Science.gov

Sample records for laser assisted hatching

  1. Thermal effects in laser-assisted embryo hatching

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2000-08-01

    Diode lasers [(lambda) equals 1480 nm] are used with in-vitro fertilization [IVF] as a promoter of embryo hatching. A focused laser beam is applied in vitro to form a channel in the zona pellucida (shell) of the pre-embryo. After transfer into the uterus, the embryo hatches: it extrudes itself through the channel and implants into the uterine wall. Laser-assisted hatching can result in improving implantation and pregnancy success rates. We present examples of zone pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g. by overheating. In order to define safe regimes we have derived some thermal side-effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe detects the temperature-induced change in refractive index. We find that the diode laser beam produces superheated water approaching 200 C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration laser power approximately 100 mW.

  2. Effects of partial or complete laser-assisted hatching on the hatching of mouse blastocysts and their cell numbers

    PubMed Central

    2013-01-01

    Background It is still debatable whether a full-thickness assisted hatching (AH) is better than the partial zona thinning. In this research, we used a mouse model to study the effect of partial and complete laser-AH on the rate of completely hatched blastocyst and their cell numbers. Methods In experiment 1, mouse morulae had 0, 1, 2 or 3 full-thickness openings of 10 microns created in the zona pellucida with an infrared laser beam. In the second experiment, 0, 1 and 2 openings of 20 microns were studied. In the third experiment, a full-thickness opening of 20 microns or quarter-thinning of the zonal circumference to a depth of 90% was compared with non-AH controls. Results No difference in blastocyst formation was found in laser-treated groups and in the controls. In experiment 1, the rate of completely hatched blastocysts was significantly lower than the controls. In experiment 2 when the size of the opening was increased, blastocysts completely hatched at a significantly higher rate than that in the controls. In experiment 3, the rate of completely hatched blastocysts was the highest in the full-thickness group. Cell numbers in completely hatched blastocysts from both AH groups were significantly fewer than those in the controls. Conclusions Full-thickness opening resulted in a higher rate of completely hatched blastocysts than quarter zonal-thinning and controls, but the cell numbers were significantly decreased. PMID:23510434

  3. No adverse effects were identified on the perinatal outcomes after laser-assisted hatching treatment.

    PubMed

    Zhou, Hanying; Zao, Wanqiu; Zhang, Wei; Shi, Juanzi; Shi, Wenhao

    2014-12-01

    The aim of this study was to evaluate the safety of laser-assisted hatching (LAH) by comparing obstetric and neonatal outcomes between assisted hatching and control groups in cryopreserved embryo transfer cycles. A retrospective cohort analysis was carried out. A total of 699 women with 392 infants delivered were included. Laser- assisted hatching was carried out on D-3 thawed and warmed embryos before transfer in 480 cryopreserved embryos transfer cycles. Obstetric outcomes, neonatal outcomes, and congenital birth defects were recorded. A total of 815 cryopreserved embryo transfer cycles (480 in LAH group and 335 in control group) in 699 patients were analysed. Statistically significantly higher implantation (31.85% versus 16.95%), clinical pregnancy (53.96% versus 33.43%) and live delivery (44.58% versus 23.88%) rates were observed in the LAH group (all P < 0.001). For either singleton or multiple gestations, no statistically significant differences were found in mean gestational age, mean birth weight and mean Apgar score. Four major malformations occurred in the assisted hatching group and three malformations (one major and two minor) in the control group. This study did not identify any harmful effect of LAH on neonates, which suggested that LAH may be a safe treatment in cryopreserved embryo transfer cycles. PMID:25444502

  4. Effect of laser-assisted multi-point zona thinning on development and hatching of cleavage embryos in mice

    PubMed Central

    Lee, Young Seok; Park, Min Jung; Park, Sea Hee; Koo, Ja Seong

    2015-01-01

    Objective This study aimed to examine the effect of laser-assisted zona thinning (LAZT) at one or four-points on the blastocyst formation and hatching process in mice with respect to female age. Methods Eight-cell or morula embryos collected from superovulated C57BL female mice with different ages (6-11 and 28-31 weeks) were treated with LAZT at one-point (LAZT1) or four-points (LAZT4). The zona pellucida was thinned to more than 70% of its initial thickness by making two holes of 15-20 µm. Results In the young mice, LAZT resulted in a significant increase in early hatching and hatching rates compared to the control group (p<0.05). However, in the old mice, LAZT significantly increased blastocyst formation as well as early hatching and hatching compared to the controls (p<0.05). These effects were more remarkable in LAZT4 than in LAZT1 and in aged mice than in young ones. Conclusion These results show that multi-point LAZT leads to a significant improvement of blastocyst formation and hatching in mice compared to controls. PMID:26161333

  5. Laser assisted zona hatching does not improve live birth rate in patients undergoing their first ICSI cycles

    PubMed Central

    Razi, Mohammad Hossein; Halvaei, Iman; Razi, Yasamin

    2013-01-01

    Background: Routine use of assisted hatching (AH) following ICSI is a controversial issue in the literature. There are rare studies regarding the effect of laser assisted hatching (LAH) on live birth rate. Objective: Our main goal was to evaluate the effect of LAH on delivery rate as well as congenital anomaly in patients undergoing their first ICSI cycle. Materials and Methods: A total of 182 patients subjected to ICSI were randomly aliquot into two groups of experiment and control. In experiment group, the embryos were subjected to LAH to open a hole in ZP (about 10-12 µm) while in control group, the transferred embryos were intact with no AH. The patients were followed for clinical pregnancy and delivery rate as well as congenital anomaly. All the patients were infertile due to male factor infertility and LAH and embryo transfer were done on day 2. Results: Laboratory and clinical characteristics of two groups of experiment and control were the same. There were insignificant differences between two groups of experiment and control for clinical pregnancy rate (20% vs. 23.9%, respectively, p=0.3) and live birth rate (11.11% vs. 8.6%, respectively, p=0.6). Also no significant differences were observed between two groups of experiment and control for multiple pregnancy as well as congenital anomaly. Conclusion: Routine use of LAH in first ICSI cycle for male factor patients may have no beneficial effects on clinical pregnancy and live birth rate. PMID:24639729

  6. Comparison between Cleavage Stage versus Blastocyst Stage Embryo Transfer in an Egyptian Cohort Undergoing in vitro Fertilization: A Possible Role for Laser Assisted Hatching

    PubMed Central

    Hendawy, Sherif F.; Raafat, TA

    2011-01-01

    Background Extended in vitro embryo culture and blastocyst transfer have emerged as essential components of the advanced reproductive technology armamentarium, permitting selection of more advanced embryos considered best suited for transfer. Aim of study The aim of this study was to compare between cleavage stage and blastocyst stage embryo transfer in patients undergoing intracytoplasmic sperm injection, and to assess the role of assisted hatching technique in patients undergoing blastocyst transfer. Patients and methods This study was carried out on two groups. Group I: 110 patients who underwent 120 cycles of intracytoplasmic sperm injection with day 2–3 embryo transfer—for unexplained infertility or male factor within the previous 3 years. Their data obtained retrospectively from medical records. Group II: 46 age matched infertile female patients undergoing 51 intracytoplasmic sperm injection cycles for similar causes. Patients in Group II were further subdivided into 2 equal subgroups; Group IIa (23 patients), which had laser assisted hatching and Group IIb (23 patients), which did not have assisted hatching. All patients had an infertility workup including basal hormonal profile, pelvic ultrasound, hysterosalpingogram and/or laparoscope and semen analysis of the patient’s partner. All patients underwent controlled ovarian hyperstimulation: Using long protocol of ovulation induction. Laser assisted hatching was done for blastocysts of 23 patients. Results Comparison between both groups as regards the reproductive outcome showed a significant difference in pregnancy and implantation rates, both being higher in group II (P < 0.05) Comparison between both subgroups as regards the reproductive outcome showed a highly significant difference in pregnancy and implantation rates, both being higher in Group IIa (P < 0.01). There was also a significantly higher rate of multiple pregnancies among Group IIa (P < 0.05). Conclusion Blastocyst transfer is a successful

  7. Outcomes of vitrified-warmed cleavage-stage embryo hatching after in vitro laser-assisted zona pellucida thinning in patients

    PubMed Central

    Wang, En-Hua; Wang, An-Cong; Wang, Bao-Song; Li, Bin

    2016-01-01

    The aim of the present study was to determine whether the size of the zona pellucida (ZP) thinning area by laser-assisted hatching affected the potential development of vitrified-warmed embryos. A total of 196 vitrified-warmed cleavage-stage embryos (from 49 patients, four sister embryos per patient) were used in the study, i.e., four sister embryos from each patient were randomly assigned to four groups: a control group of embryos that were not zona-manipulated (zona intact, group A); one experimental group of embryos in which a quarter of the zona pellucida was thinned using laser-assisted ZP thinning (group B); a second experimental group of embryos in which half of ZP was thinned (group C); and a third group in which two-thirds of the ZP was thinned (group D). Subsequent blastocyst development was assessed. Microscopy was performed to study the hatching process of the embryos after zona thinning. The blastocyst formation rates were 71.43% in group A, 67.35% in group B, 65.31% in group C, and 51.02% in group D (groups B-D vs. group A, P=0.661, P=0.515, P=0.038, respectively). The rates of complete hatching were 30.61% in group A, 38.78% in group B, 61.22% in group C, and 48.98% in group D (groups B-D vs. group A, P=0.396, P=0.002, P=0.063, respectively). For a subgroup of patients, there was a significant difference in the complete hatching in all the groups for women aged <35 years (P=0.011), and there was a significant difference in the complete hatching in all the groups for secondary infertility women (P=0.022). There was no significant difference in the blastocyst formation rates in the different groups of women aged ≥35 years (P=0.340). In addition, there was no significant difference in the complete hatching in the different groups among women aged ≥35 years (P=0.492). The results of the present study showed that in vitrified-warmed embryo transfers at the cleavage-stage, and the two-thirds zona pellucida thinning group demonstrated a significantly

  8. [Assisted hatching for improving embryo implantation. A bibliographical review].

    PubMed

    Hernández-Nieto, Carlos Alberto; Soto-Cossio, Luz Estefhany; Basurto-Díaz, David

    2015-04-01

    Embryo implantation represents the most critical step of the reproductive process in many species, to be successful requires a receptive endometrium, functional embryo at a stage of embryonic development and proper dialogue between embryonic and maternal tissues. Hatching is the process in which the blastocyst gets rid of the zona pellucida to be implemented. The failure in this factor can lead to reproductive problems, even under assisted reproduction techniques. Assisted hatching is a technique used in assisted reproduction laboratories to improve performance in the process of fecundation or in vitro fertilization. This technique is based on impairment or section of the zona pellucida using different techniques. In this review, the most common indications and techniques used to perform this procedure and improve success rates in assisted reproduction techniques are synthesized. PMID:26727756

  9. The effect of artificial shrinkage and assisted hatching on the development of mouse blastocysts and cell number after vitrification

    PubMed Central

    Kim, Hye Jin; Lee, Ki Hwan; Park, Sung Baek; Choi, Young Bae

    2015-01-01

    Objective The goal of this study was to ascertain optimal assisted hatching (AH) method in frozen embryo transfer. We compared the effect of depending on whether mechanical or laser-AH was performed before or after the vitrification of embryo development rate and blastocyst cell numbers. Methods In order to induce superovulation, pregnant mare's serum gonadotropin followed by human chorionic gonadotropin were injected into 4- to 5-week-old female mice. 2-cell embryos were then collected by flushing out the oviducts. The Expanded blastocysts were recovered after the collected embryos were incubated for 48 hours, and were then subjected to artificial shrinkage (AS) and cross-mechanical AH (cMAH) or quarter-laser zona thinning-AH (qLZT-AH) were carried out using the expanded blastocysts before or after vitrification. After 48 hours of incubation, followed by vitrification and thawing (V-T), and blastocysts were fluorescence stained and observed. Results The rate of formation of hatched blastocysts after 24 and 72 hours of incubation was significantly higher in the AS/qLZT-AH/V-T group than in the other groups (p<0.05). The cell number of the inner cell mass was higher in AS/V-T/non-AH and AS/V-T/cMAH groups than those of others (p<0.05). In the control group, the number of trophectoderm and the total cell number were higher than in the AS-AH group (p<0.05). Conclusion The above results suggest that AS and AH in vitrification of expanded blastocysts lead to the more efficient formation of hatched blastocysts in mice. PMID:26473108

  10. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  11. Laser-Assisted Operculectomy.

    PubMed

    Levine, Robert; Vitruk, Peter

    2015-09-01

    The 10,600-nm CO2 laser is both an efficient and spatially precise photo-thermal ablation device and excellent coagulator because of the close match between its coagulation depth and the diameters of oral soft-tissue capillaries. The ablation of hyperplastic oral soft tissue with the flexible fiber waveguide 10,600-nm CO2 laser is a minimally invasive and typically suture-free surgical modality that ensures dependable treatment. It is, in many respects, superior to most of the alternative treatment options. Its excellent hemostatic abilities and the minimal damage to adjacent healthy tissues make the CO2 laser a perfect surgical tool for treating oral soft-tissue lesions, including the inflamed operculum. PMID:26355439

  12. Laser assisted hair-removal.

    PubMed

    Choudhary, S; Elsaie, M L; Nouri, K

    2009-10-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the hair follicle by targeting melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Laser hair removal is achieved through follicular unit destruction based on selective photothermolysis. The principle of selective photothermolysis predicts that the thermal injury will be restricted to a given target if there is sufficient selective absorption of light and the pulse duration is shorter than the thermal relaxation time of the target. This review will focus on the mechanisms of laser assisted hair removal and provide an update on the newer technologies emerging in the field of lasers assisted hair removal. PMID:19834437

  13. Laser assisted graffiti paints removing

    NASA Astrophysics Data System (ADS)

    Novikov, B. Y.; Chikalev, Y. V.; Shakhno, E. A.

    2010-07-01

    It's hard to imagine a modern city view without some drawings and inscriptions, usually called "graffiti". Traditional cleaning methods do not suit modern requirements. Investigation of possibilities of laser assisted paints removing is described in this article. The conditions for removing different paints from different surfaces were defined.

  14. Laser assisted graffiti paints removing

    NASA Astrophysics Data System (ADS)

    Novikov, B. Y.; Chikalev, Y. V.; Shakhno, E. A.

    2011-02-01

    It's hard to imagine a modern city view without some drawings and inscriptions, usually called "graffiti". Traditional cleaning methods do not suit modern requirements. Investigation of possibilities of laser assisted paints removing is described in this article. The conditions for removing different paints from different surfaces were defined.

  15. Laser assisted direct manufacturing

    NASA Astrophysics Data System (ADS)

    Bertrand, Ph.; Smurov, I.

    2007-06-01

    Direct Laser Manufacturing (DLM) with coaxial powder injection (TRUMPF DMD 505 installation) was applied for fabrication of 3D objects from metallic and ceramic powder. One of the advantages of DLM is the possibility to build functionally graded objects in one-step manufacturing cycle by application of a 2-channel powder feeder. Several models with different types of material gradients (smooth, sharp, periodic) and multi-layered structures were manufactured from SS, stellite (Cobalt alloy), Cu and W alloys. Technology of Selective Laser Melting (SLM) was applied for manufacturing of net shaped objects from different powders (PHENIX PM-100 machine) : Inox 904L, Ni625, Cu/Sn, W and Zr02-Y2O3. Performance and limitations of SLM technology for fabrication of elements for chemical and mechanical industries are analysed. Two-component objects (Stainless steel /Cu - H13/CuNi) were fabricated in a two-step manufacturing cycle.

  16. Mechanism Guides Hatch Through Hatchway

    NASA Technical Reports Server (NTRS)

    Barron, Daniel R.; Kennedy, Steven E.

    1993-01-01

    Elliptical hatch designed to move through hatchway to make pressure-assisted seal with either side of bulkhead. Compact three-degree-of-freedom mechanism guides hatch through hatchway or holds hatch off to one side to facilitate passage of crew and/or equipment. Hatches and mechanisms used in submarines, pressure chambers (including hyperbaric treatment chambers), vacuum chambers, and vacuum-or-pressure test chambers.

  17. Effect of assisted hatching on pregnancy outcomes: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Li, Da; Yang, Da-Lei; An, Jing; Jiao, Jiao; Zhou, Yi-Ming; Wu, Qi-Jun; Wang, Xiu-Xia

    2016-01-01

    Emerging evidence suggests that assisted hatching (AH) techniques may improve clinical pregnancy rates, particularly in poor prognosis patients; however, there still remains considerable uncertainty. We conducted a meta-analysis to verify the effect of AH on pregnancy outcomes. We searched for related studies published in PubMed, Web of Science, and Cochrane library databases from start dates to October 10, 2015. Totally, 36 randomized controlled trials with 6459 participants were included. Summary odds ratios (ORs) with 95% confidence intervals (CIs) for whether by AH or not were estimated. We found a significant increase in clinical pregnancy (OR = 1.16, 95% CI = 1.00-1.36, I(2) = 48.3%) and multiple pregnancy rates (OR = 1.50, 95% CI = 1.11-2.01, I(2) = 44.0%) with AH when compared to the control. Numerous subgroup analyses stratified by hatching method, conception mode, extent of AH, embryos transfer status, and previous failure history were also carried out. Interestingly, significant results of clinical pregnancy as well as multiple pregnancy rates were observed among women who received intracytoplasmic sperm injection, and who received AH which the zona were completely removed. In summary, this meta-analysis supports that AH was associated with an increased chance of achieving clinical pregnancy and multiple pregnancy. Whether AH significantly changes live birth and miscarriage rates needs further investigations. PMID:27503701

  18. Effect of assisted hatching on pregnancy outcomes: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Li, Da; Yang, Da-Lei; An, Jing; Jiao, Jiao; Zhou, Yi-Ming; Wu, Qi-Jun; Wang, Xiu-Xia

    2016-01-01

    Emerging evidence suggests that assisted hatching (AH) techniques may improve clinical pregnancy rates, particularly in poor prognosis patients; however, there still remains considerable uncertainty. We conducted a meta-analysis to verify the effect of AH on pregnancy outcomes. We searched for related studies published in PubMed, Web of Science, and Cochrane library databases from start dates to October 10, 2015. Totally, 36 randomized controlled trials with 6459 participants were included. Summary odds ratios (ORs) with 95% confidence intervals (CIs) for whether by AH or not were estimated. We found a significant increase in clinical pregnancy (OR = 1.16, 95% CI = 1.00–1.36, I2 = 48.3%) and multiple pregnancy rates (OR = 1.50, 95% CI = 1.11–2.01, I2 = 44.0%) with AH when compared to the control. Numerous subgroup analyses stratified by hatching method, conception mode, extent of AH, embryos transfer status, and previous failure history were also carried out. Interestingly, significant results of clinical pregnancy as well as multiple pregnancy rates were observed among women who received intracytoplasmic sperm injection, and who received AH which the zona were completely removed. In summary, this meta-analysis supports that AH was associated with an increased chance of achieving clinical pregnancy and multiple pregnancy. Whether AH significantly changes live birth and miscarriage rates needs further investigations. PMID:27503701

  19. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Gupta, S.; Mcmullin, P. G.; Palaschak, P. A.

    1985-01-01

    Laser-assisted processing techniques for producing high-quality solar cell metallization patterns are being investigated, developed, and characterized. The tasks comprising these investigations are outlined.

  20. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.

  1. Laser-assisted percutaneous endoscopic neurolysis.

    PubMed

    Epstein, J M; Adler, R

    2000-01-01

    Endoscopic lysis of adhesive scar utilizing a steerable fiberoptic scope is currently being performed by a growing number of physicians. Various techniques and medications are presently being used to lyse epidural adhesions as a way of improving refractory lumbar radiculopathies. We present a case report discussing laser-assisted endoscopic lysis with radiographic images before and after laser-assisted neurolysis. We were able to demonstrate improvement in the filling of the nerve root with epidural contrast after the laser lysis of scar. This correlated with improvement in pain without neurologic deficit. The laser may represent a useful adjunct in the treatment of pain due to epidural fibrosis. PMID:16906206

  2. Rhabdomyolysis After Cosmetic Laser-Assisted Liposuction.

    PubMed

    Shin, Jin-yong; Chang, Hak

    2015-08-01

    A 34-year-old-female patient visited our emergency room for symptoms of disturbance of urination and shortness of breath. She was diagnosed with rhabdomyolysis with acute kidney injury after laser-assisted liposuction and required hemodialysis. Although laser-assisted liposuction is a well-used procedure, it can cause local complications, such as burns and skin irregularities, as well as systemic complications, such as infection, fever, and emboli. However, laser-assisted, liposuction-induced rhabdomyolysis has not been reported. Repetitive exercises, trauma, and crush injury are the major causes of rhabdomyolysis. In this study, a unique case of rhabdomyolysis that developed after laser-assisted liposuction is reported. PMID:26085224

  3. Laser-assisted photoemission from surfaces

    SciTech Connect

    Saathoff, G.; Miaja-Avila, L.; Murnane, M. M.; Kapteyn, H. C.; Aeschlimann, M.

    2008-02-15

    We investigate the laser-assisted photoelectric effect from a solid surface. By illuminating a Pt(111) sample simultaneously with ultrashort 1.6 and 42 eV pulses, we observe sidebands in the extreme ultraviolet photoemission spectrum, and accurately extract their amplitudes over a wide range of laser intensities. Our results agree with a simple model, in which soft x-ray photoemission is accompanied by the interaction of the photoemitted electron with the laser field. This strong effect can definitively be distinguished from other laser surface interaction phenomena, such as hot electron excitation, above-threshold photoemission, and space-charge acceleration. Thus, laser-assisted photoemission from surfaces promises to extend pulse duration measurements to higher photon energies, as well as opening up measurements of femtosecond-to-attosecond electron dynamics in solid and surface-adsorbate systems.

  4. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.

  5. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  6. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  7. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  8. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  9. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  10. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction laser system. 884.6200... (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Assisted Reproduction Devices § 884.6200 Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a...

  11. Thermal Spraying Coatings Assisted by Laser Treatment

    SciTech Connect

    Fenineche, N. E.; Cherigui, M.

    2008-09-23

    Coatings produced by air plasma spraying (APS) are widely used to protect components against abrasive wear and corrosion. However, APS coatings contain porosities and the properties of these coatings may thereby be reduced. To improve these properties, various methods could be proposed, including post-laser irradiation [1-4]. Firstly, PROTAL process (thermal spraying assisted by laser) has been developed as a palliative technique to degreasing and grit-blasting prior to thermal spraying. Secondly, thermal spray coatings are densified and remelted using Laser treatment. In this study, a review of microstructure coatings prepared by laser-assisted air plasma spraying will be presented. Mechanical and magnetic properties will be evaluated in relation to changes in the coating microstructure and the properties of such coatings will be compared with those of as-sprayed APS coatings.

  12. Laser Assisted Plasma Arc Welding

    SciTech Connect

    FUERSCHBACH,PHILLIP W.

