Sample records for laser balancing system

  1. Microprocessor-Controlled Laser Balancing System

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1985-01-01

    Material removed by laser action as part tested for balance. Directed by microprocessor, laser fires appropriate amount of pulses in correct locations to remove necessary amount of material. Operator and microprocessor software interact through video screen and keypad; no programing skills or unprompted system-control decisions required. System provides complete and accurate balancing in single load-and-spinup cycle.

  2. Power balance on a multibeam laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  3. Power balance on a multibeam laser

    NASA Astrophysics Data System (ADS)

    Sampat, S.; Kelly, J. H.; Kosc, T. Z.; Rigatti, A. L.; Kwiatkowski, J.; Donaldson, W. R.; Romanofsky, M. H.; Waxer, L. J.; Dean, R.; Moshier, R.

    2018-02-01

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stages of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) "pickets" followed by a shaped "drive" pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. This work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.

  4. Power balance on a multibeam laser

    DOE PAGES

    Sampat, Sid; Kelly, John H.; Kosc, Tanya Z.; ...

    2018-02-15

    Inertial confinement fusion (ICF) cryogenic experiments on the 60-beam OMEGA laser have strict requirements for the laser energy delivered on target to be power balanced in order to maximize target-irradiation uniformity. For OMEGA, this quantity (power balance) is inferred from measurements of the time-integrated energy and time-resolved, spatially integrated temporal profile of each of the 60 beams at the output of the laser. The work presented here proposes a general definition of power balance as measured at the laser output and discusses the conditions that are fundamental to achieving laser power balance. Power balance necessitates equal gain across all stagesmore » of amplification, equal net losses across each amplifier stage, equal frequency conversion (from 1053 nm to 351 nm) of all 60 beams, and equal beam path lengths (beam timing). Typical OMEGA ICF laser pulse shapes consist of one or more short (100-ps) “pickets” followed by a shaped “drive” pulse of 1 to 2 ns. For these experiments, power balance is assessed for the pickets and the drive independently, with the ultimate goal of achieving root-mean-square (rms) imbalance across all 60 beams of less than 2% rms on both. Our work presents a comprehensive summary of laser shot campaigns conducted to significantly improve laser power balance from typical rms values of 4.7% and 5.2%, respectively, to the 3% level for both features along with a discussion of future work required to further reduce the rms power imbalance of the laser system.« less

  5. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  6. Laser balancing system for high material removal rates

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Georgalas, G.; Ortiz, A. L.

    1984-01-01

    A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.

  7. Nonlocal systems of balance laws in several space dimensions with applications to laser technology

    NASA Astrophysics Data System (ADS)

    Colombo, Rinaldo M.; Marcellini, Francesca

    2015-12-01

    For a class of systems of nonlinear and nonlocal balance laws in several space dimensions, we prove the local in time existence of solutions and their continuous dependence on the initial datum. The choice of this class is motivated by a new model devoted to the description of a metal plate being cut by a laser beam. Using realistic parameters, solutions to this model obtained through numerical integrations meet qualitative properties of real cuts. Moreover, the class of equations considered comprises a model describing the dynamics of solid particles along a conveyor belt.

  8. Detailed Balance Limit of Efficiency of Broadband-Pumped Lasers.

    PubMed

    Nechayev, Sergey; Rotschild, Carmel

    2017-09-13

    Broadband light sources are a wide class of pumping schemes for lasers including LEDs, sunlight and flash lamps. Recently, efficient coupling of broadband light to high-quality micro-cavities has been demonstrated for on-chip applications and low-threshold solar-pumped lasers via cascade energy transfer. However, the conversion of incoherent to coherent light comes with an inherent price of reduced efficiency, which has yet to be assessed. In this paper, we derive the detailed balance limit of efficiency of broadband-pumped lasers and discuss how it is affected by the need to maintain a threshold population inversion and thermodynamically dictated minimal Stokes' shift. We show that lasers' slope efficiency is analogous to the nominal efficiency of solar cells, limited by thermalisation losses and additional unavoidable Stokes' shift. The lasers' power efficiency is analogous to the detailed balance limit of efficiency of solar cells, affected by the cavity mirrors and impedance matching factor, respectively. As an example we analyze the specific case of solar-pumped sensitized Nd 3+ :YAG-like lasers and define the conditions to reach their thermodynamic limit of efficiency. Our work establishes an upper theoretical limit for the efficiency of broadband-pumped lasers. Our general, yet flexible model also provides a way to incorporate other optical and thermodynamic losses and, hence, to estimate the efficiency of non-ideal broadband-pumped lasers.

  9. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  10. Possible role of laser phototherapy in laser immunotherapy

    NASA Astrophysics Data System (ADS)

    Hode, Tomas; Hode, Lars

    2009-02-01

    Laser immunotherapy is a promising cancer treatment method that induces antitumor immunity and appears to be effective both locally and systemically. In this context, an important factor is the overall state of the immune system, both locally and systemically. The success of any immunotherapy treatment depends on the balance between the local immunosuppressive forces induced by the tumor and the immune response of the host organism. Factors that influence this balance include heat-shock proteins (for example HSP70), transforming growth factor β (TGF-β), tumor necrosis factor α (TNF-α), interleukins, and more. Laser phototherapy, which is based on non-thermal photobiological processes, has been shown to modulate the body's own immune response, both locally and systemically, with a strong influence on for example cytokine production and heat-shock protein synthesis. Laser phototherapy may therefore be an important component in the overall efficacy of laser immunotherapy, and may tip the balance between the immunosuppressive and immunostimulatory forces in favor of immunostimulation.

  11. Differential correction system of laser beam directional dithering based on symmetrical beamsplitter

    NASA Astrophysics Data System (ADS)

    Hongwei, Yang; Wei, Tao; Xiaoqia, Yin; Hui, Zhao

    2018-02-01

    This paper proposes a differential correction system with a differential optical path and a symmetrical beamsplitter for correcting the directional dithering of the laser beams. This system can split a collimated laser beam into two laser beams with equal and opposite movements. Thus, the positional averages of the two split laser beams remain constant irrespective of the dithering angle. The symmetrical beamsplitter designed based on transfer matrix principle is to balance the optical paths and irradiances of the two laser beams. Experimental results show that the directional dithering is reduced to less than one-pixel value. Finally, two examples show that this system can be widely used in one-dimensional measurement.

  12. Microchip dual-frequency laser with well-balanced intensity utilizing temperature control.

    PubMed

    Hu, Miao; Zhang, Yu; Wei, Mian; Zeng, Ran; Li, Qiliang; Lu, Yang; Wei, Yizhen

    2016-10-03

    A continuous-wave microchip dual-frequency laser (DFL) with well balanced intensity was presented. In order to obtain such a balanced intensity distribution of the two frequency components, the DFL wavelengths were precisely tuned and spectrally matched with the emission cross section (ECS) spectrum of the gain medium by employing a temperature controller. Finally, when the heat sink temperature was controlled at -5.6°C, a 264 mW DFL signal was achieved with frequency separation at 67.52 GHz and intensity balance ratio (IBR) at 0.991.

  13. Multidisciplinary approaches to radiation-balanced lasers (MARBLE): a MURI program by AFOSR (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sheik-Bahae, Mansoor

    2017-02-01

    An overview of the diverse research activities under the newly funded MURI project by AFOSR will be presented. The main goal is to advance the science of radiation-balanced lasers, also known as athermal lasers, in order to mitigate the thermal degradation of the high-power laser beams. The MARBLE project involves researchers from four universities and spans research activities in rare-earth doped crystals and fibers to semiconductor disc lasers.

  14. Energy balance in high-quality cutting of steel by fiber and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Fomin, V. M.; Golyshev, A. A.; Orishich, A. M.; Shulyat'ev, V. B.

    2017-03-01

    The energy balance of laser cutting of low-carbon and stainless steel sheets with the minimum roughness of the cut surface is experimentally studied. Experimental data obtained in wide ranges of cutting parameters are generalized with the use of dimensionless parameters (Peclet number and absorbed laser energy). It is discovered for the first time that the minimum roughness is ensured at a certain value of energy per unit volume of the melt (approximately 26 J/mm3), regardless of the gas type (oxygen or nitrogen) and laser type (fiber laser with a wavelength of 1.07 μm or CO2 laser with a wavelength of 10.6 μm).

  15. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1995-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  16. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  17. ALMDS laser system

    NASA Astrophysics Data System (ADS)

    Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.

    2003-06-01

    The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.

  18. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  19. Balanced detection for self-mixing interferometry.

    PubMed

    Li, Kun; Cavedo, Federico; Pesatori, Alessandro; Zhao, Changming; Norgia, Michele

    2017-01-15

    We propose a new detection scheme for self-mixing interferometry using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The subtraction of the two outputs implements a sort of balanced detection that improves the signal quality, and allows canceling of unwanted signals due to laser modulation and disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the benefits of differential acquisition in a system for both absolute distance and displacement-vibration measurement. This Letter provides guidance for the design of self-mixing interferometers using balanced detection.

  20. Design of a CO2 laser power control system for a Spacelab microgravity experiment

    NASA Technical Reports Server (NTRS)

    Wenzler, Carl J.; Eichenberg, Dennis J.

    1990-01-01

    The surface tension driven convection experiment (STDCE) is a Space Transportation System flight experiment manifested to fly aboard the USML-1 Spacelab mission. A CO2 laser is used to heat a spot on the surface of silicone oil contained inside a test chamber. Several CO2 laser control systems were evaluated and the selected system will be interfaced with the balance of the experimental hardware to constitute a working engineering model. Descriptions and a discussion of these various design approaches are presented.

  1. Engineering redox balance through cofactor systems.

    PubMed

    Chen, Xiulai; Li, Shubo; Liu, Liming

    2014-06-01

    Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A single-stage optical load-balanced switch for data centers.

    PubMed

    Huang, Qirui; Yeo, Yong-Kee; Zhou, Luying

    2012-10-22

    Load balancing is an attractive technique to achieve maximum throughput and optimal resource utilization in large-scale switching systems. However current electronic load-balanced switches suffer from severe problems in implementation cost, power consumption and scaling. To overcome these problems, in this paper we propose a single-stage optical load-balanced switch architecture based on an arrayed waveguide grating router (AWGR) in conjunction with fast tunable lasers. By reuse of the fast tunable lasers, the switch achieves both functions of load balancing and switching through the AWGR. With this architecture, proof-of-concept experiments have been conducted to investigate the feasibility of the optical load-balanced switch and to examine its physical performance. Compared to three-stage load-balanced switches, the reported switch needs only half of optical devices such as tunable lasers and AWGRs, which can provide a cost-effective solution for future data centers.

  3. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  4. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  5. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  6. Laser cutting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Thomas J

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  7. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  8. Study of the thermal-induced intensity balanced Nd:GdVO4 microchip dual-frequency laser

    NASA Astrophysics Data System (ADS)

    Cai, Meiling; Hu, Miao; Zhou, Xuefang; Lu, Yang; Zeng, Ran; Li, Qiliang; Wei, Yizhen

    2018-01-01

    The intensity balance ratio (IBR) tuning mechanism of Nd:GdVO4 monolithic microchip dual-frequency laser (DFL) is presented. The intensity balanced DFL signals are obtained by precisely controlling the heat sink temperature of the Nd:GdVO4 crystal. In experiments, the DFL signal with frequency separation at 64 GHz and IBR above 0.99 is realized with the temperature at 47.6 °C. The other balanced intensity distribution can be reached at -0.9 °C before mode hopping. Moreover, utilizing the fluorescence spectrum and the intensity balance points of Nd:GdVO4 DFL, we obtain the temperature difference between internal and external of Nd:GdVO4 crystal ΔT = 24.0 °C.

  9. The Geoscience Laser Altimeter System (GLAS) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.; Yu, Anthony W.; Dallas, Joseph L.; Melak, Anthony; Lukemir, Alan; Ramos-Izqueirdo, L.; Mamakos, William

    2007-01-01

    The Geoscience Laser Altimeter System (GLAS), launched in January 2003, is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. GLAS accommodates three, sequentially operated, diode-pumped, solid-state, Nd:YAG laser transmitters. The laser transmitter requirements, design and qualification test results for this space-based remote sensing instrument is summarized and presented

  10. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  11. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  12. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  13. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    PubMed Central

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  14. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  15. Breakdown of dynamic balance of a particle in a quadrupole cell by laser-induced aerosol heating.

    PubMed

    Itoh, M; Lwamoto, T; Takahashi, K; Kuno, S

    1992-08-20

    The retention stability of an aerosol particle in a quadrupole cell exposed to horizontal irradiation with a CO(2) laser is investigated for several sizes of single spherical carbon particles. The stability of dynamic balance for the particle levitation is affected significantly by the irradiation and breaks down at a power higher than 10(5) W/m(2). The particle is pushed away along the beam line, and its trajectory is slightly upward owing to the laser-induced aerosol heating.

  16. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  17. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  18. Laser beam monitoring system

    DOEpatents

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  19. Excimer laser calibration system.

    PubMed

    Gottsch, J D; Rencs, E V; Cambier, J L; Hall, D; Azar, D T; Stark, W J

    1996-01-01

    Excimer laser photoablation for refractive and therapeutic keratectomies has been demonstrated to be feasible and practicable. However, corneal laser ablations are not without problems, including the delivery and maintenance of a homogeneous beam. We have developed an excimer laser calibration system capable of characterizing a laser ablation profile. Beam homogeneity is determined by the analysis of a polymethylmethacrylate (PMMA)-based thin-film using video capture and image processing. The ablation profile is presented as a color-coded map. Interpolation of excimer calibration system analysis provides a three-dimensional representation of elevation profiles that correlates with two-dimensional scanning profilometry. Excimer calibration analysis was performed before treating a monkey undergoing phototherapeutic keratectomy and two human subjects undergoing myopic spherocylindrical photorefractive keratectomy. Excimer calibration analysis was performed before and after laser refurbishing. Laser ablation profiles in PMMA are resolved by the excimer calibration system to .006 microns/pulse. Correlations with ablative patterns in a monkey cornea were demonstrated with preoperative and postoperative keratometry using corneal topography, and two human subjects using video-keratography. Excimer calibration analysis predicted a central-steep-island ablative pattern with the VISX Twenty/Twenty laser, which was confirmed by corneal topography immediately postoperatively and at 1 week after reepithelialization in the monkey. Predicted central steep islands in the two human subjects were confirmed by video-keratography at 1 week and at 1 month. Subsequent technical refurbishing of the laser resulted in a beam with an overall increased ablation rate measured as microns/pulse with a donut ablation profile. A patient treated after repair of the laser electrodes demonstrated no central island. This excimer laser calibration system can precisely detect laser-beam ablation

  20. Magnetic suspension and balance systems (MSBSs)

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Kilgore, Robert A.

    1987-01-01

    The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.

  1. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  2. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  3. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  4. Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika

    2004-03-01

    The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.

  5. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.

    PubMed

    Yamanishi, Masamichi

    2012-12-17

    Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.

  6. Surface Energy Balance System (SEBS) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  7. Excimer laser system Profile-500

    NASA Astrophysics Data System (ADS)

    Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.

    1999-07-01

    The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.

  8. Optical design and development of a fiber coupled high-power diode laser system for laser transmission welding of plastics

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, Eva; Quintana, Iban; Etxarri, Jon; Azkorbebeitia, Urko; Otaduy, Deitze; González, Francisco; Moreno, Fernando

    2012-12-01

    Laser transmission welding (LTW) of thermoplastics is a direct bonding technique already used in different industrial applications sectors such as automobiles, microfluidics, electronics, and biomedicine. LTW evolves localized heating at the interface of two pieces of plastic to be joined. One of the plastic pieces needs to be optically transparent to the laser radiation whereas the other part has to be absorbent, being that the radiation produced by high power diode lasers is a good alternative for this process. As consequence, a tailored laser system has been designed and developed to obtain high quality weld seams with weld widths between 0.7 and 1.4 mm. The developed laser system consists of two diode laser bars (50 W per bar) coupled into an optical fiber using a nonimaging solution: equalization of the beam parameter product (BPP) in the slow and fast axes by a pair of step-mirrors. The power scaling was carried out by means of a multiplexing polarization technique. The analysis of energy balance and beam quality was performed considering ray tracing simulation (ZEMAX) and experimental validation. The welding experiments were conducted on acrylonitrile/butadiene/styrene (ABS), a thermoplastic frequently used in automotive, electronics and aircraft applications, doped with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). Quality of the weld seams on ABS was analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. Mechanical properties of weld seams were analyzed by mechanical shear tests. High quality weld seams were produced in ABS, revealing the potential of the laser developed in this work for a wide range of plastic welding applications.

  9. Airborne laser sensors and integrated systems

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  10. Navigated Pattern Laser System versus Single-Spot Laser System for Postoperative 360-Degree Laser Retinopexy.

    PubMed

    Kulikov, Alexei N; Maltsev, Dmitrii S; Boiko, Ernest V

    2016-01-01

    Purpose . To compare three 360°-laser retinopexy (LRP) approaches (using navigated pattern laser system, single-spot slit-lamp (SL) laser delivery, and single-spot indirect ophthalmoscope (IO) laser delivery) in regard to procedure duration, procedural pain score, technical difficulties, and the ability to achieve surgical goals. Material and Methods . Eighty-six rhegmatogenous retinal detachment patients (86 eyes) were included in this prospective randomized study. The mean procedural time, procedural pain score (using 4-point Verbal Rating Scale), number of laser burns, and achievement of the surgical goals were compared between three groups (pattern LRP (Navilas® laser system), 36 patients; SL-LRP, 28 patients; and IO-LRP, 22 patients). Results . In the pattern LRP group, the amount of time needed for LRP and pain level were statistically significantly lower, whereas the number of applied laser burns was higher compared to those in the SL-LRP group and in the IO-LRP group. In the pattern LRP, SL-LRP, and IO-LRP groups, surgical goals were fully achieved in 28 (77.8%), 17 (60.7%), and 13 patients (59.1%), respectively ( p > 0.05). Conclusion . The navigated pattern approach allows improving the treatment time and pain in postoperative 360° LRP. Moreover, 360° pattern LRP is at least as effective in achieving the surgical goal as the conventional (slit-lamp or indirect ophthalmoscope) approaches with a single-spot laser.

  11. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    White, Maurice A. (Inventor); Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  12. Development of laser transmission system

    NASA Astrophysics Data System (ADS)

    Song, Jiawu; Zhang, Yulan; Yang, Jiandong; Zhang, Xinming

    1998-08-01

    This paper discusses a light transfer system of therapeutic machine using carbon-dioxide laser. This system is based on imitating human being arm motion principle, consists of optical cardans mainly and can move in three-D space freely. Through it carbon-dioxide laser (which wavelength is 10.6 micrometer) is reflected, focused or diverged and transferred to the different therapeutic part of body to realize the purpose of cutting operation, gasification, cauterization and irradiation. This system includes an indicating system using He-Ne laser, by which carbon-dioxide laser can arrive therapeutic part accurately. This system possesses some advantages e.g. an accurate transfer, large moving range, small power consumption, high power density and easy operation. At present the occupancy in home market of this kind laser transfer system products is over 95%. Some products have been exported to other countries.

  13. Efficacy of virtual reality-based balance training versus the Biodex balance system training on the body balance of adults

    PubMed Central

    Ibrahim, Manal S.; Mattar, Ayman G.; Elhafez, Salam M.

    2016-01-01

    [Purpose] This study investigated efficacy of virtual reality (VR)-based balance training on enhancing balance and postural reactions of adults as a low-cost new modality compared to the established Biodex Balance System (BBS). [Subjects] Thirty normal adults of both genders were divided randomly into two equal-sized experimental groups of 15: BBS balance training and VR balance training. [Methods] The training programmes were conducted in 12 sessions, three 15-min sessions per week. The Nintendo® Wii Fit Plus (NWFP) and its balance board were used to train of the VR group. Each participant answered a questionnaire concerning usability, enjoyment, balance improvement, and fatigue at the end of the training programs. [Results] The study found a significant increase the measure of mean overall balance (OLB) in both groups. No significant difference was found between the groups, but a significant decrease in the mean balance-test time was found for both groups, with no significant difference between the two training methods. The VR programme was rated highly enjoyable by 81.8% of the group. [Conclusion] The Wii Fit Plus system with the balance board as a new VR balance-training technique, can be considered an effective and enjoyable tool for the training of adults’ body balance. PMID:26957722

  14. Robotic Laser Coating Removal System

    DTIC Science & Technology

    2008-07-01

    Materiel Command IRR Internal Rate of Return JTP Joint Test Protocol JTR Joint Test Report LARPS Large Area Robotic Paint Stripping LASER Light...use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air Force...The use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air

  15. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  16. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  17. Coherent Laser Radar System Theory.

    DTIC Science & Technology

    1987-11-05

    This program is aimed at developing a system theory for the emerging technology of multifunction coherent CO2 laser radars. It builds upon previous...work funded by U.S. Army Research Office contract DAAG29-80-K-0022. Keywords include: Laser radar theory, Radar system theory , and Laser speckle.

  18. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    NASA Technical Reports Server (NTRS)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (<3.2 microradians). To meet this and other needs, the laser light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a

  19. CO laser angioplasty system: efficacy of manipulatable laser angioscope catheter

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Kikuchi, Makoto; Mizuno, Kyoichi; Sakurada, Masami; Miyamoto, Akira; Arakawa, Koh; Kurita, Akira; Nakamura, Haruo; Takeuchi, Kiyoshi; Utsumi, Atsushi; Akai, Yoshiro

    1992-08-01

    A percutaneous transluminal coronary angioplasty system using a unique combination of CO laser (5 micrometers ) and As-S infrared glass fiber under the guidance of a manipulatable laser angioscope catheter is described. The ablation and guidance functions of this system are evaluated. The angioplasty treatment procedure under angioscope guidance was studied by in vitro model experiment and in vivo animal experiment. The whole angioplasty system is newly developed. That is, a transportable compact medical CO laser device which can emit up to 10 W, a 5 F manipulatable laser angioscope catheter, a thin CO laser cable of which the diameter is 0.6 mm, an angioscope imaging system for laser ablation guidance, and a system controller were developed. Anesthetized adult mongrel dogs (n equals 5) with an artificial complete occlusion in the femoral artery and an artificial human vessel model including occluded or stenotic coronary artery were used. The manipulatability of the catheter was drastically improved (both rotation and bending), therefore, precise control of ablation to expand stenosis was obtained. A 90% artificial stenosis made of human yellow plaque in 4.0 mm diameter in the vessel was expanded to 70% stenosis by repetitive CO laser ablations of which total energy was 220 J. All procedures were performed and controlled under angioscope visualization.

  20. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  1. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  2. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  3. Characterizing the geomorphic setting of precariously balanced rocks using terrestrial laser scanning technology

    NASA Astrophysics Data System (ADS)

    Haddad, D. E.; Arrowsmith, R.

    2009-12-01

    Terrestrial laser scanning (TLS) technology is rapidly becoming an effective three-dimensional imaging tool. Precariously balanced rocks are a subset of spheroidally weathered boulders. They are balanced on bedrock pedestals and are formed in upland drainage basins and pediments of exhumed plutons. Precarious rocks are used as negative evidence of earthquake-driven extreme ground motions. Field surveys of PBRs are coupled with cosmogenic radionuclide (CRN) surface exposure dating techniques to determine their exhumation rates. These rates are used in statistical simulations to estimate the magnitudes and recurrences of earthquake-generated extreme ground shaking as a means to physically validate seismic hazard analyses. However, the geomorphic setting of PBRs in the landscape is poorly constrained when interpreting their exhumation rates from CRN surface exposure dates. Are PBRs located on steep or gentle hillslopes? Are they located near drainages or hillslope crests? What geomorphic processes control the spatial distribution of PBRs in a landscape, and where do these processes dominate? Because the fundamental hillslope transport laws are largely controlled by local hillslope gradient and contributing area, the location of a PBR is controlled by the geomorphic agents and their rates acting on it. Our latest efforts involve using a combination of TLS and airborne laser swath mapping (ALSM) to characterize the geomorphic situation of PBRs. We used a Riegl LPM 800i (LPM 321) terrestrial laser scanner to scan a ~1.5 m tall by ~1 m wide precariously balanced rock in the Granite Dells, central Arizona. The PBR was scanned from six positions, and the scans were aligned to a point cloud totaling 3.4M points. We also scanned a ~50 m by ~150 m area covering PBR hillslopes from five scan positions. The resulting 5.5M points were used to create a digital terrain model of precarious rocks and their hillslopes. Our TLS- and ALSM-generated surface models and DEMs provide a

  4. High angle of attack position sensing for the Southampton University magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Parker, David H.

    1987-01-01

    An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.

  5. Geoscience laser altimeter system-stellar reference system

    NASA Astrophysics Data System (ADS)

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-01

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  6. Laser Safety and Hazardous Analysis for the ARES (Big Sky) Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AUGUSTONI, ARNOLD L.

    A laser safety and hazard analysis was performed for the ARES laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1,for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  7. Laser engineering of microbial systems

    NASA Astrophysics Data System (ADS)

    Yusupov, V. I.; Gorlenko, M. V.; Cheptsov, V. S.; Minaev, N. V.; Churbanova, E. S.; Zhigarkov, V. S.; Chutko, E. A.; Evlashin, S. A.; Chichkov, B. N.; Bagratashvili, V. N.

    2018-06-01

    A technology of laser engineering of microbial systems (LEMS) based on the method of laser-induced transfer of heterogeneous mixtures containing microorganisms (laser bioprinting) is described. This technology involves laser printing of soil microparticles by focusing near-infrared laser pulses on a specially prepared gel/soil mixture spread onto a gold-coated glass plate. The optimal range of laser energies from the point of view of the formation of stable jets and droplets with minimal negative impact on living systems of giant accelerations, laser pulse irradiation, and Au nanoparticles was found. Microsamples of soil were printed on glucose-peptone-yeast agar plates to estimate the LEMS process influence on structural and morphological microbial diversity. The obtained results were compared with traditionally treated soil samples. It was shown that LEMS technology allows significantly increasing the biodiversity of printed organisms and is effective for isolating rare or unculturable microorganisms.

  8. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  9. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  10. Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser

    NASA Astrophysics Data System (ADS)

    Wang, Li-qiang

    2009-07-01

    A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.

  11. Injection mode-locking Ti-sapphire laser system

    DOEpatents

    Hovater, James Curtis; Poelker, Bernard Matthew

    2002-01-01

    According to the present invention there is provided an injection modelocking Ti-sapphire laser system that produces a unidirectional laser oscillation through the application of a ring cavity laser that incorporates no intracavity devices to achieve unidirectional oscillation. An argon-ion or doubled Nd:YVO.sub.4 laser preferably serves as the pump laser and a gain-switched diode laser serves as the seed laser. A method for operating such a laser system to produce a unidirectional oscillating is also described.

  12. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  13. Laser safety research and modeling for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Smith, Peter A.; Montes de Oca, Cecilia I.; Kennedy, Paul K.; Keppler, Kenneth S.

    2002-06-01

    The Department of Defense has an increasing number of high-energy laser weapons programs with the potential to mature in the not too distant future. However, as laser systems with increasingly higher energies are developed, the difficulty of the laser safety problem increases proportionally, and presents unique safety challenges. The hazard distance for the direct beam can be in the order of thousands of miles, and radiation reflected from the target may also be hazardous over long distances. This paper details the Air Force Research Laboratory/Optical Radiation Branch (AFRL/HEDO) High-Energy Laser (HEL) safety program, which has been developed to support DOD HEL programs by providing critical capability and knowledge with respect to laser safety. The overall aim of the program is to develop and demonstrate technologies that permit safe testing, deployment and use of high-energy laser weapons. The program spans the range of applicable technologies, including evaluation of the biological effects of high-energy laser systems, development and validation of laser hazard assessment tools, and development of appropriate eye protection for those at risk.

  14. Laser power conversion system analysis, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-ground laser power conversion system analysis investigated the feasibility and cost effectiveness of converting solar energy into laser energy in space, and transmitting the laser energy to earth for conversion to electrical energy. The analysis included space laser systems with electrical outputs on the ground ranging from 100 to 10,000 MW. The space laser power system was shown to be feasible and a viable alternate to the microwave solar power satellite. The narrow laser beam provides many options and alternatives not attainable with a microwave beam.

  15. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  16. Precision laser aiming system

    DOEpatents

    Ahrens, Brandon R [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  17. Use of the Microsoft Kinect system to characterize balance ability during balance training.

    PubMed

    Lim, Dohyung; Kim, ChoongYeon; Jung, HoHyun; Jung, Dukyoung; Chun, Keyoung Jin

    2015-01-01

    The risk of falling increases significantly in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of preventing falling using real-time systems to evaluate balance; however, it is difficult to monitor the results of such characterizations in real time. Herein, we describe the use of Microsoft's Kinect depth sensor system to evaluate balance in real time. Six healthy male adults (25.5±1.8 years, 173.9±6.4 cm, 71.4±6.5 kg, and 23.6±2.4 kg/m(2)), with normal balance abilities and with no musculoskeletal disorders, were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in various directions. The dynamic motion of the subjects was measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras. The two systems yielded similar results for changes in the center of body mass (P>0.05) with a large Pearson's correlation coefficient of γ>0.60. The results for the two systems showed similarity in the mean lower-limb joint angle with flexion-extension movements, and these values were highly correlated (hip joint: within approximately 4.6°; knee joint: within approximately 8.4°) (0.40<γ<0.74) (P>0.05). Large differences with a low correlation were, however, observed for the lower-limb joint angle in relation to abduction-adduction and internal-external rotation motion (γ<0.40) (P<0.05). These findings show that clinical and dynamic accuracy can be achieved using the Kinect system in balance training by measuring changes in the center of body mass and flexion-extension movements of the lower limbs, but not abduction-adduction and internal-external rotation.

