage.more » The final year of the project focused on quantification of the pressure pulse induced by USPL ablation of water surfaces representing biological tissues. Results of these studies were presented in invited talks at domestic and international conferences and numerous journal articles were published (see bibliography). This effort has increased our scientific understanding of physical processes important for the therapeutic biomedical application of ultrashort pulse lasers, and has taken the first steps toward practical realization of such applications.« less

  2. Applications of the laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, L.

    For those not familiar with lasers, a review of lasers and some remarks on the fascinating new developments in such systems that do affect applications now and in the future are presented. Wave guides to transmit lasers to make them more flexible, the important aspects of measurements, chemistry, bits of botany, and holography are given. The vast expanse of communications, especially through the development of the new and important hybrid discipline of electrooptics is reviewed. The military and law and order programs show their applications; all initiate the study of actual applications. Then follow metalworking, construction, pollution, and a numbermore » of miscellaneous techniques. A critical review of safety programs so necessary for the proper development of laser technology is presented. Then follows the story of the applications in biology, medicine, dentistry, photography, art, and music. Many of the applications cross to other fields. To stimulate the youth to be interested in science, there are brief remarks about the social conscience in laser and, finally, the dreams of the future.« less

  3. DOE Center of Excellence in Medical Laser Applications. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques, S.L.

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland, OR, Houston, TX, and Galveston, TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several newmore » video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulation of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.« less

  4. Applications of Laser Scattering Probes to Turbulent Diffusion Flames

    DTIC Science & Technology

    1983-11-01

    APPLICATIONS OF LASER SCATTERING PROBES TO TURBULENT DIFFUSION FLAMES u ^ j FINAL REPORT Contract N00014-80-C-0882 Submitted to Office of...Include Security Classification) Applications of Laser Scattering Probes to Turbulent Diffusion Flames PROJECT NO. TASK NO. WORK UNIT NO. 12...for a co-flowing jet turbulent diffusion flame, and planar laser-induced fluorescence to provide two- dimensional instantaneous images of the flame

  5. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  6. Applications of lasers to production metrology, control, and machine 'Vision'

    NASA Astrophysics Data System (ADS)

    Pryor, T. R.; Erf, R. K.; Gara, A. D.

    1982-06-01

    General areas of laser application to production measurement and inspection are reviewed together with the associated laser measurement techniques. The topics discussed include dimensional gauging of part profiles using laser imaging or scanning techniques, laser triangulation for surface contour measurement, surface finish measurement and defect inspection, holography and speckle techniques, and strain measurement. The emerging field of robot guidance utilizing lasers and other sensing means is examined, and, finally, the use of laser marking and reading equipment is briefly discussed.

  7. Laser application in neurosurgery

    PubMed Central

    Belykh, Evgenii; Yagmurlu, Kaan; Martirosyan, Nikolay L.; Lei, Ting; Izadyyazdanabadi, Mohammadhassan; Malik, Kashif M.; Byvaltsev, Vadim A.; Nakaji, Peter; Preul, Mark C.

    2017-01-01

    Background: Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. Methods: We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. Results: Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. Conclusion: Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science. PMID:29204309

  8. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  9. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    beam makes the laser superior to all conventional destructive instruments. 4)|The coagulative properties of certain chromophoric lasers has allowed a new attack on certain vascular tumors and malformations of the brain and spinal cord which had been operated only with trepidation or not at all. Early reports are sobering but encouraging. 5)|Finally, the use of the laser with tissue photosensitization, albeit it in its infancy, offers great promise. This is particularly true in the case of primary brain cancer, where the infiltration of tumorous tissue among normal pathways precludes the classical oncologic surgery practice of resection of a "safe margin". The ability to track and destroy these cells, without affecting adjacent cells, may be the greatest single contribution of the laser to neurosurgery in the future. The present applications of the laser are relatively crude by comparison with what is expected. Endoscopic laser surgery, both vascular and subarachnoid, will diminish morbidity and improve results. From the exotic treatment of aneurysms and arteriovenous malformations of the brain to the mundane care of herniated disks of the spine, it is anticipated that the laser will play an important role. The use of a laser, coupled with computerized imagining devices, will allow increasing precision in arrival to and treatment of deep seated lesions of the brain, brainstem, and spinal cord. The use of different wavelengths, perhaps in the X-ray and ultraviolet spectra, will allow increasing precision with decreasing invasion. Manipulation of wavelength, time, and treatment area will allow subcellular surgery, perhaps in the treatment of personality disorders and movement disorders as well as epilepsy. Tissue welding will allow heightened regenerative and recuperative powers to be exploited. The possibility of laser biostimulation must also be considered. In short, it appears that the future of the laser in neurosurgery is limited only by the imagination of the

  10. Medical applications of ultra-short pulse lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, B M; Marion, J E

    1999-06-08

    The medical applications for ultra short pulse lasers (USPLs) and their associated commercial potential are reviewed. Short pulse lasers offer the surgeon the possibility of precision cutting or disruption of tissue with virtually no thermal or mechanical damage to the surrounding areas. Therefore the USPL offers potential improvement to numerous existing medical procedures. Secondly, when USPLs are combined with advanced tissue diagnostics, there are possibilities for tissue-selective precision ablation that may allow for new surgeries that cannot at present be performed. Here we briefly review the advantages of short pulse lasers, examine the potential markets both from an investment communitymore » perspective, and from the view. of the technology provider. Finally nominal performance and cost requirements for the lasers, delivery systems and diagnostics and the present state of development will be addressed.« less

  11. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  12. Catadioptric Optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    In the design of a laser velocimeter system, attention must be given to the performance of the optical elements in their two principal tasks: focusing laser radiation into the probe volume, and collecting the scattered light. For large aperture applications, custom lens design and fabrication costs, long optical path requirements, and chromatic aberration (for two color operation) can be problematic. The adaptation of low cost Schmidt-Cassegrain astronomical telescopes to perform these laser beam manipulation and scattered light collection tasks is examined. A generic telescope design is analyzed using ray tracing and Gaussian beam propagation theory, and a simple modification procedure for converting from infinite to near unity conjugate ratio operation with image quality near the diffraction limit was identified. Modification requirements and performance are predicted for a range of geometries. Finally, a 200-mm-aperture telescope was modified for f/10 operation; performance data for this modified optic for both laser beam focusing and scattered light collection tasks agree well with predictions.

  13. Laser-based nanoengineering of surface topographies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Schlie, Sabrina; Fadeeva, Elena; Koroleva, Anastasia; Ovsianikov, Aleksandr; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris. N.

    2011-04-01

    In this study femtosecond laser systems were used for nanoengineering of special surface topographies in silicon and titanium. Besides the control of feature sizes, we demonstrated that laser structuring caused changes in material wettability due to a reduced surface contact area. These laser-engineered topographies were tested for their capability to control cellular behavior of human fibroblasts, SH-SY5Y neuroblastoma cells, and MG-63 osteoblasts. We found that fibroblasts reduced cell growth on the structures, while the other cell types proliferated at the same rate. These findings make laser-surface structuring very attractive for biomedical applications. Finally, to explain the results the correlation between topography and the biophysics of cellular adhesion, which is the key step of selective cell control, is discussed.

  14. Medical laser application: translation into the clinics

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Stepp, Herbert; Hennig, Georg; Brittenham, Gary M.; Rühm, Adrian; Lilge, Lothar

    2015-06-01

    Medical laser applications based on widespread research and development is a very dynamic and increasingly popular field from an ecological as well as an economic point of view. Conferences and personal communication are necessary to identify specific requests and potential unmet needs in this multi- and interdisciplinary discipline. Precise gathering of all information on innovative, new, or renewed techniques is necessary to design medical devices for introduction into clinical applications and finally to become established for routine treatment or diagnosis. Five examples of successfully addressed clinical requests are described to show the long-term endurance in developing light-based innovative clinical concepts and devices. Starting from laboratory medicine, a noninvasive approach to detect signals related to iron deficiency is shown. Based upon photosensitization, fluorescence-guided resection had been discovered, opening the door for photodynamic approaches for the treatment of brain cancer. Thermal laser application in the nasal cavity obtained clinical acceptance by the introduction of new laser wavelengths in clinical consciousness. Varicose veins can be treated by innovative endoluminal treatment methods, thus reducing side effects and saving time. Techniques and developments are presented with potential for diagnosis and treatment to improve the clinical situation for the benefit of the patient.

  15. Research on solar pumped liquid lasers. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, J.D.; Kurzweg, U.H.; Weinstein, N.H.

    1985-04-01

    A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrCl4 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination.more » The development of a manufacturing procedure and performance testing of the laser liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.« less

  16. Final Report - DOE Center for Laser Imaging and Cancer Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfano, Robert R.; Koutcher, Jason A.

    2002-10-31

    This Final Report summarizes the significant progress made by the researchers, students and staff of the Center for Laser Imaging and Cancer Diagnostics (CLICD) from January 1998 through May 2002. During this period, the Center supported several projects. Most projects were proposed initially, some were added subsequently as their relevance and importance to the DOE mission became evident. DOE support has been leveraged to obtain continuing funding for some projects. Leveraged funds come from various sources, including NIH, Army, NSF and the Air Force. The goal of the Center was to develop laser-based instruments for use in the detection andmore » diagnosis of major diseases, with an emphasis on detection and diagnosis of various cancers. Each of the supported projects is a collaborative effort between physicists and laser scientists and the City College of New York and noted physicians, surgeons, pathologists, and biologists located at medical centers in the Metropolitan area. The participating institutions were: City College of New York Institute for Ultrafast Lasers and Spectroscopy, Hackensack University Medical Center, Lawrence Livermore National Laboratory, Memorial Sloan Kettering Cancer Center, and New York Eye and Ear Institute. Each of the projects funded by the Center is grouped into one of four research categories: a) Disease Detection, b) Non-Disease Applications, c) New Diagnostic Tools, and, d) Education, Training, Outreach and Dissemination. The progress achieved by the multidisciplinary teams was reported in 51 publications and 32 presentations at major national conferences. Also, one U.S. patent was obtained and six U.S. patent applications have been filed for innovations resulting from the projects sponsored by the Center.« less

  17. Cascade laser applications: trends and challenges

    NASA Astrophysics Data System (ADS)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  18. DOE Center of Excellence in Medical Laser Applications. Final report, December 1, 1994--November 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques, S.L.

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several newmore » video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.« less

  19. Innovative ceramic slab lasers for high power laser applications

    NASA Astrophysics Data System (ADS)

    Lapucci, Antonio; Ciofini, Marco

    2005-09-01

    Diode Pumped Solid State Lasers (DPSSL) are gaining increasing interest for high power industrial application, given the continuous improvement in high power diode laser technology reliability and affordability. These sources open new windows in the parameter space for traditional applications such as cutting , welding, marking and engraving for high reflectance metallic materials. Other interesting applications for this kind of sources include high speed thermal printing, precision drilling, selective soldering and thin film etching. In this paper we examine the most important DPSS laser source types for industrial applications and we describe in details the performances of some slab laser configurations investigated at our facilities. The different architectures' advantages and draw-backs are briefly compared in terms of performances, system complexity and ease of scalability to the multi-kW level.

  20. Laser Applications: Implications for Vocational Education.

    ERIC Educational Resources Information Center

    Fraser, Jeannette L.

    Recent and projected advances in and commercial applications of lasers and laser technology were examined in order to assist vocational planners in responding to skill needs that will be created by lasers in the next few years. Until recently, most laser applications were in research and development settings; however, in the last several years…

  1. Some emerging applications of lasers

    NASA Astrophysics Data System (ADS)

    Christensen, C. P.

    1982-10-01

    Applications of lasers in photochemistry, advanced instrumentation, and information storage are discussed. Laser microchemistry offers a number of new methods for altering the morphology of a solid surface with high spatial resolution. Recent experiments in material deposition, material removal, and alloying and doping are reviewed. A basic optical disk storage system is described and the problems faced by this application are discussed, in particular those pertaining to recording media. An advanced erasable system based on the magnetooptic effect is described. Applications of lasers for remote sensing are discussed, including various lidar systems, the use of laser-induced fluorescence for oil spill characterization and uranium exploration, and the use of differential absorption for detection of atmospheric constituents, temperature, and humidity.

  2. [The application of laser in endodontics].

    PubMed

    He, W X; Liu, N N; Wang, X L; He, X Y

    2016-08-01

    Since laser was introduced in the field of medicine in 1970's, its application range has continuously expanded. The application of laser in endodontics also increased due to its safety and effectiveness in dental treatments. The majority of the laser application researches in dentistry focused on dentin hypersensitivity, removal of carious tissues, tooth preparations, pulp capping or pulpotomy, and root canal treatment. In this article, we reviewed literature on the effects of laser in the treatments of dental and pulp diseases.

  3. Optical coatings for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Milam, D.; Rainer, F.

    1980-04-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  4. Current status of laser applications in urology

    NASA Astrophysics Data System (ADS)

    Knipper, Ansgar; Thomas, Stephen; Durek, C.; Jocham, Dieter

    1993-05-01

    The overall development of laser use in urology is recessing. The reasons are the refinement of methods of radical surgery and the continuing development of alternative technologies involving electric current. Taking the cost factor into account, are lasers still opportune in medicine? The answer is definitely yes. Cost reduction in medical practice without quality loss is only possible with effective methods of minimally invasive surgery. Continuing investigation of cutting, welding, coagulating and ablating instruments is justified. Competition of lasers to other technologies can only be beneficial to the cause. But where are the highlights of laser applications? The unsurpassed utilization of optical properties of lasers lie in the concept of photodynamic therapies and in optical feedback mechanisms for laser applications. The combination of lasers with three dimensional visualization of the treatment area by ultrasound (TULIP-procedure for benign prostatic hyperplasia) is a novel approach in laser application. The further development of these treatment modalities will reveal the true benefit of laser technology in urological applications.

  5. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    scientific, industrial and medical applications of laser-driven proton or ion sources, some of which have already been established, while the others are yet to be demonstrated. In most applications, the laser-driven ion sources are complementary to the conventional accelerators, exhibiting significantly different properties. Finally, we summarize the paper.

  6. Laser micro-structuring of surfaces for applications in materials and biomedical science

    NASA Astrophysics Data System (ADS)

    Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta

    2016-12-01

    Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.

  7. Laser-Material Interactions for Flexible Applications.

    PubMed

    Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae

    2017-07-01

    The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  9. Ultrafast fiber lasers: practical applications

    NASA Astrophysics Data System (ADS)

    Pastirk, Igor; Sell, Alexander; Herda, Robert; Brodschelm, Andreas; Zach, Armin

    2015-05-01

    Over past three decades ultrafast lasers have come a long way from the bulky, demanding and very sensitive scientific research projects to widely available commercial products. For the majority of this period the titanium-sapphire-based ultrafast systems were the workhorse for scientific and emerging industrial and biomedical applications. However the complexity and intrinsic bulkiness of solid state lasers have prevented even larger penetration into wider array of practical applications. With emergence of femtosecond fiber lasers, based primarily on Er-doped and Yb-doped fibers that provide compact, inexpensive and dependable fs and ps pulses, new practical applications have become a reality. The overview of current state of the art ultrafast fiber sources, their basic principles and most prominent applications will be presented, including micromachining and biomedical implementations (ophthalmology) on one end of the pulse energy spectrum and 3D lithography and THz applications on the other.

  10. Laser Applications in Orthodontics

    PubMed Central

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  11. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  12. Laser technology and applications in gynaecology.

    PubMed

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  13. Fiber lasers and their applications [Invited].

    PubMed

    Shi, Wei; Fang, Qiang; Zhu, Xiushan; Norwood, R A; Peyghambarian, N

    2014-10-01

    Fiber lasers have seen progressive developments in terms of spectral coverage and linewidth, output power, pulse energy, and ultrashort pulse width since the first demonstration of a glass fiber laser in 1964. Their applications have extended into a variety of fields accordingly. In this paper, the milestones of glass fiber laser development are briefly reviewed and recent advances of high-power continuous wave, Q-switched, mode-locked, and single-frequency fiber lasers in the 1, 1.5, 2, and 3 μm regions and their applications in such areas as industry, medicine, research, defense, and security are addressed in detail.

  14. The SMAT fiber laser for industrial applications

    NASA Astrophysics Data System (ADS)

    Ding, Jianwu; Liu, Jinghui; Wei, Xi; Xu, Jun

    2017-02-01

    With the increased adoption of high power fiber laser for various industrial applications, the downtime and the reliability of fiber lasers become more and more important. Here we present our approach toward a more reliable and more intelligent laser source for industrial applications: the SMAT fiber laser with the extensive sensor network and multi-level protection mechanism, the mobile connection and the mobile App, and the Smart Cloud. The proposed framework is the first IoT (Internet of Things) approach integrated in an industrial laser not only prolongs the reliability of an industrial laser but open up enormous potential for value-adding services by gathering and analyzing the Big data from the connected SMAT lasers.

  15. Laser applications in advanced chip packaging

    NASA Astrophysics Data System (ADS)

    Müller, Dirk; Held, Andrew; Pätzel, Rainer; Clark, Dave; van Nunen, Joris

    2016-03-01

    While applications such as drilling μ-vias and laser direct imaging have been well established in the electronics industry, the mobile device industry's push for miniaturization is generating new demands for packaging technologies that allow for further reduction in feature size while reducing manufacturing cost. CO lasers have recently become available and their shorter wavelength allows for a smaller focus and drilling hole diameters down to 25μm whilst keeping the cost similar to CO2 lasers. Similarly, nanosecond UV lasers have gained significantly in power, become more reliable and lower in cost. On a separate front, the cost of ownership reduction for Excimer lasers has made this class of lasers attractive for structuring redistribution layers of IC substrates with feature sizes down to 2μm. Improvements in reliability and lower up-front cost for picosecond lasers is enabling applications that previously were only cost effective with mechanical means or long-pulsed lasers. We can now span the gamut from 100μm to 2μm for via drilling and can cost effectively structure redistribution layers with lasers instead of UV lamps or singulate packages with picosecond lasers.

  16. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    PubMed

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  17. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    NASA Astrophysics Data System (ADS)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  18. Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application

    NASA Astrophysics Data System (ADS)

    Liégeois, Flavien; Vercambre, Clément; Hernandez, Yves; Salhi, Mohamed; Giannone, Domenico

    2006-09-01

    Laser wind velocimeters work by monitoring the Doppler shift induced on the backscattered light by aerosols that are present in the air. Recently there has been a growing interest in the scientific community for developing systems operating at wavelengths near 1.5 μm and based on all-fibre lasers configuration. In this paper, we propose a new all-fibre laser source that is suitable for Doppler velocimetry in aircraft safety applications. The all-fibre laser has been specifically conceived for aircraft safety application. Our prototype has a conveniently narrow linewidth (9 kHz) and is modulated and amplified through an all fibre Master Oscillator Power Amplifier (MOPA) configuration. According to the measurements, we performed the final characteristics of the laser consist in a maximum peak power of 2.7 kW and an energy of 27 μJ energy per pulses of 10 ns at 30 kHz repetition rate. The only limiting factor of these performances is the Stimulated Brillouin Scattering.

  19. Safe laser application requires more than laser safety

    NASA Astrophysics Data System (ADS)

    Frevel, A.; Steffensen, B.; Vassie, L.

    1995-02-01

    An overview is presented concerning aspects of laser safety in European industrial laser use. Surveys indicate that there is a large variation in the safety strategies amongst industrial laser users. Some key problem areas are highlighted. Emission of hazardous substances is a major problem for users of laser material processing systems where the majority of the particulate is of a sub-micrometre size, presenting a respiratory hazard. Studies show that in many cases emissions are not frequently monitored in factories and uncertainty exists over the hazards. Operators of laser machines do not receive adequate job training or safety training. The problem is compounded by a plethora of regulations and standards which are difficult to interpret and implement, and inspectors who are not conversant with the technology or the issues. A case is demonstrated for a more integrated approach to laser safety, taking into account the development of laser applications, organizational and personnel development, in addition to environmental and occupational health and safety aspects. It is necessary to achieve a harmonization between these elements in any organization involved in laser technology. This might be achieved through establishing technology transfer centres in laser technology.

  20. Monocrystalline CVD-diamond optics for high-power laser applications

    NASA Astrophysics Data System (ADS)

    Holly, C.; Traub, M.; Hoffmann, D.; Widmann, C.; Brink, D.; Nebel, C.; Gotthardt, T.; Sözbir, M. C.; Wenzel, C.

    2016-03-01

    The potential of diamond as an optical material for high-power laser applications in the wavelength regime from the visible spectrum (VIS) to the near infrared (NIR) is investigated. Single-crystal diamonds with lateral dimensions up to 7×7mm2 are grown with microwave plasma assisted chemical vapor deposition (MPACVD) in parallel with up to 60 substrates and are further processed to spherical optics for beam guidance and shaping. The synthetic diamonds offer superior thermal, mechanical and optical properties, including low birefringence, scattering and absorption, also around 1 μm wavelength. We present dielectric (AR and HR) coated single-crystal diamond optics which are tested under high laser power in the multi-kW regime. The thermally induced focal shift of the diamond substrates is compared to the focal shift of a standard collimating and focusing unit for laser cutting made of fused silica optics. Due to the high thermal conductivity and low absorption of the diamond substrates compared to the fused silica optics no additional focal shift caused by a thermally induced refractive index change in the diamond is observed in our experiments. We present experimental results regarding the performance of the diamond substrates with and without dielectric coatings under high power and the influences of growth induced birefringence on the optical quality. Finally, we discuss the potential of the presented diamond lenses for high-power applications in the field of laser materials processing.

  1. Laser Drilling Development Trial Final Report CRADA No. TSB-1538-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, M. R.; Hebbar, R. R.

    This project performed various laser drilling tests to demonstrate femtosecond laser drilling of fuel injector nozzles with minimal recast, minimal heat affected zone and no collateral damage. LLNL had extensive experience in ultra short-pulse laser systems and developed specialized hardware for these applications.

  2. Cutaneous applications of lasers.

    PubMed

    Ries, W R; Speyer, M T

    1996-12-01

    The cutaneous application of lasers today includes more selective and less damaging devices. Carbon dioxide, neodymium:yttrium-aluminum-garnet, potassium titanyl phosphate, argon, and yellow lasers are most prevalent in treating cutaneous lesions. Specific techniques in skin resurfacing, keloid excision, rhinophyma, actinic cheilitis ablation, and excision of superficial cutaneous tumors are discussed. Proper management of cutaneous vascular lesions is also presented.

  3. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  4. In vitro and in vivo studies on laser-activated gold nanorods for applications in photothermal therapies

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Ratto, Fulvio; Matteini, Paolo; Centi, Sonia; Rossi, Francesca

    2010-04-01

    We review our experimental studies on near infrared laser-activated gold nanoparticles in the direct welding of connective tissues. In particular, we discuss the use of gold nanorods excited by diode laser radiation at 810 nm to mediate functional photothermal effects and weld eye's lens capsules and arteries. The preparation of biopolymeric matrices including gold nanorods is described as well, together with preliminary tests for their application in the closure of wounds in vessels and tendons. Finally we mention future perspectives on the use of these nanoparticles for applications in the therapy of cancer.

  5. Applications of the chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Latham, W. Pete; Kendrick, Kip R.; Quillen, Brian

    2000-01-01

    The Chemical Oxygen-Iodine Laser (COIL) has been developed at the Air Force Research Laboratory for military applications. For example, the COIL is to be use as the laser device for the ABL. A high power laser is useful for applications that require the delivery of a substantial amount of energy to a very small focused laser spot. The COIL is a member of the class of high power lasers that are also useful for industrial applications, including the materials processing task of high speed cutting and drilling. COIL technology has received considerable interest over the last several years due to its short, fiber- deliverable wavelength, scalability to very high powers, and demonstrated nearly diffraction-limited optical quality. These unique abilities make it an ideal candidate for nuclear reactor decommissioning and nuclear warhead dismantlement. Japanese researchers envision using a COIL for disaster cleanup and survivor rescue. It is also being studied by the oil and gas industry for well drilling. Any commercial or industrial application that requires very rapid, precise, and noninvasive cutting or drilling, could be readily accomplished with a COIL. Because of the substantial power levels available with a COIL, the laser could also be used for broad area applications such as paint stripping. This paper includes a collection of experiments accomplished at the Air Force Research Laboratory Chemical Laser Facility, including metal cutting, hole drilling, high power fiber optic transmission, and rock crushing.

  6. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  7. High-intensity laser application in Orthodontics

    PubMed Central

    Sant’Anna, Eduardo Franzotti; Araújo, Mônica Tirre de Souza; Nojima, Lincoln Issamu; da Cunha, Amanda Carneiro; da Silveira, Bruno Lopes; Marquezan, Mariana

    2017-01-01

    ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT) and high-intensity laser therapy (HILT) are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used. PMID:29364385

  8. High-intensity laser application in Orthodontics.

    PubMed

    Sant'Anna, Eduardo Franzotti; Araújo, Mônica Tirre de Souza; Nojima, Lincoln Issamu; Cunha, Amanda Carneiro da; Silveira, Bruno Lopes da; Marquezan, Mariana

    2017-01-01

    In dental practice, low-level laser therapy (LLLT) and high-intensity laser therapy (HILT) are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. The aim of this study is to discuss HILT applications in orthodontic treatment. This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  9. Practical application of pulsed "eye-safe" microchip laser to laser rangefinders

    NASA Astrophysics Data System (ADS)

    Młyńczak, J.; Kopczyński, K.; Mierczyk, Z.; Zygmunt, M.; Natkański, S.; Muzal, M.; Wojtanowski, J.; Kirwil, P.; Jakubaszek, M.; Knysak, P.; Piotrowski, W.; Zarzycka, A.; Gawlikowski, A.

    2013-09-01

    The paper describes practical application of pulsed microchip laser generating at 1535-nm wavelength to a laser rangefinder. The complete prototype of a laser rangefinder was built and investigated in real environmental conditions. The measured performance of the device is discussed. To build the prototype of a laser rangefinder at a reasonable price and shape a number of basic considerations had to be done. These include the mechanical and optical design of a microchip laser and the opto-mechanical construction of the rangefinder.

  10. Laser applications in surgery

    PubMed Central

    Azadgoli, Beina

    2016-01-01

    In modern medicine, lasers are increasingly utilized for treatment of a variety of pathologies as interest in less invasive treatment modalities intensifies. The physics behind lasers allows the same basic principles to be applied to a multitude of tissue types using slight modifications of the system. Multiple laser systems have been studied within each field of medicine. The term “laser” was combined with “surgery,” “ablation,” “lithotripsy,” “cancer treatment,” “tumor ablation,” “dermatology,” “skin rejuvenation,” “lipolysis,” “cardiology,” “atrial fibrillation (AF),” and “epilepsy” during separate searches in the PubMed database. Original articles that studied the application of laser energy for these conditions were reviewed and included. A review of laser therapy is presented. Laser energy can be safely and effectively used for lithotripsy, for the treatment of various types of cancer, for a multitude of cosmetic and reconstructive procedures, and for the ablation of abnormal conductive pathways. For each of these conditions, management with lasers is comparable to, and potentially superior to, management with more traditional methods. PMID:28090508

  11. High temperature semiconductor diode laser pumps for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  12. Laser physics and a review of laser applications in dentistry for children.

    PubMed

    Martens, L C

    2011-04-01

    The aim of this introduction to this special laser issue is to describe some basic laser physics and to delineate the potential of laser-assisted dentistry in children. A brief review of the available laser literature was performed within the scope of paediatric dentistry. Attention was paid to soft tissue surgery, caries prevention and diagnosis, cavity preparation, comfort of the patient, effect on bacteria, long term pulpal vitality, endodontics in primary teeth, dental traumatology and low level laser therapy. Although there is a lack of sufficient evidence taking into account the highest standards for evidence-based dentistry, it is clear that laser application in a number of different aetiologies for soft tissue surgery in children has proven to be successful. Lasers provide a refined diagnosis of caries combined with the appropriate preventive adhesive dentistry after cavity preparation. This will further lead to a new wave of micro-dentistry based on 'filling without drilling'. It has become clear from a review of the literature that specific laser applications in paediatric dentistry have gained increasing importance. It can be concluded that children should be considered as amongst the first patients for receiving laser-assisted dentistry.

  13. Argon laser application to endodontics

    NASA Astrophysics Data System (ADS)

    Blankenau, Richard J.; Ludlow, Marvin; Anderson, David

    1993-07-01

    The application of laser technology to endodontics has been studied for some time. At the present time several major problems are being investigated: (1) removal of infected tissues, (2) sterilization of canals, (3) obturation of canals, and (4) preservation of the vitality of supporting tissues. This list is not intended to imply other problems do not exist or have been solved, but it is a starting point. This paper reviews some of the literature that relates to laser applications to endodontics and concludes with some of the findings from our investigation.

  14. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  15. Applications of the Excimer Laser: A Review.

    PubMed

    Beggs, Sarah; Short, Jack; Rengifo-Pardo, Monica; Ehrlich, Alison

    2015-11-01

    The 308-nm excimer laser has been approved by the Food and Drug Administration for the treatment of psoriasis and vitiligo. Its ability to treat localized areas has led to many studies determining its potential in the treatment of focal diseases with inflammation or hypopigmentation. To review the different applications of the 308-nm excimer laser for treating dermatologic conditions. An extensive literature review was conducted by searching PubMed, MEDLINE, and ClinicalKey to find articles pertaining to dermatologic conditions treated with the 308-nm excimer laser. Articles published that contributed to new applications of the excimer laser were included, as well as initial studies utilizing the excimer laser. The outcomes and results were compiled for different dermatologic conditions treated with the excimer laser. The 308-nm excimer laser has a wide range of uses for focal inflammatory and hypopigmented conditions. Treatment is generally well tolerated, with few adverse reactions. Larger studies and studies evaluating the long-term effects of the 308-nm excimer laser are needed.

  16. Application of lasers in endodontics

    NASA Astrophysics Data System (ADS)

    Ertl, Thomas P.; Benthin, Hartmut; Majaron, Boris; Mueller, Gerhard J.

    1997-12-01

    Root canal treatment is still a problem in dentistry. Very often the conventional treatment fails and several treatment sessions are necessary to save the tooth from root resection or extraction. Application of lasers may help in this situation. Bacteria reduction has been demonstrated both in vitro and clinically and is either based on laser induced thermal effects or by using an ultraviolet light source. Root canal cleansing is possible by Er:YAG/YSGG-Lasers, using the hydrodynamic motion of a fluid filled in the canals. However root canal shaping using lasers is still a problem. Via falsas and fiber breakage are points of research.

  17. Scientific applications of frequency-stabilized laser technology in space

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  18. Application of Advanced Laser Diagnostics to High-Impact Technologies: Science and Applications of Ultrafast, Ultraintense Lasers

    DTIC Science & Technology

    2013-11-01

    ultrashort - pulse lasers because of the very large photon density. As the intensity increases, the electric field of the light can modify the Coulomb ...absorption studies of argon clusters in intense laser pulses ,” Physics of Plasmas 16(4), 043301-1 – 043301-5. Lu, W., Nicoul, M., Shymanovich, U... intensity of ultrashort - pulse lasers , possess unique and advantageous capabilities for use in a wide variety of applications and are

  19. Application of Low level Lasers in Dentistry (Endodontic)

    PubMed Central

    Asnaashari, Mohammad; Safavi, Nassimeh

    2013-01-01

    Low level lasers, cold or soft lasers: These lasers do not produce thermal effects on tissues and induce photoreactions in cells through light stimulation which is called photobiostimulation. Power of these lasers is usually under 250mW. The main point differentiating low level lasers and high power ones is the activation of photochemical reactions without heat formation. The most important factor to achieve this light characteristic in lasers is not their power, but their power density for each surfa ceunit (i.e cm2). Density lower than 670mW/cm2, can induce the stimulatory effects of low level lasers without thermal effects. Low level lasers (therapeutic) used today as treatment adjunctive devices in medicine and dentistry. Numerous studies have been performed on the applications of low level lasers in patient pain reduction. Mechanisms of pain reduction with therapeutic lasers and their application are expressed, and the studies realized in this field are presented. PMID:25606308

  20. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  1. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  2. Diffraction Gratings for High-Intensity Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britten, J

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy havemore » further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.« less

  3. Laser vibration sensing at Fraunhofer IOSB: review and applications

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Göhler, Benjamin; Hill, Chris A.; van Putten, Frank

    2017-03-01

    Laser vibrometry based on coherent detection allows noncontact measurements of small-amplitude vibration characteristics of objects. This technique, commonly using the Doppler effect, offers high potential for short-range civil applications and for medium- or long-range applications in defense and security. Most commercially available laser Doppler vibrometers are for short ranges (up to a few tens of meters) and use a single beam from a low-power HeNe laser source (λ=633 nm). Medium- or long-range applications need higher laser output power, and thus, appropriate vibrometers typically operate at 1.5, 2, or 10.6 μm to meet the laser safety regulations. Spatially resolved vibrational information can be obtained from an object by using scanning laser vibrometers. To reduce measuring time and to measure transient object movements and vibrational mode structures of objects, several approaches to multibeam laser Doppler vibrometry have been developed, and some of them are already commercially available for short ranges. We focus on applications in the field of defense and security, such as target classification and identification, including camouflaged or partly concealed targets, and the detection of buried land mines. Examples of civil medium-range applications are also given.