    1999-10-05

    Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  13. Chemically-Assisted Pulsed Laser-Ramjet

    SciTech Connect

    Horisawa, Hideyuki; Kaneko, Tomoki; Tamada, Kazunobu

    2010-10-13

    A preliminary study of a chemically-assisted pulsed laser-ramjet was conducted, in which chemical propellant such as a gaseous hydrogen/air mixture was utilized and detonated with a focused laser beam in order to obtain a higher impulse compared to the case only using lasers. CFD analysis of internal conical-nozzle flows and experimental measurements including impulse measurement were conducted to evaluate effects of chemical reaction on thrust performance improvement. From the results, a significant improvement in the thrust performances was confirmed with addition of a small amount of hydrogen to propellant air, or in chemically-augmented operation.

  14. Laser assisted Drug Delivery: Grundlagen und Praxis.

    PubMed

    Braun, Stephan Alexander; Schrumpf, Holger; Buhren, Bettina Alexandra; Homey, Bernhard; Gerber, Peter Arne

    2016-05-01

    Die topische Applikation von Wirkstoffen ist eine zentrale Therapieoption der Dermatologie. Allerdings mindert die effektive Barrierefunktion der Haut die Bioverfügbarkeit der meisten Externa. Fraktionierte ablative Laser stellen ein innovatives Verfahren dar, um die epidermale Barriere standardisiert, kontaktfrei zu überwinden. Die Bioverfügbarkeit im Anschluss applizierter Externa wird im Sinne einer laser assisted drug delivery (LADD) signifikant gesteigert. Das Prinzip der LADD wird bereits in einigen Bereichen der Dermatologie erfolgreich eingesetzt. Die vorliegende Übersichtsarbeit soll einen Überblick über die aktuellen aber auch perspektivischen Einsatzmöglichkeiten der LADD bieten. PMID:27119467

  15. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1986-01-01

    The status of the laser-assisted solar cell metallization processing is described. Metallo-organic silver films were spun-on by argon ion laser beam pyrolysis. The metallo-organic decomposition (MOD) film was spun-on an evaporated Ti/Pd film to produce tood adhesion. In a maskless process, the argon ion laser writes the contact pattern. The film is then built up to obtain the required conductivity using conventional silverplating process. The Ti/Pd film in the field is chemically etched using the plated silver film as the mask. The width of the contact pattern is determined by the power of the laser. Widths as thin as 20 microns were obtained using 0.66 W of laser power. Cells fabricated with the 50 micron line widths of 4 ohm-cm floating zone (Fz) silicon-produced efficiencies of 16.6% (no passivation) which were equivalent to the best cells using conventional metallization/lithography and no passivation.

  16. Laser-assisted surgery of endonasal diseases

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Leunig, Andreas; Janda, P.; Rosler, P.; Grevers, G.; Baumgartner, Reinhold

    2000-06-01

    Clinical studies were performed to assess the clinical outcome of laser assisted endonasal turbinate surgery in long-term. By means of a pulsed Ho:YAG laser emitting at (lambda) equals 2100nm 57 patients suffering form nasal obstruction due to allergic rhinitis and vasomotoric rhinitis were treated under local anesthesia. Furthermore 50 patients were treated by means of light of a diode laser. The light was fed into a fiber being introduced into a fiber guidance system which serves for suction of smoke and pyrolyse products. The distal part of this system could be bent in the range of -5 degrees up to 45 degrees due to the optical axes of the fiber. The study was conducted by a standardized questionnaire, photo documentation, allergy test, mucocilliar function test, rhinomanometry, radiology and histology. Within 2 weeks after laser treatment a significant improvement of nasal airflow correlating to the extent of the ablated turbinate tissue could be determined. This effect lasted up until 1 year post treatment resulting in an improved quality of life in more than 80 percent of the patients. Side effects like nasal dryness and pain were rare, no immediate complications were observed. The total treatment time took 3-8 minutes/turbinate and nasal packing was not necessary after the laser procedure. In conclusion laser treatment by means of the fiber guidance system can be performed as an outpatient procedure under local anesthesia with excellent ablation of soft tissue in a short treatment time with promising results. It will become a time and cost effective treatment modality in endonasal laser surgery.

  17. Laser-Assisted Micro-Pulsejet Thruster

    SciTech Connect

    Horisawa, Hideyuki; Eto, Sou

    2010-10-13

    A fundamental study of a laser-assisted micro-pulsejet thruster was conducted for a candidate of next-generation air-breathing micro-thruster systems. CFD analyses were conducted to evaluate internal phenomena, thrust performances, and influence of exhaust orifice for propellants of hydrogen-air mixture. Experimental investigations were also conducted to evaluate influence of exhaust orifices and the optimum configuration of the micro-combustion chamber. From the results, it was shown that the exhaust orifice was more effective for the improvement of thrust performance. Moreover, influence of combustor geometry on thrust performance for the improvement was confirmed. In our simulation and experimental results, the efficiency from ideal chemical energy, which is expected to be released from an ideal hydrogen-air mixture, into kinetic energy was a few percents. There are still some ways to recover this amount of loss with optimum combustor geometries and higher laser energies, and potential achieving much higher thrust performances.

  18. Laser Assisted Cancer Immunotherapy: Surface Irradiation

    NASA Astrophysics Data System (ADS)

    Wilson, Joshua; Chen, Hsin-Wei; Bandyopadhyay, Pradip

    2006-03-01

    Experiments in our laboratory incorporate a non-invasive approach to treat superficial tumors in animal models. Based on the concept of Laser Assisted Cancer Immunotherapy, surface irradiation provides good information to compare to invasive alternatives. The procedure involves injecting an immunoadjuvant (Glycated Chitosan) as well as a light absorbing dye (Indocyanine Green) directly into the tumor (5 to 7 mm in diameter). The temperature of the tumor is raised using an infrared diode laser operating at 804 nm, with a silica fiber tip placed a set distance away from the surface of the tumor. We monitor the surface temperature using non-invasive (infrared detector probe) as well as the internal temperature of the tumor using invasive (micro thermocouples) methods. This study aims at the success of the surface irradiation mode to treat solid tumors. * This work is supported by a grant from The National Institute of Health.

  19. Chemically assisted laser ablation ICP mass spectrometry.

    PubMed

    Hirata, Takafumi

    2003-01-15

    A new laser ablation technique combined with a chemical evaporation reaction has been developed for elemental ratio analysis of solid samples using an inductively coupled plasma mass spectrometer (ICPMS). Using a chemically assisted laser ablation (CIA) technique developed in this study, analytical repeatability of the elemental ratio measurement was successively improved. To evaluate the reliability of the CLA-ICPMS technique, Pb/U isotopic ratios were determined for zircon samples that have previously been analyzed by other techniques. Conventional laser ablation for Pb/U shows a serious elemental fractionation during ablation mainly due to the large difference in elemental volatility between Pb and U. In the case of Pb/U ratio measurement, a Freon R-134a gas (1,1,1,2-tetrafluoroethane) was introduced into the laser cell as a fluorination reactant. The Freon gas introduced into the laser cell reacts with the ablated sample U, and refractory U compounds are converted to a volatile U fluoride compound (UF6) under the high-temperature condition at the ablation site. This avoids the redeposition of U around the ablation pits. Although not all the U is reacted with Freon, formation of volatile UF compounds improves the transmission efficiency of U. Typical precision of the 206Pb/238U ratio measurement is 3-5% (2sigma) for NIST SRM 610 and Nancy 91500 zircon standard, and the U-Pb age data obtained here show good agreement within analytical uncertainties with the previously reported values. Since the observed Pb/U ratio for solid samples is relatively insensitive to laser power and ablation time, optimization of ablation conditions or acquisition parameters no longer needs to be performed on a sample-to-sample basis. PMID:12553756

  20. Laser-assisted isotope separation of tritium

    DOEpatents

    Herman, Irving P.; Marling, Jack B.

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  1. Laser-Assisted Single Molecule Refolding

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Marshall, Myles; Aleman, Elvin; Lamichhane, Rajan; Rueda, David

    2010-03-01

    In vivo, many RNA molecules can adopt multiple conformations depending on their biological context such as the HIV Dimerization Initiation Sequence (DIS) or the DsrA RNA in bacteria. It is quite common that the initial interaction between the two RNAs takes place via complementary unpaired regions, thus forming a so-called kissing complex. However, the exact kinetic mechanism by which the two RNA molecules reach the dimerized state is still not well understood. To investigate the refolding energy surface of RNA molecules, we have developed new technology based on the combination of single molecule spectroscopy with laser induced temperature jump kinetics, called Laser Assisted Single-molecule Refolding (LASR). LASR enables us to induce folding reactions of otherwise kinetically trapped RNAs at the single molecule level, and to characterize their folding landscape. LASR provides an exciting new approach to study molecular memory effects and kinetically trapped RNAs in general. LASR should be readily applicable to study DNA and protein folding as well.

  2. Cell patterning by laser-assisted bioprinting.

    PubMed

    Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien

    2014-01-01

    The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. PMID:24439284

  3. An augmented reality assistance platform for eye laser surgery.

    PubMed

    Ee Ping Ong; Lee, Jimmy Addison; Jun Cheng; Beng Hai Lee; Guozhen Xu; Laude, Augustinus; Teoh, Stephen; Tock Han Lim; Wong, Damon W K; Jiang Liu

    2015-08-01

    This paper presents a novel augmented reality assistance platform for eye laser surgery. The aims of the proposed system are for the application of assisting eye doctors in pre-planning as well as providing guidance and protection during laser surgery. We developed algorithms to automatically register multi-modal images, detect macula and optic disc regions, and demarcate these as protected areas from laser surgery. The doctor will then be able to plan the laser treatment pre-surgery using the registered images and segmented regions. Thereafter, during live surgery, the system will automatically register and track the slit lamp video frames on the registered retina images, send appropriate warning when the laser is near protected areas, and disable the laser function when it points into the protected areas. The proposed system prototype can help doctors to speed up laser surgery with confidence without fearing that they may unintentionally fire laser in the protected areas. PMID:26737252

  4. Laser diagnostics of plasma assisted combustion

    NASA Astrophysics Data System (ADS)

    Rao, Xing

    In this study, a microwave re-entrant cavity discharge system and a direct current (DC) plasmatron are used to investigate flame enhancement and nitric oxide (NO) formation using laser and optical diagnostics. The uniqueness of this study lies in the direct coupling concept, a novel highly efficient strategy used here for the first time. To investigate combustion dynamics of direct microwave coupled combustion, an atmospheric high-Q re-entrant cavity applicator is used to couple microwave (2.45 GHz) electromagnetic energy directly into the reaction zone of a premixed laminar methane-oxygen flame using a compact torch. When microwave energy increases, a transition from electric field enhancement to microwave plasma discharge is observed. At 6 to 10 Watts, ionization and eventually break-down occurs. 2-D laser induced fluorescence (LIF) imaging of hydroxyl radicals (OH) and carbon monoxide (CO) is conducted in the reaction zone over this transition, as well as spectrally resolved flame emission measurements. These measurements serve to monitor excited state species and derive rotational temperatures using OH chemiluminescence for a range of equivalence ratios (both rich and lean) and total flow rates. Combustion dynamics is also investigated for plasma enhanced methane-air flames in premixed and nonpremixed configurations using a transient arc DC plasmatron. Results for OH and CO PLIF also indicate the differences in stability mechanism, and energy consumption for premixed and nonpremixed modes. It is shown that both configurations are significantly influenced by in-situ fuel reforming at higher plasma powers. Parametric studies are conducted in a plasma assisted methane/air premixed flame for quantitative NO production using a DC plasmatron with PLIF imaging. Quantitative measurements of NO are reported as a function of gas flow rate (20 to 50 SCFH), plasma power (100 to 900 mA, 150 to 750 W) and equivalence ratio (0.7 to 1.3). NO PLIF images and single point NO

  5. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, Donald J.

    1992-01-01

    A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  6. Laser cutting with chemical reaction assist

    DOEpatents

    Gettemy, D.J.

    1992-11-17

    A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.

  7. Laser cutting with chemical reaction assist

    SciTech Connect

    Gettemy, D.J.

    1991-04-08

    This invention is comprised of a method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.

  8. Characterization of a Laser-Assisted Pulsed Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Kawakami, Masatoshi; Igari, Akira; Horisawa, Hideyuki; Kimura, Itsuro

    2004-03-01

    An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a target and accelerated by electrical means instead of the direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. Inducing a short-duration conductive plasma between electrodes with certain voltages, short-duration switching or a discharge was achieved. At low-voltage conditions (~ 100 V), applied to electrodes or charged to a capacitor, it was confirmed that electric discharge can be achieved even under low voltage conditions. From the results, it was found that discharge duration at the low-voltage case was as long as that of laser-induced plasma. Therefore, the discharge in the low-voltage case must be controlled with an incident laser pulse, or a laser-induced plasma. While in high-voltage cases (~ 2000 V), the discharge duration was much longer than that of laser-induced plasma. In this case, the laser-induced plasma should be leading main discharge from a capacitor, where some amount of neutral components of vaporized propellant must be ionized through the discharge. Considering ratios of the laser energy to the discharge energies, the discharge process in the high-voltage mode cases must be defined as the laser-assisted electric discharge, or the laser-assisted electric propulsion mode, while in the low-voltage mode case with smaller electric energy, as the electrically-assisted laser-induced process, or the electric-assisted laser propulsion mode. Moreover, plasma behaviors emitted from each thruster in various cases were observed with the ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet

  9. Laser Assisted Free-Free Transition in Electron - Atom Collision

    NASA Technical Reports Server (NTRS)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  10. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets

    PubMed Central

    Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.

    2008-01-01

    We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311

  11. Expedition 30 Hatch Opening

    NASA Video Gallery

    Expedition 30 Flight Engineers Don Pettit, Oleg Kononenko and Andre Kuipers are welcomed aboard the International Space Station when the hatches between the station and the Soyuz TMA-03M spacecraft...

  12. Resonant phenomena in laser-assisted radiative attachment or recombination

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. N.; Flegel, A. V.; Frolov, M. V.; Manakov, N. L.; Starace, Anthony F.

    2012-04-01

    Resonant enhancements are predicted in cross sections σn for laser-assisted radiative attachment or electron-ion recombination accompanied by absorption of n laser photons. These enhancements occur for incoming electron energies at which the electron can be attached or recombined by emitting μ laser photons followed by emission of a spontaneous photon upon absorbing n + μ laser photons. The close similarity between rescattering plateaus in spectra of resonant attachment/recombination and of high-order harmonic generation is shown based on a general parametrization for σn and on numerical results for e - H attachment.

  13. Nitric oxide regulates blastocyst hatching in mice

    PubMed Central

    Pan, Xiaoyan; Wang, Xuenan; Wang, Xiyan; Sun, Zhanxuan; Zhang, Xue; Liang, Xuanxuan; Li, Zhixin; Dou, Zhaohua

    2015-01-01

    Objective: This study is to determine the regulatory role of nitric oxide in mouse blastocyst hatching. Methods: Kunming female mice were superovulated and then mated with mature male mice. On day 2.5 of their pregnancy, the pregnant mice were killed and morulae were flushed from their uterine horns with culture media. Morulae were cultured in media with different concentrations of N-nitro-L arginine methyl ester (L-NAME), sodium nitroprusside (SNP), 8-Br-3’-5’-cyclic guanosine monophosphate (8-Br-cGMP) or the combination of L-NAME with SNP or 8-Br-cGMP for 48 h. The hatched blastocysts were examined on day 5 and the expressions of epithelial nitric oxide synthase (eNOS) and active cysteinyl aspartate specific proteinase 3 (caspase 3) were observed under confocal laser scanning microscope. Results: L-NAME significantly reduced the expression of eNOS in blastocyst cells. With the increase of the concentrations of L-NAME, SNP or 8-Br-cGMP, blastocyst hatching rate was significantly lowered. In addition, 5 mM L-NAME, 2 μM SNP and 2 μM 8-Br-cGMP completely inhibited blastocyst hatching. Low concentrations of SNP or 8-Br-cGMP in culture media containing 5 mM L-NAME significantly reversed the inhibition of blastocyst hatching and promoted hatching development. Moreover, 5 mM L-NAME and 2 μM 8-Br-cGMP had no significant influence on the expression of active caspase 3 in blastocyst cells. SNP (> 500 nM) significantly increased the expression of active caspase 3 in blastocyst cells. Conclusions: NO/cGMP pathway plays an important role in mouse blastocyst hatching. Excessive or depleted NO can interrupt blastocyst hatching. Excessive NO leads to apoptosis of blastocyst cells. PMID:26221236

  14. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  15. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  16. Maternal Vibration: An Important Cue for Embryo Hatching in a Subsocial Shield Bug

    PubMed Central

    Mukai, Hiromi; Hironaka, Mantaro; Tojo, Sumio; Nomakuchi, Shintaro

    2014-01-01

    Hatching care has been reported for many taxonomic groups, from invertebrates to vertebrates. The sophisticated care that occurs around hatching time is expected to have an adaptive function supporting the feeble young. However, details of the characteristics of the adaptive function of hatching care remain unclear. This study investigated the hatching care of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Parastrachiidae) to verify its function. Results show that the P. japonensis mothers vibrated the egg mass intermittently while maintaining an egg-guarding posture. Then embryos started to emerge from their shells synchronously. Unlike such behaviors of closely related species, this vibrating behavior was faint, but lasted more than 6 h. To investigate the effect of this behavior on hatching synchrony and hatching success, we observed the hatching pattern and the hatching rate in control, mother-removed, and two artificial vibration groups. Control broods experienced continuous guarding from the mother. Intermittent artificial vibration broods were exposed to vibrations that matched the temporal pattern of maternal vibration produced by a motor. They showed synchronous hatching patterns and high hatching rates. However, for mother-removed broods, which were isolated from the mother, and when we provided continuous artificial vibration that did not match the temporal pattern of the maternal vibration, embryo hatching was not only asynchronous: some embryos failed to emerge from their shells. These results lead us to infer that hatching care in P. japonensis has two functions: hatching regulation and hatching assistance. Nevertheless, several points of observational and circumstantial evidence clearly contraindicate hatching assistance. A reduction in the hatching rate might result from dependence on maternal hatching care as a strong cue in P. japonensis. We conclude that the hatching care of P. japonensis regulates the hatching pattern and serves

  17. Laser-assisted H- charge exchange injection in magnetic fields

    NASA Astrophysics Data System (ADS)

    Gorlov, T.; Danilov, V.; Shishlo, A.

    2010-05-01

    The use of stripping foils for charge exchange injection can cause a number of operational problems in high intensity hadron accelerators. A recently proposed three-step method of laser-assisted injection is capable of overcoming these problems. This paper presents advances in the physical model of laser-assisted charge exchange injection of H- beams and covers a wide field of atomic physics. The model allows the calculation of the evolution of an H0 beam taking into account spontaneous emission, field ionization, and external electromagnetic fields. Some new data on the hydrogen atom related to the problem are calculated. The numerical calculations in the model use realistic descriptions of laser field and injection beam. Generally, the model can be used for design and optimization of a laser-assisted injection cell within an accelerator lattice. Example calculations of laser-assisted injection for an intermediate experiment at SNS in Oak Ridge and for the PS2 accelerator at CERN are presented. Two different schemes, distinctively characterized by various magnetic fields at the excitation point, are discussed. It was shown that the emittance growth of an injected beam can be drastically decreased by moving the excitation point into a strong magnetic field.

  18. Laser-Assisted Growth Of AlGaAs Films

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1989-01-01

    Films of aluminum gallium arsenide grown on gallium arsenide by laser-assisted organometallic chemical-vapor deposition. Films single-crystal and contain no detectable oxygen or carbon. Laser beam impinges on substrate in quartz reaction chamber surrounded by radio-frequency induction coils. Film grows much more rapidly at 500 degree C than 450 degree C. Slight amount of interfacial oxygen detectable in film deposited at lower temperature.

  19. Laser assisted arc welding for aluminum alloys

    SciTech Connect

    Fuerschbach, P.W.

    2000-01-01

    Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

  20. Laser-assisted manufacturing of thermal energy devices

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Tewolde, Mahder; Kim, Ki-Hoon; Seo, Dong-Min; Longtin, Jon P.; Hwang, David J.

    2016-03-01

    In this study, we will present recent progress in the laser-assisted manufacturing of thermal energy devices that require suppressed thermal transport characteristics yet maintaining other functionalities such as electronic transport or mechanical strength. Examples of such devices to be demonstrated include thermoelectric generator or insulating materials. To this end, it will be shown that an additive manufacturing approaches can be facilitated and improved by unique processing capabilities of lasers in composite level. In order to tailor thermal characteristics in thermal devices, we will mainly investigate the potential of laser heating, curing, selective removal and sintering processes of material systems in the composite level.

  1. Laser-assisted patch clamping: a methodology

    NASA Technical Reports Server (NTRS)

    Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1997-01-01

    Laser microsurgery can be used to perform both cell biological manipulations, such as targeted cell ablation, and molecular genetic manipulations, such as genetic transformation and chromosome dissection. In this report, we describe a laser microsurgical method that can be used either to ablate single cells or to ablate a small area (1-3 microns diameter) of the extracellular matrix. In plants and microorganisms, the extracellular matrix consists of the cell wall. While conventional patch clamping of these cells, as well as of many animal cells, requires enzymatic digestion of the extracellular matrix, we illustrate that laser microsurgery of a portion of the wall enables patch clamp access to the plasma membrane of higher plant cells remaining situated in their tissue environment. What follows is a detailed description of the construction and use of an economical laser microsurgery system, including procedures for single cell and targeted cell wall ablation. This methodology will be of interest to scientists wishing to perform cellular or subcellular ablation with a high degree of accuracy, or wishing to study how the extracellular matrix affects ion channel function.

  2. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  3. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  4. All-femtosecond laser-assisted in situ keratomileusis

    NASA Astrophysics Data System (ADS)

    Gabryte, Egle; Danieliene, Egle; Vaiceliunaite, Agne; Ruksenas, Osvaldas; Vengris, Mikas; Danielius, Romualdas

    2013-03-01

    We present a femtosecond solid-state Yb:KGW laser system capable of performing the complete laser-assisted in situ keratomileusis (LASIK) ophthalmic procedure. The fundamental infrared radiation (IR) is used to create the corneal flap, and subsequently the corneal stromal ablation is performed using the ultraviolet (UV) pulses of the fifth harmonic. The heating of cornea, ablated surface quality, and healing outcomes of the surgeries performed using the femtosecond laser system are investigated by both ex vivo and in vivo experiments and compared to the results of conventional clinical ArF excimer laser application. The results of this research indicate the feasibility of clinical application of femtosecond UV lasers for LASIK procedure.

  5. Quantitative matrix-assisted laser desorption/ionization mass spectrometry

    PubMed Central

    Roder, Heinrich; Hunsucker, Stephen W.

    2008-01-01

    This review summarizes the essential characteristics of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS), especially as they relate to its applications in quantitative analysis. Approaches to quantification by MALDI-TOF MS are presented and published applications are critically reviewed. PMID:19106161

  6. Laser-assisted formation of metallic oxide microtubes

    SciTech Connect

    Nanai, L.; George, T.F.

