Science.gov

Sample records for laser beam distortion

  1. Signal distortion due to beam-pointing error in a chopper modulated laser system.

    PubMed

    Eklund, H

    1978-01-15

    The detector output has been studied for a long-distance system with a chopped cw laser as transmitter source. It is shown experimentally that the pulse distortion of the detected signal is dependent on the beam-pointing error. Parameters reflecting the pulse distortion are defined. The beam deviation in 1-D is found to be strongly related to these parameters. The result is in agreement with a theoretical model based upon the Fresnel diffraction theory. Possible applications in beam-tracking systems, communications systems, and atmospheric studies are discussed. PMID:20174398

  2. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems.

    PubMed

    Fourmaux, S; Serbanescu, C; Lecherbourg, L; Payeur, S; Martin, F; Kieffer, J C

    2009-01-01

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated. PMID:19129886

  3. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems

    PubMed Central

    Fourmaux, S.; Serbanescu, C.; Lecherbourg, L.; Payeur, S.; Martin, F.; Kieffer, J. C.

    2009-01-01

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated. PMID:19129886

  4. ACTIVE MEDIA: Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier

    NASA Astrophysics Data System (ADS)

    Vyatkin, A. G.; Khazanov, Efim A.

    2009-09-01

    Taking into account the temperature dependences of the heat conductivity, the refractive index, and the thermal expansion coefficient, we calculated the temperature, elastic stresses, a thermally induced lens and depolarisation of a beam in a cryogenic disk amplifier (an Yb:YAG disk placed between a copper cylinder and a sapphire disk cooled by liquid nitrogen). When the active element (the thickness is 0.6 mm, the orientation is [001], the atomic concentration of Yb is 10%) is pumped by radiation from a diode laser (the beam diameter is 6 mm), the temperature does not exceed 140 K for the heat release power of 100 W. In this case, elastic stresses in the active element are six times lower than the maximum permissible value. The focal distance of the thermally induced lens is 5.5 m and the depolarisation rate is 0.038% per two passes through the active element. Although the heat conductivity of the active element rapidly decreases with temperature, the thermal load can be increased by 1.5-2 times when the dimensions of the active element remain constant.

  5. Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier

    SciTech Connect

    Vyatkin, A G; Khazanov, Efim A

    2009-09-30

    Taking into account the temperature dependences of the heat conductivity, the refractive index, and the thermal expansion coefficient, we calculated the temperature, elastic stresses, a thermally induced lens and depolarisation of a beam in a cryogenic disk amplifier (an Yb:YAG disk placed between a copper cylinder and a sapphire disk cooled by liquid nitrogen). When the active element (the thickness is 0.6 mm, the orientation is [001], the atomic concentration of Yb is 10%) is pumped by radiation from a diode laser (the beam diameter is 6 mm), the temperature does not exceed 140 K for the heat release power of 100 W. In this case, elastic stresses in the active element are six times lower than the maximum permissible value. The focal distance of the thermally induced lens is 5.5 m and the depolarisation rate is 0.038% per two passes through the active element. Although the heat conductivity of the active element rapidly decreases with temperature, the thermal load can be increased by 1.5-2 times when the dimensions of the active element remain constant. (active media)

  6. Wavefront distortion and beam pointing for LISA

    NASA Astrophysics Data System (ADS)

    Bender, Peter L.

    2005-05-01

    The dc pointing directions for the LISA laser beams will be chosen to minimize the sensitivity of the measured arm lengths to jitter in the beam pointing. The earliest studies of the effects of wavefront distortion included only astigmatism and defocus, so that the desired dc beam pointing directions were on the axis for the transmitting telescopes. But, if other aberrations cause the dc pointing directions to be considerably off axis, some of the laser beam intensity will be lost. A brief study of this effect has been carried out. As examples, several cases with defocus, spherical aberration, and two components each of astigmatism and coma have been investigated. Within this class of models, pure astigmatism turned out to give the maximum sensitivity to beam pointing jitter, for a given rms wavefront distortion. Although further study is needed, it appears that the usually quoted requirements of 3 × 10-8 rad for the dc beam pointing offsets and 8 × 10-9 rad Hz-1/2 for the pointing jitter are probably reasonable choices.