  18. Laser Doppler velocimetry for continuous flow solar-pumped iodine laser system

    NASA Technical Reports Server (NTRS)

    Tabibi, Bagher M.; Lee, Ja H.

    1991-01-01

    A laser Doppler velocimetry (LDV) system was employed to measure the flow velocity profile of iodide vapor inside laser tubes of 36 mm ID and 20 mm ID. The LDV, which was operated in the forward scatter mode used a low power (15 mW) He-Ne laser beam. Velocity ranges from 1 m/s was measured to within one percent accuracy. The flow velocity profile across the laser tube was measured and the intensity of turbulence was determined. The flow of iodide inside the laser tube demonstrated a mixture of both turbulence and laminar flow. The flowmeter used for the laser system previously was calibrated with the LDV and found to be in good agreement.

  19. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  20. Airborne Laser Systems Testing and Analysis (essals et analyse des systemes laser embarques)

    DTIC Science & Technology

    2010-04-01

    of Surface/ Paints Reflection Properties (PILASTER targets); • PILASTER Sensors Testing and Calibration; • LOAS Laser System Testing; and • Test...PILASTER targets candidate paints and materials), a Laser Scatter-meter (LSM) was built. To briefly summarise the fundamental concepts involved...Green Painted Target. 7.6.3 Laser Beam Misalignment with Respect to the Beam-Expander Support For measuring the beam misalignment, the beam expander

  1. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  2. Rotor balance system

    NASA Technical Reports Server (NTRS)

    Novotny, Rudolph J. (Inventor)

    1989-01-01

    A balance ring (18) which is shrunk fit within each disk (12) of a rotor is selectively ground for detail balance. A plurality of openings (20) through the outer edge of the balance ring receive weights during the asssembly balance of the rotor. A snap ring (42) retains the weights within the openings.

  3. Benefits Of Mission Command: Balance Of Philosophy And System

    DTIC Science & Technology

    2016-05-26

    The Benefits of Mission Command: Balance of Philosophy and System A Monograph by MAJ Robert R. Rodock United...Sa. CONTRACT NUMBER The Benefits of Mission Command: Balance of Philosophy and System Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd... philosophy and system of mission command, when exercised in balance, provides US Anny leaders the agility and adaptability to ’see the elephant’ sooner

  4. Nd:YAG laser system for ophthalmic microsurgery

    NASA Astrophysics Data System (ADS)

    Savastru, Dan; Ristici, Esofina; Dragu, T.; Cotirlan, C.; Miclos, Sorin; Mustata, Marina

    2005-04-01

    The Nd:YAG solid state laser can be used in ophthalmologic microsurgery because of its specific wavelength of 1064 nm, which has the property to penetrate the transparent medium of the eye. We design a specific ophthalmic system, containing a Q-switch Nd:YAG laser, an optical stereomicroscope and an aiming system. This laser-stereomicroscope system is used for eye examination and for microsurgical proceedings like posterior capsulotomy and pupilar membranectomy. We had to design an optical scheme of the laser to settle the radiation route. In order to cover the medical domain of the energies, we calibrate eleven attenuation filters using ratiometric method. For a correct position of the place where the laser pulse strikes, we used an original system consisting of two red laser diodes mounted on each side of the binocular One of the advantages of this laser system is taht the output energies can be varied widely (0.8-15 mJ), making a great numbers of applications in clinical ophthalmology possible.

  5. Compact Hybrid Laser Rod and Laser System

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)

    2017-01-01

    A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.

  6. BRIEF COMMUNICATIONS: Experimental study of the energy balance in the interaction of a pulsed CO2 laser with metal and insulating targets in air

    NASA Astrophysics Data System (ADS)

    Babaeva, N. A.; Vas'kovskiĭ, Yu M.; Rovinskiĭ, R. E.; Ryabinkina, V. A.

    1991-09-01

    Measurements were made of components of the energy balance in the interaction of pulsed CO2 laser radiation with Dural, glass, quartz, ebonite, and Plexiglas in air at atmospheric pressure. At laser energy densities between 1 and 20 J/cm2 and in the spectral range 0.2-7 μm, the re-emission of radiation by the laser plasma was found to be less than 1 %. At energy densities exceeding 10 J/cm2, up to 90% of the laser energy failed to reach the irradiated surface.

  7. Dynamically variable spot size laser system

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  8. Fiber Based Seed Laser for CO 2 Ultrafast Laser Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuchuan

    A compact and effective 10-micron femtosecond laser with pulse duration <500fs and repetition rate of >100Hz or smaller is desirable by DOE for seeding CO 2 ultrafast laser systems to improve the stability, reliability and efficiency in generating 10-micron laser from GW up to 100TW peak power, which is irreplaceable in driving an accelerator for particle beam generation due to the efficiency proportional to the square of the laser wavelength. Agiltron proposes a fiber based ultrafast 10-micron seed laser that can provide the required specifications and high performance. Its success will directly benefit DOE’s compact proton and ion sources. Themore » innovative technology can be used for ultrafast laser generation over the whole mid-IR range, and speed up the development of mid-IR laser applications. Agiltron, Inc. has successfully completed all tasks and demonstrated the feasibility of a fiber based 10-micron ultrafast laser in Phase I of the Program. We built a mode-locked fiber laser that generated < 400fs ultrafast laser pulses and successfully controlled the repetition rate to be the required 100Hz. Using this mode-locked laser, we demonstrated the feasibility of parametric femtosecond laser generation based on frequency down conversion. The experimental results agree with our simulation results. The investigation results of Phase I will be used to optimize the design of the laser system and build a fully functional prototype for delivery to the DOE in the Phase II program. The prototype development in Phase II program will be in the collaboration with Professor Chandrashekhar Joshi, the leader of UCLA Laser-Plasma group. Prof. Joshi discovered a new mechanism for generation of monoenergetic proton/ion beams: Shock Wave Acceleration in a near critical density plasma and demonstrated that high-energy proton beams using CO 2 laser driven collisionless shocks in a gas jet plasma, which opened an opportunity to develop a rather compact high-repetition rate

  9. Variable emissivity laser thermal control system

    DOEpatents

    Milner, J.R.

    1994-10-25

    A laser thermal control system for a metal vapor laser maintains the wall temperature of the laser at a desired level by changing the effective emissivity of the water cooling jacket. This capability increases the overall efficiency of the laser. 8 figs.

  10. Personal medical information system using laser card

    NASA Astrophysics Data System (ADS)

    Cho, Seong H.; Kim, Keun Ho; Choi, Hyung-Sik; Park, Hyun Wook

    1996-04-01

    The well-known hospital information system (HIS) and the picture archiving and communication system (PACS) are typical applications of multimedia to medical area. This paper proposes a personal medical information save-and-carry system using a laser card. This laser card is very useful, especially in emergency situations, because the medical information in the laser card can be read at anytime and anywhere if there exists a laser card reader/writer. The contents of the laser card include the clinical histories of a patient such as clinical chart, exam result, diagnostic reports, images, and so on. The purpose of this system is not a primary diagnosis, but emergency reference of clinical history of the patient. This personal medical information system consists of a personal computer integrated with laser card reader/writer, color frame grabber, color CCD camera and a high resolution image scanner optionally. Window-based graphical user interface was designed for easy use. The laser card has relatively sufficient capacity to store the personal medical information, and has fast access speed to restore and load the data with a portable size as compact as a credit card. Database items of laser card provide the doctors with medical data such as laser card information, patient information, clinical information, and diagnostic result information.

  11. Balanced detection for self-mixing interferometry to improve signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Changming; Norgia, Michele; Li, Kun

    2018-01-01

    We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.

  12. Review Of Laser Lightcraft Propulsion System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Eric W.; Mead, Franklin B. Jr

    Laser-powered 'Lightcraft' systems that deliver nano-satellites to LEO have been studied for the Air Force Research Laboratory (AFRL). The study was built on the extensive Lightcraft laser propulsion technology already developed by theoretical and experimental work by the AFRL's Propulsion Directorate at Edwards AFB, CA. Here we review the history and engineering-physics of the laser Lightcraft system and its propulsive performance. We will also review the effectiveness and cost of a Lightcraft vehicle powered by a high-energy laser beam. One result of this study is the significant influence of laser wavelength on the power lost during laser beam propagation throughmore » Earth's atmosphere and in space. It was discovered that energy and power losses in the laser beam are extremely sensitive to wavelength for Earth-To-Orbit missions, and this significantly affects the amount of mass that can be placed into orbit for a given maximum amount of radiated power from a ground-based laser.« less

  13. Laser safety and hazard analysis for the temperature stabilized BSLT ARES laser system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. As a result of temperature stabilization of the BSLT laser the operating parameters of the laser had changed requiring a hazard analysis based on the new operating conditions. The ARES laser system is a Van/Truck based mobile platform, which is used to performmore » laser interaction experiments and tests at various national test sites.« less

  14. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...

  15. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...

  16. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...

  17. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...

  18. 21 CFR 884.6200 - Assisted reproduction laser system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Assisted reproduction laser system. 884.6200... Assisted reproduction laser system. (a) Identification. The assisted reproduction laser system is a device that images, targets, and controls the power and pulse duration of a laser beam used to ablate a small...

  19. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  20. Fast Offset Laser Phase-Locking System

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog

  1. Numerical aperture limits on efficient ball lens coupling of laser diodes to single-mode fibers with defocus to balance spherical aberration

    NASA Technical Reports Server (NTRS)

    Wilson, R. Gale

    1994-01-01

    The potential capabilities and limitations of single ball lenses for coupling laser diode radiation to single-mode optical fibers have been analyzed; parameters important to optical communications were specifically considered. These parameters included coupling efficiency, effective numerical apertures, lens radius, lens refractive index, wavelength, magnification in imaging the laser diode on the fiber, and defocus to counterbalance spherical aberration of the lens. Limiting numerical apertures in object and image space were determined under the constraint that the lens perform to the Rayleigh criterion of 0.25-wavelength (Strehl ratio = 0.80). The spherical aberration-defocus balance to provide an optical path difference of 0.25 wavelength units was shown to define a constant coupling efficiency (i.e., 0.56). The relative numerical aperture capabilities of the ball lens were determined for a set of wavelengths and associated fiber-core diameters of particular interest for single-mode fiber-optic communication. The results support general continuing efforts in the optical fiber communications industry to improve coupling links within such systems with emphasis on manufacturing simplicity, system packaging flexibility, relaxation of assembly alignment tolerances, cost reduction of opto-electronic components and long term reliability and stability.

  2. Delay effects in the human sensory system during balancing.

    PubMed

    Stepan, Gabor

    2009-03-28

    Mechanical models of human self-balancing often use the Newtonian equations of inverted pendula. While these mathematical models are precise enough on the mechanical side, the ways humans balance themselves are still quite unexplored on the control side. Time delays in the sensory and motoric neural pathways give essential limitations to the stabilization of the human body as a multiple inverted pendulum. The sensory systems supporting each other provide the necessary signals for these control tasks; but the more complicated the system is, the larger delay is introduced. Human ageing as well as our actual physical and mental state affects the time delays in the neural system, and the mechanical structure of the human body also changes in a large range during our lives. The human balancing organ, the labyrinth, and the vision system essentially adapted to these relatively large time delays and parameter regions occurring during balancing. The analytical study of the simplified large-scale time-delayed models of balancing provides a Newtonian insight into the functioning of these organs that may also serve as a basis to support theories and hypotheses on balancing and vision.

  3. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  4. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  5. ARGOS laser system mechanical design

    NASA Astrophysics Data System (ADS)

    Deysenroth, M.; Honsberg, M.; Gemperlein, H.; Ziegleder, J.; Raab, W.; Rabien, S.; Barl, L.; Gässler, W.; Borelli, J. L.

    2014-07-01

    ARGOS, a multi-star adaptive optics system is designed for the wide-field imager and multi-object spectrograph LUCI on the LBT (Large Binocular Telescope). Based on Rayleigh scattering the laser constellation images 3 artificial stars (at 532 nm) per each of the 2 eyes of the LBT, focused at a height of 12 km (Ground Layer Adaptive Optics). The stars are nominally positioned on a circle 2' in radius, but each star can be moved by up to 0.5' in any direction. For all of these needs are following main subsystems necessary: 1. A laser system with its 3 Lasers (Nd:YAG ~18W each) for delivering strong collimated light as for LGS indispensable. 2. The Launch system to project 3 beams per main mirror as a 40 cm telescope to the sky. 3. The Wave Front Sensor with a dichroic mirror. 4. The dichroic mirror unit to grab and interpret the data. 5. A Calibration Unit to adjust the system independently also during day time. 6. Racks + platforms for the WFS units. 7. Platforms and ladders for a secure access. This paper should mainly demonstrate how the ARGOS Laser System is configured and designed to support all other systems.

  6. Optical system for UV-laser technological equipment

    NASA Astrophysics Data System (ADS)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  7. Validation of a robotic balance system for investigations in the control of human standing balance.

    PubMed

    Luu, Billy L; Huryn, Thomas P; Van der Loos, H F Machiel; Croft, Elizabeth A; Blouin, Jean-Sébastien

    2011-08-01

    Previous studies have shown that human body sway during standing approximates the mechanics of an inverted pendulum pivoted at the ankle joints. In this study, a robotic balance system incorporating a Stewart platform base was developed to provide a new technique to investigate the neural mechanisms involved in standing balance. The robotic system, programmed with the mechanics of an inverted pendulum, controlled the motion of the body in response to a change in applied ankle torque. The ability of the robotic system to replicate the load properties of standing was validated by comparing the load stiffness generated when subjects balanced their own body to the robot's mechanical load programmed with a low (concentrated-mass model) or high (distributed-mass model) inertia. The results show that static load stiffness was not significantly (p > 0.05) different for standing and the robotic system. Dynamic load stiffness for the robotic system increased with the frequency of sway, as predicted by the mechanics of an inverted pendulum, with the higher inertia being accurately matched to the load properties of the human body. This robotic balance system accurately replicated the physical model of standing and represents a useful tool to simulate the dynamics of a standing person. © 2011 IEEE

  8. Laser-SPS systems analysis and environmental impact assessment

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The systems feasibility and environmental impact of replacing the microwave transmitters on the Satellite Power System with laser transmitters are examined. The lasers suggested are two molecular-gas electric-discharge lasers (EDL's), namely the CO and CO2 lasers. Calculations are made on system efficiency, atmospheric transmission efficiency, and laser beam spreading. It is found that the present satellite concept using lasers is far too inefficient and massive to be economically viable. However, the safety issues associated with laser power transmission appear tractable, and no effects could be identified which present a real danger of serious injury to the environment, although certain phenomena deserve closer scrutiny.

  9. Post-Newtonian equations of motion for LEO debris objects and space-based acquisition, pointing and tracking laser systems

    NASA Astrophysics Data System (ADS)

    Gambi, J. M.; García del Pino, M. L.; Gschwindl, J.; Weinmüller, E. B.

    2017-12-01

    This paper deals with the problem of throwing middle-sized low Earth orbit debris objects into the atmosphere via laser ablation. The post-Newtonian equations here provided allow (hypothetical) space-based acquisition, pointing and tracking systems endowed with very narrow laser beams to reach the pointing accuracy presently prescribed. In fact, whatever the orbital elements of these objects may be, these equations will allow the operators to account for the corrections needed to balance the deviations of the line of sight directions due to the curvature of the paths the laser beams are to travel along. To minimize the respective corrections, the systems will have to perform initial positioning manoeuvres, and the shooting point-ahead angles will have to be adapted in real time. The enclosed numerical experiments suggest that neglecting these measures will cause fatal errors, due to differences in the actual locations of the objects comparable to their size.

  10. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  11. Laser Pyro System Standardization and Man Rating

    NASA Technical Reports Server (NTRS)

    Brown, Christopher W.

    2004-01-01

    This viewgraph presentation reviews an X-38 laser pyro system standardization system designed for a new manned rated program. The plans to approve this laser initiation system and preliminary ideas for this system are also provided.

  12. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  13. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  14. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  15. Projection-free approximate balanced truncation of large unstable systems

    NASA Astrophysics Data System (ADS)

    Flinois, Thibault L. B.; Morgans, Aimee S.; Schmid, Peter J.

    2015-08-01

    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.

  16. Repetitive output laser system and method using target reflectivity

    DOEpatents

    Johnson, Roy R.

    1978-01-01

    An improved laser system and method for implosion of a thermonuclear fuel pellet in which that portion of a laser pulse reflected by the target pellet is utilized in the laser system to initiate a succeeding target implosion, and in which the energy stored in the laser system to amplify the initial laser pulse, but not completely absorbed thereby, is used to amplify succeeding laser pulses initiated by target reflection.

  17. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  18. The brain endocannabinoid system in the regulation of energy balance.

    PubMed

    Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena

    2009-02-01

    The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.

  19. Unsteady response of flow system around balance piston in a rocket pump

    NASA Astrophysics Data System (ADS)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  20. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  1. Development of Fiber-Based Laser Systems for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2010-01-01

    We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.

  2. Solid-state-based laser system as a replacement for Ar+ lasers.

    PubMed

    Beck, Tobias; Rein, Benjamin; Sörensen, Fabian; Walther, Thomas

    2016-09-15

    We report on a solid-state-based laser system at 1028 nm. The light is generated by a diode laser seeded ytterbium fiber amplifier. In two build-up cavities, its frequency is doubled and quadrupled to 514 nm and 257 nm, respectively. At 514 nm, the system delivers up to 4.7 W of optical power. In the fourth harmonic, up to 173 mW are available limited by the nonlinear crystal. The frequency of the laser is mode-hop-free tunable by 16 GHz in 10 ms in the UV. Therefore, the system is suitable as a low maintenance, efficient, and tunable narrowband replacement for frequency doubled Ar+ laser systems.

  3. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  4. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  5. High power laser perforating tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  6. Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegman, A.E.

    1989-02-01

    Petermann first predicted in 1979 the existence of an excess-spontaneous-emission factor in gain-guided semiconductor lasers. We show that an excess spontaneous emission of this type, and also a correlation between the spontaneous emission into different cavity modes, will in fact be present in all open-sided laser resonators or optical lens guides. These properties arise from the non-self-adjoint or non-power-orthogonal nature of the optical resonator modes. The spontaneous-emission rate is only slightly enhanced in stable-resonator or index-guided structures, but can become very much larger than normal in gain-guided or geometrically unstable structures. Optical resonators or lens guides that have an excessmore » noise emission necessarily also exhibit an ''excess initial-mode excitation factor'' for externally injected signals. As a result, the excess spontaneous emission can be balanced out and the usual quantum-noise limit recovered in laser amplifiers and in injection-seeded laser oscillators, but not in free-running laser oscillators.« less

  7. A Balanced Higher Education System

    ERIC Educational Resources Information Center

    Brown, Roger

    2011-01-01

    This article explores what is meant by "a balanced higher education system". It argues that the Clarkian "triangle of coordination" (Clark, 1983) and the more recent model of Martinez and Richardson (2003) should be replaced by one that distinguishes between "self" and "collective" interests in both the…

  8. Laser transmission welding of Acrylonitrile-Butadiene-Styrene (ABS) using a tailored high power diode-laser optical fiber coupled system

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, E.; Quintana, I.; Etxarri, J.; Otaduy, D.; González, F.; Moreno, F.

    2012-06-01

    Laser transmission welding (LTW) of polymers is a direct bonding technique which is already used in different industrial applications sectors such as automobile, microfluidic, electronic and biomedicine. This technique offers several advantages over conventional methods, especially when a local deposition of energy and minimum thermal distortions are required. In LTW one of the polymeric materials needs to be transparent to the laser wavelength and the second part needs to be designed to be absorbed in IR spectrum. This report presents a study of laser weldability of ABS (acrylonitrile/butadiene/styrene) filled with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). These additives are used as infrared absorbing components in the laser welding process, affecting the thermal and optical properties of the material and, hence, the final quality of the weld seam. A tailored laser system has been designed to obtain high quality weld seams with widths between 0.4 and 1.0mm. It consists of two diode laser bars (50W per bar) coupled into an optical fiber using a non-imaging solution: equalization of the beam quality factor (M2) in the slow and fast axes by a pair of micro step-mirrors. The beam quality factor has been analyzed at different laser powers with the aim to guarantee a coupling efficiency to the multimode optical fiber. The power scaling is carried out by means of multiplexing polarization technique. The analysis of energy balance and beam quality is performed in two linked steps: first by means ray tracing simulations (ZEMAX®) and second, by validation. Quality of the weld seams is analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. The optimum laser power range for three different welding speeds is determinate meanwhile the clamping pressure is held constant. Additionally, the corresponding mechanical shear tests were carried out to analyze the

  9. Space-qualified laser system for the BepiColombo Laser Altimeter.

    PubMed

    Kallenbach, Reinald; Murphy, Eamonn; Gramkow, Bodo; Rech, Markus; Weidlich, Kai; Leikert, Thomas; Henkelmann, Reiner; Trefzger, Boris; Metz, Bodo; Michaelis, Harald; Lingenauber, Kay; DelTogno, Simone; Behnke, Thomas; Thomas, Nicolas; Piazza, Daniele; Seiferlin, Karsten

    2013-12-20

    The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency's Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury's surface.

  10. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    NASA Astrophysics Data System (ADS)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  11. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  12. Improving laser system productivity through production line integration

    NASA Astrophysics Data System (ADS)

    Belforte, David A.

    1994-09-01

    Thousands of laser systems are employed profitably in a variety of industrial applications. These installations have proved successful for economic and technical reasons. And, in certain applications: ceramic scribing, resistor trimming, sheet metal cutting, and air foil drilling, for example, have become the industry standard. Most of these installations are free standing or, at best, part of an off-line manufacturing cell. Examples of laser systems fully integrated into a production line, where the laser process is synchronized with up and down stream manufacturing operation, are rare. The laser has been under utilized in its potential contribution to production line productivity. Current development in laser beam delivery: multiplexing, beam splitting and other distributed energy concepts make the laser an attractive option for just-in-time manufacturing operations. The reasons for this apparent neglect of the laser's full potential are reviewed in this paper, and suggestions for improvement of this situation are offered. Examples of fully integrated laser systems and their successful implementation are described and a forecast of changes in the way lasers contribute to improved productivity and profitability will be made.

  13. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  14. Digitally balanced detection for optical tomography.

    PubMed

    Hafiz, Rehan; Ozanyan, Krikor B

    2007-10-01

    Analog balanced Photodetection has found extensive usage for sensing of a weak absorption signal buried in laser intensity noise. This paper proposes schemes for compact, affordable, and flexible digital implementation of the already established analog balanced detection, as part of a multichannel digital tomography system. Variants of digitally balanced detection (DBD) schemes, suitable for weak signals on a largely varying background or weakly varying envelopes of high frequency carrier waves, are introduced analytically and elaborated in terms of algorithmic and hardware flow. The DBD algorithms are implemented on a low-cost general purpose reconfigurable hardware (field-programmable gate array), utilizing less than half of its resources. The performance of the DBD schemes compare favorably with their analog counterpart: A common mode rejection ratio of 50 dB was observed over a bandwidth of 300 kHz, limited mainly by the host digital hardware. The close relationship between the DBD outputs and those of known analog balancing circuits is discussed in principle and shown experimentally in the example case of propane gas detection.

  15. Laser safety considerations for a mobile laser program

    NASA Astrophysics Data System (ADS)

    Flor, Mary

    1997-05-01

    An increased demand for advanced laser technology, especially in the area of cutaneous and cosmetic procedures has prompted physicians to use mobile laser services. Utilization of a mobile laser service allows physicians to provide the latest treatments for their patients while minimizing overhead costs. The high capital expense of laser systems is often beyond the financial means of individual clinicians, group practices, free-standing clinics and smaller community hospitals. Historically rapid technology turnover with laser technology places additional risk which is unacceptable to many institutions. In addition, health care reform is mandating consolidation of equipment within health care groups to keep costs at a minimum. In 1994, Abbott Northwestern Hospital organized an in-house mobile laser technology service which employs a group of experienced laser specialists to deliver and support laser treatments for hospital outreach and other regional physicians and health care facilities. Many of the hospital's internal safety standards and policies are applicable to the mobile environment. A significant challenge is client compliance because of the delicate balance of managing risk while avoiding being viewed as a regulator. The clinics and hospitals are assessed prior to service to assure minimum laser safety standards for both the patient and the staff. A major component in assessing new sites is to inform them of applicable regulatory standards and their obligations to assure optimum laser safety. In service training is provided and hospital and procedures are freely shared to assist the client in establishing a safe laser environment. Physician and nursing preceptor programs are also made available.

  16. Lasers in tattoo and pigmentation control: role of the PicoSure(®) laser system.

    PubMed

    Torbeck, Richard; Bankowski, Richard; Henize, Sarah; Saedi, Nazanin

    2016-01-01

    The use of picosecond lasers to remove tattoos has greatly improved due to the long-standing outcomes of nanosecond lasers, both clinically and histologically. The first aesthetic picosecond laser available for this use was the PicoSure(®) laser system (755/532 nm). Now that a vast amount of research on its use has been conducted, we performed a comprehensive review of the literature to validate the continued application of the PicoSure(®) laser system for tattoo removal. A PubMed search was conducted using the term "picosecond" combined with "laser", "dermatology", and "laser tattoo removal". A total of 13 articles were identified, and ten of these met the inclusion criteria for this review. The majority of studies showed that picosecond lasers are an effective and safe treatment mode for the removal of tattoo pigments. Several studies also indicated potential novel applications of picosecond lasers in the removal of various tattoo pigments (eg, black, red, and yellow). Adverse effects were generally mild, such as transient hypopigmentation or blister formation, and were rarely more serious, such as scarring and/or textural change. Advancements in laser technologies and their application in cutaneous medicine have revolutionized the field of laser surgery. Computational modeling provides evidence that the optimal pulse durations for tattoo ink removal are in the picosecond domain. It is recommended that the PicoSure(®) laser system continue to be used for safe and effective tattoo removal, including for red and yellow pigments.

  17. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  18. Optical design of laser transmission system

    NASA Astrophysics Data System (ADS)

    Zhang, Yulan; Feng, Jinliang; Li, Yongliang; Yang, Jiandong

    1998-08-01

    This paper discusses a design of optical transfer system used in carbon-dioxide laser therapeutic machine. The design of this system is according to the requirement of the therapeutic machine. The therapeutic machine requires the movement of laser transfer system is similar to the movement of human beings arms, which possesses 7 rotating hinges. We use optical hinges, which is composed of 45 degree mirrors. Because the carbon-dioxide laser mode is not good, light beam diameter at focus and divergence angle dissemination are big, we use a collecting lens at the transfer system output part in order to make the light beam diameter at focus in 0.2 to approximately 0.3 mm. For whole system the focus off-axis error is less than 0.5 mm, the transfer power consumption is smaller than 10%. The system can move in three dimension space freely and satisfies the therapeutic machine requirement.

  19. Method and system for modulation of gain suppression in high average power laser systems

    DOEpatents

    Bayramian, Andrew James [Manteca, CA

    2012-07-31

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  20. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  1. Balancing Hydronic Systems in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existingmore » knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.« less

  2. Balancing Hydronic Systems in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruch, Russell; Ludwig, Peter; Maurer, Tessa

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution inmore » typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.« less

  3. Constructing a Low-budget Laser Axotomy System to Study Axon Regeneration in C. elegans

    PubMed Central

    Williams, Wes; Nix, Paola; Bastiani, Michael

    2011-01-01

    Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans1. The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system2,3. However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers4). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on adjacent

  4. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  5. State of the art of CO laser angioplasty system

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  6. The Effect of Balance Training by Tetraks Interactive Balance System on Balance and Fall Risk in Parkinson's Patients: A Report of Four Cases.

    PubMed

    Balci, Nilay Çömük; Tonga, Eda; Gülşen, Mustafa

    2013-09-01

    This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson's disease. Four patients with Parkinson's disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson's Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson's patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson's disease patients.

  7. Laser beam distribution system for the HiLASE Center

    NASA Astrophysics Data System (ADS)

    Macúchová, Karolina; Heřmánek, Jan; Kaufman, Jan; Muresan, Mihai-George; Růžička, Jan; Řeháková, Martina; Divoký, Martin; Švandrlík, Luděk.; Mocek, Tomáś

    2017-12-01

    We report recent progress in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. Laser beam distribution system is a technical system allowing safe and precise distribution of different laser beams from laboratories to several experimental stations. The unique nature of HiLASE lasers requires new approach, which makes design of the distribution system a state-of-the-art challenge.

  8. Suppression of Laser Shot Noise Using Laser-Cooled OptoMechanical Systems

    DTIC Science & Technology

    2010-04-22

    that this device will be able to demonstrate squeezing in a fairly short time . Background: The goal of this effort was to create laser light with...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...REPORT Final report on Seedling project: "Suppression of Laser Shot Noise Using Laser -Cooled Opto-Mechanical Systems" 14. ABSTRACT 16. SECURITY

  9. Laser sensor system documentation.

    DOT National Transportation Integrated Search

    2017-03-01

    Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...