    1997-01-01

    The fabrication of metallic oxide microtubes is possible directly, without any support structure, by continuous wave infrared laser-assisted oxidation of the metal in air. The particular case presented is the growth of tube-like vanadium pentoxide microcrystals grown in our laboratories. {copyright} {ital 1997 Materials Research Society.}

  7. Laser-assisted fabrication of highly viscous alginate microsphere

    NASA Astrophysics Data System (ADS)

    Lin, Yafu; Huang, Yong

    2011-04-01

    Encapsulated microspheres have been widely used in various biomedical applications. However, fabrication of encapsulated microspheres from highly viscous materials has always been a manufacturing challenge. The objective of this study is to explore a novel metallic foil-assisted laser-induced forward transfer (LIFT), a laser-assisted fabrication technique, to make encapsulated microspheres using high sodium alginate concentration solutions. The proposed four-layer approach includes a quartz disk, a sacrificial and adhesive layer, a metallic foil, and a transferred suspension layer. It is found that the proposed four-layer modified LIFT approach provides a promising fabrication technology for making of bead-encapsulated microspheres from highly viscous solutions. During the process, the microsphere only can be formed if the direct-writing height is larger than the critical direct-writing height; otherwise, tail structured droplets are formed; and the encapsulated microsphere diameter linearly increases with the laser fluence and decreases with the sodium alginate concentration.

  8. Laser-assisted treatment of dentinal hypersensitivity: a literature review.

    PubMed

    Biagi, Roberto; Cossellu, Gianguido; Sarcina, Michele; Pizzamiglio, Ilaria Tina; Farronato, Giampietro

    2015-01-01

    The purpose of this literature review was to evaluate the effectiveness of the laser-assisted treatment of dentinal hypersensitivity. A review with inclusion and exclusion criteria was performed from January 2009 to December 2014 with electronic data-bases: MedLine via PubMed, Science Direct and Cochrane Library. Research of paper magazines by hand was not considered. Forty-three articles were selected between literature reviews, in vitro studies, clinical trials, pilot and preliminary studies. The items were divided into laser-used groups for an accurate description, and then the reading of results into various typologies. Laser-assisted treatment reduces dentinal hypersensitivity-related pain, but also a psychosomatic component must be considered, so further studies and more suitable follow-ups are necessary. PMID:26941892

  9. Laser-assisted treatment of dentinal hypersensitivity: a literature review

    PubMed Central

    Biagi, Roberto; Cossellu, Gianguido; Sarcina, Michele; Pizzamiglio, Ilaria Tina; Farronato, Giampietro

    2015-01-01

    Summary The purpose of this literature review was to evaluate the effectiveness of the laser-assisted treatment of dentinal hypersensitivity. A review with inclusion and exclusion criteria was performed from January 2009 to December 2014 with electronic data-bases: MedLine via PubMed, Science Direct and Cochrane Library. Research of paper magazines by hand was not considered. Forty-three articles were selected between literature reviews, in vitro studies, clinical trials, pilot and preliminary studies. The items were divided into laser-used groups for an accurate description, and then the reading of results into various typologies. Laser-assisted treatment reduces dentinal hypersensitivity-related pain, but also a psychosomatic component must be considered, so further studies and more suitable follow-ups are necessary. PMID:26941892

  10. A. Bernard Hatch.

    ERIC Educational Resources Information Center

    Executive Educator, 1984

    1984-01-01

    Bernard Hatch, the aggressive superintendent of schools in Dayton, Ohio, was voted out by the board of education despite an excellent record of accomplishments. His fate bodes ill for urban school districts in general, where those with the integrity and grit to do what is necessary often become unpopular. (TE)

  11. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  12. Measurement of electronegativity at different laser wavelengths: accuracy of Langmuir probe assisted laser photo-detachment

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Oudini, N.; Bendib, A.; Ellingboe, A. R.

    2016-08-01

    Langmuir probe (LP) assisted pulsed laser photo-detachment (LPD) of negative ions is one of the frequently used diagnostic techniques in electronegative plasmas. The technique is based on measuring the rise in electron saturation current following photo-detachment. During the photo-detachment process it is assumed that the background electron parameters (temperature and density) remain unchanged in the laser channel and the photo-detached electrons thermalize instantaneously with the background electrons (same temperature). Therefore, the measured electronegativity should be independent of laser wavelengths. However, our recent simulation results (2015 Phys. Plasmas 22 073509) demonstrates a failure of these assumptions and suggests that the measured rise in electron saturation current has a dependence on the laser wavelength. This letter presents experimental evidence in support of these simulation results. In this work, photo-detachment is performed at two different laser wavelengths in an oxygen inductively coupled plasma discharge. Electronegativity measured by LP assisted LPD is compared with those obtained by the hairpin probe (HPP) assisted LPD which is based on quasi-neutrality assumption. The experimental results reveal that the electronegativities measured by LP assisted LPD are affected by the laser wavelength, whereas, electronegativities measured by HPP assisted LPD are almost independent. The discrepancy between the measurements is higher at high electronegativities. In conclusion, the experimental results validate the weakness of assumptions to estimate electronegativity from LPD combined with LP and therefore emphasizes the need of a more realistic model to analyze raw data or an alternate solution is to utilize HPP.

  13. Nanostructured porous silicon by laser assisted electrochemical etching

    NASA Astrophysics Data System (ADS)

    Li, J.; Lu, C.; Hu, X. K.; Yang, Xiujuan; Loboda, A. V.; Lipson, R. H.

    2009-08-01

    Nanostructured porous silicon (pSi) was fabricated by combining electrochemical etching with 355 nm laser processing. pSi prepared in this way proves to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS). Surfaces prepared by electrochemical etching and laser irradiation exhibit strong quantum confinement as evidenced by the observation of a red shift in the Si Raman band at ~520-500 cm-1. The height of the nanostructured columns produced by electrochemical etching and laser processing is on the order of microns compared with tens of nanometers obtained without laser irradiation. The threshold for laser desorption and ionization of 12 mJ/cm2 using the pSi substrates prepared in this work is lower than that obtained for conventional matrix assisted laser desorption ionization (MALDI)-MS using a standard matrix compound such as [alpha]-cyano-4-hydroxycinnamic acid (CHCA; 30 mJ/cm2). Furthermore, the substrates prepared by etching and laser irradiation appear to resist laser damage better than those prepared by etching alone. These results enhance the capability of pSi for the detection of small molecular weight analytes by DIOS-MS.

  14. Hatching Eggs in the Classroom.

    ERIC Educational Resources Information Center

    Smith, Robert W.

    1984-01-01

    This article provides detailed instructions on how to hatch chicken eggs. Sections include: (1) making the incubator; (2) making the brooder; (3) guidelines for hatching eggs; (4) from incubator to brooder; and (5) recommended readings. (JMK)

  15. STS-38 Pilot Culbertson rolls through CCT side hatch during egress training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Pilot Frank L. Culbertson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), rolls through the side hatch of the crew compartment trainer (CCT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Assisted by technicians, Culbertson practices emergency egress through the side hatch using the crew escape system (CES) pole which extends out the side hatch. The inflated safety cushion breaks Culbertson's fall as he rolls out of the side hatch.

  16. Laser-Cooling-Assisted Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Schowalter, Steven J.; Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-09-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, cotrapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular-dynamics simulations verify the technique and aid with evaluating its effectiveness. This technique appears to be applicable to other types of mass spectrometers.

  17. Translacrimal transnasal laser-assisted dacryocystorhinostomy.

    PubMed

    Pearlman, S J; Michalos, P; Leib, M L; Moazed, K T

    1997-10-01

    Chronic dacryocystitis is due to an obstruction in the nasolacrimal duct, with subsequent infection of the lacrimal sac. The goal of surgery is to reestablish intranasal drainage of the lacrimal sac. Classic dacryocystorhinostomy (DCR) requires an external incision and drilling through the lacrimal bone into the middle meatus. In our study a 600-micron neodymium:YAG (Nd:YAG) fiber with a blunt hemispherical tip is inserted via the lacrimal puncta. An intranasal ostium is created with the laser under intranasal endoscopic control. Silicon tubes are then left in place for 6 months. We have performed 49 procedures over the past 2 1/2 years, with a success rate of 85% after one surgical procedure, which is commensurate with standard DCR. This procedure provides a simple, bloodless, incisionless alternative to standard DCR. PMID:9331314

  18. Two-laser infrared and ultraviolet matrix-assisted laser desorption/ionization.

    PubMed

    Little, Mark W; Kim, Jae-Kuk; Murray, Kermit K

    2003-07-01

    Matrix-assisted laser desorption/ionization (MALDI) was performed using two pulsed lasers with wavelengths in the IR and UV regions. A 10.6 micro m pulsed CO(2) laser was used to irradiate a MALDI target, followed after an adjustable delay by a 337 nm pulsed nitrogen laser. The sample consisted of a 2,5-dihydroxybenzoic acid matrix and bovine insulin guest molecule. The pulse energy for both of the lasers was adjusted so that the ion of interest, either the matrix or guest ion, was not produced by either of the lasers alone. The delay time for maximum ion yield occurs at 1 micro s for matrix and guest ions and the signal decayed to zero in approximately 400 micro s. A mechanism is presented for enhanced UV MALDI ion yield following the IR laser pulse based on transient heating. PMID:12898657

  19. Process characteristics of fibre-laser-assisted plasma arc welding

    NASA Astrophysics Data System (ADS)

    Mahrle, A.; Schnick, M.; Rose, S.; Demuth, C.; Beyer, E.; Füssel, U.

    2011-08-01

    Experimental and theoretical investigations on fibre-laser-assisted plasma arc welding (LAPW) were performed. Welding experiments were carried out on aluminium and steel sheets. In the case of a highly focused laser beam and a separate arrangement of plasma torch and laser beam, high-speed video recordings of the plasma arc and corresponding measurements of the time-dependent arc voltage revealed differences in the process behaviour for both materials. In the case of aluminium welding, a sharp decline in arc voltage and stabilization and guiding of the anodic arc root was observed whereas in steel welding the arc voltage was slightly increased after the laser beam was switched on. However, significant improvement of the melting efficiency with the combined action of plasma arc and laser beam was achieved for both types of material. Theoretical results of additional numerical simulations of the arc behaviour suggest that the properties of the arc plasma are mainly influenced not by a direct interaction with the laser radiation but by the laser-induced evaporation of metal. Arc stabilization with increased current densities is predicted for moderate rates of evaporated metal only whereas metal vapour rates above a certain threshold causes a destabilization of the arc and reduced current densities along the arc axis.

  20. Laser-assisted cryosurgery of prostate: numerical study

    NASA Astrophysics Data System (ADS)

    Romero-Méndez, Ricardo; Franco, Walfre; Aguilar, Guillermo

    2007-01-01

    A new methodology for preventing freezing damage beyond pre-specified boundaries during prostate cryosurgery is proposed herein. It consists of emitting controlled laser irradiation from the urethra, across the wall and into the prostate while conventional cryoprobes freeze the unwanted prostate tissue. The purpose of this methodology is to protect the urethral wall better and confine the desired cryoinjured region more accurately than the current cryosurgery approach. We also explore the potential use of light-absorbing dyes to further enhance the laser light absorption and corresponding heat generation to increase the thickness of the protected region. A finite difference heat diffusion model in polar coordinates with temperature-dependent thermophysical properties simulates the prostate freezing while laser irradiation across the urethral wall is emitted. This approach maintains the temperature of the urethral wall and the adjacent tissue above a pre-specified threshold temperature of -45 °C, independent of application time. Temperature contours resulting from prostate cryoablation with (a) conventional constant temperature heating; (b) laser irradiation heating; and (c) laser irradiation heating with pre-injected light-absorbing dye layers indicate that the thickness of the protected region increases in this order, and that the latter two methodologies may be more effective in limiting cryoinjury to a predefined region compared to constant temperature heating. An analysis of laser power requirements and sensibility of laser-assisted cryosurgery (LAC) of prostate is also presented. It is shown that tissue temperature may vary as much as ±20 °C with variations of ±10% in laser power relative to the nominal power required to maintain the tissue at 37 °C. This demonstrates the sensitivity to laser power and the need of an accurate laser power control algorithm.

  1. Laser-assisted micro sheet forming

    NASA Astrophysics Data System (ADS)

    Holtkamp, Jens; Gillner, Arnold

    2008-01-01

    The fast growing market for micro technical products requires parts with increasing complexity. While sheet metal forming enables low cost mass production with short cycle times, it is limited by the maximum degree of deformation and the quality of the cut edge. The technology of warm forming partially eliminates these deficiencies. This operation takes place at elevated temperatures before structural transformation is initiated. It combines characteristic advantages of traditional cold and hot forming processes. Lasers as heat sources provide a high, selective and controllable energy input. The general difficulty of a uniform temperature distribution during the heating process can be reached by using an Axicon which generates an annulus on the sheet metal surface. The temperature of the workpiece, measured by a pyrometer, is tuned by a PI-Controller. A tool incorporating a multistage operation die is used for the manufacturing of up to three parts at the same time. The tool is integrated into a hydraulical press. A gearwheel made of the magnesium alloy AZ31 is chosen as metal demonstrator. The quality of these punched parts could be significantly improved at elevated temperatures

  2. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 'tween-decks unless all hatch beams are in place under the hatch covers. (c) Missing, broken, or poorly... covers and hatch beams not of uniform size shall be placed only in the hatch, deck, and section in...

  3. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 'tween-decks unless all hatch beams are in place under the hatch covers. (c) Missing, broken, or poorly... covers and hatch beams not of uniform size shall be placed only in the hatch, deck, and section in...

  4. 29 CFR 1918.31 - Hatch coverings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 'tween-decks unless all hatch beams are in place under the hatch covers. (c) Missing, broken, or poorly... covers and hatch beams not of uniform size shall be placed only in the hatch, deck, and section in...

  5. Tissue Necrosis Following Diode Laser-Assisted Transcanalicular Dacryocystorhinostomy

    PubMed Central

    McClintic, Scott M.; Yoon, Michael K.; Bidar, Maziar; Dutton, Jonathan J.; Vagefi, M. Reza; Kersten, Robert C.

    2012-01-01

    Advantages of transcanalicular laser-assisted dacryocystorhinostomy (TCDCR) over conventional external and endonasal dacryocystorhinostomy (DCR) have been purported to include decreased operating time, reduced morbidity, enhanced cosmesis, avoidance of general anesthesia, and a shorter recovery time. However, one case of skin necrosis has recently been reported to have occurred following diode laser-assisted TCDCR, and we now report three additional cases that were evaluated by the Ophthalmic Plastic Surgery services at the University of North Carolina and the University of California, San Francisco. Three patients developed full-thickness tissue necrosis over the medial canthus following TCDCR, and two of these patients experienced persistent tissue breakdown at the site following reconstructive repair. PMID:24807803

  6. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect

    Yalin, Azer P. Dumitrache, Ciprian; Wilvert, Nick; Joshi, Sachin; Shneider, Mikhail N.

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  7. Special regime of liquid-assisted laser ablation of ceramics

    NASA Astrophysics Data System (ADS)

    Sinev, D. A.; Dobrina, D. A.; Strusevich, A. V.; Veiko, V. P.; Baranov, M. A.; Yakusheva, A. A.

    2016-05-01

    Results of experimental study the peculiarities of liquid-assisted laser ablation of alumina-silicate ceramics are reported giving attention particularly to effect of thin-wall glass macrosphere appearance at the end of irradiation onto a formed hole in bulk material. Typical times of formation, size and temperature dynamics, and chemical composition were determined; kinetics and mechanism of formation are discussed in presented paper.

  8. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  9. Pulse laser assisted optical tweezers for biomedical applications.

    PubMed

    Sugiura, Tadao; Maeda, Saki; Honda, Ayae

    2012-01-01

    Optical tweezers which enables to trap micron to nanometer sized objects by radiation pressure force is utilized for manipulation of particles under a microscope and for measurement of forces between biomolecules. Weak force of optical tweezers causes some limitations such as particle adhesion or steric barrier like lipid membrane in a cell prevent further movement of objects. For biomedical applications we need to overcome these difficulties. We have developed a technique to exert strong instantaneous force by use of a pulse laser beam and to assist conventional optical tweezers. A pulse laser beam has huge instantaneous laser power of more than 1000 times as strong as a conventional continuous-wave laser beam so that the instantaneous force is strong enough to break chemical bonding and molecular force between objects and obstacles. We derive suitable pulse duration for pulse assist of optical tweezers and demonstrate particle manipulation in difficult situations through an experiment of particle removal from sticky surface of glass substrate. PMID:23366922

  10. Laser-assisted treatment of patients with hemorrhagic diathesis

    NASA Astrophysics Data System (ADS)

    Neckel, Claus P.

    2000-03-01

    Today more and more patients with bleeding disorder come to our office for treatment. The number of patients with therapeutic anticoagulation is growing steadily. Discontinuation of this therapy can often be crucial. On the other hand are oralsurgical procedures extremely sensitive to bleeding due to the constant presents of saliva with its high fibrinolytic activity. The aim of this study was to evaluate the use of a surgical diode (wavelength 810 nm) laser as accessory tool in the treatment of patients with hemorrhagic diathesis. Enclosed in the study were 123 patients with: (1) Coumarintherapy, a Quick test ratio of 15 - 25%; (2) More than 300 mg of ASS/die; (3) Hemophilia, a factor activity under 35%; (4) Morbus Werlhof with less than 30000 thrombocytes. 179 Surgical procedures: (1) Tooth extraction 86%; (2) Apexectomy 3%; (3) Tumorexcision 9%; (4) Curettage and flapsurgery 1%; (5) Gingivectomy 1%. All procedures were laser-assisted with a diode laser emitting 810 nm. The glass fibers used were depending on the procedures either 200, 400, or 600 micron. No coagulating agents or tissue adhesives were used in addition. The postoperative outcome and complication rates were compared to substitution therapy and tissue adhesives. Laser-assisted treatment of these patients shows a high predictability and success rate leaving out side effects of drugs and human cryoprecipitates. Postoperative impairment is diminished.

  11. Femtosecond-laser assisted cataract surgery: a review.

    PubMed

    Abouzeid, Hana; Ferrini, Walter

    2014-11-01

    Introduced in 2008, the femtosecond laser is a promising new technological advance which plays an ever increasing role in cataract surgery where it automates the three main surgical steps: corneal incision, capsulotomy and lens fragmentation. The proven advantages over manual surgery are: a better quality of incision with reduced induced astigmatism; increased reliability and reproducibility of the capsulotomy with increased stability of the implanted lens; a reduction in the use of ultrasound. Regarding refractive results or safety, however, no prospective randomized study to date has shown significant superiority compared with standard manual technique. The significant extra cost generated by this laser, undertaken by the patient, is a limiting factor for both its use and study. This review outlines the potential benefits of femtosecond-laser-assisted cataract surgery due to the automation of key steps and the safety of this new technology. PMID:24835818

  12. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering

    NASA Astrophysics Data System (ADS)

    Beyene, Girum A.; Tobin, Isaac; Juschkin, Larissa; Hayden, Patrick; O’Sullivan, Gerry; Sokell, Emma; Zakharov, Vassily S.; Zakharov, Sergey V.; O’Reilly, Fergal

    2016-06-01

    Extreme ultraviolet (EUV) light generation by hybrid laser-assisted vacuum arc discharge plasmas, utilizing Sn-coated rotating-disc-electrodes, was investigated. The discharge was initiated by localized ablation of the liquid tin coating of the cathode disc by a laser pulse. The laser pulse, at 1064 nm, was generated by Nd:YAG lasers with variable energy from 1 to 100 mJ per pulse. The impact of shortening the laser pulse from 7 ns to 170 ps on the EUV generation has been investigated in detail. The use of ps pulses resulted in an increase in emission of EUV radiation. With a fixed discharge energy of ~4 J, the EUV conversion efficiency tends to plateau at ~2.4  ±  0.25% for the ps laser pulses, while for the ns pulses, it saturates at ~1.7  ±  0.3%. Under similar discharge and laser energy conditions, operating the EUV source with the ps-triggering resulted also in narrower spectral profiles of the emission in comparison to ns-triggering. The results indicate an advantage in using ps-triggering in laser-assisted discharges to produce brighter plasmas required for applications such as metrology.

  13. Armstrong and Scott with Hatches Open

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts Neil A. Armstrong and David R. Scott sit with their spacecraft hatches open while awaiting the arrival of the recovery ship, the USS Leonard F. Mason after the successful completion of their Gemini VIII mission. They are assisted by U.S. Navy divers. The overhead view shows the Gemini 8 spacecraft with the yellow flotation collar attached to stabilize the spacecraft in choppy seas. The green marker dye is highly visible from the air and is used as a locating aid.

  14. Thermal and thermo-mechanical simulation of laser assisted machining

    SciTech Connect

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.

    2007-04-07

    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece.

  15. Laser assisted processing; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19, 20, 1988

    SciTech Connect

    Laude, L.D.; Rauscher, G.

    1989-01-01

    The use of lasers in industrial material processing is discussed in reviews and reports. Sections are devoted to high-precision laser machining, deposition methods, ablation and polymers, and synthesis and oxidation. Particular attention is given to laser cutting of steel sheets, laser micromachining of material surfaces, process control in laser soldering, laser-induced CVD of doped Si stripes on SOS and their characterization by piezoresistivity measurements, laser CVD of Pt spots on glass, laser deposition of GaAs, UV-laser photoablation of polymers, ArF excimer-laser ablation of HgCdTe semiconductor, pulsed laser synthesis of Ti silicides and nitrides, the kinetics of laser-assisted oxidation of metallic films, and excimer-laser-assisted etching of solids for microelectronics.

  16. Laser-assisted solder closure of bronchial stumps

    NASA Astrophysics Data System (ADS)

    Oz, Mehmet C.; Williams, Matthew R.; Moscarelli, Richard D.; Kaynar, Murat; Fras, Christian I.; Libutti, Steven K.; Smith, Hillary; Setton, Adrianne J.; Treat, Michael R.; Nowygrod, Roman

    1992-06-01

    Broncho-pleural fistula is a difficult clinical problem without a simple solution. Laser-assisted solder techniques potentially offer a means to precisely fix tissue glues into the fistulae through a bronchoscopic approach. Using a canine model, secondary bronchi were sealed with cryoprecipitate made from solvent/detergent treated plasma (treated to inactivate membrane enveloped virus) mixed with indocyanine green (absorption 805 nm). Diode laser energy (emission 808 nm, 7.3 W/cm2) was applied to the solder until desiccation was observed. Leakage pressures ranged between 18 - 86 mmHg with a mean of 46 +/- 24 mmHg. Laser-assisted solder techniques provide a reliably strong seal over leaking bronchial stumps and use of dye enhancement prevents undesired collateral thermal injury to surrounding bronchial tissue. Solvent/detergent plasma, prepared by methods shown to inactivate large quantities of HIV, HBV, and HCV, is an effective source of cyroprecipitate and should allow widespread use of pooled human material in a clinical setting.