  7. Zigzag laser with reduced optical distortion

    DOEpatents

    Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.

    1994-01-01

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.

  8. Zigzag laser with reduced optical distortion

    DOEpatents

    Albrecht, G.F.; Comaskey, B.; Sutton, S.B.

    1994-04-19

    The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.

  9. Correction for thermal distortions of laser beams with a flexible mirror. Experimental and numerical investigations

    NASA Astrophysics Data System (ADS)

    Kanev, F.; Makenova, N.; Nesterov, R.; Izmailov, I.

    2016-04-01

    A mathematical model of an adaptive optics system was described in the article. The model included two main components: the model of an adaptive mirror and model of beam propagation under conditions of thermal blooming. Results of numerical simulation of adaptive optics systems were compared with data of laboratory experiments. High reliability of the model was shown.

  10. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  11. Optimized laser turrets for minimum phase distortion

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Fuhs, A. E.; Blaisdell, G. A.

    1980-01-01

    An analysis and computer program which optimizes laser turret geometry to obtain minimum phase distortion is described. Phase distortion due to compressible, inviscid flow over small perturbation laser turrets in subsonic or supersonic flow is calculated. The turret shape is determined by a two dimensional Fourier series; in a similar manner, the flow properties are given by a Fourier series. Phase distortion is calcualted for propagation at serveral combinations of elevation and azimuth angles. A sum is formed from the set of values, and this sum becomes the objective function for an optimization computer program. The shape of the turret is varied to provide minimum phase distortion.

  12. Thermal distortion analysis for silicon reflectors irradiated by high-power laser

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Lou, ShuLi; He, YouJin; Li, HaiYan; Ren, JianCun; Yang, Jianqian

    2015-10-01

    The thermal distortion of silicon reflector irradiated by high-power laser were analyzed by numerical simulation. The results indicate that the contributions from the thermo optic effect, photoelastic effect and deformation are about 97.4%, 0.65%, 1.95% for the transmitted beam. The ratio of thermal distortion between reflected beam and transmitted beam is 0.09.

  13. Analysis and validation of laser spot weld-induced distortion

    SciTech Connect

    Knorovsky, G.A.; Kanouff, M.P.; Maccallum, D.O.; Fuerschbach, P.W.

    1999-12-09

    Laser spot welding is an ideal process for joining small parts with tight tolerances on weld size, location, and distortion, particularly those with near-by heat sensitive features. It is also key to understanding the overlapping laser spot seam welding process. Rather than attempting to simulate the laser beam-to-part coupling (particularly if a keyhole occurs), it was measured by calorimetry. This data was then used to calculate the thermal and structural response of a laser spot welded SS304 disk using the finite element method. Five combinations of process parameter values were studied. Calculations were compared to experimental data for temperature and distortion profiles measured by thermocouples and surface profiling. Results are discussed in terms of experimental and modeling factors. The authors then suggest appropriate parameters for laser spot welding.

  14. Analytical beam-width characteristics of distorted cat-eye reflected beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yanzhong; Shan, Congmiao; Zheng, Yonghui; Zhang, Laixian; Sun, Huayan

    2015-02-01

    The analytical expression of beam-width of distorted cat-eye reflected beam under far-field condition is deduced using the approximate three-dimensional analytical formula for oblique detection laser beam passing through cat-eye optical lens with center shelter, and using the definition of second order moment, Gamma function and integral functions. The laws the variation of divergence angle and astigmatism degree of the reflected light with incident angle, focal shift, aperture size, and center shelter ratio are established by numerical calculation, and physical analysis. The study revealed that the cat-eye reflected beam is like a beam transmitted and collimated by the target optical lens, and has the same characteristics as that of Gaussian beam. A proper choice of positive focal shift would result in a divergence angle smaller than that of no focal shift. The astigmatism is mainly caused by incidence angle.

  15. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    SciTech Connect

    Wu, Juhao; Raubenheimer, T.O.; Chao, A.W.; Seryi, A.; Sramek, C.K.; /Rice U.