  10. Material Processing Laser Systems In Production

    NASA Astrophysics Data System (ADS)

    Taeusch, David R.

    1988-11-01

    The laser processing system is now a respected, productive machine tool in the manufacturing industries. Systems in use today are proving their cost effectiveness and capabilities of processing quality parts. Several types of industrial lasers are described and their applications are discussed, with emphasis being placed on the production environment and methods of protection required for optical equipment against this normally hostile environment.

  11. Laser-GMA Hybrid Pipe Welding System

    DTIC Science & Technology

    2007-11-01

    Experimental Results.................................................................................................34 Autogenous Laser Welds...APPENDIX B. Training Manual – Overview of System Components and Software...................... APPENDIX C. NASSCO...17. Autogenous laser welds in different joint configurations (10 mm thick mild steel, 5 mm land

  12. 26 CFR 801.1 - Balanced performance measurement system; in general.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) INTERNAL REVENUE PRACTICE BALANCED SYSTEM FOR MEASURING ORGANIZATIONAL AND EMPLOYEE PERFORMANCE... and regulatory provisions require the IRS to set performance goals for organizational units and to... 26 Internal Revenue 20 2011-04-01 2011-04-01 false Balanced performance measurement system; in...

  13. 26 CFR 801.1 - Balanced performance measurement system; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) INTERNAL REVENUE PRACTICE BALANCED SYSTEM FOR MEASURING ORGANIZATIONAL AND EMPLOYEE PERFORMANCE... and regulatory provisions require the IRS to set performance goals for organizational units and to... 26 Internal Revenue 20 2010-04-01 2010-04-01 false Balanced performance measurement system; in...

  14. Laser system development for gravitational-wave interferometry in space

    NASA Astrophysics Data System (ADS)

    Numata, Kenji; Yu, Anthony W.; Camp, Jordan B.; Krainak, Michael A.

    2018-02-01

    A highly stable and robust laser system is a key component of the space-based Laser Interferometer Space Antenna (LISA) mission, which is designed to detect gravitational waves from various astronomical sources. The baseline architecture for the LISA laser consists of a low-power, low-noise Nd:YAG non-planar ring oscillator (NPRO) followed by a diode-pumped Yb-fiber amplifier with 2 W output. We are developing such laser system at the NASA Goddard Space Flight Center (GSFC), as well as investigating other laser options. In this paper, we will describe our progress to date and plans to demonstrate a technology readiness level (TRL) 6 LISA laser system.

  15. Guidance system for laser targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1978-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  16. Load balancing for massively-parallel soft-real-time systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hailperin, M.

    1988-09-01

    Global load balancing, if practical, would allow the effective use of massively-parallel ensemble architectures for large soft-real-problems. The challenge is to replace quick global communications, which is impractical in a massively-parallel system, with statistical techniques. In this vein, the author proposes a novel approach to decentralized load balancing based on statistical time-series analysis. Each site estimates the system-wide average load using information about past loads of individual sites and attempts to equal that average. This estimation process is practical because the soft-real-time systems of interest naturally exhibit loads that are periodic, in a statistical sense akin to seasonality in econometrics.more » It is shown how this load-characterization technique can be the foundation for a load-balancing system in an architecture employing cut-through routing and an efficient multicast protocol.« less

  17. High power laser downhole cutting tools and systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  18. Non-contact finger vein acquisition system using NIR laser

    NASA Astrophysics Data System (ADS)

    Kim, Jiman; Kong, Hyoun-Joong; Park, Sangyun; Noh, SeungWoo; Lee, Seung-Rae; Kim, Taejeong; Kim, Hee Chan

    2009-02-01

    Authentication using finger vein pattern has substantial advantage than other biometrics. Because human vein patterns are hidden inside the skin and tissue, it is hard to forge vein structure. But conventional system using NIR LED array has two drawbacks. First, direct contact with LED array raise sanitary problem. Second, because of discreteness of LEDs, non-uniform illumination exists. We propose non-contact finger vein acquisition system using NIR laser and Laser line generator lens. Laser line generator lens makes evenly distributed line laser from focused laser light. Line laser is aimed on the finger longitudinally. NIR camera was used for image acquisition. 200 index finger vein images from 20 candidates are collected. Same finger vein pattern extraction algorithm was used to evaluate two sets of images. Acquired images from proposed non-contact system do not show any non-uniform illumination in contrary with conventional system. Also results of matching are comparable to conventional system. We developed Non-contact finger vein acquisition system. It can prevent potential cross contamination of skin diseases. Also the system can produce uniformly illuminated images unlike conventional system. With the benefit of non-contact, proposed system shows almost equivalent performance compared with conventional system.

  19. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  20. NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew

    2014-01-01

    Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156

  1. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.

    PubMed

    Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C

    2011-04-25

    Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.

  2. An auto-locked diode laser system for precision metrology

    NASA Astrophysics Data System (ADS)

    Beica, H. C.; Carew, A.; Vorozcovs, A.; Dowling, P.; Pouliot, A.; Barron, B.; Kumarakrishnan, A.

    2017-05-01

    We present a unique external cavity diode laser system that can be auto-locked with reference to atomic and molecular spectra. The vacuum-sealed laser head design uses an interchangeable base-plate comprised of a laser diode and optical elements that can be selected for desired wavelength ranges. The feedback light to the laser diode is provided by a narrow-band interference filter, which can be tuned from outside the laser cavity to fineadjust the output wavelength in vacuum. To stabilize the laser frequency, the digital laser controller relies either on a pattern-matching algorithm stored in memory, or on first or third derivative feedback. We have used the laser systems to perform spectroscopic studies in rubidium at 780 nm, and in iodine at 633 nm. The linewidth of the 780-nm laser system was measured to be ˜500 kHz, and we present Allan deviation measurements of the beat note and the lock stability. Furthermore, we show that the laser system can be the basis for a new class of lidar transmitters in which a temperature-stabilized fiber-Bragg grating is used to generate frequency references for on-line points of the transmitter. We show that the fiber-Bragg grating spectra can be calibrated with reference to atomic transitions.

  3. Test techniques for determining laser ranging system performance

    NASA Technical Reports Server (NTRS)

    Zagwodzki, T. W.

    1981-01-01

    Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.

  4. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    PubMed

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland).

  5. The Effect of Balance Training by Tetraks Interactive Balance System on Balance and Fall Risk in Parkinson’s Patients: A Report of Four Cases

    PubMed Central

    BALCI, Nilay Çömük; TONGA, Eda; GÜLŞEN, Mustafa

    2013-01-01

    This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson’s disease. Four patients with Parkinson’s disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson’s Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson’s patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson’s disease patients. PMID:28360557

  6. A Laser Stabilization System for Rydberg Atom Physics

    DTIC Science & Technology

    2015-09-06

    offset locking method which we did. For each system, a small amount of light from a 852 nm (780 nm) diode laser is picked off from the output beam ...this way, tunable sidebands, from 1-10 GHz, that are themselves modulated at .05-5 MHz, can be generated on the input laser beam . The light from the...phase modulation signal. This signal is fed back into the fast (10 MHz bandwidth) locking electronics of the diode laser system to lock the laser to

  7. A robust embedded vision system feasible white balance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  8. Laser-Directed Ranging System Implementing Single Camera System for Telerobotics Applications

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L. (Inventor); Li, Larry C. (Inventor); Cox, Brian J. (Inventor)

    1995-01-01

    The invention relates generally to systems for determining the range of an object from a reference point and, in one embodiment, to laser-directed ranging systems useful in telerobotics applications. Digital processing techniques are employed which minimize the complexity and cost of the hardware and software for processing range calculations, thereby enhancing the commercial attractiveness of the system for use in relatively low-cost robotic systems. The system includes a video camera for generating images of the target, image digitizing circuitry, and an associated frame grabber circuit. The circuit first captures one of the pairs of stereo video images of the target, and then captures a second video image of the target as it is partly illuminated by the light beam, suitably generated by a laser. The two video images, taken sufficiently close together in time to minimize camera and scene motion, are converted to digital images and then compared. Common pixels are eliminated, leaving only a digital image of the laser-illuminated spot on the target. Mw centroid of the laser illuminated spot is dm obtained and compared with a predetermined reference point, predetermined by design or calibration, which represents the coordinate at the focal plane of the laser illumination at infinite range. Preferably, the laser and camera are mounted on a servo-driven platform which can be oriented to direct the camera and the laser toward the target. In one embodiment the platform is positioned in response to movement of the operator's head. Position and orientation sensors are used to monitor head movement. The disparity between the digital image of the laser spot and the reference point is calculated for determining range to the target. Commercial applications for the system relate to active range-determination systems, such as those used with robotic systems in which it is necessary to determine the, range to a workpiece or object to be grasped or acted upon by a robot arm end

  9. High power laser workover and completion tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  10. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  11. Comparison of three different laser systems for application in dentistry

    NASA Astrophysics Data System (ADS)

    Mindermann, Anja; Niemz, M. H.; Eisenmann, L.; Loesel, Frieder H.; Bille, Josef F.

    1993-12-01

    Three different laser systems have been investigated according to their possible application in dentistry: a free running and a Q-switched microsecond Ho:YAG laser, a free running microsecond Er:YAG laser and picosecond Nd:YLF laser system consisting of an actively mode locked oscillator and a regenerative amplifier. The experiments focused on the question if lasers can support or maybe replace ordinary drilling machines. For this purpose several cavities were generated with the lasers mentioned above. Their depth and quality were judged by light and electron microscopy. The results of the experiments showed that the picosecond Nd:YLF laser system has advantages compared to other lasers regarding their application in dentistry.

  12. Development of a US Gravitational Wave Laser System for LISA

    NASA Technical Reports Server (NTRS)

    Camp, Jordan B.; Numata, Kenji

    2015-01-01

    A highly stable and robust laser system is a key component of the space-based LISA mission architecture.In this talk I will describe our plans to demonstrate a TRL 5 LISA laser system at Goddard Space Flight Center by 2016.The laser system includes a low-noise oscillator followed by a power amplifier. The oscillator is a low-mass, compact 10mW External Cavity Laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendorRedfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2W output, built at Goddard. I will show noiseand reliability data for the full laser system, and describe our plans to reach TRL 5 by 2016.

  13. Method and system for powering and cooling semiconductor lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telford, Steven J; Ladran, Anthony S

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  14. A 1J LD pumped Nd:YAG pulsed laser system

    NASA Astrophysics Data System (ADS)

    Yi, Xue-bin; Wang, Bin; Yang, Feng; Li, Jing; Liu, Ya-Ping; Li, Hui-Jun; Wang, Yu; Chen, Ren

    2017-11-01

    A 1J LD pumped Nd;YAG pulsed laser was designed. The laser uses an oscillation and two-staged amplification structure, and applies diode bar integrated array as side-pump. The TEC temperature control device combing liquid cooling system is organized to control the temperature of the laser system. This study also analyzed the theoretical threshold of working material, the effect of thermal lens and the basic principle of laser amplification. The results showed that the laser system can achieve 1J, 25Hz pulse laser output, and the laser pulse can be output at two width: 6-7ns and 10ns, respectively, and the original beam angle is 1.2mrad. The laser system is characterized by small size, light weight, as well as good stability, which make it being applied in varied fields such as photovoltaic radar platform and etc

  15. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  16. Laser multiplexing system

    DOEpatents

    Johnson, Steve A.; English, Jr., Ronald Edward; White, Ronald K.

    2001-01-01

    A plurality of copper lasers, as radiant power sources, emits a beam of power carrying radiation. A plurality of fiber injection assemblies receives power from the plurality of copper lasers and injects such power into a plurality of fibers for individually transmitting the received power to a plurality of power-receiving devices. The power-transmitting fibers of the system are so arranged that power is delivered therethrough to each of the power-receiving devices such that, even if a few of the radiant power sources and/or fibers fail, the power supply to any of the power receiving devices will not completely drop to zero but will drop by the same proportionate amount.

  17. Laser illuminator and optical system for disk patterning

    DOEpatents

    Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John

    2000-01-01

    Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.

  18. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  19. Control electronics for a multi-laser/multi-detector scanning system

    NASA Technical Reports Server (NTRS)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  20. Tracking Control and System Development for Laser-Driven Micro-Vehicles

    NASA Astrophysics Data System (ADS)

    Kajiwara, Itsuro; Hoshino, Kentaro; Hara, Shinji; Shiokata, Daisuke; Yabe, Takashi

    The purpose of this paper is to design a control system for an integrated laser propulsion/tracking system to achieve continuous motion and control of laser-driven micro-vehicles. Laser propulsion is significant in achieving miniature and light micro-vehicles. A laser-driven micro-airplane has been studied using a paper airplane and YAG laser, resulting in successful gliding of the airplane. High-performance laser tracking control is required to achieve continuous flight. This paper presents a control design strategy based on the generalized Kalman-Yakubovic-Popov lemma to achieve this requirement. Experiments have been carried out to evaluate the performance of the integrated laser propulsion/tracking system.

  1. Using the systems framework for postural control to analyze the components of balance evaluated in standardized balance measures: a scoping review.

    PubMed

    Sibley, Kathryn M; Beauchamp, Marla K; Van Ooteghem, Karen; Straus, Sharon E; Jaglal, Susan B

    2015-01-01

    To identify components of postural control included in standardized balance measures for adult populations. Electronic searches of MEDLINE, EMBASE, and CINAHL databases using keyword combinations of postural balance/equilibrium, psychometrics/reproducibility of results/predictive value of tests/validation studies, instrument construction/instrument validation, geriatric assessment/disability evaluation, gray literature, and hand searches. Inclusion criteria were measures with a stated objective to assess balance, adult populations (18y and older), at least 1 psychometric evaluation, 1 standing task, a standardized protocol and evaluation criteria, and published in English. Two reviewers independently identified studies for inclusion. Sixty-six measures were included. A research assistant extracted descriptive characteristics and 2 reviewers independently coded components of balance in each measure using the Systems Framework for Postural Control, a widely recognized model of balance. Components of balance evaluated in these measures were underlying motor systems (100% of measures), anticipatory postural control (71%), dynamic stability (67%), static stability (64%), sensory integration (48%), functional stability limits (27%), reactive postural control (23%), cognitive influences (17%), and verticality (8%). Thirty-four measures evaluated 3 or fewer components of balance, and 1 measure-the Balance Evaluation Systems Test-evaluated all components of balance. Several standardized balance measures provide only partial information on postural control and omit important components of balance related to avoiding falls. As such, the choice of measure(s) may limit the overall interpretation of an individual's balance ability. Continued work is necessary to increase the implementation of comprehensive balance assessment in research and practice. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    DOE PAGES

    Liu, Y.; Rakhman, A.; Menshov, A.; ...

    2016-12-01

    A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  3. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rakhman, A.; Menshov, A.

    A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  4. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  5. New 223-nm excimer laser surgical system for photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.

    1999-02-01

    The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.

  6. The oral cavity as a guide for the application of low level laser energy and its direct effect on the autonomic nervous system providing true energy healing for all health practitioners

    NASA Astrophysics Data System (ADS)

    Yolin, Herbert S.

    2008-03-01

    This manuscript is intended to demonstrate the important role that dentistry plays in regulating the balance of the Autonomic Nervous System (ANS) through the proprioceptive feedback of the posterior teeth to the brain. An old paradigm called Dental Distress Syndrome, relatively unknown in dentistry today, has at its core, the importance of the height of the posterior (back) teeth and its impact on total body health which is greatly aided by low level laser energy. The rationale behind the belief that the alteration of the posterior teeth affects the ANS begins with basic concepts in embryology. The functioning of the ANS will support the fact of Dental Distress Syndrome. Health practitioners of all disciplines can learn to recognize Dental Distress Syndrome and initiate non-invasive treatment and team with a trained dentist to enhance the wellness and health of the patient if they so desire. A synopsis of my oral paper presented to the Academy of Laser Dentistry demonstrating temporary balancing of the Autonomic Nervous System with three minutes of cold laser energy, as well as my rationale as to why results vary with different cold lasers will be discussed. Clinical case studies will be presented.

  7. FM-to-AM modulations induced by a weak residual reflection stack of sine-modulated pulses in inertial confinement fusion laser systems

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Deng, Xuewei; Zhou, Wei; Hu, Dongxia; Guo, Huaiwen; Wang, Yuancheng; Zhao, Bowang; Zhong, Wei; Deng, Wu

    2018-02-01

    We report on frequency to amplitude modulation (FM-to-AM) conversion induced by a weak residual reflection stack of sine-modulated pulses in a complex laser system. Theoretical and experimental investigations reveal that when weak residual reflected pulses stack on the main pulse, the spectral intensity changes in the stacked region, which then converts to obvious AM. This kind of FM-to-AM effect often occurs in the tail of the pulse and cannot be eliminated by common compensation methods, which even enhance the modulation depth. Furthermore, the actual intensity modulation frequency and depth induced by the residual reflection stack are much higher and deeper than observed on the oscilloscope, which is harmful for safe operation of the laser facility and the driving power balance during inertial confinement fusion. To eliminate this kind of FM-to-AM effect, any possible on-axis and near-axis residual reflection in laser systems must be avoided.

  8. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  9. Performance calculation and simulation system of high energy laser weapon

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Liu, Min; Su, Yu; Zhang, Ke

    2014-12-01

    High energy laser weapons are ready for some of today's most challenging military applications. Based on the analysis of the main tactical/technical index and combating process of high energy laser weapon, a performance calculation and simulation system of high energy laser weapon was established. Firstly, the index decomposition and workflow of high energy laser weapon was proposed. The entire system was composed of six parts, including classical target, platform of laser weapon, detect sensor, tracking and pointing control, laser atmosphere propagation and damage assessment module. Then, the index calculation modules were designed. Finally, anti-missile interception simulation was performed. The system can provide reference and basis for the analysis and evaluation of high energy laser weapon efficiency.

  10. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  11. The laser and optical system for the RIBF-PALIS experiment

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Iimura, H.; Reponen, M.; Wada, M.; Katayama, I.; Sonnenschein, V.; Takamatsu, T.; Tomita, H.; Kojima, T. M.

    2018-01-01

    This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons and atomic beam. Despite such a long transport distance, we achieved a transport efficiency for the UV laser beam of about 50%. We also confirmed that the position stability of the laser beam stays within a permissible range for dedicated resonance ionization experiments.

  12. A digital intensity stabilization system for HeNe laser

    NASA Astrophysics Data System (ADS)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  13. NASA's First Laser Communication System

    NASA Image and Video Library

    2017-12-08

    A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth. The space terminal for the Lunar Laser Communication Demonstration (LLCD), NASA's first high-data-rate laser communication system, was recently integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. LLCD will demonstrate laser communications from lunar orbit to Earth at six times the rate of the best modern-day advanced radio communication systems. Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  14. Excimer laser beam delivery systems for medical applications

    NASA Astrophysics Data System (ADS)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  15. Surface Energy Balance System (SEBS) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D. R.

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infraredmore » radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.« less

  16. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  17. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  18. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    NASA Astrophysics Data System (ADS)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs

  19. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients.

    PubMed

    Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho

    2012-09-01

    Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.

  20. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  1. Formation of propagation invariant laser beams with anamorphic optical systems

    NASA Astrophysics Data System (ADS)

    Soskind, Y. G.

    2015-03-01

    Propagation invariant structured laser beams play an important role in several photonics applications. A majority of propagation invariant beams are usually produced in the form of laser modes emanating from stable laser cavities. This work shows that anamorphic optical systems can be effectively employed to transform input propagation invariant laser beams and produce a variety of alternative propagation invariant structured laser beam distributions with different shapes and phase structures. This work also presents several types of anamorphic lens systems suitable for transforming the input laser modes into a variety of structured propagation invariant beams. The transformations are applied to different laser mode types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian field distributions. The influence of the relative azimuthal orientation between the input laser modes and the anamorphic optical systems on the resulting transformed propagation invariant beams is presented as well.

  2. Automatic brightness control of laser spot vision inspection system

    NASA Astrophysics Data System (ADS)

    Han, Yang; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin

    2009-10-01

    The laser spot detection system aims to locate the center of the laser spot after long-distance transmission. The accuracy of positioning laser spot center depends very much on the system's ability to control brightness. In this paper, an automatic brightness control system with high-performance is designed using the device of FPGA. The brightness is controlled by combination of auto aperture (video driver) and adaptive exposure algorithm, and clear images with proper exposure are obtained under different conditions of illumination. Automatic brightness control system creates favorable conditions for positioning of the laser spot center later, and experiment results illuminate the measurement accuracy of the system has been effectively guaranteed. The average error of the spot center is within 0.5mm.

  3. Ultraviolet Polariton Laser

    DTIC Science & Technology

    2015-09-17

    Ultraviolet Polariton Laser Significant progress was achieved in the epitaxy of deep UV AlN/ AlGaN Bragg mirrors and microcavity structures paving...the way to the successful fabrication of vertical cavity emitting laser structures and polariton lasers. For the first time DBRs providing sufficient...high reflectivity for polariton emission were demonstrated. Thanks to a developed strain balanced Al0.85Ga0.15N template, the critical thickness

  4. Investigations of a Dual Seeded 1178 nm Raman Laser System

    DTIC Science & Technology

    2016-01-14

    20 W. Because of the linewidth broadening, a co- pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application... pumped second Stokes Raman laser system is not useful for the sodium guidestar laser application which requires narrow linewidth. Keywords: Raman...optical efficiency of 52% when pumped with a linearly polarized 1120 nm fiber laser10,11. Because of the all-polarization maintaining configuration, a

  5. Design of laser afocal zoom expander system

    NASA Astrophysics Data System (ADS)

    Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian

    2018-01-01

    Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.

  6. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  7. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca{sub 5}(PO{sub 4}){sub 3}F) or Yb:FAP, or ytterbium doped crystals structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  8. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  9. Data Partitioning and Load Balancing in Parallel Disk Systems

    NASA Technical Reports Server (NTRS)

    Scheuermann, Peter; Weikum, Gerhard; Zabback, Peter

    1997-01-01

    Parallel disk systems provide opportunities for exploiting I/O parallelism in two possible waves, namely via inter-request and intra-request parallelism. In this paper we discuss the main issues in performance tuning of such systems, namely striping and load balancing, and show their relationship to response time and throughput. We outline the main components of an intelligent, self-reliant file system that aims to optimize striping by taking into account the requirements of the applications and performs load balancing by judicious file allocation and dynamic redistributions of the data when access patterns change. Our system uses simple but effective heuristics that incur only little overhead. We present performance experiments based on synthetic workloads and real-life traces.

  10. Laser rangefinders for autonomous intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  11. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  12. Mid-IR laser system for advanced neurosurgery

    NASA Astrophysics Data System (ADS)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  13. Task one report: Optical system study. [characteristics of laser equipment for space communication systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An optical system which can be incorporated in a present day or near future space-borne laser communications system is described. Techniques of implementing these systems are presented and their design problems and use are discussed. Optical system weight is estimated as a function of aperture diameter for a typical present day or near future laser communication system. The optical communications system considered is a two-way, high data rate optical communications link from a spacecraft to a spacecraft or from a spacecraft to a ground station. Each station has a laser transmitter and receiver and a pointing and tracking system. Thus each station can track the laser transmitter of the other. Optical beamwidths are considered to be as small as an arc-second with the beam pointed to a fraction of this beamwidth.

  14. Low-intensity lasers, modern filling materials, and bonding systems influence on mineral metabolism of hard dental tissues

    NASA Astrophysics Data System (ADS)

    Kunin, Anatoly A.; Yesaulenko, I. E.; Zoibelmann, M.; Pankova, Svetlana N.; Ippolitov, Yu. A.; Oleinik, Olga I.; Popova, T. A.; Koretskaya, I. V.; Shumilovitch, Bogdan R.; Podolskaya, Elana E.

    2001-10-01

    One of the main reasons of low quality filling is breaking Ca-P balance in hard tissues. Our research was done with the purpose of studying the influence of low intensity lasers, diodic radiation, the newest filling and bonding systems on the processes of mineral metabolism in hard dental tissues while filling a tooth. 250 patients having caries and its compli-cations were examined and treated. Our complex research included: visual and instrumental examination, finding out the level of oral cavity hygiene, acid enamel biopsy, scanning electronic microscopy and X-ray spectrum microanalysis. Filling processes may produce a negative effect on mineral metabolism of hard dental tissues the latter is less pronounced when applying fluoride-containing filling materials with bonding systems. It has also been found that bonding dentin and enamel systems are designed for both a better filling adhesion (i.e. mechanical adhesion) and migration of useful microelements present in them by their sinking into hard dental tissues (i.e. chemical adhesion). Our research showed a positive influence of low intensity laser and diodic beams accompanying the use of modern filling and bonding systems on mineral metabolism of hard dental tissues.

  15. Airborne space laser communication system and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Ming; Zhang, Li-zhong; Meng, Li-Xin

    2015-11-01

    Airborne space laser communication is characterized by its high speed, anti-electromagnetic interference, security, easy to assign. It has broad application in the areas of integrated space-ground communication networking, military communication, anti-electromagnetic communication. This paper introduce the component and APT system of the airborne laser communication system design by Changchun university of science and technology base on characteristic of airborne laser communication and Y12 plan, especially introduce the high communication speed and long distance communication experiment of the system that among two Y12 plans. In the experiment got the aim that the max communication distance 144Km, error 10-6 2.5Gbps - 10-7 1.5Gbps capture probability 97%, average capture time 20s. The experiment proving the adaptability of the APT and the high speed long distance communication.

  16. Intelligent surgical laser system configuration and software implementation

    NASA Astrophysics Data System (ADS)

    Hsueh, Chi-Fu T.; Bille, Josef F.

    1992-06-01

    An intelligent surgical laser system, which can help the ophthalmologist to achieve higher precision and control during their procedures, has been developed by ISL as model CLS 4001. In addition to the laser and laser delivery system, the system is also equipped with a vision system (IPU), robotics motion control (MCU), and a tracking closed loop system (ETS) that tracks the eye in three dimensions (X, Y and Z). The initial patient setup is computer controlled with guidance from the vision system. The tracking system is automatically engaged when the target is in position. A multi-level tracking system is developed by integrating our vision and tracking systems which have been able to maintain our laser beam precisely on target. The capabilities of the automatic eye setup and the tracking in three dimensions provides for improved accuracy and measurement repeatability. The system is operated through the Surgical Control Unit (SCU). The SCU communicates with the IPU and the MCU through both ethernet and RS232. Various scanning pattern (i.e., line, curve, circle, spiral, etc.) can be selected with given parameters. When a warning is activated, a voice message is played that will normally require a panel touch acknowledgement. The reliability of the system is ensured in three levels: (1) hardware, (2) software real time monitoring, and (3) user. The system is currently under clinical validation.

  17. The High-Repetition-Rate Advanced Petawatt Laser System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haefner, Constantin; Jarboe, Jeff; Koubikova, Luci

    2017-02-02

    The High-Repetition-Rate Advanced Petawatt Laser System (HAPLS), being developed at Lawrence Livermore National Laboratory (LLNL), recently completed a significant milestone: demonstration of continuous operation of an all diode-pumped, high-energy femtosecond petawatt laser system. The system is now ready for delivery and integration at the European Extreme Light Infrastructure Beamlines facility project (ELI Beamlines) in the Czech Republic.

  18. Boresight alignment method for mobile laser scanning systems

    NASA Astrophysics Data System (ADS)

    Rieger, P.; Studnicka, N.; Pfennigbauer, M.; Zach, G.

    2010-06-01

    Mobile laser scanning (MLS) is the latest approach towards fast and cost-efficient acquisition of 3-dimensional spatial data. Accurately evaluating the boresight alignment in MLS systems is an obvious necessity. However, recent systems available on the market may lack of suitable and efficient practical workflows on how to perform this calibration. This paper discusses an innovative method for accurately determining the boresight alignment of MLS systems by employing 3D laser scanners. Scanning objects using a 3D laser scanner operating in a 2D line-scan mode from various different runs and scan directions provides valuable scan data for determining the angular alignment between inertial measurement unit and laser scanner. Field data is presented demonstrating the final accuracy of the calibration and the high quality of the point cloud acquired during an MLS campaign.

  19. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    NASA Astrophysics Data System (ADS)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  20. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator.

    PubMed

    Kim, Dong Ik; Rhee, Hyug-Gyo; Song, Jae-Bong; Lee, Yun-Woo

    2007-10-01

    We present experimental results on the output power stabilization of an Ar(+) laser for a direct laser writing system (LWS). Instability of the laser output power in the LWS cause resolution fluctuations of being fabricated diffractive optical elements or computer-generated holograms. For the purpose of reducing the power fluctuations, we have constituted a feedback loop with an acousto-optic modulator, a photodetector, and a servo controller. In this system, we have achieved the stability of +/-0.20% for 12 min and the relative intensity noise level of 2.1 x 10(-7) Hz(-12) at 100 Hz. In addition, we applied our system to a 2 mW internal mirror He-Ne laser. As a consequence, we achieved the output power stability of +/-0.12% for 25 min.

  1. A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing

    NASA Astrophysics Data System (ADS)

    Ko, Woo-Hyun; Srinivasa, Arun; Kumar, P. R.

    2017-12-01

    Cyber-manufacturing systems can be enhanced by an integrated network architecture that is easily configurable, reliable, and scalable. We consider a cyber-physical system for use in an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are built around the laser processing machine. They include a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data and user’s job requests, a robotic arm manipulating the workpiece in the work space, and middleware, named Etherware, supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result.