  4. Tunable lasers and their application in analytical chemistry

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    The impact that laser techniques might have in chemical analysis is examined. Absorption, scattering, and heterodyne detection is considered. Particular emphasis is placed on the advantages of using frequency-tunable sources, and dye solution lasers are regarded as the outstanding example of this type of laser. Types of spectroscopy that can be carried out with lasers are discussed along with the ultimate sensitivity or minimum detectable concentration of molecules that can be achieved with each method. Analytical applications include laser microprobe analysis, remote sensing and instrumental methods such as laser-Raman spectroscopy, atomic absorption/fluorescence spectrometry, fluorescence assay techniques, optoacoustic spectroscopy, and polarization measurements. The application of lasers to spectroscopic methods of analysis would seem to be a rewarding field both for research in analytical chemistry and for investments in instrument manufacturing.

  5. Model of the final borehole geometry for helical laser drilling

    NASA Astrophysics Data System (ADS)

    Kroschel, Alexander; Michalowski, Andreas; Graf, Thomas

    2018-05-01

    A model for predicting the borehole geometry for laser drilling is presented based on the calculation of a surface of constant absorbed fluence. It is applicable to helical drilling of through-holes with ultrashort laser pulses. The threshold fluence describing the borehole surface is fitted for best agreement with experimental data in the form of cross-sections of through-holes of different shapes and sizes in stainless steel samples. The fitted value is similar to ablation threshold fluence values reported for laser ablation models.

  6. Random lasers for lab-on-chip applications

    NASA Astrophysics Data System (ADS)

    Giehl, J. M.; Butzbach, F.; Jorge, K. C.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.; Wetter, N. U.

    2016-04-01

    Random lasers are laser sources in which the feedback is provided by scattering instead of reflection and which, for this reason, do not require surfaces with optical finish such as mirrors. The investigation of such lasing action in a large variety of disordered materials is a subject of high interest with very important applications such as threedimensional and speckle-free imaging, detection of cancer tissue and photonic coding and encryption. However, potential applications require optimization of random laser performance especially with respect to optical efficiency and directionality or brightness. This work demonstrates such an optimization procedure with the goal of achieving a random laser with sufficient efficiency and brightness in order to be used in practical applications. Two random lasers are demonstrated, one solid and on liquid, that fulfil directionality and efficiency requirements. The first one consists of a neodymium doped powder laser with a record slope efficiency of 1.6%. The second one is a liquid random laser injected into a HC-ARROW waveguide which uses a microchannel connected to a much larger reservoir in order to achieve the necessary directionality. Both devices can be produced by low cost fabricating technologies and easily integrated into next-generation, lab-on-chip devices used for in-situ determination of infectious tropical diseases, which is the main goal of this project.

  7. Application of laser in obstetrics and gynecology

    NASA Astrophysics Data System (ADS)

    Ding, Ai-Hua

    1998-11-01

    Mainman developed the first ruby laser in 1960 and after 13 Kaplan successfully reported the use of CO2 laser in the treatment of cervicitis. Soon after, Chinese gynecologists started to use the laser for diagnosis and therapy. It had been proved that more than 30 kinds of gynecological diseases could be treated effectively by laser. The remarkable laser treatment technique partially replaced with conventional methods used in that century. However, the application of laser had shown a broad prospect along with its further investigation.

  8. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  9. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  10. Status and future prospects of laser fusion and high power laser applications

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki

    2010-08-01

    In Asia, there are many institutes for the R&D of high power laser science and applications. They are 5 major institutes in Japan, 4 major institutes in China, 2 institutes in Korea, and 3 institutes in India. The recent achievements and future prospects of those institutes will be over viewed. In the laser fusion research, the FIREX-I project in Japan has been progressing. The 10kJ short pulse LFEX laser has completed and started the experiments with a single beam. About 1kJ pulse energy will be injected into a cone target. The experimental results of the FIREX experiments will be presented. As the target design for the experiments, a new target, namely, a double cone target was proposed, in which the high energy electrons are well confined and the heating efficiency is significantly improved. Together with the fusion experiments, Osaka University has carried out laboratory astrophysics experiments on photo ionizing plasmas to observe a unique X-ray spectrum from non-LTE plasmas. In 2008, Osaka university has started a new Photon research center in relation with the new program: Consortium for Photon Science and Technology: C-PhoST, in which ultra intense laser plasmas research and related education will be carried out for 10 years. At APRI, JAEA, the fundamental science on the relativistic laser plasmas and the applications of laser particle acceleration has been developed. The application of laser ion acceleration has been investigated on the beam cancer therapy since 2007. In China, The high power glass laser: Shenguan-II and a peta watt beam have been operated to work on radiation hydro dynamics at SIOFM Shanghai. The laser material and optics are developed at SIOFM and LFRC. The IAPCM and the IOP continued the studies on radiation hydrodynamics and on relativistic laser plasmas interactions. At LFRC in China, the construction of Shenguan III glass laser of 200kJ in blue has progressed and will be completed in 2012. Together with the Korean program, I will

  11. Applications of spaceborne laser ranger on EOS

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Cohen, Steven C.

    1988-01-01

    An account is given of the design concept and potential applications in science and engineering of the spaceborne laser ranging and altimeter apparatus employed by the Geodynamics Laser Ranging System; this is scheduled for 1997 launch as part of the multiple-satellite Earth Observing System. In the retrograding mode for geodynamics, the system will use a Nd:YAG laser's green and UV output for distance determination to ground retroreflectors. Engineering applications encompass land management and long-term ground stability studies relevant to nuclear power plant, pipeline, and aqueduct locations.

  12. Atmospheric applications of high-energy lasers

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2005-03-01

    It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, many still remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionarey history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.

  13. Clinical application of laser treatment for cardiovascular surgery

    PubMed Central

    Okada, Masayoshi; Yoshida, Masato; Tsuji, Yoshihiko; Horii, Hiroyuki

    2011-01-01

    Background: Recently, several kinds of lasers have been widely employed in the field of medicine and surgery. However, laser applications are very rare in the field of cardiovascular surgery throughout the world. So, we have experimentally tried to use lasers in the field of cardiovascular surgery. There were three categories: 1) Transmyocardial laser revascularization (TMLR), 2) Laser vascular anastomosis, and 3) Laser angioplasty in the peripheral arterial diseases. By the way, surgery for ischemic heart disease has been widely performed in Japan. Especially coronary artery bypass grafting (CABG) for these patients has been done as a popular surgical method. Among these patients there are a few cases for whom CABG and percutaneous coronary intervention (PCI) could not be carried out, because of diffuse stenosis and small caliber of coronary arteries. Materials and methods of TMLR: A new method of tranasmyocardial revascularization by CO2 laser (output 100 W, irradiation time 0.2 sec) was experimentally performed to save severely ill patients. In this study, a feasibility of transmyocardial laser revascularization from left ventricular cavity through artificially created channels by laser was precisely evaluated. Results: In trials on dogs laser holes 0.2mm in diameter have been shown microscopically to be patent even 3 years after their creation, thus this procedure could be used as a new method of transmyocardial laser revascularization. Clinical application of TMLR: Subsequently, transmyocardial laser revascularization was employed in a 55-year-old male patient with severe angina pectoris who had undergone pericardiectomy 7 years before. He was completely recovered from severe chest pain. Conclusions of TMLR: This patient was the first successful case in the world with TMLR alone. This method might be done for the patients who percutaneous coronary intervention and coronary artery bypass grafting could be carried out. Laser vascular anastomosis: At present time

  14. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  15. Diode laser application in soft tissue oral surgery.

    PubMed

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. The diode laser can be used as a modality for oral soft tissue surgery.

  16. Diode Laser Application in Soft Tissue Oral Surgery

    PubMed Central

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  17. Laser Shot Peening Final Report CRADA No. TC-02059-03

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, B. C.; Hackel, L.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Metal Improvement Company, Inc. (MIC), to further develop the laser shot peening technology. This project had an emphasis on laser development and government and military applications including DOE’s natural gas and oil technology program (NGOTP), Yucca Mountain Project (YMP), F-22 Fighter, etc.

  18. Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.; Chai, B.H.

    1986-08-01

    The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less

  19. CTE:YAG laser applications in dentistry

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  20. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  1. Application of Laser Irradiation for Restorative Treatments.

    PubMed

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes.

  2. Techniques to control and position laser targets. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, T.B.

    1978-06-01

    The purpose of the work was to investigate the potential role of various electrohydrodynamic phenomena in the fabrication of small spherical particles and shells for laser target applications. A number of topics were considered. These included charged droplet levitation, specifically the combined effects of the Rayleigh limit and droplet elongation in the presence of electric fields. Two new levitation schemes for uncharged dielectric particles were studied. A dynamic dielectrophoretic levitation scheme was proposed and unsuccessful attempts were made to observe levitation with it. Another static dielectrophoretic levitation scheme was studied and used extensively. A theory was developed for this typemore » of levitation, and a dielectric constant measurement scheme proposed. A charged droplet generator for the production of single droplets (< 1 mm dia of insulating liquids was developed. The synchronous DEP pumping of bubbles and spheres has been considered. Finally, some preliminary experiments with SiH/sub 4//O/sub 2/ bubbles in Viscasil silicone fluid were conducted to learn about the possibility of using silane to form SiO/sub 2/ microballons from bubbles.« less

  3. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  4. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  5. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  6. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  7. Applications of laser wakefield accelerator-based light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Felicie; Thomas, Alec G. R.

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  8. Applications of laser wakefield accelerator-based light sources

    DOE PAGES

    Albert, Felicie; Thomas, Alec G. R.

    2016-10-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less

  9. Clinical dental application of Er:YAG laser for Class V cavity preparation.

    PubMed

    Matsumoto, K; Nakamura, Y; Mazeki, K; Kimura, Y

    1996-06-01

    Following the development of the ruby laser by Maiman in 1960, the Nd:YAG laser, the CO2 laser, the semiconductor laser, the He-Ne laser, excimer lasers, the argon laser, and finally the Er:YAG laser capable of cutting hard tissue easily were developed and have come to be applied clinically. In the present study, the Er:YAG laser emitting at a wavelength of 2.94 microns developed by Luxar was used for the clinical preparation of class V cavities. Parameters of 8 Hz and approx. 250 mJ/pulse maximum output were used for irradiation. Sixty teeth of 40 patients were used in this clinical study. The Er:YAG laser used in this study was found to be a system suitable for clinical application. No adverse reaction was observed in any of the cases. Class V cavity preparation was performed without inducing any pain in 48/60 cases (80%). All of the 12 cases that complained of mild or severe intraoperative pain had previously complained of cervical dentin hypersensibility during the preoperative examination. Cavity preparation was completed with this laser system in 58/60 cases (91.7%). No treatment-related clinical problems were observed during the follow-up period of approx. 30 days after cavity preparation and resin filling. Cavity preparation took between approx. 10 sec and 3 min and was related more or less to cavity size and depth. Overall clinical evaluation showed no safety problem with very good rating in 49 cases (81.7%).

  10. Application of erbium: YAG laser in ocular ablation.

    PubMed

    Tsubota, K

    1990-01-01

    Recent developments in lasers have provided us the possibility of laser ocular surgery. The xenon, argon, neodymium:YAG and dye lasers have been successfully used in out-patient clinics. The excimer laser has been attracting researchers' interest in the new application of laser to cornea and lens. The erbium:YAG laser emits a 2.94-microns beam that can ablate the transparent ocular tissues such as lenses and corneas. The author has applied this laser to the cornea, lens, vitreous and other ocular tissues. The erbium:YAG laser beam was directed through a 1.5-meter-long, 200-microns-diameter fiberoptic guide. The radiant energy measured about 50 mJ at the end of the probe. The laser was emitted as a 400-microsecond pulse. Freshly enucleated rabbit eyes were used in this study. Laser burns were applied to the tissue surface at various energy settings. At minimal power, the tissues were coagulated by the erbium:YAG laser application. At a power of more than 636-954 mJ/mm2, tissue began to evaporate; the tissue loss was observed under a surgical light microscope. Corneal photoablation, lens ablation, iridotomy, trabeculotomy, cutting of the vitreous and retinal ablation were easily performed. Like the excimer laser, the erbium:YAG laser is a potential tool for ocular surgery.

  11. Therapeutic applications of lasers in urology: an update.

    PubMed

    Fried, Nathaniel M

    2006-01-01

    There has been renewed interest in the use of lasers for minimally invasive treatment of urologic diseases in recent years. The introduction of more compact, higher power, less expensive and more user-friendly solid-state lasers, such as the holmium:yttrium-aluminum-garnet (YAG), frequency-doubled neodymium:YAG and diode lasers has made the technology more attractive for clinical use. The availability of small, flexible, biocompatible, inexpensive and disposable silica optical fiber delivery systems for use in flexible endoscopes has also promoted the development of new laser procedures. The holmium:YAG laser is currently the workhorse laser in urology since it can be used for multiple soft- and hard-tissue applications, including laser lithotripsy, benign prostate hyperplasia, bladder tumors and strictures. More recently, higher power potassium-titanyl-phosphate lasers have been introduced and show promise for the treatment of benign prostatic hyperplasia. On the horizon, newer and more effective photosensitizing drugs are being tested for potential use in photodynamic therapy of bladder and prostate cancer. Additionally, new experimental lasers such as the erbium:YAG, Thulium and Thulium fiber lasers, may provide more precise incision of soft tissues, more efficient laser lithotripsy and more rapid prostate ablation. This review provides an update on the most important new clinical and experimental therapeutic applications of lasers in urology over the past 5 years.

  12. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  13. Quantum cascade lasers, systems, and applications in Europe

    NASA Astrophysics Data System (ADS)

    Lambrecht, Armin

    2005-03-01

    Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.

  14. Applications of laser ablation to microengineering

    NASA Astrophysics Data System (ADS)

    Gower, Malcolm C.; Rizvi, Nadeem H.

    2000-08-01

    Applications of pulsed laser ablation to the manufacture of micro- electro-mechanical systems (MEMS) and micro-opto-electro-mechanical systems (MOEMS) devices are presented. Laser ablative processes used to manufacture a variety of microsystems technology (MST) components in the computer peripheral, sensing and biomedical industries are described together with a view of some future developments.

  15. Comparison of three different laser systems for application in dentistry

    NASA Astrophysics Data System (ADS)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  16. Semiconductor laser applications in rheumatology

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Suteanu, S.

    1996-01-01

    Two types of laser diode (LD) based equipment for rheumatology are introduced. The first is a portable device which contains single LD emitting at 890 nm laser pulses (time full width 100 nsec) of reprate tunable within (0.5 - 1.5) kHz; the laser beam average power is 0.7 mW at 1 kHz reprate. The second is computer controlled, contains one HeNe laser and 5 LD allowing 6 modes of patient irradiation (placebo effect evaluation included). HeNe laser works in cw at 632.8 nm; the LD works each as described for the portable equipment. HeNe and LD beams are superposed so that HeNe laser spot in the irradiation plane has a 60 mm diameter and the LD spots covers a 50 mm diameter disc centered on the HeNe laser spot. Clinical applications using the second type of equipment are reported; 1287 patients were treated between October 1991 and October 1994. Female/male ratio was 4:1 and their age distribution was between 18 and 85 years. The average number of exposures was 10 and the mean exposure time was 7 minutes. Studies were made on the treatment of rheumatoid arthritis, seronegative arthritis, degenerative joint diseases, abarticular rheumatism, osteoporosis pain and pains and edema after fractures.

  17. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  18. Lasers for bio-optics

    NASA Astrophysics Data System (ADS)

    Sona, Alberto

    1992-03-01

    Lasers are being increasingly used in bioptics and in life sciences in general, especially for medical applications for therapy and diagnostics. Lasers are also broadly used in environment sciences to monitor atmospheric parameters and concentrations of molecular species of natural origin or coming from human activities such as the various kind of pollutants. The peculiar features of lasers exploited in these areas are mainly the capability of developing an action or performing a measurement without physical contact with the target and, if required, from a remote position with the assistance of suitable beam delivery systems such as telescopes, microscopes, or optical fibers. These features are directly related to the space and time coherence of the laser light and to the energy storage capability of the laser material which allow an extremely effective concentration of the beam energy in space, direction frequency, or time. A short description of the principle of operation and relevant properties of lasers are given and the most significant properties of the laser emission are briefly reviewed. Lasers for medical applications (mainly for therapy) will be mentioned, pointing out the specific property exploited for the various applications. Finally, examples of laser applications to the environmental sciences will be reported. A summary of the properties exploited in the various bio-optical applications is shown.

  19. The characterisation and application of a pulsed neodymium YAG laser DGV system to a time-varying high-speed flow

    NASA Astrophysics Data System (ADS)

    Thorpe, S. J.; Quinlan, N.; Ainsworth, R. W.

    2000-10-01

    Doppler Global Velocimetry (DGV) is a whole-field measurement technique which has attracted significant interest from the fluid-flow research community since its introduction in 1991. Practical implementations of the methodology have focused on two principal laser light sources: the argon ion laser, applied to steady state or slowly varying flows; and the pulsed neodymium YAG laser for the measurement of instantaneous velocity fields. However, the emphasis in the published literature has been very much on research using the argon laser. This paper reports the application of a Q-switched, injection-seeded neodymium YAG laser to the proven Oxford DGV system, and the use of this combination in a short duration unsteady high-speed flow. The pertinent characteristics of the apparatus are described, and the impact of these on the integrity of the resulting velocity measurements is presented. Adaptations to the commercial laser system that make it suitable for application to the measurement of transient high-speed flows are described. Finally, the application of this system to a short duration unsteady flow is described. This application is based on the flow found in a new type of transdermal drug delivery device, where particles of the drug material are projected at high speed through the skin. Whole-field velocities are recorded, and values as high as 800 m/ s are evident.

  20. Microgravity Spray Cooling Research for High Powered Laser Applications

    NASA Technical Reports Server (NTRS)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  1. Laser-induced regeneration of cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Shekhter, Anatoly; Guller, Anna; Baum, Olga; Baskov, Andrey

    2011-08-01

    Laser radiation provides a means to control the fields of temperature and thermo mechanical stress, mass transfer, and modification of fine structure of the cartilage matrix. The aim of this outlook paper is to review physical and biological aspects of laser-induced regeneration of cartilage and to discuss the possibilities and prospects of its clinical applications. The problems and the pathways of tissue regeneration, the types and features of cartilage will be introduced first. Then we will review various actual and prospective approaches for cartilage repair; consider possible mechanisms of laser-induced regeneration. Finally, we present the results in laser regeneration of joints and spine disks cartilages and discuss some future applications of lasers in regenerative medicine.

  2. Novel applications of lasers in biology, chemistry, and paleontology

    NASA Astrophysics Data System (ADS)

    Johnston, Roger G.

    1994-06-01

    Los Alamos National Laboratory has a long history of exploring unconventional applications for lasers. Three novel applications currently under investigation include using lasers for the analysis of dinosaur gastroliths, for detecting Salmonella contamination in chicken eggs, and for ultra- sensitive, ultra-stable interferometry.

  3. Applications of Gunn lasers

    NASA Astrophysics Data System (ADS)

    Balkan, N.; Chung, S. H.

    2008-04-01

    The principle of the operation of a Gunn laser is based on the band to band recombination of impact ionized non-equilibrium electron-hole pairs in propagating high field space-charge domains in a Gunn diode, which is biased above the negative differential resistance threshold and placed in a Fabry-Perot or a vertical micro cavity (VCSEL). In conventional VCSEL structures, unless specific measures such as the addition of oxide apertures and use of small windows are employed, the lack of uniformity in the density of current injected into the active region can reduce the efficiency and delay the lasing threshold. In a vertical-cavity structured Gunn device, however, the current is uniformly injected into the active region independently of the distributed Bragg reflector (DBR) layers. Therefore, lasing occurs from the entire surface of the device. The light emission from Gunn domains is an electric field induced effect. Therefore, the operation of Gunn-VCSEL or F-P laser is independent of the polarity of the applied voltage. Red-NIR VCSELs emitting in the range of 630-850 nm are also possible when Ga 1-xAl xAs (x < 0.45) is used the active layer, making them candidates for light sources in plastic optical fibre (POF) based short-distance data communications. Furthermore the device may find applications as an optical clock and cross link between microwave and NIR communications. The operation of a both Gunn-Fabry-Perot laser and Gunn-VCSEL has been demonstrated by us recently. In the current work we present the potential results of experimental and theoretical studies concerning the applications together with the gain and emission characteristics of Gunn-Lasers.

  4. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  5. Facet joint laser radiation: tissue effects of a new clinical laser application

    NASA Astrophysics Data System (ADS)

    Werkmann, Klaus; Thal, Dietmar R.

    1996-01-01

    Chronic unilateral and bilateral back pain with pseudoradicular symptoms, is a common clinical syndrome, which in many cases can be related to the facet joint syndrome. The pain is caused by mechanical affection of synovial and capsular nerve terminals. Therefore, current therapeutical attempts including physical therapy, intra-articular injection of local anesthetics and steroids and thermocoagulation of the facet joint with a thermocoagulator, are performed. We confirmed laser coagulation of the facet joint. Porcine cadaveric spines were treated immediately after death by intra-articular facet joint laser radiation. With the pulsed Nd:YAG laser (1064 nm) altogether 600 J were applied in three different places 4 mm apart at the top of the facet joint. The results showed that facet joint laser radiation leads to a small (about 1 - 2 mm diameter) lesion restricted to the facet joint cavity and its synovia. Histologically, we found a central carbonization zone and necrosis, including almost the whole cartilage and approximately 0.2 mm of the adjacent bone. These changes are similar to Nd:Yag-laser applications in other skeletal regions. It is suggested that these changes may lead to facet joint denervation by coagulation of the synovial nerve terminals. Cicatration of the laser lesion might cause ankylosis of this joint. In sum, facet joint laser radiation could be an alternative therapeutical tool for lower back pain of the facet joint syndrome type. Therefore, future clinical application of this technique seems to be very promising.

  6. Applications of high power lasers in the battlefield

    NASA Astrophysics Data System (ADS)

    Kalisky, Yehoshua

    2009-09-01

    Laser weapon is currently considered as tactical as well as strategic beam weapons, and is considered as a part of a general layered defense system against ballistic missiles and short-range rockets. This kind of weapon can disable or destroy military targets or incoming objects used by small groups of terrorists or countries, at the speed of light. Laser weapon is effective at long or short distances, owing to beam's unique characteristics such as narrow bandwidth, high brightness, coherent both in time and space, and it travels at the speed of light. Unlike kinetic weapon, laser weapon converts the energy stored in an electromagnetic laser beam into a large amount of heat aimed on a small area spot at the skin of the missile, usually close to the liquid fuel storage tank, warhead case or engine area, following by a temperature increase and finally-catastrophic failure by material ablation or melt. The usefulness of laser light as a weapon has been studied for decades but only in recent years became feasible. There are two types of lasers being used: gas lasers and solid state lasers, including fiber lasers. All these types of lasers will be discussed below.

  7. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao

    2018-06-01

    The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.

  8. Advances in solid state laser technology for space and medical applications

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Recent developments in laser technology and their potential for medical applications are discussed. Gas discharge lasers, dye lasers, excimer lasers, Nd:YAG lasers, HF and DF lasers, and other commonly used lasers are briefly addressed. Emerging laser technology is examined, including diode-pumped lasers and other solid state lasers.

  9. Highly-reliable laser diodes and modules for spaceborne applications

    NASA Astrophysics Data System (ADS)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  10. Tenth Biennial Coherent Laser Radar Technology and Applications Conference

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Compiler)

    1999-01-01

    The tenth conference on coherent laser radar technology and applications is the latest in a series beginning in 1980 which provides a forum for exchange of information on recent events current status, and future directions of coherent laser radar (or lidar or lader) technology and applications. This conference emphasizes the latest advancement in the coherent laser radar field, including theory, modeling, components, systems, instrumentation, measurements, calibration, data processing techniques, operational uses, and comparisons with other remote sensing technologies.

  11. Application of the holmium:YAG laser for prostatectomy.

    PubMed

    Kabalin, J N; Gilling, P J; Fraundorfer, M R

    1998-02-01

    The authors review the current knowledge regarding the application of the Holmium: YAG laser for prostatectomy. Conventional surgical therapies for benign prostatic hyperplasia (BPH) are effective but associated with relatively high morbidity. Laser prostatectomy, using either Neodymium:YAG or potassium-titanyl-phosphate lasers, has emerged as a new and much safer operative approach to relieve symptoms of benign prostatic hyperplasia. However, these laser wavelengths possess key disadvantages that have limited their acceptability and dissemination in everyday urologic practice. THE authors review their own extensive experience in the development of clinical application of Holmium: YAG laser technology for prostatectomy, as well as the published reports in the current medical literature now dealing with this subject. In multiple clinical trials, Holmium:YAG laser resection of the prostate has proven efficacious in relieving symptomatic BPH. Both objective urodynamic measures of voiding outcomes and symptomatic improvement have been shown to be equivalent to standard electrocautery resection of the prostate. At the same time, these studies have demonstrated the superior safety and hemostasis of Holmium:YAG laser prostatectomy compared to electrocautery resection, similar to prior laser prostatectomy procedure. Unlike prior forms of laser prostatectomy, Holmium:YAG laser resection of the prostate acutely removes all obstructing prostate tissue, so that the postoperative catheterization requirement is typically only overnight and improvement in voiding is immediate. Current operative techniques and the latest technological developments to facilitate Holmium:YAG laser prostatectomy are described. Holmium: YAG laser prostatectomy combines the best features of prior laser prostatectomy technologies, including minimal complications and morbidity, with the efficacy and immediacy of voiding outcomes associated with conventional electrocautery resection of the prostate.

  12. Applications of Light Amplification by Stimulated Emission of Radiation (Lasers) for Restorative Dentistry

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Ajlal, Syed

    2016-01-01

    Light amplification by stimulated emission of radiation (laser) has been used widely in a range of biomedical and dental applications in recent years. In the field of restorative dentistry, various kinds of lasers have been developed for diagnostic (e.g. caries detection) and operative applications (e.g. tooth ablation, cavity preparation, restorations, bleaching). The main benefits for laser applications are patient comfort, pain relief and better results for specific applications. Major concerns for using dental lasers frequently are high cost, need for specialized training and sensitivity of the technique, thereby compromising its usefulness particularly in developing countries. The main aim of this paper is to evaluate and summarize the applications of lasers in restorative dentistry, including a comparison of the applications of lasers for major restorative dental procedures and conventional clinical approaches. A remarkable increase in the use of lasers for dental application is expected in the near future. PMID:26642047

  13. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    NASA Astrophysics Data System (ADS)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  14. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    PubMed

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications.

  15. Application of a flexible CO(2) laser fiber for neurosurgery: laser-tissue interactions.

    PubMed

    Ryan, Robert W; Wolf, Tamir; Spetzler, Robert F; Coons, Stephen W; Fink, Yoel; Preul, Mark C

    2010-02-01

    The CO(2) laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO(2) laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO(2) laser fiber to conventional methods for incising neural tissue. Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO(2) energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made. Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage. The photonic bandgap fiber CO(2) laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery.

  16. Optical polymers for laser medical applications

    NASA Astrophysics Data System (ADS)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  17. Applications of picosecond lasers and pulse-bursts in precision manufacturing

    NASA Astrophysics Data System (ADS)

    Knappe, Ralf

    2012-03-01

    Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.

  18. Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.

    1997-01-01

    As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed

  19. Potential applications of Erbium:YAG laser in periodontics.

    PubMed

    Ishikawa, Isao; Aoki, Akira; Takasaki, Aristeo Atsushi

    2004-08-01

    Since lasers were introduced for the treatment of oral diseases, there has been considerable advancement in technology. As a result, numerous laser systems are currently available for oral use. Neodymium:Yttrium-Aluminum:Garnet (Nd:YAG), carbon dioxide (CO(2)) laser and the semiconductor Diode lasers have already been approved by the US Food and Drug Administration for soft tissue treatment in oral cavity. The Erbium:YAG (Er:YAG) laser was approved in 1997 for hard tissue treatment in dentistry and recent studies have reported positive results. This suggests that the Er:YAG laser system is a promising apparatus, which will be able to revolutionize and improve dental practice, in particular periodontal treatment. In this mini-review, we would like to describe the positive characteristics of the Er:YAG laser which indicate its potential as a new treatment modality in periodontics. Recent findings are summarized briefly to evaluate the potential of the Er:YAG laser for clinical application in periodontics. The Er:YAG laser possesses suitable characteristics for oral soft and hard tissue ablation. Recently, it has been applied for effective elimination of granulation tissue, gingival melanin pigmentation and gingival discoloration. Contouring and cutting of bone with minimal damage and even or faster healing can also be performed with this laser. In addition, irradiation with the Er:YAG laser has a bactericidal effect with reduction of lipopolysaccharide, high ability of plaque and calculus removal, with the effect limited to a very thin layer of the surface and is effective for implant maintenance. The Er:YAG laser seems to be an effective tool for periodontal therapy, however, further clinical and basic investigations are required to confirm its clinical application. Copyright Blackwell Munksgaard, 2004

  20. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  1. A Multi-Wavelength IR Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  2. A multi-wavelength IR laser for space applications

    NASA Astrophysics Data System (ADS)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-05-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to midinfrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 µm, 2.7 μm and 3.4 μm. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated

  3. Lasers '92; Proceedings of the International Conference on Lasers and Applications, 15th, Houston, TX, Dec. 7-10, 1992

    NASA Technical Reports Server (NTRS)

    Wang, Charles P. (Editor)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: x-ray lasers, excimer lasers, chemical lasers, high power lasers, blue-green lasers, dye lasers, solid state lasers, semiconductor lasers, gas and discharge lasers, carbon dioxide lasers, ultrafast phenomena, nonlinear optics, quantum optics, dynamic gratings and wave mixing, laser radar, lasers in medicine, optical filters and laser communication, optical techniques and instruments, laser material interaction, and industrial and manufacturing applications.

  4. Laser Application in Iran Urology: A Narrative Review

    PubMed Central

    Razzaghi, Mohammad Reza; Fallah Karkan, Morteza; Ghiasy, Saleh; Javanmard, Babak

    2018-01-01

    The usage of laser in medicine is not recent, and its history in urology goes back to 40 years ago. For the last 2 decades, common uses of laser have been treatments of subjects with urolithiasis, bladder tumors, benign prostatic enlargement, lesions of the genitalia and urinary tract strictures. To evaluate laser application in urology in Iran, we reviewed all of the Iranian literature on the topic. This study was designed to retrieve all studies on laser application in urology in Iran, regardless of publication status or language, covering years 1990–2017. Twenty-six articles were identified: 12 about urolithiasis, 8 about benign prostatic hyperplasia (BPH), 2 case reports, 1 paper about prostate cancer, 1 on female urethral stricture, 1 review and 1 basic sciences study. We conclude that the use of this technology has not yet found its position in Iran, especially in the field of urology. The main causes for it are the difficult accessibility and disturb of laser devices and its accessories, as well as the lack of adequate knowledge of the medical community about this modality. PMID:29399302

  5. [Development and medical application of Er-YAG laser].

    PubMed

    Okamoto, Y; Kobayashi, A; Awazu, A; Ogino, H; Ban, T

    1993-09-01

    Result of developments of Er-YAG laser and its delivery system were reported. Er-YAG laser's wavelength is 2.94 microns, the beam absorption rate by water is higher than other laser beam. Er-YAG laser has repeated pulse oscillation, pulse width is 400 mu, sec, the repeat frequency is between 5 to 10 pulse per second. The mean power is 4 W maximum, 10 pps. The fibers of laser are made of zirconium-F-glass. We carried out a study on the possible application of the Er-YAG laser on the rabbit arteries and myocardium and human arteries were examined in vitro. Very clear cuts were observed on the histological examination. There were no evidence of thermal damage, no carbonization on the sharp cutting surface. Experimental result showed that Er-YAG lasers had good potential for angioplastic laser.

  6. Reliability of Semiconductor Laser Packaging in Space Applications

    NASA Technical Reports Server (NTRS)

    Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.

    2008-01-01

    A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.

  7. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  8. Final Technical Report: Magnetic Reconnection in High-Energy Laser-Produced Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germaschewski, Kai; Fox, William; Bhattacharjee, Amitava

    This report describes the final results from the DOE Grant DE-SC0007168, “Fast Magnetic Reconnection in HED Laser-Produced Plasmas.” The recent generation of laboratory high-energy-density physics facilities has opened significant physics opportunities for experimentally modeling astrophysical plasmas. The goal of this proposal is to use these new tools to study fundamental problems in plasma physics and plasma astrophysics. Fundamental topics in this area involve study of the generation, amplification, and fate of magnetic fields, which are observed to pervade the plasma universe and govern its evolution. This project combined experiments at DOE laser facilities with kinetic plasma simulation to study thesemore » processes. The primary original goal of the project was to study magnetic reconnection using a new experimental platform, colliding magnetized laser-produced plasmas. However through a series of fortuitous discoveries, the work broadened out to allow significant advancement on multiple topics in laboratory astrophysics, including magnetic reconnection, Weibel instability, and collisionless shocks.« less

  9. Improvements of high-power diode laser line generators open up new application fields

    NASA Astrophysics Data System (ADS)

    Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.