    2005-06-30

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ''banana effect''). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  16. Wind profile estimation from point to point laser distortion data

    NASA Technical Reports Server (NTRS)

    Leland, Robert

    1989-01-01

    The author's results on the problem of using laser distortion data to estimate the wind profile along the path of the beam are presented. A new model for the dynamics of the index of refraction in a non-constant wind is developed. The model agrees qualitatively with theoretical predictions for the index of refraction statistics in linear wind shear, and is approximated by the predictions of Taylor's hypothesis in constant wind. A framework for a potential in-flight experiment is presented, and the estimation problem is discussed in a maximum likelihood context.

  17. Laser beam shaping techniques

    SciTech Connect

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  18. Laser-Beam Separator

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  19. Jones calculus modeling and analysis of the thermal distortion in a Ti:sapphire laser amplifier.

    PubMed

    Cho, Seryeyohan; Jeong, Jihoon; Yu, Tae Jun

    2016-06-27

    The mathematical modeling of an anisotropic Ti:sapphire crystal with a significant thermal load is performed. The model is expressed by the differential Jones matrix. A thermally induced distortion in the chirped-pulse amplification process is shown by the solution of the differential Jones matrix. Using this model, the thermally distorted spatio-temporal laser beam shape is calculated for a high-power and high-repetition-rate Ti:sapphire amplifier. PMID:27410590

  20. Beam-shape distortion caused by transverse wake fields

    SciTech Connect

    Chao, A.W.; Kheifets, S.

    1983-02-01

    As a particle bunch in a storage ring passes through a region with a transverse impedance, it generates a transverse wake electromagnetic field that is proportional to the transverse displacement of the bunch in the region. The field acts back on the bunch, causing various effects (such as instabilities) in the motion of the bunch. We study one such effect in which a transverse impedance causes the beam to be distorted in its shape. Observed at a fixed location in the storage ring, this distortion does not change from turn to turn; rather, the distortion is static in time. To describe the distortion, the bunch is considered to be divided longitudinally into many slices and the centers of change of the slices are connected into a curve. In the absence of transverse impedance, this curve is a straight line parallel to the direction of motion of the bunch. Perturbed by the transverse wake field, the curve becomes distorted. What we find in this paper is the shape of such a curve. The results obtained are applied to the PEP storage ring. The impedance is assumed to come solely from the rf cavities. We find that the beam shape is sufficiently distorted and hence that loss of luminosity due to this effect becomes a possibility.

  1. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  2. Laser beam color separator

    NASA Technical Reports Server (NTRS)

    Franke, J. M.

    1978-01-01

    Multiwavelength laser beam is separated into series of parallel color beams using prism and retroreflector. Setup is inexpensive and needs no critical adjustments. It can incorporate several prisms to increase dispersion and reduce overall size. Transmission grating can be used instead of prism with sacrifice in efficiency. Spatial filter can remove unwanted beams.

  3. Emittance and beam size distortion due to linear coupling

    SciTech Connect

    Parzen, G.

    1993-01-01

    At injection, the presence of linear coupling may result in an increased beam emittance and in increased beam dimensions. Results for the emittance in the presence of linear coupling will be found. These results for the emittance distortion show that the harmonics of the skew quadrupole field close to [nu][sub x] + [nu][sub y] are the important harmonics. Results will be found for the important driving terms for the emittance distortion. It will be shown that if these driving terms are corrected, then the total emittance is unchanged, [var epsilon][sub x] + [var epsilon][sub y] = [var epsilon][sub 1] + [var epsilon][sub 2]. Also, the increase in the beam dimensions will be limited to a factor which is less than 1.414. If the correction is good enough, see below for details, one can achieve [var epsilon][sub 1] = [var epsilon][sub x], [var epsilon][sub 2] = [var epsilon] where [var epsilon][sub 1], [var epsilon][sub 2] are the emittances in the presence of coupling, and the beam dimensions are unchanged. Global correction of the emittance and beam size distortion appears possible.

  4. Emittance and beam size distortion due to linear coupling

    SciTech Connect

    Parzen, G.