  2. Comparison of digital controllers used in magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, William A.

    1990-01-01

    Dynamic systems that were once controlled by analog circuits are now controlled by digital computers. Presented is a comparison of the digital controllers presently used with magnetic suspension and balance systems. The overall responses of the systems are compared using a computer simulation of the magnetic suspension and balance system and the digital controllers. The comparisons include responses to both simulated force and position inputs. A preferred digital controller is determined from the simulated responses.

  3. Updated laser safety & hazard analysis for the ARES laser system based on the 2007 ANSI Z136.1 standard.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    A laser safety and hazard analysis was performed for the temperature stabilized Big Sky Laser Technology (BSLT) laser central to the ARES system based on the 2007 version of the American National Standards Institutes (ANSI) Standard Z136.1, for Safe Use of Lasers and the 2005 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

  4. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupke, W.F.; Payne, S.A.; Chase, L.L.

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  5. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  6. Alignment system for SGII-Up laser facility

    NASA Astrophysics Data System (ADS)

    Gao, Yanqi; Cui, Yong; Li, Hong; Gong, Lei; Lin, Qiang; Liu, Daizhong; Zhu, Baoqiang; Ma, Weixin; Zhu, Jian; Lin, Zunqi

    2018-03-01

    The SGII-Up laser facility in Shanghai is one of the most important high-power laser facilities in China. It is designed to obtain 24 kJ (3ω) of energy with a square pulse of 3 ns using eight laser beams (two bundles). To satisfy the requirements for the safety, efficiency, and quality, an alignment system is developed for this facility. This alignment system can perform automatic alignment of the preamplifier system, main amplifier system, and harmonic conversion system within 30 min before every shot during the routine operation of the facility. In this article, an overview of the alignment system is first presented. Then, its alignment characteristics are discussed, along with the alignment process. Finally, experimental results, including the alignment results and the facility performance, are reported. The results show that the far-field beam pointing alignment accuracy is better than 3 μrad, and the alignment error of the near-field beam centering is no larger than 1 mm. These satisfy the design requirements very well.

  7. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  8. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  9. Continuous System-Level Scale for Comparing Laser Gain Media

    DTIC Science & Technology

    2008-12-01

    thickness in Yb3+-doped microchip lasers . J. Opt. Soc. Am. B October 2003, 20, 2061–2067. 29. Liu, Q.; Gong, M.; Lu, F.; Gong, W.; Li, C. 520-W...Continuous “System-Level” Scale for Comparing Laser Gain Media by Jeffrey O. White ARL-TR-4682 December 2008...System-Level” Scale for Comparing Laser Gain Media Jeffrey O. White Sensors and Electron Devices Directorate, ARL

  10. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  11. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  12. Laser Card For Compact Optical Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Drexler, Jerome

    1982-05-01

    The principal thrust of the optical data storage industry to date has been the 10 billion bit optical disc system. Mass memory has been the primary objective. Another objective that is beginning to demand recognition is compact memory of 1 million to 40 million bits--on a wallet-size, laser recordable card. Drexler Technology has addressed this opportunity and has succeeded in demonstrating laser writing and readback using a 16 mm by 85 mm recording stripe mounted on a card. The write/read apparatus was developed by SRI International. With this unit, 5 micron holes have been recorded using a 10 milliwatt, 830 nanometer semiconductor-diode laser. Data is entered on an Apple II keyboard using the ASCII code. The recorded reflective surface is scanned with the same laser at lower power to generate a reflected bit stream which is converted into alphanumerics and which appear on the monitor. We are pleased to report that the combination of the DREXONTM laser recordable card ("Laser Card"), the semiconductor-diode laser, arrays of large recorded holes, and human interactive data rates are all mutually compatible and point the way forward to economically feasible, compact, data-storage systems.

  13. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  14. Use of a novel tunable solid state disk laser as a diagnostic system for laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Paa, Wolfgang; Triebel, Wolfgang

    2004-09-01

    An all solid state disk laser system-named "Advanced Disk Laser (ADL)" -particularly tailored for laser induced fluorescence (LIF) in combustion processes is presented. The system currently under development comprises an Yb:YAG-seedlaser and a regenerative amplifier. Both are based on the disk laser concept as a new laser architecture. This allows a tunable, compact, efficient diode pumped solid state laser (DPSSL) system with repetition rates in the kHz region. After frequency conversion to the UV-spectral region via third and fourth harmonics generation, this laser-due to its unique properties such as single-frequency operation, wavelength tuneability and excellent beam profile-is well suited for excitation of small molecules such as formaldehyde, OH, NO or O2, which are characteristic for combustion processes. Using the method of planar laser induced fluorescence (PLIF) we observed concentration distributions of formaldehyde in cool and hot flames of a specially designed diethyl-ether burner. The images recorded with 1 kHz repetition rate allow visualizing the distribution of formaldehyde on a 1 ms time scale. This demonstrates for the first time the usability of this novel laser for LIF measurements and is the first step towards integration of the ADL into capsules for drop towers and the international space station.

  15. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  16. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    PubMed

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  17. Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes

    NASA Astrophysics Data System (ADS)

    Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.

    2017-12-01

    In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.

  18. Blue laser diode (450 nm) systems for welding copper

    NASA Astrophysics Data System (ADS)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  19. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  20. National Ignition Facility Laser System Performance

    DOE PAGES

    Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...

    2017-03-23

    The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less

  1. Development of an integrated automated retinal surgical laser system.

    PubMed

    Barrett, S F; Wright, C H; Oberg, E D; Rockwell, B A; Cain, C; Rylander, H G; Welch, A J

    1996-01-01

    Researchers at the University of Texas and the USAF Academy have worked toward the development of a retinal robotic laser system. The overall goal of this ongoing project is to precisely place and control the depth of laser lesions for the treatment of various retinal diseases such as diabetic retinopathy and retinal tears. Separate low speed prototype subsystems have been developed to control lesion depth using lesion reflectance feedback parameters and lesion placement using retinal vessels as tracking landmarks. Both subsystems have been successfully demonstrated in vivo on pigmented rabbits using an argon continuous wave laser. Preliminary testing on rhesus primate subjects have been accomplished with the CW argon laser and also the ultrashort pulse laser. Recent efforts have concentrated on combining the two subsystems into a single prototype capable of simultaneously controlling both lesion depth and placement. We have designated this combined system CALOSOS for Computer Aided Laser Optics System for Ophthalmic Surgery. Several interesting areas of study have developed in integrating the two subsystems: 1) "doughnut" shaped lesions that occur under certain combinations of laser power, spot size, and irradiation time complicating measurements of central lesion reflectance, 2) the optimal retinal field of view (FOV) to achieve both tracking and lesion parameter control, and 3) development of a hybrid analog/digital tracker using confocal reflectometry to achieve retinal tracking speeds of up to 100 dgs. This presentation will discuss these design issues of this clinically significant prototype system. Details of the hybrid prototype system are provided in "Hybrid Eye Tracking for Computer-Aided Retinal Surgery" at this conference. The paper will close with remaining technical hurdles to clear prior to testing the full-up clinical prototype system.

  2. CO 2 laser treatment system of tinea pedis

    NASA Astrophysics Data System (ADS)

    Ueda, Masahiro

    The CO 2 laser treatment system 'Melase 1000' has been developed for the treatment of Tinea pedis and the efficacy of the treatment using the system and its optimum irradiation condition are studied. The present system enables us to make the healing time of Tinea pedis treatment far shorter than conventional pharmaceuticals. This is in spite of using heat levels low enough for patients not to feel discomfort. Features offered by the system are a safe-and-easy operation and a stable laser power for a prolonged use. The efficacy of the present therapy is excellent; only two treatments a week for three weeks, i.e. six consecutive treatments, attained an improvement rate of 71.8% in the skin findings and a 'usefulness' of 66.2% determined from cases rated as 'useful' or 'better'. The optimum laser irradiation condition for a single treatment found in this experiment is a light fluence of about 3 J/cm 2 and four laser pulses with a time interval between pulses of 1 s for a typical horny layer thinner than 0.5 mm.

  3. Laser Ground System for Communication Experiments with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kuzkov, Volodymyr; Volovyk, Dmytro; Kuzkov, Sergii; Sodnik, Zoran; Pukha, Sergii; Caramia, Vincenzo

    2012-10-01

    The ARTEMIS satellite with the OPALE laser communication terminal on-board was launched on 12 July, 2001. 1789 laser communications sessions were performed between ARTEMIS and SPOT-4 (PASTEL) from 01 April 2003 to 09 January 2008 with total duration of 378 hours. Regular laser communication experiments between ESA's Optical Ground Station (OGS - altitude 2400 m above see level) and ARTEMIS in various atmosphere conditions were also performed. The Japanese Space Agency (JAXA) launched the KIRARI (OICETS) satellite with laser communication terminal called LUCE. Laser communication links between KIRARI and ARTEMIS were successfully realized and international laser communications experiments from the KIRARI satellite were also successfully performed with optical ground stations located in the USA (JPL), Spain (ESA OGS), Germany (DLR), and Japan (NICT). The German Space Agency (DLR) performed laser communication links between two LEO satellites (TerraSAR-X and NFIRE), demonstrating data transfer rates of 5.6Gbit/s and performed laser communication experiments between the satellites and the ESA optical ground station. To reduce the influence of weather conditions on laser communication between satellites and ground stations, a network of optical stations situated in different atmosphere regions needs to be created. In 2002, the Main Astronomical Observatory (MAO) started the development of its own laser communication system to be placed into the Cassegrain focus of its 0.7m AZT-2 telescope (Fe = 10.5m), located in Kyiv 190 meters above sea level. The work was supported by the National Space Agency of Ukraine and by ESA ARTEMIS has an orbital position of 21.4° E and an orbital inclination of more than 9.75°. As a result we developed a precise tracking system for AZT-2 telescope (weighing more than 2 tons) using micro-step motors. Software was developed for computer control of the telescope to track the satellite's orbit and a tracking accuracy of 0.6 arcsec was achieved

  4. Spaceborne CO2 laser communications systems

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. H.; Mcavoy, N.; Johnson, E. H.; Goodwin, F. E.; Peyton, B. J.

    1975-01-01

    Projections of the growth of earth-sensing systems for the latter half of the 1980's show a data transmission requirement of 300 Mbps and above. Mission constraints and objectives lead to the conclusion that the most efficient technique to return the data from the sensing satellite to a ground station is through a geosynchronous data relay satellite. Of the two links that are involved (sensing satellite to relay satellite and relay satellite to ground), a laser system is most attractive for the space-to-space link. The development of CO2 laser systems for space-to-space applications is discussed with the completion of a 300 Mpbs data relay receiver and its modification into a transceiver. The technology and state-of-the-art of such systems are described in detail.

  5. Y balance test has no correlation with the Stability Index of the Biodex Balance System.

    PubMed

    Almeida, Gabriel Peixoto Leão; Monteiro, Isabel Oliveira; Marizeiro, Débora Fortes; Maia, Laísa Braga; de Paula Lima, Pedro Olavo

    2017-02-01

    A cross-sectional study design. The Stability Index of the Biodex Balance System (SI-BBS) and Y Balance Test (YBT) has been used in studies assessing postural stability but no studies have verified the association of the YBT with the SI-BBS. To analyze the association of the Y Balance Test (YBT) with the Stability Index of the Biodex Balance System (SI-BBS) to evaluate postural stability. Forty participants who engaged in recreational physical activities, 12 of whom had a history of injury to the lower limbs. Was used the SI-BBS and the anterior, posterolateral, posteromedial, and composite measures of the YBT. The order of execution of the tests and of the lower limbs evaluated was randomized and blind tested by two evaluators. Pearson's correlation coefficient was used to check the strength of the relationship between the distances achieved on the YBT and the SI-BBS. The YBT showed excellent reliability in the anterior, posteromedial, and posterolateral directions. However, the YBT showed no statistically significant correlation with any variables in the SI-BBS, indicating poor validity between YBT and SI-BBS assessments of postural stability in people with and without history of lower limb injuries. The results of this study showed the YBT is not correlated with the SI-BBS as an assessment of postural stability. This finding has implications for researchers and clinicians using YBT results as the only measure of postural stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. An Investigation of Laser Lighting Systems to Assist Aircraft

    DOT National Transportation Integrated Search

    1979-01-01

    A model for the visual detectability of narrow light beams was developed and used to evaluate the system performance of two laser lighting system configurations: (1) a laser VASI and (2) a crossed beam glide path indicator. Laboratory experiments con...

  7. Reliability, Validity, and Ability to Identify Fall Status of the Balance Evaluation Systems Test, Mini-Balance Evaluation Systems Test, and Brief-Balance Evaluation Systems Test in Older People Living in the Community.

    PubMed

    Marques, Alda; Almeida, Sara; Carvalho, Joana; Cruz, Joana; Oliveira, Ana; Jácome, Cristina

    2016-12-01

    To assess the reliability, validity, and ability to identify fall status of the Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest, compared with the Berg Balance Scale (BBS), in older people living in the community. Cross-sectional. Community centers. Older adults (N=122; mean age ± SD, 76±9y). Not applicable. Participants reported on falls history in the preceding year and completed the Activities-Specific Balance Confidence (ABC) Scale. The BBS, BESTest, and the Five Times Sit-To-Stand Test were administered. Interrater (2 physiotherapists) and test-retest relative (48-72h) and absolute reliabilities were explored with the intraclass correlation coefficient (ICC) equation (2,1) and the Bland and Altman method. Minimal detectable changes at the 95% confidence level (MDC 95 ) were established. Validity was assessed by correlating the balance tests with each other and with the ABC Scale (Spearman correlation coefficients-ρ). Receiver operating characteristics assessed the ability of each balance test to differentiate between people with and without a history of falls. All balance tests presented good to excellent interrater (ICC=.71-.93) and test-retest (ICC=.50-.82) relative reliability, with no evidence of bias. MDC 95 values were 4.6, 9, 3.8, and 4.1 points for the BBS, BESTest, Mini-BESTest, and Brief-BESTest, respectively. All tests were significantly correlated with each other (ρ=.83-.96) and with the ABC Scale (ρ=.46-.61). Acceptable ability to identify fall status (areas under the curve, .71-.78) was found for all tests. Cutoff points were 48.5, 82, 19.5, and 12.5 points for the BBS, BESTest, Mini-BESTest, and Brief-BESTest, respectively. All balance tests are reliable, valid, and able to identify fall status in older people living in the community. Therefore, the choice of which test to use will depend on the level of balance impairment, purpose, and time availability. Copyright © 2016. Published by Elsevier Inc.

  8. Remote Operations of Laser Guide Star Systems: Gemini Observatory.

    NASA Astrophysics Data System (ADS)

    Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine

    2011-03-01

    The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.

  9. The 3D laser radar vision processor system

    NASA Astrophysics Data System (ADS)

    Sebok, T. M.

    1990-10-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  10. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  11. Aircraft Detection System Ensures Free-Space Laser Safety

    NASA Technical Reports Server (NTRS)

    Smithgall, Brian; Wilson, Keith E.

    2004-01-01

    As scientists continue to explore our solar system, there are increasing demands to return greater volumes of data from smaller deep-space probes. Accordingly, NASA is studying advanced strategies based on free-space laser transmissions, which offer secure, high-bandwidth communications using smaller subsystems of much lower power and mass than existing ones. These approaches, however, can pose a danger to pilots in the beam path because the lasers may illuminate aircraft and blind them. Researchers thus are investigating systems that will monitor the surrounding airspace for aircraft that could be affected. This paper presents current methods for safe free space laser propagation.

  12. New Laser System For Combined Monitoring And Treatment Of Neonatal Hyperbilirubinemia

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; Hamza, Mohammad

    1989-09-01

    Laser photoradiation therapy for neonatal hyperbilirubinemia is a breakthrough in the management of neonatal jaundice. In this paper the authors present a new laser system that provides combined monitoring and therapy for neonatal hyperbilirubinemia. The new system incorporates tunable laser sources that can be operated at selected wavelengths to achieve both transcutaneous differential absorption measurements of bilirubin concentration in addition to laser photoradiation therapy. The new laser system can allow the treating physician to avoid over or under treatment of jaundiced neonates by the control of serum bilirubin from a critically high level to a reasonably safe level.

  13. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  14. Linear systems on balancing chemical reaction problem

    NASA Astrophysics Data System (ADS)

    Kafi, R. A.; Abdillah, B.

    2018-01-01

    The concept of linear systems appears in a variety of applications. This paper presents a small sample of the wide variety of real-world problems regarding our study of linear systems. We show that the problem in balancing chemical reaction can be described by homogeneous linear systems. The solution of the systems is obtained by performing elementary row operations. The obtained solution represents the finding coefficients of chemical reaction. In addition, we present a computational calculation to show that mathematical software such as Matlab can be used to simplify completion of the systems, instead of manually using row operations.

  15. Fatigue Lives Of Laser-Cut Metals

    NASA Technical Reports Server (NTRS)

    Martin, Michael R.

    1988-01-01

    Fatigue lives made to approach those attainable by traditional grinding methods. Fatigue-test specimens prepared from four metallic alloys, and material removed from specimens by manual grinding, by Nd:glass laser, and by Nd:YAG laser. Results of fatigue tests of all specimens indicated reduction of fatigue strengths of laser-fired specimens. Laser machining holds promise for improved balancing of components of gas turbines.

  16. Development of Rust Stripping System using High Power Laser

    NASA Astrophysics Data System (ADS)

    Shirakawa, Kazuomi; Ohashi, Katsuaki; Ashidate, Shuichi; Kurosawa, Kiyoshi; Nakayama, Michio; Uchida, Yutaka; Nobusada, Yuuji

    The repainting cycle depends on removal of rust in maintenance of outdoor steel-frame structural facilities. However existing stripping process, which is usually made by hands with brushes, cannot strip the rust completely in maintenance of power transmission towers, for example. To solve this problem, we investigated laser fluence and pulse width for removal of rust using DPSSL (Diode Pumped Solid State Laser), and selected optimum laser supply. Then we checked the effect of laser stripping on prolongation of the repainting cycle compared with the conventional stripping process. Utilizing results of the research, we developed rust stripping system using DPSSL. From the results of field trial of rust removal operation using this system at high places of a power transmission tower, possibility of practical use of the system for the maintenance was confirmed.

  17. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  18. Method of high precision interval measurement in pulse laser ranging system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Lv, Xin-yuan; Mao, Jin-jin; Liu, Wei; Yang, Dong

    2013-09-01

    Laser ranging is suitable for laser system, for it has the advantage of high measuring precision, fast measuring speed,no cooperative targets and strong resistance to electromagnetic interference,the measuremen of laser ranging is the key paremeters affecting the performance of the whole system.The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement, the principle structure of laser ranging system was introduced, and a method of high precision time interval measurement in pulse laser ranging system was established in this paper.Based on the analysis of the factors which affected the precision of range measure,the pulse rising edges discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2 high precision interval measurement system based on TMS320F2812 DSP was designed to improve the measurement precision.Experimental results indicate that the time interval measurement method in this paper can obtain higher range accuracy. Compared with the traditional time interval measurement system,the method simplifies the system design and reduce the influence of bad weather conditions,furthermore,it satisfies the requirements of low costs and miniaturization.

  19. Handling And Safety Aspects Of Fiber Optic Laser Beam Delivery Systems

    NASA Astrophysics Data System (ADS)

    Schonborn, K.-H.; Wodrich, W.

    1988-06-01

    Using lasers for therapeutic applications is getting more and more accepted. In ophthalmology Ar-lasers for intraocular applications are quite common. The Nd:YAG-laser is used as a high power tool in connection with silica fibers for different extracorporal and intracorporal applications. The CO2-laser is the cutting laser, one problem being the beam transmission: The state of the art in fibers is not sufficient up to now. Because of the high power used safety against laser radiation hazard is of great importance. The safety in laser use is primarily dependent on the surgeons cautiousness, e.g. using laser protection goggels, observing that the spot of the aiming beam is present etc. On the other hand the laser and fiber system has to be inherently safe by appropriate technical means as far as possible. An additional aspect adding to safety is the handling: With easier system handling less attention of the surgeon is necessary for driving the apparatus. Thus he can concentrate on the patient and on the procedure. In considering the fiber system one important point in handling and safety is the coupling of the fiber to the laser head. The development philosophy in this coupling may be divided into two groups: - one is trying to use standard connectors which were initially developed for data transmission; - the other is using special connectors. One example of the first group is the guiding of the laser beam from the Ar-laser to the slit-lamp in ophtalmology. Here the well-known F-SMA connectors together with a special fiber with adapted numerical aperture are used. The advantage of such a system is the low price of the connector. For high power lasers such as the clinical Nd:YAG lasers with 40 to 150 W those connectors are not suitable. Up to now every laser manufacturer developed his own connector system in this field.

  20. Model of load balancing using reliable algorithm with multi-agent system

    NASA Astrophysics Data System (ADS)

    Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.

    2017-04-01

    Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.

  1. Development of on-line laser power monitoring system

    NASA Astrophysics Data System (ADS)

    Ding, Chien-Fang; Lee, Meng-Shiou; Li, Kuan-Ming

    2016-03-01

    Since the laser was invented, laser has been applied in many fields such as material processing, communication, measurement, biomedical engineering, defense industries and etc. Laser power is an important parameter in laser material processing, i.e. laser cutting, and laser drilling. However, the laser power is easily affected by the environment temperature, we tend to monitor the laser power status, ensuring there is an effective material processing. Besides, the response time of current laser power meters is too long, they cannot measure laser power accurately in a short time. To be more precisely, we can know the status of laser power and help us to achieve an effective material processing at the same time. To monitor the laser power, this study utilize a CMOS (Complementary metal-oxide-semiconductor) camera to develop an on-line laser power monitoring system. The CMOS camera captures images of incident laser beam after it is split and attenuated by beam splitter and neutral density filter. By comparing the average brightness of the beam spots and measurement results from laser power meter, laser power can be estimated. Under continuous measuring mode, the average measuring error is about 3%, and the response time is at least 3.6 second shorter than thermopile power meters; under trigger measuring mode which enables the CMOS camera to synchronize with intermittent laser output, the average measuring error is less than 3%, and the shortest response time is 20 millisecond.

  2. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Discharge energy balance in the nitrogen-containing active medium of an electron-beam-controlled CO laser

    NASA Astrophysics Data System (ADS)

    Dolinina, V. I.; Koterov, V. N.; Pyatakhin, Mikhail V.; Urin, B. M.

    1989-02-01

    Numerical methods were used to investigate theoretically the dynamics of the energy balance of a discharge in a CO-N2 mixture, taking into account the mutual influence of the distributions of the electron energy and of the populations of the molecules over the vibrational levels. It was shown that this influence plays a decisive part in substantially redistributing the pump energy between the vibrational levels of the CO and N2 molecules in favor of the N2 molecules. A stabilizing action of the nitrogen on the thermal regime of the CO laser-active medium was discovered and the range of optimal CO:N2 ratios was determined.

  3. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing.

    PubMed

    Chang, Jasper O; Levy, Susan S; Seay, Seth W; Goble, Daniel J

    2014-05-01

    Recent guidelines advocate sports medicine professionals to use balance tests to assess sensorimotor status in the management of concussions. The present study sought to determine whether a low-cost balance board could provide a valid, reliable, and objective means of performing this balance testing. Criterion validity testing relative to a gold standard and 7 day test-retest reliability. University biomechanics laboratory. Thirty healthy young adults. Balance ability was assessed on 2 days separated by 1 week using (1) a gold standard measure (ie, scientific grade force plate), (2) a low-cost Nintendo Wii Balance Board (WBB), and (3) the Balance Error Scoring System (BESS). Validity of the WBB center of pressure path length and BESS scores were determined relative to the force plate data. Test-retest reliability was established based on intraclass correlation coefficients. Composite scores for the WBB had excellent validity (r = 0.99) and test-retest reliability (R = 0.88). Both the validity (r = 0.10-0.52) and test-retest reliability (r = 0.61-0.78) were lower for the BESS. These findings demonstrate that a low-cost balance board can provide improved balance testing accuracy/reliability compared with the BESS. This approach provides a potentially more valid/reliable, yet affordable, means of assessing sports-related concussion compared with current methods.

  4. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  5. Pulse-burst laser systems for fast Thomson scattering (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D. J.; Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706; Ambuel, J. R.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinchmore » to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.« less

  6. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  7. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro

  8. ELI-Beamlines: development of next generation short-pulse laser systems

    NASA Astrophysics Data System (ADS)

    Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Green, J. T.; Antipenkov, R.; Fibrich, M.; Novák, J.; Batysta, F.; Mazanec, T.; Drouin, M. A.; Kasl, K.; Baše, R.; Peceli, D.; Koubíková, L.; Trojek, P.; Boge, R.; Lagron, J. C.; Vyhlídka, Å.; Weiss, J.; Cupal, J.,; Hřebíček, J.; Hříbek, P.; Durák, M.; Polan, J.; Košelja, M.; Korn, G.; Horáček, M.; Horáček, J.; Himmel, B.; Havlíček, T.; Honsa, A.; Korouš, P.; Laub, M.; Haefner, C.; Bayramian, A.; Spinka, T.; Marshall, C.; Johnson, G.; Telford, S.; Horner, J.; Deri, B.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Greenhalgh, J.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.; Ditmire, T.,; Gaul, E.; Martinez, M.; Frederickson, C.; Hammond, D.; Malato, C.; White, W.; Houžvička, J.

    2015-05-01

    Overview of the laser systems being built for ELI-Beamlines is presented. The facility will make available high-brightness multi-TW ultrashort laser pulses at kHz repetition rate, PW 10 Hz repetition rate pulses, and kilojoule nanosecond pulses for generation of 10 PW peak power. The lasers will extensively employ the emerging technology of diode-pumped solid-state lasers (DPSSL) to pump OPCPA and Ti:sapphire broadband amplifiers. These systems will provide the user community with cutting-edge laser resources for programmatic research in generation and applications of high-intensity X-ray sources, in particle acceleration, and in dense-plasma and high-field physics.

  9. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  10. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  11. High speed real-time wavefront processing system for a solid-state laser system

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  12. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  13. Geometric calibration of a coordinate measuring machine using a laser tracking system

    NASA Astrophysics Data System (ADS)

    Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo

    2005-12-01

    This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.

  14. Development of a red diode laser system for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Halkiotis, Konstantinos N.; Yova, Dido M.; Uzunoglou, Nikolaos K.; Papastergiou, Georgios; Matakias, Sotiris; Koukouvinos, Ilias

    1998-07-01

    The effectiveness of photodynamic treatment modality has been proven experimentally for a large variety of tumors, during the last years. This therapy utilizes the combined action of light and photosensitizing drug. Until now, a disadvantage of PDT has be the low tissue penetration of light, at the wavelengths of most commonly available lasers, for clinical studies. The red wavelength offers the advantage of increased penetration depth in tissue, in addition several new wavelength offers the advantage of increased penetration depth in tissue, in addition several new photosensitizers present absorption band at the region 630nm to 690nm. The development of high power red diode laser system for photodynamic therapy, has provided a cost effective alternative to existing lasers for use in PDT. This paper will describe the system design, development and performance of a diode laser system, connected with a fiber optic facility, to be used for PDT. The system was based on a high power semiconductor diode laser emitting at 655nm. The laser output power was approximately 60mW at the output of a 62.5/125/900 micron fiber optic probe. FUll technical details and optical performance characteristics of the system will be discussed in this paper.

  15. Receiver Design, Performance Analysis, and Evaluation for Space-Borne Laser Altimeters and Space-to-Space Laser Ranging Systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1996-01-01

    This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.

  16. The Geoscience Laser Altimetry/Ranging System (GLARS)

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.; Degnan, J. J.; Bufton, J. L.; Garvin, J. B.; Abshire, J. B.

    1986-01-01

    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system.

  17. Laser systems for the combustion research facility - Diana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.K.; Lavasek, J.W.; Jones, E.D.

    1982-03-01

    A 5-Joule/pulse, 1.8-..mu..s-pulse-width, 10-ppS flashlamp-pumped tunable-dye-laser system, called Diana, has been built for use in experiments to be performed at the Combustion Research Facility, Sandia National Laboratories, Livermore. Design specifications for the system and details of construction are described, and it is noted that performance of the laser meets or exceeds all design criteria. Areas for further performance improvements are discussed, and updates are suggested to enhance system usefulness.

  18. Dual sub-picosecond and sub-nanosecond laser system

    NASA Astrophysics Data System (ADS)

    Xie, Xinglong; Liu, Fengqiao; Yang, Jingxin; Yang, Xin; Li, Meirong; Xue, Zhiling; Gao, Qi; Guan, Fuyi; Zhang, Weiqing; Huang, Guanlong; Zhuang, Yifei; Han, Aimei; Lin, Zunqi

    2003-11-01

    A high power laser system delivering a 20-TW, 0.5 - 0.8 ps ultra-short laser pulse and a 20-J, 500-ps long pulse simultaneously in one shot is completed. This two-beam laser operates at the wavelength of 1053 nm and uses Nd doped glass as the gain media of the main amplification chain. The chirped-pulse amplification (CPA) technology is used to compress the stretched laser pulse. After compression, the ultrashort laser pulse is measured: energy above 16.0 J, S/N contrast ratio ~ 10^(5) : 1, filling factor ~>52.7%. Another long pulse beam is a non-compressed chirped laser pulse, which is measured: energy ~ 20 J, pulse duration 500 ps. The two beams are directed onto the target surface at an angle of 15°.