    2009-02-01

    Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.

  10. Atmospheric Propagation of High Energy Lasers and Applications

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2005-04-01

    It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, still many remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionary history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.

  11. Ultraprecise medical applications with ultrafast lasers: corneal surgery with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Loesel, Frieder H.; Kurtz, Ron M.; Horvath, Christopher; Sayegh, Samir I.; Mourou, Gerard A.; Bille, Josef F.; Juhasz, Tibor

    1999-02-01

    We investigated refractive corneal surgery in vivo and in vitro by intrastromal photodisruption using a compact ultrafast femtosecond laser system. Ultrashort-pulsed lasers operating in the femtosecond time regime are associated with significantly smaller and deterministic threshold energies for photodisruption, as well as reduced shock waves and smaller cavitation bubbles than the nanosecond or picosecond lasers. Our reliable all-solid-state laser system was specifically designed for real world medical applications. By scanning the 5 micron focus spot of the laser below the corneal surface, the overlapping small ablation volumes of single pulses resulted in contiguous tissue cutting and vaporization. Pulse energies were typically in the order of a few microjoules. Combination of different scanning patterns enabled us to perform corneal flap cutting, femtosecond-LASIK, and femtosecond intrastromal keratectomy in porcine, rabbit, and primate eyes. The cuts proved to be highly precise and possessed superior dissection and surface quality. Preliminary studies show consistent refractive changes in the in vivo studies. We conclude that the technology is capable to perform a variety of corneal refractive procedures at high precision, offering advantages over current mechanical and laser devices and enabling entirely new approaches for refractive surgery.

  12. Applications of absorption spectroscopy using quantum cascade lasers.

    PubMed

    Zhang, Lizhu; Tian, Guang; Li, Jingsong; Yu, Benli

    2014-01-01

    Infrared laser absorption spectroscopy (LAS) is a promising modern technique for sensing trace gases with high sensitivity, selectivity, and high time resolution. Mid-infrared quantum cascade lasers, operating in a pulsed or continuous wave mode, have potential as spectroscopic sources because of their narrow linewidths, single mode operation, tunability, high output power, reliability, low power consumption, and compactness. This paper reviews some important developments in modern laser absorption spectroscopy based on the use of quantum cascade laser (QCL) sources. Among the various laser spectroscopic methods, this review is focused on selected absorption spectroscopy applications of QCLs, with particular emphasis on molecular spectroscopy, industrial process control, combustion diagnostics, and medical breath analysis.

  13. Air-coupled laser vibrometry: analysis and applications.

    PubMed

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2009-03-01

    Acousto-optic interaction between a narrow laser beam and acoustic waves in air is analyzed theoretically. The photoelastic relation in air is used to derive the phase modulation of laser light in air-coupled reflection vibrometry induced by angular spatial spectral components comprising the acoustic beam. Maximum interaction was found for the zero spatial acoustic component propagating normal to the laser beam. The angular dependence of the imaging efficiency is determined for the axial and nonaxial acoustic components with the regard for the laser beam steering in the scanning mode. The sensitivity of air-coupled vibrometry is compared with conventional "Doppler" reflection vibrometry. Applications of the methodology for visualization of linear and nonlinear air-coupled fields are demonstrated.

  14. Application of a high-density gas laser target to the physics of x-ray lasers and coronal plasmas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronko, J.G.; Kohler, D.

    1996-05-31

    An experiment had been proposed to investigate a photopumped x-ray laser approach using a novel, high-density, laser heated supersonic gas jet plasma to prepare the lasant plasma. The scheme to be investigated uses the he-like sodium 1.10027 nm line to pump the He-like neon 1s-4p transition at 1.10003 nm with the lasing transitions between the n = 4 to n = 2,3 states and the n = 3 to n = 2 state at 5.8 nm, 23.0 nm, and 8.2 nm, respectively. The experiment had been proposed in 1990 and funding began in January 1991. After extensive preparations to performmore » the experiment on the GDL laser, a series of circumstances made it impossible to pursue the research over the past 5 years. These were (1) lack of access to the GDL laser and its eventual closing, (2) the inability to identify an alternate laser system with which to perform the experiment, and (3) the lack of problem relevancy after 5 years of delays. As a consequence, it has been decided not to pursue the research any further.« less

  15. Clinical application of CO2 laser in periodontal treatment

    NASA Astrophysics Data System (ADS)

    Hayase, Yasuhiro

    1994-09-01

    CO2 lasers in particular are expected to have many dental applications because the CO2 laser beam exhibits strong tissue transpirative actions, such as instant coagulation, carbonization, and vaporization, and because its wavelength at 10.6 micrometers is fully absorbed by water so that the ability to make precise incisions with a high degree of safety is excellent, without damaging the deep tissues. However, clinical application of the CO2 laser has been slowed since a fiber which can conduct the laser beam to the oral cavity has only recently developed. This new fiber is an extremely flexible fiber with a minimum bending radius of 20 mm and utilizes pulse wave modes that have improved the handling characteristics in the mouth, and this has enabled us to apply the CO2 laser to a variety of periodontal conditions. The aim of this study was to evaluate the effectiveness of CO2 lasers for the early treatment of inflammation and pain relief of acute periodontitis, curettage of periodontal pockets, healing after excision of gingiva, and early improvement of gingivitis.

  16. Advances in high power linearly polarized fiber laser and its application

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  17. Color vision deficits and laser eyewear protection for soft tissue laser applications.

    PubMed

    Teichman, J M; Vassar, G J; Yates, J T; Angle, B N; Johnson, A J; Dirks, M S; Thompson, I M

    1999-03-01

    Laser safety considerations require urologists to wear laser eye protection. Laser eye protection devices block transmittance of specific light wavelengths and may distort color perception. We tested whether urologists risk color confusion when wearing laser eye protection devices for laser soft tissue applications. Subjects were tested with the Farnsworth-Munsell 100-Hue Test without (controls) and with laser eye protection devices for carbon dioxide, potassium titanyl phosphate (KTP), neodymium (Nd):YAG and holmium:YAG lasers. Color deficits were characterized by error scores, polar graphs, confusion angles, confusion index, scatter index and color axes. Laser eye protection device spectral transmittance was tested with spectrophotometry. Mean total error scores plus or minus standard deviation were 13+/-5 for controls, and 44+/-31 for carbon dioxide, 273+/-26 for KTP, 22+/-6 for Nd:YAG and 14+/-8 for holmium:YAG devices (p <0.001). The KTP laser eye protection polar graphs, and confusion and scatter indexes revealed moderate blue-yellow and red-green color confusion. Color axes indicated no significant deficits for controls, or carbon dioxide, Nd:YAG or holmium:YAG laser eye protection in any subject compared to blue-yellow color vision deficits in 8 of 8 tested with KTP laser eye protection (p <0.001). Spectrophotometry demonstrated that light was blocked with laser eye protection devices for carbon dioxide less than 380, holmium:YAG greater than 850, Nd:YAG less than 350 and greater than 950, and KTP less than 550 and greater than 750 nm. The laser eye protection device for KTP causes significant blue-yellow and red-green color confusion. Laser eye protection devices for carbon dioxide, holmium:YAG and Nd:YAG cause no significant color confusion compared to controls. The differences are explained by laser eye protection spectrophotometry characteristics and visual physiology.

  18. Characteristics of Nd:YAG sculptured contact probes after prolonged laser application.

    PubMed

    Barroso, E G; Haklin, M F; Staren, E D

    1995-01-01

    This study analyzed the functional and structural characteristics of cone, hemisphere, and modified sculptured contact fibers (1,000 microns) after 1 hour of continuous Nd:YAG laser application. Continuous laser application was performed on live porcine tissue using 20 watts of power. The fiber's appearance under a microscope as well as the power output was recorded after 0, 5, 10, 20, 30, 45, and 60 minutes of continuous laser application. (N = 3 for each fiber). At time 0, all fibers transmitted from 49 to 56% of the initial 20 watts (W); power transmission decreased to less than 9% relative power transmission after 20 minutes and then plateaued. The fibers exhibited severe distortion and carbonization of the surface where laser had been applied with evidence of quartz melting and shattering after only 10 minutes. By 30 minutes of laser application, all three fibers were fractured and essentially indistinguishable from one another; moreover, the fibers exhibited similar power transmission, and cutting and coagulation activity, as determined by a panel of independent, double-blinded surgeons. These data lead us to conclude that 1) Nd:YAG contact laser effects result from thermal heating of the fiber tip with subsequent tissue injury, 2) the unique structural configuration of the fiber's sculptured tip are lost after several minutes of laser application without appreciable change in functional integrity, and 3) fibers may be manually fractured allowing for multiple uses without significant sacrifice of power transmission or surgical utility.

  19. Laser Printing for a Variety of Library Applications.

    ERIC Educational Resources Information Center

    Kelly, Glen J.

    1988-01-01

    Summarizes the current status of laser printers in terms of cost, hardware and software requirements, measurement and operational considerations, ease of use, and maintenance. The cost effectiveness of laser printing in libraries for applications such as spine labels, purchase orders, and reports, is explored. (9 notes with references) (CLB)

  20. Laser applications to chemical analysis: an introduction by the feature editors

    NASA Astrophysics Data System (ADS)

    Jeffries, Jay B.; Ramsey, J. Michael; Lucht, Robert P.

    1995-06-01

    This issue of Applied Optics features papers on the application of laser technology to chemical analysis. Many of the contributions, although not all, result from papers presented at the Fourth OSA Topical Meeting on Laser Applications to Chemical Analysis, which was held at Jackson Hole, Wyoming, March, 1994. This successful meeting, with nearly one hundred participants, continued the tradition of earlier LACA meetings to focus on the optical science of laser-based measurements of temperature and trace chemical assays in a wide variety of practical applications.

  1. Medical Applications Of CO2 Laser Fiber Optics

    NASA Astrophysics Data System (ADS)

    McCord, R. C.

    1981-07-01

    In 1978, Hughes Laboratories reported development of fiber optics that were capable of transmitting CO2 laser energy. These fibers are now being tested for medical applications. Wide ranging medical investigation with CO2 lasers has occurred during the twelve years since the first observations of laser hemostasis. Specialists in ophthalmology, neurosurgery, urology, gynecology, otolaryngology, maxillo-facial/plastic surgery, dermatology, and oncology among others, have explored its use. In principle, all these specialists use CO2 laser radiation at 10.6 microns to thermally destroy diseased tissues. As such, CO2 lasers compare and compete with electrosurgical devices. The fundamental difference between these modalities lies in how they generate heat in treated tissue.

  2. Theoretical studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  3. Laser Science and its Applications in Prosthetic Rehabilitation

    PubMed Central

    Gounder, Revathy; Gounder, Srinivasan

    2016-01-01

    The minimal invasive nature of lasers, with quick tissue response and healing has made them a very attractive technology in various fields of dentistry which serves as a tool to create a better result than ever before. The rapid development of lasers and their wavelengths with variety of applications on soft and hard tissues may continue to have major impact on the scope and practice in prosthetic dentistry. The purpose of this article is to make every clinician familiar with the fundamentals of lasers and different laser systems to incorporate into their clinical practices. PMID:28491254

  4. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  5. Ophthalmic applications of laser-generated ultrasound

    NASA Astrophysics Data System (ADS)

    Payne, Peter A.; Sadr, Ali; Rosen, Emanuel S.; Dewhurst, Richard J.

    2000-06-01

    Laser-generated ultrasound has found a number of niche applications in non-destructive testing and evaluation and there is now a growing trend to examine potential applications for materials characterization in medicine. Conventional ultrasound techniques for measuring various important dimensions within the eye are in extensive use. However, one problem remains outstanding, which is that the dimensions of the cornea, anterior chamber and lens can be measured using a high frequency, high resolution transducer, but the dimensions of the overall eyeball (i.e., cornea to retina) have to be measured with a lower frequency transducer in order to achieve the necessary penetration. We have conducted a number of in vitro studies using bovine eyes to determine whether the use of laser induced ultrasound would be able to overcome the aforementioned problem. The results of these measurements will be presented, together with a discussion of the many difficulties that remain to be overcome. In addition, our studies involve the potential use of laser ultrasound to quantify the degree of cataract formation, both primary and secondary. This paper will also consider the work accomplished to data in this area.

  6. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downer, Michael C.

    2014-04-30

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond

  7. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  8. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications.

    PubMed

    Krishnaiah, Kummara Venkata; de Lima Filho, Elton Soares; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-02-26

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb(3+)) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb(3+) concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb(3+): glass and decreases with increasing Yb(3+) concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm(3+) and Er(3+) ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb(3+): (2)F5/2 → (2)F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb(3+) with increasing Yb(3+) concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed.

  9. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2017-01-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  10. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2016-12-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  11. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  12. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  13. Laser Propulsion - Quo Vadis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, Willy L.

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient andmore » specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.« less

  14. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  15. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  16. Applications of Laser Cladded WC-Based Wear Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Verwimp, Jo; Rombouts, Marleen; Geerinckx, Eric; Motmans, Filip

    Laser cladding is an additive process wherein a laser source is used to melt metal-based powder or wire on to a metal substrate. The technique is frequently used to produce wear resistant coatings consisting of a metal matrix and a ceramic strengthening phase. In this study mixtures of nickel based powders and various amounts of tungsten carbides have been used as feedstock for laser cladding on a range of steel substrates and for different applications. Crack-free low porosity coatings with a thickness of about 1 mm and carbide concentrations up to 50 vol% have been produced. The evaluation of the wear resistance of the different coatings is performed on lab scale or in the application itself.

  17. New trends in laser shock wave physics and applications

    NASA Astrophysics Data System (ADS)

    Peyre, Patrice; Carboni, Christelle; Sollier, Arnault; Berthe, Laurent; Richard, Caroline; de Los Rios, E.; Fabbro, Remy

    2002-09-01

    Recent applications for laser-induced shock waves have been demonstrated in the aeronautical and nuclear industries, due to the development of new generations of lasers that enable high cadency rates with rather small designs. In this paper, we first aim at making an overview on basic physical processes involved in Laser Shock Processing, and a presentation of pressure loadings generated by different laser conditions. In a second part, a specific focus is given to new ranges of applications like wear resistance, uniform and localized corrosion or modeling of fatigue behaviour after LSP. For instance it is demonstrated that the pitting corrosion behaviour of 316L steel in saline medium can be improved by laser-induced pure mechanical effects surrounding inclusions. It is also shown that wear rates of a 100Cr6 tool steel can be reduced after LSP provided applied pressures are kept below a material deposit threshold. Last but not least, the fatigue cracking behaviour of 2024-T351 aluminum alloy after LSP was improved and calculated through a computed program taking into account work hardening together with residual stress effects.

  18. Excimer laser ablation of the cornea

    NASA Astrophysics Data System (ADS)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  19. Application of Laser Imaging for Bio/geophysical Studies

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.

    1992-01-01

    SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.

  20. New application system for laser and ultrasonic therapy in endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Mueller, Gerhard J.

    1996-12-01

    Flexible acoustic waveguides for selective tissue fragmentation are not yet commercially available. Experimental studies have shown the possibility of transmission of acoustical transients via optical silica glass fibers. The aim of this project is the development of a new endoscopic application system that would enable surgeons to use the laser and the ultrasound technique for therapy simultaneously. The concept of this application system is based on the transmission of laser radiation and ultrasound power via flexible silica glass fibers. Theoretical and experimental results on the feasibility of such an application system for an ultrasonic power delivery system are presented. Piezo-electric transducers are used to provide a high efficiency in generating the ultrasonic power. With reference to the CUSA-technique, a special flexible guiding system has been designed for providing aspiration at the tip and for protection of the fiber. The system transmits via an optical fiber up to 100 Watt Nd:YAG laser radiation. The axial oscillation of the fiber tip is +/- micrometers at a frequency of 27 kHz. First results of in vitro experiments are presented. The parenchymatous cells of liver can be fragmented without destruction of the collagenous matrix. The laser can be optionally used to coagulate bleedings or to cut collagenous tissues in contact. Applications for an acoustical and optical waveguide in ultrasonic surgery are demonstrated. This new approach in developing a first application system for the therapeutical use of laser radiation and power ultrasound in minimal invasive surgery via optical waveguides offers new possibilities in surgery. The laser ultrasonic surgical therapy (LUST) with its thin and flexible applicator provides new working fields especially for neuro or liver surgery. The tip can be bent and thus areas which could not be treated before have now been made accessible. Without changing the instrumentation, the surgeon can use the laser for tissue

  1. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  2. Oceanographic applications of laser technology

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1988-01-01

    Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.

  3. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  4. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  5. Micropulsed diode laser therapy: evolution and clinical applications.

    PubMed

    Sivaprasad, Sobha; Elagouz, Mohammed; McHugh, Dominic; Shona, Olajumoke; Dorin, Giorgio

    2010-01-01

    Many clinical trials have demonstrated the clinical efficacy of laser photocoagulation in the treatment of retinal vascular diseases, including diabetic retinopathy. There is, however, collateral iatrogenic retinal damage and functional loss after conventional laser treatment. Such side effects may occur even when the treatment is appropriately performed because of morphological damage caused by the visible endpoint, typically a whitening burn. The development of the diode laser with micropulsed emission has allowed subthreshold therapy without a visible burn endpoint. This greatly reduces the risk of structural and functional retinal damage, while retaining the therapeutic efficacy of conventional laser treatment. Studies using subthreshold micropulse laser protocols have reported successful outcomes for diabetic macular edema, central serous chorioretinopathy, macular edema secondary to retinal vein occlusion, and primary open angle glaucoma. The report includes the rationale and basic principles underlying micropulse diode laser therapy, together with a review of its current clinical applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications

    PubMed Central

    Krishnaiah, Kummara Venkata; Soares de Lima Filho, Elton; Ledemi, Yannick; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-01-01

    Oxyfluoride glasses doped with 2, 5, 8, 12, 16 and 20 mol% of ytterbium (Yb3+) ions have been prepared by the conventional melt-quenching technique. Their optical, thermal and thermo-mechanical properties were characterized. Luminescence intensity at 1020 nm under laser excitation at 920 nm decreases with increasing Yb3+ concentration, suggesting a decrease in the photoluminescence quantum yield (PLQY). The PLQY of the samples was measured with an integrating sphere using an absolute method. The highest PLQY was found to be 0.99(11) for the 2 mol% Yb3+: glass and decreases with increasing Yb3+ concentration. The mean fluorescence wavelength and background absorption of the samples were also evaluated. Upconversion luminescence under 975 nm laser excitation was observed and attributed to the presence of Tm3+ and Er3+ ions which exist as impurity traces with YbF3 starting powder. Decay curves for the Yb3+: 2F5/2 → 2F7/2 transition exhibit single exponential behavior for all the samples, although lifetime decrease was observed for the excited level of Yb3+ with increasing Yb3+ concentration. Also observed are an increase in the PLQY and a slight decrease in lifetime with increasing the pump power. Finally, the potential of these oxyfluoride glasses with high PLQY and low background absorption for laser cooling applications is discussed. PMID:26915817

  7. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation.

    PubMed

    Zhang, Hanwei; Zhou, Pu; Wang, Xiong; Du, Xueyuan; Xiao, Hu; Xu, Xiaojun

    2015-06-29

    Two kinds of hundred-watt-level random distributed feedback Raman fiber have been demonstrated. The optical efficiency can reach to as high as 84.8%. The reported power and efficiency of the random laser is the highest one as we know. We have also demonstrated that the developed random laser can be further used to pump a Ho-doped fiber laser for mid-infrared laser generation. Finally, 23 W 2050 nm laser is achieved. The presented laser can obtain high power output efficiently and conveniently and opens a new direction for high power laser sources at designed wavelength.

  8. Liquid crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Jacobs, S. D.; Marshall, K. L.; Schmid, A.

    1992-10-01

    This article highlights some of the advances made in the use of liquid crystals for laser applications from 1982 through 1992. New materials and new effects were discovered, many new devices were developed, and novel applications for well-understood phenomena were conceived. This was quite an eventful time period. Several new books were published on the broad subject of LC's, and the international scientific community organized a society devoted to encouraging further scientific and educational advancement in the field. Attention was focused on LC's in October of 1991 when the Nobel Prize in Physics was awarded to Pierre-Gilles de Gennes for his pioneering work toward understanding order phenomena in LC's and polymers. This article is divided into four sections. The first section discusses new materials, specifically ferroelectric LC's and LC polymers. The former have opened up the realm of submicrosecond response for LC devices, and the latter have significantly reduced the sensitivity of LC optics to temperature. Some new insights into the optical properties of materials are also mentioned. The second section reviews new developments in passive applications for cholesterics and nematics. Included here are the fabrication of cholesteric laser mirrors and apodizers, the use of LC polymers for notch filters and as optical storage media, and some novel nematic retarder concepts such as the distributed polarization rotator.

  9. Threshold analysis of pulsed lasers with application to a room-temperature Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Harrison, James; Welford, David; Moulton, Peter F.

    1989-01-01

    Rate-equation calculations are used to model accurately the near-threshold behavior of a Co:MgF2 laser operating at room temperature. The results demonstrate the limitations of the conventional threshold analysis in cases of practical interest. This conclusion is applicable to pulsed solid-state lasers in general. The calculations, together with experimental data, are used to determine emission cross sections for the Co:MgF2 laser.

  10. Texturing of polypropylene (PP) with nanosecond lasers

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2016-06-01

    Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.

  11. New developments in ophthalmic applications of ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Spooner, Greg J. R.; Juhasz, Tibor; Ratkay-Traub, Imola; Djotyan, Gagik P.; Horvath, Christopher; Sacks, Zachary S.; Marre, Gabrielle; Miller, Doug L.; Williams, A. R.; Kurtz, Ron M.

    2000-05-01

    The eye is potentially an ideal target for high precision surgical procedures utilizing ultrafast lasers. We present progress on corneal applications now being tested in humans and proof of concept ex vivo demonstrations of new applications in the sclera and lens. Two corneal refractive procedures were tested in partially sighted human eyes: creation of corneal flaps prior to excimer ablation (Femto- LASIK) and creation of corneal channels and entry cuts for placement of intracorneal ring segments (Femto-ICRS). For both procedures, results were comparable to standard treatments, with the potential for improved safety, accuracy and reproducibility. For scleral applications, we evaluated the potential of femtosecond laser glaucoma surgery by demonstrating resections in ex vivo human sclera using dehydrating agents to induce tissue transparency. For lens applications, we demonstrate in an ex vivo model the use of photodisruptively-nucleated ultrasonic cavitation for local and non-invasive tissue interaction.

  12. Defence and security applications of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.

    2016-09-01

    Quantum Cascade Lasers (QCL) have seen tremendous recent application in the realm of Defence and Security. And, in many instances replacing traditional solid state lasers as the source of choice for Countermeasures, Remote Sensing, In-situ Sensing, Through-Barrier Sensing, and many others. Following their development and demonstration in the early 1990's, QCL's reached some maturity and specific defence and security application prior to 2005; with much initial development fostered by DARPA initiatives in the US, dstl, MoD, and EOARD funding initiatives in the UK, and University level R&D such as those by Prof Manijeh Razeghi at Northwestern University [1], and Prof Ted Masselink at Humboldt University [2]. As QCL's provide direct mid-IR laser output for electrical input, they demonstrate high quantum efficiency compared with diode pumped solid state lasers with optical parametric oscillators (OPOs) to generate mid-Infrared output. One particular advantage of QCL's is their very broad operational bandwidth, extending from the terahertz to the near-infrared spectral regions. Defence and Security areas benefiting from QCL's include: Countermeasures, Remote Sensing, Through-the-Wall Sensing, and Explosive Detection. All information used to construct this paper obtained from open sources.

  13. Blue laser diode (LD) and light emitting diode (LED) applications

    NASA Astrophysics Data System (ADS)

    Bergh, Arpad A.

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography.As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc.Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity.Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care.

  14. Novel oral applications of ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Wieger, V.; Wernisch, J.; Wintner, E.

    2007-02-01

    In the past decades, many efforts have been made to replace mechanical tools in oral applications by various laser systems. The reasons therefore are manifold: i) Friction causes high temperatures damaging adjacent tissue. ii) Smear layers and rough surfaces are produced. iii) Size and shape of traditional tools are often unsuitable for geometrically complicated incisions and for minimum invasive treatment. iv) Mechanical damage of the remaining tissue occurs. v) Online diagnosis for feedback is not available. Different laser systems in the µs and sub-&mrgs-pulse regime, among them Erbium lasers, have been tested in the hope to overcome the mentioned drawbacks and, to some extent, they represent the current state of the art with respect to commercial and hence practical application. In the present work the applicability of scanned ultrashort pulse lasers (USPLs) for biological hard tissue as well as dental restoration material removal was tested. It is shown that cavities with features superior to mechanically treated or Erbium laser ablated cavities can be generated if appropriate scan algorithms and optimum laser parameters are matched. Smooth cavity rims, no microcracks, melting or carbonisation and precise geometry are the advantages of scanned USLP ablation. For bone treatment better healing conditions are expected as the natural structure remains unaffected by the preparation procedure. The novelty of this work is represented by a comprehensive compilation of various experimental results intended to assess the performance of USPLs. In this context, various pulse durations in the picosecond and femtosecond regime were applied to dental and bone tissue as well as dental restoration materials which is considered to be indispensable for a complete assessment. Parameters like ablation rates describing the efficiency of the ablation process, and ablation thresholds were determined - some of them for the first time - and compared to the corresponding Erbium

  15. Novel solid state lasers for Lidar applications at 2 μm

    NASA Astrophysics Data System (ADS)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  16. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  17. Current laser applications in reconstructive microsurgery: A review of the literature.

    PubMed

    Leclère, Franck Marie; Vogt, Peter; Schoofs, Michel; Delattre, Maryline; Mordon, Serge

    2016-06-01

    Microvascular surgery has become an important method for reconstructing surgical defects following trauma, tumor resection, or burns. Laser-assisted microanastomoses (LAMA) were introduced by Jain in 1979 in order to help the microsurgeon reduce both operating time and complications. This article reviews the literature on clinical applications of LAMA. A Medline literature search was performed and cross-referenced. Articles between 1979 and 2014 were included. Keywords used were laser, laser microanastomoses, laser microanastomosis, LAMA, and microsurgery. Only seven clinical studies using three different wavelengths were found in the literature: 1,064 nm (Nd: YAG), 10,600 nm (CO2), 514 nm (Argon), and 1,950 nm (Diode). Clinical outcomes, type of procedures, laser wavelength and parameters, and possible wider applications in the operating room are discussed in each case. The success rate for reconstructive free flap surgery and hand surgery achieved with LAMA appears promising. In particular, use of the 1950-nm diode laser for microsurgery is likely to increase in the near future.

  18. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  19. Laser fringe anemometry for aero engine components

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.

    1986-01-01

    Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.

  20. Current applications of lasers in heart disease

    NASA Astrophysics Data System (ADS)

    Lee, Garrett; Chan, Ming C.; Mason, Dean T.

    1993-03-01

    Although the laser has been in existence for abut 30 years, its application in heart disease has only been examined in the past decade. Much attention has been given its exciting potential in treating coronary artery disease. Transmitted through a catheter comprised of one or more thin optical fibers which can be threaded nonsurgically into the coronary artery, the laser can ablate atherosclerotic plaque that obstructs the artery and diminishes blood flow to the myocardium. In clinical studies, the laser can treat some obstructive lesions that are not suitable for balloon angioplasty (i.e., long and diffuse lesions, very tight stenoses, ostial lesions, calcified lesions). In patients who failed balloon angioplasty due to severe dissection or abrupt closure, the laser may seal up the dissections and restore antegrade blood flow. In addition, the laser may have other applications and treatment modalities that are still under investigation. It may ablate ectopic ventricular foci, or terminate supraventricular tachyrhythmia by destroying the heart's abnormal conduction pathways. It can cut the hypertrophied septum that is associated with left ventricular outflow tract obstruction, or create a channel in the atrial septum as a palliative procedure in newborns with transposition of the great vessels. It may provide a wider orifice for blood flow within the heart in infants with pulmonary outflow obstruction and in adults with aortic valvular stenosis. It is also capable of fusing small thin-walled blood vessels together. Further, a more intriguing possibility is its use to bore several tiny channels in the myocardium to allow oxygenated blood from within the ventricular chamber to perfuse the ischemic heart tissue.

  1. [Understanding the advantages and disadvantages of femtosecond laser comprehensive applications in ophthalmology].

    PubMed

    Xie, Li-xin; Gao, Hua

    2013-04-01

    The femtosecond (FS) laser is a novel laser technology, and is approved clinical application by FDA in 2000. FS laser initially mainly used in corneal refractive surgery to replace the mechanical microkeratome. Since the accuracy and controllability of the FS laser is very high, it shows superiority in the field of corneal refractive surgery. And with the development of the relative hard and software, FS laser is began to used in other fields of ophthalmology, such as corneal transplants, cataract surgery, as well as assisted diagnosis et al., although still have some limitations, the preliminary clinical results have been shown a very good prospects in the ophthalmology fields. Therefore, we reviewed the alternative applications, challenges and limitations, research direction in the future of FS laser, so that provide a reference and revelations for the peers.

  2. Development of Advanced Seed Laser Modules for Lidar and Spectroscopy Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2013-01-01

    We report on recent progress made in the development of highly compact, single mode, distributed feedback laser (DFB) seed laser modules for lidar and spectroscopy applications from space based platforms. One of the intended application of this technology is in the NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The DFB laser modules operating at 1571 nm and 1262 nm have advanced current and temperature drivers built into them. A combination of temperature and current tuning allows coarse and fine adjustment of the diode wavelengths.

  3. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  4. Discrete mode lasers for communications applications

    NASA Astrophysics Data System (ADS)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  5. New laser design for NIR lidar applications

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  6. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  7. Variable ratio beam splitter for laser applications

    NASA Technical Reports Server (NTRS)

    Brown, R. M.

    1971-01-01

    Beam splitter employing birefringent optics provides either widely different or precisely equal beam ratios, it can be used with laser light source systems for interferometry of lossy media, holography, scattering measurements, and precise beam ratio applications.

  8. Applications of ultrafast laser direct writing: from polarization control to data storage

    NASA Astrophysics Data System (ADS)

    Donko, A.; Gertus, T.; Brambilla, G.; Beresna, M.

    2018-02-01

    Ultrafast laser direct writing is a fascinating technology which emerged more than two decades from fundamental studies of material resistance to high-intensity optical fields. Its development saw the discovery of many puzzling phenomena and demonstration of useful applications. Today, ultrafast laser writing is seen as a technology with great potential and is rapidly entering the industrial environment. Whereas, less than 10 years ago, ultrafast lasers were still confined within the research labs. This talk will overview some of the unique features of ultrafast lasers and give examples of its applications in optical data storage, polarization control and optical fibers.

  9. Tailoring Laser Propulsion for Future Applications in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckel, Hans-Albert; Scharring, Stefan

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic andmore » sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.« less

  10. Tailoring Laser Propulsion for Future Applications in Space

    NASA Astrophysics Data System (ADS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-10-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites. First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  11. Laser induced fluorescence technique for environmental applications

    NASA Astrophysics Data System (ADS)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  12. Next generation high-brightness diode lasers offer new industrial applications

    NASA Astrophysics Data System (ADS)

    Timmermann, Andre; Meinschien, Jens; Bruns, Peter; Burke, Colin; Bartoschewski, Daniel

    2008-02-01

    So far, diode laser systems could not compete against CO II-lasers or DPSSL in industrial applications like marking or cutting due to their lower brightness. Recent developments in high-brightness diode laser bars and beam forming systems with micro-optics have led to new direct diode laser applications. LIMO presents 400W output from a 200μm core fibre with an NA of 0.22 at one wavelength. This is achieved via the combination of newly designed laser diode bars on passive heat sinks coupled with optimized micro-optical beam shaping. The laser is water cooled with a housing size of 375mm x 265mm x 70mm. The applications for such diode laser modules are mainly in direct marking, cutting and welding of metals and other materials, but improved pumping of fibre lasers and amplifiers is also possible. The small spot size leads to extremely high intensities and therefore high welding speeds in cw operation. For comparison: The M2 of the fibre output is 70, which gives a comparable beam parameter product (22mm*mrad) to that of a CO II laser with a M2 of 7 because of the wavelength difference. Many metals have a good absorption within the wavelength range of the laser diodes (NIR, 808nm to 980nm), which permits the cutting of thin sheets of aluminium or steel with a 200W version of this laser. First welding tests show reduced splatters and pores owing to the optimized process behaviour in cw operation with short wavelengths. The availability of a top-hat profile proves itself to be advantageous compared to the traditional Gaussian beam profiles of fibre, solid-state and gas lasers in that the laser energy is evenly distributed over the working area. For the future, we can announce an increase of the output power up to 1200W out of a 200μm fibre (0.22 NA). This will be achieved by further sophistication and optimisation of the coupling technique and the coupling of three wavelengths. The beam parameter product will then remain at 22mm*mrad with a power density of 3.8 MW

  13. Unidirectional photonic wire laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.

    Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less

  14. Unidirectional photonic wire laser

    DOE PAGES

    Khalatpour, Ali; Reno, John L.; Kherani, Nazir P.; ...