    1993-06-01

    At injection, the presence of linear coupling may result in an increased beam emittance and in increased beam dimensions. Results for the emittance in the presence of linear coupling will be found. These results for the emittance distortion show that the harmonics of the skew quadrupole field close to {nu}{sub x} + {nu}{sub y} are the important harmonics. Results will be found for the important driving terms for the emittance distortion. It will be shown that if these driving terms are corrected, then the total emittance is unchanged, {var_epsilon}{sub x} + {var_epsilon}{sub y} = {var_epsilon}{sub 1} + {var_epsilon}{sub 2}. Also, the increase in the beam dimensions will be limited to a factor which is less than 1.414. If the correction is good enough, see below for details, one can achieve {var_epsilon}{sub 1} = {var_epsilon}{sub x}, {var_epsilon}{sub 2} = {var_epsilon} where {var_epsilon}{sub 1}, {var_epsilon}{sub 2} are the emittances in the presence of coupling, and the beam dimensions are unchanged. Global correction of the emittance and beam size distortion appears possible.

  5. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  6. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  7. Optical phase distortion due to compressible flow over laser turrets

    NASA Technical Reports Server (NTRS)

    Fuhs, A. E.; Fuhs, S. E.

    1980-01-01

    Analytical models for optical phase distortion due to compressible flow over a laser turret are developed. Phase distortion is calculated for both blunt and small perturbation turrets. For the blunt turret, the Janzen-Rayleigh technique is used to determine the flow field. Phase distortions of 2.2 wavelengths at 3.8 microns are calculated for the blunt turret. For small perturbation turrets, a versatile analytical model is developed for a turret on a fuselage with circular cross section. With a two dimensional Fourier series representation of the turret, any shape can be considered. Both subsonic and supersonic flows can be calculated. Phase distortions of 1.2 wavelengths at 3.8 microns are calculated for one turret at high subsonic Mach number. In addition to being of value for laser turrets, the methods are applicable to reconnaissance aircraft using photographic equipment and cruise missiles using celestial navigation.

  8. Correction of the field distortion in embedded laser marking system

    NASA Astrophysics Data System (ADS)

    Wang, Dongyun; Yu, Qiwei; Ye, Xinpiao

    2014-04-01

    Because of inherent and random errors, the pillow-shaped and barrel-shaped distortions are occurred in the embedded laser marking system. These seriously affect marking quality. However, the existed correcting approaches are almost all used on PC based laser marking controller. They require very high processing speeds of the processor which cannot be satisfied in the embedded controller. In order to find a suitable method, the causes of distortions were analyzed deeply. After that, a linear compensation method is put forward herein. It needs to determine two coefficients by standard process and tries to improve the marking quality by compensating the marking data before converted to voltage by digital-to-analogue converter. It is not complex as the PC based one, but can correct the distortions to some extent. Experiments show that this method can efficiently decrease the distortions and improve the marking quality.

  9. Entropy studies on beam distortion by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-09-01

    When a beam propagates through atmospheric turbulence over a known distance, the target beam profile deviates from the projected profile of the beam on the receiver. Intuitively, the unwanted distortion provides information about the atmospheric turbulence. This information is crucial for guiding adaptive optic systems and improving beam propagation results. In this paper, we propose an entropy study based on the image from a plenoptic sensor to provide a measure of information content of atmospheric turbulence. In general, lower levels of atmospheric turbulence will have a smaller information size while higher levels of atmospheric turbulence will cause significant expansion of the information size, which may exceed the maximum capacity of a sensing system and jeopardize the reliability of an AO system. Therefore, the entropy function can be used to analyze the turbulence distortion and evaluate performance of AO systems. In fact, it serves as a metric that can tell the improvement of beam correction in each iteration step. In addition, it points out the limitation of an AO system at optimized correction as well as the minimum information needed for wavefront sensing to achieve certain levels of correction. In this paper, we will demonstrate the definition of the entropy function and how it is related to evaluating information (randomness) carried by atmospheric turbulence.

  10. Beam Quality of a Nonideal Atom Laser

    SciTech Connect

    Riou, J.-F.; Guerin, W.; Le Coq, Y.; Fauquembergue, M.; Josse, V.; Bouyer, P.; Aspect, A.

    2006-02-24

    We study the propagation of a noninteracting atom laser distorted by the strong lensing effect of the Bose-Einstein condensate (BEC) from which it is outcoupled. We observe a transverse structure containing caustics that vary with the density within the residing BEC. Using the WKB approximation, Fresnel-Kirchhoff integral formalism, and ABCD matrices, we are able to describe analytically the atom-laser propagation. This allows us to characterize the quality of the nonideal atom-laser beam by a generalized M{sup 2} factor defined in analogy to photon lasers. Finally we measure this quality factor for different lensing effects.