  19. Reflective optical imaging systems with balanced distortion

    DOEpatents

    Hudyma, Russell M.

    2001-01-01

    Optical systems compatible with extreme ultraviolet radiation comprising four reflective elements for projecting a mask image onto a substrate are described. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical systems are particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput, and allows higher semiconductor device density. The inventive optical systems are characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  20. Method and system for communicating with a laser power driver

    DOEpatents

    Telford, Steven

    2017-07-18

    A system for controlling a plurality of laser diodes includes an optical transmitter coupled to the laser diode driver for each laser diode. An optical signal including bi-phase encoded data is provided to each laser diode driver. The optical signal includes current level and pulse duration information at which each of the diodes is to be driven. Upon receiving a trigger signal, the laser diode drivers operate the laser diodes using the current level and pulse duration information to output a laser beam.

  1. Under-sampling in a Multiple-Channel Laser Vibrometry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corey, Jordan

    2007-03-01

    Laser vibrometry is a technique used to detect vibrations on objects using the interference of coherent light with itself. Most vibrometry systems process only one target location at a time, but processing multiple locations simultaneously provides improved detection capabilities. Traditional laser vibrometry systems employ oversampling to sample the incoming modulated-light signal, however as the number of channels increases in these systems, certain issues arise such a higher computational cost, excessive heat, increased power requirements, and increased component cost. This thesis describes a novel approach to laser vibrometry that utilizes undersampling to control the undesirable issues associated with over-sampled systems. Undersamplingmore » allows for significantly less samples to represent the modulated-light signals, which offers several advantages in the overall system design. These advantages include an improvement in thermal efficiency, lower processing requirements, and a higher immunity to the relative intensity noise inherent in laser vibrometry applications. A unique feature of this implementation is the use of a parallel architecture to increase the overall system throughput. This parallelism is realized using a hierarchical multi-channel architecture based on off-the-shelf programmable logic devices (PLDs).« less

  2. Solid state laser systems for space application

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1994-01-01

    Since the last report several things have happened to effect the research effort. In laser metrology, measurements using Michelson type interferometers with an FM modulated diode laser source have been performed. The discrete Fourier transform technique has been implemented. Problems associated with this technique as well as the overall FM scheme were identified. The accuracy of the technique is not at the level we would expect at this point. We are now investigating the effect of various types of noise on the accuracy as well as making changes to the system. One problem can be addressed by modifying the original optical layout. Our research effort was also expanded to include the assembly and testing of a diode pumped\\Nd:YAG laser pumped\\Ti sapphire laser for possible use in sounding rocket applications. At this stage, the diode pumped Nd:YAG laser has been assembled and made operational.

  3. Portable Airborne Laser System Measures Forest-Canopy Height

    NASA Technical Reports Server (NTRS)

    Nelson, Ross

    2005-01-01

    (PALS) is a combination of laser ranging, video imaging, positioning, and data-processing subsystems designed for measuring the heights of forest canopies along linear transects from tens to thousands of kilometers long. Unlike prior laser ranging systems designed to serve the same purpose, the PALS is not restricted to use aboard a single aircraft of a specific type: the PALS fits into two large suitcases that can be carried to any convenient location, and the PALS can be installed in almost any local aircraft for hire, thereby making it possible to sample remote forests at relatively low cost. The initial cost and the cost of repairing the PALS are also lower because the PALS hardware consists mostly of commercial off-the-shelf (COTS) units that can easily be replaced in the field. The COTS units include a laser ranging transceiver, a charge-coupled-device camera that images the laser-illuminated targets, a differential Global Positioning System (dGPS) receiver capable of operation within the Wide Area Augmentation System, a video titler, a video cassette recorder (VCR), and a laptop computer equipped with two serial ports. The VCR and computer are powered by batteries; the other units are powered at 12 VDC from the 28-VDC aircraft power system via a low-pass filter and a voltage converter. The dGPS receiver feeds location and time data, at an update rate of 0.5 Hz, to the video titler and the computer. The laser ranging transceiver, operating at a sampling rate of 2 kHz, feeds its serial range and amplitude data stream to the computer. The analog video signal from the CCD camera is fed into the video titler wherein the signal is annotated with position and time information. The titler then forwards the annotated signal to the VCR for recording on 8-mm tapes. The dGPS and laser range and amplitude serial data streams are processed by software that displays the laser trace and the dGPS information as they are fed into the computer, subsamples the laser range and

  4. Fifteen terawatt picosecond CO2 laser system.

    PubMed

    Haberberger, D; Tochitsky, S; Joshi, C

    2010-08-16

    The generation of a record peak-power of 15 TW (45 J, 3 ps) in a single CO(2) laser beam is reported. Using a master oscillator-power amplifier laser system, it is shown that up to 100 J of energy can be extracted in a train of 3 ps laser pulses separated by 18 ps, a characteristic time of the CO(2) molecule. The bandwidth required for amplifying the short injected laser pulse train in a 2.5 atm final CO(2) amplifier is provided by field broadening of the medium at intensities of up to 140 GW/cm(2). The measured saturation energy for 3 ps pulses is 120 mJ/cm(2) which confirms that energy is simultaneously extracted from six rovibrational lines.

  5. FALCON Remote Laser Alignment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T.W.; Hebner, G.A.

    1993-01-01

    The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.

  6. FALCON Remote Laser Alignment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T.W.; Hebner, G.A.

    1993-02-01

    The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.

  7. A pulse-burst laser system for Thomson scattering on NSTX-U

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Diallo, A.; LeBlanc, B.

    2017-10-01

    A pulse-burst laser system has been built for Thomson scattering on NSTX-U, and is currently being integrated into the NSTX-U Thomson scattering diagnostic system. The laser will be operated in three distinct modes. The base mode is continuous 30 Hz rep rate, and is the standard operating mode of the laser. The base mode will be interrupted to produce a "slow burst" (specified 1 kHz rep rate for 50 ms) or a "fast burst" (specified 10 kHz rep rate for 5 ms). The combination of base mode→ interruption→ burst mode is new and has not been implemented on any previous pulse-burst laser system. Laser pulsing is halted for a set period (~ 1 minute) following a burst to allow the YAG rods to cool; this type of operation is called a heat-capacity laser. The laser is Nd:YAG operated at 1064 nm, q-switched to produce >= 1.5 J pulses with ~ 20 ns FWHM. It is flashlamp pumped, with dual-rod oscillator (9 mm) and dual-rod amplifier (12 mm). Variable pulsewidth drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction. The laser system has demonstrated compliance with all specifications, and is capable of exceeding design specifications by significant margins, e.g., higher rep rates for longer burst periods. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, the L-H transition, and various MHD modes.

  8. 970-nm ridge waveguide diode laser bars for high power DWBC systems

    NASA Astrophysics Data System (ADS)

    Wilkens, Martin; Erbert, Götz; Wenzel, Hans; Knigge, Andrea; Crump, Paul; Maaßdorf, Andre; Fricke, Jörg; Ressel, Peter; Strohmaier, Stephan; Schmidt, Berthold; Tränkle, Günther

    2018-02-01

    de lasers are key components in material processing laser systems. While mostly used as pump sources for solid state or fiber lasers, direct diode laser systems using dense wavelength multiplexing have come on the market in recent years. These systems are realized with broad area lasers typically, resulting in beam quality inferior to disk or fiber lasers. We will present recent results of highly efficient ridge waveguide (RW) lasers, developed for dense-wavelength-beamcombining (DWBC) laser systems expecting beam qualities comparable to solid state laser systems and higher power conversion efficiencies (PCE). The newly developed RW lasers are based on vertical structures with an extreme double asymmetric large optical cavity. Besides a low vertical divergence these structures are suitable for RW-lasers with (10 μm) broad ridges, emitting in a single mode with a good beam quality. The large stripe width enables a lateral divergence below 10° (95 % power content) and a high PCE by a comparably low series resistance. We present results of single emitters and small test arrays under different external feedback conditions. Single emitters can be tuned from 950 nm to 975 nm and reach 1 W optical power with more than 55 % PCE and a beam quality of M2 < 2 over the full wavelength range. The spectral width is below 30 pm FWHM. 5 emitter arrays were stabilized using the same setup. Up to now we reached 3 W optical power, limited by power supply, with 5 narrow spectral lines.

  9. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  10. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  11. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  12. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  13. Relay telescope for high power laser alignment system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  14. Laser addressed holographic memory system

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.

  15. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    NASA Astrophysics Data System (ADS)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  16. Acousto-optic laser projection systems for displaying TV information

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  17. Land-Based Mobile Laser Scanning Systems: a Review

    NASA Astrophysics Data System (ADS)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  18. Laser Communication Demonstration System (LSCS) and Future Mobile Satellite Services

    NASA Technical Reports Server (NTRS)

    Chen, C. -C.; Lesh, J. R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth Orbit. For future global satellite communication systems using intersatellite links (ISLs), laser communications technology can offer reduced mass , reduced power requirements, and increased channel bandwidths without regulatory restraint. This paper provides comparisons with radio systems and status of the program.

  19. Status of ARGOS - The Laser Guide Star System for the LBT

    NASA Astrophysics Data System (ADS)

    Raab, Walfried; Rabien, Sebastian; Gaessler, Wolfgang; Esposito, Simone; Antichi, Jacopo; Lloyd-Hart, Michael; Barl, Lothar; Beckmann, Udo; Bonaglia, Marco; Borelli, Jose; Brynnel, Joar; Buschkamp, Peter; Busoni, Lorenzo; Carbonaro, Luca; Christou, Julian; Connot, Claus; Davies, Richard; Deysenroth, Matthias; Durney, Olivier; Green, Richard; Gemperlein, Hans; Gasho, Victor; Haug, Marcus; Hubbard, Pete; Ihle, Sebastian; Kulas, Martin; Loose, Christina; Lehmitz, Michael; Noenickx, Jamison; Nussbaum, Edmund; Orban De Xivry, Gilles; Quirrenbach, Andreas; Peter, Diethard; Rahmer, Gustavo; Rademacher, Matt; Storm, Jesper; Schwab, Christian; Vaitheeswaran, Vidhya; Ziegleder, Julian

    2013-12-01

    ARGOS is an innovative multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT), designed to perform effective GLAO correction over a very wide field of view. The system is using high powered pulsed green (532 nm) lasers to generate a set of three guide stars above each of the LBT mirrors. The laser beams are launched through a 40 cm telescope and focused at an altitude of 12 km, creating laser beacons by means of Rayleigh scattering. The returning scattered light, primarily sensitive to the turbulences close to the ground, is detected by a gated wavefront sensor system. The derived ground layer correction signals are directly driving the adaptive secondary mirror of the LBT. ARGOS is especially designed for operation with the multiple object spectrograph Luci, which will benefit from both, the improved spatial resolution, as well as the strongly enhanced flux. In addition to the GLAO Rayleigh beacon system, ARGOS was also designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system has undergone extensive tests during Summer 2012 and is scheduled for installation at the LBT in Spring 2013. The remaining sub-systems will be installed during the course of 2013. We report on the overall status of the ARGOS system and the results of the sub-system characterizations carried out so far.

  20. High-power beam combining: a step to a future laser weapon system

    NASA Astrophysics Data System (ADS)

    Protz, Rudolf; Zoz, Jürgen; Geidek, Franz; Dietrich, Stephan; Fall, Michael

    2012-11-01

    Due to the enormous progress in the field of high-power fiber lasers during the last years commercial industrial fiber lasers are now available, which deliver a near-diffraction limited beam with power levels up to10kW. For the realization of a future laser weapon system, which can be used for Counter-RAM or similar air defence applications, a laser source with a beam power at the level of 100kW or more is required. At MBDA Germany the concept for a high-energy laser weapon system is investigated, which is based on such existing industrial laser sources as mentioned before. A number of individual high-power fiber laser beams are combined together, using one common beam director telescope. By this "geometric" beam coupling scheme, sufficient laser beam power for an operational laser weapon system can be achieved. The individual beams from the different lasers are steered by servo-loops, using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at the common focal point on a distant target, also allowing fine tracking of target movements and first order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated using several experimental set-ups. Different experiments were performed, to investigate laser beam target interaction and target fine tracking also at large distances. Content and results of these investigations are reported. An example for the lay-out of an Air Defence High Energy Laser Weapon (ADHELW ) is given. It can be concluded, that geometric high-power beam combining is an important step for the realization of a laser weapon system in the near future.

  1. Qualification testing of fiber-based laser transmitters and on-orbit validation of a commercial laser system

    NASA Astrophysics Data System (ADS)

    Wright, M. W.; Wilkerson, M. W.; Tang, R. R.

    2017-11-01

    Qualification testing of fiber based laser transmitters is required for NASA's Deep Space Optical Communications program to mature the technology for space applications. In the absence of fully space qualified systems, commercial systems have been investigated in order to demonstrate the robustness of the technology. To this end, a 2.5 W fiber based laser source was developed as the transmitter for an optical communications experiment flown aboard the ISS as a part of a technology demonstration mission. The low cost system leveraged Mil Standard design principles and Telcordia certified components to the extent possible and was operated in a pressure vessel with active cooling. The laser was capable of high rate modulation but was limited by the mission requirements to 50 Mbps for downlinking stored video from the OPALS payload, externally mounted on the ISS. Environmental testing and space qualification of this unit will be discussed along with plans for a fully space qualified laser transmitter.

  2. Reflective optical imaging system with balanced distortion

    DOEpatents

    Chapman, Henry N.; Hudyma, Russell M.; Shafer, David R.; Sweeney, Donald W.

    1999-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements comprise, in order from object to image, convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention enables the use of larger slit dimensions associated with ring field scanning optics, improves wafer throughput and allows higher semiconductor device density. The inventive optical system is characterized by reduced dynamic distortion because the static distortion is balanced across the slit width.

  3. Laser metrology and optic active control system for GAIA

    NASA Astrophysics Data System (ADS)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  4. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  5. Study and design on USB wireless laser communication system

    NASA Astrophysics Data System (ADS)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  6. Laser Ultrasonic System for On-Line Steel Tube Gauging

    NASA Astrophysics Data System (ADS)

    Monchalin, Jean-Pierre; Choquet, Marc; Padioleau, Christian; Néron, Christian; Lévesque, Daniel; Blouin, Alain; Corbeil, Christian; Talbot, Richard; Bendada, Abdelhakim; Lamontagne, Mario; Kolarik, Robert V.; Jeskey, Gerald V.; Dominik, Erich D.; Duly, Larry J.; Samblanet, Kenneth J.; Agger, Steven E.; Roush, Kenneth J.; Mester, Michael L.

    2003-03-01

    A laser-ultrasonic system has been installed on a seamless tubing production line of The Timken Company and is being used to measure on-line the wall thickness of tubes during processing. The seamless process consists essentially in forcing a mandrel through a hot cylindrical billet in rotation and typically results in fairly large wall thickness variations that should be minimized and controlled to respect specifications. The system includes a Q-switched Nd-YAG laser for generation of ultrasound by ablation, a long pulse very stable Nd-YAG laser for detection coupled to a confocal Fabry-Perot interferometer, a pyrometer to measure tube temperature and two laser Doppler velocimeters to measure the coordinates of the probing location at the tube surface. The laser, data acquisition and processing units are housed in a cabin off line and connected to a front coupling head located over the passing tube by optical fibers. The system has been integrated into the plant computer network and provides in real time thickness data to the plant operators. It allow much faster mill setups, has been used since its deployment for inspecting more than 100,000 tubes and has demonstrated very significant savings.

  7. A new concept for solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.

    1978-01-01

    A new approach is proposed in which an intermediate body heated by sunlight is used as the pumping source for IR systems, i.e., concentration solar radiation is absorbed and reradiated via an intermediate blackbody. This body is heated by focused sunlight to a high temperature and its heat losses are engineered to be small. The cooled laser tube (or tubes) is placed within the cavity and is pumped by it. The advantage is that the radiation spectrum is like a blackbody at the intermediate temperature and the laser medium selectively absorbs this light. Focusing requirements, heat losses, and absorption bandwidths of laser media are examined, along with energy balance and potential efficiency. The results indicate that for lasers pumped through an IR absorption spectrum, the use of an intermediate blackbody offers substantial and important advantages. The loss in radiative intensity for optical pumping by a lower-temperature body is partly compensated by the increased solid angle of exposure to the radiative environment.

  8. Color image processing and vision system for an automated laser paint-stripping system

    NASA Astrophysics Data System (ADS)

    Hickey, John M., III; Hise, Lawson

    1994-10-01

    Color image processing in machine vision systems has not gained general acceptance. Most machine vision systems use images that are shades of gray. The Laser Automated Decoating System (LADS) required a vision system which could discriminate between substrates of various colors and textures and paints ranging from semi-gloss grays to high gloss red, white and blue (Air Force Thunderbirds). The changing lighting levels produced by the pulsed CO2 laser mandated a vision system that did not require a constant color temperature lighting for reliable image analysis.

  9. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, Detlev H.; Hackel, Lloyd A.

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  10. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  11. Laser Doppler detection systems for gas velocity measurement.

    PubMed

    Huffaker, R M

    1970-05-01

    The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.

  12. The airborne laser ranging system, its capabilities and applications

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Degnan, J. J.; Englar, T. S., Jr.

    1982-01-01

    The airborne laser ranging system is a multibeam short pulse laser ranging system on board an aircraft. It simultaneously measures the distances between the aircraft and six laser retroreflectors (targets) deployed on the Earth's surface. The system can interrogate over 100 targets distributed over an area of 25,000 sq, kilometers in a matter of hours. Potentially, a total of 1.3 million individual range measurements can be made in a six hour flight. The precision of these range measurements is approximately + or - 1 cm. These measurements are used in procedure which is basically an extension of trilateration techniques to derive the intersite vector between the laser ground targets. By repeating the estimation of the intersite vector, strain and strain rate errors can be estimated. These quantities are essential for crustal dynamic studies which include determination and monitoring of regional strain in the vicinity of active fault zones, land subsidence, and edifice building preceding volcanic eruptions.

  13. Evaluation of surface energy and radiation balance systems on the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.

    1987-01-01

    Four Surface Energy and Radiation Balance Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. Surface energy and radiation balances were investigated on six sites on the Konza Prairie about 3 km south of Manhattan, Kansas. Measurements were made to allow the computation of these radiation components: total solar and diffuse radiation, reflected solar radiation, net radiation, and longwave radiation upward and downward. Measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. The report includes a description of the experimental sites, data acquisition systems and sensors, data acquisitions system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the energy balance components for all days and systems are given.

  14. Applications of OALCLV in the high power laser systems

    NASA Astrophysics Data System (ADS)

    Huang, Dajie; Fan, Wei; Cheng, He; Wei, Hui; Wang, Jiangfeng; An, Honghai; Wang, Chao; Cheng, Yu; Xia, Gang; Li, Xuechun; Lin, Zunqi

    2017-10-01

    This paper introduces the recent development of our integrated optical addressed spatial light modulator and its applications in the high power laser systems. It can be used to convert the incident beam into uniform beam for high energy effiency, or it can realize special distribution to meet the requirements of physical experiment. The optical addressing method can avoid the problem of the black matrix effect of the electric addressing device. Its transmittance for 1053nm light is about 85% and the aperture of our device has reached 22mm× 22mm. As a transmissive device, it can be inserted into the system without affecting the original optical path. The applications of the device in the three laser systems are introduced in detail in this paper. In the SGII-Up laser facility, this device demonstrates its ability to shape the output laser beam of the fundamental frequency when the output energy reaches about 2000J. Meanwhile, there's no change in the time waveform and far field distribution. This means that it can effectively improve the capacity of the maximum output energy. In the 1J1Hz Nd-glass laser system, this device has been used to improve the uniformity of the output beam. As a result, the PV value reduces from 1.4 to 1.2, which means the beam quality has been improved effectively. In the 9th beam of SGII laser facility, the device has been used to meet the requirements of sampling the probe light. As the transmittance distribution of the laser beam can be adjusted, the sampling spot can be realized in real time. As a result, it's easy to make the sampled spot meet the requirements of physics experiment.

  15. Optical laser systems at the Linac Coherent Light Source

    DOE PAGES

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...

    2015-04-22

    Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  16. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jayne; Ludwig, Peter; Brand, Larry

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. Themore » guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.« less

  17. Using motor imagery to study the neural substrates of dynamic balance.

    PubMed

    Ferraye, Murielle Ursulla; Debû, Bettina; Heil, Lieke; Carpenter, Mark; Bloem, Bastiaan Roelof; Toni, Ivan

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large). We used a matched visual imagery (VI) control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012), in a pattern consistent with existing somatotopic maps of the trunk (for balance) and legs (for gait). These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008), and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders.

  18. Battery Cell Balancing System and Method

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  19. Modeling of photoluminescence in laser-based lighting systems

    NASA Astrophysics Data System (ADS)

    Chatzizyrli, Elisavet; Tinne, Nadine; Lachmayer, Roland; Neumann, Jörg; Kracht, Dietmar

    2017-12-01

    The development of laser-based lighting systems has been the latest step towards a revolution in illumination technology brought about by solid-state lighting. Laser-activated remote phosphor systems produce white light sources with significantly higher luminance than LEDs. The weak point of such systems is often considered to be the conversion element. The high-intensity exciting laser beam in combination with the limited thermal conductivity of ceramic phosphor materials leads to thermal quenching, the phenomenon in which the emission efficiency decreases as temperature rises. For this reason, the aim of the presented study is the modeling of remote phosphor systems in order to investigate their thermal limitations and to calculate the parameters for optimizing the efficiency of such systems. The common approach to simulate remote phosphor systems utilizes a combination of different tools such as ray tracing algorithms and wave optics tools for describing the incident and converted light, whereas the modeling of the conversion process itself, i.e. photoluminescence, in most cases is circumvented by using the absorption and emission spectra of the phosphor material. In this study, we describe the processes involved in luminescence quantum-mechanically using the single-configurational-coordinate diagram as well as the Franck-Condon principle and propose a simulation model that incorporates the temperature dependence of these processes. Following an increasing awareness of climate change and environmental issues, the development of ecologically friendly lighting systems featuring low power consumption and high luminous efficiency is imperative more than ever. The better understanding of laser-based lighting systems is an important step towards that aim as they may improve on LEDs in the near future.

  20. A laser-powered hydrokinetic system for caries removal and cavity preparation.

    PubMed

    Hadley, J; Young, D A; Eversole, L R; Gornbein, J A

    2000-06-01

    Laser systems have been developed for the cutting of dental hard tissues. The erbium, chromium:yttrium-scandium-gallium-garnet, or Er,Cr:YSGG, laser system used in conjunction with an air-water spray has been shown to be efficacious in vitro for cavity preparation. The authors randomly selected subjects for cavity preparation with conventional air turbine/bur dental surgery or an Er,Cr:YSGG laser-powered system using a split-mouth design. They prepared Class I, III and V cavities, placed resin restorations and evaluated subjects on the day of the procedure and 30 days and six months postoperatively for pulp vitality, recurrent caries, pain and discomfort, and restoration retention. Sixty-seven subjects completed the study. There were no statistical differences between the two treatment groups for the parameters measured with one exception; there was a statistically significant decrease in discomfort levels for the laser system at the time of cavity preparation for subjects who declined to receive local anesthetic. The Er,Cr:YSGG laser system is effective for preparation of Class I, III and V cavities and resin restorations are retained by lased tooth surfaces. Hard-tissue cutting lasers are being introduced for use in operative dentistry. In this study, an Er,Cr:YSGG laser has been shown to be effective for cavity preparation and restoration replacement.

  1. Laser photovoltaic power system synergy for SEI applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  2. Free-space QKD system hacking by wavelength control using an external laser.

    PubMed

    Lee, Min Soo; Woo, Min Ki; Jung, Jisung; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2017-05-15

    We develop a way to hack free-space quantum key distribution (QKD) systems by changing the wavelength of the quantum signal laser using an external laser. Most free-space QKD systems use four distinct lasers for each polarization, thereby making the characteristics of each laser indistinguishable. We also discover a side-channel that can distinguish the lasers by using an external laser. Our hacking scheme identifies the lasers by automatically applying the external laser to each signal laser at different intensities and detecting the wavelength variation according to the amount of incident external laser power. We conduct a proof-of-principle experiment to verify the proposed hacking structure and confirm that the wavelength varies by several gigahertzes to several nanometers, depending on the intensity of the external laser. The risk of hacking is successfully proven through the experimental results. Methods for prevention are also suggested.

  3. Acousto-optic laser projection systems for displaying TV information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulatorsmore » and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)« less

  4. Conceptual design of laser fusion reactor KOYO-fast Concepts of reactor system and laser driver

    NASA Astrophysics Data System (ADS)

    Kozaki, Y.; Miyanaga, N.; Norimatsu, T.; Soman, Y.; Hayashi, T.; Furukawa, H.; Nakatsuka, M.; Yoshida, K.; Nakano, H.; Kubomura, H.; Kawashima, T.; Nishimae, J.; Suzuki, Y.; Tsuchiya, N.; Kanabe, T.; Jitsuno, T.; Fujita, H.; Kawanaka, J.; Tsubakimoto, K.; Fujimoto, Y.; Lu, J.; Matsuoka, S.; Ikegawa, T.; Owadano, Y.; Ueda, K.; Tomabechi, K.; Reactor Design Committee in Ife Forum, Members Of

    2006-06-01

    We have carried out the design studies of KOYO-Fast laser fusion power plant, using fast ignition cone targets, DPSSL lasers, and LiPb liquid wall chambers. Using fast ignition targets, we could design a middle sized 300 MWe reactor module, with 200 MJ fusion pulse energy and 4 Hz rep-rates, and 1200MWe modular power plants with 4 reactor modules and a 16 Hz laser driver. The liquid wall chambers with free surface cascade flows are proposed for cooling surface quickly enough to a 4 Hz pulse operation. We examined the potential of Yb-YAG ceramic lasers operated at 150˜ 225 K for both implosion and heating laser systems required for a 16-Hz repetition and 8 % total efficiency.

  5. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Peterka, P.; Honzatko, P.; Kubecek, V.

    2017-03-01

    Self-induced laser line sweeping of various regimes of sweep direction is reported for an experimental ytterbium fiber laser. The regimes involve sweeping from shorter to longer wavelengths (1076~\\text{nm}\\to 1083 nm)—so-called normal self-sweeping; from longer to shorter wavelengths (1079~\\text{nm}\\to 1073 nm)—so-called reverse self-sweeping; and a mixed regime in which a precarious balance of the normal and reverse sweeping exists and the sweep direction can change between consecutive sweeps. The regimes of sweeping were selected by changing the pump wavelength only. A detailed explanation of this sweep direction dynamics is presented based on a semi-empirical model. This model also provides a way to predict the sweep direction of fiber lasers based on other rare-earth-doped laser media.

  6. Off-line-locked laser diode species monitor system

    NASA Technical Reports Server (NTRS)

    Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)

    1995-01-01

    An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.

  7. Quantum cascade lasers, systems, and applications in Europe

    NASA Astrophysics Data System (ADS)

    Lambrecht, Armin

    2005-03-01

    Since the invention of the Quantum Cascade Laser (QCL) a decade ago an impressive progress has been achieved from first low temperature pulsed laser emission to continuous wave operation at room temperature. Distributed feedback (DFB) lasers working in pulsed mode at ambient temperatures and covering a broad spectral range in the mid infrared (MIR) are commercially available now. For many industrial applications e.g. automotive exhaust control and process monitoring, laser spectroscopy is an established technique, generally using near infrared (NIR) diode lasers. However, the mid infrared (MIR) spectral region is of special interest because of much stronger absorption lines compared to NIR. The status of QCL devices, system development and applications is reviewed. Special emphasis is given to the situation in Europe where a remarkable growth of QCL related R&D can be observed.

  8. Performance of the upgraded Orroral laser ranging system

    NASA Technical Reports Server (NTRS)

    Luck, John M.

    1993-01-01

    The topics discussed include the following: upgrade arrangements, system prior to 1991, elements of the upgrade, laser performance, timing system performance, pass productivity, system precision, system accuracy, telescope pointing and future upgrades and extensions.

  9. Speckle averaging system for laser raster-scan image projection

    DOEpatents

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  10. Design and Development of High-Repetition-Rate Satellite Laser Ranging System

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jung; Bang, Seong-Cheol; Sung, Ki-Pyoung; Lim, Hyung-Chul; Jung, Chan-Gyu; Kim, In-Yeung; Choi, Jae-Seung

    2015-09-01

    The Accurate Ranging System for Geodetic Observation ? Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station ¡°data validation¡± process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.

  11. System study of a diode-pumped solid-state-laser driver for inertial fusion energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, C.D.; Payne, S.A.