  17. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  18. Decay-Assisted Laser Spectroscopy of Neutron-Deficient Francium

    NASA Astrophysics Data System (ADS)

    Lynch, K. M.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Cocolios, T. E.; De Groote, R. P.; De Schepper, S.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Marsh, B. A.; Neyens, G.; Procter, T. J.; Rossel, R. E.; Rothe, S.; Strashnov, I.; Stroke, H. H.; Wendt, K. D. A.

    2014-01-01

    This paper reports on the hyperfine-structure and radioactive-decay studies of the neutron-deficient francium isotopes Fr202-206 performed with the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE facility, CERN. The high resolution innate to collinear laser spectroscopy is combined with the high efficiency of ion detection to provide a highly sensitive technique to probe the hyperfine structure of exotic isotopes. The technique of decay-assisted laser spectroscopy is presented, whereby the isomeric ion beam is deflected to a decay-spectroscopy station for alpha-decay tagging of the hyperfine components. Here, we present the first hyperfine-structure measurements of the neutron-deficient francium isotopes Fr202-206, in addition to the identification of the low-lying states of Fr202,204 performed at the CRIS experiment.

  19. Laser-assisted pre-finishing of optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Rozzi, Jay C.; Clavier, Odile H.; Barton, Michael D.

    2007-04-01

    At Creare, we are developing a laser-assisted, pre-finishing system that enables the single-point diamond turning of super-hard ceramics into hemispheres, ogives, and other shapes that are ready for final optical finishing. Currently, super-hard ceramic materials cannot be affordably processed due to the low material removal rates and the high amount of sub-surface damage associated with current processes. Our innovation uses a low-power, far-infrared laser to heat, but not ablate, a thin layer of material prior to its removal. By heating the ceramic material, plastic-like deformation at the cutting edge is fostered by high-temperature dislocation motion. In doing so, the cutting forces are reduced which enables attendant reductions in tool wear, surface and sub-surface damage, and processing time. Our paper will summarize the development of our innovation, describe the process, discuss the machine tool, and review the latest results.

  20. Ex vivo laser lipolysis assisted with radially diffusing optical applicator

    NASA Astrophysics Data System (ADS)

    Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook

    2016-05-01

    Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.

  1. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    NASA Astrophysics Data System (ADS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R. M.

    2015-05-01

    Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  2. Surface plasmon resonance assisted rapid laser joining of glass

    SciTech Connect

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin; Wang, Zengbo

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  3. Voice Outcome Following Carbon Dioxide Laser Assisted Microlaryngeal Surgery.

    PubMed

    Divakaran, Shilpa; Alexander, Arun; Vijayakumar, Sabarinath; Saxena, Sunil Kumar

    2015-12-01

    Very few studies have been conducted in South Indian population to evaluate glottic function and voice outcome following carbon dioxide (CO2) laser assisted microsurgery for benign lesions of the larynx. This is a descriptive study which aims at assessing the voice outcome (perceptual and acoustic) and vocal fold function (stroboscopic) following CO2 laser excision in benign vocal fold lesions. 50 adult patients with benign laryngeal lesions were selected to undergo CO2 laser excision in super-pulse mode at power setting of 6 watts. Perceptual analysis was done using GRBAS score. Voice analysis was done using Praat software and fundamental frequency, jitter, shimmer and harmonics to noise ratio were assessed. Stroboscopy was done to evaluate vocal fold function using glottic closure and mucosal wave pattern as parameters. Evaluation of these parameters was done pre-operatively and at 2, 6 weeks and 3 months post-operatively. Perceptual analysis revealed a significant improvement in the GRBAS score after surgery (p < 0.001). Acoustic analysis showed that all the parameters improved significantly after surgery (p < 0.001). Stroboscopy showed that vocal fold function improved in 98 % of patients in terms of completeness of glottic closure and regular, periodic mucosal wave. Super-pulse micro-spot carbon dioxide laser is a safe and effective treatment option for benign lesions of vocal folds, with excellent voice outcome. PMID:26693452

  4. Temperature Control During the Delivery of Laser Assisted Cancer Immunotherapy

    NASA Astrophysics Data System (ADS)

    Arnold, Robert; Bandyopadhyay, Pradip

    2005-03-01

    Laser Assisted Cancer Immunotherapy (LACI) is an innovative experimental technique used for the purpose of malignant tumors. The efficacy of this technique depends upon the occurrence of a vigorous and tumor immune response following the administration of treatment. The general procedure involves the injection of light absorbing dye (indocyanine green) and immunoadjuvant (glycated chitosan) into the tumor volume, followed either interstitial or surface irradiation of the tumor with an 805 nm diode laser. The magnitude of the tumor immune response is correlated to the degree of hyperthermic necrosis that occurs during laser irradiation. an optimal temperature range for necrosis is imperative to the success of the LACI approach. The aim of this study is directed toward exploring the capabilities of a potential temperature control system that utilized during interstitial (or surface) laser irradiation for the purpose of maintaining a temperature range that is for tumor cell destruction. Experimental results for tumor temperature measurement techniques, using (microthermocouples) as well as non-invasive (infrared thermal probes) approaches, will be reported.

  5. Laser Assisted Cancer Immunotherapy: Mapping of the Necrosis Zone

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, Megan; Bandyopadhyay, Pradip

    2006-03-01

    The primary goal of this project is to assess the degree of thermal damage in malignant tumors using Laser Assisted Cancer Immunotherapy (LACI). In our laboratory, superficial tumors were grown in Balb/c mice by injection (s.c.) of the highly aggressive metastatic mammary cell line CRL-2539. When the tumors reached 5-7 mm in diameter, Indocyanine Green, a light absorbing dye, and Glycated Chitosan, the immunoadjuvant, were injected into the tumors. Following injection, the tumors were irradiated interstitially with an infrared Diode laser (1-15 W) operating at 805nm. Following the laser therapy, at a particular temperature, the tumors were excised at various time intervals ranging from immediately after treatment to 120 hours later. Using a Hematoxylin and Eosin stain, each slide was examined under the light microscope to map out the thermal damage induced by the diode laser and the dye-immunoadjuvant combination. The goal of this experiment is to quantify and map the thermal damage for 55^oC, 65^oC and 75^oC, and to determine the temperature range that evokes maximum immune response.

  6. Investigations into ultraviolet matrix-assisted laser desorption

    SciTech Connect

    Heise, T.W.

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm{sup 2}. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  7. Laser-assisted sheet metal working in series production

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Eckert, Markus

    2013-02-01

    Based on the demand for a responsible use of natural resources and energy the need for lightweight materials is increasing. The most common materials for lightweight production are high and highest strength steel. These materials are difficult to machine using conventional sheet metal working processes because the high strength leads to a limited formability and high tool wear. The Fraunhofer IPT developed the laser-assisted sheet metal working. Selective laser based heating of the part directly before machining softens the material locally. Thus the quality of the following cut can be increased, for example for shearing 1.4310 the clear cut surface ratio can be increased from 20% up to 100% using a shearing gap of 10% of the sheet thickness. Because of the softening of the material and thus the increased formability, parts with a higher complexity can be produced. For example 1.4310 can be bent laser-assisted with a radius of 0.25 mm instead of 2-3 mm using the conventional process. For the first time spring steel can be embossed with conventional tools up to 50% of the sheet thickness. For the implementation in series production a modular system upgrade "hy-PRESS" has been developed to include laser and scanner technology into existing presses. For decoupling the sensitive optical elements of the machine vibrations an active-passive damping system has been developed. The combination of this new hybrid process and the system technology allows to produce parts of high strength steel with a high complexity and quality.

  8. Holmium:YAG laser-assisted otolaryngologic surgery: Lahey Clinic experience

    NASA Astrophysics Data System (ADS)

    Shapshay, Stanley M.; Rebeiz, Elie E.; Pankratov, Michail M.

    1993-07-01

    The Holmium:YAG laser was used to assist in 36 rhinologic procedures including surgery for chronic sinus disease, chronic dacryocystitis, recurrent choanal stenosis, and a sphenoid sinus mucocele. There were no laser related complications. The laser permitted controlled ablation of bone and soft tissue in all cases with satisfactory results. The Ho:YAG laser can be used in otolaryngology to assist in cases where surgical access is difficult or when controlled, precise bone and soft tissue ablation is necessary.

  9. LIFT: analysis of performance in a laser assisted adaptive optics

    NASA Astrophysics Data System (ADS)

    Plantet, Cedric; Meimon, Serge; Conan, Jean-Marc; Neichel, Benoît; Fusco, Thierry

    2014-08-01

    Laser assisted adaptive optics systems rely on Laser Guide Star (LGS) Wave-Front Sensors (WFS) for high order aberration measurements, and rely on Natural Guide Stars (NGS) WFS to complement the measurements on low orders such as tip-tilt and focus. The sky-coverage of the whole system is therefore related to the limiting magnitude of the NGS WFS. We have recently proposed LIFT, a novel phase retrieval WFS technique, that allows a 1 magnitude gain over the usually used 2×2 Shack-Hartmann WFS. After an in-lab validation, LIFT's concept has been demonstrated on sky in open loop on GeMS (the Gemini Multiconjugate adaptive optics System at Gemini South). To complete its validation, LIFT now needs to be operated in closed loop in a laser assisted adaptive optics system. The present work gives a detailed analysis of LIFT's behavior in presence of high order residuals and how to limit aliasing effects on the tip/tilt/focus estimation. Also, we study the high orders' impact on noise propagation. For this purpose, we simulate a multiconjugate adaptive optics loop representative of a GeMS-like 5 LGS configuration. The residual high orders are derived from a Fourier based simulation. We demonstrate that LIFT keeps a high performance gain over the Shack-Hartmann 2×2 whatever the turbulence conditions. Finally, we show the first simulation of a closed loop with LIFT estimating turbulent tip/tilt and focus residuals that could be induced by sodium layer's altitude variations.

  10. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    PubMed

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards

  11. Thermal Aspects of Ductile Mode Micro Laser Assisted Machining

    SciTech Connect

    Virkar, Saurabh R.; Patten, John A.

    2011-01-17

    This paper presents the simulation work performed to study an innovative process called micro-Laser Assisted Machining ({mu}-LAM). {mu}-LAM is being used for machining hard and brittle semiconductor and ceramic materials such as Silicon Carbide. Numerical simulations were carried out using the commercial software AdvantEdge Version 5.4. The cutting tool is modeled as a single point diamond tip. The workpiece material (4H-SiC) is heated locally during the actual machining process by a laser beam, which passes through the diamond tool tip. The workpiece is heated beyond the thermal softening point in order to study the effect of increased temperature on the machining process. The initial work started with an approximate thermal softening curve to ensure that thermal effects can be incorporated in the simulation model. A new thermal softening curve was developed based upon experimental data and implemented in the material model. A thermal boundary was provided on the workpiece top surface to simulate the effect of laser heating. In all three cases the chip formation was observed and the changes in cutting and thrust forces were evaluated. The simulation results indicate a significant decrease in machining forces if Silicon Carbide is heated and thermally softened thus demonstrating the benefits of the {mu}-LAM process.

  12. Excimer-laser-assisted deposition of diamondlike carbon hard coatings

    NASA Astrophysics Data System (ADS)

    Wei, Mao-Kuo; Popp, Angelika; Lang, Adolf; Schutte, Karsten; Bergmann, Hans W.

    1997-08-01

    Diamond-like carbon (DLC) films were deposited using the excimer laser assisted physical vapor deposition at room temperature. The films deposited at high vacuum (10-5 mbar) revealed more diamond-like character than under other atmospheres of argon and hydrogen. DLC- films can be deposited with a thickness more than 1 micrometers with the help of either an additional Ti-buffer layer or an in-situ laser treatment during the deposition. The adhesion of the films was qualitatively determined by using the indentation and bending tests. Additionally, the adhesion was found to be dependent on the power densities for the target ablation (IT) and for the in-situ laser treatment (IS), as well as, on the applied buffer layer. The roughness was found to be proportional to the film thickness at various surface morphologies of the substrate. The friction coefficient of DLC-films against steel (100Cr6) was found to be approximately 0.1 and the wear loss of the films was dependent on the properties of substrate material.

  13. Perspectives in nanostructure assisted laser manipulation of mammalian cells

    NASA Astrophysics Data System (ADS)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Hoerdt, Anton; Murua Escobar, Hugo; Ripken, Tammo; Meyer, Heiko

    2015-03-01

    The interaction of cell-adhered nanostructures with laser light has attracted much interest within the biomedical field. Molecular delivery using a variety of plasmonic nanostructures, such as structured surfaces, nanoparticles and particle clusters, is currently evolving from its proof-of-concept into a routine method. Here, gold represents the material of choice, as it provides unique optical properties, different surface modifications as well as biocompatibility. In addition, new materials (e.g. polypyrrole) provide interesting alternatives. Applying this approach, a variety of molecules, such as fluorescent dyes, proteins, antisense structures, and DNA, has been transfected in order to manipulate the cellular functions in different experimental settings. Antisense structures, for example, allow the efficient down regulation of the gene activity of a target, providing insights into the gene's function. The delivery of proteins, as executing molecules in the cell, can exhibit an immediate effect on the cell behavior, allowing a minute observation of the intracellular kinetics. Direct cell manipulation can be achieved with this approach as well. Increasing the nanoparticle concentration and/or the radiant exposure, effective cell destruction is induced. Using targeted nanoparticles (e.g. by antibody conjugation) in combination with spatially selective laser irradiation permits well-directed cell manipulation even in mixed cultures and potentially in tissues. Furthermore, excited gold nanoparticles can directly trigger cellular reactions, which can possibly be utilized for cell stimulation. The manifold possibilities of nanostructure assisted laser manipulation are still in development.

  14. Laser Assisted Cancer Immunotherapy: Optical Dye Distribution in Tumors

    NASA Astrophysics Data System (ADS)

    Swindle, Ryan

    2005-03-01

    Laser Assisted Cancer Immunotherapy is an experimental modality used to treat superficial tumors implanted on sterile Balb/C mice. The goal of the project is to induce a positive immune response toward a complete eradication of the primary tumor. Optimal necrosis results from depositing the maximum amount of thermal energy into the tumor without damaging the surrounding healthy tissue. In our laboratory, the optical dye, indocyanine green (ICG), is injected into the center of the tumor prior to surface and interstitial laser irradiation. A diode laser operating at a wavelength near 804 nm exerts thermal energy into the tumor via ICG absorption at 790 nm. Maximum immune response should occur with a uniform distribution of ICG throughout the tumor. By mapping the ICG distribution, the spatial homogeneity of the dye can be determined, which, in turn, mimics the tumor temperature profile. After excision, the tumors were cut into samples of approximately 250 microns thick and dissolved in a chemical detergent. Each sample was run through an absorption spectrometer to determine the distribution of ICG throughout the tumor. Results for both radial and depth profiles of ICG tumor distribution will be presented.

  15. Apparatus for laser-assisted electron scattering in femtosecond intense laser fields.

    PubMed

    Kanya, Reika; Morimoto, Yuya; Yamanouchi, Kaoru

    2011-12-01

    An apparatus for observation of laser-assisted electron scattering (LAES) in femtosecond intense laser fields was developed. The unique apparatus has three essential components, i.e., a photocathode-type ultrashort pulsed-electron gun, a toroidal-type electron energy analyzer enabling simultaneous detection of energy and angular distributions of scattered electrons with high efficiency, and a high repetition-rate data acquisition system combined with a high power 5 kHz Ti:sapphire laser system. These advantages make extremely weak femtosecond-LAES signals distinguishable from the huge elastic scattering signals. A precise method for securing a spatial overlap between three beams, that is, an atomic beam, an electron beam, and a laser beam, and synchronization between the electron and laser pulses is described. As a demonstration of this apparatus, an electron energy spectrum of the LAES signals with 1.4 × 10(12) W/cm(2), 795 nm, 50 fs laser pulses was observed, and the detection limit and further improvements of the apparatus are examined. PMID:22225197

  16. Laser Assisted Emittance Exchange: Downsizing the X-ray Free Electron Laser

    SciTech Connect

    Xiang, Dao; /SLAC

    2009-12-11

    A technique is proposed to generate electron beam with ultralow transverse emittance through laser assisted transverse-to-longitudinal emittance exchange. In the scheme a laser operating in the TEM10 mode is used to interact with the electron beam in a dispersive region and to initiate the emittance exchange. It is shown that with the proposed technique one can significantly downsize an x-ray free electron laser (FEL), which may greatly extend the availability of these light sources. A hard x-ray FEL operating at 1.5 {angstrom} with a saturation length within 30 meters using a 3.8 GeV electron beam is shown to be practically feasible.

  17. [Recent advances in femtosecond laser-assisted cataract surgery].

    PubMed

    Yu, Yin-hui; Yao, Ke

    2013-05-01

    As the leading cause of blindness, the type of surgery performed to remove cataracts has evolved from Intracapsular to Extracapsular and to phacoemulsification. Advantages of femtosecond laser include high instantaneous power, strong penetration, short pulse-duration and micro-precision present superior accuracy, predictability and safety to cataract surgery, while also minimizing injury to surrounding ocular tissue. It mainly assists in the procedures of anterior capsulotomy, lens fragmentation, clear corneal incision and limbal relaxing incision creation. However, compared to conventional phacoemulsification, problems such as the minimization of complications and difficulties in conducting peer-reviewed studies with a longer follow-up period and large sample, as well as coverage of added costs remain untracked.The purpose of this review is to outline the advantages and disadvantages as well as clinical value of this evolving technology compared to conventional phacoemulsification. PMID:24021187

  18. Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718

    NASA Astrophysics Data System (ADS)

    Venkatesan, K.; Ramanujam, R.; Kuppan, P.

    2016-04-01

    This paper presents a parametric effect, microstructure, micro-hardness and optimization of laser scanning parameters (LSP) on heating experiments during laser assisted machining of Inconel 718 alloy. The laser source used for experiments is a continuous wave Nd:YAG laser with maximum power of 2 kW. The experimental parameters in the present study are cutting speed in the range of 50-100 m/min, feed rate of 0.05-0.1 mm/rev, laser power of 1.25-1.75 kW and approach angle of 60-90°of laser beam axis to tool. The plan of experiments are based on central composite rotatable design L31 (43) orthogonal array. The surface temperature is measured via on-line measurement using infrared pyrometer. Parametric significance on surface temperature is analysed using response surface methodology (RSM), analysis of variance (ANOVA) and 3D surface graphs. The structural change of the material surface is observed using optical microscope and quantitative measurement of heat affected depth that are analysed by Vicker's hardness test. The results indicate that the laser power and approach angle are the most significant parameters to affect the surface temperature. The optimum ranges of laser power and approach angle was identified as 1.25-1.5 kW and 60-65° using overlaid contour plot. The developed second order regression model is found to be in good agreement with experimental values with R2 values of 0.96 and 0.94 respectively for surface temperature and heat affected depth.

  19. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  20. Station Crew Opens Dragon Hatch

    NASA Video Gallery

    Expedition 33 Commander Suni Williams and Flight Engineer Aki Hoshide opened the hatch to the SpaceX Dragon cargo ship at 1:40 p.m. EDT Wednesday, Oct. 10, marking a milestone for the first commerc...

  1. Station Crew Opens Dragon's Hatch

    NASA Video Gallery

    The hatch between the newly arrived SpaceX Dragon spacecraft and the Harmony module of the International Space Station was opened by NASA Astronaut Don Pettit at 5:53 am EDT as the station flew 253...

  2. Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction.

    PubMed

    Kim, Eunpa; Ko, Changhyun; Kim, Kyunghoon; Chen, Yabin; Suh, Joonki; Ryu, Sang-Gil; Wu, Kedi; Meng, Xiuqing; Suslu, Aslihan; Tongay, Sefaattin; Wu, Junqiao; Grigoropoulos, Costas P

    2016-01-13

    Laser-assisted phosphorus doping is demonstrated on ultrathin transition-metal dichalcogenides (TMDCs) including n-type MoS2 and p-type WSe2 . Temporal and spatial control of the doping is achieved by varying the laser irradiation power and time, demonstrating wide tunability and high site selectivity with high stability. The laser-assisted doping method may enable a new avenue for functionalizing TMDCs for customized nanodevice applications. PMID:26567761

  3. Kinetics of laser-assisted carbon nanotube growth.

    PubMed

    van de Burgt, Y; Bellouard, Y; Mandamparambil, R

    2014-03-21

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on the detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes in reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the different regimes are found to be in the range of 0.3-0.8 eV. PMID:24481313

  4. Laser-assisted chemical vapor deposition of nickel and laser cutting in integrated circuit restructuring

    NASA Astrophysics Data System (ADS)

    Remes, J.; Moilanen, H.; Leppävuori, S.

    1997-01-01

    Laser-assisted chemical vapor deposition (LCVD) of nickel from Ni(CO)4 has been utilised for the restructuring of integrated circuit (IC) interconnections. Nickel lines were deposited on a SiO2 passivated IC to achieve new local interconnections between integrated circuit structures. Depositions were carried out over the pressure range of 0.2 to 2.2 mbar of pure Ni(CO)4 buffered in 0 to 800 mbar He. Argon ion laser wavelengths of 488 and 514.5 nm, laser power of 50-150 mW and a laser scan speed of 80 μm/s were utilised for the deposition. The morphology and chemical contents of the deposited interconnection microstructures was examined by AFM, optical microscopy and LIMA. The resistivity of the deposited lines was found to be close to the nickel bulk resistivity. The utilisation of Nd: YAG and XeCl excimer lasers in the cutting of Al and Mo conductor lines for integrated circuit modification is also described.

  5. Defect luminescence in oxides nanocrystals grown by laser assisted techniques

    NASA Astrophysics Data System (ADS)

    Rodrigues, J.; Soares, M. R. N.; Santos, N. F.; Holz, T.; Ben Sedrine, N.; Nico, C.; Fernandes, A. J. S.; Neves, A. J.; Costa, F. M.; Monteiro, T.