  11. Astigmatic Bessel laser beams

    NASA Astrophysics Data System (ADS)

    Khonina, S. N.; Kotlyar, V. V.; Soifer, V. A.; Jefimovs, K.; Pääkkönen, P.; Turunen, J.

    2004-05-01

    The oblique incidence of a He-Ne laser beam onto a phase-only diffractive optical element (DOE) that simultaneously produces several unimode different-order Bessel beams propagating at various angles with respect to the optical axis is studied theoretically and experimentally. It is shown that, under obliquely incident illumination of a DOE that forms Bessel beams, the resulting astigmatic diffraction pattern can be used to unambiguously identify the direction of the Bessel beam's phase rotation and the order of the Bessel mode.

  12. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui; Michelle D. Shinn

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  13. New beam lasers

    SciTech Connect

    Wang Shaomin; Lu Xuanhui; Lin Qiang; Zhao Daomu; Li Kang; Zhu Jingmin

    1996-12-31

    A new suggestion that there is a phase jump of {pi} in the boundary wave is put forward in this paper. This suggestion may be a supplement of Huygens-Fresnel principle. Based on this new suggestion, a series of new beams was invented, both outside and inside the laser cavity. Especially, a new CO{sub 2} laser with equivalent beam quality factor M{sub e}{sup 2} < 1 is achieved. It can be considered as the result of some controllable nonlinear self-focusing, and the physical background of deformed quantum mechanics.

  14. Numerical analysis of distortion characteristics of heterojunction bipolar transistor laser

    NASA Astrophysics Data System (ADS)

    Piramasubramanian, S.; Ganesh Madhan, M.; Nagella, Jyothsna; Dhanapriya, G.

    2015-12-01

    Numerical analysis of harmonic and third order intermodulation distortion of transistor laser is presented in this paper. The three level rate equations are numerically solved to determine the modulation and distortion characteristics. DC and AC analysis on the device are carried out to determine its power-current and frequency response characteristics. Further, the effects of quantum well recombination time and electron capture time in the quantum well, on the modulation depth and distortion characteristics are examined. It is observed that the threshold current density of the device decreases with increasing electron lifetime, which coincides with earlier findings. Also, the magnitude of harmonic distortion and intermodulation products are found to reduce with increasing current density and with a reduction of spontaneous emission recombination lifetime. However, an increase of electron capture time improves the distortion performance. A maximum modulation depth of 18.42 dB is obtained for 50 ps spontaneous emission life time and 1 ps electron capture time, for 2.4 GHz frequency at a current density of 2Jth. A minimum second harmonic distortion magnitude of -66.8 dBc is predicted for 50 ps spontaneous emission life time and 1 ps electron capture time for 2.4 GHz frequency, at a current density of 7Jth. Similarly, a minimum third order intermodulation distortion of -83.93 dBc is obtained for 150 ps spontaneous emission life time and 5 ps electron capture time under similar biasing conditions.

  15. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  16. Beam uniformity of flat top lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  17. Laser beam guard clamps

    DOEpatents

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  18. Thermally induced distortion of high average power laser system by an optical transport system

    SciTech Connect

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.

  19. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  20. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  1. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  2. Distortion-free femtosecond laser inscription in free-standing optical fiber.

    PubMed

    Chen, Yijing; Lai, Yicheng; Cheong, Marcus Weng Onn

    2016-07-20

    In this paper, we report the first experimental demonstration, to the best of our knowledge, of low-energy distortion-free femtosecond laser inscription in a free-standing fiber without the need for oil immersion. The methodology proposed features radial-plane beam shaping to eliminate the focal-point distortion induced by the cylindrical geometry of the fiber, thus achieving optimal focusing and spot-like inscription within the fiber. Based on the proposed methodology, a strong, first-order fiber Bragg grating is achieved for the first time, to the best of our knowledge, in a coated free-standing single-mode fiber by using the point-by-point inscription technique with only 50 nJ laser pulse energy. PMID:27463907