    The present a conceptual design of a diode-pumped solid-state-laser (DPSSL) driver for an inertial fusion energy (IFE) power plant based on the maximized cost of electricity (COE) as determined in a comprehensive systems study. This study contained extensive detail for all significant DPSSL physics and costs, plus published scaling relationships for the costs of the target chamber and the balance of plant (BOP). Our DPSSL design offers low development cost because it is modular, can be fully tested functionally at reduced scale, and is based on mature solid-state-laser technology. Most of the parameter values that we used are being verifiedmore » by experiments now in progress. Future experiments will address the few issues that remain. As a consequence, the economic and technical risk of our DPSSL driver concept is becoming rather low. Baseline performance at 1 GW{sub e} using a new gain medium [Yb{sup 3+}-doped Sr{sub 5}(PO{sub 4}){sub 3}F or Yb:S-FAP] includes a product of laser efficiency and target gain of {eta}G = 7, and a COE of 8.6 cents/kW{center_dot}h, although values of {eta}G {ge} 11 and COEs {le}6.6 cents/kW{center_dot}h are possible at double the assumed target gain of 76 at 3.7 MJ. We present a summary of our results, discuss why other more-common types of laser media do not perform as well as Yb:S-FAP, and present a simple model that shows where DPSSL development should proceed to reduce projected COEs.« less

  12. The Practical Implementation of Non-Contacting Laser Strain Measurements Systems

    NASA Technical Reports Server (NTRS)

    Yunis, Isam; Quinn, roger D.; Kadambi, Jaikrishnan R.

    2000-01-01

    Measurement of stress and strain in rotating turbomachinery is critical to many industries. The search for a non-contacting, non-interfering, non-degrading measurement system is on going and extensive. While several methods seem promising in theory, implementation has proven troublesome. This work uncovers and quantifies these implementation issues in the context of a laser measurement system. Both a Laser Doppler Velocimeter system and a displacement laser system are utilized. It is found that the key issues are signal to noise ratio, rigid body compensation, measurement location, and conversion of intermittent measurements to a continuous signal. Accounting for these factors leads to successful measurements. These results should lead to better ideas and more practical solutions to the non-contacting, non-degrading, non-interfering strain measurement system problem.

  13. Optimizing the noise characteristics of high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Jauregui, Cesar; Müller, Michael; Kienel, Marco; Emaury, Florian; Saraceno, Clara J.; Limpert, Jens; Keller, Ursula; Tünnermann, Andreas

    2017-02-01

    The noise characteristics of high-power fiber lasers, unlike those of other solid-state lasers such as thin-disks, have not been systematically studied up to now. However, novel applications for high-power fiber laser systems, such as attosecond pulse generation, put stringent limits to the maximum noise level of these sources. Therefore, in order to address these applications, a detailed knowledge and understanding of the characteristics of noise and its behavior in a fiber laser system is required. In this work we have carried out a systematic study of the propagation of the relative intensity noise (RIN) along the amplification chain of a state-of-the-art high-power fiber laser system. The most striking feature of these measurements is that the RIN level is progressively attenuated after each amplification stage. In order to understand this unexpected behavior, we have simulated the transfer function of the RIN in a fiber amplification stage ( 80μm core) as a function of the seed power and the frequency. Our simulation model shows that this damping of the amplitude noise is related to saturation. Additionally, we show, for the first time to the best of our knowledge, that the fiber design (e.g. core size, glass composition, doping geometry) can be modified to optimize the noise characteristics of high-power fiber laser systems.

  14. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  15. Mechanistic studies of systemic immune responses induced by laser-nanotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Zhou, Feifan; Henderson, Brock; Vasquez, Bailey; Liu, Hong; Hode, Tomas; Nordquist, Robert E.

    2014-02-01

    With the help of the specific absorption spectrum of carbon nanotubes, we achieved selective photothermal tumor cell destruction, particularly using a near-infrared laser to reduce potential damage to untargeted tissues. Combined with immunological stimulation, using a novel adjuvant, we also observed the anti-tumor immune responses when treating animal tumors using the laser-nano treatment. In fact, the local application of laser-nano-immunotherapy appeared to result in a systemic curative effect. In our mechanistic study, we found that the laser-nano-immuno treatment can activate antigen-presenting cells, such as dendritic cells (DCs). More importantly, the uptake and presentation of antigens by these antigen presenting cells were significantly enhanced, as shown by the strong binding of tumor cells and DCs as well as the proliferation of T cells caused by the DCs after the DCs had been incubated with laser-nano-immuno treated tumors. These cellular observations provide evidence that a systemic anti-tumor immune response was induced by the combination of laser and nanotechnology.

  16. A Completely Solid-State Tunable Ti:Sapphire Laser System

    NASA Technical Reports Server (NTRS)

    Guerra, David V.; Coyle, D. Barry; Krebs, Danny J.

    1994-01-01

    Compact, completely solid-state tunable pulsed laser system passively cooled developed for potential employment in aircraft and sounding-rocket lidar experiments. Ti:sapphire based laser system pumped with frequency-doubled diode-pumped Nd:YAG. Rugged, self-contained system extremely flexible and provides pulsed output at specific frequencies with low input-power requirements. In-situ measurements enables scientists to study upper-atmosphere dynamics. Tuning range easily extended to bands between 650-950 nm in order to study other atmospheric constituents.

  17. Analysis of laser fluorosensor systems for remote algae detection and quantification

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1977-01-01

    The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections.

  18. System, Apparatus and Method Employing a Dual Head Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B. (Inventor); Stysley, Paul R. (Inventor); Poulios, Demetrios (Inventor)

    2015-01-01

    A system, apparatus and method employing a laser with a split-head, V-assembly gain material configuration. Additionally, the present invention is directed to techniques to better dissipate or remove unwanted energies in laser operations. The present invention is also directed to techniques for better collimated laser beams, with single spatial mode quality (TEM00), with improved efficiency, in extreme environments, such as in outer space.

  19. A flexible master oscillator for a pulse-burst laser system

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Young, W. C.

    2015-12-01

    A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.

  20. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  1. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of

  2. Atmospheric transmission of CO2 laser radiation with application to laser Doppler systems

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1975-01-01

    The molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated at the P16, P18, P20, P22, and P24 lines of the CO2 laser for temperatures from 200 to 300 K and for pressures from 100 to 1100 mb. The temperature variation of the continuum absorption coefficient of water vapor is taken into account semi-empirically from Burch's data. The total absorption coefficient from the present calculations falls within + or - 20 percent of the results of McClatchey and Selby. The transmission loss which the CO2 pulsed laser Doppler system experiences was calculated for flight test conditions for the five P-lines. The total transmission loss is approximately 7 percent higher at the P16 line and 10 percent lower at the P24 line compared to the P20 line. Comparison of the CO2 laser with HF and DF laser transmission reveals the P2(8) line at 3.8 micrometers of the DF laser is much better from the transmission point of view for altitudes below 10 km.

  3. Smart spectroscopy sensors: II. Narrow-band laser systems

    NASA Astrophysics Data System (ADS)

    Matharoo, Inderdeep; Peshko, Igor

    2013-03-01

    This paper describes the principles of operation of a miniature multifunctional optical sensory system based on laser technology and spectroscopic principles of analysis. The operation of the system as a remote oxygen sensor has been demonstrated. The multi-component alarm sensor has been designed to recognise gases and to measure gas concentration (O2, CO2, CO, CH4, N2O, C2H2, HI, OH radicals and H2O vapour, including semi-heavy water), temperature, pressure, humidity, and background radiation from the environment. Besides gas sensing, the same diode lasers are used for range-finding and to provide sensor self-calibration. The complete system operates as an inhomogeneous sensory network: the laser sensors are capable of using information received from environmental sensors for improving accuracy and reliability of gas concentration measurement. The sources of measurement errors associated with hardware and algorithms of operation and data processing have been analysed in detail.

  4. Design of a laser scanner for a digital mammography system.

    PubMed

    Rowlands, J A; Taylor, J E

    1996-05-01

    We have developed a digital readout system for radiographic images using a scanning laser beam. In this system, electrostatic charge images on amorphous selenium (alpha-Se) plates are read out using photo-induced discharge (PID). We discuss the design requirements of a laser scanner for the PID system and describe its construction from commercially available components. The principles demonstrated can be adapted to a variety of digital imaging systems.

  5. Nd:YAG development for spaceborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Harper, L. L.; Logan, K. E.; Williams, R. H.; Stevens, D. A.

    1979-01-01

    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses.

  6. Method of laser beam coding for control systems

    NASA Astrophysics Data System (ADS)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  7. Laser system for testing radiation imaging detector circuits

    NASA Astrophysics Data System (ADS)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  8. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  9. ARGOS: the laser guide star system for the LBT

    NASA Astrophysics Data System (ADS)

    Rabien, S.; Ageorges, N.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Hart, M. L.; Hubbard, P.; Kanneganti, S.; Masciadri, E.; Noenickx, J.; Orban de Xivry, G.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.

    2010-07-01

    ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBT's adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earth's atmosphere. ARGOS will project a set of three guide stars above each of LBT's mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.

  10. High removal rate laser-based coating removal system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.L.; Celliers, P.M.; Hackel, L.

    1999-11-16

    A compact laser system is disclosed that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1,000 ft{sup 2}/hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The systemmore » also has a personal safety system which protects against accidental exposures.« less

  11. Precision laser automatic tracking system.

    PubMed

    Lucy, R F; Peters, C J; McGann, E J; Lang, K T

    1966-04-01

    A precision laser tracker has been constructed and tested that is capable of tracking a low-acceleration target to an accuracy of about 25 microrad root mean square. In tracking high-acceleration targets, the error is directly proportional to the angular acceleration. For an angular acceleration of 0.6 rad/sec(2), the measured tracking error was about 0.1 mrad. The basic components in this tracker, similar in configuration to a heliostat, are a laser and an image dissector, which are mounted on a stationary frame, and a servocontrolled tracking mirror. The daytime sensitivity of this system is approximately 3 x 10(-10) W/m(2); the ultimate nighttime sensitivity is approximately 3 x 10(-14) W/m(2). Experimental tests were performed to evaluate both dynamic characteristics of this system and the system sensitivity. Dynamic performance of the system was obtained, using a small rocket covered with retroreflective material launched at an acceleration of about 13 g at a point 204 m from the tracker. The daytime sensitivity of the system was checked, using an efficient retroreflector mounted on a light aircraft. This aircraft was tracked out to a maximum range of 15 km, which checked the daytime sensitivity of the system measured by other means. The system also has been used to track passively stars and the Echo I satellite. Also, the system tracked passively a +7.5 magnitude star, and the signal-to-noise ratio in this experiment indicates that it should be possible to track a + 12.5 magnitude star.

  12. Torsional vibration measurements on rotating shaft system using laser doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Xiang, Ling; Yang, Shixi; Gan, Chunbiao

    2012-11-01

    In this work, a laser torsional vibrameter was used to measure the torsion vibration of a rotating shaft system under electrical network impact. Based on the principles of laser Doppler velocimetry, the laser torsional vibrometer (LTV) are non-contact measurement of torsional oscillation of rotating shafts, offering significant advantages over conventional techniques. Furthermore, a highly complex shafting system is analyzed by a modified Riccati torsional transfer matrix. The system is modeled as a chain consisting of an elastic spring with concentrated mass points, and the multi-segments lumped mass model is established for this shafting system. By the modified Riccati torsional transfer matrix method, an accumulated calculation is effectively eliminated to obtain the natural frequencies. The electrical network impacts can activize the torsional vibration of shaft system, and the activized torsion vibration frequencies contained the natural frequencies of shaft system. The torsional vibrations of the shaft system were measured under electrical network impacts in laser Doppler torsional vibrometer. By comparisons, the natural frequencies by measurement were consistent with the values by calculation. The results verify the instrument is robust, user friendly and can be calibrated in situ. The laser torsional vibrometer represents a significant step forward in rotating machinery diagnostics.

  13. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  14. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  15. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  16. Improving Incremental Balance in the GSI 3DVAR Analysis System

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Yang, Runhua; Kleist, Daryl T.; Parrish, David F.; Derber, John C.; Treadon, Russ

    2008-01-01

    The Gridpoint Statistical Interpolation (GSI) analysis system is a unified global/regional 3DVAR analysis code that has been under development for several years at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center. It has recently been implemented into operations at NCEP in both the global and North American data assimilation systems (GDAS and NDAS). An important aspect of this development has been improving the balance of the analysis produced by GSI. The improved balance between variables has been achieved through the inclusion of a Tangent Linear Normal Mode Constraint (TLNMC). The TLNMC method has proven to be very robust and effective. The TLNMC as part of the global GSI system has resulted in substantial improvement in data assimilation both at NCEP and at the NASA Global Modeling and Assimilation Office (GMAO).

  17. A novel free floating accelerometer force balance system for shock tunnel applications

    NASA Astrophysics Data System (ADS)

    Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.

    In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.

  18. A simple laser locking system based on a field-programmable gate array.

    PubMed

    Jørgensen, N B; Birkmose, D; Trelborg, K; Wacker, L; Winter, N; Hilliard, A J; Bason, M G; Arlt, J J

    2016-07-01

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

  19. A simple laser locking system based on a field-programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, N. B.; Birkmose, D.; Trelborg, K.

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The lockingmore » system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.« less

  20. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.

  1. Identifying Balance in a Balanced Scorecard System

    ERIC Educational Resources Information Center

    Aravamudhan, Suhanya; Kamalanabhan, T. J.

    2007-01-01

    In recent years, strategic management concepts seem to be gaining greater attention from the academicians and the practitioner's alike. Balanced Scorecard (BSC) concept is one such management concepts that has spread in worldwide business and consulting communities. The BSC translates mission and vision statements into a comprehensive set of…

  2. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  3. Interaction dynamics of fs-laser induced cavitation bubbles and their impact on the laser-tissue-interaction of modern ophthalmic laser systems

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Ripken, T.; Lubatschowski, H.; Heisterkamp, A.

    2011-07-01

    A today well-known laser based treatment in ophthalmology is the LASIK procedure which nowadays includes cutting of the corneal tissue with ultra-short laser pulses. Instead of disposing a microkeratome for cutting a corneal flap, a focused ultra-short laser pulse is scanned below the surface of biological tissue causing the effect of an optical breakdown and hence obtaining a dissection. Inside the tissue, the energy of the laser pulses is absorbed by non-linear processes; as a result a cavitation bubble expands and ruptures the tissue. Hence, positioning of several optical breakdowns side by side generates an incision. Due to a reduction of the amount of laser energy, with a moderate duration of treatment at the same time, the current development of ultra-short pulse laser systems points to higher repetition rates in the range of even Megahertz instead of tens or hundreds of Kilohertz. In turn, this results in a pulse overlap and therefor a probable occurrence of interaction between different optical breakdowns and respectively cavitation bubbles of adjacent optical breakdowns. While the interaction of one single laser pulse with biological tissue is analyzed reasonably well experimentally and theoretically, the interaction of several spatial and temporal following pulses is scarcely determined yet. Thus, the aim of this study is to analyse the dynamic and interaction of two cavitation bubbles by using high speed photography. The applied laser pulse energy, the energy ratio and the spot distance between different cavitation bubbles were varied. Depending on a change of these parameters different kinds of interactions such as a flattening and deformation of bubble shape or jet formation are observed. The effects will be discussed regarding the medical ophthalmic application of fs-lasers. Based on these results a further research seems to be inevitable to comprehend and optimize the cutting effect of ultra-short pulse laser systems with high (> 500 kHz) repetition

  4. The ARGOS laser system: green light for ground layer adaptive optics at the LBT

    NASA Astrophysics Data System (ADS)

    Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian

    2014-07-01

    We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.

  5. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  6. OBERON: OBliquity and Energy balance Run on N-body systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2016-08-01

    OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

  7. The guidance methodology of a new automatic guided laser theodolite system

    NASA Astrophysics Data System (ADS)

    Zhang, Zili; Zhu, Jigui; Zhou, Hu; Ye, Shenghua

    2008-12-01

    Spatial coordinate measurement systems such as theodolites, laser trackers and total stations have wide application in manufacturing and certification processes. The traditional operation of theodolites is manual and time-consuming which does not meet the need of online industrial measurement, also laser trackers and total stations need reflective targets which can not realize noncontact and automatic measurement. A new automatic guided laser theodolite system is presented to achieve automatic and noncontact measurement with high precision and efficiency which is comprised of two sub-systems: the basic measurement system and the control and guidance system. The former system is formed by two laser motorized theodolites to accomplish the fundamental measurement tasks while the latter one consists of a camera and vision system unit mounted on a mechanical displacement unit to provide azimuth information of the measured points. The mechanical displacement unit can rotate horizontally and vertically to direct the camera to the desired orientation so that the camera can scan every measured point in the measuring field, then the azimuth of the corresponding point is calculated for the laser motorized theodolites to move accordingly to aim at it. In this paper the whole system composition and measuring principle are analyzed, and then the emphasis is laid on the guidance methodology for the laser points from the theodolites to move towards the measured points. The guidance process is implemented based on the coordinate transformation between the basic measurement system and the control and guidance system. With the view field angle of the vision system unit and the world coordinate of the control and guidance system through coordinate transformation, the azimuth information of the measurement area that the camera points at can be attained. The momentary horizontal and vertical changes of the mechanical displacement movement are also considered and calculated to provide

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Optimal two-mirror system for laser radiation focusing

    NASA Astrophysics Data System (ADS)

    Gitin, Andrey V.

    2009-10-01

    An optical system for laser radiation focusing, which consists of parabolic and elliptic mirrors, is considered. It is shown by the method of elementary reflections that the maximum concentration of laser radiation on the target can be achieved at a certain position of these mirrors.

  9. Nonablative lasers and nonlaser systems in dermatology: current status.

    PubMed

    Sachdev, Mukta; Hameed, Sunaina; Mysore, Venkataram

    2011-01-01

    Nonablative lasers and nonlaser systems are newer systems used for skin rejuvenation, tightening, body sculpting, and scar remodeling. Different technologies such as lasers, Intense Pulsed Light (IPL), and radiofrequency have been introduced. Most nonablative laser systems emit light within the infrared portion of the electromagnetic spectrum (1000-1500 nm). At these wavelengths, absorption by superficial water containing tissue is relatively weak, thereby effecting deeper tissue penetration. A detailed understanding of the device being used is recommended. Nonablative technology have been used for several indications such as skin tightening, periorbital tissue tightening, treatment of nasolabial lines and jowl, body sculpting/remodeling, cellulite reduction, scar revision and remodeling and for the treatment of photodamaged skin. Nonablative laser and light modalities can be carried out in a physician treatment room or hospital setting or a nursing home with a small operation theater. The dermatologic consultation should include detailed assessment of the patient's skin condition and skin type. An informed consent is mandatory to protect the rights of the patient as well as the practitioner. All patients must have carefully taken preoperative and postoperative pictures. Depends on the indication, the area to be treated, the acceptable downtime for the desired correction, and to an extent the skin color. These lasers are mostly pain-free and tolerated well by patients but may require topical anesthesia. In most cases, topical cooling and numbing using icepacks is sufficient, even in an apprehensive patient. The nonablative lasers, light sources and radiofrequency systems are safe, even in darker skin types, and postoperative care is minimal. Proper postoperative care is important in avoiding complications. Post-treatment edema and redness settle in a few hours to a few days. Postoperative sun avoidance and use of sunscreen is mandatory.

  10. Ultra-stable clock laser system development towards space applications.

    PubMed

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-26

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10 -16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm 3 ; and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm 3 . The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10 -10 /g, 5.8 × 10 -10 /g and 3.1 × 10 -10 /g, where g ≈ 9.8 m/s 2 is the standard gravitational acceleration.

  11. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [The development of a distribution system for medical lasers and its clinical application].

    PubMed

    Okae, S; Ishiguchi, T; Ishigaki, T; Sakuma, S

    1991-02-25

    We developed a new laser beam generator system which can deliver laser beam to multiple terminals in distant clinical therapy rooms. The system possesses the distribution equipment by which Nd-YAG laser power is distributed to 8 output terminals under the computer control. Distributed laser beam is delivered to each distant terminal with clinical informations through the optical fiber. In the fundamental studies, possibility of distant transportation of laser beam (30 m) only with 10% loss of energy and without dangerous heating at the connection parts was shown. There seems to be no disadvantage associated with distribution laser beam. In the clinical study, the system was applied to five patients with the symptoms including hemosputum, esophageal stenosis, hemorrhage, lip ulcer and pain. Clinical usefulness of the system was proved. The advantages of the system are as follows: 1. Benefit of cost reduction due to multiple use of single laser source. 2. No necessity of transport of the equipment. 3. No requirement of a wide space to install the equipment in the distant room. 4. Efficient management and maintenance of the system by centralization. Further improvements, e.g., simultaneous use at multiple terminals and elongation of transportation up to 340 m, make the system more useful for clinical application.

  13. Design of remote laser-induced fluorescence system's acquisition circuit

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Lou, Yue; Wang, Ran; Yan, Debao; Li, Xin; Zhao, Xin; Chen, Dong; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence system(LIfS) has been found its significant application in identifying one kind of substance from another by its properties even it's thimbleful, and becomes useful in plenty of fields. Many superior works have reported LIfS' theoretical analysis , designs and uses. However, the usual LIPS is always constructed in labs to detect matter quite closely, for the system using low-power laser as excitation source and charge coupled device (CCD) as detector. Promoting the detectivity of LIfS is of much concern to spread its application. Here, we take a high-energy narrow-pulse laser instead of commonly used continuous wave laser to operate sample, thus we can get strong fluorescent. Besides, photomultiplier (PMT) with high sensitivity is adopted in our system to detect extremely weak fluorescence after a long flight time from the sample to the detector. Another advantage in our system, as the fluorescence collected into spectroscopy, multiple wavelengths of light can be converted to the corresponding electrical signals with the linear array multichannel PMT. Therefore, at the cost of high-powered incentive and high-sensitive detector, a remote LIFS is get. In order to run this system, it is of importance to turn light signal to digital signal which can be processed by computer. The pulse width of fluorescence is deeply associated with excitation laser, at the nanosecond(ns) level, which has a high demand for acquisition circuit. We design an acquisition circuit including, I/V conversion circuit, amplifying circuit and peak-holding circuit. The simulation of circuit shows that peak-holding circuit can be one effective approach to reducing difficulty of acquisition circuit.

  14. New laser system for highly sensitive clinical pulse oximetry

    NASA Astrophysics Data System (ADS)

    Hamza, Mostafa; Hamza, Mohammad

    1996-04-01

    This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.

  15. Using Motor Imagery to Study the Neural Substrates of Dynamic Balance

    PubMed Central

    Ferraye, Murielle Ursulla; Debû, Bettina; Heil, Lieke; Carpenter, Mark; Bloem, Bastiaan Roelof; Toni, Ivan

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large). We used a matched visual imagery (VI) control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012), in a pattern consistent with existing somatotopic maps of the trunk (for balance) and legs (for gait). These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008), and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders. PMID:24663383

  16. Development and Application of Laser Peening System for PWR Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masaki Yoda; Itaru Chida; Satoshi Okada

    2006-07-01

    Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion crackingmore » (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface

  17. Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy.

    PubMed

    Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier

    2014-03-01

    The present study covers a new experimental system, designed to improve the balance and postural control of adults with cerebral palsy. This system is based on a serious game for balance rehabilitation therapy, designed using the prototype development paradigm and features for rehabilitation with serious games: feedback, adaptability, motivational elements, and monitoring. In addition, the employed interaction technology is based on computer vision because motor rehabilitation consists of body movements that can be recorded, and because vision capture technology is noninvasive and can be used for clients who have difficulties in holding physical devices. Previous research has indicated that serious games help to motivate clients in therapy sessions; however, there remains a paucity of clinical evidence involving functionality. We rigorously evaluated the effects of physiotherapy treatment on balance and gait function of adult subjects with cerebral palsy undergoing our experimental system. A 24-week physiotherapy intervention program was conducted with nine adults from a cerebral palsy center who exercised weekly in 20-min sessions. Findings demonstrated a significant increase in balance and gait function scores resulting in indicators of greater independence for our participating adults. Scores improved from 16 to 21 points in a scale of 28, according to the Tinetti Scale for risk of falls, moving from high fall risk to moderate fall risk. Our promising results indicate that our experimental system is feasible for balance rehabilitation therapy.

  18. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  19. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  20. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  1. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  2. System Risk Balancing Profiles: Software Component

    NASA Technical Reports Server (NTRS)

    Kelly, John C.; Sigal, Burton C.; Gindorf, Tom

    2000-01-01

    The Software QA / V&V guide will be reviewed and updated based on feedback from NASA organizations and others with a vested interest in this area. Hardware, EEE Parts, Reliability, and Systems Safety are a sample of the future guides that will be developed. Cost Estimates, Lessons Learned, Probability of Failure and PACTS (Prevention, Avoidance, Control or Test) are needed to provide a more complete risk management strategy. This approach to risk management is designed to help balance the resources and program content for risk reduction for NASA's changing environment.

  3. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    PubMed Central

    Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at

  4. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  5. Laser Communication Demonstration System (LCDS) and future mobile satellite services

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Wilhelm, Michael D.; Lesh, James R.

    1995-01-01

    The Laser Communications Demonstration System (LCDS) is a proposed in-orbit demonstration of high data rate laser communications technology conceived jointly by NASA and U.S. industry. The program objectives are to stimulate industry development and to demonstrate the readiness of high data rate optical communications in Earth orbit. For future global satellite communication systems using intersatellite links, laser communications technology can offer reduced mass and power requirements and higher channel bandwidths without regulatory constraints. As currently envisioned, LCDS will consist of one or two orbiting laser communications terminals capable of demonstrating high data rate (greater than 750Mbps) transmission in a dynamic space environment. Two study teams led by Motorola and Ball Aerospace are currently in the process of conducting a Phase A/B mission definition study of LCDS under contracts with JPL/NASA. The studies consist of future application survey, concept and requirements definition, and a point design of the laser communications flight demonstration. It is planned that a single demonstration system will be developed based on the study results. The Phase A/B study is expected to be completed by the coming June, and the current results of the study are presented in this paper.

  6. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  7. Ultrashort-Pulse Laser System: Theory of Operation and Operating Procedures

    DTIC Science & Technology

    1992-07-01

    Nov 89 - Jul 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Ultrashort-Pulse Laser System : Theory of Operation and C - F33615-88-C-0631 Operating...i ’IR~A&, D2;" T.&B [E] al uicod [] j 0 Avhi lp.bilty C: oded’ Avail i Qiv ULTRASHORT-PULSE LASER SYSTEM : THEORY OF OPERATION AND OPERATING PROCEDURES

  8. Electronic Subsystems For Laser Communication System

    NASA Technical Reports Server (NTRS)

    Long, Catherine; Maruschak, John; Patschke, Robert; Powers, Michael

    1992-01-01

    Electronic subsystems of free-space laser communication system carry digital signals at 650 Mb/s over long distances. Applicable to general optical communications involving transfer of great quantities of data, and transmission and reception of video images of high definition.

  9. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  10. The Navy's high-energy laser weapon system

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.; Albertine, John R.

    1997-05-01

    Over the past 25 years, in an attempt to develop a speed-of- light hard-kill weapon system, the U.S. Navy has successfully reduced megawatt-class chemical laser and high power beam control technologies to engineering practice. This Navy program was established during the cold war era when defending naval battle group was the primary concern of the U.S. Navy. Since the collapse of the Soviet Union, however, an urgent and challenging issue facing the U.S. Navy is the self-defense against cruise missile in a littoral battlefield environment against threats originating from shore and/or scattered low- value platforms. This fundamental shift in the battlefield environment and engagement configuration profoundly affected the basic performance requirements placed on potential shipboard high energy laser weapon systems (HELWS). In a littoral maritime environment, thermal blooming limits atmospheric propagation of an HEL beam, and thus limits the weapon's effectiveness. This paper identifies and discusses the technical issues associated with HELWS requirements in this new environment. It also discuses the collateral capabilities that enhance and complement the performance of other weapon and sensor systems onboard ship. This paper concludes that the HELWS using a free electron laser (FEL) offers a unique weapon option for our warships in facing the new defense challenges of the future.

  11. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  12. Central nervous system transplantation benefited by low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rochkind, S.; Lubart, Rachel; Wollman, Yoram; Simantov, Rabi; Nissan, Moshe; Barr-Nea, Lilian

    1990-06-01

    Effect of low-level laser irradiation on the central nervous system transplantation is reported. Ernbryonal brain allografts were transplanted into the brain of 20 adult rats and peripheral nerve graft transplanted into the severely injured spinal cord of 16 dogs. The operated wound of 10 rats and 8 dogs were exposed daily for 21 days to lowpower laser irradiation CW HeNe laser (35 mW, 632.8 run, energy density of 30 J/cm2 at each point for rats and 70 J/cm2 at each point for dogs). This study shows that (i) the low-level laser irradiation prevents extensive glial scar formation (a limiting factor in CNS regeneration) between embryonal transplants and host brain; (ii) Dogs made paraplegic by spinal cord injury were able to walk 3-6 months later. Recovery of these dogs was effected by the implantation of a fragment of autologous sciatic nerve at the site of injury and subsequently exposing the dogs to low-level laser irradiation. The effect of laser irradiation on the embryonal nerve cells grown in tissue culture was also observed. We found that low-level laser irradiation induced intensive migration of neurites outward of the aggregates 15-22 The results of the present study and our previous investigations suggest that low-level laser irradiation is a novel tool for treatment of peripheral and central nervous system injuries.

  13. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System

    PubMed Central

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2018-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128

  14. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.

    PubMed

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2017-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.

  15. Spray automated balancing of rotors: Methods and materials

    NASA Technical Reports Server (NTRS)

    Smalley, Anthony J.; Baldwin, Richard M.; Schick, Wilbur R.

    1988-01-01

    The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials.

  16. Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters

    NASA Astrophysics Data System (ADS)

    Birkett, Martin; Penlington, Roger

    2012-08-01

    This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.