    2015-06-01

    Wide band gap oxides, such as ZnO, SnO2 and ZrO2, are functional materials with a wide range of applications in several important technological areas such as those including lighting, transparent electronics, sensors, catalysis and biolabeling. Recently, doping and co-doping of oxides with lanthanides have attracted a strong interest for lighting purposes, especially among them nanophosphors for bioassays. Tailoring the crystalline materials physical properties for such applications often requires a well-controlled incorporation of dopants in the material lattice and a comprehensive understanding of their role in the oxides matrices. These undoped or intentionally doped oxides have band gap energies exceeding 3.3 eV at room temperature and are known to exhibit optically active centers that span from the ultraviolet to the near infrared region. Typically, by using photon energy excitation above the materials band gap, high quality undoped materials display narrow emission lines near the band edge due to free and bound-exciton recombination, as well as shallow donor-acceptor recombination pairs. Additionally, broad emission bands are often observed in these wide band gap hosts, hampering some of the desired physical properties for further applications. Recognizing and understanding the role of the dopant-related defects when deliberately introduced in the oxide hosts, as well as their influence on the samples luminescence properties, constitutes a matter of exploitation by the scientific community worldwide. In this work, we investigate the luminescence properties of undoped and lanthanide doped oxide materials grown by laser assisted techniques. Laser assisted flow deposition (LAFD) and pulse laser ablation in liquids (PLAL) were used for the growth of ZnO, SnO2 and yttria stabilized ZrO2 (YSZ) micro and nanocrystals with different morphologies, respectively. Regarding the YSZ host, trivalent lanthanide ions were optically activated by in-situ doping and co

  6. Thermal effects in laser-assisted pre-embryo zona drilling.

    PubMed

    Douglas-Hamilton, D H; Conia, J

    2001-04-01

    Diode lasers [lambda=1480 nm] are used with in vitro fertilization to dissect the zona pellucida (shell) of pre-embryos. A focused laser beam is applied in vitro to form a channel or trench in the zona pellucida. The procedure is used to facilitate biopsy or as a promoter of embryo hatching. We present examples and measurements of zona pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g., by overheating. In order to define safe regimes we have derived some thermal side effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe is used to detect the temperature-induced change in the refractive index of an aqueous solution, and estimate local thermal gradient. We find that the diode laser beam produces superheated water approaching 200 degrees C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration < or =5 ms and laser power approximately 100 mW. PMID:11375731

  7. Thermal effects in laser-assisted pre-embryo zona drilling

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2001-04-01

    Diode lasers ((lambda) equals 1480 nm) are used with in vitro fertilization to dissect the zone pellucida (shell) of pre- embryos. A focused laser beam is applied in vitro to form a channel or trench in the zona pellucida. The procedure is used to facilitate biopsy or as a promoter of embryo hatching. We present examples and measurements of zona pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g., by overheating. In order to define safe regimes we have derived some thermal side effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed- beam experiment a HeNe laser probe is used to detect the temperature-induced change in the refractive index of an aqueous solution, and estimate local thermal gradient. We find that the diode laser beam produces superheated water approaching 200 degree(s)C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration laser power approximately 100 mW.

  8. NSA AERI Hatch Correction Data Set

    DOE Data Explorer

    Turner, David

    2012-03-23

    From 2000-2008, the NSA AERI hatch was determined to be indicated as open too frequently. Analysis suggests that the hatch was actually opening and closing properly but that its status was not being correctly reported by the hatch controller to the datastream. An algorithm was written to determine the hatch status from the observed

  9. Low-temperature laser assisted CBE-growth of AlGaAs

    NASA Astrophysics Data System (ADS)

    Jothilingam, R.; Farrell, T.; Joyce, T. B.; Goodhew, P. J.

    1998-06-01

    We report preliminary studies of low-temperature (335-400°C) chemical beam epitaxial (CBE) growth of Al xGa 1- xAs on GaAs(0 0 1) using triethylgallium (TEG), trimethylaminealane (TMAA) and thermally precracked Arsine (AsH 3) as precursors. We also report results of Ar + laser assisted chemical beam epitaxial growth over the same temperature range. The growth rate for both assisted and unassisted growth as a function of substrate temperature, laser power and precursor beam pressures was determined using laser reflectometry in which the Ar + laser was also used as the probe. In the nonlaser assisted growth Al incorporation is observed to be significantly higher than would be expected at the normal growth temperature of 500°C. With laser assistance the Al concentration, while higher than that at normal growth temperatures, is less than that without laser assistance and the growth rate is higher. These observations, which extended Abernathy's early results to higher nominal Al concentration, are discussed in terms of the relative enhancement of the decomposition of TEG and the alane during laser assistance. Using literature values of the refractive index of AlGaAs alloys at the growth temperature, laser reflectometry was used to monitor both composition and growth rate over a range of growth temperatures. Reflectometry data were compared with the results of Auger Electron Microscopy (AES) and Dektak stylus profiling.

  10. Laser assisted works for pulsed ion sources: Plasma productions, diagnostics and related computations

    SciTech Connect

    Kasuya, K.; Watanabe, M.; Matsuno, S.; Kamiya, T.; Suzuki, T.; Hushiki, T.; Horioka, K.; Kawakita, Y.; Kuwahara, T.; Shioda, K.; Kanazawa, H.; Okuda, H. )

    1994-10-05

    Recent laser assisted works for pulsed ion beam drivers are described in this paper. The first one is a plasma production by a KrF laser light which may be applicable to an ion source. The second item is a transverse-mode-diagnostic of a discharge-pumped laser. The third one is a one-dimensional computation of the latter laser. [copyright][ital American] [ital Institute] [ital of] [ital Physics] 1994

  11. Mechanism of chromophore assisted laser inactivation employing fluorescent proteins.

    PubMed

    McLean, Mark A; Rajfur, Zenon; Chen, Zaozao; Humphrey, David; Yang, Bing; Sligar, Stephen G; Jacobson, Ken

    2009-03-01

    Chromophore assisted laser inactivation (CALI) is a technique that uses irradiation of chromophores proximate to a target protein to inactivate function. Previously, enhanced green fluorescent protein (EGFP) mediated CALI has been used to inactivate EGFP-fusion proteins in a spatio-temporally defined manner within cells, but the mechanism of inactivation is unknown. To help elucidate the mechanism of protein inactivation mediated by fluorescent protein CALI ([FP]-CALI), the activities of purified glutathione-S-transferase-FP (GST-EXFP) fusions were measured after laser irradiation in vitro. Singlet oxygen and free radical quenchers as well as the removal of oxygen inhibited CALI, indicating the involvement of a reactive oxygen species (ROS). At higher concentrations of protein, turbidity after CALI increased significantly indicating cross-linking of proximate fusion proteins suggesting that damage of residues on the surface of the protein, distant from the active site, results in inactivation. Control experiments removed sample heating as a possible cause of these effects. Different FP mutants fused to GST vary in their CALI efficiency in the order enhanced green fluorescent protein (EGFP) > enhanced yellow fluorescent protein (EYFP) > enhanced cyan fluorescent protein (ECFP), while a GST construct that binds fluorescein-based arsenical hairpin binder (FlAsH) results in significantly higher CALI efficiency than any of the fluorescent proteins (XFPs) tested. It is likely that the hierarchy of XFP effectiveness reflects the balance between ROS that are trapped within the XFP structure and cause fluorophore and chromophore bleaching and those that escape to effect CALI of proximate proteins. PMID:19199572

  12. Computer-Assisted Experiments with a Laser Diode

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  13. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Szabó, Gábor; Kolozsvári, Lajos; Kafetzopoulos, Dimitris; Fotakis, Costas; Nógrádi, Antal

    2012-01-01

    The applicability of a femtosecond KrF laser in absorbing film-assisted, laser-induced forward transfer of living cells was studied. The absorbing materials were 50-nm-thick metal films and biomaterials (gelatine, Matrigel, each 50 μm thick, and polyhydroxybutyrate, 2 μm). The used cell types were human neuroblastoma, chronic myeloid leukemia, and osteogenic sarcoma cell lines, and primary astroglial rat cells. Pulses of a 500-fs KrF excimer laser focused onto the absorbing layer in a 250-μm diameter spot with 225 mJ/cm2 fluence were used to transfer the cells to the acceptor plate placed at 0.6 mm distance, which was a glass slide either pure or covered with biomaterials. While the low-absorptivity biomaterial absorbing layers proved to be ineffective in transfer of cells, when applied on the surface of acceptor plate, the wet gelatine and Matrigel layers successfully ameliorated the impact of the cells, which otherwise did not survive the arrival onto a hard surface. The best short- and long-term survival rate was between 65% and 70% for neuroblastoma and astroglial cells. The long-term survival of the transferred osteosarcoma cells was low, while the myeloid leukemia cells did not tolerate the procedure under the applied experimental conditions.

  14. Interstitial Laser Irradiation of Solid Tumors in Laser Assisted Cancer Immunotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Lindsay; Bandyopadhyay, Pradip

    2006-03-01

    Laser Assisted Cancer Immunotherapy (LACI) is an experimental therapeutic approach in cancer treatment. Current experiments in our laboratory begin with growing superficial tumors 5 to 7 mm in diameter in BALB/C mice using the CRL-2539 cell line. Tumor sizes were measured with a vernier caliper prior to injection of light absorbing dye (Indocyanine Green, ICG) and immunoadjuvant (Glycated Chitosan, GC). These measurements were continued during the post-therapy period. After injection with the ICG and GC, the mice underwent interstitial irradiation of the tumor with a diode laser operating at 804 nm. Microthermocouples were inserted into the tumor and the laser power was varied in order to monitor the temperature and keep it within in the desired range. Tumors were irradiated at 55^o C, 65^oC, and 75^oC to find out at which temperature the maximum amount of tumor necrosis and strong immune response could be elicited. The growth of the tumors after the LACI treatment will be plotted to show the affect of the therapy at different temperatures. The data suggest that the growth rate of the tumors is slowed down considerably using this approach. * This work is supported by a grant from The National Institutes of Health.

  15. A new concept in laser-assisted chemistry - The electronic-field representation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Yuan, J.-M.; Laing, J. R.; Devries, P. L.

    1977-01-01

    Electronic-field representation is proposed as a technique for laser-assisted chemistry. Specifically, it is shown that several field-assisted chemical processes can be described in terms of mixed matter-field quantum states and their associated energies. The technique may be used to analyze the effects exerted by an intense laser on both bound and unbound molecular systems, and to investigate other field-induced effects including multiphoton processes, emission, and photodissociation.

  16. Development of a water-jet assisted laser paint removal process

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2013-12-01

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet.

  17. Laser-assisted sol-gel growth and characteristics of ZnO thin films

    SciTech Connect

    Kim, Min Su; Kim, Soaram; Leem, Jae-Young

    2012-06-18

    ZnO thin films were grown on Si(100) substrates by a sol-gel method assisted by laser beam irradiation with a 325 nm He-Cd laser. In contrast to conventional sol-gel ZnO thin films, the surface morphology of the laser-assisted sol-gel thin films was much smoother, and the residual stress in the films was relaxed by laser irradiation. The luminescent properties of the films were also enhanced by laser irradiation, especially, by irradiation during the deposition and post-heat treatment stages. The incident laser beam is thought to play several roles, such as annihilating defects by accelerating crystallization during heat treatment, enhancing the surface migration of atoms and molecules, and relaxing the ZnO matrix structure during crystallization.

  18. Energetics and dynamics of laser-assisted field evaporation: Time-dependent density functional theory simulations

    NASA Astrophysics Data System (ADS)

    Silaeva, Elena P.; Uchida, Kazuki; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2015-10-01

    High positive electrostatic (dc) field can break the bonds in molecules and strip away atoms from the solid surfaces. The dynamics of this field evaporation under laser pulse is studied for a H2 molecule and a Si4 cluster using time-dependent density functional theory combined with molecular dynamics. This allows us to monitor the position and charge state of the evaporated atom in real time. Our simulations demonstrate that the critical dc field for the evaporation is lower if the molecule/cluster is illuminated by a laser pulse. The behavior of the evaporation threshold as a function of laser intensity and dc field is in qualitative agreement with experiments and provides important insights into the mechanisms of laser-assisted field evaporation. Additionally, the laser-assisted field evaporation is found to be sensitive to the laser energy according to the photoabsorption spectra that demonstrate a pronounced redshift in the lower energy region at higher dc field values.

  19. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  20. Laser-assisted uvulopalatoplasty with Nd:YAG laser for sleep disorders.

    PubMed

    Hanada, T; Furuta, S; Tateyama, T; Uchizono, A; Seki, D; Ohyama, M

    1996-12-01

    We evaluated the apnea index (AI), the oxygen saturation above 95% (SA95), the lowest oxygen saturation (LSAT), and snoring before and after laser-assisted uvulopalatoplasty (LAUP) in 106 patients with obstructive sleep apnea syndrome (n=59) or snoring (n=47). Type 1 LAUP was performed in 42 patients and type 2 LAUP in 64 patients. A 50% or greater reduction in AI was observed in 15 patients (35.7%) who underwent type 1 LAUP and 37 patients (57.8%) who underwent type 2 LAUP. Snoring was diminished in 18 (51.4%) of 35 patients who underwent type 1 LAUP and 30 (55.6%) of 54 patients who underwent type 2 LAUP. SA95 and LSAT showed no difference. No serious complications such as significant bleeding, postoperative episodes of asphyxia, nasopharyngeal stenosis, or nasal regurgitation were observed. LAUP was an effective outpatient treatment. PMID:8948617

  1. Influence of pulse duration, energy, and focusing on laser-assisted water condensation

    SciTech Connect

    Petit, Y.; Henin, S.; Kasparian, J.; Wolf, J. P.; Rohwetter, P.; Stelmaszczyk, K.; Hao, Z. Q.; Nakaema, W. M.; Woeste, L.; Vogel, A.; Pohl, T.; Weber, K.

    2011-01-24

    We investigate the influence of laser parameters on laser-assisted water condensation in the atmosphere. Pulse energy is the most critical parameter. Nanoparticle generation depends linearly on energy beyond the filamentation threshold. Shorter pulses are more efficient than longer ones with saturation at {approx}1.5 ps. Multifilamenting beams appear more efficient than strongly focused ones in triggering the condensation and growth of submicronic particles, while polarization has a negligible influence on the process. The data suggest that the initiation of laser-assisted condensation relies on the photodissociation of the air molecules rather than on their photoionization.

  2. Hatch latch mechanism for Spacelab scientific airlock

    NASA Technical Reports Server (NTRS)

    Terhaar, G. R.

    1979-01-01

    The requirements, design tradeoff, design, and performance of the Spacelab scientific airlock hatch latching mechanisms are described. At space side the hatch is closed and held against internal airlock/module pressure by 12 tangential overcenter hooks driven by a driver. At module side the hatch is held by 4 hooks driven by rollers running on a cammed driver.

  3. 7 CFR 60.111 - Hatched.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hatched. 60.111 Section 60.111 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections... AND SHELLFISH General Provisions Definitions § 60.111 Hatched. Hatched means emerged from the egg....

  4. Compliance of laser-assisted microvascular anastomosis: a comparative study with manual anastomosis (preliminary results)

    NASA Astrophysics Data System (ADS)

    Demaria, Roland G.; Lhote, Francois-Marie; Dauzat, Michel; Juan, Jean-Marie; Oliva-Lauraire, Marie-Claire; Durrleman, Nicolas; Delacretaz, Guy P.; Albat, Bernard; Frapier, Jean-Marc; Chaptal, Paul-Andre; Godlewski, Guilhem

    1999-01-01

    The compliance of microvascular anastomosis is an important predictive factor for long term patency of graft or vascular reconstruction. This experimental study compare the compliance of manual suture and laser assisted end to end microvascular anastomosis. In nine New-Zealand white rabbits we performed manual end-to-end suture anastomosis on the left femoral artery and laser assisted anastomosis on the right femoral artery, with a diode laser (wavelength 988 nm, power output 500 mW). Compliance was obtained by echotracking (CBI 8000 sonomicrometry system with 20 MHz implantable microprobe from Crystal-Biotech, USA) on the anastomosis site as well as upstream, and downstream from the anastomosis. Vessel compliance was lower on the manual suture side compared to the laser assisted anastomosis side, especially downstream from the anastomosis.

  5. In vitro investigation on Ho:YAG laser-assisted bone ablation underwater.

    PubMed

    Zhang, Xianzeng; Chen, Chuanguo; Chen, Faner; Zhan, Zhenlin; Xie, Shusen; Ye, Qing

    2016-07-01

    Liquid-assisted hard tissue ablation by infrared lasers has extensive clinical application. However, detailed studies are still needed to explore the underlying mechanism. In the present study, the dynamic process of bubble evolution induced by Ho:YAG laser under water without and with bone tissue at different thickness layer were studied, as well as its effects on hard tissue ablation. The results showed that the Ho:YAG laser was capable of ablating hard bone tissue effectively in underwater conditions. The penetration of Ho:YAG laser can be significantly increased up to about 4 mm with the assistance of bubble. The hydrokinetic forces associated with the bubble not only contributed to reducing the thermal injury to peripheral tissue, but also enhanced the ablation efficiency and improve the ablation crater morphology. The data also presented some clues to optimal selection of irradiation parameters and provided additional knowledge of the bubble-assisted hard tissue ablation mechanism. PMID:27056700

  6. Suture-free laser-assisted vessel repair using CO2 laser and liquid albumin solder.

    PubMed

    Wolf-de Jonge, Ingrid C D Y M; Heger, Michal; van Marle, Jan; Balm, Ron; Beek, Johan F

    2008-01-01

    Numerous studies have shown that the use of proteinic solders during laser-assisted vascular anastomosis (LAVA) and repair (LAVR) can significantly increase welding strength, but these studies combined solder-mediated LAVA/R with the use of stay sutures, thereby defeating its purpose. In an in vitro study, we examined the leaking point pressures (LPPs) and histological damage profile of porcine carotid arteries following albumin solder-mediated CO(2) LAVR without the use of sutures. Longitudinal arteriotomies (9.1+/-0.8 mm in length) were sheathed with 25% liquid bovine serum albumin solder, and LAVR was performed using a micromanipulator-controlled CO(2) laser operating at 170-mW power and 1.25-mm spot size in continuous wave mode. The welding regime consisted of a transversal zigzag pass followed by one or two longitudinal zigzag passes, producing an irradiance of 13.9 W/cm(2) and energies of 10.5 J and 11.3 J per mm weld, respectively. LPPs were measured by the fluid infusion technique, and histological analysis was performed with light, fluorescence, and polarization microscopy. The LPP of the two-pass welds was 351+/-158 mmHg versus 538+/-155 mmHg for the three-pass welds. Thermal damage was confined primarily to the adventitial layers, with limited heat diffusion into the media below the solder around the coaptation interface. PMID:19021359

  7. Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write

    NASA Astrophysics Data System (ADS)

    Wu, P. K.; Ringeisen, B. R.; Krizman, D. B.; Frondoza, C. G.; Brooks, M.; Bubb, D. M.; Auyeung, R. C. Y.; Piqué, A.; Spargo, B.; McGill, R. A.; Chrisey, D. B.

    2003-04-01

    Two techniques for transferring biomaterial using a pulsed laser beam were developed: matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE direct write (MDW). MAPLE is a large-area vacuum based technique suitable for coatings, i.e., antibiofouling, and MDW is a localized deposition technique capable of fast prototyping of devices, i.e., protein or tissue arrays. Both techniques have demonstrated the capability of transferring large (mol wt>100 kDa) molecules in different forms, e.g., liquid and gel, and preserving their functions. They can deposit patterned films with spatial accuracy and resolution of tens of μm and layering on a variety of substrate materials and geometries. MDW can dispense volumes less than 100 pl, transfer solid tissues, fabricate a complete device, and is computed aided design/computer aided manufacturing compatible. They are noncontact techniques and can be integrated with other sterile processes. These attributes are substantiated by films and arrays of biomaterials, e.g., polymers, enzymes, proteins, eucaryotic cells, and tissue, and a dopamine sensor. These examples, the instrumentation, basic mechanisms, a comparison with other techniques, and future developments are discussed.

  8. Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication.

    PubMed

    Liu, Xin; Prinz, Stephan; Besser, Heino; Pfleging, Wilhelm; Wissmann, Markus; Vannahme, Christoph; Guttmann, Markus; Mappes, Timo; Koeber, Sebastian; Koos, Christian; Lemmer, Uli

    2014-01-01

    The integration of organic semiconductor distributed feedback (DFB) laser sources into all-polymer chips is promising for biomedical or chemical analysis. However, the fabrication of DFB corrugations is often expensive and time-consuming. Here, we apply the method of laser-assisted replication using a near-infrared diode laser beam to efficiently fabricate inexpensive poly(methyl methacrylate) (PMMA) chips with spatially localized organic DFB laser pixels. This time-saving fabrication process enables a pre-defined positioning of nanoscale corrugations on the chip and a simultaneous generation of nanoscale gratings for organic edge-emitting laser pixels next to microscale waveguide structures. A single chip of size 30 mm × 30 mm can be processed within 5 min. Laser-assisted replication allows for the subsequent addition of further nanostructures without a negative impact on the existing photonic components. The minimum replication area can be defined as being as small as the diode laser beam focus spot size. To complete the fabrication process, we encapsulate the chip in PMMA using laser transmission welding. PMID:25471492

  9. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    SciTech Connect

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  10. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    DOE PAGESBeta

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore » concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  11. Nanostructured polymer stable glasses via matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Shepard, Kimberly B.

    Amorphous materials, or glasses, which lack a crystalline structure, are technologically ubiquitous with applications including structural components, pharmaceuticals, and electronic devices. Glasses are traditionally formed by rapid cooling from the melt state, where molecules become kinetically trapped into a non-equilibrium configuration. The temperature at which the material transforms from supercooled liquid to glass is the glass transition temperature. The glass transition temperature is the most important property of amorphous materials, as it determines the range of temperatures where they are fabricated, used and stored. Recent technological developments in which glasses are formed by alternative routes, such as physical vapor deposition and matrix assisted pulsed laser evaporation (MAPLE), enable tunability of Tg and related physical properties. High-Tg glasses formed by these techniques are termed "stable glasses" and exhibit a wide range of exceptional properties. This work focuses on the formation and characterization of stable polymer glasses fabricated via MAPLE. Bulk films (>1 microm thick) of glassy polymers fabricated by MAPLE at slow growth rates (<1 nm/s) and controlled substrate temperature (T sub = 0.85Tg,bulk) have greatly elevated Tg, low density, high enthalpy, increased kinetic stability and a spheroidal nanostructure. We focus on connecting the bulk and nanoscale properties of MAPLE-deposited polymer glasses. Building on molecular dynamics simulations from the literature on the MAPLE process, we experimentally study the origin of nanostructure in our MAPLE-deposited films. We measure the time-of-flight of MAPLE-deposited material, confirming that the velocity is sufficiently low for intact deposition of polymer nanoglobules. The size distribution of polymer nanoglobules fabricated in short MAPLE depositions provides insight into how nanostructured MAPLE films form. Using our atomic force microscopy-based nanoscale dilatometry technique

  12. Thermal characterization of the laser-assisted consolidation process

    NASA Astrophysics Data System (ADS)

    Agarwal, Vivek; Guceri, S. I.; McCullough, R. L.; Schultz, J. M.

    1992-04-01

    A thermal analysis of the filament winding process employing a CO2 laser beam is presented. Comparison of experimental process temperatures, measured utilizing very fast response thermocouples, with temperatures computed employing a heat transfer model offered by Beyeler and Guceri, indicates that only 20 pct of the laser energy is absorbed by the composite material in the process configuration utilized in these experiments. It is assumed that the low absorption of the laser energy is a result of the high incidence angle at which the laser beam strikes the material.

  13. Laser-assisted morphing of complex three dimensional objects.

    PubMed

    Drs, Jakub; Kishi, Tetsuo; Bellouard, Yves

    2015-06-29

    Morphing refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. A typical illustration is to turn a cube into a sphere by continuous change of shape curvatures. Here, we demonstrate a process of laser-induced morphing, driven by surface tension and thermally-controlled viscosity. As a proof-of-concept, we turn 3D glass structures fabricated by a femtosecond laser into other shapes by locally heating up the structure with a feedback-controlled CO2 laser. We further show that this laser morphing process can be accurately modelled and predicted. PMID:26191745

  14. System technology for laser-assisted milling with tool integrated optics

    NASA Astrophysics Data System (ADS)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  15. Selective destruction of protein function by chromophore-assisted laser inactivation

    SciTech Connect

    Jay, D.G.