  3. Smartphone laser beam spatial profiler.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-11-15

    A simple, low-cost, portable, smartphone-based laser beam profiler for characterizing laser beam profiles is reported. The beam profiler utilizes a phosphor silica glass plate to convert UV light into visible (green) light that can be directly imaged onto an existing smartphone CMOS chip and analyzed using a customized app. 3D printing enables the ready fabrication of the instrument package. The beam's diameter, shape, divergence, beam quality factor, and output power are measured for two UV lasers: a CW 244 nm frequency-doubled Ar ion laser and a pulsed 193 nm ArF exciplex laser. The availability of specialized phosphor converters can extend the instrument from the UV to the near infrared and beyond, and the smartphone platform extends the Internet of Things to map laser beam profiles simultaneously in different locations. PMID:26565823

  4. Examination of the CLIC drive beam pipe design for thermal distortion caused by distributed beam line

    SciTech Connect

    C. Johnson; K. Kloeppel

    1997-01-01

    Beam transport programs are widely used to estimate the distribution of power deposited in accelerator structures by particle beams, either intentionally as for targets or beam dumps or accidentally owing the beam loss incidents. While this is usually adequate for considerations of radiation safety, it does not reveal the expected temperature rise and its effect on structural integrity. To find this, thermal diffusion must be taken into account, requiring another step in the analysis. The method that has been proposed is to use the output of a transport program, perhaps modified, as input for a finite element analysis program that can solve the thermal diffusion equation. At Cern, the design of the CLIC beam pipe has been treated in this fashion. The power distribution produced in the walls by a distributed beam loss was found according to the widely-used electron shower code EGS4. The distribution of power density was then used to form the input for the finite element analysis pro gram ANSYS, which was able to find the expected temperature rise and the resulting thermal distortion. As a result of these studies, the beam pipe design can be modified to include features that will counteract such distortion.

  5. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  6. Beam quality measurements using digitized laser beam images

    SciTech Connect

    Duncan, M.D. ); Mahon, R. )

    1989-11-01

    A method is described for measuring various laser beam characteristics with modest experimental complexity by digital processing of the near and far field images. Gaussian spot sizes, peak intensities, and spatial distributions of the images are easily found. Far field beam focusability is determined by computationally applying apertures of circular of elliptical diameters to the digitized image. Visualization of the magnitude of phase and intensity distortions is accomplished by comparing the 2-D fast Fourier transform of both smoothed and unsmoothed near field data to the actual far field data. The digital processing may be performed on current personal computers to give the experimenter unprecedented capabilities for rapid beam characteriztion at relatively low cost.

  7. Nonlinear combining of laser beams.

    PubMed

    Lushnikov, Pavel M; Vladimirova, Natalia

    2014-06-15

    We propose to combine multiple laser beams into a single diffraction-limited beam by beam self-focusing (collapse) in a Kerr medium. Beams with total power above critical are first combined in the near field and then propagated in the optical fiber/waveguide with Kerr nonlinearity. Random fluctuations during propagation eventually trigger a strong self-focusing event and produce a diffraction-limited beam carrying the critical power. PMID:24978503

  8. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  9. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  10. Elimination of threshold-induced distortion in the power spectrum of narrow-band laser speckle

    NASA Astrophysics Data System (ADS)

    Ducharme, Alfred D.; Boreman, Glenn D.; Yang, Sidney S.

    1995-10-01

    The distortion in the power spectrum of narrow-band laser speckle that results from irradiance thresholding is quantified. A method for compensation of this distortion is presented. An optimal threshold level is presented that simplifies the compensation method.

  11. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  12. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  13. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  14. Beam distortion of rotation double prisms with an arbitrary incident angle.