    2017-08-07

    Photonic wire lasers are a new genre of lasers that have a transverse dimension much smaller than the wavelength. Unidirectional emission is highly desirable as most of the laser power will be in the desired direction. Owing to their small lateral dimension relative to the wavelength, however, the mode mostly propagates outside the solid core. Consequently, conventional approaches to attach a highly reflective element to the rear facet, whether a thin film or a distributed Bragg reflector, are not applicable. In this paper, we propose a simple and effective technique to achieve unidirectionality. Terahertz quantum-cascade lasers with distributed feedback (DFB)more » were chosen as the platform of the photonic wire lasers. Unidirectionality is achieved with a power ratio of the forward/backward of about eight, and the power of the forward-emitting laser is increased by a factor of 1.8 compared with a reference bidirectional DFB laser. Finally and furthermore, we achieved a wall plug power efficiency of ~1%.« less

  15. High energy laser demonstrators for defense applications

    NASA Astrophysics Data System (ADS)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  16. Laser-plasmas in the relativistic-transparency regime: science and applications

    DOE PAGES

    Fernandez, Juan Carlos; Gautier, Donald Cort; Huang, Chengkun; ...

    2017-05-30

    neutron beam has been used for point-projection imaging of thick objects. Finally, we discuss the plans and prospects for further improvements and applications.« less

  17. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  18. The development and application of high energy laser protective material

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Zhao, Yizheng

    2016-03-01

    With the emergence of strong light source, laser weapons in the modern war, the threat of damage to the photoelectric sensor and the human eye, the laser protection technology has begun to be paid attention to and widespread concern. In the laser protective materials, we can divide it into the protective material based on the principle of linear optics and the protective material based on the principle of nonlinear optics. In this paper, two different mechanisms of laser protective materials are introduced, and their development and application are reviewed.

  19. Resonant infrared laser deposition of polymer-nanocomposite materials for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Park, Hee K.; Schriver, Kenneth E.; Haglund, Richard F.

    2011-11-01

    Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.

  20. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    PubMed

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  1. In vitro evaluation of enamel demineralization after several overlapping CO2 laser applications.

    PubMed

    Vieira, K A; Steiner-Oliveira, C; Soares, L E S; Rodrigues, L K A; Nobre-dos-Santos, M

    2015-02-01

    This study aimed to evaluate the effects of repeated CO2 laser applications on the inhibition of enamel demineralization. Sixty-five human dental enamel slabs were randomly assigned to the following groups (n = 13): control (C), one application of the CO2 laser (L1), two applications of the CO2 laser (L2), three applications of the CO2 laser (L3), and four applications of the CO2 laser (L4). Enamel slabs were irradiated by a 10.6-μm CO2 laser operating at 5 J/cm(2). The slabs were subjected to a pH-cycling regimen and then analyzed by FT-Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry (EDXRF), cross-sectional micro-hardness, and scanning electron microscopy (SEM). Statistical analysis was performed using ANOVA and Tukey tests (p < 0.05). FT-Raman spectroscopy showed a reduced carbonate content for L1, L3, and L4 groups when compared to C (p < 0.05). The EDXRF data showed no statistical differences between the control and irradiated groups for calcium and phosphorus components (p > 0.05). Cross-sectional micro-hardness data showed a statistically significant difference between the control and all irradiated groups (p < 0.05), but no difference was found among the irradiated groups (p > 0.05) up to 30-μm depth. A tendency of lower demineralization occurred in deeper depths for L3 and L4 groups. The SEM results showed that with repeated applications of the CO2 laser, a progressive melting and recrystallization of the enamel surface occurred. Repeated irradiations of dental enamel may enhance the inhibition of enamel demineralization.

  2. Application of CO laser for laser balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Miyamoto, Akira; Sakurada, Masami; Mizuno, Kyoichi; Kurita, Akira; Nakamura, Haruo; Suda, Akira; Arai, Tsunenori; Kikuchi, Makoto

    1990-07-01

    CO laser may be efficient for thermal fusion of intima of arterial wall without adventitial tissue damage because of high tissue absorption. To investigate the efficacy of CO laser as a laser bam for laser balloon angioplasty (LBA). CO laser was irradiated to aortic tissue through 3Oim polyethylene membrane and tissue temperature was measured by a thermistor. At 2Owatt/cm2 200joules/cm2 continuous laser exposure (CE), tissue temperature was above 100°C within a depth of 1mm and rapidly decreased to 60 °C or below between 2 and 3mm in depth. Moreover, adventitial temperature could be decreased by changing duty ratio (exposure duration/interval) of intermittent laser exposure (IE) despite of the same laser energy. Light microscopy showed high degree of medial coagulation necrosis in CE, however thermal coagulation was observed only at the surface of intima of aortic tissue in IE at duty ratio 1 / 2. These findings suggested CO laser could coagulate intimal layer with less deep thermal damage compared to Nd- YAG laser and that IE was better for superficial welding than CE at the same energy. We concluded that CO laser might be more efficient as a laser beam for LBA than Nd-YAG laser.

  3. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  4. Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology

    NASA Astrophysics Data System (ADS)

    Alexander, Vinay Varkey

    In my thesis, I have demonstrated the development of fiber based infrared lasers and devices for applications in medicine, spectroscopy and metrology. One of the key accomplishments presented in this thesis for medical applications is the demonstration of a focused infrared laser to perform renal denervation both in vivo and in vitro. Hypertension is a significant health hazard in the US and throughout the world, and the laser based renal denervation procedure may be a potential treatment for resistant hypertension. Compared to current treatment modalities, lasers may be able to perform treatments with lesser collateral tissue damage and quicker treatment times helping to reduce patient discomfort and pain. An additional medical application demonstrated in this thesis is the use of infrared fiber lasers to damage sebaceous glands in human skin as a potential treatment for acne. Another significant work presented in this thesis is a field trial performed at the Wright Patterson Air Force Base using a Short Wave Infrared (SWIR) Supercontinuum (SC) laser as an active illumination source for long distance reflectance measurements. In this case, an SC laser developed as part of this thesis is kept on a 12 story tower and propagated through the atmosphere to a target kept 1.6 km away and used to perform spectroscopy measurements. In the future this technology may permit 24/7 surveillance based on looking for the spectral signatures of materials. Beyond applications in defense, this technology may have far reaching commercial applications as well, including areas such as oil and natural resources exploration. Beyond these major contributions to the state-of-the-art, this thesis also describes other significant studies such as power scalability of SWIR SC sources and non-invasive measurement of surface roughness.

  5. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution

    PubMed Central

    Baati, Tarek; Al-Kattan, Ahmed; Esteve, Marie-Anne; Njim, Leila; Ryabchikov, Yury; Chaspoul, Florence; Hammami, Mohamed; Sentis, Marc; Kabashin, Andrei V.; Braguer, Diane

    2016-01-01

    Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics). PMID:27151839

  6. Ultrapure laser-synthesized Si-based nanomaterials for biomedical applications: in vivo assessment of safety and biodistribution

    NASA Astrophysics Data System (ADS)

    Baati, Tarek; Al-Kattan, Ahmed; Esteve, Marie-Anne; Njim, Leila; Ryabchikov, Yury; Chaspoul, Florence; Hammami, Mohamed; Sentis, Marc; Kabashin, Andrei V.; Braguer, Diane

    2016-05-01

    Si/SiOx nanoparticles (NPs) produced by laser ablation in deionized water or aqueous biocompatible solutions present a novel extremely promising object for biomedical applications, but the interaction of these NPs with biological systems has not yet been systematically examined. Here, we present the first comprehensive study of biodistribution, biodegradability and toxicity of laser-synthesized Si-SiOx nanoparticles using a small animal model. Despite a relatively high dose of Si-NPs (20 mg/kg) administered intravenously in mice, all controlled parameters (serum, enzymatic, histological etc.) were found to be within safe limits 3 h, 24 h, 48 h and 7 days after the administration. We also determined that the nanoparticles are rapidly sequestered by the liver and spleen, then further biodegraded and directly eliminated in urine without any toxicity effects. Finally, we found that intracellular accumulation of Si-NPs does not induce any oxidative stress damage. Our results evidence a huge potential in using these safe and biodegradable NPs in biomedical applications, in particular as vectors, contrast agents and sensitizers in cancer therapy and diagnostics (theranostics).

  7. Evaluation of 2.1μm DFB lasers for space applications

    NASA Astrophysics Data System (ADS)

    Barbero, J.; López, D.; Esquivias, I.; Tijero, J. M. G.; Fischer, M.; Roessner, K.; Koeth, J.; Zahir, M.

    2017-11-01

    This paper presents the results obtained in the frame of an ESA-funded project called "Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application" with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1μm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current.

  8. Lasers, their development, and applications at M.I.T. Lincoln Laboratory

    NASA Technical Reports Server (NTRS)

    Rediker, R. H.; Melngailis, I.; Mooradian, A.

    1984-01-01

    A historical account of the work on lasers at MIT Lincoln Laboratory is presented. Highlighted are the efforts that led to the coinvention of the semiconductor laser and the Laboratory's later role in establishing the feasibility of GaInAsP/InP semiconductor lasers for use in fiber telecommunications at 1.3-1.5 micron wavelengths. Descriptions of other important developments include tunable lead-salt semiconductor and solid-state lasers for spectroscopy and LIDAR applications, respectively, as well as ultrastable CO2 lasers for coherent infrared radar.

  9. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  10. A New Kind of Laser Microphone for Photoacoustic Applications

    DTIC Science & Technology

    2008-12-01

    1 A NEW KIND OF LASER MICROPHONE FOR PHOTOACOUSTIC APPLICATIONS Chen-Chia Wang, Sudhir Trivedi, and Feng Jin Brimrose ...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Brimrose Corp. of America, 7720 Belair Road...laser microphone’s performance are also developed with preliminary experimental validation. ACKONWLEDGMENTS The authors from Brimrose

  11. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  12. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    NASA Astrophysics Data System (ADS)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  13. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  14. Circular lasers for telecommunications and rf/photonics applications

    NASA Astrophysics Data System (ADS)

    Griffel, Giora

    2000-04-01

    Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.

  15. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields.

    PubMed

    Hahn, David W; Omenetto, Nicoló

    2012-04-01

    The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy

  16. Applications of a laser velocimeter in the Langley 4- by 7-meter tunnel

    NASA Astrophysics Data System (ADS)

    Sellers, W. L.; Elliott, J. W.

    1982-09-01

    Applications of a laser velocimeter in the Langley 4 by 7 meter wind tunnel are discussed. The system configuration is described. The data acquisition, the laser velocimeter traversing, and the particle generating systems are discussed. Flow distribution and rotor wake applications are discussed.

  17. Laser applications to atmospheric sciences: A bibliography

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1975-01-01

    A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.

  18. Laser Shot Peening System Final Report CRADA No. TC-1369-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, B. C.; Harris, F.

    This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.

  19. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  20. Laser-driven flyer application in thin film dissimilar materials welding and spalling

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Wang, Yuliang

    2017-10-01

    This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.

  1. Welding with the thin disc laser: new processing and application potentials

    NASA Astrophysics Data System (ADS)

    Hügel, H.; Ruβ, A.; Weberpals, J.; Dausinger, F.

    2005-09-01

    Thin disc lasers represent a new class of welding lasers in that they combine the beneficial characteristics of CO2- and Nd:YAG-lasers. Their good focusability--values of M2 around 20 are typical for devices in the multi kW power range--can be utilized in several ways to improve the welding performance: compared to lamp-pumped Nd:YAG-lasers, the laser power required at the threshold to the deep penetration regime can be reduced, the welding depth can be increased and far higher values of traverse speed are applicable at prescribed welding depths. Alternatively, the high beam quality allows the use of focusing optics with large focal lengths, hence enabling the realization of "remote welding" concepts. At the same time, a wavelength of 1.03 μm (Yb:YAG) provides, in comparison to CO2-lasers, a high absorptivity at metallic workpieces and a low sensitivity against plasma production; both effects contribute to the efficiency, stability and achievable quality of the welding process. Further, beam delivery via flexible glass fibers with core diameters of 100 μm to 150 μm is possible. With these features and an overall (plug) efficiency of more than 20 %, this laser offers a large potential for many applications.

  2. High-energy laser weapons: technology overview

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew

    2004-09-01

    High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.

  3. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  4. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged

  5. Applications of OALCLV in the high power laser systems

    NASA Astrophysics Data System (ADS)

    Huang, Dajie; Fan, Wei; Cheng, He; Wei, Hui; Wang, Jiangfeng; An, Honghai; Wang, Chao; Cheng, Yu; Xia, Gang; Li, Xuechun; Lin, Zunqi

    2017-10-01

    This paper introduces the recent development of our integrated optical addressed spatial light modulator and its applications in the high power laser systems. It can be used to convert the incident beam into uniform beam for high energy effiency, or it can realize special distribution to meet the requirements of physical experiment. The optical addressing method can avoid the problem of the black matrix effect of the electric addressing device. Its transmittance for 1053nm light is about 85% and the aperture of our device has reached 22mm× 22mm. As a transmissive device, it can be inserted into the system without affecting the original optical path. The applications of the device in the three laser systems are introduced in detail in this paper. In the SGII-Up laser facility, this device demonstrates its ability to shape the output laser beam of the fundamental frequency when the output energy reaches about 2000J. Meanwhile, there's no change in the time waveform and far field distribution. This means that it can effectively improve the capacity of the maximum output energy. In the 1J1Hz Nd-glass laser system, this device has been used to improve the uniformity of the output beam. As a result, the PV value reduces from 1.4 to 1.2, which means the beam quality has been improved effectively. In the 9th beam of SGII laser facility, the device has been used to meet the requirements of sampling the probe light. As the transmittance distribution of the laser beam can be adjusted, the sampling spot can be realized in real time. As a result, it's easy to make the sampled spot meet the requirements of physics experiment.

  6. Pulsed mononode dye laser developed for a geophysical application

    NASA Technical Reports Server (NTRS)

    Jegou, J. P.; Pain, T.; Megie, G.

    1986-01-01

    Following the extension of the lidar technique in the study of the atmosphere, the necessity of having a high power pulsed laser beam with a narrowed bandwidth and the possibility of selecting a particular wavelength within a certain spectral region arises. With the collaboration of others, a laser cavity using the multiwave Fizeau wedge (MWFW) was developed. Using the classical method of beam amplification with the aid of different stages, a new pulsed dye laser device was designed. The originality resides in the use of reflecting properties of the MFWF. Locally a plan wave coming with a particular angular incidence is reflected with a greater than unity coefficient; this is the consequence of the wedge angle which doubles the participation of every ray in the interferometric process. This dye laser operation and advantages are discussed. The feasibility of different geophysical applications envisageable with this laser is discussed.

  7. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    PubMed Central

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  8. Applications of laser-induced periodic surface structures (LIPSS)

    NASA Astrophysics Data System (ADS)

    Bonse, Jörn; Kirner, Sabrina V.; Höhm, Sandra; Epperlein, Nadja; Spaltmann, Dirk; Rosenfeld, Arkadi; Krüger, Jörg

    2017-02-01

    Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the picosecond to femtosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical or chemical properties. In this contribution current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces.

  9. Continuous and pulsed laser high power beam combiner for additive manufacturing applications

    NASA Astrophysics Data System (ADS)

    Bassignana, Marta; Califano, Alessio; Pescarmona, Francesco; Braglia, Andrea; Perrone, Guido

    2018-02-01

    Laser-based additive manufacturing (AM) from metal powders is emerging as the new industrial revolution, although current fabrication approaches still require long mechanical post-processing to improve the final surface quality and meet the design tolerances. To overcome this limitation, the next generation machines are expected to complement laser AM with laser ablation (LA) to implement surface finishing and micro texturing already during the device growth process. With this aim, a new beam combiner to allow the real-time interchange of additive and subtractive processes using the same scanner head has been designed. Extensive tests have been carried out using a 6 kW continuous-wave laser similar to that used for the metal powder fusion and a nanosecond 100W pulsed source similar to that used for laser ablation.

  10. Risks and injuries in laser and high-frequency applications

    NASA Astrophysics Data System (ADS)

    Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter

    1995-01-01

    An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.

  11. Applications of laser printing for organic electronics

    NASA Astrophysics Data System (ADS)

    Delaporte, Ph.; Ainsebaa, A.; Alloncle, A.-P.; Benetti, M.; Boutopoulos, C.; Cannata, D.; Di Pietrantonio, F.; Dinca, V.; Dinescu, M.; Dutroncy, J.; Eason, R.; Feinaugle, M.; Fernández-Pradas, J.-M.; Grisel, A.; Kaur, K.; Lehmann, U.; Lippert, T.; Loussert, C.; Makrygianni, M.; Manfredonia, I.; Mattle, T.; Morenza, J.-L.; Nagel, M.; Nüesch, F.; Palla-Papavlu, A.; Rapp, L.; Rizvi, N.; Rodio, G.; Sanaur, S.; Serra, P.; Shaw-Stewart, J.; Sones, C. L.; Verona, E.; Zergioti, I.

    2013-03-01

    The development of organic electronic requires a non contact digital printing process. The European funded e-LIFT project investigated the possibility of using the Laser Induced Forward Transfer (LIFT) technique to address this field of applications. This process has been optimized for the deposition of functional organic and inorganic materials in liquid and solid phase, and a set of polymer dynamic release layer (DRL) has been developed to allow a safe transfer of a large range of thin films. Then, some specific applications related to the development of heterogeneous integration in organic electronics have been addressed. We demonstrated the ability of LIFT process to print thin film of organic semiconductor and to realize Organic Thin Film Transistors (OTFT) with mobilities as high as 4 10-2 cm2.V-1.s-1 and Ion/Ioff ratio of 2.8 105. Polymer Light Emitting Diodes (PLED) have been laser printed by transferring in a single step process a stack of thin films, leading to the fabrication of red, blue green PLEDs with luminance ranging from 145 cd.m-2 to 540 cd.m-2. Then, chemical sensors and biosensors have been fabricated by printing polymers and proteins on Surface Acoustic Wave (SAW) devices. The ability of LIFT to transfer several sensing elements on a same device with high resolution allows improving the selectivity of these sensors and biosensors. Gas sensors based on the deposition of semiconducting oxide (SnO2) and biosensors for the detection of herbicides relying on the printing of proteins have also been realized and their performances overcome those of commercial devices. At last, we successfully laser-printed thermoelectric materials and realized microgenerators for energy harvesting applications.

  12. Laser-Ultrasonic Testing and its Applications to Nuclear Reactor Internals

    NASA Astrophysics Data System (ADS)

    Ochiai, M.; Miura, T.; Yamamoto, S.

    2008-02-01

    A new nondestructive testing technique for surface-breaking microcracks in nuclear reactor components based on laser-ultrasonics is developed. Surface acoustic wave generated by Q-switched Nd:YAG laser and detected by frequency-stabilized long pulse laser coupled with confocal Fabry-Perot interferometer is used to detect and size the cracks. A frequency-domain signal processing is developed to realize accurate sizing capability. The laser-ultrasonic testing allows the detection of surface-breaking microcrack having a depth of less than 0.1 mm, and the measurement of their depth with an accuracy of 0.2 mm when the depth exceeds 0.5 mm including stress corrosion cracking. The laser-ultrasonic testing system combined with laser peening system, which is another laser-based maintenance technology to improve surface stress, for inner surface of small diameter tube is developed. The generation laser in the laser-ultrasonic testing system can be identical to the laser source of the laser peening. As an example operation of the system, the system firstly works as the laser-ultrasonic testing mode and tests the inner surface of the tube. If no cracks are detected, the system then changes its work mode to the laser peening and improves surface stress to prevent crack initiation. The first nuclear industrial application of the laser-ultrasonic testing system combined with the laser peening was completed in Japanese nuclear power plant in December 2004.

  13. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  14. Double-Pulsed 2-micron Laser Transmitter for Multiple Lidar Applications

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong

    2002-01-01

    A high energy double-pulsed Ho:Tm:YLF 2-micron laser amplifier has been demonstrated. 600 mJ per pulse pair under Q-switch operation is achieved with the gain of 4.4. This solid-state laser source can be used as lidar transmitter for multiple lidar applications such as coherent wind and carbon dioxide measurements.

  15. Robust remote-pumping sodium laser for advanced LIDAR and guide star applications

    NASA Astrophysics Data System (ADS)

    Ernstberger, Bernhard; Enderlein, Martin; Friedenauer, Axel; Schwerdt, Robin; Wei, Daoping; Karpov, Vladimir; Leisching, Patrick; Clements, Wallace R. L.; Kaenders, Wilhelm G.

    2015-10-01

    The performance of large ground-based optical telescopes is limited due to wavefront distortions induced by atmospheric turbulence. Adaptive optics systems using natural guide stars with sufficient brightness provide a practical way for correcting the wavefront errors by means of deformable mirrors. Unfortunately, the sky coverage of bright stars is poor and therefore the concept of laser guide stars was invented, creating an artificial star by exciting resonance fluorescence from the mesospheric sodium layer about 90 km above the earth's surface. Until now, mainly dye lasers or sumfrequency mixing of solid state lasers were used to generate laser guide stars. However, these kinds of lasers require a stationary laser clean room for operation and are extremely demanding in maintenance. Under a development contract with the European Southern Observatory (ESO) and W. M. Keck Observatory (WMKO), TOPTICA Photonics AG and its partner MPB Communications have finalized the development of a next-generation sodium guide star laser system which is available now as a commercial off-the-shelf product. The laser is based on a narrow-band diode laser, Raman fiber amplifier (RFA) technology and resonant second-harmonic generation (SHG), thus highly reliable and simple to operate and maintain. It emits > 22 W of narrow-linewidth (≈ 5 MHz) continuous-wave radiation at sodium resonance and includes a re-pumping scheme for boosting sodium return flux. Due to the SHG resonator acting as spatial mode filter and polarizer, the output is diffraction-limited with RMS wavefront error < λ/25. Apart from this unique optical design, a major effort has been dedicated to integrating all optical components into a ruggedized system, providing a maximum of convenience and reliability for telescope operators. The new remote-pumping architecture allows for a large spatial separation between the main part of the laser and the compact laser head. Together with a cooling-water flow of less than 5 l

  16. Lasers '81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C.B.

    1982-01-01

    Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less

  17. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-05-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications such as underwater communications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.

  18. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  19. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  20. Crystal structure of laser-induced subsurface modifications in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  1. Instrumentation For The Surgical Application Of The Nd:YAG Laser

    NASA Astrophysics Data System (ADS)

    Frank, F.; Bailer, P.; Beck, O.; Bowering, R.; Hofstetter, A.

    1984-03-01

    The Nd:YAG laser has become a coagulation instrument, which has found acceptance in interdisciplinary surgery. The main contributors are its highly efficient coagulation capability in interaction with tissue and the fact that the Nd:YAG laser beam can be transmitted by means of a simple quartz-glass fiber. Appropriate systems and instruments for transmission and operation have been developed for the various applications in neurosurgery, pulmology, gastroenterology, urology, gynaecology and dermatology. Operation methods in open and endoscopic surgery under use of several hand held devices and flexible as well as rigid endoscopes are being demonstrated by clinical examples of application.

  2. Development, Modeling and Test of Optical Coatings with Novel Thermal and Stress Management for High Energy Laser Applications

    DTIC Science & Technology

    2017-01-11

    and to mitigate the defects in the coating that lead to damage under laser irradiation . In this final 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...understand and to mitigate the defects in the coating that lead to damage under laser irradiation . In this final report we list the accomplishments of this...Luke A. Emmert, Wolfgang Rudolph. Time-dependent absorption of TiO_2 optical thin films under pulsed and continuous wave 790??nm laser irradiation

  3. Application of millisecond pulsed laser for thermal fatigue property evaluation

    NASA Astrophysics Data System (ADS)

    Pan, Sining; Yu, Gang; Li, Shaoxia; He, Xiuli; Xia, Chunyang; Ning, Weijian; Zheng, Caiyun

    2018-02-01

    An approach based on millisecond pulsed laser is proposed for thermal fatigue property evaluation in this paper. Cyclic thermal stresses and strains within millisecond interval are induced by complex and transient temperature gradients with pulsed laser heating. The influence of laser parameters on surface temperature is studied. The combination of low pulse repetition rate and high pulse energy produces small temperature oscillation, while high pulse repetition rate and low pulse energy introduces large temperature shock. The possibility of application is confirmed by two thermal fatigue tests of compacted graphite iron with different laser controlled modes. The developed approach is able to fulfill the preset temperature cycles and simulate thermal fatigue failure of engine components.

  4. Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis.

    PubMed

    Vadillo, J M; Palanco, S; Romero, M D; Laserna, J J

    1996-07-01

    The applicability of laser-induced breakdown spectrometry (LIBS) for surface analysis is presented in terms of its lateral and depth resolution. A pulsed N(2) laser at 337.1 nm (3.65 J/cm(2)) was used to irradiate solar cells employed for photovoltaic energy production. Laser produced plasmas were collected and detected using a charge-coupled device. An experimental device developed in the laboratory permits an exact synchronization of sample positioning using an XY motorized system with laser pulses. Multielement analysis with lateral resolution of up to 30 microm is feasible with the present system. Three-dimensional capabilities of the system are used for studies on the distribution of carbon impurities at the surface of the solar cells.

  5. Therapeutic Applications Of Argon Laser

    NASA Astrophysics Data System (ADS)

    Brunetaud, J. M.; Mosquet, L.; Mordon, S.; Rotteleur, G.

    1984-03-01

    Argon laser has a C.W. emission and emits several lines between 487 and 544 nm. This radiation is well absorbed by living tissue and especially where there are red pigments (hemoglobin, myoglobin) or black pigments (melanine). Therapeutic applications mainly use thermal effects. By varying the parameters, (optic power, size of exposed area, exposure time) ; one can obtain a coagulation (maximal tissular temperature 60° - 80°) or a vaporization (temperature over 100°). Section occures when the vaporized area is very thin (below 0.5 mm).

  6. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  7. AlGaInN laser diode technology for free-space telecom applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.; Watson, M. A.; Blanchard, P.; White, H.

    2015-03-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. We consider the suitability of AlGaInN laser diode technology for free space laser communication, both airborne links and underwater telecom applications, mainly for defense and oil and gas industries.

  8. AlGaInN laser diode technology for systems applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bockowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.

    2016-02-01

    Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation.

  9. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  10. Feasible Application Area Study for Linear Laser Cutting in Paper Making Processes

    NASA Astrophysics Data System (ADS)

    Happonen, A.; Stepanov, A.; Piili, H.

    Traditional industry sectors, like paper making industry, tend to stay within well-known technology rather than going forward towards promising, but still quite new technical solutions and applications. This study analyses the feasibility of the laser cutting in large-scale industrial paper making processes. Aim was to reveal development and process related challenges and improvement potential in paper making processes by utilizing laser technology. This study has been carried out, because there still seems to be only few large-scale industrial laser processing applications in paper converting processes worldwide, even in the beginning of 2010's. Because of this, the small-scale use of lasers in paper material manufacturing industry is related to a shortage of well-known and widely available published research articles and published measurement data (e.g. actual achieved cut speeds with high quality cut edges, set-up times and so on). It was concluded that laser cutting has strong potential in industrial applications for paper making industries. This potential includes quality improvements and a competitive advantage for paper machine manufacturers and industry. The innovations have also added potential, when developing new paper products. An example of these kinds of products are ones with printed intelligence, which could be a new business opportunity for the paper industries all around the world.

  11. Ground-Based and Space-Based Laser Beam Power Applications

    NASA Technical Reports Server (NTRS)

    Bozek, John M.

    1995-01-01

    A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.

  12. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  13. Review of selective laser melting: Materials and applications

    NASA Astrophysics Data System (ADS)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  14. Application of a compact diode pumped solid-state laser source for quantitative laser-induced breakdown spectroscopy analysis of steel

    NASA Astrophysics Data System (ADS)

    Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard

    2017-12-01

    Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.

  15. 10-year experience of CO2-laser application in ambulance gynecology

    NASA Astrophysics Data System (ADS)

    Stachanov, Michael L.; Masychev, Victor I.; Velsher, Leonid Z.; Kirkin, Vladimir V.; Zhashkov, Roman V.; Kocharian, Emilia A.

    2000-10-01

    CO2-laser surgical systems have come to stay in everyday practice of modern physicians and are successfully used in colposcopic and laparoscopic surgery. Results, obtained in ambulance gynecology are especially impressing. CO2- laser provides high medical- and cost-effective treatment. Presented work describes many-years experience of CO2- laser application. 439 patients with various vulvaric and cervix diseases were operated within this period. Laser beam parameters were selected according to requirements ((tau) =4 J/cm2) treatment without carbonization. Analyses of the results showed that the laser successfully destructs uterine cervix erosion, endocervicosis, dysplasia, leukoplakia, eritoplakia of uterine cervix, various benignant pathologies and focus degenerative process in ambulate conditions.

  16. Application of a liquid crystal spatial light modulator to laser marking.

    PubMed

    Parry, Jonathan P; Beck, Rainer J; Shephard, Jonathan D; Hand, Duncan P

    2011-04-20

    Laser marking is demonstrated using a nanosecond (ns) pulse duration laser in combination with a liquid crystal spatial light modulator to generate two-dimensional patterns directly onto thin films and bulk metal surfaces. Previous demonstrations of laser marking with such devices have been limited to low average power lasers. Application in the ns regime enables more complex, larger scale marks to be generated with more widely available and industrially proven laser systems. The dynamic nature of the device is utilized to improve mark quality by reducing the impact of the inherently speckled intensity distribution across the generated image and reduce thermal effects in the marked surface. © 2011 Optical Society of America

  17. Low Energy Laser Biostimulation: New Prospects For Medical Applications

    NASA Astrophysics Data System (ADS)

    Castel, John C.; Abergel, R. Patrick; Willner, Robert E.; Baumann, James G.

    1987-03-01

    The therapeutic benefits of light-energy is not a new concept to the modern world. Documented applications from ancient times tell of the therapeutic effects of ordinary sun-light to treat such common ailments as painful body joints, wounds, compound fractures and tetanus. The discovery of laser light in the 1960's, opened up new prospects for the medical use of light. Laser light differs from other forms of electromagnetic spectrum in that a single wavelength rather than a spectrum of wavelengths is emitted. Since the early 1970's, low-energy laser radiation has been reported to enhance wound healing rates, reduce edema, and relieve musculoskeletal pain. There is no detectable thermal effect of this laser on the tissue being treated. The effects are considered to occur as a result of photochemical, non thermal effects of the laser beam. Photons are absorbed by the tissue being treated and, in turn, produce positive therapeutic effects such as reduction of pain and edema. Pre-clinical and clinical evaluations are, presently, underway to document the safety and efficacy of low energy laser therapy, which represents a significant advance in the non-invasive treatment of pain.

  18. Enabling lunar and space missions by laser power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  19. Application of laser anemometry in turbine engine research

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.

    1983-01-01

    The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work.

  20. Application of laser anemometry in turbine engine research

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.

    1982-01-01

    The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work.

  1. Performance of a three-dimensional-printed microscanner in a laser scanning microscopy application

    NASA Astrophysics Data System (ADS)

    Oyman, Hilmi Artun; Gokdel, Yigit Daghan; Ferhanoglu, Onur; Yalcinkaya, Arda Deniz

    2018-04-01

    A magnetically actuated microscanner is used in a laser scanning microscopy application. Stress distribution along the circular-profiled flexure is compared with a rectangular counterpart in finite-element environment. Magnetic actuation mechanism of the scanning unit is explained in detail. Moreover, reliability of the scanner is tested for 3×106 cycle. The scanning device is designed to meet a confocal microscopy application providing 100 μm×100 μm field of view and <3-μm lateral resolution. The resonance frequencies of the device were analytically modeled, where we obtained 130- and 268-Hz resonance values for the out-of-plane and torsion modes, respectively. The scanning device provided an optical scan angle about 2.5 deg for 170-mA drive current, enabling the desired field of view for our custom built confocal microscope setup. Finally, imaging experiments were conducted on a resolution target, showcasing the desired scan area and resolution.

  2. Three-dimensional laser window formation for industrial application

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.; Kowalski, David

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.