    1988-08-01

    Chromophore-assisted laser inactivation of protein function has been achieved. After a protein binds a specific ligand or antibody conjugated with malachite green (C.I. 42,000), it is selectively inactivated by laser irradiation at a wavelength of light absorbed by the dye but not significantly absorbed by cellular components. Ligand-bound proteins in solution and on the surfaces of cells can be denatured without other proteins in the same samples being affected. Chromophore-assisted laser inactivation can be used to study cell surface phenomena by inactivating the functions of single proteins on living cells, a molecular extension of cellular laser ablation. It has an advantage over genetics and the use of specific inhibitors in that the protein function of a single cell within the organism can be inactivated by focusing the laser beam.

  16. Computer-assisted surgical techniques: can they really improve laser surgery?

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou; Arango, Pablo; Howard, John G.; Mendenhall, Marcus H.; Ossoff, Robert H.

    1995-05-01

    As part of our Computer-Assisted Surgical Techniques (CAST) program, we use computers to guide surgical lasers, create minimal incision widths, regulate the rate of tissue ablation, monitor the types of tissue being ablated with photo-acoustic feedback, and track and compensate for patient motions due to respiration and heart beat. The union of the computer, robotics and lasers can assist the surgeon and permit several new applications. Although these advances in laser surgery appear to have obvious benefits, it is important to evaluate and quantify the clinical advantages. We have compared the CAST system to manually controlled laser surgery and studied the wound healing after laser incision. We have found definite advantages to the CAST system. However, the computer, alone, cannot compensate for the thermal damage lateral to the incision site. The results suggest the need for motion tracking and compensation to be a part of the CAST system.

  17. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  18. Laser-assisted solar-cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.

  19. Circular dichroism in laser-assisted proton-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b , and the laser phase ϕ that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b -dependent ionization and capture probabilities show a strong dependence on both ϕ and the helicity of the circularly polarized laser light. For intensities above 5×1012W/cm2 our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over ϕ . Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase ϕ .

  20. Circular dichroism in laser-assisted proton-hydrogen collisions

    SciTech Connect

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b, and the laser phase {phi} that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b-dependent ionization and capture probabilities show a strong dependence on both {phi} and the helicity of the circularly polarized laser light. For intensities above 5x10{sup 12} W/cm{sup 2} our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over {phi}. Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase {phi}.

  1. Laser gas assisted treatment of AISI H12 tool steel and corrosion properties

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Toor, Ihsan-ul-Haq; Malik, Jahanzaib; Patel, F.

    2014-03-01

    Laser gas assisted treatment of AISI H12 tool steel surface is carried out and the electrochemical response of the laser treated surface is investigated. Morphological and metallurgical changes in the treated layer are examined using a scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Potentiodynamic polarization tests are carried out for untreated and laser treated specimen in 0.2 M NaCl solution at room temperature. It is found that the laser treated AISI H12 workpiece surfaces exhibit higher corrosion resistance as compared to untreated specimen as confirmed by lower corrosion rate, higher pitting potential, and lower passive current density.

  2. High Harmonic Generation in Laser-Assisted Radiative Attachment or Recombination Processes

    NASA Astrophysics Data System (ADS)

    Flegel, Alexander V.; Zheltukhin, Alexander N.; Frolov, Mikhail V.; Manakov, Nikolai L.; Starace, Anthony F.

    2012-06-01

    Resonant enhancements are predicted in cross sections σn for laser-assisted radiative attachment or electron-ion recombination accompanied by absorption of n laser photons. These enhancements occur for incoming electron energies at which the electron can be attached or recombined by emitting μ laser photons followed by emission of a spontaneous photon upon absorbing n+μ laser photons. The close similarity between rescattering plateaus in spectra of resonant attachment/recombination and of high-order harmonic generation is shown based on a general parametrization for σn and on numerical results for e-H attachment.

  3. Laser-assisted direct ink writing of planar and 3D metal architectures

    PubMed Central

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-01-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  4. Laser Scanning-Assisted Tip-Enhanced Optical Microscopy for Robust Optical Nanospectroscopy.

    PubMed

    Yano, Taka-Aki; Tsuchimoto, Yuta; Mochizuki, Masahito; Hayashi, Tomohiro; Hara, Masahiko

    2016-07-01

    Laser-scanning-assisted tip-enhanced optical microscopy was developed for robust optical nanospectroscopy. The laser-scanning system was utilized to automatically set and keep the center of a tight laser-focusing spot in the proximity of a metallic tip with around 10 nm precision. This enabled us to efficiently and stably induce plasmon-coupled field enhancement at the apex of the metallic probe tip. The laser-scanning technique was also applied to tracking and compensating the thermal drift of the metallic tip in the spot. This technique is usable for long-term tip-enhanced optical spectroscopy without any optical degradation. PMID:27412187

  5. Laser-assisted direct ink writing of planar and 3D metal architectures.

    PubMed

    Skylar-Scott, Mark A; Gunasekaran, Suman; Lewis, Jennifer A

    2016-05-31

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features "on-the-fly." To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates. PMID:27185932

  6. Laser-assisted direct ink writing of planar and 3D metal architectures

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  7. Effect of laser-assisted bleaching with Nd:YAG and diode lasers on shear bond strength of orthodontic brackets.

    PubMed

    Mirhashemi, Amirhossein; Emadian Razavi, Elham Sadat; Behboodi, Sara; Chiniforush, Nasim

    2015-12-01

    The aim of the present study was to assess the effect of laser-assisted bleaching with neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode lasers on shear bond strength (SBS) of orthodontic brackets. One hundred and four extracted human premolars were randomly divided into four groups: group 1: No bleaching applied (control group); group 2: Teeth bleached with 40 % hydrogen peroxide; group 3: Teeth treated with 30 % hydrogen peroxide activated with Nd:YAG laser (1064 nm, 2.5 W, 25 Hz, pulse duration of 100 μs, 6 mm distance); and group 4: Teeth treated with 30 % hydrogen peroxide activated with diode laser (810 nm, 1 W, CW, 6 mm distance). Equal numbers of teeth in groups 2, 3, and 4 were bonded at start, 1 h, 24 h, and 1 week after bleaching. A universal testing machine measured the SBS of the samples 24 h after bonding. After bracket debonding, the amount of residual adhesive on the enamel surface was observed under a stereomicroscope to determine the adhesive remnant index (ARI) scores. The SBS in the unbleached group was significantly higher than that in the bleached groups bonded immediately and 1 h after laser-assisted bleaching (P < 0.05). In groups 3 and 4 at start and group 2 at start and 1 h after laser-assisted bleaching, the SBS was found to be significantly lower than that in the control group. Significant differences in the ARI scores existed among groups as well. The SBS of brackets seems to increase quickly within an hour after laser-assisted bleaching and 24 h after conventional bleaching. Thus, this protocol can be recommended if it is necessary to bond the brackets on the same day of bleaching. PMID:26319247

  8. Microprocessing with the assistance of copper vapor laser system

    NASA Astrophysics Data System (ADS)

    Azizbekian, G. A.; Grigorian, G. V.; Kazaryan, M. A.; Lyabin, N. A.; Morozova, E. A.; Pogosyan, L. A.; Tamanyan, A. G.

    2006-05-01

    Laser processing of materials always was the important field for laser applications. Copper vapor laser (CVL) system are widely used in micromechanical engineering where optical system may provide high image quality. That allows us to concentrate the energy on a small surface and to produce very tiny holes and very thin cutting edges. The possibility to use "generator-amplifier" laser system (copper vapor elements LT-5Cu and LT-30Cu) for processing material without mechanical movements was investigated. As the pumping generator was used the scheme with the current pulse duration about 80 - 100 ns and the laser pulse duration may vary up to 25 ns. In the unstable resonator scheme the special plane mirror with reflecting coating was used. With the help of this system a number of materials were processed, namely: copper, stainless steel, gold, aluminum and nonmetals: sapphire, ceramics, various rocks, plastics etc.

  9. Laser-assisted bremsstrahlung for circular and linear polarization

    SciTech Connect

    Schnez, Stephan; Loetstedt, Erik; Jentschura, Ulrich D.; Keitel, Christoph H.

    2007-05-15

    We numerically evaluate the cross sections for spontaneous bremsstrahlung emission in a laser field for both circular and linear laser polarization, in a regime where the classical ponderomotive energies for the considered laser intensities are considerably larger than the rest mass of the electron. A fully relativistic quantum-electrodynamic approach using the Volkov solutions of an electron in an external field and Dirac-Volkov propagators for the intermediate electrons is applied. We compare circular to linear polarization and point out several interesting features of the laser-dressed cross sections. Regularizations in both electron and photon propagators are required. Specifically, imaginary mass and energy shifts of the electron must be implemented near resonances which correspond to Doppler-shifted harmonics of the laser frequency. We also introduce a screening to the Coulomb potential in order to avoid long-range Coulomb infinities at zero momentum transfer.

  10. 78 FR 6173 - Diana Del Grosso, Ray Smith, Joseph Hatch, Cheryl Hatch, Kathleen Kelley, Andrew Wilklund, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF TRANSPORTATION Surface Transportation Board Diana Del Grosso, Ray Smith, Joseph Hatch, Cheryl Hatch, Kathleen... Smith, Joseph Hatch, Cheryl Hatch, Kathleen Kelley, Andrew Wilklund, and Richard Kosiba...

  11. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  12. Effective parameters for film-free femtosecond laser assisted bioprinting.

    PubMed

    Desrus, H; Chassagne, B; Moizan, F; Devillard, R; Petit, S; Kling, R; Catros, S

    2016-05-10

    Optimal conditions for femtosecond laser bioprinting setup are reported on in terms of numerical aperture and accuracy of focal spot location for different bioinks to deposit without using a metallic absorbing layer. PMID:27168307

  13. Laser-assisted biotechnology: the biologist point of view

    NASA Astrophysics Data System (ADS)

    Palumbo, Giuseppe; Sasso, Anna R.; Criniti, Vittoria; Crescenzi, Elvira; Mazziotti, Bruno; Grieco, Michele; Tecce, Mario F.

    1997-12-01

    The main applications of laser to different fields of medicine and biology are reviewed and compared by a biologist. The good output of high quality papers in the biomedical field effectively contrasts with a scarce popularity of lasers in biological laboratory. In fact, a search in the Medlars database, confirmed that the use of lasers in a strict biological context is very limited or confined to few oriented laboratories. The `common' biologist does not have a precise point of view. In this perspective, the biologist would propose the following approach: (1) promote training programs to create new professional figures; (2) encourage the formation of scientific and technological research networks between biologists and laser specialists.

  14. Laser-assisted biotechnology: the biologist point of view

    NASA Astrophysics Data System (ADS)

    Palumbo, Giuseppe; Sasso, Anna R.; Criniti, Vittoria; Crescenzi, Elvira; Mazziotti, Bruno; Grieco, Michele; Tecce, Mario F.

    1998-01-01

    The main applications of laser to different fields of medicine and biology are reviewed and compared by a biologist. The good output of high quality papers in the biomedical field effectively contrasts with a scarce popularity of lasers in biological laboratory. In fact, a search in the Medlars database, confirmed that the use of lasers in a strict biological context is very limited or confined to few oriented laboratories. The `common' biologist does not have a precise point of view. In this perspective, the biologist would propose the following approach: (1) promote training programs to create new professional figures; (2) encourage the formation of scientific and technological research networks between biologists and laser specialists.

  15. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    SciTech Connect

    Huang, H.; Zhou, Y.; Duley, W. W.

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  16. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  17. Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Li, X. W.; Chen, C. G.; Zhang, X. Z.; Zhan, Z. L.; Xie, S. S.

    2015-01-01

    To investigate the characteristics of liquid-mediated hard tissue ablation induced by a pulsed CO2 laser with a wavelength of 10.6 μm, a high speed camera was used to monitor the interaction between water, tissue and laser irradiation. The results showed that laser irradiation can directly impact on tissue through a vapor channel formed by the leading part of the laser pulse. The ablation debris plays a key role in liquid-assisted laser ablation, having the ability to keep the vapor channel open to extend actuation time. The runoff effect induced by vortex convection liquid flow can remove the tissue that obstructs the effect of the next laser pulse.

  18. Effect of bound-state dressing in laser-assisted radiative recombination

    NASA Astrophysics Data System (ADS)

    Müller, Robert A.; Seipt, Daniel; Fritzsche, Stephan; Surzhykov, Andrey

    2015-11-01

    We present a theoretical study on the recombination of a free electron into the ground state of a hydrogenlike ion in the presence of an external laser field. Emphasis is placed on the effects caused by the laser dressing of the residual ionic bound state. To investigate how this dressing affects the total and angle-differential cross section of laser-assisted radiative recombination (LARR) we apply first-order perturbation theory and the separable Coulomb-Volkov continuum ansatz. Using this approach, detailed calculations are performed for low-Z hydrogenlike ions and laser intensities in the range from IL=1012 to 1013W/cm2 . It is seen that the total cross section as a function of the laser intensity is remarkably affected by the bound-state dressing. Moreover, the laser dressing becomes manifest as asymmetries in the angular distribution and the (energy) spectrum of the emitted recombination photons.

  19. Glassfrog embryos hatch early after parental desertion.

    PubMed

    Delia, Jesse R J; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-06-22

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  20. Glassfrog embryos hatch early after parental desertion

    PubMed Central

    Delia, Jesse R. J.; Ramírez-Bautista, Aurelio; Summers, Kyle

    2014-01-01

    Both parental care and hatching plasticity can improve embryo survival. Research has found that parents can alter hatching time owing to a direct effect of care on embryogenesis or via forms of care that cue the hatching process. Because parental care alters conditions critical for offspring development, hatching plasticity could allow embryos to exploit variation in parental behaviour. However, this interaction of parental care and hatching plasticity remains largely unexplored. We tested the hypothesis that embryos hatch early to cope with paternal abandonment in the glassfrog Hyalinobatrachium fleischmanni (Centrolenidae). We conducted male-removal experiments in a wild population, and examined embryos' response to conditions with and without fathers. Embryos hatched early when abandoned, but extended development in the egg stage when fathers continued care. Paternal care had no effect on developmental rate. Rather, hatching plasticity was due to embryos actively hatching at different developmental stages, probably in response to deteriorating conditions without fathers. Our experimental results are supported by a significant correlation between the natural timing of abandonment and hatching in an unmanipulated population. This study demonstrates that embryos can respond to conditions resulting from parental abandonment, and provides insights into how variation in care can affect selection on egg-stage adaptations. PMID:24789892

  1. The dawn of computer-assisted robotic osteotomy with ytterbium-doped fiber laser.

    PubMed

    Sotsuka, Yohei; Nishimoto, Soh; Tsumano, Tomoko; Kawai, Kenichiro; Ishise, Hisako; Kakibuchi, Masao; Shimokita, Ryo; Yamauchi, Taisuke; Okihara, Shin-ichiro

    2014-05-01

    Currently, laser radiation is used routinely in medical applications. For infrared lasers, bone ablation and the healing process have been reported, but no laser systems are established and applied in clinical bone surgery. Furthermore, industrial laser applications utilize computer and robot assistance; medical laser radiations are still mostly conducted manually nowadays. The purpose of this study was to compare the histological appearance of bone ablation and healing response in rabbit radial bone osteotomy created by surgical saw and ytterbium-doped fiber laser controlled by a computer with use of nitrogen surface cooling spray. An Ytterbium (Yb)-doped fiber laser at a wavelength of 1,070 nm was guided by a computer-aided robotic system, with a spot size of 100 μm at a distance of approximately 80 mm from the surface. The output power of the laser was 60 W at the scanning speed of 20 mm/s scan using continuous wave system with nitrogen spray level 0.5 MPa (energy density, 3.8 × 10(4) W/cm(2)). Rabbits radial bone osteotomy was performed by an Yb-doped fiber laser and a surgical saw. Additionally, histological analyses of the osteotomy site were performed on day 0 and day 21. Yb-doped fiber laser osteotomy revealed a remarkable cutting efficiency. There were little signs of tissue damage to the muscle. Lased specimens have shown no delayed healing compared with the saw osteotomies. Computer-assisted robotic osteotomy with Yb-doped fiber laser was able to perform. In rabbit model, laser-induced osteotomy defects, compared to those by surgical saw, exhibited no delayed healing response. PMID:24241973

  2. Laser assisted atom probe analysis of thin film on insulating substrate.

    PubMed

    Kodzuka, M; Ohkubo, T; Hono, K

    2011-05-01

    We demonstrate that the atom probe analyses of metallic thin films on insulating substrates are possible using laser assisted field evaporation. The tips with metallic thin film and insulating substrate (0.6-3 μm in thickness) were prepared by the lift-out and annular ion beam milling techniques on tungsten supports. In spite of the existence of thick insulating layer between the metallic film and the tungsten support, atom probe tomography with practical mass resolution, signal-to-noise ratio and spatial resolution was found to be possible using laser assisted field evaporation. PMID:21172729

  3. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Kennedy, Colin J; Burton, William Cody; Ketterle, Wolfgang

    2013-11-01

    We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter's butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states. PMID:24237531

  4. An experimental investigation of pulsed laser-assisted machining of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Panjehpour, Afshin; Soleymani Yazdi, Mohammad R.; Shoja-Razavi, Reza

    2014-11-01

    Grinding and hard turning are widely used for machining of hardened bearing steel parts. Laser-assisted machining (LAM) has emerged as an efficient alternative to grinding and hard turning for hardened steel parts. In most cases, continuous-wave lasers were used as a heat source to cause localized heating prior to material removal by a cutting tool. In this study, an experimental investigation of pulsed laser-assisted machining of AISI 52100 bearing steel was conducted. The effects of process parameters (i.e., laser mean power, pulse frequency, pulse energy, cutting speed and feed rate) on state variables (i.e., material removal temperature, specific cutting energy, surface roughness, microstructure, tool wear and chip formation) were investigated. At laser mean power of 425 W with frequency of 120 Hz and cutting speed of 70 m/min, the benefit of LAM was shown by 25% decrease in specific cutting energy and 18% improvement in surface roughness, as compared to those of the conventional machining. It was shown that at constant laser power, the increase of laser pulse energy causes the rapid increase in tool wear rate. Pulsed laser allowed efficient control of surface temperature and heat penetration in material removal region. Examination of the machined subsurface microstructure and microhardness profiles showed no change under LAM and conventional machining. Continuous chips with more uniform plastic deformation were produced in LAM.

  5. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel.

    PubMed

    Alavi, S Habib; Harimkar, Sandip P

    2015-05-01

    Simultaneous application of ultrasonic vibrations during conventional materials processing (casting, welding) and material removal processes (machining) has recently been gaining widespread attention due to improvement in metallurgical quality and efficient material removal, respectively. In this paper, ultrasonic vibration-assisted laser surface melting of austenitic stainless steel (AISI 316) is reported. While the application of ultrasonic vibrations during laser processing delays the laser interaction with material due to enhancement of surface convection, it resulted in expulsion of melt from the irradiated region (forming craters) and transition from columnar to equiaxed dendritic grain structure in the resolidified melt films. Systematic investigations on the effect of ultrasonic vibrations (with vibrations frequency of 20 kHz and power output in the range of 20-40%) on the development of microstructure during laser surface melting (with laser power of 900 W and irradiation time in the range of 0.30-0.45 s) are reported. The results indicate that the proposed ultrasonic vibration-assisted laser processing can be designed for efficient material removal (laser machining) and improved equiaxed microstructure (laser surface modifications) during materials processing. PMID:25670412

  6. Jet-assisted laser tools for tooth preparation.

    PubMed

    Arcoria, C J; Frederickson, C J; Judy, M M; Jennett, E L; Motamedi, M

    1994-06-01

    Previous oral calcified-tissue laser ablations have yielded inadequate results because of the difficulty in producing a desired effect on a surface without concomitant pulp or osseous damage. The purpose of this study was to characterize a new modality of ablating teeth using argon and diode lasers (488.5 nm, 805 nm) in combination with the repetitive placement of specific photoabsorptive dyes. In this design, energy from laser light, that would otherwise be reflected, is coupled to the tooth-dye interface. Thirty-two specimens of recently extracted human enamel were sectioned and prepared into 3 x 2 x 2 rectangular blocks and smoothed with a polishing point. Two-microliter droplets of dye were placed on the external enamel surface and subsequently air-dried. Specimens were then ablated with the laser-dye combinations, producing craters approximately 100-200 mum in depth and devoid of visual carbonization. Similar irradiations were performed on enamel specimens without dye application, and displayed no cavitation or surface carbonization. SEM studies showed evidence of crater formation within the enamel surface. Optimization of laser parameters integrated with specific dispensing of dye is necessary before this technique can be studied further. PMID:10147421

  7. Laser-assisted drug delivery in dermatology: from animal models to clinical practice.

    PubMed

    Ali, Faisal R; Al-Niaimi, Firas

    2016-02-01

    Topical medicaments are the mainstay of the dermatologists' therapeutic arsenal. Laser-assisted drug delivery enhances the ability of topically applied medicaments to penetrate the skin. We discuss the mechanisms of laser-assisted drug delivery and animal models that have informed clinical practice. We review clinical studies that have employed laser-assisted drug delivery for a range of indications to date including non-melanoma skin cancer, vitiligo, scarring, vaccination, local anaesthesia, analgesia, viral warts, infantile haemangiomas and cosmetic uses. Studies thus far suggest that laser pre-treatment improves transepidermal absorption of topical agents and allows for a much deeper penetration of drugs than is possible with topical medicaments alone. This may allow more efficacious action of current treatments, such that conventional duration of treatment can be shortened or lower concentrations of active agents be used, potentially obviating side effects of treatment. The prospect of using laser technologies to facilitate transdermal vaccination and as an adjunct for inflammatory dermatoses and cosmetic indications remains in its infancy. As larger trials are published, involving greater numbers of patients and utilising various laser and topical medicament parameters, we will enhance our understanding of this nascent modality of treatment delivery. PMID:26694489

  8. Design and implementation of a system for laser assisted milling of advanced materials

    NASA Astrophysics Data System (ADS)

    Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli

    2016-04-01

    Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.

  9. Laser assisted high entropy alloy coating on aluminum: Microstructural evolution

    SciTech Connect

    Katakam, Shravana; Joshi, Sameehan S.; Mridha, Sanghita; Mukherjee, Sundeep; Dahotre, Narendra B.

    2014-09-14

    High entropy alloy (Al-Fe-Co-Cr-Ni) coatings were synthesized using laser surface engineering on aluminum substrate. Electron diffraction analysis confirmed the formation of solid solution of body centered cubic high entropy alloy phase along with phases with long range periodic structures within the coating. Evolution of such type of microstructure was a result of kinetics associated with laser process, which generates higher temperatures and rapid cooling resulting in retention of high entropy alloy phase followed by reheating and/or annealing in subsequent passes of the laser track giving rise to partial decomposition. The partial decomposition resulted in formation of precipitates having layered morphology with a mixture of high entropy alloy rich phases, compounds, and long range ordered phases.