    PubMed

    Li, Anhu; Zuo, Qiyou; Sun, Wansong; Yi, Wanli

    2016-07-01

    The distortion of beam shape in rotation Risley prisms is discussed in this paper. Using the ray-tracing method based on vector refraction theorem, a rigorous theoretical model of beam distortion with an arbitrary incident angle is established to explore the influencing factors. For a specified double-prism pair, the emergent beam is squeezed in one direction while stretched in the mutual perpendicular direction, the distortion of which is determined by the relative rotation angle. Moreover, the distortion of beam shape is greatly influenced by the wedge angles and the refractive indices of the prisms, as well as different double-prism configurations, while uncorrelated to the prism thickness and the distance between two prisms. This paper demonstrates the regular change of the beam shape with multiparameter variations in rotation double prisms, which can be applied to the design of rotation double-prism systems. PMID:27409205

  15. Phase-Conjugate Mirror Removes Wave-Front Distortions

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Zukowski, Barbara J. K.; Saif, Babak

    1996-01-01

    Phase-conjugate mirrors remove distortions or aberrations from wave fronts in laser beams. With help of mirrors, one obtains high-power laser beams of diffraction-limited quality. Potential applications include multistage laser systems.

  16. Harmonic, Intermodulation and Cross-Modulation Distortion in Directly Modulated Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Webb, J. F.; Yong, K. S. C.; Haldar, M. K.

    2016-05-01

    Using a simplified rate equation model, expressions for harmonic, intermodulation and cross-modulation distortion for a directly modulated quantum cascade laser can be derived. This paper shows how such derivations can be done and discusses some implications for quantum cascade lasers. It is important to understand such distortion, especially for applcations in communication systems.

  17. Quality improvement of partially coherent symmetric-intensity beams caused by quartic phase distortions.

    PubMed

    Martínez-Herrero, R; Mejías, P M; Piquero, G

    1992-12-01

    The effects that quartic phase distortions produce in the beam-quality parameter of partially coherent symmetric-intensitybeams are studied. An analytical expression for the beam-quality parameter at the output plane of a pure phase plate with quartic phase aberration has been derived. Explicit conditions to improve the beam quality are provided, and the corresponding optimized beam-quality value that can be attained for a given field has been determined. PMID:19798272

  18. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%. PMID:24921496

  19. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  20. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities

    PubMed Central

    Chen, Ye; Liu, Jonathan T.C.

    2015-01-01

    Bessel beams have recently been investigated as a means of improving deep-tissue microscopy in highly scattering and heterogeneous media. It has been suggested that the long depth-of-field and self-reconstructing property of a Bessel beam enables an increased penetration depth of the focused beam in tissues compared to a conventional Gaussian beam. However, a study is needed to better quantify the magnitude of the beam steering as well as the distortion of focused Gaussian and Bessel beams in tissues with microscopic heterogeneities. Here, we have developed an imaging method and quantitative metrics to evaluate the motion and distortion of low-numerical-aperture (NA) Gaussian and Bessel beams focused in water, heterogeneous phantoms, and fresh mouse esophagus tissues. Our results indicate that low-NA Bessel beams exhibit reduced beam-steering artifacts and distortions compared to Gaussian beams, and are therefore potentially useful for microscopy applications in which pointing accuracy and beam quality are critical, such as dual-axis confocal (DAC) microscopy. PMID:25909015

  1. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  2. Helicopter engine exhaust rotor downwash effects on laser beams

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Sjöqvist, Lars; Seiffer, Dirk

    2015-10-01

    The hot exhaust gases from engines on helicopters are pushed down by the rotor in a turbulent flow. When the optical path of a laser beam or optical sensor passes through this region severe aberrations of the optical field may result. These perturbations will lead to beam wander and beam distortions that can limit the performance of optical countermeasure systems. To quantify these effects the Italian Air Force Flight Test Centre hosted a trial for the "Airborne platform effects on lasers and warning sensors" (ALWS) EDA-project. Laser beams were propagated from the airport control tower to a target screen in a slant path with the helicopter hovering over this path. Collimated laser beams at 1.55-, 2- and 4.6-μm wavelength were imaged with high speed cameras. Large increases in beam wander and beam divergence were found, with beam wander up to 200 μrad root-mean-square and increases in beam divergence up to 1 mrad. To allow scaling to other laser beam parameters and geometries formulas for propagation in atmospheric turbulence were used even though the turbulence may not follow Kolmogorov statistics. By assuming that the plume is short compared to the total propagation distance the integrated structure parameter through the plume could be calculated. Values in the range 10-10 to 10-8 m1/3 were found when the laser beams passed through the exhaust gases below the helicopter tail. The integrated structure parameter values calculated from beam wander were consistently lower than those calculated from long term spot size, indicating that the method is not perfect but provides information about order of magnitudes. The measured results show that the engine exhaust for worst case beam directions will dominate over atmospheric turbulence even for kilometer path lengths from a helicopter at low altitude. How severe the effect is on system performance will depend on beam and target parameters.