  3. Laser inscription of pseudorandom structures for microphotonic diffuser applications.

    PubMed

    Alqurashi, Tawfiq; Alhosani, Abdulla; Dauleh, Mahmoud; Yetisen, Ali K; Butt, Haider

    2018-04-19

    Optical diffusers provide a solution for a variety of applications requiring a Gaussian intensity distribution including imaging systems, biomedical optics, and aerospace. Advances in laser ablation processes have allowed the rapid production of efficient optical diffusers. Here, we demonstrate a novel technique to fabricate high-quality glass optical diffusers with cost-efficiency using a continuous CO2 laser. Surface relief pseudorandom microstructures were patterned on both sides of the glass substrates. A numerical simulation of the temperature distribution showed that the CO2 laser drills a 137 μm hole in the glass for every 2 ms of processing time. FFT simulation was utilized to design predictable optical diffusers. The pseudorandom microstructures were characterized by optical microscopy, Raman spectroscopy, and angle-resolved spectroscopy to assess their chemical properties, optical scattering, transmittance, and polarization response. Increasing laser exposure and the number of diffusing surfaces enhanced the diffusion and homogenized the incident light. The recorded speckle pattern showed high contrast with sharp bright spot free diffusion in the far field view range (250 mm). A model of glass surface peeling was also developed to prevent its occurrence during the fabrication process. The demonstrated method provides an economical approach in fabricating optical glass diffusers in a controlled and predictable manner. The produced optical diffusers have application in fibre optics, LED systems, and spotlights.

  4. Optical feedback effects on terahertz quantum cascade lasers: modelling and applications

    NASA Astrophysics Data System (ADS)

    Rakić, Aleksandar D.; Lim, Yah Leng; Taimre, Thomas; Agnew, Gary; Qi, Xiaoqiong; Bertling, Karl; Han, She; Wilson, Stephen J.; Kundu, Iman; Grier, Andrew; Ikonić, Zoran; Valavanis, Alexander; Demić, Aleksandar; Keeley, James; Li, Lianhe H.; Linfield, Edmund H.; Davies, A. Giles; Harrison, Paul; Ferguson, Blake; Walker, Graeme; Prow, Tarl; Indjin, Dragan; Soyer, H. Peter

    2016-11-01

    Terahertz (THz) quantum cascade lasers (QCLs) are compact sources of radiation in the 1-5 THz range with significant potential for applications in sensing and imaging. Laser feedback interferometry (LFI) with THz QCLs is a technique utilizing the sensitivity of the QCL to the radiation reflected back into the laser cavity from an external target. We will discuss modelling techniques and explore the applications of LFI in biological tissue imaging and will show that the confocal nature of the QCL in LFI systems, with their innate capacity for depth sectioning, makes them suitable for skin diagnostics with the well-known advantages of more conventional confocal microscopes. A demonstration of discrimination of neoplasia from healthy tissue using a THz, LFI-based system in the context of melanoma is presented using a transgenic mouse model.

  5. Compact RGBY light sources with high luminance for laser display applications

    NASA Astrophysics Data System (ADS)

    Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther

    2018-02-01

    Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.

  6. Performance calculation and simulation system of high energy laser weapon

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke

    2014-12-01

    High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.

  7. History of lasers.

    PubMed

    Gross, Andreas J; Herrmann, Thomas R W

    2007-06-01

    The developments of laser technology from the cradle of modern physics in 1900 by Planck to its latest medical boundaries is an exciting example of how basic physics finds its way into clinical practice. This article merits the protagonists and their contribution to the steps in this development. The competition between the different research groups finally led to the award of the Nobel Prize to Townes, Basov and Prokhorov in 1964 for the scientific basis on quantum electronics, which led to the construction of oscillators and amplifiers based on the laser-maser principle. Forty-three years after Einstein's first theories Maiman introduced the first ruby laser for commercial use. This marked the key step for the laser application and pioneered fruitful cooperations between basic and clinical science. The pioneers of lasers in clinical urology were Parsons in 1966 with studies in canine bladders and Mulvany 1968 with experiments in calculi fragmentation. The central technological component for the triumphal procession of lasers in urology is the endoscope. Therefore lasers are currently widely used, being the tool of choice in some areas, such as endoscopical lithotriptic stone treatment or endoluminal organ-preserving tumor ablation. Furthermore they show promising treatment alternatives for the treatment of benign prostate hyperplasia.

  8. Types of Lasers and Their Applications in Pediatric Dentistry

    PubMed Central

    Nazemisalman, Bahareh; Farsadeghi, Mahya; Sokhansanj, Mehdi

    2015-01-01

    Laser technology has been recently introduced into the dental field with the idea to replace drilling. Having a less painful first dental experience by the use of modern instruments like laser can be an efficient preventive and therapeutic strategy in pediatric dentistry. Pedodontists need to learn the new less invasive technologies and adopt them in their routine practice. This study aimed to review the available types of lasers and their applications in pediatric dentistry. An electronic search was carried out in IranMedex, InterScience, Scopus, Science Direct, PubMed, ProQuest, Medline and Google Scholar databases to find relevant articles published from 2000 to 2014. Relevant textbooks were reviewed as well. Laser can be used as a suitable alternative to many conventional diagnostic and therapeutic dental procedures. It is especially efficient for caries detection and removal, pulp therapy, lowering the risk of infection, inflammation and swelling and reducing bleeding. On the other hand, due to minimal invasion, laser treatment is well tolerated by children. Improved patient cooperation leads to higher satisfaction of the parents, dentists and the children themselves. PMID:26464775

  9. Widely tunable (PbSn)Te lasers using etched cavities for mass production. [for infrared spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Miller, M. D.

    1980-01-01

    Lead salt diode lasers are being used increasingly as tunable sources of monochromatic infrared radiation in a variety of spectroscopic systems. These devices are particularly useful, both in the laboratory and in the field, because of their high spectral brightness (compared to thermal sources) and wide spectral coverage (compared to line-tunable gas lasers). While the primary commercial application of these lasers has been for ultrahigh resolution laboratory spectroscopy, there are numerous systems applications, including laser absorbtion pollution monitors and laser heterodyne radiometers, for which diode lasers have great potential utility. Problem areas related to the wider use of these components are identified. Among these are total tuning range, mode control, and high fabrication cost. A fabrication technique which specifically addresses the problems of tuning range and cost, and which also has potential application for mode control, is reported.

  10. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  11. High-efficiency high-brightness diode lasers at 1470 nm/1550 nm for medical and defense applications

    NASA Astrophysics Data System (ADS)

    Gallup, Kendra; Ungar, Jeff; Vaissie, Laurent; Lammert, Rob; Hu, Wentao

    2012-03-01

    Diode lasers in the 1400 nm to 1600 nm regime are used in a variety of applications including pumping Er:YAG lasers, range finding, materials processing, aesthetic medical treatments and surgery. In addition to the compact size, efficiency, and low cost advantages of traditional diode lasers, high power semiconductor lasers in the eye-safe regime are becoming widely used in an effort to minimize the unintended impact of potentially hazardous scattered optical radiation from the laser source, the optical delivery system, or the target itself. In this article we describe the performance of high efficiency high brightness InP laser bars at 1470nm and 1550nm developed at QPC Lasers for applications ranging from surgery to rangefinding.

  12. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  13. The development of novel Ytterbium fiber lasers and their applications

    NASA Astrophysics Data System (ADS)

    Nie, Bai

    The aim of my Ph.D. research is to push the fundamental limits holding back the development of novel Yb fiber lasers with high pulse energy and short pulse duration. The purpose of developing these lasers is to use them for important applications such as multiphoton microscopy and laser-induced breakdown spectroscopy. My first project was to develop a short-pulse high-energy ultrafast fiber laser for multiphoton microscopy. To achieve high multiphoton efficiency and depth resolved tissue imaging, ultrashort pulse duration and high pulse energy are required. In order to achieve this, an all-normal dispersion cavity design was adopted. Output performances of the built lasers were investigated by varying several cavity parameters, such as pump laser power, fiber length and intra-cavity spectral filter bandwidth. It was found that the length of the fiber preceding the gain fiber is critical to the laser performance. Generally, the shorter the fiber is, the broader the output spectrum is. The more interesting parameter is the intra-cavity spectral filter bandwidth. Counter intuitively, laser cavities using narrower bandwidth spectral filters generated much broader spectra. It was also found that fiber lasers with very narrow spectral filters produced laser pulses with parabolic profile, which are referred to as self-similar pulses or similaritons. This type of pulse can avoid wave-breaking and is an optimal approach to generate pulses with high pulse energy and ultrashort pulse duration. With a 3nm intra-cavity spectral filter, output pulses with about 20 nJ pulse energy were produced and compressed to about 41 fs full-width-at-half-maximum (FWHM) pulse duration. Due to the loss in the compression device, the peak power of the compressed pulses is about 250 kW. It was the highest peak power generated from a fiber oscillator when this work was published. This laser was used for multiphoton microscopy on living tissues like Drosophila larva and fruit fly wings. Several

  14. Reviews on laser cutting technology for industrial applications

    NASA Astrophysics Data System (ADS)

    Muangpool, T.; Pullteap, S.

    2018-03-01

    In this paper, an overview of the laser technology applied for the industrial has been reviewed. In general, this technology was used in several engineering applications such as industrial, medical, science, research sectors, etc. Focusing on the laser technology in the industrial section, it was, normally, employed for many purposes i.e. target marking, welding, drilling, and also cutting. Consequently, the laser cutting technology was, however, divided into three classifications YAG, CO2, and fiber laser, respectively. Each laser types have different advantages and disadvantages depending on the material type. The advantages by using laser cutting compared with the general cutting machines were exploited in terms of narrow kerf, high cutting speed, low heat-affected zone (HAZ), improve efficiency of the cutting process, high accuracy, etc. However, the main objectives from the technology used were increasing of the products and also decreasing the production cost. In the opposite way, some disadvantages of the technology were summarized by complexity to operate, high maintenance cost, and also high power consumption. In Thailand industry, there were many factories used this technology as a cutting process. Unfortunately, only few researches were published. It might explains that this technology were difficulty to develop, high investment, and also easy to import from aboard. For becoming to the Thailand 4.0 community, the Thailand industry might awareness to reduce the importing machine and boosting some policies to create novel innovative / know-how from the own country.

  15. Laser velocimeter application to oscillatory liquid flows

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1978-01-01

    A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.

  16. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    Seven studies were carried out using laser desorption/ionization mass spectrometry (LDI MS) to develop enhanced methodologies for a variety of analyte systems by investigating analyte chemistries, ionization processes, and elimination of spectral interferences. Applications of LDI and matrix assisted laser/desorption/ionization (MALDI) have been previously limited by poorly understood ionization phenomena, and spectral interferences from matrices. Matrix assisted laser desorption ionization MS is well suited to the analysis of proteins. However, the proteins associated with bacteriophages often form complexes which are too massive for detection with a standard MALDI mass spectrometer. As such, methodologies for pretreatment of these samples are discussed in detail in the first chapter. Pretreatment of bacteriophage samples with reducing agents disrupted disulfide linkages and allowed enhanced detection of bacteriophage proteins. The second chapter focuses on the use of MALDI MS for lipid compounds whose molecular mass is significantly less than the proteins for which MALDI is most often applied. The use of MALDI MS for lipid analysis presented unique challenges such as matrix interference and differential ionization efficiencies. It was observed that optimization of the matrix system, and addition of cationization reagents mitigated these challenges and resulted in an enhanced methodology for MALDI MS of lipids. One of the challenges commonly encountered in efforts to expand MALDI MS applications is as previously mentioned interferences introduced by organic matrix molecules. The third chapter focuses on the development of a novel inorganic matrix replacement system called metal oxide laser ionization mass spectrometry (MOLI MS). In contrast to other matrix replacements, considerable effort was devoted to elucidating the ionization mechanism. It was shown that chemisorption of analytes to the metal oxide surface produced acidic adsorbed species which then

  17. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  18. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  19. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  20. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  1. Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Benedetti, C.; Bulanov, S. S.; Gonsalves, A.; Mao, H.-S.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.

    2017-08-01

    One of the most robust methods, demonstrated to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes. In the present work, such simulations are performed using the code MARPLE. First, the process of capillary filling with cold hydrogen before the discharge is fired, through the side supply channels is simulated. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate the effectiveness of the beam coupling with the channeling plasma wave guide and of the electron acceleration, modeling of the laser-plasma interaction was performed with the code INF&RNO.

  2. Progress in ultrafast laser processing and future prospects

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  3. Application of a laser trap as a viscometer

    NASA Astrophysics Data System (ADS)

    Cooper, James; Solomon, Rance; Elrod, Samuel; Barnes, Taylor; Crawford, Cameron; Farone, Anthony; Farone, Mary; Erenso, Daniel

    2013-06-01

    A laser tweezer (LT) along with advanced imaging techniques has been widely applied to manipulate and study living as well as nonliving microscopic objects. In this study we present yet another novel application of LTs for a precise measurement of the viscosities of fluids in a micro-volume flow. We have demonstrated this novel application by measuring the viscosity of a fetal bovine serum (FBS) using a LT constructed from a single intensity gradient laser trap. By calibrating the LT using dielectric silica micro-beads in a fluid with a known viscosity, specifically water, and by suspending same size of silica beads in the FBS and trapping with the same trap, we have determined the viscosity of the FBS at different temperatures. We have used the relationship between the trapping and Stoke's drag force for a constant drag speed to determine the viscosity. We have also analyzed the viscosities determined in comparison with corresponding viscosities measured using an Ostwald viscometer.

  4. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  5. Application of laser-based profilometry to tubing in power generating utilities

    NASA Astrophysics Data System (ADS)

    Doyle, James L.

    1995-05-01

    Over the past several years lasers have been employed in an ever widening number of applications in an incredibly diverse set of markets. In the area of nondestructive testing, however, laser-based systems have only recently made inroads into the commercial markets. About ten years ago QUEST Integrated, Inc., began working with the U.S. Navy to adapt the principal of laser triangulation to solve a serious maintenance related problem. The internal surfaces of marine boiler tubes were experiencing pitting and corrosion which had resulted in catastrophic shipboard failures. At that time, conventional visual methods only allowed operators to inspect the first eighteen inches of the tube using a rigid borescope. If any pits were located, a mechanical stylus mechanism was used to obtain an approximate depth measurement of the pit. The condition of the balance of the tube was then extrapolated based on this extremely limited amount of information. Often the worst pitting was found in the bends of the tube, which could not be inspected by the visual method. Finally, a catastrophic boiler failure on an aircraft carrier resulted in the initiation of a search by the U.S. Navy for a better solution. Quest was contracted to develop an articulated probe which could negotiate the full length of a boiler tube with multiple bends, and generate a complete digital map of the inside surface. A key requirement of this probe would be rapid and quantitative measurement of internal features such as ID pits and corrosion. In 1987 QUEST delivered the first laser- optic tube inspection system to the U.S. Navy for use in marine boiler tubes. The Laser Optic Tube Inspection System (LOTISTM) was immediately put to use and paid for itself many times over in reduced maintenance costs. Over the next six years several generations of LOTIS were developed for the U.S. Navy, each one providing more capabilities, improved inspection speeds, and more user friendly operator interface. Today, LOTIS is

  6. Evaluation of thermal cooling mechanisms for laser application to teeth.

    PubMed

    Miserendino, L J; Abt, E; Wigdor, H; Miserendino, C A

    1993-01-01

    Experimental cooling methods for the prevention of thermal damage to dental pulp during laser application to teeth were compared to conventional treatment in vitro. Pulp temperature measurements were made via electrical thermistors implanted within the pulp chambers of extracted human third molar teeth. Experimental treatments consisted of lasing without cooling, lasing with cooling, laser pulsing, and high-speed dental rotary drilling. Comparisons of pulp temperature elevation measurements for each group demonstrated that cooling by an air and water spray during lasing significantly reduced heat transfer to dental pulp. Laser exposures followed by an air and water spray resulted in pulp temperature changes comparable to conventional treatment by drilling. Cooling by an air water spray with evacuation appears to be an effective method for the prevention of thermal damage to vital teeth following laser exposure.

  7. Comparison of three methods reducing the beam parameter product of a laser diode stack for long range laser illumination applications

    NASA Astrophysics Data System (ADS)

    Lutz, Yves; Poyet, Jean-Michel; Metzger, Nicolas

    2013-10-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is well suited for long-range image recording. Even when laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) microlenses, their beam parameter product (BPP) are not compatible with a direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long range applications. To overcome these difficulties, we conducted investigations in three different ways. A first near infrared illuminator based on the use of conductively cooled mini-bars was designed, realized and successfully tested during outdoor experimentations. This custom specified stack was then replaced in a second step by an off-the-shelf FAC + SAC micro lensed stack where the brightness was increased by polarization overlapping. The third method still based on a commercial laser diode stack uses a non imaging optical shaping principle resulting in a virtually restacked laser source with enhanced beam parameters. This low cost, efficient and low alignment sensitivity beam shaping method allows obtaining a compact and high performance laser diode illuminator for long range active imaging applications. The three methods are presented and compared in this paper.

  8. Evaluation of IMS - Swedish Laser road tester : final report.

    DOT National Transportation Integrated Search

    1990-09-01

    A test of the IMS - Swedish Laser road tester was conducted in September 1988. The vehicle mounted laser equipment was used to survey pavement conditions on sections of Oregon's Interstate and non-interstate highway system. : The IMS laser equipment ...

  9. New quantum cascade laser sources for sensing applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Troccoli, Mariano

    2017-05-01

    In this presentation we will review our most recent results on development of Quantum Cascade Lasers (QCLs) for analytical and industrial applications. QCLs have demonstrated the capability to cover the entire range of Mid-IR, Far-IR, and THz wavelengths by skillful tuning of the material design and composition and by use of intrinsic material properties via a set of techniques collectively called "bandgap engineering". The use of MOCVD, pioneered on industrial scale by AdTech Optics, has enabled the deployment of QCL devices into a diverse range of environments and applications. QCLs can be tailored to the specific application requirements due to their unprecedented flexibility in design and thanks to the leveraging of well-known III-V fabrication technologies inherited from the NIR domain. Nevertheless, several applications and new frontiers in R and D need the constant support of new developments in device features, capabilities, and performances. We have developed a wide range of devices, from high power, high efficiency multi-mode sources, to narrow-band, single mode devices with low-power consumption, and from non-linear, multi-wavelength generating devices to broadband sources and multi-emitter arrays. All our devices are grown and processed using MOCVD technology and allow us to attain competitive performances across the whole mid-IR spectral range. This talk will present an overview of our current achievements. References 1. M. Troccoli, "High power emission and single mode operation of quantum cascade lasers for industrial applications", J. Sel. Topics in Quantum Electron., 21 (6), 1-7 (2015). Invited Review. 2. Seungyong Jung, Aiting Jiang, Yifan Jiang, Karun Vijayraghavan, Xiaojun Wang, Mariano Troccoli, and Mikhail A. Belkin, "Broadly Tunable Monolithic Terahertz Quantum Cascade Laser Sources", Nature Comm. 5, 4267 (2014).. 3. Mariano Troccoli, Arkadiy Lyakh, Jenyu Fan, Xiaojun Wang, Richard Maulini, Alexei G Tsekoun, Rowel Go, C Kumar N Patel, "Long

  10. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  11. Method for laser spot welding monitoring

    NASA Astrophysics Data System (ADS)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  12. Gas Lasers

    NASA Astrophysics Data System (ADS)

    Dixit, S. K.

    The field of gas lasers, started with the invention of He-Ne laser in 1961, has witnessed tremendous growth in terms of technology development, research into gaseous gain medium, resonator physics and application in widely diverse arenas. This was possible due to high versatility of gas lasers in terms of operating wavelengths, power, beam quality and mode of operation. In recent years, there is a definite trend to replace the gas lasers, wherever possible, by more efficient and compact solid-state lasers. However, for many industrial, medical and military applications, the gas lasers still rule the roost due to their high-power capabilities with good beam quality at specific wavelengths. This chapter presents a short review covering the operating principle, important technical details and application potential of all the important gas lasers such as He-Ne, CO2, argon ion, copper vapour, excimer and chemical lasers. These neutral atoms, ions and molecule gas lasers are discussed as per applicable electrical, chemical and optical excitation schemes. The optically pumped gas lasers, recently experiencing resurgence, are discussed in the context of far infrared THz molecular lasers, diode-pumped alkali lasers and optically pumped gas-filled hollow-core fibre lasers.

  13. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  14. Development of highly efficient laser bars emitting at around 1060 nm for medical applications

    NASA Astrophysics Data System (ADS)

    Pietrzak, Agnieszka; Zorn, Martin; Meusel, Jens; Huelsewede, Ralf; Sebastian, Juergen

    2018-02-01

    An overview is presented on the recent progress in the development of high power laser bars at wavelengths around 1060nm. The development is focused on highly efficient and reliable laser performance under pulsed operation for medical applications. The epitaxial structure and lateral layout of the laser bars were tailored to meet the application requirements. Reliable operation peak powers of 350W and 500W are demonstrated from laser bars with fill-factor FF=75% and resonator lengths 1.5mm and 2.0mm, respectively. Moreover, 60W at current 65A with lifetime <10.000h are presented. The power scaling with fill-factor enables a cost reduction ($/W) up to 35%.

  15. AlGaInN laser diode technology for defence, security and sensing applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2014-10-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of <100mW in the 400-420nm wavelength range that are suitable for telecom applications. Visible light communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Gallium-nitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.or.

  16. Review of selective laser melting: Materials and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, C. Y., E-mail: cyap001@e.ntu.edu.sg; Energy Research Institute @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Block S2 - B3a - 01, Singapore 639798; Chua, C. K., E-mail: mckchua@ntu.edu.sg

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power lasermore » have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.« less

  17. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  18. Laser surface texturing of polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  19. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  20. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  1. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  2. High power lasers: Sources, laser-material interactions, high excitations, and fast dynamics in laser processing and industrial applications; Proceedings of the Meeting, The Hague, Netherlands, Mar. 31-Apr. 3, 1987

    NASA Technical Reports Server (NTRS)

    Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)

    1987-01-01

    The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.

  3. LDRD Final Report for''Tactical Laser Weapons for Defense'' SI (Tracking Code 01-SI-011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R; Zapata, L

    The focus of this project was a convincing demonstration of two new technological approaches to high beam quality; high average power solid-state laser systems that would be of interest for tactical laser weapon applications. Two pathways had been identified to such systems that built on existing thin disk and fiber laser technologies. This SI was used as seed funding to further develop and vet these ideas. Significantly, the LLNL specific enhancements to these proposed technology paths were specifically addressed for devising systems scaleable to the 100 kW average power level. In the course of performing this work we have establishedmore » an intellectual property base that protects and distinguishes us from other competitive approaches to the same end.« less

  4. Tunable Single-Frequency Near IR Lasers for DIAL Applications

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Marquardt, John H.; Carrig, Timothy J.; Gatt, Phil; Smith, Duane D.; Hale, Charley P.

    2000-01-01

    Tunable single-frequency sources in the 2-4 micron wavelength region are useful for remote DIAL measurements of chemicals and pollutants. We are developing tunable single-frequency transmitters and receivers for both direct and coherent detection lidar measurement applications. We have demonstrated a direct-diode-pumped PPLN-based OPO that operates single frequency, produces greater than 10 mW cw and is tunable over the 2.5 - 3.9 micron wavelength region. This laser has been used to injection seed a pulsed PPLN OPO, pumped by a 1.064 micron Nd:YAG laser, producing 50-100 microJoule single-frequency pulses at 100 Hz PRF near 3.6 micron wavelength. In addition, we have demonstrated a cw Cr:ZnSe laser that is tunable over the 2.1 - 2.8 micron wavelength region. This laser is pumped by a cw diode-pumped Tm:YALO laser and has produced over 1.8 W cw. Tm- and Tm, Ho-doped single-frequency solid-state lasers that produce over 50 mW cw and are tunable over approximately 10 nm in the 2 -2.1 micron band with fast PZT tuning have also been demonstrated. A fast PZT-tunable Tm, Ho:YLF laser was used for a direct-detection column content DIAL measurement of atmospheric CO2. Modeling shows that that all these cw and pulsed sources are useful for column-content coherent DIAL measurements at several km range using topographic targets.

  5. Spectroscopic characterization of iron-doped II-VI compounds for laser applications

    NASA Astrophysics Data System (ADS)

    Martinez, Alan

    The middle Infrared (mid-IR) region of the electromagnetic spectrum between 2 and 15 ?m has many features which are of interest to a variety of fields such as molecular spectroscopy, biomedical applications, industrial process control, oil prospecting, free-space communication and defense-related applications. Because of this, there is a demand for broadly tunable, laser sources operating over this spectral region which can be easily and inexpensively produced. II-VI semiconductor materials doped with transition metals (TM) such as Co 2+, Cr2+, or Fe2+ exhibit highly favorable spectroscopic characteristics for mid-IR laser applications. Among these TM dopants, Fe2+ has absorption and emission which extend the farthest into the longer wavelength portion of the mid-IR. Fe2+:II-VI crystals have been utilized as gain elements in laser systems broadly tunable over the 3-5.5 microm range [1] and as saturable absorbers to Q -switch [2] and mode-lock [3] laser cavities operating over the 2.7-3 microm. TM:II-VI laser gain elements can be fabricated inexpensively by means of post-growth thermal diffusion with large homogeneous dopant concentration and good optical quality[4,5]. The work outlined in this dissertation will focus on the spectroscopic characterization of TM-doped II-VI semiconductors. This work can be categorized into three major thrusts: 1) the development of novel laser materials, 2) improving and extending applications of TM:II-VI crystals as saturable absorbers, and 3) fabrication of laser active bulk crystals. Because current laser sources based on TM:II-VI materials do not cover the entire mid-IR spectral region, it is necessary to explore novel laser sources to extend available emissions toward longer wavelengths. The first objective of this dissertation is the spectroscopic characterization of novel ternary host crystals doped with Fe2+ ions. Using crystal field engineering, laser materials can be prepared with emissions placed in spectral regions not

  6. The harmonic state of quantum cascade lasers: origin, control, and prospective applications [Invited].

    PubMed

    Piccardo, Marco; Chevalier, Paul; Mansuripur, Tobias S; Kazakov, Dmitry; Wang, Yongrui; Rubin, Noah A; Meadowcroft, Lauren; Belyanin, Alexey; Capasso, Federico

    2018-04-16

    The recently discovered ability of the quantum cascade laser to produce a harmonic frequency comb has attracted new interest in these devices for both applications and fundamental laser physics. In this review we present an extensive experimental phenomenology of the harmonic state, including its appearance in mid-infrared and terahertz quantum cascade lasers, studies of its destabilization induced by delayed optical feedback, and the assessment of its frequency comb nature. A theoretical model explaining its origin as due to the mutual interaction of population gratings and population pulsations inside the laser cavity will be described. We explore different approaches to control the spacing of the harmonic state, such as optical injection seeding and variation of the device temperature. Prospective applications of the harmonic state include microwave and terahertz generation, picosecond pulse generation in the mid-infrared, and broadband spectroscopy.

  7. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  8. Building block diode laser concept for high brightness laser output in the kW range and its applications

    NASA Astrophysics Data System (ADS)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). In the next steps, further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with about 500 W launched into a 100 μm fiber with 0.15 NA. Higher power levels can be achieved by stacking those building blocks using the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific

  9. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  10. Study of pseudo noise CW diode laser for ranging applications

    NASA Technical Reports Server (NTRS)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  11. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  12. The design and development of CO2 medium-level laser power calibration system for industrial and medical applications in Thailand

    NASA Astrophysics Data System (ADS)

    Nontapot, Kanokwan

    2018-03-01

    The carbon dioxide laser (CO2 laser) is one of the most useful and is the highest CW laser at the present. The laser produces infrared light at 10.6 um. Due to its high power, CO2 lasers are usually used in industrial applications such as cutting and welding, or for engraving at less power. CO2 lasers are also used widely in medical applications, such as laser surgery, skin resurfacing, and removing mold, due to water (biological tissue) absorb light at this wavelength very well. CO2 lasers are also used as LIDAR laser source for military range finding applications because of the transparency of the atmosphere to infrared light. Due to the increasing use of CO2 lasers laser in industrial and medical applications in Thailand, the National Institute of Metrology (Thailand) has set up a CO2 laser power calibration system and provide calibration service to customers this year. The service support calibration of medium-level laser power at wavelength of 10.6 um and at power range 100 mW-10W. The design and development of the calibration system will be presented.

  13. Laser Hot Wire Process: A Novel Process for Near-Net Shape Fabrication for High-Throughput Applications

    NASA Astrophysics Data System (ADS)

    Kottman, Michael; Zhang, Shenjia; McGuffin-Cawley, James; Denney, Paul; Narayanan, Badri K.

    2015-03-01

    The laser hot wire process has gained considerable interest for additive manufacturing applications, leveraging its high deposition rate, low dilution, thermal stability, and general metallurgical control including the ability to introduce and preserve desired meta-stable phases. Recent advancements in closed-loop process control and laser technology have increased productivity, process stability, and control of deposit metallurgy. The laser hot wire process has shown success in several applications: repairing and rejuvenating casting dies, depositing a variety of alloys including abrasion wear-resistant overlays with solid and tubular wires, and producing low-dilution (<5%) nickel alloy overlays for corrosion applications. The feasibility of fabricating titanium buildups is being assessed for aerospace applications.

  14. Diode-pumped solid state green laser for ophthalmologic application

    NASA Astrophysics Data System (ADS)

    Eno, Taizo; Goto, Yoshiaki; Momiuchi, Masayuki

    2002-10-01

    We have developed diode pumped solid state green laser suitable for ophthalmologic applications. Beam parameters were designed by considering the coagulation system. We have lowered the beam quality to multi transverse and longitudinal mode on purpose to improve the speckle noise of the slit lamp output beam. The beam profile shows homogeneous intensity and it is very useful for ophthalmologic application. End pumping and short cavity configuration made it possible.

  15. Final Report: Laser-Based Optical Trap for Remote Sampling of Interplanetary and Atmospheric Particulate Matter

    NASA Technical Reports Server (NTRS)

    Stysley, Paul

    2016-01-01

    Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.

  16. Heterogeneous Silicon III-V Mode-Locked Lasers

    NASA Astrophysics Data System (ADS)

    Davenport, Michael Loehrlein

    Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.

  17. Laser applications in ophthalmology: overview

    NASA Astrophysics Data System (ADS)

    Soederberg, Per G.

    1992-03-01

    In 1961, one year after its invention, the laser was used for experimental photocoagulation in animals. In 1963 it was tried for treatment of human eyes. Due to the fact that the optical media in the eye are transmissible to light, the laser offers the unique possibility of measuring and manipulating within a very strict localization without opening the eye. The properties of laser light are increasingly exploited for diagnostics in ophthalmic disease. The introduction of the laser as a tool in ophthalmology has revolutionized ophthalmic treatment. Unfortunately, it has been pointed out in international peace meetings that the biological effect evoked by lasers can also be used for intentional destruction of the vision of enemy soldiers. To prevent such an abuse of lasers against eyes, a strong formal international anti-laser weapon movement has been initiated.

  18. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less

  19. Lasers in clinical ophthalmology

    NASA Astrophysics Data System (ADS)

    Ribeiro, Paulo A.

    1992-03-01

    The clinical application of lasers in ophthalmology is schematized, showing for each anatomic eye structure, pathologies that may be treated through this procedure. In the cornea, the unusual laser practice for suture removals and the promising possibility of the excimer laser in refractive surgery are discussed. In the iris, the camerular angle, and the ciliary body, the laser application is essentially used to treat the glaucoma and other situations that are not so frequent. The capsulotomy with YAG LASER is used in the treatment of structures related with crystalline and, at least, the treatment of the retina and choroid pathology is expanded. A. A. explained the primordial interest and important of laser in the diabetic retinopathy treatment and some results in patients with more than 5 years of evolution are: 55 of the patients with proliferative diabetic retinopathy (RDP) treated for more than 5 years noticed their vision improved or stabilized; 5 years after treating patients with PDR, 49.3 had their vision stabilized or even improved, provided the diabetics had declared itself more than 20 years ago, versus 61.7 provided the diabetics had declared itself less than 20 years before; finally, 53.8 of the patients under 40-years-old when the diabetics was diagnosed, had their vision improved or at least stabilized 5 years after the beginning of the treatment. On the other side, when patients were over 40 years old when the diabetics was diagnosed percentage increased to 55.9. This study was established in the follow-up of 149 cases over 10 years.

  20. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  1. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants.

  2. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  3. Clinical Application of Diode Laser (980 nm) in Maxillofacial Surgical Procedures.

    PubMed

    Aldelaimi, Tahrir N; Khalil, Afrah A

    2015-06-01

    For many procedures, lasers are now becoming the treatment of choice by both clinicians and patients, and in some cases, the standard of care. This clinical study was carried out at Department of Maxillofacial Surgery, Ramadi Teaching Hospital, Rashid Private Hospital and Razi Private Hospital, Anbar Health Directorate, Anbar Province, Iraq. A total of 32 patients including 22 (≈ 70%) male and 10 (≈ 30%) female with age range from 5 months to 34 years old. Chirolas 20 W diode laser emitting at 980 nm was used. Our preliminary clinical findings include sufficient hemostasis, coagulation properties, precise incision margin, lack of swelling, bleeding, pain, scar tissue formation and overall satisfaction were observed in the clinical application. The clinical application of the diode (980 nm) laser in maxillofacial surgery proved to be of beneficial effect for daily practice and considered practical, effective, easy to used, offers a safe, acceptable, and impressive alternative for conventional surgical techniques.