  10. Laser-assisted morphing of complex three dimensional objects

    NASA Astrophysics Data System (ADS)

    Drs, Jakub; Kishi, Tetsuo; Bellouard, Yves

    2016-03-01

    Morphing commonly refers to the smooth transition from a specific shape into another one, in which the initial and final shapes can be significantly different. In this study, we show that the concept of morphing applied to laser micromanufacturing offers an opportunity to change the topology of an initial shape, and to turn it into something more complex, like for instance for creating self-sealed cavities. Such cavities could be filled with various gases, while also achieving an optical surface quality since being shaped by surface tension. Furthermore, we demonstrate that laser morphing can be accurately modelled and predicted. Finally, we illustrate the possible use of `laser-morphed' shape to achieve high-quality resonators that can find applications, for instance, in ultra-small quantities molecules label-free detection through whispering gallery mode resonances.

  11. UV laser-assisted wire stripping and micro-machining

    NASA Astrophysics Data System (ADS)

    Martyniuk, Jerry

    1994-02-01

    Results are reported for the use of a 266 nm frequency quadrupled Nd:YAG ultraviolet laser in the areas of wire stripping of small coaxial type transmission lines and for micro-machining of various materials including copper, glass, polyimide and DuPont TEFLONTM. This new laser is typically run with a 2 KHz repetition rate, 40 ns FWHM pulse and a fluence of about 50 joules/cm2 which makes it possible to micro-machine metals, polymers, glasses and ceramics. The high fluence of this laser allows shielding structures such as Al-MylarTM, Al-KaptonTM or the plated copper used in small coaxial cables to be precisely cut. Cut rates are reported for the above materials as well as results and photos of wire stripping and micro- machining.

  12. Shock assisted ionization injection in laser-plasma accelerators.

    PubMed

    Thaury, C; Guillaume, E; Lifschitz, A; Ta Phuoc, K; Hansson, M; Grittani, G; Gautier, J; Goddet, J-P; Tafzi, A; Lundh, O; Malka, V

    2015-01-01

    Ionization injection is a simple and efficient method to trap an electron beam in a laser plasma accelerator. Yet, because of a long injection length, this injection technique leads generally to the production of large energy spread electron beams. Here, we propose to use a shock front transition to localize the injection. Experimental results show that the energy spread can be reduced down to 10 MeV and that the beam energy can be tuned by varying the position of the shock. This simple technique leads to very stable and reliable injection even for modest laser energy. It should therefore become a unique tool for the development of laser-plasma accelerators. PMID:26549584

  13. Shock assisted ionization injection in laser-plasma accelerators

    PubMed Central

    Thaury, C.; Guillaume, E.; Lifschitz, A.; Ta Phuoc, K.; Hansson, M.; Grittani, G.; Gautier, J.; Goddet, J.-P.; Tafzi, A.; Lundh, O.; Malka, V.

    2015-01-01

    Ionization injection is a simple and efficient method to trap an electron beam in a laser plasma accelerator. Yet, because of a long injection length, this injection technique leads generally to the production of large energy spread electron beams. Here, we propose to use a shock front transition to localize the injection. Experimental results show that the energy spread can be reduced down to 10 MeV and that the beam energy can be tuned by varying the position of the shock. This simple technique leads to very stable and reliable injection even for modest laser energy. It should therefore become a unique tool for the development of laser-plasma accelerators. PMID:26549584

  14. Applicability of laser to assist coronary balloon angioplasty.

    PubMed

    Lee, G; Chan, M C; Ikeda, R M; Rink, J L; Dukich, J; Peterson, L; Lee, K K; Reis, R L; Mason, D T

    1985-12-01

    Severe atherosclerotic obstructed coronary artery disease (CAD) may preclude passage of a balloon catheter for transluminal coronary angioplasty (TCA). Since lasers have been shown to effectively vaporize CAD plaque, the initial application of laser to effect a lumen large enough to accommodate the angioplasty catheter for further dilatation was explored. Eleven postmortem human CAD segments which did not permit passage of a 1.33 mm shaft diameter angioplasty catheter were studied. Argon laser radiation (14 to 90 J) transmitted via 400 micron core diameter quartz fiber onto the stenotic channel of 0.58 mm created a vaporized lumen of 1.77 mm (mean increase of 1.31 +/- 0.25 mm, p less than 0.001). The laser procedure allowed the balloon angioplasty catheter to be pushed into the stenosis. TCA was then performed (7 atm, 45 seconds) and expanded the channel to 2.12 mm (additional mean increase of 0.38 +/- 0.07 mm, p less than 0.001). In terms of percent luminal narrowing, laser radiation reduced obstruction from 80% to 45% (mean difference of -38.7 +/- 4.6%, p less than 0.001), and TCA caused a further decrease to 37% (mean difference of -9.3 +/- 1.9%, p less than 0.001). Thus, in tight atherosclerotic lesions, the laser may be useful in creating an initial opening enabling the placement of the balloon angioplasty catheter which, in turn, can further dilate the lased stenotic coronary lumen. PMID:2933943

  15. Laser-assisted parenchyma-sparing pulmonary resection

    SciTech Connect

    LoCicero, J. III; Frederiksen, J.W.; Hartz, R.S.; Michaelis, L.L. )

    1989-05-01

    The neodymium:yttrium-aluminum-garnet laser is an excellent tool for removing lesions while sparing surrounding normal tissue. Local excision of 32 pulmonary lesions in 26 patients was performed with the Nd:YAG laser. Fourteen patients had moderate to severe impairment of pulmonary function: average forced vital capacity = 2.2 +/- 0.3 L and forced expiratory volume in 1 second = 1.3 +/- 0.3 L. Limited thoracotomy was used in the last 23 patients. The resected lesions included 16 primary malignant tumors: nine adenocarcinomas, five squamous carcinomas, and two large cell carcinomas. Eight of these lesions were classified as T1 N0, seven were T2 N0; and one was T1 N2. There were 10 metastatic lesions: three lymphomas, two adenocarcinomas, two leiomyosarcomas, and one case each of melanoma, squamous cell carcinoma, and renal cell carcinoma. There were six benign lesions: three granulomas, two hamartomas, and one carcinoid. Twelve lesions were deep seated, could not have been removed by wedge resection or segmentectomy, and would have necessitated lobectomy without this technique. With the laser, the lesion could be precisely excised with minimal loss of lung parenchyma. Mean operating time was 80 +/- 20 minutes; laser resection time was 15 +/- 8 minutes. Resection necessitated 10,000 to 20,000 J. Total blood loss was minimal (less than 100 ml). Chest tubes were always used and remained in place 5 +/- 2 days. The mean hospitalization time was 10 +/- 2 days. Pulmonary function testing, perform 6 weeks to 6 months after discharge, showed no significant difference from preoperative levels. To date, there have been no local recurrences (longest follow-up 2 years). The Nd:YAG laser is an excellent adjunct for pulmonary resection in patients who have marginal pulmonary function or who have deep parenchymal lesions not amenable to wedge resection. The operative technique for laser resection is presented.

  16. Spectral caustics in laser assisted Breit-Wheeler process

    NASA Astrophysics Data System (ADS)

    Nousch, T.; Seipt, D.; Kämpfer, B.; Titov, A. I.

    2016-04-01

    Electron-positron pair production by the Breit-Wheeler process embedded in a strong laser pulse is analyzed. The transverse momentum spectrum displays prominent peaks which are interpreted as caustics, the positions of which are accessible by the stationary phases. Examples are given for the superposition of an XFEL beam with an optical high-intensity laser beam. Such a configuration is available, e.g., at LCLS at present and at European XFEL in near future. It requires a counter propagating probe photon beam with high energy which can be generated by synchronized inverse Compton backscattering.

  17. Crocodile egg sounds signal hatching time.

    PubMed

    Vergne, Amélie L; Mathevon, Nicolas

    2008-06-24

    Crocodilians are known to vocalize within the egg shortly before hatching [1,2]. Although a possible function of these calls - inducing hatching in siblings and stimulating the adult female to open the nest - has already been suggested, it has never been experimentally tested [1-5]. Here, we present the first experimental evidence that pre-hatching calls of Nile crocodile (Crocodylus niloticus) juveniles are informative acoustic signals which indeed target both siblings and mother. PMID:18579090

  18. Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers.

    PubMed

    Liu, Junqiu; Brasch, Victor; Pfeiffer, Martin H P; Kordts, Arne; Kamel, Ayman N; Guo, Hairun; Geiselmann, Michael; Kippenberg, Tobias J

    2016-07-01

    Frequency-comb-assisted diode laser spectroscopy, employing both the accuracy of an optical frequency comb and the broad wavelength tuning range of a tunable diode laser, has been widely used in many applications. In this Letter, we present a novel method using cascaded frequency agile diode lasers, which allows us to extend the measurement bandwidth to 37.4 THz (1355-1630 nm) at megahertz resolution with scanning speeds above 1 THz/s. It is demonstrated as a useful tool to characterize a broadband spectrum for molecular spectroscopy, and in particular it enables us to characterize the dispersion of integrated microresonators up to the 4th-order. PMID:27367120

  19. Relativistic electronic dressing in laser-assisted electron-hydrogen elastic collisions

    SciTech Connect

    Attaourti, Y.; Manaut, B.; Makhoute, A.

    2004-06-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the unpolarized differential cross section without laser and the unpolarized differential cross section in the presence of a laser field.

  20. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  1. Laser-assisted oral surgery in general practice

    NASA Astrophysics Data System (ADS)

    McCauley, Mark C.

    1995-04-01

    This presentation will demonstrate and discuss any surgical applications of the Argon dental laser. This presentation will also increase the awareness and basic understanding of the physical principals of the Argon laser. The wavelength of the Argon laser is specifically absorbed by red pigments such a hemoglobin which is abundant in oral soft tissue. The result is a sharp clean incision with minimal thermal damage to adjacent healthy tissue. Preprosthetic procedures such as full arch vestibuloplasty, labial and lingual frenectomy, and epulis fissuratum removal will be demonstrated. Other soft tissue management procedures such as minor periodontal pocket elimination surgery (gingivectomy), removal of hyperplastic granulation tissue from around poorly maintained implants, and the removal of granulation and/or cystic tissue from the apex of teeth undergoing endodontic (apicoec-tomy) surgery will also be demonstrated and discussed. Provided basic oral surgery protocol is followed, surgical procedures utilizing the Argon laser can be accomplished with minimal bleeding, minimal trauma and with minimal post-operative discomfort.

  2. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures.

    PubMed

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar(+)) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar(+)-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar(+)-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  3. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  4. Laser-assisted skin closure at 1.32 microns: the use of a software-driven medical laser system

    NASA Astrophysics Data System (ADS)

    Dew, Douglas K.; Hsu, Tung M.; Hsu, Long S.; Halpern, Steven J.; Michaels, Charles E.

    1991-06-01

    This study investigated the use of a computerized 1 .3 micron Nd:YAG laser to seal approximated wound edges in pig skin. The medical laser system used was the DLS Type 1 , 1 .32 micron Nd:YAG laser (Laser Surgery Software, Inc.). The purpose of this study was to evaluate the effectiveness of laser assisted skin closure using the DLS YAG laser in a large animal model. Effectiveness was judged on the basis of wound dehiscence, infection, unusual healing result and consistency of results. Comparative cosmetic result was also evaluated. In this study, the DLS YAG laser was used to close scalpel-induced, full-thickness wounds. The pig model was chosen for its many integumentary similarities to man. Controls included scalpel-induced wounds closed using suture, staple and some with norepair. After adequate anesthesia was achieved, the dorsum of Yucutan pigs (approximately 75- 100 pounds) each was clipped with animal hair clippers from the shoulder area to the hind legs. The area was then shaved with a razor blade, avoiding any inadvertent cuts or abrasions of the skin. The dorsum was divided into four rows of four parallel incisions made by a #15 scalpel blade. Full-thickness incisions, 9 cm long, were placed over the dorsum of the pigs and then closed either with one loosely approximating Prolene" suture (the "no repair' group), multiple interrupted 6-0 nylon sutures, staples or laser. The experimental tissue sealing group consisted of 1 69 laser assisted closures on 1 3 pigs. Sutured control wounds were closed with 6-0 nylon, full thickness, simple, interrupted sutures. Eight sutures were placed 1 cm apart along the 9 cm incision. Stapled control wounds were approximated using two evenly spaced 3-0 VicryP' sub-dermal sutures and the dermis closed using Proximate' skin staples. Eight staples were placed 1 cm apart along the 9 cm incision. The no-repair incisions were grossly approximated using a single 2-0 Prolene full thickness, simple, interrupted suture located at the

  5. Planar laser imaging and modeling of matrix-assisted pulsed-laser evaporation direct write in the bubble regime

    NASA Astrophysics Data System (ADS)

    Lewis, Brent R.; Kinzel, Edward C.; Laurendeau, Normand M.; Lucht, Robert P.; Xu, Xianfan

    2006-08-01

    A combination of planar laser imaging and theoretical modeling has been used to examine matrix-assisted pulsed-laser evaporation direct write (MAPLE-DW) in the bubble regime. MAPLE-DW is a method for patterning substrates via laser-initiated forward transfer of an organic fluid containing metallic particles and coated on a transparent support. For our conditions, best deposition of a silver-based, thick-film ink was found to occur when laser-initiated vaporization forces the ink outward as a bubble. Planar laser imaging was used to monitor bubble growth as a function of time for three different ink films with nominal thicknesses of 12, 25, and 50μm and two laser beam diameters of 30 and 60μm. From these measurements, correlations were developed for predicting the maximum height and velocity of bubbles via three known process variables: laser energy, ink thickness, and beam diameter. Further insight on the physics of the MAPLE-DW process was obtained by developing a theoretical model for bubble growth based on a simple force balance associating vapor-pocket pressure and viscous forces. Primary parameters specifying the subsequent differential equation were related to the above process variables. Numerical solutions to the differential equation were used to predict successfully bubble growth versus time for the conditions analyzed in the imaging experiments.

  6. Performance optimization of water-jet assisted underwater laser cutting of AISI 304 stainless steel sheet

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Madhukar, Yuvraj K.; Roy, Subhransu; Nath, Ashish K.

    2016-08-01

    Recent development of water-jet assisted underwater laser cutting has shown some advantages over the gas assisted underwater laser cutting, as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. Scattering is reported to be a dominant loss mechanism, which depends on the growth of vapor layer at cut front and its removal by water-jet. Present study reports improvement in process efficiency by reducing the scattering loss using modulated laser power. Judicious control of laser pulse on- and off-time could improve process efficiency through restricting the vapor growth and its effective removal by water-jet within the laser on- and off-time, respectively. Effects of average laser power, duty cycle and modulation frequency on specific energy are studied to get an operating zone for maximum efficiency. Next, the variation in laser cut quality with different process parameters are studied within this operating zone using Design of experiment (DOE). Response surface methodology (RSM) is used by implementing three level Box-Behnken design to optimize the variation in cut quality, and to find out the optimal process parameters for desired quality. Various phenomena and material removal mechanism involved in this process are also discussed.

  7. The Laser-assisted photoelectric effect of He, Ne, Ar and Xe in intense extreme ultraviolet and infrared laser fields

    NASA Astrophysics Data System (ADS)

    Hayden, P.; Dardis, J.; Hough, P.; Richardson, V.; Kennedy, E. T.; Costello, J. T.; Düsterer, S.; Redlin, H.; Feldhaus, J.; Li, W. B.; Cubaynes, D.; Meyer, M.

    2016-02-01

    In this paper, we report results on two-colour above-threshold ionisation, where extreme ultraviolet pulses of femtosecond duration were synchronised to intense infrared laser pulses of picosecond duration, in order to study the laser-assisted photoelectric effect of atomic helium, neon, krypton and xenon which leads to the appearance of characteristic sidebands in the photoelectron spectra. The observed trends are found to be well described by a simple model based on the soft-photon approximation, at least for the relatively low optical intensities of up to ? employed in these early experiments.

  8. Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study

    NASA Astrophysics Data System (ADS)

    György, E.; Pérez del Pino, A.; Sauthier, G.; Figueras, A.

    2009-12-01

    Biomolecular papain thin films were grown both by matrix assisted pulsed laser evaporation (MAPLE) and conventional pulsed laser deposition (PLD) techniques with the aid of an UV KrF∗ (λ =248 nm, τFWHM≅20 ns) excimer laser source. For the MAPLE experiments the targets submitted to laser radiation consisted on frozen composites obtained by dissolving the biomaterial powder in distilled water at 10 wt % concentration. Conventional pressed biomaterial powder targets were used in the PLD experiments. The surface morphology of the obtained thin films was studied by atomic force microscopy and their structure and composition were investigated by Fourier transform infrared spectroscopy. The possible physical mechanisms implied in the ablation processes of the two techniques, under comparable experimental conditions were identified. The results showed that the growth mode, surface morphology as well as structure of the deposited biomaterial thin films are determined both by the incident laser fluence value as well as target preparation procedure.

  9. Eight-Shaped Hatching Increases the Risk of Inner Cell Mass Splitting in Extended Mouse Embryo Culture.

    PubMed

    Yan, Zheng; Liang, Hongxing; Deng, Li; Long, Hui; Chen, Hong; Chai, Weiran; Suo, Lun; Xu, Chen; Kuang, Yanping; Wu, Lingqian; Lu, Shengsheng; Lyu, Qifeng

    2015-01-01

    Increased risk of monozygotic twinning (MZT) has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM) splitting in human '8'-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i) in vivo developed blastocysts and (ii-iii) in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that '8'-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P < 0.01). Moreover, Oct4 immunofluorescence staining was performed to identify the ICM in the hatching and hatched blastocysts. Scattered and split distribution of ICM cells was observed around the small zona opening of '8'-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in '8'-shaped hatching and hatched blastocysts than in 'U'-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P < 0.01). Therefore, our results demonstrate that extended in vitro culture can cause high frequencies of '8'-shaped hatching, and '8'-shaped hatching that may disturb ICM herniation leading to increased risk of ICM splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer. PMID:26680631

  10. Identification of Bacteria Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    ERIC Educational Resources Information Center

    Kedney, Mollie G.; Strunk, Kevin B.; Giaquinto, Lisa M.; Wagner, Jennifer A.; Pollack, Sidney; Patton, Walter A.

    2007-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS or simply MALDI) has become ubiquitous in the identification and analysis of biomacromolecules. As a technique that allows for the molecular weight determination of otherwise nonvolatile molecules, MALDI has had a profound impact in the molecular…

  11. Safety, efficacy and efficiency of laser-assisted IVF in subfertile mutant mouse strains

    PubMed Central

    Li, Ming-Wen; Kinchen, Kristy L; Vallelunga, Jadine M; Young, Diana L; Wright, Kaleb D K; Gorano, Lisa N; Wasson, Katherine; Lloyd, K C Kent

    2013-01-01

    In the present report we studied the safety, efficacy and efficiency of using an infrared laser to facilitate IVF by assessing fertilization, development and birth rates after laser-zona drilling (LZD) in 30 subfertile genetically modified (GM) mouse lines. We determined that LZD increased the fertilization rate four to ten times that of regular IVF, thus facilitating the derivation of 26 of 30 (86.7%) GM mouse lines. Cryopreserved two-cell stage embryos derived by LZD-assisted IVF were recovered and developed to blastocysts in vitro at the same rate as frozen–thawed embryos derived by regular IVF. Surprisingly after surgical transfer to pseudopregnant recipients the birth rate of embryos derived by LZD-assisted IVF was significantly lower than that of embryos derived by regular IVF. However this result could be completely mitigated by the addition of 0.25 M sucrose to the culture medium during LZD which caused the oocyte to shrink in volume relative to the perivitelline space. By increasing the distance from the laser target site on the zona pellucida, we hypothesize that the hyperosmotic effect of sucrose reduced the potential for laser-induced cytotoxic thermal damage to the underlying oocytes. With appropriate preparation and cautious application, our results indicate that LZD-assisted IVF is a safe, efficacious and efficient assisted reproductive technology for deriving mutant mouse lines with male factor infertility and subfertility caused by sperm–zona penetration defects. PMID:23315689

  12. Efficacious insect and disease control with laser-guided air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficacy of a newly developed air-assisted variable-rate sprayer was investigated for the control of arthropod pests and plant diseases in six commercial fields. The sprayer was integrated with a high-speed laser scanning sensor, a custom-designed signal processing program, an automatic flow control...

  13. Cutting by a high power laser at a long distance without an assist gas for dismantling

    NASA Astrophysics Data System (ADS)

    Tahmouch, G.; Meyrueis, P.; Grandjean, P.

    1997-09-01

    As the applications of laser processing progress, new fields of use are being investigated, including dismantling with power lasers. To fulfil our dismantling requirements we propose a new laser method that we have called the laser dismantling (LD) process. This cutting method uses a high-power laser at a long distance, without an assist gas, and with a focal length of the system of 1 m to 10 m. Precision and accuracy in the process are not the same as for laser cutting for production and assembly. The first application of the laser dismantling process, on which we demonstrate our method, is the dismantling of obsolete nuclear plants with remote controlled, or automatic, robots in irradiated environments. For our demonstrator, the beam from a Nd:YAG laser was focused by a multimode optical fibre. The objectives of this paper are: to discuss the criteria for determining the theoretical feasibility of LD; to discuss issues related to future industrial implementation by introducing the process's basic principles; and to compare LD with classical laser processing, which differs not only in the consideration of cutting quality and speed, but also in the cutting irregularities that could be accepted.

  14. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    SciTech Connect

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; Kruska, Karen

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperatures also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.

  15. Matrix-assisted laser desorption fourier transform mass spectrometry for biological compounds

    SciTech Connect

    Hettich, R.; Buchanan, M.

    1990-01-01

    The recent development of matrix-assisted UV laser desorption (LD) mass spectrometry has made possible the ionization and detection of extremely large molecules (with molecular weights exceeding 100,000 Daltons). This technique has generated enormous interest in the biological community for the direct examination of large peptides and oligonucleotides. Although this matrix-assisted ionization method has been developed and used almost exclusively with time-of-flight (TOF) mass spectrometers, research is currently in progress to demonstrate this technique with trapped ion mass spectrometers, such as Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The potential capabilities of FTMS for wide mass range, high resolution measurement, and ion trapping experiments suggest that this instrumental technique should be useful for the detailed structural characterization of large ions generated by the matrix-assisted technique. We have recently demonstrated that matrix-assisted ultraviolet laser desorption can be successfully used with FTMS for the ionization of small peptides. The objective of this report is to summarize the application and current limitations of matrix-assisted laser desorption FTMS for the characterization of peptides and oligonucleotides at the isomeric level. 4 refs., 3 figs., 2 tabs.