  17. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  18. Optical design of laser zoom projective lens with variable total track

    NASA Astrophysics Data System (ADS)

    He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua

    2017-02-01

    In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.

  19. GLACIER MONITORING SYSTEM IN COLOMBIA - complementing glaciological measurements with laser-scanning and ground-penetrating radar surveys

    NASA Astrophysics Data System (ADS)

    Ceballos, Jorge; Micheletti, Natan; Rabatel, Antoine; Mölg, Nico; Zemp, Michael

    2015-04-01

    Colombia (South America) has six small glaciers (total glacierized area of 45 Km2); their geographical location, close to zero latitude, makes them very sensitive to climate changes. An extensive monitoring program is being performed since 2006 on two glaciers, with international cooperation supports. This presentation summarizes the results of glacier changes in Colombia and includes the latest results obtained within the CATCOS Project - Phase 1 (Capacity Building and Twinning for Climate Observing Systems) signed between Colombia and Switzerland, and within the Joint Mixte Laboratory GREAT-ICE (IRD - France), with the application of LiDAR technology and GPR-based ice thickness measurements at Conejeras Glacier. Conejeras Glacier (Lat. N. 4° 48' 56"; Long. W. 75° 22' 22"; Alt. Max. 4915m.; Alt. Min. 4730m. Area 0.2 Km2) is located on the north-western side of Santa Isabel Volcano. This glacier belongs to global glacier monitoring network of the World Glacier Monitoring Service (WGMS-ID: 2721). The surface mass balance is calculated monthly using the direct glaciological method. Between April 2006 and May 2014, Conejeras Glacier showed a cumulative loss of -21 m w.e. The CATCOS Project allowed to improve the glacier monitoring system in Colombia with two main actions: (1) a terrestrial laser scanner survey (RIEGL VZ-6000 terrestrial laser scanner, property of Universities of Lausanne and Fribourg); and (2) ice thickness measurements (Blue System Integration Ltd. Ice Penetrating Radar of property of IRD). The terrestrial laser-scanning survey allowed to realize an accurate digital terrain model of the glacier surface with 13 million points and a decimetric resolution. Ice thickness measurements showed an average glacier thickness of 22 meters and a maximum of 52 meters.

  20. Laser interlock system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Steven D; Mcintyre, Dustin L

    2015-01-13

    A method and device for providing a laser interlock having a first optical source, a first beam splitter, a second optical source, a detector, an interlock control system, and a means for producing dangerous optical energy. The first beam splitter is optically connected to the first optical source, the first detector and the second optical source. The detector is connected to the interlock control system. The interlock control system is connected to the means for producing dangerous optical energy and configured to terminate its optical energy production upon the detection of optical energy at the detector from the second opticalmore » source below a predetermined detector threshold. The second optical source produces an optical energy in response to optical energy from the first optical source. The optical energy from the second optical source has a different wavelength, polarization, modulation or combination thereof from the optical energy of the first optical source.« less

  1. The First Light of the Subaru Laser Guide Star Adaptive Optics System

    NASA Astrophysics Data System (ADS)

    Takami, H.; Hayano, Y.; Oya, S.; Hattori, M.; Watanabe, M.; Guyon, O.; Eldred, M.; Colley, S.; Saito, Y.; Itoh, M.; Dinkins, M.

    Subaru Telescope has been operating 36 element curvature sensor AO system for the Cassegrain focus since 2000. We have developed a new AO system for the Nasmyth focus. The AO system has 188 element curvature wavefront sensor and bimorph deformable mirror. It is the largest format system for this type of sensor . The deformable mirror has also 188 element with 90 mm effective aperture and 130 mm blank size. The real time controller is 4 CPU real time Linux OS computer and the update speed is now 1.5 kHz. The AO system also has laser guide star system. The laser is sum frequency solid state laser generating 589 nm light. We have achieved 4.7 W output power with excellent beam quality of M^2=1.1 and good stability. The laser is installed in a clean room on the Nasmyth platform. The laser beam is transferred by photonic crystal optical fiber with 35 m to the 50 cm laser launching telescope mounted behind the Subaru 2ry mirror. The field of view of the low order wavefront sensor for tilt guide star in LGS mode is 2.7 arcmin in diameter. The AO system had the first light with natural guide star in October 2006. The Strehl ratio was > 0.5 at K band under the 0.8 arcsec visible seeing. We also has projected laser beam on the sky during the same engineering run. Three instruments will be used with the AO system. Infrared camera and spectrograph (IRCS), High dynamic range IR camera (HiCIAO) for exosolar planet detection, and visible 3D spectrograph.

  2. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  3. New application system for laser and ultrasonic therapy in endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Helfmann, Juergen; Stein, Thomas; Mueller, Gerhard J.

    1996-12-01

    Flexible acoustic waveguides for selective tissue fragmentation are not yet commercially available. Experimental studies have shown the possibility of transmission of acoustical transients via optical silica glass fibers. The aim of this project is the development of a new endoscopic application system that would enable surgeons to use the laser and the ultrasound technique for therapy simultaneously. The concept of this application system is based on the transmission of laser radiation and ultrasound power via flexible silica glass fibers. Theoretical and experimental results on the feasibility of such an application system for an ultrasonic power delivery system are presented. Piezo-electric transducers are used to provide a high efficiency in generating the ultrasonic power. With reference to the CUSA-technique, a special flexible guiding system has been designed for providing aspiration at the tip and for protection of the fiber. The system transmits via an optical fiber up to 100 Watt Nd:YAG laser radiation. The axial oscillation of the fiber tip is +/- micrometers at a frequency of 27 kHz. First results of in vitro experiments are presented. The parenchymatous cells of liver can be fragmented without destruction of the collagenous matrix. The laser can be optionally used to coagulate bleedings or to cut collagenous tissues in contact. Applications for an acoustical and optical waveguide in ultrasonic surgery are demonstrated. This new approach in developing a first application system for the therapeutical use of laser radiation and power ultrasound in minimal invasive surgery via optical waveguides offers new possibilities in surgery. The laser ultrasonic surgical therapy (LUST) with its thin and flexible applicator provides new working fields especially for neuro or liver surgery. The tip can be bent and thus areas which could not be treated before have now been made accessible. Without changing the instrumentation, the surgeon can use the laser for tissue

  4. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  5. Magnetic suspension and balance system study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1984-01-01

    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.

  6. A non-contact temperature measurement system for controlling photothermal medical laser treatments

    NASA Astrophysics Data System (ADS)

    Kaya, Ã.-zgür; Gülsoy, Murat

    2016-03-01

    Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.

  7. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems.

    PubMed

    McMahon, Christopher J; Toomey, Joshua P; Kane, Deb M

    2017-01-01

    We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the 'minimum gradient detection algorithm'. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Applying the new 'minimum gradient detection algorithm' CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise. These high-complexity regions are

  8. Comparison of different laser systems in the treatment of hypertrophic and atrophic scars and keloids

    NASA Astrophysics Data System (ADS)

    Scharschmidt, D.; Algermissen, Bernd; Willms-Jones, J.-C.; Philipp, Carsten M.; Berlien, Hans-Peter

    1997-12-01

    Different laser systems and techniques are used for the treatment of hypertrophic scars, keloids and acne scars. Significant criteria in selecting a suitable laser system are the scar's vascularization, age and diameter. Flashlamp- pumped dye-lasers, CO2-lasers with scanner, Argon and Nd:YAG-lasers are used. Telangiectatic scars respond well to argon lasers, erythematous scars and keloids to dye-laser treatment. Using interstitial Nd:YAG-laser vaporization, scars with a cross-section over 1 cm can generally be reduced. For the treatment of atrophic and acne scars good cosmetic results are achieved with a CO2-laser/scanner system, which allows a precise ablation of the upper dermis with low risk of side-effects.

  9. Magnetic Suspension and Balance Systems: A Selected, Annotated Bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle Marie H.; Kilgore, Robert A.; Boyden, Richmond P.

    1983-01-01

    This publication, containing 206 entries, supersedes an earlier bibliography, NASA TM-80225 (April 1980). Citations for 18 documents have been added in this updated version. Most of the additions report results of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems, e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. Some of the additions address the problem of scaling from the relatively small size of existing systems to much larger sizes. The purpose of this bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of publication. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order.

  10. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    PubMed

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  11. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    NASA Astrophysics Data System (ADS)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  12. Laser development for optimal helicopter obstacle warning system LADAR performance

    NASA Astrophysics Data System (ADS)

    Yaniv, A.; Krupkin, V.; Abitbol, A.; Stern, J.; Lurie, E.; German, A.; Solomonovich, S.; Lubashitz, B.; Harel, Y.; Engart, S.; Shimoni, Y.; Hezy, S.; Biltz, S.; Kaminetsky, E.; Goldberg, A.; Chocron, J.; Zuntz, N.; Zajdman, A.

    2005-04-01

    Low lying obstacles present immediate danger to both military and civilian helicopters performing low-altitude flight missions. A LADAR obstacle detection system is the natural solution for enhancing helicopter safety and improving the pilot situation awareness. Elop is currently developing an advanced Surveillance and Warning Obstacle Ranging and Display (SWORD) system for the Israeli Air Force. Several key factors and new concepts have contributed to system optimization. These include an adaptive FOV, data memorization, autonomous obstacle detection and warning algorithms and the use of an agile laser transmitter. In the present work we describe the laser design and performance and discuss some of the experimental results. Our eye-safe laser is characterized by its pulse energy, repetition rate and pulse length agility. By dynamically controlling these parameters, we are able to locally optimize the system"s obstacle detection range and scan density in accordance with the helicopter instantaneous maneuver.

  13. Laser System for Photoelectron and X-Ray Production in the PLEIADES Compton Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D J; Barty, C J; Betts, S M

    2005-04-21

    The PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility provides tunable short x-ray pulses with energies of 30-140 keV and pulse durations of 0.3-5 ps by scattering an intense, ultrashort laser pulse off a 35-75 MeV electron beam. Synchronization of the laser and electron beam is obtained by using a photoinjector gun, and using the same laser system to generate the electrons and the scattering laser. The Ti Ti:Sapphire, chirped pulse amplification based 500 mJ, 50 fs, 810 nm scattering laser and the similar 300 {micro}J, 5 ps, 266 nm photoinjector laser systems are detailed. Additionally, anmore » optical parametric chirped pulse amplification (OPCPA) system is studied as a replacement for part of the scattering laser front end. Such a change would significantly simplify the set-up the laser system by removing the need for active switching optics, as well as increase the pre-pulse contrast ratio which will be important when part of the scattering laser is used as a pump beam in pump-probe diffraction experiments using the ultrashort tunable x-rays generated as the probe.« less

  14. A low-cost, tunable laser lock without laser frequency modulation

    NASA Astrophysics Data System (ADS)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  15. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury

    PubMed Central

    2011-01-01

    Background Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. Methods In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. Results The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. Conclusions The results suggest that e

  16. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury.

    PubMed

    Gil-Gómez, José-Antonio; Lloréns, Roberto; Alcañiz, Mariano; Colomer, Carolina

    2011-05-23

    Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. The results suggest that eBaViR represents a safe and effective

  17. A laser system to remotely sense bird movements

    NASA Technical Reports Server (NTRS)

    Korschgen, C. E.; Green, W. L.; Seasholtz, R. G.

    1983-01-01

    The design and operation of a laser detection system for migrating birds are presented. A battery-powered class-III laser (operating at 904 nm, pulse-repetition rate 5 kHz, pulse duration 100 nsec, and peak power 25 W) and a photodiode receiver are mounted on poles at height 10 m and distance 850 m and equipped with 135-mm f/2.8 collimating lenses; beam diameter at the receiver is 1.7 m. The microprocessor-controlled system is found to detect the passing of an object as small as 30 sq cm in cross section at a distance of 425 m.

  18. Low quantum defect laser performance

    NASA Astrophysics Data System (ADS)

    Bowman, Steven R.

    2017-01-01

    Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.

  19. AlGaInN laser diode technology for systems applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bockowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.

    2016-02-01

    Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation.

  20. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  1. A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea

    NASA Astrophysics Data System (ADS)

    Li, Yi; Toumi, Ralf

    2017-08-01

    In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.

  2. Three-component laser anemometer measurement systems

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  3. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng

    2017-05-01

    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  4. Complementary equipment for controlling multiple laser beams on single scanner MPLSM systems

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Nase, Gabriele; Heggelund, Paul; Reppen, Trond

    2010-02-01

    Multi-Photon-Laser-Scanning-Microscopy (MPLSM) now stands as one of the most powerful experimental tools in biology. Specifically, MPLSM based in-vivo studies of structures and processes in the brains of small rodents and imaging in brain-slices have led to considerable progress in the field of neuroscience. Equipment allowing for independent control of two laser-beams, one for imaging and one for photochemical manipulation, strongly enhances any MPLSM platform. Some industrial MPLSM producers have introduced double scanner options in MPLSM systems. Here, we describe the upgrade of a single scanner MPLSM system with equipment that is suitable for independently controlling the beams of two Titanium Sapphire lasers. The upgrade is compatible with any actual MPLSM system and can be combined with any commercial or self assembled system. Making use of the pixel-clock, frame-active and line-active signals provided by the scanner-electronics of the MPLSM, the user can, by means of an external unit, select individual pixels or rectangular ROIs within the field of view of an overview-scan to be exposed, or not exposed, to the beam(s) of one or two lasers during subsequent scans. The switching processes of the laser-beams during the subsequent scans are performed by means of Electro-Optical-Modulators (EOMs). While this system does not provide the flexibility of two-scanner modules, it strongly enhances the experimental possibilities of one-scanner systems provided a second laser and two independent EOMs are available. Even multi-scanner-systems can profit from this development, which can be used to independently control any number of laser beams.

  5. Laser multipass system with interior cell configuration.

    PubMed

    Borysow, Jacek; Kostinski, Alexander; Fink, Manfred

    2011-10-20

    We ask whether it is possible to restore a multipass system alignment after a gas cell is inserted in the central region. Indeed, it is possible, and we report on a remarkably simple rearrangement of a laser multipass system, composed of two spherical mirrors and a gas cell with flat windows in the middle. For example, for a window of thickness d and refractive index of n, adjusting the mirror separation by ≈2d(1-1/n) is sufficient to preserve the laser beam alignment and tracing. This expression is in agreement with ray-tracing computations and our laboratory experiment. Insofar as our solution corrects for spherical aberrations, it may also find applications in microscopy. © 2011 Optical Society of America

  6. Development of a YAG laser system for the edge Thomson scattering system in ITER.

    PubMed

    Hatae, T; Yatsuka, E; Hayashi, T; Yoshida, H; Ono, T; Kusama, Y

    2012-10-01

    A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

  7. Accidental human laser retinal injuries from military laser systems

    NASA Astrophysics Data System (ADS)

    Stuck, Bruce E.; Zwick, Harry; Molchany, Jerome W.; Lund, David J.; Gagliano, Donald A.

    1996-04-01

    The time course of the ophthalmoscopic and functional consequences of eight human laser accident cases from military laser systems is described. All patients reported subjective vision loss with ophthalmoscopic evidence of retinal alteration ranging from vitreous hemorrhage to retinal burn. Five of the cases involved single or multiple exposures to Q-switched neodymium radiation at close range whereas the other three incidents occur over large ranges. Most exposures were within 5 degrees of the foveola, yet none directly in the foveola. High contrast visual activity improved with time except in the cases with progressive retinal fibrosis between lesion sites or retinal hole formation encroaching the fovea. In one patient the visual acuity recovered from 20/60 at one week to 20/25 in four months with minimal central visual field loss. Most cases showed suppression of high and low spatial frequency contrast sensitivity. Visual field measurements were enlarged relative to ophthalmoscopic lesion size observations. Deep retinal scar formation and retinal traction were evident in two of the three cases with vitreous hemorrhage. In one patient, nerve fiber layer damage to the papillo-macular bundle was clearly evident. Visual performance measured with a pursuit tracking task revealed significant performance loss relative to normal tracking observers even in cases where acuity returned to near normal levels. These functional and performance deficits may reflect secondary effects of parafoveal laser injury.

  8. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R.

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  9. Commercial mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  10. Review of technological advancements in calibration systems for laser vision correction

    NASA Astrophysics Data System (ADS)

    Arba-Mosquera, Samuel; Vinciguerra, Paolo; Verma, Shwetabh

    2018-02-01

    Using PubMed and our internal database, we extensively reviewed the literature on the technological advancements in calibration systems, with a motive to present an account of the development history, and latest developments in calibration systems used in refractive surgery laser systems. As a second motive, we explored the clinical impact of the error introduced due to the roughness in ablation and its corresponding effect on system calibration. The inclusion criterion for this review was strict relevance to the clinical questions under research. The existing calibration methods, including various plastic models, are highly affected by various factors involved in refractive surgery, such as temperature, airflow, and hydration. Surface roughness plays an important role in accurate measurement of ablation performance on calibration materials. The ratio of ablation efficiency between the human cornea and calibration material is very critical and highly dependent on the laser beam characteristics and test conditions. Objective evaluation of the calibration data and corresponding adjustment of the laser systems at regular intervals are essential for the continuing success and further improvements in outcomes of laser vision correction procedures.

  11. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems

    NASA Astrophysics Data System (ADS)

    Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.

    2018-05-01

    A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.

  12. Demonstration of high sensitivity laser ranging system

    NASA Technical Reports Server (NTRS)

    Millar, Pamela S.; Christian, Kent D.; Field, Christopher T.

    1994-01-01

    We report on a high sensitivity semiconductor laser ranging system developed for the Gravity and Magnetic Earth Surveyor (GAMES) for measuring variations in the planet's gravity field. The GAMES laser ranging instrument (LRI) consists of a pair of co-orbiting satellites, one which contains the laser transmitter and receiver and one with a passive retro-reflector mounted in an drag-stabilized housing. The LRI will range up to 200 km in space to the retro-reflector satellite. As the spacecraft pair pass over the spatial variations in the gravity field, they experience along-track accelerations which change their relative velocity. These time displaced velocity changes are sensed by the LRI with a resolution of 20-50 microns/sec. In addition, the pair may at any given time be drifting together or apart at a rate of up to 1 m/sec, introducing a Doppler shift into the ranging signals. An AlGaAs laser transmitter intensity modulated at 2 GHz and 10 MHz is used as fine and medium ranging channels. Range is measured by comparing phase difference between the transmit and received signals at each frequency. A separate laser modulated with a digital code, not reported in this paper, will be used for coarse ranging to unambiguously determine the distance up to 200 km.

  13. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS.

    PubMed

    Cikhardt, J; Krása, J; De Marco, M; Pfeifer, M; Velyhan, A; Krouský, E; Cikhardtová, B; Klír, D; Rezáč, K; Ullschmied, J; Skála, J; Kubeš, P; Kravárik, J

    2014-10-01

    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

  14. Development and user evaluation of a virtual rehabilitation system for wobble board balance training.

    PubMed

    Fitzgerald, Diarmaid; Trakarnratanakul, Nanthana; Dunne, Lucy; Smyth, Barry; Caulfield, Brian

    2008-01-01

    We have developed a prototype virtual reality-based balance training system using a single inertial orientation sensor attached to the upper surface of a wobble board. This input device has been interfaced with Neverball, an open source computer game to create the balance training platform. Users can exercise with the system by standing on the wobble board and tilting it in different directions to control an on-screen environment. We have also developed a customized instruction manual to use when setting up the system. To evaluate the usability our prototype system we undertook a user evaluation study with twelve healthy novice participants. Participants were required to assemble the system using an instruction manual and then perform balance exercises with the system. Following this period of exercise VRUSE, a usability evaluation questionnaire, was completed by participants. Results indicated a high level of usability in all categories evaluated.

  15. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  16. Producing a Linear Laser System for 3d Modelimg of Small Objects

    NASA Astrophysics Data System (ADS)

    Amini, A. Sh.; Mozaffar, M. H.

    2012-07-01

    Today, three dimensional modeling of objects is considered in many applications such as documentation of ancient heritage, quality control, reverse engineering and animation In this regard, there are a variety of methods for producing three-dimensional models. In this paper, a 3D modeling system is developed based on photogrammetry method using image processing and laser line extraction from images. In this method the laser beam profile is radiated on the body of the object and with video image acquisition, and extraction of laser line from the frames, three-dimensional coordinates of the objects can be achieved. In this regard, first the design and implementation of hardware, including cameras and laser systems was conducted. Afterwards, the system was calibrated. Finally, the software of the system was implemented for three dimensional data extraction. The system was investigated for modeling a number of objects. The results showed that the system can provide benefits such as low cost, appropriate speed and acceptable accuracy in 3D modeling of objects.

  17. Design of laser monitoring and sound localization system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang

    2013-08-01

    In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.

  18. Cancellation of coherent synchrotron radiation kicks with optics balance.

    PubMed

    Di Mitri, S; Cornacchia, M; Spampinati, S

    2013-01-04

    Minimizing transverse emittance is essential in linear accelerators designed to deliver very high brightness electron beams. Emission of coherent synchrotron radiation (CSR), as a contributing factor to emittance degradation, is an important phenomenon to this respect. A manner in which to cancel this perturbation by imposing certain symmetric conditions on the electron transport system has been suggested.We first expand on this idea by quantitatively relating the beam Courant-Snyder parameters to the emittance growth and by providing a general scheme of CSR suppression with asymmetric optics, provided it is properly balanced along the line. We present the first experimental evidence of this cancellation with the resultant optics balance of multiple CSR kicks: the transverse emittance of a 500 pC, sub-picosecond, high brightness electron beam is being preserved after the passage through the achromatic transfer line of the FERMI@Elettra free electron laser, and emittance growth is observed when the optics balance is intentionally broken. We finally show the agreement between the theoretical model and the experimental results. This study holds the promise of compact dispersive lines with relatively large bending angles, thus reducing costs for future electron facilities.

  19. Effects of balance training using a virtual-reality system in older fallers

    PubMed Central

    Duque, Gustavo; Boersma, Derek; Loza-Diaz, Griselda; Hassan, Sanobar; Suarez, Hamlet; Geisinger, Dario; Suriyaarachchi, Pushpa; Sharma, Anita; Demontiero, Oddom

    2013-01-01

    Poor balance is considered a challenging risk factor for falls in older adults. Therefore, innovative interventions for balance improvement in this population are greatly needed. The aim of this study was to evaluate the effect of a new virtual-reality system (the Balance Rehabilitation Unit [BRU]) on balance, falls, and fear of falling in a population of community-dwelling older subjects with a known history of falls. In this study, 60 community-dwelling older subjects were recruited after being diagnosed with poor balance at the Falls and Fractures Clinic, Nepean Hospital (Penrith, NSW, Australia). Subjects were randomly assigned to either the BRU-training or control groups. Both groups received the usual falls prevention care. The BRU-training group attended balance training (two sessions/week for 6 weeks) using an established protocol. Change in balance parameters was assessed in the BRU-training group at the end of their 6-week training program. Both groups were assessed 9 months after their initial assessment (month 0). Adherence to the BRU-training program was 97%. Balance parameters were significantly improved in the BRU-training group (P < 0.01). This effect was also associated with a significant reduction in falls and lower levels of fear of falling (P < 0.01). Some components of balance that were improved by BRU training showed a decline after 9 months post-training. In conclusion, BRU training is an effective and well-accepted intervention to improve balance, increase confidence, and prevent falls in the elderly. PMID:23467506

  20. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Kummert, Mario; Hoelzle, Martin

    2016-06-01

    Due to the relative lack of empirical field data, the response of very small glaciers (here defined as being smaller than 0.5 km2) to current atmospheric warming is not fully understood yet. Investigating their mass balance, e.g. using the direct glaciological method, is a prerequisite to fill this knowledge gap. Terrestrial laser scanning (TLS) techniques operating in the near infrared range can be applied for the creation of repeated high-resolution digital elevation models and consecutive derivation of annual geodetic mass balances of very small glaciers. This method is promising, as laborious and potentially dangerous field measurements as well as the inter- and extrapolation of point measurements can be circumvented. However, it still needs to be validated. Here, we present TLS-derived annual surface elevation and geodetic mass changes for five very small glaciers in Switzerland (Glacier de Prapio, Glacier du Sex Rouge, St. Annafirn, Schwarzbachfirn, and Pizolgletscher) and two consecutive years (2013/14-2014/15). The scans were acquired with a long-range Riegl -6000 especially designed for surveying snow- and ice-covered terrain. Zonally variable conversion factors for firn and bare ice surfaces were applied to convert geodetic volume to mass changes. We compare the geodetic results to direct glaciological mass balance measurements coinciding with the TLS surveys and assess the uncertainties and errors included in both methods. Average glacier-wide mass balances were negative in both years, showing stronger mass losses in 2014/15 (-1.65 m w.e.) compared to 2013/14 (-0.59 m w.e.). Geodetic mass balances were slightly less negative but in close agreement with the direct glaciological ones (R2 = 0.91). Due to the dense in situ measurements, the uncertainties in the direct glaciological mass balances were small compared to the majority of measured glaciers worldwide (±0.09 m w.e. yr-1 on average), and similar to uncertainties in the TLS-derived geodetic mass

  1. Insights on correlation dimension from dynamics mapping of three experimental nonlinear laser systems

    PubMed Central

    McMahon, Christopher J.; Toomey, Joshua P.

    2017-01-01

    Background We have analysed large data sets consisting of tens of thousands of time series from three Type B laser systems: a semiconductor laser in a photonic integrated chip, a semiconductor laser subject to optical feedback from a long free-space-external-cavity, and a solid-state laser subject to optical injection from a master laser. The lasers can deliver either constant, periodic, pulsed, or chaotic outputs when parameters such as the injection current and the level of external perturbation are varied. The systems represent examples of experimental nonlinear systems more generally and cover a broad range of complexity including systematically varying complexity in some regions. Methods In this work we have introduced a new procedure for semi-automatically interrogating experimental laser system output power time series to calculate the correlation dimension (CD) using the commonly adopted Grassberger-Proccacia algorithm. The new CD procedure is called the ‘minimum gradient detection algorithm’. A value of minimum gradient is returned for all time series in a data set. In some cases this can be identified as a CD, with uncertainty. Findings Applying the new ‘minimum gradient detection algorithm’ CD procedure, we obtained robust measurements of the correlation dimension for many of the time series measured from each laser system. By mapping the results across an extended parameter space for operation of each laser system, we were able to confidently identify regions of low CD (CD < 3) and assign these robust values for the correlation dimension. However, in all three laser systems, we were not able to measure the correlation dimension at all parts of the parameter space. Nevertheless, by mapping the staged progress of the algorithm, we were able to broadly classify the dynamical output of the lasers at all parts of their respective parameter spaces. For two of the laser systems this included displaying regions of high-complexity chaos and dynamic noise

  2. Balance in Assessment

    ERIC Educational Resources Information Center

    White, Richard

    2007-01-01

    The review by Black and Wiliam of national systems makes clear the complexity of assessment, and identifies important issues. One of these is "balance": balance between local and central responsibilities, balance between the weights given to various purposes of schooling, balance between weights for various functions of assessment, and balance…

  3. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  4. Introducing the yellow laser

    NASA Astrophysics Data System (ADS)

    Lincoln, James

    2018-02-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye protection for the young and inexperienced. It is important to note that 589 nm is the same wavelength as the Sodium-D line (doublet). This allows for the laser to serve as a replacement for sodium lamps, and, considering its rather high price, this added value should be balanced against its cost. What follows is a list of activities that showcase the yellow laser's unique promise as an engaging piece of technology that can be used in the teaching of physics.

  5. Fast photomultiplier tube gating system for underwater laser detector

    NASA Astrophysics Data System (ADS)

    Lei, Xuanhua; Yang, Kecheng; Rao, Jionghui; Zhang, Xiaohui; Xia, Min; Zheng, Yi; Li, Wei

    2007-01-01

    Laser will attenuate during its propagation in water and also be backward scattered by water when it is used to detect bubbles in the ocean. Meanwhile backward scattering intensity of the bubbles is feeble, its dynamic range reaches to the order of 6, which saturates PMT and its post-treatment circuit. Timely gating system is used to solve the problem. The system contains pulsed laser and gating PMT receiver. The wavelength of the laser is 532nm, with pulse width of several nanometers. Its operational delay is matched with the time period between laser traveling forward and back after scattered by the target. By doing this, the light scattered by other object is eliminated, dynamic range of the signal reduces, and consequently SNR increases. In order to avoid Signal Induced Noise(SIN), we choose PMT R1333 having no HA coating. TTL logical level, which is used as gating signal, controls the first dynode voltage of PMT to implement gating. Gating speed is about 100ns, of which the width is tunable. By carefully designing the electronic system, SNR is eliminated to a level as low as possible, and the output signal of PMT is fast integrated in order to reduce the influences of signal induced by opening the gate.