  4. PREFACE: Plasma Physics by Laser and Applications 2013 Conference (PPLA2013)

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Giulietti, D.; Torrisi, L.; Delle Side, D.

    2014-04-01

    The ''Plasma Physics by Laser and Applications'' Conference (PPLA 2013) is a biennial meeting in which the National teams involved in Laser-Plasma Interaction at high intensities communicate their late results comparing with the colleagues from the most important European Laser Facilities. The sixth appointment has been organized in Lecce, Italy, from 2 to 4 October 2013 at the Rector Palace of the University of Salento. Surprising results obtained by laser-matter interaction at high intensities, as well as, non-equilibrium plasma generation, laser-plasma acceleration and related secondary sources, diagnostic methodologies and applications based on lasers and plasma pulses have transferred to researchers the enthusiasm to perform experiments ad maiora. The plasma generated by powerful laser pulses produces high kinetic particles and energetic photons that may be employed in different fields, from medicine to microelectronics, from engineering to nuclear fusion, from chemistry to environment. A relevant interest concerns the understanding of the fundamental physical phenomena, the employed lasers, plasma diagnostics and their consequent applications. For this reason we need continuous updates, meetings and expertise exchanges in this field in order to follow the evolution and disclose information, that has been done this year in Lecce, discussing and comparing the experiences gained in various international laboratories. The conference duration, although limited to just 3 days, permitted to highlight important aspects of the research in the aforementioned fields, giving discussion opportunities about the activities of researchers of high international prestige. The program consisted of 10 invited talks, 17 oral talks and 17 poster contributions for a total of 44 communications. The presented themes covered different areas and, far from being exhaustive gave updates, stimulating useful scientific discussions. The Organizers belong to three Italian Universities

  5. Developments in laser Doppler blood perfusion monitoring

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; de Mul, Frits F. M.; Nilsson, Gert E.; Maniewski, Roman; Liebert, Adam

    2003-03-01

    This paper reviews the development and use of laser Doppler perfusion monitors and imagers. Despite their great success and almost universal applicability in microcirculation research, they have had great difficulty in converting to widespread clinical application. The enormous interest in microvascular blood perfusion coupled with the 'ease of use' of the technique has led to 2000+ publications citing its use. However, useful results can only be achieved with an understanding of the basic principles of the instrumentation and its application in the various clinical disciplines. The basic technical background is explored and definitions of blood perfusion and laser Doppler perfusion are established. The calibration method is then described together with potential routes to standardisation. A guide to the limitations in application of the technique gives the user a clear indication of what can be achieved in new studies as well as possible inadequacy in some published investigations. Finally some clinical applications have found acceptability and these will be explored.

  6. Hermetic diode laser transmitter module

    NASA Astrophysics Data System (ADS)

    Ollila, Jyrki; Kautio, Kari; Vahakangas, Jouko; Hannula, Tapio; Kopola, Harri K.; Oikarinen, Jorma; Sivonen, Matti

    1999-04-01

    In very demanding optoelectronic sensor applications it is necessary to encapsulate semiconductor components hermetically in metal housings to ensure reliable operation of the sensor. In this paper we report on the development work to package a laser diode transmitter module for a time- off-light distance sensor application. The module consists of a lens, laser diode, electronic circuit and optomechanics. Specifications include high acceleration, -40....+75 degree(s)C temperature range, very low gas leakage and mass-production capability. We have applied solder glasses for sealing optical lenses and electrical leads hermetically into a metal case. The lens-metal case sealing has been made by using a special soldering glass preform preserving the optical quality of the lens. The metal housings are finally sealed in an inert atmosphere by welding. The assembly concept to retain excellent optical power and tight optical axis alignment specifications is described. The reliability of the laser modules manufactured has been extensively tested using different aging and environmental test procedures. Sealed packages achieve MIL- 883 standard requirements for gas leakage.

  7. LIGHT - from laser ion acceleration to future applications

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Light Collaboration

    2013-10-01

    Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.

  8. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  9. Laser mass spectrometry for DNA fingerprinting for forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.H.; Tang, K.; Taranenko, N.I.

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals.more » DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.« less

  10. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application: A treatment option for pediatric cutaneous leishmaniasis.

    PubMed

    Hilerowicz, Yuval; Koren, Amir; Mashiah, Jacob; Katz, Oren; Sprecher, Eli; Artzi, Ofir

    2018-05-01

    Leishmaniasis is a protozoan zoonotic parasitic infection with cutaneous, mucocutaneous, and visceral manifestations. Israel is endemic for cutaneous leishmaniasis, which is a self-limited disease but is associated with scarring, which is often a source of psychological and social burden for patients. Scars can be especially devastating for children and teenagers. A wide range of physical and medical approaches is used to treat cutaneous leishmaniasis, among which intralesional injections of sodium stibogluconate rank among the most frequently used. Unfortunately, despite being effective, this therapeutic modality can be very painful. Fractional ablative laser creates a controlled mesh-like pattern of tissue ablation in the skin that promotes dermal remodeling and collagen production while at the same time facilitating enhanced delivery of topically applied medications. Patients were treated with fractional ablative carbon dioxide laser followed by immediate topical application of sodium stibogluconate. All children were diagnosed with cutaneous leishmaniasis prior to treatment initiation.. Ten children were treated. One leishmania tropica-positive girl failed to respond. The other nine patients achieved clinical cure and demonstrated good to excellent final cosmesis. Self-rated patient satisfaction and tolerance were high No adverse effects were observed or reported during treatment. Fractional ablative carbon dioxide laser followed by topical sodium stibogluconate application appears to be a safe and promising treatment for cutaneous leishmaniasis infection in children. Future controlled studies are required to validate these findings and compare this technique with traditional approaches. © 2018 Wiley Periodicals, Inc.

  11. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1992-01-01

    Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.

  12. Very compact and high-power CW self-Raman laser for ophthalmological applications

    NASA Astrophysics Data System (ADS)

    Ortega, Tiago A.; Mota, Alessandro D.; Rossi, Giuliano; C. de Castro, Guilherme; Fontes, Yuri C.; Costal, Glauco Z.; Yasuoka, Fatima M. M.; Stefani, Mario A.; Lee, Andrew; Pask, Helen; C. de Castro N., Jarbas

    2010-02-01

    In this work, we present a continuous-wave yellow laser operating at 586.5nm based on self-Raman conversion in Nd:GdVO4. We report more than 4.2W CW and 5.5W instantaneous output at a 50% duty cycle regime. This is the highest CW power of a self-Raman laser to be reported so far. We also demonstrate the integration of this laser cavity into a console for applications in ophthalmology, and more specifically for retinal photocoagulation therapies.

  13. Optical simulations of laser focusing for optimization of laser betatron

    NASA Astrophysics Data System (ADS)

    Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.

    2017-05-01

    This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.

  14. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jacob O.

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energymore » loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.« less

  15. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    these studies revealed that all laser parameters and tissue properties had a substantial influence on HG. The dynamic relationship between optical breakdown and HG was responsible for many observed changes in HG metrics. The results also demonstrated that the new generation of therapeutic FSLs has the potential to generate hazardous effects if not carefully controlled. Finally, recommendations are made to optimize current and guide future FSL applications.

  16. A 25kW fiber-coupled diode laser for pumping applications

    NASA Astrophysics Data System (ADS)

    Malchus, Joerg; Krause, Volker; Koesters, Arnd; Matthews, David G.

    2014-03-01

    In this paper we report the development of a new fiber-coupled diode laser for pumping applications capable of generating 25 kW with four wavelengths. The delivery fiber has 2.0 mm core diameter and 0.22 NA resulting in a Beam Parameter Product (BPP) of 220 mm mrad. To achieve the specifications mentioned above a novel beam transformation technique has been developed combining two high power laser stacks in one common module. After fast axis collimation and beam reformatting a beam with a BPP of 200 mm mrad x 40 mm mrad in the slow and fast-axis is generated. Based on this architecture a customer-specific pump laser with 25 kW optical output power has been developed, in which two modules are polarization multiplexed for each wavelength (980nm, 1020nm, 1040m and 1060nm). After slow-axis collimation these wavelengths are combined using dense wavelength coupling before focusing onto the fiber endface. This new laser is based on a turn-key platform, allowing straight-forward integration into any pump application. The complete system has a footprint of less than 1.4m² and a height of less than 1.8m. The laser diodes are water cooled, achieve a wall-plug efficiency of up to 60%, and have a proven lifetime of <30,000 hours. The new beam transformation techniques open up prospects for the development of pump sources with more than 100kW of optical output power.

  17. High power visible diode laser for the treatment of eye diseases by laser coagulation

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  18. Application research of rail transit safety protection based on laser detection

    NASA Astrophysics Data System (ADS)

    Wang, Zhifei

    2016-10-01

    Platform screen door can not only prevent the passengers fell or jumped the track danger, to passengers bring comfortable waiting environment, but also has the function of environmental protection and energy saving. But platform screen door and train the full-length gap region is insecure in the system design of a hidden, such as passengers for some reason (grab the train) in the interstitial region retention, is sandwiched between the intercity safety door and the door, and such as the region lacks security detection and alarm system, once the passengers in the gap region retention (caught), bring more serious threat to the safety of passengers and traffic safety. This paper from the point of view of the design presents the physical, infrared, laser three safety protection device setting schemes. Domestic intelligence of between rail transit shield door and train security clearance processing used is screen door system standard configuration, the obstacle detection function for avoid passengers stranded in the clearance has strong prevention function. Laser detection research and development projects can access to prevent shield door and train gap clamp safety measures. Rail safety protection method are studied applying laser detection technique. According to the laser reflection equation of foreign body, the characteristics of laser detection of foreign bodies are given in theory. By using statistical analysis method, the workflow of laser detection system is established. On this basis, protection methods is proposed. Finally the simulation and test results show that the laser detection technology in the rail traffic safety protection reliability and stability, And the future laser detection technology in is discussed the development of rail transit.

  19. Speckle reduction in laser projection using a dynamic deformable mirror.

    PubMed

    Tran, Thi-Kim-Trinh; Chen, Xuyuan; Svensen, Øyvind; Akram, Muhammad Nadeem

    2014-05-05

    Despite of much effort and significant progress in recent years, speckle removal is still a challenge for laser projection technology. In this paper, speckle reduction by dynamic deformable mirror was investigated. Time varying independent speckle patterns were generated due to the angle diversity introduced by the dynamic mirror, and these speckle patterns were averaged out by the camera or human eyes, thus reducing speckle contrast in the final image. The speckle reduction by the wavelength diversity of the lasers was also studied. Both broadband lasers and narrowband laser were used for experiment. It is experimentally shown that speckle suppression can be attained by the widening of the spectrum of the lasers. Lower speckle contrast reduction was attained by the wavelength diversity for narrowband laser compared to the broadband lasers. This method of speckle reduction is suitable in laser projectors for wide screen applications where high power laser illumination is needed.

  20. Ultrashort laser pulse processing of wave guides for medical applications

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert

    2003-06-01

    The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  1. The Effect of Final Rinse Agitation with Ultrasonic or 808 nm Diode Laser on Coronal Microleakage of Root-canal Treated Teeth.

    PubMed

    Ramazani, Mohsen; Asnaashari, Mohammad; Ahmadi, Roghayyeh; Zarenejad, Nafiseh; Rafie, Alireza; Yazadani Charati, Jamshid

    2018-01-01

    This in vitro study aimed at comparing the effect of agitating the final irrigant solutions of root canal by ultrasonic or using 808 nm Diode laser on the apical seal of canal. A total of 90 extracted human maxillary central incisors were prepared up to size #45 and were randomly assigned to 4 experimental groups ( n =20) and two control groups ( n =5) respectively, as follows: I ): 3 mL of 5.25% NaOCl was agitated as final irrigant solution with ultrasonic for 30 sec. The ultrasonic tip was 1 mm shorter than the working length, II ): 3 mL of 5.25% NaOCl was agitated as final irrigant with 808 nm Diode laser for 30 sec. Fiber tip, placed in 1 mm shorter from working length was spirally moved coronally, III ): 3 mL of 17% EDTA was agitated as final irrigant with 808 nm Diode laser for 30 sec and was applied similar to group II, IV ): 3 mL of 17% EDTA was stimulated as final irrigant with ultrasonic for 30 sec and was applied similar to I. Apical seal was assessed by Dual Chamber technique using Bovine Serum Albumin protein. Kruskal-Wallis and Mann Whitney tests were used with significance level lower than 0.05% for statistical analysis. The average leakage in the negative control, positive control, and groups I, II, III, IV were: 0.00, 13.5±5.1, 1.72±2.9, 5.12±5.6, 3.36±3.7, 2.4±4.2, respectively. Statistical analysis showed significant difference between groups ( P <0.05). There was a significant difference between groups 1 and 2 in terms of protein leakage . Agitating 5.25% sodium hypochlorite solution as the final irrigant with ultrasonic is more effective in apical leakage reduction compared to other groups.

  2. Multi-Wavelength Mode-Locked Laser Arrays for WDM Applications

    NASA Technical Reports Server (NTRS)

    Davis, L.; Young, M.; Dougherty, D.; Keo, S.; Muller, R.; Maker, P.

    1998-01-01

    Multi-wavelength arrays of colliding pulse mode-locked (CPM) lasers have been demonstrated for wavelength division multiplexing (WDM) applications. The need for increased bandwidth is driving the development of both increased speed in time division multiplexing (TDM) and more channels in WDM for fiber optic communication systems.

  3. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    DOE PAGES

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; ...

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperaturesmore » also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.« less

  4. Development of trivalent ytterbium doped fluorapatites for diode-pumped laser applications

    NASA Astrophysics Data System (ADS)

    Bayramian, Andrew James

    2000-11-01

    A major motivator of this work is the Mercury Project, a one kilowatt diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL), which incorporates ytterbium doped strontium fluorapatite, Sr5(PO4)3F (S-FAP), as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material, which is necessary for proper design and modeling of the system. Ytterbium-doped fluorapatites were investigated at LLNL prior to this work and found to be ideal candidate materials for high-power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals was grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Srs5-xBax(PO4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8X enhancement) of absorption bandwidth and 6.9 nm (1.4X enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 with homogeneous extraction using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The crystal quality of Czochralski grown Yb:S-FAP boules, which is effected by defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. Stimulated Raman Scattering (SRS) losses were evaluated by first measuring the SRS gain coefficient to be 1.3 cm/GW, then modeling the losses in the Mercury amplifier system. Countermeasures including the addition of bandwidth to the extraction beam and wedging of amplifier surfaces are shown to reduce the SRS losses allowing efficient laser gain extraction at higher intensities. Finally, an efficient Q-switched Yb:S-FAP oscillator

  5. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    PubMed

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  6. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  7. Hybrid semiconductor fiber lasers for telecommunications

    NASA Astrophysics Data System (ADS)

    Khalili, Alireza

    2006-12-01

    Highly stable edge emitting semiconductor lasers are of utmost importance in most telecommunications applications where high-speed data transmission sets strict limits on the purity of the laser signal. Unfortunately, most edge emitting semiconductor lasers, unlike gaseous or solid-state laser sources, operate with many closely spaced axial modes, which accounts for the observed instability and large spikes in the output spectrum of such lasers. Consequently, in most telecom applications distributed feedback (DFB) or distributed Bragg reflector (DBR) techniques are used to ensure stability and single-frequency operation, further adding to the cost and complexity of such lasers. Additionally, coupling of the highly elliptical output beam of these lasers to singlemode fibers complicates the packaging procedure and sub-micron alignment of various optical components is often necessary. Utilizing the evanescent coupling between a semiconductor antiresonant reflecting optical waveguide (ARROW) and a side polished fiber, this thesis presents an alternative side-coupled laser module that eliminates the need for the cumbersome multi-component alignment processes of conventional laser packages, and creates an inherent mode selection mechanism that guarantees singlemode radiation into the fiber without any gratings. We have been able to demonstrate the first side-coupled fiber semiconductor laser in this technology, coupling more than 3mW of power at 850nm directly into a 5/125mum singlemode fiber. This mixed-cavity architecture yields a high thermal stability (˜0.06nm/°C), and negligible spectral spikes are observed. Theoretical background and simulation results, as well as several supplementary materials are also presented to further rationalize the experimental data. A side-coupled light-emitter and pre-amplifier are also proposed and discussed. We also study different architectures for attaining higher efficiency, higher output power, and wavelength tunability in such

  8. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  9. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is onmore » the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.« less

  10. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final...

  11. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2012-01-01 2012-01-01 false Contents of applications; technical information in final...

  12. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2014-01-01 2014-01-01 false Contents of applications; technical information in final...

  13. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2011-01-01 2011-01-01 false Contents of applications; technical information in final...

  14. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Matthew

    2015-08-20

    By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performancesmore » when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.« less

  15. Application of a 980-nanometer diode laser in neuroendoscopy: a case series.

    PubMed

    Reis, Rodolfo Casimiro; Teixeira, Manoel Jacobsen; Mancini, Marilia Wellichan; Almeida-Lopes, Luciana; de Oliveira, Matheus Fernandes; Pinto, Fernando Campos Gomes

    2016-02-01

    Ventricular neuroendoscopy represents an important advance in the treatment of hydrocephalus. High-power (surgical) Nd:YAG laser and low-level laser therapy (using 685-nm-wavelength diode laser) have been used in conjunction with neuroendoscopy with favorable results. This study evaluated the use of surgical 980-nm-wavelength diode laser for the neuroendoscopic treatment of ventricular diseases. Nine patients underwent a neuroendoscopic procedure with 980-nm diode laser. Complications and follow-up were recorded. Three in-hospital postoperative complications were recorded (1 intraventricular hemorrhage and 2 meningitis cases). The remaining 6 patients had symptom improvement after endoscopic surgery and were discharged from the hospital within 24-48 hours after surgery. Patients were followed for an average of 14 months: 1 patient developed meningitis and another died suddenly at home. The other patients did well and were asymptomatic until the last follow-up consultation. The 980-nm diode laser is considered an important therapeutic tool for endoscopic neurological surgeries. This study showed its application in different ventricular diseases.

  16. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  17. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    PubMed

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  18. Nanosecond pulse lasers for retinal applications.

    PubMed

    Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J

    2011-08-01

    Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have

  19. Review of the development of laser fluorosensors for oil spill application.

    PubMed

    Brown, Carl E; Fingas, Mervin F

    2003-01-01

    As laser fluorosensors provide their own source of excitation, they are known as active sensors. Being active sensors, laser fluorosensors can be employed around the clock, in daylight or in total darkness. Certain compounds, such as aromatic hydrocarbons, present in petroleum oils absorb ultraviolet laser light and become electronically excited. This excitation is quickly removed by the process of fluorescence emission, primarily in the visible region of the spectrum. By careful choice of the excitation laser wavelength and range-gated detection at selected emission wavelengths, petroleum oils can be detected and classified into three broad categories: light refined, crude or heavy refined. This paper will review the development of laser fluorosensors for oil spill application, with emphasis on system components such as excitation laser source, and detection schemes that allow these unique sensors to be employed for the detection and classification of petroleum oils. There have been a number of laser fluorosensors developed in recent years, many of which are strictly research and development tools. Certain of these fluorosensors have been ship-borne instruments that have been mounted in aircraft for the occasional airborne mission. Other systems are mounted permanently on aircraft for use in either surveillance or spill response roles.

  20. Infrared glass fiber cables for CO laser medical applications

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Sensaki, Koji; Kikuchi, Makoto; Watanabe, Tamishige; Utsumi, Atsushi; Takeuchi, Kiyoshi; Akai, Yoshiro

    1993-05-01

    We developed the medical fiber cables which were designed for CO laser therapy, i.e., angioplasty and endoscopic therapy. As-S chalcogenide glass fibers were used for CO laser delivery. A 230 micrometers core-diameter fiber was used for the angioplasty laser cable. The outer diameter of this cable was 600 micrometers . The total length and insertion length of the angioplasty laser cable were 2.5 m and 1.0 m, respectively. Typically, 2.0 W of fiber output was used in the animal experiment in vivo for the ablation of the model plaque which consisted of human atheromatous aorta wall. The transmission of the angioplasty laser cable was approximately 35%, because the reflection loss occurred at both ends of the fiber and window. Meanwhile, the core diameter of the energy delivery fiber for the endoscopic therapy was 450 micrometers . The outer diameter of this cable was 1.7 mm. Approximately 4.5 W of fiber output was used for clinical treatment of pneumothorax through a pneumoscope. Both types of the cables had the ultra-thin thermocouples for temperature monitoring at the tip of the cables. This temperature monitoring was extremely useful to prevent the thermal destruction of the fiber tip. Moreover, the As-S glass fibers were completely sealed by the CaF2 windows and outer tubes. Therefore, these cables were considered to have sufficient safety properties for medical applications. These laser cables were successfully used for the in vivo animal experiments and/or actual clinical therapies.

  1. Ultra-stable clock laser system development towards space applications.

    PubMed

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-26

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.

  2. Laser shock wave and its applications

    NASA Astrophysics Data System (ADS)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  3. Strong Optical Injection Locking of Edge-Emitting Lasers and Its Applications

    DTIC Science & Technology

    2006-08-18

    investigated for communications applications. Using AlGaAs lasers, Kobayashi et al. demonstrated stable single-mode operation of Fabry - Perot (F-P...modulation (AM) efficiency is obtained at the expense of linearity. Furthermore, the previous gain-lever devices were Fabry - Perot (F-P) lasers operating in...coating of ~ 0.2-μm Zirconium dioxide (ZrO2) layer with a reflectivity of less than 0.1% is deposited on one facet to suppress the Fabry - Perot (F-P

  4. HiLASE Project: high intensity lasers for industrial and scientific applications

    NASA Astrophysics Data System (ADS)

    Rostohar, Danijela; Lucianetti, Antonio; Endo, Akira; Mocek, Tomas

    2015-01-01

    The Czech national R&D project HiLASE is a platform for development of advance high repetition rate, diode pump solid state lasers (DPSSL) systems with energies in the range from mJ to 10J and repetition rate from 10 Hz to 100 kHz. In this paper an overview and a status of the project will be given. Additionally some applications of these lasers in the hi-tech industry, which initiated their development, will be also presented.

  5. Applications of infrared free electron lasers in picosecond and nonlinear spectroscopy

    NASA Astrophysics Data System (ADS)

    Fann, W. S.; Benson, S. V.; Madey, J. M. J.; Etemad, S.; Baker, G. L.; Rothberg, L.; Roberson, M.; Austin, R. H.

    1990-10-01

    In this paper we describe two different types of spectroscopic experiments that exploit the characteristics of the infrared FEL, Mark III, for studies of condensed matter: - the spectrum of χ(3)(-3ω; ω, ω, ω) in polyacetylene: an application of the free electron laser in nonlinear optical spectroscopy, and - a dynamical test of Davydov-like solitons in acetanilide using a picosecond free electron laser. These two studies highlight the unique contributions FELs can make to condensed-matter spectroscopy.

  6. LASER BIOLOGY AND MEDICINE: Application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.; Milyaev, Varerii A.

    2002-11-01

    The application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air in biomedical diagnostics is discussed. The principle of operation and the design of a laser analyser for studying the composition of exhaled air are described. The results of detection of gaseous biomarkers in exhaled air, including clinical studies, which demonstrate the diagnostic possibilities of the method, are presented.

  7. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  8. Room temperature high power mid-IR diode laser bars for atmospheric sensing applications

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Patterson, Steve; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Zhang, Shiguo; Elim, Sandrio; Bougher, Mike; Patterson, Jason; Das, Suhit; Wise, Damian; Matson, Triston; Balsley, David; Bell, Jake; DeVito, Mark; Martinsen, Rob

    2007-04-01

    Peak CW optical power from single 1-cm diode laser bars is advancing rapidly across all commercial wavelengths and the available range of emission wavelengths also continues to increase. Both high efficiency ~ 50% and > 100-W power InP-based CW bars have been available in bar format around 1500-nm for some time, as required for eye-safe illuminators and for pumping Er-YAG crystals. There is increasing demand for sources at longer wavelengths. Specifically, 1900-nm sources can be used to pump Holmium doped YAG crystals, to produce 2100-nm emission. Emission near 2100-nm is attractive for free-space communications and range-finding applications as the atmosphere has little absorption at this wavelength. Diode lasers that emit at 2100-nm could eliminate the need for the use of a solid-state laser system, at significant cost savings. 2100-nm sources can also be used as pump sources for Thulium doped solid-state crystals to reach even longer wavelengths. In addition, there are several promising medical applications including dental applications such as bone ablation and medical procedures such as opthamology. These long wavelength sources are also key components in infra-red-counter-measure systems. We have extended our high performance 1500-nm material to longer wavelengths through optimization of design and epitaxial growth conditions and report peak CW output powers from single 1-cm diode laser bars of 37W at 1910-nm and 25W at 2070-nm. 1-cm bars with 20% fill factor were tested under step-stress conditions up to 110-A per bar without failure, confirming reasonable robustness of this technology. Stacks of such bars deliver high powers in a collimated beam suitable for pump applications. We demonstrate the natural spectral width of ~ 18nm of these laser bars can be reduced to < 3-nm with use of an external Volume Bragg Grating, as required for pump applications. We review the developments required to reach these powers, latest advances and prospects for longer

  9. Active/passive scanning. [airborne multispectral laser scanners for agricultural and water resources applications

    NASA Technical Reports Server (NTRS)

    Woodfill, J. R.; Thomson, F. J.

    1979-01-01

    The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.

  10. Direct diode lasers and their advantages for materials processing and other applications

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Ferrario, Fabio; Koch, Ralf; Kruschke, Bastian; Pahl, Ulrich; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang; Eibl, Florian; Kohl, Stefanie; Dobler, Michael

    2015-03-01

    The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength

  11. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    PubMed

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  12. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  13. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less

  14. Mid-Infrared Laser Absorption Diagnostics for Combustion and Propulsion Applications

    DTIC Science & Technology

    2010-12-01

    Combustion and Propulsion Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-07-1-0844 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew A...Institute Mechancial, Aerospace, and Nuclear Engineering Dept Troy NY 12180-3590 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING...absorption sensors based on quantum cascade laser (QCL) technology for combustion and propulsion applications. To demonstrate the potential of mid-IR QCL

  15. The Effect of Collimating Lens Focusing on Laser Beam Shape in Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS)

    NASA Astrophysics Data System (ADS)

    O'Rourke, Matthew B.; Raymond, Benjamin B. A.; Djordjevic, Steven P.; Padula, Matthew P.

    2018-03-01

    Tissue imaging using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established technique that, in recent years, has seen wider adoption and novel application. Applications such imaging mass spectrometry (IMS) and biotyping are beginning to gain greater exposure and use; however, with limitations in optimization methods, producing the best result often relies on the ability to customize the physical characteristics of the instrumentation, a task that is challenging for most mass spectrometry laboratories. With this in mind, we have described the effect of making simple adjustments to the laser optics at the final collimating lens area, to adjust the laser beam size and shape in order to allow greater customization of the instrument for improving techniques such as IMS. We have therefore been able to demonstrate that improvements can be made without requiring the help of an electrical engineer or external funding in a way that only costs a small amount of time. [Figure not available: see fulltext.

  16. The Effect of Collimating Lens Focusing on Laser Beam Shape in Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS).

    PubMed

    O'Rourke, Matthew B; Raymond, Benjamin B A; Djordjevic, Steven P; Padula, Matthew P

    2018-03-01

    Tissue imaging using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established technique that, in recent years, has seen wider adoption and novel application. Applications such imaging mass spectrometry (IMS) and biotyping are beginning to gain greater exposure and use; however, with limitations in optimization methods, producing the best result often relies on the ability to customize the physical characteristics of the instrumentation, a task that is challenging for most mass spectrometry laboratories. With this in mind, we have described the effect of making simple adjustments to the laser optics at the final collimating lens area, to adjust the laser beam size and shape in order to allow greater customization of the instrument for improving techniques such as IMS. We have therefore been able to demonstrate that improvements can be made without requiring the help of an electrical engineer or external funding in a way that only costs a small amount of time. Graphical Abstract ᅟ.

  17. Three-dimensional femtosecond laser processing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Sugioka, Koji; Vázquez, Rebeca Martínez; Osellame, Roberto; Kelemen, Lóránd; Ormos, Pal

    2018-02-01

    The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced.

  18. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  19. Influence of gel/LED-laser application on cervical microleakage of two barrier materials used for endodontically treated teeth whitening

    NASA Astrophysics Data System (ADS)

    Marchesan, Melissa Andréia; Barros, Felipe; Porto, Saulo; Zaitter, Suellen; Brugnera, Aldo, Jr.; Sousa-Neto, Manoel D.

    2007-02-01

    This study evaluated ex vivo the influence of the number of gel/LED-laser applications/activations on cervical microleakage of two different barrier materials used for protection during whitening of endodontically treated teeth. Eighty-four canines were instrumented and obturated with epoxy resin sealer. The seal was removed 2 mm beyond the cemento-enamel junction for barrier placement and the teeth were divided into two groups of 40 teeth each: G1, zinc phosphate cement; G2, glass ionomer cement. The two groups were subdivided into 4 subgroups (n=10 each): I) no gel or LED-laser application; II) one gel application and two LED-laser activations; III) two gel applications and four LED-laser activations; IV) three gel applications and six LED-laser activations. The teeth were immersed in India ink for 7 days, decalcified and cleared. Cervical microleakage was quantified with a measurement microscope. Statistical analysis showed that zinc phosphate caused significantly lower microleakage than glass ionomer cement (presented microleakage in all subgroups). However, after two (p<0.01) and three (p<0.001) applications of gel, there was statistially significant microleakage in zinc phosphate barriers. Based on the present results, it can be concluded that cervical barriers with zinc phosphate cement show less cervical microleakage and that two or more applications/activations of gel/LED-laser significantly increase microleakage.

  20. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  1. Investigation of small transverse electric CO/sub 2/ waveguide lasers for fuzing applications. Contractor report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochuli, U.; McGuire, D.

    1982-10-01

    The properties of a compact, transversely excited, pulsed CO/sub 2/ waveguide laser are studied experimentally with the application of such a laser for an optical fuze transmitter in mind. Such parameters as peak power, pulse width, pulse shape, pulse jitter, repetition rate, beam profile, polarization, laser life, and optimum as mixture are investigated both for 10.6 and 9.6 micron output wavelengths, and for both sealed-off and flowing-gas operation of the laser. A computer simulation of the laser's operation is compared with the experimental results.

  2. To compare the gingival melanin repigmentation after diode laser application and surgical removal.

    PubMed

    Mahajan, Gaurav; Kaur, Harjit; Jain, Sanjeev; Kaur, Navnit; Sehgal, Navneet Kaur; Gautam, Aditi

    2017-01-01

    The aim of the present study is to compare the gingival melanin repigmentation after diode laser application and surgical removal done by scraping with Kirkland knife. This study was a randomized split-mouth study where 10 patients presenting with unattractive, diffuse, dark brown to black gingival discoloration on the facial aspect of the maxillary gingiva were treated by diode laser application and surgical removal and followed up for 3-, 6-, and 9-month intervals. The results showed a statistically significant difference in repigmentation between the groups at the interval of 3 months ( P = 0.040), but the difference was statistically not significant at 6 months ( P = 0.118) and 9 months ( P = 0.146). On surgically treated sites, all cases showed repigmentation of the gingiva, but in laser treated, there were two individuals which did not show repigmentation of the gingiva even at the end of 9-month observation time. The incidence of repigmentation was slightly less in laser-treated sites as compared to surgical depigmentation although the difference was statistically significant only up to 3 months.

  3. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  4. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    NASA Astrophysics Data System (ADS)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  5. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  6. Simple laser vision sensor calibration for surface profiling applications

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  7. CO2 laser oscillators for laser radar applications

    NASA Technical Reports Server (NTRS)

    Freed, C.

    1990-01-01

    This paper reviews the spectral purity, frequency stability, and long-term stabilization of newly developed CO2 isotope lasers. Extremely high spectral purity, and short-term stability of less than 1.5 x 10 to the -13th have been achieved. A brief description on using CO2 isotope lasers as secondary frequency standards and in optical radar is given. The design and output characteristics of a single frequency, TEM00q mode, variable pulse width, hybrid TE CO2 laser system is also described. The frequency chirp in the output has been measured and almost completely eliminated by means of a novel technique.