  16. Laser-assisted maskless fabrication of flexible electronics

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Ko, Seung Hwan; Pan, Heng; Chung, Jaewon; Poulikakos, Dimos

    2007-02-01

    The low temperature fabrication of active (field effect transistor) electrical components on flexible polymer substrates is presented in this paper. A drop-on-demand (DOD) ink-jetting system was used to print gold nano-particles suspended in organic solvent, PVP (poly-4-vinylphenol) in PGMEA (propylene glycol monomethyl ether acetate) solvent, semiconductor polymer in organic solvent to fabricate passive and active electrical components on flexible polymer substrates. Short pulsed laser ablation enabled finer electrical components to overcome the resolution limitation of inkjet deposition. Continuous Argon ion laser was irradiated locally to evaporate the carrier solvent as well as to sinter gold nano-particles. In addition, a new method for the selective ablation of multilayered gold nanoparticle film was demonstrated.

  17. Laser-assisted guiding of electric discharges around objects

    PubMed Central

    Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François; Légaré, François; Faccio, Daniele; Morandotti, Roberto

    2015-01-01

    Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight. PMID:26601188

  18. Scattering assisted injection based injectorless mid infrared quantum cascade laser

    SciTech Connect

    Singh, Siddharth Kamoua, Ridha

    2014-06-07

    An injectorless five-well mid infrared quantum cascade laser is analyzed which relies on phonon scattering injection in contrast to resonant tunneling injection, which has been previously used for injectorless designs. A Monte Carlo based self-consistent electron and photon transport simulator is used to analyze the performance of the analyzed design and compare it to existing injectorless designs. The simulation results show that the analyzed design could greatly enhance the optical gain and the characteristic temperatures of injectorless quantum cascade lasers (QCLs) which have typically been hindered by low characteristic temperatures and significant temperature related performance degradation. Simulations of the analyzed device predict threshold current densities of 0.85 kA/cm{sup 2} and 1.95 kA/cm{sup 2} at 77 K and 300 K, respectively, which are comparable to the threshold current densities of conventional injector based QCLs.

  19. Laser-ablation-assisted microparticle acceleration for drug delivery

    NASA Astrophysics Data System (ADS)

    Menezes, V.; Takayama, K.; Ohki, T.; Gopalan, J.

    2005-10-01

    Localized drug delivery with minimal tissue damage is desired in some of the clinical procedures such as gene therapy, treatment of cancer cells, treatment of thrombosis, etc. We present an effective method for delivering drug-coated microparticles using laser ablation on a thin metal foil containing particles. A thin metal foil, with a deposition of a layer of microparticles is subjected to laser ablation on its backface such that a shock wave propagates through the foil. Due to shock wave loading, the surface of the foil containing microparticles is accelerated to very high speeds, ejecting the deposited particles at hypersonic speeds. The ejected particles have sufficient momentum to penetrate soft body tissues, and the penetration depth observed is sufficient for most of the pharmacological treatments. We have tried delivering 1μm tungsten particles into gelatin models that represent soft tissues, and liver tissues of an experimental rat. Sufficient penetration depths have been observed in these experiments with minimum target damage.

  20. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test. PMID:26698733

  1. Laser-assisted guiding of electric discharges around objects.

    PubMed

    Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N; Chen, Zhigang; Razzari, Luca; Vidal, François; Légaré, François; Faccio, Daniele; Morandotti, Roberto

    2015-06-01

    Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight. PMID:26601188

  2. Micro torch assisted nanostructures' formation of nickel during femtosecond laser surface interactions

    NASA Astrophysics Data System (ADS)

    Yin, Kai; Duan, Ji'an; Wang, Cong; Dong, Xinran; Song, Yuxin; Luo, Zhi

    2016-06-01

    In this letter, we perform a comprehensive study of micro torch effect on the formation of femtosecond laser-induced nanostructures on nickel. Under identical experimental conditions, laser induced nanostructures and periodic surface patterns exhibit distinctly different level of morphology with and without the micro torch. In addition, assisted by the micro torch, the ablation threshold is considerably reduced and the content of oxygen in the textured nanostructures keeps a stable low level. It is suggested that the change on the surface directly relates to the status of plasma plume and substrate heating. With the assistance of the micro torch, laser induced plasma plume is confined and its density at center region is raised, which results in the increase of the central plasma's temperature, more energy deposited on the nickel surface, and ultimately leading to the changes in the nanostructures' morphology and ablation threshold.

  3. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays.

    PubMed

    Pan, Yunxiang; Lv, Xueming; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2016-06-15

    A millisecond laser combined with a nanosecond laser was applied to machining transparent materials. The influences of delay between the two laser pulses on processing efficiencies and modified sizes were studied. In addition, a laser-supported combustion wave (LSCW) was captured during laser irradiation. An optimal delay corresponding to the highest processing efficiency was found for cone-shaped cavities. The modified size as well as the lifetime and intensity of the LSCW increased with the delay decreasing. Thermal cooperation effects of defects, overlapping effects of small modified sites, and thermal radiation from LSCW result in all the phenomena. PMID:27304294

  4. Laser-assisted hair transplantation: histologic comparison between holmium:YAG and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Chu, Eugene A.; Rabinov, C. Rose; Wong, Brian J.; Krugman, Mark E.

    1999-06-01

    The histological effects of flash-scanned CO2 (λ=10.6μm) and pulsed Holmium:YAG (Ho:YAG, λ=2.12μm) lasers were evaluated in human scalp following the creation of hair transplant recipient channels. Ho:YAG laser irradiation created larger zones of thermal injury adjacent to the laser channels than irradiation with the CO2 laser device. When the two lasers created recipient sites of nearly equal depth, the Holmium:YAG laser caused a larger region of lateral thermal damage (589.30μm) than the CO2 laser (118.07μm). In addition, Holmium:YAG irradiated specimens exhibited fractures or discontinuities beyond the region of clear thermal injury. This shearing effect is consistent with the photoacoustic mechanism of ablation associated with pulsed mid-IR laser irradiation. In contrast, channels created with the CO2 exhibited minimal epithelial disruption and significantly less lateral thermal damage. While the Holmium:YAG laser is a useful tool for ablation soft tissue with minimal char in select applications (sinus surgery, arthroscopic surgery), this study suggests that the use of the CO2 laser for the creation of transplantation recipient channels result in significantly less lateral thermal injury for the laser parameters employed.

  5. 29 CFR 1918.43 - Handling hatch beams and covers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Handling hatch beams and covers. 1918.43 Section 1918.43... § 1918.43 Handling hatch beams and covers. Paragraphs (f)(2), (g), and (h) of this section apply only to... side of the hatch. (2) On seagoing vessels, hatch boards or similar covers removed from the hatch...

  6. 29 CFR 1918.43 - Handling hatch beams and covers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Handling hatch beams and covers. 1918.43 Section 1918.43... § 1918.43 Handling hatch beams and covers. Paragraphs (f)(2), (g), and (h) of this section apply only to... side of the hatch. (2) On seagoing vessels, hatch boards or similar covers removed from the hatch...

  7. 29 CFR 1918.43 - Handling hatch beams and covers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Handling hatch beams and covers. 1918.43 Section 1918.43... § 1918.43 Handling hatch beams and covers. Paragraphs (f)(2), (g), and (h) of this section apply only to... side of the hatch. (2) On seagoing vessels, hatch boards or similar covers removed from the hatch...

  8. 29 CFR 1918.43 - Handling hatch beams and covers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Handling hatch beams and covers. 1918.43 Section 1918.43... § 1918.43 Handling hatch beams and covers. Paragraphs (f)(2), (g), and (h) of this section apply only to... side of the hatch. (2) On seagoing vessels, hatch boards or similar covers removed from the hatch...

  9. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    NASA Astrophysics Data System (ADS)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  10. 29 CFR 1918.35 - Open hatches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Working Surfaces § 1918.35 Open hatches. Open weather deck hatches around which employees must work that are not protected to a height of 24 inches (.61 m)...

  11. 9 CFR 91.29 - Hatches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION... placed on hatches on exposed decks on an ocean vessel if the pens or stalls are securely lashed down. (b) Animals may be placed on hatches on underdecks on an ocean vessel provided the height requirements of §...

  12. Shuttle Crew Says Farewell, Closes Hatches

    NASA Video Gallery

    At 7:23 a.m. Sunday, hatches were closed between Endeavour and the station 12 days, 22 hours and 27 minutes into the mission. The hatches between the two spacecraft were opened at 7:38 a.m. on May ...

  13. Experimental investigation of laser-assisted thermoplastic tape consolidation

    SciTech Connect

    Beyeler, E.; Phillips, W.; Guseri, S.I.

    1988-01-01

    An experimental investigation of a novel approach for manufacturing of thermoplastic matrix composites, is described. The technique is based on using laser energy as the focused heat source to melt the matrix material for subsequent consolidation, and appears to be particularly suited for thermoplastic filament winding opertions. An experimental set up is defined to produce multi ply rings, and the feasibility of this technique is demonstrated by discussing several samples that were produced using Ryton AC40-60 prepreg tapes. The quality of consolidation is examined through cross-sectional micrographs. 12 references.

  14. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    SciTech Connect

    Nia, Iman Hassani; Mohseni, Hooman

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  15. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    NASA Astrophysics Data System (ADS)

    Nia, Iman Hassani; Mohseni, Hooman

    2014-07-01

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  16. Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: a path to rimless laser machining

    NASA Astrophysics Data System (ADS)

    Elhadj, S.; Matthews, M. J.; Guss, G. M.; Bass, I. L.

    2013-12-01

    Evaporation and ablation are fundamental processes which drive laser-material processing performance. In applications where surface shape is important, control of the temperature field and the resulting spatially varying material response must be considered. For that purpose, assist gases are useful in, first, lowering treatment temperatures and, second, in changing interfacial and bulk chemistry to limit capillary-driven flow. Additionally, laser-matter coupling is influenced by pulse length as it determines the heat affected zone. Using infrared imaging of CO2 laser-heated fused silica and surface profile measurements, we derive temperature and time dependent pitting rates along with shapes for a range of gases that include hydrogen, nitrogen, air, and helium. In the range of 1,500-4,500 K, evaporation, flow, and densification are shown to contribute to the pit shape. Analysis reveals a strong and complex dependence of rim formation on heating time and gas chemistry, mostly by lowering treatment temperature. Under dynamic heating, chemicapillarity appears to help in lowering rim height, in spite of the reactants mass transport limitations. Results on this gas-assisted approach suggest the possibility for sub-nanometer "rimless" laser-based machining.

  17. Vessel wall perforation mechanism of the excimer laser-assisted non-occlusive anastomosis technique.

    PubMed

    Bremmer, Jochem; van Doormaal, Tristan P C; Verweij, Bon H; van der Zwan, Albert; Tulleken, Cornelius A F; Verdaasdonk, Rudolf

    2016-08-01

    The excimer laser assisted non-occlusive anastomosis (ELANA) technique is used to make anastomoses on intracerebral arteries. This end-to-side anastomosis is created without temporary occlusion of the recipient artery using a 308-nm excimer laser with a ring-shaped multi-fiber catheter to punch an opening in the arterial wall. Over 500 patients have received an ELANA bypass. However, the vessel wall perforation mechanism of the laser catheter is not known exactly and not 100 % successful. In this study, we aimed to understand the mechanism of ELANA vessel perforation using specialized imaging techniques to ultimately improve its effectiveness. High-speed imaging, high-contrast imaging, and high-sensitivity thermal imaging were used to study the laser wall perforation mechanism and reveal the mechanical and thermal effects involved. In vitro, rabbit arteries were exposed with the special designed laser catheter in a setup representative for the clinical setting, in which blood was replaced with a transparent UV absorbing liquid for visualization. We observed that laser vessel wall perforation was caused by explosive vapor bubbles tearing through the vessel wall, mostly within the first 20 of the total 200 pulses. Thermal effects were minimal. Unsymmetrical tension in the vessel wall inducing migration of the flap during laser exposure was observed in case of unsuccessful wall perforations. The laser wall perforation mechanism in the ELANA technique is primarily mechanical. Symmetric tension in the recipient vessel wall is essential and should be trained by neurosurgeons. PMID:27220531

  18. Synthesis of Al2O3 thin films using laser assisted spray pyrolysis (LASP)

    NASA Astrophysics Data System (ADS)

    Dhonge, Baban P.; Mathews, Tom; Tripura Sundari, S.; Krishnan, R.; Balamurugan, A. K.; Kamruddin, M.; Subbarao, R. V.; Dash, S.; Tyagi, A. K.

    2013-01-01

    The present study reports the development of a laser assisted ultrasonic spray pyrolysis technique and synthesis of dense optical alumina films using the same. In this technique ultrasonically generated aerosols of aluminum acetylacetonate dissolved in ethanol and a laser beam (Nd:YAG, CW, 1064 nm) were fed coaxially and concurrently through a quartz tube on to a hot substrate mounted on an X-Y raster stage. At the laser focused spot the precursor underwent solvent evaporation and solute sublimation followed by precursor vapor decomposition giving rise to oxide coating, the substrate is rastered to get large surface area coating. The surface morphology revealed coalescence of particles with increase in laser power. The observed particle sizes were 17 nm for films synthesized without laser and 18, 21 and 25 nm for films made with laser at 25, 38 and 50 W, respectively. Refractive index of the films synthesized increased from 1.56 to 1.62 as the laser power increased from 0 to 50 W. The stoichiometry of films was studied using XPS and the increase in interfacial layer thickness with laser power was observed from dynamic SIMS depth profiling and ellipsometry.

  19. An Introduction to Laser Assisted Microfabrication, Current Status and Future Scope of Application

    NASA Astrophysics Data System (ADS)

    Ostendorf, A.

    From the invention of the laser almost about five decades ago scientists have studied the potential of laser micromachining. Compared to high power laser applications most applications on the microscale require rather moderate average powers in the range of a few watts or below along with good beam qualities and the possibility to use pulsed and/or short wavelength laser systems. Most applications in this field are based on ablation , i.e., material removal for structuring , drilling , or precise cutting of materials. However, current activities are also ongoing in adapting rapid prototyping , i.e., generative processes to the microscale. Finally, a tremendous amount of research activities are carried out to generate nanostructures. Because of the wavelength and the diffraction limit in classical optics new approaches have been taken into account to overcome these limitations and making use of the unique properties of laser radiation also on the nanometer scale. This chapter provides an overview of pulsed laser assisted micromachining with a focus on structuring by laser ablation , laser generative processes, and finally nanomachining.

  20. Laser-assisted biosynthesis for noble nanoparticles production

    NASA Astrophysics Data System (ADS)

    Kukhtarev, Tatiana; Edwards, Vernessa; Kukhtareva, Nickolai; Moses, Sherita

    2014-08-01

    Extracellular Biosynthesis technique (EBS) for nanoparticles production has attracted a lot of attention as an environmentally friendly and an inexpensive methodology. Our recent research was focused on the rapid approach of the green synthesis method and the reduction of the homogeneous size distribution of nanoparticles using pulse laser application. Noble nanoparticles (NNPs) were produced using various ethanol and water plant extracts. The plants were chosen based on their biomedical applications. The plants we used were Magnolia grandiflora, Geranium, Aloe `tingtinkie', Aloe barbadensis (Aloe Vera), Eucalyptus angophoroides, Sansevieria trifasciata, Impatiens scapiflora. Water and ethanol extract, were used as reducing agents to produce the nanoparticles. The reaction process was monitored using a UV-Visible spectroscopy. NNPs were characterized by Fourier Transfer Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and the Dynamic Light Scattering technique (DLS). During the pulse laser Nd-YAG illumination (λ=1064nm, 532nm, PE= 450mJ, 200mJ, 10 min) the blue shift of the surface plasmon resonance absorption peak was observed from ~424nm to 403nm for silver NP; and from ~530nm to 520 nm for gold NPs. In addition, NNPs solution after Nd-YAG illumination was characterized by the narrowing of the surface plasmon absorption resonance band, which corresponds to monodispersed NNPS distribution. FTIR, TEM, DLS, Zeta potential results demonstrated that NNPs were surrounded by biological molecules, which naturally stabilized nanosolutions for months. Cytotoxicity investigation of biosynthesized NNPs is in progress.

  1. Laser Assisted Joining of Hybrid Polyamide-aluminum Structures

    NASA Astrophysics Data System (ADS)

    Lamberti, Christian; Solchenbach, Tobias; Plapper, Peter; Possart, Wulff

    The demand for hybrid polymer-metal structures is continuously growing due to their great potential in automotive, aerospace and packaging applications. The expected capabilities are highly diverse and include functional, chemical and mechanical as well as economical and ecological aspects. A novel laser beam joining process for hybrid polyamide-aluminum structures is reported. The spatial and temporal heat input is optimized for optimal bonding quality. At the interface it was proven that the polyamide was not decomposed as a result of excessive thermal stress. It was shown that laser or electro-chemical surface pre-treatment of the aluminum substrate has a distinctive effect on the shear strength of the joint. However, the bond quality does not correspond to a change of surface roughness. Therefore, mechanical interlocking in direct relation to surface topology of the pre-treated substrate is not the principal cause for the bonding phenomenon. Chemical analysis in terms of IR-spectroscopy has shown a physicochemical interaction based on hydrogen bonds.

  2. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids.

    PubMed

    Shiea, Jentaie; Huang, Min-Zon; Hsu, Hsiu-Jung; Lee, Chi-Yang; Yuan, Cheng-Hui; Beech, Iwona; Sunner, Jan

    2005-01-01

    A new method of electrospray-assisted laser desorption/ionization (ELDI) mass spectrometry, which combines laser desorption with post-ionization by electrospray, was applied to rapid analysis of solid materials under ambient conditions. Analytes were desorbed from solid metallic and insulating substrata using a pulsed nitrogen laser. Post-ionization produced high-quality mass spectra characteristic of electrospray, including protein multiple charging. For the first time, mass spectra of intact proteins were obtained using laser desorption without adding a matrix. Bovine cytochrome c and an illicit drug containing methaqualone were chosen in this study to demonstrate the applicability of ELDI to the analysis of proteins and synthetic organic compounds. PMID:16299699

  3. Nanosecond-laser plasma-assisted ultradeep microdrilling of optically opaque and transparent solids

    NASA Astrophysics Data System (ADS)

    Paul, Stanley; Kudryashov, Sergey I.; Lyon, Kevin; Allen, Susan D.

    2007-02-01

    A mechanism of ultradeep (up to tens of microns per pulse, submillimeter total hole depths) plasma-assisted ablative drilling of optically opaque and transparent materials by high-power nanosecond lasers has been proposed and verified experimentally using optical transmission and contact photoacoustic techniques to measure average drilling rates per laser shot versus laser intensity at constant focusing conditions. The plots of average drilling rates versus laser intensity exhibit slopes which are in good agreement with those predicted by the proposed model and also with other experimental studies. The proposed ultradeep drilling mechanism consists of a number of stages, including ultradeep "nonthermal" energy delivery into bulk solids by the short-wavelength radiation of the hot ablative plasma, bulk heating and melting, accompanied by subsurface boiling in the melt pool, and resulting melt expulsion from the target.

  4. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration

    SciTech Connect

    Khurgin, Jacob B.

    2014-06-02

    Laser cooling of semiconductors has been an elusive goal for many years, and while attempts to cool the narrow gap semiconductors such as GaAs are yet to succeed, recently, net cooling has been attained in a wider gap CdS. This raises the question of whether wider gap semiconductors with higher phonon energies and stronger electron-phonon coupling are better suitable for laser cooling. In this work, we develop a straightforward theory of phonon-assisted absorption and photoluminescence of semiconductors that involves more than one phonon and use to examine wide gap materials, such as GaN and CdS and compare them with GaAs. The results indicate that while strong electron-phonon coupling in both GaN and CdS definitely improves the prospects of laser cooling, large phonon energy in GaN may be a limitation, which makes CdS a better prospect for laser cooling.

  5. Femtosecond laser-assisted cataract surgery-current status and future directions.

    PubMed

    Grewal, Dilraj S; Schultz, Tim; Basti, Surendra; Dick, H Burkhard

    2016-01-01

    Femtosecond laser-assisted cataract surgery (FLACS) putatively offers several advantages over conventional phacoemulsification. We review the current status of FLACS and discuss the evolution of femtosecond lasers in cataract surgery and the currently available femtosecond laser platforms. We summarize the outcomes of FLACS for corneal wound creation, limbal relaxing incisions, capsulotomy, and lens fragmentation. We discuss surgical planning, preoperative considerations, clinical experiences including the learning curve and postoperative outcomes with FLACS, and also the cost effectiveness of FLACS. We present the intraoperative complications and management of challenging cases where FLACS offers an advantage and also speculate on the future directions with FLACS. Further advancements in laser technology to refine its efficacy, advancement in intraocular lens design to harness the potential benefits of FLACS, and a reduction in cost are needed to establish a clear superiority over conventional phacoemulsification. PMID:26409902

  6. Improvement of mechanical properties by additive assisted laser sintering of PEEK

    SciTech Connect

    Kroh, M. Bonten, C.; Eyerer, P.

    2014-05-15

    The additive assisted laser sintering was recently developed at IKT: A carbon black (CB) additive is used to adjust the polymer's laser absorption behavior with the aim to improve the interconnection of sintered powder layers. In this paper a parameter study, Polyetheretherketone (PEEK) samples were prepared with different contents of carbon black and were laser sintered with varying thermal treatment. The samples were mechanically tested and investigated by optical light and transmission electron microscopy. An influence on the morphology at the border areas of particles and intersections of laser sintered layers was found. Depending on the viscosity of the raw material and CB content, different shapes of lamellae were observed. These (trans-) crystalline or polymorph structures, respectively, influence the thermal and mechanical behavior of the virgin PEEK. Moreover, the thermal treatment during the sintering process caused an improvement of mechanical properties like tensile strength and elongation at break.

  7. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. PMID:24916100

  8. Surface roughness analysis after laser assisted machining of hard to cut materials

    NASA Astrophysics Data System (ADS)

    Przestacki, D.; Jankowiak, M.

    2014-03-01

    Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.

  9. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    NASA Astrophysics Data System (ADS)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-05-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (<1 at.%) is a steep barrier to the formation of solid solutions using conventional alloying methods. In contrast, as demonstrated in the present work, surface engineering via a laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.

  10. Laser Assisted Additively Manufactured Transition Metal Coating on Aluminum

    NASA Astrophysics Data System (ADS)

    Vora, Hitesh D.; Rajamure, Ravi Shanker; Roy, Anurag; Srinivasan, S. G.; Sundararajan, G.; Banerjee, Rajarshi; Dahotre, Narendra B.

    2016-07-01

    Various physical and chemical properties of surface and subsurface regions of Al can be improved by the formation of transition metal intermetallic phases (Al x TM y ) via coating of the transition metal (TM). The lower equilibrium solid solubility of TM in Al (<1 at.%) is a steep barrier to the formation of solid solutions using conventional alloying methods. In contrast, as demonstrated in the present work, surface engineering via a laser-aided additive manufacturing approach can effectively synthesize TM intermetallic coatings on the surface of Al. The focus of the present work included the development of process control to achieve thermodynamic and kinetic conditions necessary for desirable physical, microstructural and compositional attributes. A multiphysics finite element model was developed to predict the temperature profile, cooling rate, melt depth, dilution of W in Al matrix and corresponding micro-hardness in the coating, and the interface between the coating and the base material and the base material.