  6. Bladder welding in rats using controlled temperature CO2 laser system.

    PubMed

    Lobik, L; Ravid, A; Nissenkorn, I; Kariv, N; Bernheim, J; Katzir, A

    1999-05-01

    Laser tissue welding has potential advantages over conventional suture closure of surgical wounds. It is a noncontact technique that introduces no foreign body and limits the possibility of infections and complications. The closure could be immediately watertight and the procedure may be less traumatic, faster and easier. In spite of these positives laser welding has not yet been approved for wide use. The problem in the clinical implementation of this technique arises from the difficulty in defining the conditions under which a highly reliable weld is formed. We have assumed that the successful welding of tissues depends on the ability to monitor and control the surface temperature during the procedure, thereby avoiding underheating or overheating. The purpose of this work was to develop a laser system for reliable welding of urinary tract tissues under good temperature control. We have developed a "smart" laser system that is capable of a dual role: transmitting CO2 laser power for tissue heating, and noncontact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats. Thirty-three animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer of continuous 6-0 dexon sutures. Reliable welding was obtained when the surface temperature was kept at 71 + 5C. Quality of weld was controlled immediately after operation. The rats were sacrificed on days 2, 10 and 30 for histological study. Bladder closure using the laser welding system was successful in 31/33 (94%) animals. Histological examination revealed an excellent welding and healing of the tissue. Efficiency of laser welding of urinary bladder in rats was confirmed by high survival rate and quality of scar that was demonstrated by clinical and histological examinations. In the future, optimal laser welding conditions will be studied in larger animals, using CO2 lasers and other lasers, with deeper radiation penetration into

  7. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  8. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsui, Takashi; Miura, Noriaki; Oowaki, Katsura

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter suchmore » as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)« less

  9. Effects of turbulence on the geodynamic laser ranging system

    NASA Technical Reports Server (NTRS)

    Churnside, James H.

    1993-01-01

    The Geodynamic Laser Ranging System (GLRS) is one of several instruments being developed by the National Aeronautics and Space Administration (NASA) for implementation as part of the Earth Observing System in the mid-1990s (Cohen et al., 1987; Bruno et al., 1988). It consists of a laser transmitter and receiver in space and an array of retroreflectors on the ground. The transmitter produces short (100 ps) pulses of light at two harmonics (0.532 and 0.355 microns) of the Nd:YAG laser. These propagate to a retroreflector on the ground and return. The receiver collects the reflected light and measures the round-trip transit time. Ranging from several angles accurately determines the position of the retroreflector, and changes in position caused by geophysical processes can be monitored.

  10. Testing Postural Stability: Are the Star Excursion Balance Test and Biodex Balance System Limits of Stability Tests Consistent?

    PubMed

    Glave, A Page; Didier, Jennifer J; Weatherwax, Jacqueline; Browning, Sarah J; Fiaud, Vanessa

    2016-01-01

    There are a variety of options to test postural stability; however many physical tests lack validity information. Two tests of postural stability - the Star Excursion Balance Test (SEBT) and Biodex Balance System Limits of Stability Test (LOS) - were examined to determine if similar components of balance were measured. Healthy adults (n=31) completed the LOS (levels 6 and 12) and SEBT (both legs). SEBT directions were offset by 180° to approximate LOS direction. Correlations and partial correlations controlling for height were analyzed. Correlations were significant for SEBT 45° and LOS back-left (6: r=-0.41; 12: r=-0.42; p<0.05), SEBT 90° and LOS 6 left (r=-0.51, p<0.05), SEBT 135(o) and LOS 6 front-left (r=-0.53, p<0.05), SEBT overall and LOS 6 overall (r=-0.43, p<0.05). Partial correlations were significant for SEBT 90° and LOS 6 left (rSEBT,LOS·H=-0.45, p<0.05) and SEBT 135° and LOS 6 front-left (rSEBT,LOS·H=-0.51, p<0.05), and SEBT overall and LOS 6 overall (rSEBT,LOS·H=-0.37, p<0.05). These findings indicate the tests seem to assess different components of balance. Research is needed to determine and define what specific components of balance are being assessed. Care must be taken when choosing balance tests to best match the test to the purpose of testing (fall risk, athletic performance, etc.). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  12. Laser-based firing systems for prompt initiation of secondary explosives

    NASA Technical Reports Server (NTRS)

    Meeks, Kent D.; Setchell, Robert E.

    1993-01-01

    Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.

  13. Portable laser speckle perfusion imaging system based on digital signal processor.

    PubMed

    Tang, Xuejun; Feng, Nengyun; Sun, Xiaoli; Li, Pengcheng; Luo, Qingming

    2010-12-01

    The ability to monitor blood flow in vivo is of major importance in clinical diagnosis and in basic researches of life science. As a noninvasive full-field technique without the need of scanning, laser speckle contrast imaging (LSCI) is widely used to study blood flow with high spatial and temporal resolution. Current LSCI systems are based on personal computers for image processing with large size, which potentially limit the widespread clinical utility. The need for portable laser speckle contrast imaging system that does not compromise processing efficiency is crucial in clinical diagnosis. However, the processing of laser speckle contrast images is time-consuming due to the heavy calculation for enormous high-resolution image data. To address this problem, a portable laser speckle perfusion imaging system based on digital signal processor (DSP) and the algorithm which is suitable for DSP is described. With highly integrated DSP and the algorithm, we have markedly reduced the size and weight of the system as well as its energy consumption while preserving the high processing speed. In vivo experiments demonstrate that our portable laser speckle perfusion imaging system can obtain blood flow images at 25 frames per second with the resolution of 640 × 480 pixels. The portable and lightweight features make it capable of being adapted to a wide variety of application areas such as research laboratory, operating room, ambulance, and even disaster site.

  14. ELI-beamlines: progress in development of next generation short-pulse laser systems

    NASA Astrophysics Data System (ADS)

    Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J. T.; Lagron, J. C.; Antipenkov, R.; Bartoníček, J.; Batysta, F.; Baše, R.; Boge, R.; Buck, S.; Cupal, J.; Drouin, M. A.; Durák, M.; Himmel, B.; Havlíček, T.; Homer, P.; Honsa, A.; Horáček, M.; Hríbek, P.; Hubáček, J.; Hubka, Z.; Kalinchenko, G.; Kasl, K.; Indra, L.; Korous, P.; Košelja, M.; Koubíková, L.; Laub, M.; Mazanec, T.; Meadows, A.; Novák, J.; Peceli, D.; Polan, J.; Snopek, D.; Šobr, V.; Trojek, P.; Tykalewicz, B.; Velpula, P.; Verhagen, E.; Vyhlídka, Å.; Weiss, J.; Haefner, C.; Bayramian, A.; Betts, S.; Erlandson, A.; Jarboe, J.; Johnson, G.; Horner, J.; Kim, D.; Koh, E.; Marshall, C.; Mason, D.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Stolz, C.; Suratwala, T.; Telford, S.; Ditmire, T.; Gaul, E.; Donovan, M.; Frederickson, C.; Friedman, G.; Hammond, D.; Hidinger, D.; Chériaux, G.; Jochmann, A.; Kepler, M.; Malato, C.; Martinez, M.; Metzger, T.; Schultze, M.; Mason, P.; Ertel, K.; Lintern, A.; Edwards, C.; Hernandez-Gomez, C.; Collier, J.

    2017-05-01

    Overview of progress in construction and testing of the laser systems of ELI-Beamlines, accomplished since 2015, is presented. Good progress has been achieved in construction of all four lasers based largely on the technology of diode-pumped solid state lasers (DPSSL). The first part of the L1 laser, designed to provide 200 mJ <15 fs pulses at 1 kHz repetition rate, is up and running. The L2 is a development line employing a 10 J / 10 Hz cryogenic gas-cooled pump laser which has recently been equipped with an advanced cryogenic engine. Operation of the L3-HAPLS system, using a gas-cooled DPSSL pump laser and a Ti:sapphire broadband amplifier, was recently demonstrated at 16 J / 28 fs, at 3.33 Hz rep rate. Finally, the 5 Hz OPCPA front end of the L4 kJ laser is up running and amplification in the Nd:glass large-aperture power amplifiers was demonstrated.

  15. Dynamic balancing of dual-rotor system with very little rotating speed difference.

    PubMed

    Yang, Jian; He, Shi-zheng; Wang, Le-qin

    2003-01-01

    Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.

  16. Technology Solutions Case Study: Balancing Hydronic Systems in Multifamily Buildings, Chicago, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-01

    In multifamily building hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. In this case study , Partnership for Advanced Residential Retrofit and Elevate Energy. explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs.

  17. Laser applications and system considerations in ocular imaging

    PubMed Central

    Elsner, Ann E.; Muller, Matthew S.

    2009-01-01

    We review laser applications for primarily in vivo ocular imaging techniques, describing their constraints based on biological tissue properties, safety, and the performance of the imaging system. We discuss the need for cost effective sources with practical wavelength tuning capabilities for spectral studies. Techniques to probe the pathological changes of layers beneath the highly scattering retina and diagnose the onset of various eye diseases are described. The recent development of several optical coherence tomography based systems for functional ocular imaging is reviewed, as well as linear and nonlinear ocular imaging techniques performed with ultrafast lasers, emphasizing recent source developments and methods to enhance imaging contrast. PMID:21052482

  18. Development of high-speed balancing technology

    NASA Technical Reports Server (NTRS)

    Demuth, R.; Zorzi, E.

    1981-01-01

    An investigation into laser material removal showed that laser burns act in a manner typical of mechanical stress raisers causing a reduction in fatigue strength; the fatigue strength is lowered relative to the smooth specimen fatigue strength. Laser-burn zones were studied for four materials: Alloy Steel 4340, Stainless Steel 17-4 PH, Inconel 718, and Aluminum Alloy 6061-T6. Calculations were made of stress concentration factors K, for laser-burn grooves of each material type. A comparison was then made to experimentally determine the fatigue strength reduction factor. These calculations and comparisons indicated that, except for the 17-4 PH material, good agreement (a ratio of close to 1.0) existed between Kt and Kf. The performance of the 17-4 PH material has been attributed to early crack initiation due to the lower fatigue resistance of the soft, unaged laser-affected zone. Also covered in this report is the development, implementation, and testing of an influence coefficient approach to balancing a long, slender shaft under applied-torque conditions. Excellent correlation existed between the analytically predicted results and those data obtained from testing.

  19. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  20. Noncontact Capacitive Clearance Control System For Laser Cutting Machines

    NASA Astrophysics Data System (ADS)

    Topkaya, Ahmet; Schmall, Karl-Heinz; Majoli, Ralf

    1989-03-01

    For a continuous high quality laser cut, it is necessary among other things to position the focal point of the laser beam correctly. This means that a constant clearance between the cutting head and the workpiece with a tolerance of +/- 0.Imm must he ensured. When cutting corrugated automobile bodysheet for example, a good quality cut can only be achieved with automatic clearance control. In the following, a method of automatic clearance control is described using the assistance of a noncontact capacitive sensor system. The copper nozzle of the laser cutting head acts as the electrode of the clearance sensor. The nozzle electrode and the workpiece build a small variable capacitance depending on the clearance. A change of clearance also changes the capacitance, which in turn influences a high frequency oscillator circuit. This shift in frequency is then converted into an analogue DC signal, which can be used to operate a servo motor control for the positioning of the laser cutting head in a closed loop servo system. Laser cutting heads with clearance sensor nozzles of different shapes, suited fur most applications in the industry, with focal lengths from 2.5" to 5" have been developed. They are capable to cut metal sheet from 0.2 to 12 mm of thickness, using CO2-lasers with output power up to 2.5 kW. For special applications involving difficult workpiece topographies in automobile production applications special "trunk" nozzles have been developed. For 5-axis cutting machines and robots, new laser cutting heads with integrated nozzle sensors in combination with a high dynamic Z-axis motor drive are in a stage of development.

  1. Laser-induced polarization of a quantum spin system in the steady-state regime

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-05-01

    The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.

  2. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    Accomplishments in the following areas of research are presented: receiver performance study of spaceborne laser altimeters and cloud and aerosol lidars; receiver performance analysis for space-to-space laser ranging systems; and receiver performance study for the Mars Environmental Survey (MESUR).

  3. Time-resolved laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  4. Life Balancing -- A Better Way to Balance Large Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R. Dyche; Zane, Regan; Plett, Gregory

    2017-03-28

    A new cell balancing technology was developed under a Department of Energy contract which merges the DC/DC converter function into cell balancing. Instead of conventional passive cell balancing technology which bypasses current through a resistor, or active cell balancing which moves current from one cell to another, with significant cost and additional inefficiencies, this concept takes variable amount of current from each cell or small group of cells and converts it to current for the low voltage system.

  5. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    NASA Astrophysics Data System (ADS)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  6. [The design of all solid-state tunable pulsed Ti:sapphire laser system].

    PubMed

    Chen, Zhe; Ku, Geng; Wan, Junchao; Wang, Wei; Zhou, Chuanqing

    2013-05-01

    This paper presented a design of broadly all solid-state tunable pulsed Ti:sapphire laser with high power and stable performance. The laser was pumped by custom-made Nd:YAG laser which had water cooling system and amplified by two stage amplifier. The method accomplished tunable output of all solid-state tunable pulsed Ti:sapphire laser by modifying the reflection angle of the back mirror. We investigated the relationship between the power of the pumping laser and the all solid-state tunable pulsed Ti: sapphire laser by changing the power of the pumping source.

  7. Initial results from the Lick Observatory Laser Guide Star Adaptive Optics System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; An, J.; Avicola, K.

    1995-11-08

    A prototype adaptive optics system has been installed and tested on the 3 m Shane telescope at Lick Observatory. The adaptive optics system performance, using bright natural guide stars, is consistent with expectations based on theory. A sodium-layer laser guide star system has also been installed and tested on the Shane telescope. Operating at 15 W, the laser system produces a 9th magnitude guide star with seeing-limited size at 589 nm. Using the laser guide star, the adaptive optics system has reduced the wavefront phase variance on scales above 50 cm by a factor of 4. These results represent themore » first continuous wavefront phase correction using a sodium-layer laser guide star. Assuming tip-tilt is removed using a natural guide star, the measured control loop performance should produce images with a Strehl ratio of 0.4 at 2.2 {mu}m in 1 arc second seeing. Additional calibration procedures must be implemented in order to achieve these results with the prototype Lick adaptive optics system.« less

  8. Integrated Laser Characterization, Data Acquisition, and Command and Control Test System

    NASA Technical Reports Server (NTRS)

    Stysley, Paul; Coyle, Barry; Lyness, Eric

    2012-01-01

    Satellite-based laser technology has been developed for topographical measurements of the Earth and of other planets. Lasers for such missions must be highly efficient and stable over long periods in the temperature variations of orbit. In this innovation, LabVIEW is used on an Apple Macintosh to acquire and analyze images of the laser beam as it exits the laser cavity to evaluate the laser s performance over time, and to monitor and control the environmental conditions under which the laser is tested. One computer attached to multiple cameras and instruments running LabVIEW-based software replaces a conglomeration of computers and software packages, saving hours in maintenance and data analysis, and making very longterm tests possible. This all-in-one system was written primarily using LabVIEW for Mac OS X, which allows the combining of data from multiple RS-232, USB, and Ethernet instruments for comprehensive laser analysis and control. The system acquires data from CCDs (charge coupled devices), power meters, thermistors, and oscilloscopes over a controllable period of time. This data is saved to an html file that can be accessed later from a variety of data analysis programs. Also, through the LabVIEW interface, engineers can easily control laser input parameters such as current, pulse width, chiller temperature, and repetition rates. All of these parameters can be adapted and cycled over a period of time.

  9. Pulsed multiwavelength laser ranging system. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1982-01-01

    A pulsed multiwavelength laser ranging system for measuring atmospheric delay was built and tested, and its theoretical performance limits were calculated. The system uses a dye modelocked ND:YAG laser, which transmits 70 psec wide pulses simultaneously at 1064, 532, and 355 nm. The differential delay of the 1064 and 355 nm pulses is measured by a specially calibrated waveform digitizer to estimate the dry atmospheric delay. The delay time of the 532 nm pulse is used to measure the target distance. Static crossed field photomultipliers are used as detectors for all wavelengths. Theoretical analysis shows that path curvature and atmospheric turbulence are fundamental limits to the ranging accuracy of both single and multicolor systems operating over horizontal paths. For two color systems, an additional error is caused by the uncertainty in the path averaged water vapor. The standard deviation of the multicolor instrument's timing measurements is directly proportional to the laser pulse width plus photomultiplier jitter divided by the square root of the received photoelectron number. The prototype system's maximum range is km, which is limited by atmospheric and system transmission losses at 355 nm. System signal detection and false alarm calculations are also presented.

  10. Experimental study on the instability of Pressure Balance Injection System (PBIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Koji; Teshima, Hideyuki; Madarame, Haruki

    1996-06-01

    The Passive Safety Reactor has been developed to reduce the construction cost and to improve the safety. Japan Atomic Energy Research institute (JAERI) proposed the System-Integrated Pressurized Water Reactor (SPWR) as a Passive Safety Reactor. In the SPWR design, the Pressure Balanced Injection System (PBIS) was introduced for the passive safety concept. The water with boron in a containment vessel were passively injected into the core by the pressure difference between the containment vessel and reactor vessel at a severe accidental condition. However there are few studies on the thermo-hydraulic characteristics of the PBIS. In this study, the thermal hydraulicsmore » of the PBIS are experimentally investigated using the small scale model. The instability of the injected flow was observed in the adiabatic experiment. The instability was caused by the pressure balance between the two vessels. The mechanism of the instability are discussed, resulting in the good agreement with the experimental results. In the steam experiment, another instability was observed, which was caused by the heat balance in the main tank.« less

  11. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle

  12. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  13. System Model for MEMS based Laser Ultrasonic Receiver

    NASA Technical Reports Server (NTRS)

    Wilson, William C.

    2002-01-01

    A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.

  14. Spacecraft system study: A study to define the impact of laser communication systems on their host spacecraft

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The mutual influence of a laser communication system and its host spacecraft and the degree to which the mutual influence limited acquisition, tracking and pointing processes were investigated. A laser klink between a low earth orbiting (LEO) satellite and a geosynchronous earth orbiting (GEO) satellite was used as a baseline. The laser link between satellites was a generic channel transferring 500 Mbps data from the LEO to GEO using the GaAlAs laser as the laser light source. Major aspects of pointing and tracking with a satelliteborne optical system were evaluated including: (1) orbital aspects such as spacecraft relative motions, point ahead, and Sun snd Moon optical noise; (2) burst errors introduced by the electronic and optical noise levels; (3) servo system design and configurations, and the noise sources such as, sensor noise, base motion disturbances, gimbal friction torque noise; (4) an evaluation of the tracking and beacon link and the type of sensors used; (5) the function of the acquisition procedure and an evaluation of the sensors employed; and (6) an estimate of the size, weight and power needed for the satellite system.

  15. Ring-laser gyroscope system using dispersive element(s)

    NASA Technical Reports Server (NTRS)

    Smith, David D. (Inventor)

    2010-01-01

    A ring-laser gyroscope system includes a ring-laser gyroscope (RLG) and at least one dispersive element optically coupled to the RLG's ring-shaped optical path. Each dispersive element has a resonant frequency that is approximately equal to the RLG's lasing frequency. A group index of refraction defined collectively by the dispersive element(s) has (i) a real portion that is greater than zero and less than one, and (ii) an imaginary portion that is less than zero.

  16. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPEmore » for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.« less

  17. University of Hawaii Lure Observatory. [lunar laser ranging system construction

    NASA Technical Reports Server (NTRS)

    Carter, W. E.; Williams, J. D.

    1973-01-01

    The University of Hawaii's Institute for Astronomy is currently constructing a lunar laser ranging observatory at the 3050-meter summit of Mt. Haleakala, Hawaii. The Nd YAG laser system to be employed provides three pulses per second, each pulse being approximately 200 picoseconds in duration. The energy contained in one pulse at 5320 A lies in the range from 250 to 350 millijoules. Details of observatory construction are provided together with transmitter design data and information concerning the lunastat, the feed telescope, the relative pointing system, the receiver, and the event timer system.

  18. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  19. Efficiency of laser beam utilization in gas laser cutting of materials

    NASA Astrophysics Data System (ADS)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  20. Laser-based optoelectronic system for therapy by medical treatment of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Chtchoupak, Oleg S.; Spilevoi, Boris N.; Zapaeva, Natlia L.

    1996-04-01

    The method and system's design for the laser treatment of the heart ischemia is presented. Our conceptual approach to the development of the system is based on the theoretical and experimental works about positive influence of low intensity near infrared laser irradiation by treatment of cardiovascular diseases. The method and system allow it to influence the subepicardial collateral blood circulation with near infrared (NIR) laser irradiation in wavelength ranges of 0.86 - 1.06 mkm. The presented techniques make it possible to achieve a higher effectiveness of treatment. First, due to individual choice of radiation parameters on the basis of analysis of the patient's conditions before and after laser therapy. Second, due to simultaneous influence at several points of the human body. Finally, results of the clinical tests are presented, which confirm the discussed methods.

  1. Multi-point laser coherent detection system and its application on vibration measurement

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.

    2015-05-01

    Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.

  2. Precision laser range finder system design for Advanced Technology Laboratory applications

    NASA Technical Reports Server (NTRS)

    Golden, K. E.; Kohn, R. L.; Seib, D. H.

    1974-01-01

    Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible.

  3. Robotic Laser Coating Removal System

    DTIC Science & Technology

    2008-08-01

    9 3.2 SELECTION OF TEST PLATFORM/FACILITY .................................. 9 3.3 TEST PLATFORM/FACILITY HISTORY...lasers are 4 efficient in converting electrical energy to coherent radiation and, thus, have widespread industrial use. In order to select an...completion of this evaluation a 6 kW CO2 laser from Rofin-Sinar was selected for use in the RLCRS. This laser provided the highest quality laser

  4. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  5. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  6. Development of the micro-scanning optical system of yellow laser applied to the ophthalmologic area

    NASA Astrophysics Data System (ADS)

    Ortega, Tiago A.; Mota, Alessandro D.; Costal, Glauco Z.; Fontes, Yuri C.; Rossi, Giuliano; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.

    2012-10-01

    In this work, the development of a laser scanning system for ophthalmology with micrometric positioning precision is presented. It is a semi-automatic scanning system for retina photocoagulation and laser trabeculoplasty. The equipment is a solid state laser fully integrated to the slit lamp. An optical system is responsible for producing different laser spot sizes on the image plane and a pair of galvanometer mirrors generates the scanning patterns.

  7. [Flexible Guidance of Ultra-Short Laser Pulses in Ophthalmic Therapy Systems].

    PubMed

    Blum, J; Blum, M; Rill, M S; Haueisen, J

    2017-01-01

    In the last 20 years, the role of ultrashort pulsed lasers in ophthalmology has become increasingly important. However, it is still impossible to guide ultra-short laser pulses with standard glass fibres. The highly energetic femtosecond pulses would destroy the fibre material, and non-linear dispersion effects would significantly change beam parameters. In contrast, photonic crystal fibres mainly guide the laser pulses in air, so that absorption and dispersive pulse broadening have essentially no effect. This article compares classical beam guidance with mirrors, lenses and prisms with photonic crystal fibres and describes the underlying concepts and the current state of technology. A classical mirror arm possesses more variable optical properties, while the HCF (Hollow-Core Photonic Crystal Fibre) must be matched in terms of the laser energy and the laser spectrum. In contrast, the HCF has more advantages in respect of handling, system integration and costs. For applications based on photodisruptive laser-tissue interaction, the relatively low damage threshold of photonic crystal fibres compared to classic beam guiding systems is unacceptable. If, however, pulsed laser radiation has a sufficiently low peak intensity, e.g. as used for plasma-induced ablation, photonic crystal fibres can definitely be considered as an alternative solution to classic beam guidance. Georg Thieme Verlag KG Stuttgart · New York.

  8. 140 W peak power laser system tunable in the LWIR.

    PubMed

    Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric

    2017-08-07

    We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.

  9. Not as Easy as It Sounds: Designing a Balanced Assessment System

    ERIC Educational Resources Information Center

    Chattergoon, Rajendra; Marion, Scott

    2016-01-01

    Many states and school districts are rethinking how they do educational assessment. A few are going further: attempting to build "balanced," "comprehensive," or "next-generation" assessment systems. At the same time, practitioners and researchers have long mulled the purposes and parts such systems should have. But…

  10. Battery Cell Balancing Optimisation for Battery Management System

    NASA Astrophysics Data System (ADS)

    Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.

    2017-03-01

    Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.

  11. Effects of Different Polarization Strategies on Laser Cutting with Direct Diode Lasers

    NASA Astrophysics Data System (ADS)

    Rodrigues, G. Costa; Duflou, J. R.

    As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.

  12. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  13. Method and system for homogenizing diode laser pump arrays

    DOEpatents

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  14. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  15. The development of a low-cost laser communication system for the classroom

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Pompea, Stephen M.; Walker, Constance E.

    2007-06-01

    Hands-On Optics (HOO) is a National Science Foundation funded program to bring optics education to underserved middle school students. We have developed the culminating module (Module 6) on laser communication. Students learn how lasers can be modulated to carry information. The main activity of this module is the construction of a low-cost laser communication system. The system can be built using parts readily available at a local electronics store for approximately US $60. The system can be used to transmit a person's voice or music from sources such as an mp3 player or radio over a distance of 350 feet. We will provide detailed plans on how to build the system in this paper.

  16. A laser scanning system for metrology and viewing in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spampinato, P.T.; Barry, R.E.; Menon, M.M.

    1996-05-01

    The construction and operation of a next-generation fusion reactor will require metrology to achieve and verify precise alignment of plasma-facing components and inspection in the reactor vessel. The system must be compatible with the vessel environment of high gamma radiation (10{sup 4} Gy/h), ultra-high-vacuum (10{sup {minus}8} torr), and elevated temperature (200 C). The high radiation requires that the system be remotely deployed. A coherent frequency modulated laser radar-based system will be integrated with a remotely operated deployment mechanism to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics tomore » the laser source and imaging units that are located outside of a biological shield. The deployment mechanism will be a mast-like positioning system. Radiation-damage tests will be conducted on critical sensor components at Oak Ridge National Laboratory to determine threshold damage levels and effects on data transmission. This paper identifies the requirements for International Thermonuclear Experimental Reactor metrology and viewing and describes a remotely operated precision ranging and surface mapping system.« less

  17. Tradeoffs in the Design of Health Plan Payment Systems: Fit, Power and Balance

    PubMed Central

    Geruso, Michael; McGuire, Thomas G.

    2016-01-01

    In many markets, including the new U.S. Marketplaces, health insurance plans are paid by risk-adjusted capitation, sometimes combined with reinsurance and other payment mechanisms. This paper proposes a framework for evaluating the de facto insurer incentives embedded in these complex payment systems. We discuss fit, power and balance, each of which addresses a distinct market failure in health insurance. We implement empirical metrics of fit, power, and balance in a study of Marketplace payment systems. Using data similar to that used to develop the Marketplace risk adjustment scheme, we quantify tradeoffs among the three classes of incentives. We show that an essential tradeoff arises between the goals of limiting costs and limiting cream skimming because risk adjustment, which is aimed at discouraging cream-skimming, weakens cost control incentives in practice. A simple reinsurance system scores better on our measures of fit, power and balance than the risk adjustment scheme in use in the Marketplaces. PMID:26922122

  18. Tradeoffs in the design of health plan payment systems: Fit, power and balance.

    PubMed

    Geruso, Michael; McGuire, Thomas G

    2016-05-01

    In many markets, including the new U.S. Marketplaces, health insurance plans are paid by risk-adjusted capitation, sometimes combined with reinsurance and other payment mechanisms. This paper proposes a framework for evaluating the de facto insurer incentives embedded in these complex payment systems. We discuss fit, power and balance, each of which addresses a distinct market failure in health insurance. We implement empirical metrics of fit, power, and balance in a study of Marketplace payment systems. Using data similar to that used to develop the Marketplace risk adjustment scheme, we quantify tradeoffs among the three classes of incentives. We show that an essential tradeoff arises between the goals of limiting costs and limiting cream skimming because risk adjustment, which is aimed at discouraging cream-skimming, weakens cost control incentives in practice. A simple reinsurance system scores better on our measures of fit, power and balance than the risk adjustment scheme in use in the Marketplaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Laser interferometric system for six-axis motion measurement.

    PubMed

    Zhang, Zhipeng; Menq, Chia-Hsiang

    2007-08-01

    This article presents the development of a precision laser interferometric system, which is designed to achieve six-axis motion measurement for real-time applications. By combining the advantage of the interferometer with a retroreflector and that of the interferometer with a plane mirror reflector, the system is capable of simultaneously measuring large transverse motions along and large rotational motions about three orthogonal axes. Based on optical path analysis along with the designed kinematics of the system, a closed form relationship between the six-axis motion parameters of the object being measured and the readings of the six laser interferometers is established. It can be employed as a real-time motion sensor for various six-axis motion control stages. A prototype is implemented and integrated with a six-axis magnetic levitation stage to illustrate its resolution and measurement range.

  20. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers

    NASA Astrophysics Data System (ADS)

    Shi, Guang; Wang, Wen; Zhang, Fumin

    2018-03-01

    The measurement precision of frequency-modulated continuous-wave (FMCW) laser distance measurement should be proportional to the scanning range of the tunable laser. However, the commercial external cavity diode laser (ECDL) is not an ideal tunable laser source in practical applications. Due to the unavoidable mode hopping and scanning nonlinearity of the ECDL, the measurement precision of FMCW laser distance measurements can be substantially affected. Therefore, an FMCW laser ranging system with two auxiliary interferometers is proposed in this paper. Moreover, to eliminate the effects of ECDL, the frequency-sampling method and mode hopping influence suppression method are employed. Compared with a fringe counting interferometer, this FMCW laser ranging system has a measuring error of ± 20 μm at the distance of 5.8 m.