  8. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint

  9. Application of Diode Laser in the Treatment of Dentine Hypersensitivity.

    PubMed

    Gojkov-Vukelic, Mirjana; Hadzic, Sanja; Zukanovic, Amila; Pasic, Enes; Pavlic, Veriva

    2016-12-01

    Dentine hypersensitivity is characterized by acute, sharp pain arising from the exposed dentine, most commonly in response to thermal, tactile, or chemical stimuli, and which cannot be linked to any other pathological changes in the tooth or the environment. Therapy uses various impregnating agents in the form of solutions or gels and, in more recent times, laser. The aim of this research was to examine the effects of treatment of hypersensitive dental cervix with diode laser. The study included 18 patients with 82 sensitive teeth. The degree of dentine hypersensitivity was evaluated by visual analogue scale (VAS), and the treatment was carried out by application of low-power diode laser over the span of three visits, which depended on the initial sensitivity. There is a significant difference in VAS values measured at the onset of treatment (baseline) and immediately after the first laser treatment (t=9.275; p=0.000), after 7 days, after the second laser treatment (14 days) (t=7.085, p=0.000), as well as after 14 days and the third laser treatment (t=5.517, p=0.000), which confirms the effectiveness of this therapeutic procedure. The results showed a reduction of hypersensitivity in response to tactile stimulus with a probe after the third treatment, even with teeth whose value on the VAS was very high at the beginning of treatment (baseline). Within the scope of the conducted study, laser therapy has provided extremely safe and effective results in the treatment of cervical dentine hypersensitivity.

  10. Laser applications in meteorology and earth and atmospheric remote sensing; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-18, 1989

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M. (Editor)

    1989-01-01

    Various papers on laser applications in meteorology and earth and atmospheric remote sensing are presented. The individual topics addressed include: solid state lasers for the mid-IR region, tunable chromium lasers, GaInAsSb/AlGaAsSb injection lasers for remote sensing applications, development and design of an airborne autonomous wavemeter for laser tuning, fabrication of lightweight Si/SiC lidar mirrors, low-cost double heterostructure and quantum-well laser array development, nonlinear optical processes for the mid-IR region, simulated space-based Doppler lidar performance in regions of backscatter inhomogeneities, design of CO2 recombination catalysts for closed-cycle CO2 lasers, density measurements with combined Raman-Rayleigh lidar, geodynamics applications of spaceborne laser ranging, use of aircraft laser ranging data for forest mensuration, remote active spectrometer, multiwavelngth and triple CO2 lidars for trace gas detection, analysis of laser diagnostics in plumes, laser atmospheric wind sounder, compact Doppler lidar system using commercial off-the-shelf components, and preliminary design for a laser atmospheric wind sounder.

  11. Nonimaging applications for microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon

    2001-10-01

    In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.

  12. Laser interaction with tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, M.W.

    These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.

  13. Soft-tissue applications of the holmium:YAG laser in urology

    NASA Astrophysics Data System (ADS)

    Denstedt, John D.; Razvi, Hassan A.; Chun, Samuel S.; Sales, Jack L.

    1995-05-01

    The ideal surgical laser for the treatment of soft tissue pathology should possess both ablative and hemostatic abilities. As well, for use in urologic conditions the laser must also be suitable for endoscopic use. The Holmium:YAG laser possesses these qualities and in preliminary clinical use has demonstrated a variety of potential urologic applications. In this study we review our initial experience with the Holmium:YAG laser over a 18 month period. A total of 51 patients underwent 53 procedures for a variety of soft tissue conditions including: bladder tumor ablation (25), incision of ureteral stricture (15), incision of urethral stricture (6), treatment of ureteropelvic junction obstruction (3), incision of bladder neck contracture (2), and ablation of a ureteral tumor (2). Satisfactory hemostasis was achieved in all cases. Procedures were considered successful (no further intervention being required to treat the condition) in 81% of the cases. Two patients with dense bladder neck contractures required electroincision under the same anesthetic for completion of the procedure. A single complication, that of urinary extravasation following incision of a urethral stricture resolved with conservative management. In summary, the Holmium:YAG laser has demonstrated safety and proficiency in the treatment of a variety of urologic soft tissue conditions.

  14. From Dye Laser Factory to Portable Semiconductor Laser: Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    d'Orgeville, C.; Fetzer, G.

    This presentation recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analysing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980's and 1990's. These experimental systems were turned into the first laser guide star facilities to equip medium-to-large diameter adaptive optics telescopes, opening a new era of LGS AO-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000's that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8-10m class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers will be deployed at two astronomical telescopes and at least one space debris tracking station this year. Although highly promising, these systems remain significantly expensive and they have yet to demonstrate high performance in the field. We are proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide the final solution to the problem of sodium laser guide star adaptive optics for all astronomy and space situational awareness applications.

  15. Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayramian, Andrew J.

    One of the major motivators of this work is the Mercury Project, which is a 1 kW scalable diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL). Major goals include 100 J pulses, 10% wallplug efficiency, 10 Hz repetition rate, and a 5 times diffraction limited beam. To achieve these goals the Mercury laser incorporates ytterbium doped Sr 5(PO 4) 3F (S-FAP) as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material which are necessary for proper design and modeling of the system. Ytterbium doped fluorapatites,more » which were previously investigated at LLNL, were found to be ideal candidate materials for a high power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals were grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb 3+:Sr 5-xBa x(PO 4) 3F where x < 1 showed homogeneous lines offering 8.4 nm (1.8 times enhancement) of absorption bandwidth and 6.9 nm (1.4 times enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm 2 using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The extraction data was successfully fit to a homogeneous extraction model. The crystal quality of Czochralski grown Yb:S-FAP crystals, which have been plagued by many defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. The very best crystals grown to date were found to have adequate crystal quality for use in the Mercury laser system. In addition to phase distortions which are fixed by material growth, thermal

  16. Laser Structures for Projectional Television and Other Applications

    DTIC Science & Technology

    1980-07-29

    TD -ID (RS) T-0 894-80 00) FOREIGN TECHNOLOGY DIVISION 0 LASER STRUCTURES FOR PROJECTICNAL TELEVISION AND OTHER APPLICATIONS by 0. ’N. Talenskil...To r iysic a sudies I raS sufficient to chf- off a -atof the -olaTe4 fZe. dfcs ,* ~1~e -3-n c’ h ord-er o’ several _illieters 7 efr hsc-1 c~~ t..; sch

  17. Millisecond laser ablation of molybdenum target in reactive gas toward MoS2 fullerene-like nanoparticles with thermally stable photoresponse.

    PubMed

    Song, Shu-Tao; Cui, Lan; Yang, Jing; Du, Xi-Wen

    2015-01-28

    As a promising material for photoelectrical application, MoS2 has attracted extensive attention on its facile synthesis and unique properties. Herein, we explored a novel strategy of laser ablation to synthesize MoS2 fullerene-like nanoparticles (FL-NPs) with stable photoresponse under high temperature. Specifically, we employed a millisecond pulsed laser to ablate the molybdenum target in dimethyl trisulfide gas, and as a result, the molybdenum nanodroplets were ejected from the target and interacted with the highly reactive ambient gas to produce MoS2 FL-NPs. In contrast, the laser ablation in liquid could only produce core-shell nanoparticles. The crucial factors for controlling final nanostructures were found to be laser intensity, cooling rate, and gas reactivity. Finally, the MoS2 FL-NPs were assembled into a simple photoresponse device which exhibited excellent thermal stability, indicating their great potentialities for high-temperature photoelectrical applications.

  18. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  19. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  20. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.

    PubMed

    Liou, K N; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-10

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  1. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey

    2006-09-01

    A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.

  2. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  3. Rigrod laser-pumped-laser resonator model: II. Application to thin and optically-dilute laser media

    NASA Astrophysics Data System (ADS)

    Brown, D. C.

    2014-08-01

    In part I of this paper, and to set the foundation for this part II, we derived the resonator equations describing the normalized intensities, output power, gain, and extraction efficiency for a standard resonator incorporating two dielectric mirrors and a gain element. We then generalized the results to include an absorbing region representing a second laser crystal characterized by a small-signal transmission T0. Explicit expressions were found for the output power extracted into absorption by the second laser crystal and the extraction efficiency, and the limits to each were discussed. It was shown that efficient absorption by a thin or dilute second laser crystal can be realized in resonators in which the mirror reflectivities were high and in which the single-pass absorption was low, due to the finite photon lifetime and multi-passing of the absorbing laser element. In this paper, we apply the model derived in part I to thin or dilute laser materials, concentrating on a Yb, Er:glass intracavity pumped by a 946 nm Nd:YAG laser, a Yb, Er:glass laser-pumped intracavity by a 977 nm diode laser, and an Er:YAG laser-pumped intracavity to a 1530 nm diode laser. It is shown that efficient absorption can be obtained in all cases examined.

  4. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  5. Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Matei, A.; Schou, J.; Canulescu, S.; Zamfirescu, M.; Albu, C.; Mitu, B.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Dinescu, M.

    2013-08-01

    Synthesized N,N'-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by covering the structures with two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation technique. The functionalized structures were tested in mouse fibroblasts culture and the cells morphology, proliferation, and attachment were analyzed.

  6. Efficiency limits of laser power converters for optical power transfer applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  7. Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiani, Leily S.

    The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphidemore » (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).« less

  8. [Laser-induced thermotherapy (LITT) of lung metastases: description of a miniaturized applicator, optimization, and initial treatment of patients].

    PubMed

    Hosten, N; Stier, A; Weigel, C; Kirsch, M; Puls, R; Nerger, U; Jahn, D; Stroszczynski, C; Heidecke, C-D; Speck, U

    2003-03-01

    A thin-caliber applicator system was developed for introducing a laser fiber under CT guidance into lung metastases with only minimal complications. A space-saving 5.5 French Teflon cannula with a titanium trocar and connectors for a laser light guide (2 or 3 cm Dornier Diffusor-Tip H-6111-T2 or H-6111-T3 coupled to a Dornier Medilas Fibertom 5100 laser, wavelength of 1064 nm) and a perfusion line for physiologic saline solution were developed. After puncture the laser Diffusor-Tip remains in the cannula and is cooled during its tissue passage by slowly flowing saline solution. The miniaturized applicator system (Monocath) was calibrated in nonperfused bovine liver for maximum energy supply and necessary flow of the cooling saline solution in reference to a commercially available 9 French laser catheter with an 11.5 French inducer sheath (Power-Applicator). The new applicator system was used for treating lung metastases in 10 patients over a period of 21 months. The size of heat coagulation in bovine liver was 24 +/- 2 ml using the miniaturized system with application of 15 W for 20 min and a saline flow of 0.75 ml/min, in comparison to a size of 29 +/- 7 ml for the commercial applicator (30 W, 20 min, 60 ml/min). All metastases could be safely approached with the miniaturized applicator, except for two metastatic lesions at the lung base in two patients. A minor pneumothorax developed in three patients and intrapulmonary bleeding in two. Contrast-enhanced CT demonstrated necrosis of the treated metastatic areas in 6 patients. Follow-up of three patients after 5, 6, and 8 months showed complete tumor regression with minimal scarring in one patient. The miniaturized applicator system enables the introduction of a laser fiber into pulmonary metastases with only minor complications. Complete ablation seems to be achievable in suitable patients with the applied laser energy and a slow cooling fluid flow rate.

  9. 50 years LASERS: in vitro diagnostics, clinical applications and perspectives.

    PubMed

    Spyropoulos, Basile

    2011-01-01

    1960 Theodore Maiman built the first Ruby-LASER, starting-point for half a century of R&D on Biomedical LASER continuous improvement. The purpose of this paper is to contribute a review of the often disregarded, however, extremely important Industrial Property documents of LASER-based in vitro Diagnostics devices. It is an attempt to sketch-out the patent-trail leading towards the modern Biomedical Laboratory and to offer an introduction to the employment of "exotic" systems, such as the Free Electron LASER (FEL), that are expected to focus on the fundamental processes of life, following chemical reactions and biological processes as they happen, on unprecedented time and size scales. There are various in vitro LASER applications, however, the most important ones include: Hybrid Coulter Principle-LASER Hematology Analyzers. Flow Cytometry systems. Fluorescent in situ Hybridization (FISH Techniques). Confocal LASER Scanning Microscopy and Cytometry. From the first fluorescence-based flow Cytometry device developed in 1968 by Wolfgang Göhde until nowadays, numerous improvements and new features related to these devices appeared. The relevant industrial property milestone-documents and their overall numeral trends are presented. In 1971, J. Madey invented and developed the Free Electron LASER (FEL), a vacuum-tube that uses a beam of relativistic electrons passing through a periodic, transverse magnetic field (wiggler) to produce coherent radiation, contained in an optical cavity defined by mirrors. A resonance condition that involves the energy of the electron beam, the strength of the magnetic field, and the periodicity of the magnet determines the wavelength of the radiation. The FEL Coherent Light Sources like the Linac Coherent Light Source (LCLS) at Stanford, CA, USA or the Xray Free Electron LASER (XFEL) at Hamburg, Germany, will work much like a high-speed (< 100 femtoseconds) camera, enabling scientists to take stop-motion pictures, on the nanoscale, of atoms

  10. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals-A Literature Overview.

    PubMed

    Saydjari, Yves; Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment.

  11. Laser Application in Dentistry: Irradiation Effects of Nd:YAG 1064 nm and Diode 810 nm and 980 nm in Infected Root Canals—A Literature Overview

    PubMed Central

    Kuypers, Thorsten; Gutknecht, Norbert

    2016-01-01

    Objective. In endodontics, Nd:YAG laser (1064 nm) and diode laser (810 nm and 980 nm) devices are used to remove bacteria in infected teeth. A literature review was elaborated to compare and evaluate the advantages and disadvantages of using these lasers. Methods. Using combined search terms, eligible articles were retrieved from PubMed and printed journals. The initial search yielded 40 titles and 27 articles were assigned to full-text analysis. The studies were classified based upon laser source, laser energy level, duration/similarity of application, and initial and final bacterial count at a minimum of 20 prepared root canals. Part of the analysis was only reduced microorganisms and mechanically treated root canals upon preparation size of ISO 30. All studies were compared to evaluate the most favorable laser device for best results in endodontic therapy. Results. A total of 22 eligible studies were found regarding Nd:YAG laser 1064 nm. Four studies fulfilled all demanded criteria. Seven studies referring to the diode laser 980 nm were examined, although only one fulfilled all criteria. Eleven studies were found regarding the diode laser 810 nm, although only one study fulfilled all necessary criteria. Conclusions. Laser therapy is effective in endodontics, although a comparison of efficiency between the laser devices is not possible at present due to different study designs, materials, and equipment. PMID:27462611

  12. Applications of high power lasers. [using reflection holograms for machining and surface treatment

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1979-01-01

    The use of computer generated, reflection holograms in conjunction with high power lasers for precision machining of metals and ceramics was investigated. The Reflection holograms which were developed and made to work at both optical wavelength (He-Ne, 6328 A) and infrared (CO2, 10.6) meet the primary practical requirement of ruggedness and are relatively economical and simple to fabricate. The technology is sufficiently advanced now so that reflection holography could indeed be used as a practical manufacturing device in certain applications requiring low power densities. However, the present holograms are energy inefficient and much of the laser power is lost in the zero order spot and higher diffraction orders. Improvements of laser machining over conventional methods are discussed and addition applications are listed. Possible uses in the electronics industry include drilling holes in printed circuit boards making soldered connections, and resistor trimming.

  13. Application of lap laser welding technology on stainless steel railway vehicles

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  14. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven C.

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  15. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  16. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  17. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  18. Testing of a femtosecond pulse laser in outer space.

    PubMed

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-30

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  19. Analysis of detection performance of multi band laser beam analyzer

    NASA Astrophysics Data System (ADS)

    Du, Baolin; Chen, Xiaomei; Hu, Leili

    2017-10-01

    Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.

  20. Closure of skin incision by dual wavelength (980 and 1064 nm) laser application.

    PubMed

    Uba, Abdullahi Ibrahim; Tabakoglu, Haşim Ozgur; Abdullahi, Umar Aliyu; Sani, Musbahu Muhammad

    2017-04-01

    Thermal effect of dual wavelength (980 and 1064 nm) laser application in skin incision closure was assessed on 18 male and female Wister rats. 1-cm-long incisions were made on the shaved dorsal region of 220-250 g animals. The incisions were closed by laser irradiation at 1 W and exposure time, 5 seconds in continuous-wave mode (CW) and 1 W and exposure time, 10 seconds in pulsed mode to deliver total energies of 5 J and 10 J per spot onto the incisions, respectively. Animals from each group were sacrificed at 0th, 4th, and 7th days and the skin samples of the weld area were excised for histological analysis using Hematoxylin and Eosin (H & E) stain. Mean thermally altered area (TAA) of CW-mode laser-treated groups was found to increase significantly (p < 0.05) compared with pulsed mode laser treated group at 0th and 4th days post-irradiation while no significant difference (p > 0.05) was statistically found at 7th day post-irradiation. Moreover, tighter closure was observed with CW group at 7th day post-irradiation. We thus conclude that 1 W, 5 J for 5 seconds CW mode laser application of 980 and 1064 nm combined beam form in skin incision closure was found to have absolute wound healing capability with minimal thermal alteration.

  1. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  2. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C. Richard; Wei, Bingqing; Cheng, Gary J.

    2014-05-01

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr

  3. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    NASA Astrophysics Data System (ADS)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  4. Laser applications in the tracheobronchial tree.

    PubMed

    Rebeiz, E E; Shapsay, S M; Ingrams, D R

    1996-12-01

    This article outlines the historical development of the use of lasers in the tracheobronchial tree, the current indications for the use of carbon dioxide and neodymium:yttrium-aluminum-garnet lasers, and the management of complications. The merits of other laser wavelengths are mentioned, including use of the potassium titanyl phosphate laser in the pediatric airway. Photodynamic therapy is discussed, and some future developments are introduced.

  5. Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1995-01-01

    The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end

  6. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.

    PubMed

    Kubelka, Jan

    2009-04-01

    Many important biochemical processes occur on the time-scales of nanoseconds and microseconds. The introduction of the laser temperature-jump (T-jump) to biophysics more than a decade ago opened these previously inaccessible time regimes up to direct experimental observation. Since then, laser T-jump methodology has evolved into one of the most versatile and generally applicable methods for studying fast biomolecular kinetics. This perspective is a review of the principles and applications of the laser T-jump technique in biophysics. A brief overview of the T-jump relaxation kinetics and the historical development of laser T-jump methodology is presented. The physical principles and practical experimental considerations that are important for the design of the laser T-jump experiments are summarized. These include the Raman conversion for generating heating pulses, considerations of size, duration and uniformity of the temperature jump, as well as potential adverse effects due to photo-acoustic waves, cavitation and thermal lensing, and their elimination. The laser T-jump apparatus developed at the NIH Laboratory of Chemical Physics is described in detail along with a brief survey of other laser T-jump designs in use today. Finally, applications of the laser T-jump in biophysics are reviewed, with an emphasis on the broad range of problems where the laser T-jump methodology has provided important new results and insights into the dynamics of the biomolecular processes.

  7. Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch

    NASA Astrophysics Data System (ADS)

    König, Jens; Bauer, Thorsten

    2011-03-01

    Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.

  8. Advancements in high-power diode laser stacks for defense applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens

    2012-06-01

    This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.

  9. Femtosecond laser ablation of cemented carbides: properties and tribological applications

    NASA Astrophysics Data System (ADS)

    Dumitru, G.; Romano, V.; Weber, H. P.; Gerbig, Y.; Haefke, H.; Bruneau, S.; Hermann, J.; Sentis, M.

    Laser ablation with fs laser pulses was performed in air on cobalt cemented tungsten carbide by means of a Ti : sapphire laser (800 nm, 100 fs). Small and moderate fluences (2, 5, 10 J/cm2) and up to 5×104 pulses per irradiated spot were used to drill holes with aspect ratios up to 10. Cross-section cuts from laser-irradiated samples were produced and they were analysed with optical microscopy and SEM. EDX analyses were carried out on selected zones. Quasi-cylindrical holes were found for 2 J/cm2, whereas for 5 and 10 J/cm2 irregular shapes (lobes, bottoms wider than hole entrances) were found to occur after a given number of incident pulses. Layers with modified structure were evidenced at pore walls. SEM revealed a denser structure, while EDX analyses showed uniform and almost similar contents of W, C, and Co in these layers. As a direct application, patterning of coated WC-Co was carried out with 2 J/cm2 and 100 pulses per pore. The resulted surfaces were tribologically tested and these tests revealed an improved friction and wear behaviour.

  10. Geometric validation of a mobile laser scanning system for urban applications

    NASA Astrophysics Data System (ADS)

    Guan, Haiyan; Li, Jonathan; Yu, Yongtao; Liu, Yan

    2016-03-01

    Mobile laser scanning (MLS) technologies have been actively studied and implemented over the past decade, as their application fields are rapidly expanding and extending beyond conventional topographic mapping. Trimble's MX-8, as one of the MLS systems in the current market, generates rich survey-grade laser and image data for urban surveying. The objective of this study is to evaluate whether Trimble MX-8 MLS data satisfies the accuracy requirements of urban surveying. According to the formula of geo-referencing, accuracies of navigation solution and laser scanner determines the accuracy of the collected LiDAR point clouds. Two test sites were selected to test the performance of Trimble MX-8. Those extensive tests confirm that Trimble MX-8 offers a very promising tool to survey complex urban areas.

  11. High power fiber coupled diode lasers for display and lighting applications

    NASA Astrophysics Data System (ADS)

    Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens

    2017-02-01

    The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.

  12. A High-Average-Power Free Electron Laser for Microfabrication and Surface Applications

    NASA Technical Reports Server (NTRS)

    Dylla, H. F.; Benson, S.; Bisognano, J.; Bohn, C. L.; Cardman, L.; Engwall, D.; Fugitt, J.; Jordan, K.; Kehne, D.; Li, Z.; hide

    1995-01-01

    CEBAF has developed a comprehensive conceptual design of an industrial user facility based on a kilowatt ultraviolet (UV) (160-1000 mm) and infrared (IR) (2-25 micron) free electron laser (FEL) driven by a recirculating, energy recovering 200 MeV superconducting radio frequency (SRF) accelerator. FEL users, CEBAF's partners in the Lase Processing Consortium, including AT&T, DuPont, IBM, Northrop Grumman, 3M, and Xerox, are developing applications such as metal, ceramic, and electronic material micro-fabrication and polymer and metal surface processing, with the overall effort leading to later scale-up to industrial systems at 50-100 kW. Representative applications are described. The proposed high-average-power FEL overcomes limitations of conventional laser sources in available power, cost-effectiveness, tunability, and pulse structure.

  13. Excimer-laser-induced surface treatments on metal and ceramic materials: applications to automotive, aerospace, and microelectronic industries

    NASA Astrophysics Data System (ADS)

    Autric, Michel L.

    1999-09-01

    Surface treatments by laser irradiation can improve materials properties in terms of mechanical and physico- chemical behaviors, these improvements being related to the topography, the hardness, the microstructure, the chemical composition. Up to now, the use of excimer lasers for industrial applications remained marginal in spite of the interest related to the short wavelength (high photon energy and better energetic coupling with materials and reduced thermal effects in the bulk material). Up to now, the main limitations concerned the beam quality, the beam delivery, the gas handling and the relatively high investment cost. At this time, the cost of laser devices is going down and the ultraviolet radiation can be conducted through optical fibers. These two elements give new interest in using excimer laser for industrial applications. The main objective of this research program which we are involved in, is to underline some materials processing applications for automotive, aerospace or microelectronic industries for which it could be more interesting to use excimer lasers (minimized thermal effects). This paper concerns the modifications of the roughness, porosity, hardness, structure, phase, residual stresses, chemical composition of the surface of materials such as metallic alloys (aluminum, steel, cast iron, titanium, and ceramics (oxide, nitride, carbide,...) irradiated by KrF and XeCl excimer lasers.

  14. Quasi four-level Tm:LuAG laser

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)

    1997-01-01

    A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.

  15. Experimental grounds for YAG:Er laser application to dentistry

    NASA Astrophysics Data System (ADS)

    Bol'shakov, E. N.; Dolgikh, Robert A.; Zazulevskaya, Lidiya Y.; Zubov, Boris V.; Lobachyov, V. A.; Murina, T. M.; Prokhorov, Alexander M.

    1990-09-01

    Stornatologic service is most popular of all kinds of medical aid, since up to 90% of people suffer from caries, parodontosis holds the second place after such a widespread disease as cardiovascular pathology. The treatment of the tooth hard tissue, intervention into pulp and parodontium using conventional methods are accompanied with painfulness and unpleasant sensation. A lack of efficient methods of anesthesia and pulp devitalization, a high percentage of complica tions after pulpitis treatment made it necessary to search for new methods of treatment which exclude these negative aspects. Application of laser radiation may be one of the ways in resolving this problem. Such attempts have been made repeatedly with the development of laser technology.'3 However, not all of them turned out to be successful. The greatest difficulties occurred on surgical intervention into hard tooth tissue. The best results have been so far attained when using pulsed CO2 laser operated at the wavelength A =1O.61um. For instance, at pulse width 1O1us and frequency 10-20 Hz, the tooth channel drilling was efficient at energy density in pulse P . 10 JIcm2. 4'5 The electron-microscopic investigations have proved the tooth microstructure to be preserved for this laser operation mode. The traces of graphitization were observed only in the vicinity of the lateral walls of the channel.

  16. Application of lasers and pulsed power to coating removal

    NASA Astrophysics Data System (ADS)

    Young, Chris M.; Moeny, William M.; Curry, Randy D.; McDonald, Ken; Bosma, John T.

    1995-03-01

    Lasers and other pulsed power systems are uniquely suited for removal of coatings from a wide variety of substrates. Coatings which can be removed by these systems include paint, adhesives, epoxies, dips, rust, scale, and bird droppings. Suitable substrates include wood, metal, cloth, stone, ceramic, plastics, and even skin. These systems have the advantage over chemical stripping or mechanical abrasion in that the substrate is left virtually unharmed and in many cases the residue is reduced to a form that is more easily disposed of without toxic byproducts or expensive refurbishment. Furthermore, laser and other pulsed power based systems can be operated using only local containment without the need for special operator protective gear or complete enclosure of the substrate structure. Additional advantages are gained in these systems because they typically combine multiple removal mechanisms for greater effectiveness. For example, pulsed lasers create rapid heating of the coating. This rapid heating can result in chemical breakdown of the coating, thermomechanical stress induced dislocation, shock wave agitation, and physical ablation. This paper presents some of the latest research findings on coating removal using these systems. A comparative survey of the system technology, effectiveness, cost, and application is presented. Also presented is a survey of the commercial potential for the systems. Systems which are presented include lasers (CW, pulsed, Infrared, UV, etc.), flashlamps, electro-cathodic debonders, electron beams, and glow discharges.

  17. Tapered fiber optic applicator for laser ablation: Theoretical and experimental assessment of thermal effects on ex vivo model.

    PubMed

    Saccomandi, P; Di Matteo, F M; Schena, E; Quero, G; Massaroni, C; Giurazza, F; Costamagna, G; Silvestri, S

    2017-07-01

    Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.

  18. High average power, diode pumped petawatt laser systems: a new generation of lasers enabling precision science and commercial applications

    NASA Astrophysics Data System (ADS)

    Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.

    2017-05-01

    Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.

  19. Low SWaP Semiconductor Laser Transmitter Modules For ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Rosiewicz, Alex; Coleman, Steven M.

    2012-01-01

    The National Research Council's (NRC) Decadal Survey (DS) of Earth Science and Applications from Space has identified the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) as an important atmospheric science mission. NASA Langley Research Center, working with its partners, is developing fiber laser architecture based intensity modulated CW laser absorption spectrometer for measuring XCO2 in the 1571 nm spectral band. In support of this measurement, remote sensing of O2 in the 1260 nm spectral band for surface pressure measurements is also being developed. In this paper, we will present recent progress made in the development of advanced transmitter modules for CO2 and O2 sensing. Advanced DFB seed laser modules incorporating low-noise variable laser bias current supply and low-noise variable temperature control circuit have been developed. The 1571 nm modules operate at >80 mW and could be tuned continuously over the wavelength range of 1569-1574nm at a rate of 2 pm/mV. Fine tuning was demonstrated by adjusting the laser drive at a rate of 0.7 pm/mV. Heterodyne linewidth measurements have been performed showing linewidth 200 kHz and frequency jitter 75 MHz. In the case of 1260 nm DFB laser modules, we have shown continuous tuning over a range of 1261.4 - 1262.6 nm by changing chip operating temperature and 1261.0 - 1262.0 nm by changing the laser diode drive level. In addition, we have created a new laser package configuration which has been shown to improve the TEC coefficient of performance by a factor of 5 and improved the overall efficiency of the laser module by a factor of 2.

  20. Laser beam joining of material combinations for automotive applications

    NASA Astrophysics Data System (ADS)

    Schubert, Emil; Zerner, Ingo; Sepold, Gerd

    1997-08-01

    An ideal material for automotive applications would combine the following properties: high corrosion resistance, high strength, high stiffness and not at least a low material price. Today a single material is not able to meet all these requirements. Therefore, in the future different materials will be placed where they meet the requirements best. The result of this consideration is a car body with many different alloys and metals, which have to be joined to one another. BIAS is working on the development of laser based joining technologies for different material combinations, especially for thin sheets used in automotive applications. One result of the research is a joining technology for an aluminum-steel-joint. Using a Nd:YAG laser the problem of brittle intermetallic phases between these materials was overcome. Using suitable temperature-time cycles, elected by a FEM-simulation, the thickness of intermetallic phases was kept below 10 micrometers . This technology was also applied to coated steels, which were joined with different aluminum alloys. Further it is demonstrated that titanium alloys, e.g. used for racing cars, can also be joined with aluminum alloys.

  1. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  2. LaserFest Celebration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Alan Chodos; Elizabeth A. Rogan

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and itsmore » many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.« less

  3. New applications of laser-induced breakdown and stand-off Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Snyder, Marion Lawrence

    Two novel spectroscopic applications, with the common theme of remote spectroscopy are described. In one application, laser-induced breakdown spectroscopy (LIBS) is investigated for deep ocean measurements of hydrothermal vent chemistry. This technique is demonstrated for the first time for solution measurements at pressures corresponding to those found at hydrothermal vent sites, at ocean depths of one to three kilometers. In the other application, Raman spectroscopy is investigated for stand-off detection of high explosive (HE) materials. We demonstrate several HE materials in silica can be measured at 50-meter range under ambient light conditions, a new record for this application. Chapters one through three of this dissertation contain published and recently submitted articles describing LIBS for in situ multi-elemental detection in high-pressure aqueous environments such as the deep ocean. Initial work shows the potential of single-pulse LIBS (SP-LIBS) to measure dissolved elements (e.g., Na, Ca, Li, K, and Mn) at the part-per-million level in aqueous solutions at pressures exceeding 276 bar. Dual-pulse LIBS (DP-LIBS) of high-pressure aqueous solutions is also presented. We show significant DP-LIBS enhancements are achieved through excitation of a vapor bubble formed by laser-induced breakdown of the solution with a previous laser pulse, thereby increasing the sensitivity of LIBS and allowing additional elements to be measured. Preliminary findings show that increasing solution pressure has a detrimental effect on DP-LIBS emission intensities, such that little if any DP-LIBS emission was observed above approximately 100 bar. Recent results suggest a direct relationship exists between the size of the bubble and the resulting DP-LIBS emission, and that reduction in bubble size and lifetime at elevated pressure lead to the decreased DP-LIBS emission. Chapter four contains published work examining the potential of stand-off Raman spectroscopy for remote HE

  4. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    PubMed Central

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  5. Laser scatter in clinical applications

    NASA Astrophysics Data System (ADS)

    Luther, Ed; Geddie, William

    2008-02-01

    Brightfield Laser Scanning Imaging (BLSI) is available on Laser Scanning Cytometers (LSCs) from CompuCyte Corporation. Briefly, digitation of photodetector outputs is coordinated with the combined motions of a small diameter (typically 2 to 10 microns) laser beam scanning a specimen in the Y direction (directed by a galvanometer-driven scanning mirror) and the microscope stage motion in the X direction. The output measurements are assembled into a two-dimensional array to provide a "non-real" digital image, where each pixel value reports the amount of laser-scattered light that is obtained when the laser beam is centered on that location. Depending on the detector positions, these images are analogous to Differential Interference Contrast or Phase Contrast microscopy. We report the incorporation of the new laser scattering capabilities into the workflow of a high-volume clinical cytology laboratory at University Health Network, Toronto, Canada. The laboratory has been employing LSC technology since 2003 for immunophenotypic fluorescence analysis of approximately 1200 cytological specimens per year, using the Clatch methodology. The new BLSI component allows visualization of cellular morphology at higher resolution levels than is possible with standard brightfield microscopic evaluation of unstained cells. BLSI is incorporated into the triage phase, where evaluation of unstained samples is combined with fluorescence evaluation to obtain specimen background levels. Technical details of the imaging methodology will be presented, as well as illustrative examples from current studies and comparisons to detailed, but obscure, historical studies of cytology specimens based on phase contrast microscopy.

  6. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  7. Pulsed laser-induced liquid jet: evolution from shock/bubble interaction to neurosurgical application

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Kumabe, T.; Ogawa, Y.; Hirano, T.; Kawaguchi, T.; Ohtani, K.; Nakano, T.; Sato, C.; Yamada, M.; Washio, T.; Arafune, T.; Teppei, T.; Atsushi, K.; Satomi, S.; Takayama, K.; Tominaga, T.

    2017-01-01

    The high-speed liquid (water) jet has distinctive characteristics in surgical applications, such as tissue dissection without thermal damage and small blood vessel preservation, that make it advantageous over more conventional instruments. The continuous pressurized jet has been used since the first medical application of water jets to liver surgery in the 1980s, but exhibited drawbacks partly related to the excess water supply required and unsuitability for application to microsurgical instruments intended for deep, narrow lesions (endoscopic instrumentation and catheters) due to limitations in miniaturization of the device. To solve these issues, we initiated work on the pulsed micro-liquid jet. The idea of the pulsed micro-liquid jet originated from the observation of tissue damage by shock/bubble interactions during extracorporeal shock wave lithotripsy and evolved into experimental application for recanalization of cerebral embolisms in the 1990s. The original method of generating the liquid jet was based on air bubble formation and microexplosives as the shock wave source, and as such could not be applied clinically. The air bubble was replaced by a holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced bubble. Finally, the system was simplified and the liquid jet was generated via irradiation from the Ho:YAG laser within a liquid-filled tubular structure. A series of investigations revealed that this pulsed laser-induced liquid jet (LILJ) system has equivalent dissection and blood vessel preservation characteristics, but the amount of liquid usage has been reduced to less than 2 μ l per shot and can easily be incorporated into microsurgical, endoscopic, and catheter devices. As a first step in human clinical studies, we have applied the LILJ system for the treatment of skull base tumors through the transsphenoidal approach in 9 patients (7 pituitary adenomas and 2 chordomas), supratentorial glioma (all high grade glioma) in 8 patients, including one with

  8. Stabilized diode seed laser for flight and space-based remote lidar sensing applications

    NASA Astrophysics Data System (ADS)

    McNeil, Shirley; Pandit, Pushkar; Battle, Philip; Rudd, Joe; Hovis, Floyd

    2017-08-01

    AdvR, through support of the NASA SBIR program, has developed fiber-based components and sub-systems that are routinely used on NASA's airborne missions, and is now developing an environmentally hardened, diode-based, locked wavelength, seed laser for future space-based high spectral resolution lidar applications. The seed laser source utilizes a fiber-coupled diode laser, a fiber-coupled, calibrated iodine reference module to provide an absolute wavelength reference, and an integrated, dual-element, nonlinear optical waveguide component for second harmonic generation, spectral formatting and wavelength locking. The diode laser operates over a range close to 1064.5 nm, provides for stabilization of the seed to the desired iodine transition and allows for a highly-efficient, fully-integrated seed source that is well-suited for use in airborne and space-based environments. A summary of component level environmental testing and spectral purity measurements with a seeded Nd:YAG laser will be presented. A direct-diode, wavelength-locked seed laser will reduce the overall size weight and power (SWaP) requirements of the laser transmitter, thus directly addressing the need for developing compact, efficient, lidar component technologies for use in airborne and space-based environments.

  9. Ultra-intense Pair Creation using the Texas Petawatt Laser and Applications

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Lo, Willie; Chaguine, Petr; Dyer, Gilliss; Riley, Nathan; Serratto, Kristina; Donovan, Michael; Ditmire, Todd

    2014-10-01

    Pair plasmas and intense gamma-ray sources are ubiquitous in the high-energy universe, from pulser winds to gamma-ray bursts (GRB). Their study can be greatly enhanced if such sources can be recreated in the laboratory under controlled conditions. In 2012 and 2013, a joint Rice-University of Texas team performed over 130 laser shots on thick gold and platinum targets using the 100 Joule Texas Petawatt Laser in Austin. The laser intensity of many shots exceeded 1021 W.cm-2 with pulses as short as 130 fs. These experiments probe a new extreme regime of ultra-intense laser - high-Z solid target interactions never achieved before. In addition to creating copious pairs with the highest density (>1015/cc) and emergent e +/e- ratio exceeding 20% in many shots, these experiments also created the highest density multi-MeV gamma-rays, comparable in absolute numbers to those found inside a gamma-ray burst (GRB). Potential applications of such intense pair and gamma-ray sources to laboratory astrophysics and innovative technologies will be discussed. Work supported by DOE HEDLP program.

  10. Principles and applications of laser-induced liquid-phase jet-chemical etching

    NASA Astrophysics Data System (ADS)

    Stephen, Andreas; Metev, Simeon; Vollertsen, Frank

    2003-11-01

    In this treatment method laser radiation, which is guided from a coaxially expanding liquid jet-stream, locally initiates a thermochemical etching reaction on a metal surface, which leads to selective material removal at high resolution and quality of the treated surface as well as low thermal influence on the workpiece. Electrochemical investigations were performed under focused laser irradiation using a cw-Nd:YAG laser with a maximum power of 15 W and a simultaneous impact of the liquid jet-stream consisting of phosphoric acid with a maximum flow rate of 20 m/s. The time resolved measurements of the electrical potential difference against an electrochemical reference electrode were correlated with the specific processing parameters and corresponding etch rates to identify processing conditions for temporally stable and enhanced chemical etching reactions. Applications of laser-induced liquid-phase jet-chemical etching in the field of sensor technology, micromechanics and micrmoulding technology are presented. This includes the microstructuring of thin film systems, cutting of foils of shape memory alloys or the generation of structures with defined shape in bulk material.

  11. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  12. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOEpatents

    Meissner, Helmuth E.; Beach, Raymond J.; Bibeau, Camille; Sutton, Steven B.; Mitchell, Scott; Bass, Isaac; Honea, Eric

    1999-01-01

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focussed by a lens duct and passed through at least one flanged end-cap into the laser rod.

  13. Laser rods with undoped, flanged end-caps for end-pumped laser applications

    DOEpatents

    Meissner, H.E.; Beach, R.J.; Bibeau, C.; Sutton, S.B.; Mitchell, S.; Bass, I.; Honea, E.

    1999-08-10

    A method and apparatus for achieving improved performance in a solid state laser is provided. A flanged, at least partially undoped end-cap is attached to at least one end of a laserable medium. Preferably flanged, undoped end-caps are attached to both ends of the laserable medium. Due to the low scatter requirements for the interface between the end-caps and the laser rod, a non-adhesive method of bonding is utilized such as optical contacting combined with a subsequent heat treatment of the optically contacted composite. The non-bonded end surfaces of the flanged end-caps are coated with laser cavity coatings appropriate for the lasing wavelength of the laser rod. A cooling jacket, sealably coupled to the flanged end-caps, surrounds the entire length of the laserable medium. Radiation from a pump source is focused by a lens duct and passed through at least one flanged end-cap into the laser rod. 14 figs.

  14. Final Report on Portable Laser Coating Removal Systems Field Demonstrations and Testing

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matthew J.; McLaughlin, Russell L.

    2008-01-01

    to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation. Due to the fact that the technology lends itself to a bide variety of processes, several site demonstrations were organized in order to allow for greater evaluation of the laser systems across NASA. The project consisted of an introductory demonstration and a more in-depth evaluation at Wright-Patterson Air Force Base. Additionally, field demonstrations occurred at Glenn Research Center and Kennedy Space Center. During these demonstrations several NASA specific applications were evaluated, including the removal of coatings within Orbiter tile cavities and Teflon from Space Shuttle Main Engine gaskets, removal of heavy grease from Solid Rocket Booster components and the removal of coatings on weld lines for Shuttle and general ground service equipment for non destructive evaluation (NDE). In addition, several general industry applications such as corrosion removal, structural coating removal, weld-line preparation and surface cleaning were evaluated. This included removal of coatings and corrosion from surfaces containing lead-based coatings and applications similar to launch-structure maintenance and Crawler maintenance. During the project lifecycle, an attempt was made to answer process specific concerns and questions as they arose. Some of these initially unexpected questions concerned the effects lasers might have on substrates used on flight equipment including strength, surface re-melting, substrate temperature and corrosion resistance effects. Additionally a concern was PPE required for operating such a system including eye, breathing and hearing protection. Most of these questions although not initially planned, were fully explored as a part of this project. Generally the results from tesng

  15. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  16. X-Ray Laser Program Final Report for FY92

    DTIC Science & Technology

    1993-07-01

    also produced population inversion. Ultra- intense , femtosecond- pulsed laboratory lasers ranging from the ultraviolet to the infrared represent an...with pulse lengths of 650 femtoseconds normally Incident on a 2p. thick planar aluminum slab. Comparisons are made for two laser Intensities , two...prepulse is subsequently irradiated by the main high intensity pulse . The persistence of the heliumlike ground state raises the possibility that a photon

  17. 7 CFR 1493.250 - Final application and issuance of a facility payment guarantee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.250 Final application and issuance of a... commitment may, within six months of the date of such letter, submit a final application to CCC for a...

  18. 7 CFR 1493.250 - Final application and issuance of a facility payment guarantee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.250 Final application and issuance of a... commitment may, within six months of the date of such letter, submit a final application to CCC for a...

  19. 7 CFR 1493.250 - Final application and issuance of a facility payment guarantee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.250 Final application and issuance of a... commitment may, within six months of the date of such letter, submit a final application to CCC for a...

  20. Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Weerawarne, Darshana L.

    Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.

  1. A handheld laser-induced fluorescence detector for multiple applications.

    PubMed

    Fang, Xiao-Xia; Li, Han-Yang; Fang, Pan; Pan, Jian-Zhang; Fang, Qun

    2016-04-01

    In this paper, we present a compact handheld laser-induced fluorescence (LIF) detector based on a 450 nm laser diode and quasi-confocal optical configuration with a total size of 9.1 × 6.2 × 4.1 cm(3). Since there are few reports on the use of 450 nm laser diode in LIF detection, especially in miniaturized LIF detector, we systematically investigated various optical arrangements suitable for the requirements of 450 nm laser diode and system miniaturization, including focusing lens, filter combination, and pinhole, as well as Raman effect of water at 450 nm excitation wavelength. As the result, the handheld LIF detector integrates the light source (450 nm laser diode), optical circuit module (including a 450 nm band-pass filter, a dichroic mirror, a collimating lens, a 525 nm band-pass filter, and a 1.0mm aperture), optical detector (miniaturized photomultiplier tube), as well as electronic module (including signal recording, processing and displaying units). This detector is capable of working independently with a cost of ca. $2000 for the whole instrument. The detection limit of the instrument for sodium fluorescein solution is 0.42 nM (S/N=3). The broad applicability of the present system was demonstrated in capillary electrophoresis separation of fluorescein isothiocyanate (FITC) labeled amino acids and in flow cytometry of tumor cells as an on-line LIF detector, as well as in droplet array chip analysis as a LIF scanner. We expect such a compact LIF detector could be applied in flow analysis systems as an on-line detector, and in field analysis and biosensor analysis as a portable universal LIF detector. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Selected applications of Er:YAG and CO2 lasers for treatment of benign neoplasms and tumorous lesions in the mouth.

    PubMed

    Błochowiak, Katarzyna; Andrysiak, Piotr; Sidorowicz, Krzysztof; Witmanowski, Henryk; Hędzelek, Wiesław; Sokalski, Jerzy

    2015-10-01

    Benign neoplasms and hyperplastic tumorous lesions are common oral pathologies. These lesions require to be surgically removed by conventional surgery, laser, or electrosurgery. Surgical treatment aims at complete removal of pathological lesions and ensuring proper healing of the tissues to minimize the risk of lesion recurrence. To present possible applications of Er:YAG and CO2 lasers in removal of benign neoplasms and tumorous lesions developing on oral mucosa as well as to specify indications and limitations of these two methods. Temperature-induced injuries due to laser light application, possibility of post-operative histopathological evaluation of the removed tissue, efficacy of the cut and coagulation, healing process and completeness of laser surgeries give rise to our special concern. The main asset of the CO2 laser comparing to Er:YAG laser is an effective coagulation while thermal injury to the tissues is its limitation, especially with multiple passage of the beam and too high power applied. Er:YAG laser application does not exclude histopathological examination of the removed lesion tissue which is its advantage over CO2 laser. Still, insufficient coagulation is a limitation ofits use in the case of richly vascularized lesions.

  3. DFB laser - External modulator fiber optic delay line for radar applications

    NASA Astrophysics Data System (ADS)

    Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.

    1989-09-01

    A new application of a long fiber-optic delay line as a radar repeater in a radar test set is described. The experimental 31.6-kilometer fiber-optic link includes an external modulator operating with a distributed-feedback laser and low-loss single-mode fiber matched to the laser wavelength to obtain low dispersion for achieving large bandwidth-length performance. The successful tests, in which pulse compression peak sidelobe measurements are used to confirm the link RF phase linearity and SNR performance, show that fiber-optic links can meet the stringent phase and noise requirements of modern radars at high microwave frequencies.

  4. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.

    PubMed

    Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong

    2016-12-01

    A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  5. Spectral characteristics of quantum-cascade laser operating at 10.6 μm wavelength for a seed application in laser-produced-plasma extreme UV source.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru; Endo, Akira

    2012-11-15

    In this Letter, we investigate, for the first time to our knowledge, the spectral properties of a quantum-cascade laser (QCL) from a point of view of a new application as a laser seeder for a nanosecond-pulse high-repetition frequency CO(2) laser operating at 10.6 μm wavelength. The motivation for this work is a renewed interest in such a pulse format and wavelength driven by a development of extreme UV (EUV) laser-produced-plasma (LPP) sources. These sources use pulsed multikilowatt CO(2) lasers to drive the EUV-emitting plasmas. Basic spectral performance characteristics of a custom-made QCL chip are measured, such as tuning range and chirp rate. The QCL is shown to have all essential qualities of a robust seed source for a high-repetition nanosecond-pulsed CO(2) laser required by EUV LPP sources.

  6. Laser annealed in-situ P-doped Ge for on-chip laser source applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Srinivasan, Ashwyn; Pantouvaki, Marianna; Shimura, Yosuke; Porret, Clement; Van Deun, Rik; Loo, Roger; Van Thourhout, Dries; Van Campenhout, Joris

    2016-05-01

    Realization of a monolithically integrated on-chip laser source remains the holy-grail of Silicon Photonics. Germanium (Ge) is a promising semiconductor for lasing applications when highly doped with Phosphorous (P) and or alloyed with Sn [1, 2]. P doping makes Ge a pseudo-direct band gap material and the emitted wavelengths are compatible with fiber-optic communication applications. However, in-situ P doping with Ge2H6 precursor allows a maximum active P concentration of 6×1019 cm-3 [3]. Even with such active P levels, n++ Ge is still an indirect band gap material and could result in very high threshold current densities. In this work, we demonstrate P-doped Ge layers with active n-type doping beyond 1020 cm-3, grown using Ge2H6 and PH3 and subsequently laser annealed, targeting power-efficient on-chip laser sources. The use of Ge2H6 precursors during the growth of P-doped Ge increases the active P concentration level to a record fully activated concentration of 1.3×1020 cm-3 when laser annealed with a fluence of 1.2 J/cm2. The material stack consisted of 200 nm thick P-doped Ge grown on an annealed 1 µm Ge buffer on Si. Ge:P epitaxy was performed with PH3 and Ge2H6 at 320oC. Low temperature growth enable Ge:P epitaxy far from thermodynamic equilibrium, resulting in an enhanced incorporation of P atoms [3]. At such high active P concentration, the n++ Ge layer is expected to be a pseudo-direct band gap material. The photoluminescence (PL) intensities for layers with highest active P concentration show an enhancement of 18× when compared to undoped Ge grown on Si as shown in Fig. 1 and Fig. 2. The layers were optically pumped with a 640 nm laser and an incident intensity of 410 mW/cm2. The PL was measured with a NIR spectrometer with a Hamamatsu R5509-72 NIR photomultiplier tube detector whose detectivity drops at 1620 nm. Due to high active P concentration, we expect band gap narrowing phenomena to push the PL peak to wavelengths beyond the detection limit

  7. Three-dimensional laser radar modeling

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Carlsson, Tomas

    2001-09-01

    Laser radars have the unique capability to give intensity and full 3-D images of an object. Doppler lidars can give velocity and vibration characteristics of an objects. These systems have many civilian and military applications such as terrain modelling, depth sounding, object detection and classification as well as object positioning. In order to derive the signal waveform from the object one has to account for the laser pulse time characteristics, media effects such as the atmospheric attenuation and turbulence effects or scattering properties, the target shape and reflection (BRDF), speckle noise together with the receiver and background noise. Finally the type of waveform processing (peak detection, leading edge etc.) is needed to model the sensor output to be compared with observations. We have developed a computer model which models performance of a 3-D laser radar. We will give examples of signal waveforms generated from model different targets calculated by integrating the laser beam profile in space and time over the target including reflection characteristics during different speckle and turbulence conditions. The result will be of help when designing and using new laser radar systems. The importance of different type of signal processing of the waveform in order to fulfil performance goals will be shown.

  8. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  9. Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    PubMed Central

    Kushibiki, Toshihiro; Hirasawa, Takeshi; Okawa, Shinpei; Ishihara, Miya

    2015-01-01

    Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described. PMID:26273309

  10. Highly modular high-brightness diode laser system design for a wide application range

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang

    2015-03-01

    For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). Further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and results in about 500 W launched into a 100 μm fiber with 0.15 NA. Subsequently those building blocks can be stacked also by the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.

  11. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  12. Proposal of a defense application for a chemical oxygen laser

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-05-01

    Defense application for a chemical oxygen laser (COL) is explained. Although a COL has not yet been successful in lasing, the oscillator was estimated to produce a giant pulse with the full width at half maximum (FWHM) of ~0.05ms which makes the damage threshold for the mirrors several-order higher than that for a typical solid-state laser with a ~10ns pulse width. Therefore it has a potential to produce MJ class output considering the simple scalability of being a chemical laser. Since within 0.05ms a supersonic aircraft can move only a few centimeters which is roughly equal to the spot size of the focused beam at ~10km away using a large-diameter focusing mirror, a COL has a potential to make a damage to an enemy aircraft by a single shot without beam tracking. But since the extracted beam can propagate up to a few kilometers due to the absorption in the air, it may be suitable to use in space. While a chemical oxygen-iodine laser (COIL) can give a pulsed output with a width of ~2 ms using a high-pressure singlet oxygen generator (SOG). Therefore a pulsed COIL may also not require beam tracking if a target aircraft is approaching. Another advantage for these pulsed high-energy lasers (HELs) is that, in case of propagating in cloud or fog, much less energy is required for a laser for aerosol vaporization (LAV) than that of a LAV for a CW HEL. Considerations to use a COL as a directed energy weapon (DEW) in a point defense system are shown.

  13. Highly periodic laser-induced nanostructures on thin Ti and Cu foils for potential application in laser ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Susanta Kumar, E-mail: skdasfpy@kiit.ac.in; Andreev, Alexander; Braenzel, Julia

    2016-03-21

    The feasibility of femtosecond laser-induced periodic nanostructures on thin Ti and Cu foils (thickness down to 1 μm) is demonstrated. At pulse durations of 120 fs and a wavelength of 400 nm, periods of 61 nm to 320 nm were obtained. Particle-in-cell simulations of laser ion acceleration processes with such nanostructured targets indicate their potential for high energy particle physics applications. In particular, a measurable enhancement of the proton cut-off energy and a significant enhancement of the number of accelerated particles compared to non- or weakly structured targets of same thickness and material are expected.

  14. Applications of Nanoparticle-Containing Plasmas for High-Order Harmonic Generation of Laser Radiation

    NASA Astrophysics Data System (ADS)

    Ganeev, Rashid A.

    The use of nanoparticles for efficient conversion of the wavelength of ultrashort laser toward the deep UV spectral range through harmonic generation is an attractive application of cluster-containing plasmas. Note that earlier observations of HHG in nanoparticles were limited by using the exotic gas clusters formed during fast cooling of atomic flow from the gas jets 1-4. One can assume the difficulties in definition of the structure of such clusters and the ratio between nanoparticles and atoms/ions in the gas flow. The characterization of gas phase cluster production was currently improved using the sophisticated techniques (e.g., a control of nanoparticle mass and spatial distribution, see the review 5). In the meantime, the plasma nanoparticle HHG has demonstrated some advantages over gas cluster HHG 6. The application of commercially available nanopowders allowed for precisely defining the sizes and structure of these clusters in the plume. The laser ablation technique made possible the predictable manipulation of plasma characteristics, which led to the creation of laser plumes containing mainly nanoparticles with known spatial structure. The latter allows the application of such plumes in nonlinear optics, X-ray emission of clusters, deposition of nanoparticles with fixed parameters on the substrates for semiconductor industry, production of nanostructured and nanocomposite films, etc.

  15. Simulation of laser generated ultrasound with application to defect detection

    NASA Astrophysics Data System (ADS)

    Pantano, A.; Cerniglia, D.

    2008-06-01

    Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have proved to be limited in their applicability, by the frequencies in the MHz range and very short wavelengths. The objective of this research is to prove that by using an explicit integration rule together with diagonal element mass matrices, instead of the almost universally adopted implicit integration rule to integrate the equations of motion in a dynamic analysis, it is possible to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range travelling in relatively large bodies. Presented results on NDE testing of rails demonstrate that the proposed FE technique can provide a valuable tool for studying the laser generated ultrasound propagation.

  16. Color-encoded distance for interactive focus positioning in laser microsurgery

    NASA Astrophysics Data System (ADS)

    Schoob, Andreas; Kundrat, Dennis; Lekon, Stefan; Kahrs, Lüder A.; Ortmaier, Tobias

    2016-08-01

    This paper presents a real-time method for interactive focus positioning in laser microsurgery. Registration of stereo vision and a surgical laser is performed in order to combine surgical scene and laser workspace information. In particular, stereo image data is processed to three-dimensionally reconstruct observed tissue surface as well as to compute and to highlight its intersection with the laser focal range. Regarding the surgical live view, three augmented reality concepts are presented providing visual feedback during manual focus positioning. A user study is performed and results are discussed with respect to accuracy and task completion time. Especially when using color-encoded distance superimposed to the live view, target positioning with sub-millimeter accuracy can be achieved in a few seconds. Finally, transfer to an intraoperative scenario with endoscopic human in vivo and cadaver images is discussed demonstrating the applicability of the image overlay in laser microsurgery.

  17. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  18. The pulsed dye laser versus the Q-switched Nd:YAG laser in laser-induced shock-wave lithotripsy.

    PubMed

    Thomas, S; Pensel, J; Engelhardt, R; Meyer, W; Hofstetter, A G

    1988-01-01

    To date, there are two fairly well-established alternatives for laser-induced shock-wave lithotripsy in clinical practice. The Q-switched Nd:YAG laser is distinguished by the high-stone selectivity of its coupler systems. The necessity of a coupler system and its fairly small conversion rate of light energy into mechanical energy present serious drawbacks. Furthermore, the minimal outer diameter of the transmission system is 1.8 mm. The pulsed-dye laser can be used with a highly flexible and uncomplicated 200-micron fiber. However, the laser system itself is more complicated than the Q-switched Nd:YAG laser and requires a great deal of maintenance. Biological evaluation of damage caused by direct irradiation shows that both laser systems produce minor damage of different degrees. YAG laser lithotripsy with the optomechanical coupler was assessed in 31 patients with ureteral calculi. The instability and limited effectiveness of the fiber application system necessitated auxiliary lithotripsy methods in 14 cases. Dye-laser lithotripsy is currently being tested in clinical application. Further development, such as systems for blind application or electronic feedback mechanisms to limit adverse tissue effects, have yet to be optimized. Nevertheless, laser-induced shock-wave lithotripsy has the potential to become a standard procedure in the endourologic management of stone disease.

  19. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    NASA Astrophysics Data System (ADS)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  20. Enabling laser applications in microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Brune, Jan; Fechner, Burkhard; Senczuk, Rolf

    2016-02-01

    In this experimental study, we report on high-pulse-energy excimer laser drilling into high-performance build-up films which are pivotal in microelectronics manufacturing. Build-up materials ABF-GX13 from Ajinomoto as well as ZS-100 from Zeon Corporation are evaluated with respect to their viability for economic excimer laser-based micro-via formation. Excimer laser mask imaging projection at laser wavelengths of 193, 248 and 308 nm is employed to generate matrices of smaller micro-vias with different diameters and via pitches. High drilling quality is achievable for all excimer laser wavelengths with the fastest ablation rates measured in the case of 248 and 308 nm wavelengths. The presence of glass fillers in build-up films as in the ABF-GX13 material poses some limitations to the minimum achievable via diameter. However, surprisingly good drilling results are obtainable as long as the filler dimensions are well below the diameter of the micro-vias. Sidewall angles of vias are controllable by adjusting the laser energy density and pulse number. In this work, the structuring capabilities of excimer lasers in build-up films as to taper angle variations, attainable via diameters, edge-stop behavior and ablation rates will be elucidated.

  1. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    PubMed Central

    Zeng, Lvming; Chen, Zhongping; Kim, Chang-Seok

    2016-01-01

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging. PMID:27110032

  2. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piao, Zhonglie; Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612; Zeng, Lvming

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the highmore » repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.« less

  3. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  4. Using a CO2 laser for PIR-detector spoofing

    NASA Astrophysics Data System (ADS)

    Schleijpen, Ric H. M. A.; van Putten, Frank J. M.

    2016-10-01

    This paper presents experimental work on the use of a CO2 laser for triggering of PIR sensors. Pyro-electric InfraRed sensors are often used as motion detectors for detection of moving persons or objects that are warmer than their environment. Apart from uses in the civilian domain, also applications in improvised weapons have been encountered. In such applications the PIR sensor triggers a weapon, when moving persons or vehicles are detected. A CO2 laser can be used to project a moving heat spot in front of the PIR, generating the same triggering effect as a real moving object. The goal of the research was to provide a basis for assessing the feasibility of the use of a CO2 laser as a countermeasure against PIR sensors. After a general introduction of the PIR sensing principle a theoretical and experimental analysis of the required power levels will be presented. Based on this quantitative analysis, a set up for indoor experiments to trigger the PIR devices remotely with a CO2 laser was prepared. Finally some selected results of the experiments will be presented. Implications for the use as a countermeasure will be discussed.

  5. Short Pulse Laser Applications Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R J; Clark, D S; Kemp, A J

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule.more » Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI

  6. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  7. Effect of two laser photobiomodulation application protocols on the viability of random skin flap in rats

    NASA Astrophysics Data System (ADS)

    Martignago, C. C. S. M.; Tim, C. R.; Assis, L.; Neve, L. M. G.; Bossini, P. S.; Renno, A. C.; Avó, L. R. S.; Liebano, R. E.; Parizotto, N. A.

    2018-02-01

    Objective: to identify the best low intensity laser photobiomodulation application site to increase the viability of the cutaneous flap in rats. Methods: 18 male rats (Rattus norvegicus: var. Albinus, Rodentia Mammalia) were randomly distributed into 3 groups (n = 6). Group I (GI) was submitted to simulated laser photobiomodulation, group II (GII) was submitted to the laser photobiomodulation at three points in the flap cranial base, and group III (GIII) was submitted to laser photobiomodulation at twelve points distributed along the flap. All groups were irradiated with an Indium, Galium, Aluminum and Phosphorus diode laser (InGaAlP), 660 nm, with power of 50 mW, total energy of 12 J in continuous emission mode. The treatment started immediately after performing the cranial base random skin flap (dimension of 10X4 cm2 ) and reapplied every 24 hours, with a total of 5 applications. The animals were euthanized after the evaluation of the percentage of necrosis area and the material was collected for histological analysis on the 7th postoperative day. Results: GII animals presented a statistically significant decrease for the necrosis area when compared to the other groups, and a statistically significant increase in the quantification of collagen when compared to the control. We did not observe a statistical difference between the TGFβ and FGF expression in the different groups evaluated. Conclusion: the application of laser photobiomodulation at three points of the flap cranial base was more effective than at twelve points regarding the reduction of necrosis area.

  8. Evaluation of 3-D Laser Scanning Equipment : 2018 Final Report

    DOT National Transportation Integrated Search

    2018-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the equ...

  9. Numerical conformal mapping: Methods, applications, and theory. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLillo, T.K.

    1995-11-01

    Section 1 of this report, briefly summarizes research performed under this grant during the first two years 1992 to 1994 and makes some overall remarks. Section 2, summarizes research performed during the final year from September, 1994 through May 31, 1995, more fully. The main achievement of the last period has been the application of numerical conformed mapping to the solution of the biharmonic equation. Section 3, summarizes travel, meetings, and other expenses supported by this grant during the final year.

  10. The use of vitamins as tracer dyes for laser-induced fluorescence in liquid flow applications

    NASA Astrophysics Data System (ADS)

    Zähringer, Katharina

    2014-04-01

    Tracers commonly used in experimental flow studies are mostly nocuous to the environment and human health. Particularly, in large flow installations, this can become a problem. In this study, a solution of this problem is presented, based on using water-soluble vitamins. Five of them are examined here for their applicability in flow studies. Vitamins B2 and B6 turned out to be the most promising candidates, and the dependency of their fluorescence intensity on parameters like concentration, laser energy, temperature, and pH are determined for two commonly used laser excitation wavelengths (532, 355 nm). Two examples of application in a static mixer and a spray flow are shown and demonstrate the applicability of the vitamin tracers.

  11. Analysis of the Performance of a Laser Scanner for Predictive Automotive Applications

    NASA Astrophysics Data System (ADS)

    Zeisler, J.; Maas, H.-G.

    2015-08-01

    In this paper we evaluate the use of a laser scanner for future advanced driver assistance systems. We focus on the important task of predicting the target vehicle for longitudinal ego vehicle control. Our motivation is to decrease the reaction time of existing systems during cut-in maneuvers of other traffic participants. A state-of-the-art laser scanner, the Ibeo Scala B2 R , is presented, providing its sensing characteristics and the subsequent high level object data output. We evaluate the performance of the scanner towards object tracking with the help of a GPS real time kinematics system on a test track. Two designed scenarios show phases with constant distance and velocity as well as dynamic motion of the vehicles. We provide the results for the error in position and velocity of the scanner and furthermore, review our algorithm for target vehicle prediction. Finally we show the potential of the laser scanner with the estimated error, that leads to a decrease of up to 40% in reaction time with best conditions.

  12. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  13. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    NASA Astrophysics Data System (ADS)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  14. [The development of a distribution system for medical lasers and its clinical application].

    PubMed

    Okae, S; Ishiguchi, T; Ishigaki, T; Sakuma, S

    1991-02-25

    We developed a new laser beam generator system which can deliver laser beam to multiple terminals in distant clinical therapy rooms. The system possesses the distribution equipment by which Nd-YAG laser power is distributed to 8 output terminals under the computer control. Distributed laser beam is delivered to each distant terminal with clinical informations through the optical fiber. In the fundamental studies, possibility of distant transportation of laser beam (30 m) only with 10% loss of energy and without dangerous heating at the connection parts was shown. There seems to be no disadvantage associated with distribution laser beam. In the clinical study, the system was applied to five patients with the symptoms including hemosputum, esophageal stenosis, hemorrhage, lip ulcer and pain. Clinical usefulness of the system was proved. The advantages of the system are as follows: 1. Benefit of cost reduction due to multiple use of single laser source. 2. No necessity of transport of the equipment. 3. No requirement of a wide space to install the equipment in the distant room. 4. Efficient management and maintenance of the system by centralization. Further improvements, e.g., simultaneous use at multiple terminals and elongation of transportation up to 340 m, make the system more useful for clinical application.

  15. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis.

    PubMed

    Jiang, S C; Zhang, X X

    2005-12-01

    A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.

  16. Lasers in orthodontics

    PubMed Central

    Nalcaci, Ruhi; Cokakoglu, Serpil

    2013-01-01

    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  17. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  18. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  19. Roll-to-Roll Laser-Printed Graphene-Graphitic Carbon Electrodes for High-Performance Supercapacitors.

    PubMed

    Kang, Sangmin; Lim, Kyungmi; Park, Hyeokjun; Park, Jong Bo; Park, Seong Chae; Cho, Sung-Pyo; Kang, Kisuk; Hong, Byung Hee

    2018-01-10

    Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes. The toner was laser-printed on metal foils, followed by thermal annealing in hydrogen environment, finally resulting in the patterned thin graphitic carbon or graphene electrodes for supercapacitors. The electrochemical cells made of the graphene-graphitic carbon electrodes show remarkably higher energy and power performance compared to conventional supercapacitors. Furthermore, considering the simplicity and scalability of roll-to-roll (R2R) electrode patterning processes, the proposed method would enable cheaper and larger-scale synthesis and patterning of graphene-graphitic carbon electrodes for various energy applications in the future.

  20. Manipulation of cells with laser microbeam scissors and optical tweezers: a review

    NASA Astrophysics Data System (ADS)

    Greulich, Karl Otto

    2017-02-01

    The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.