  3. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  4. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  5. Protective laser beam viewing device

    DOEpatents

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  6. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  7. Single laser beam photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Heber, Andre; Selmke, Markus; Braun, Marco; Cichos, Frank

    2015-03-01

    Fluorescence microscopy provides a tool to study dynamics in softmatter materials on a molecular level. However, the observation time for fluorescent objects is limited due to bleaching. One way to overcome this limitation is the use of gold nanoparticles as labels. They are chemically inert under typical situations. These particles are selectively imaged using a modulated heating laser and a non-absorbed detection laser even in the presence of background scatterers. The absorbed power results in a localised temperature profile and to a refractive index change which only occurs for absorption. For finite thermal diffusivities the temperature profile does not instantly follow temperature changes present on the nanoparticle's surface. This results in an out-of-phase modulation of the detection laser. By exploiting the limited thermal diffusivity we show that a single laser beam being intensity modulated is enough to selectively image and quantify absorption. The use of a single laser makes photothermal microscopy easier to implement into existing microscopy setups.

  8. High energy laser beam dump

    SciTech Connect

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  9. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  10. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  11. Laser beam steering device

    NASA Technical Reports Server (NTRS)

    Motamedi, M. E.; Andrews, A. P.; Gunning, W. J.

    1993-01-01

    Agile beam steering is a critical requirement for airborne and space based LIDAR and optical communication systems. Design and test results are presented for a compact beam steering device with low inertia which functions by dithering two complementary (positive and negative) binary optic microlens arrays relative to each other in directions orthogonal to the direction of light propagation. The miniaturized system has been demonstrated at scan frequencies as high as 300 Hz, generating a 13 x 13 spot array with a total field of view of 2.4 degrees. The design is readily extendable to a 9.5 degree field of view and a 52 x 52 scan pattern. The system is compact - less than 2 in. on a side. Further size reductions are anticipated.

  12. Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra.

    PubMed

    Yetzbacher, Michael K; Belabas, Nadia; Kitney, Katherine A; Jonas, David M

    2007-01-28

    Using a solution of Maxwell's equations in the three-dimensional frequency domain, femtosecond two-dimensional Fourier transform (2DFT) spectra that include distortions due to phase matching, absorption, dispersion, and noncollinear excitation and detection of the signal are calculated for Bloch, Kubo, and Brownian oscillator relaxation models. For sample solutions longer than a wavelength, the resonant propagation distortions are larger than resonant local field distortions by a factor of approximately L/lambda, where L is the sample thickness and lambda is the optical wavelength. For the square boxcars geometry, the phase-matching distortion is usually least important, and depends on the dimensionless parameter, L sin(2)(beta)Deltaomega/(nc), where beta is the half angle between beams, n is the refractive index, c is the speed of light, and Deltaomega is the width of the spectrum. Directional filtering distortions depend on the dimensionless parameter, [(Deltaomega)w(0) sin(beta)/c](2), where w(0) is the beam waist at the focus. Qualitatively, the directional filter discriminates against off diagonal amplitude. Resonant absorption and dispersion can distort 2D spectra by 10% (20%) at a peak optical density of 0.1 (0.2). Complicated distortions of the 2DFT peak shape due to absorption and dispersion can be corrected to within 10% (15%) by simple operations that require knowledge only of the linear optical properties of the sample and the distorted two-dimensional spectrum measured at a peak optical density of up to 0.5 (1). PMID:17286491

  13. Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra

    NASA Astrophysics Data System (ADS)

    Yetzbacher, Michael K.; Belabas, Nadia; Kitney, Katherine A.; Jonas, David M.

    2007-01-01

    Using a solution of Maxwell's equations in the three-dimensional frequency domain, femtosecond two-dimensional Fourier transform (2DFT) spectra that include distortions due to phase matching, absorption, dispersion, and noncollinear excitation and detection of the signal are calculated for Bloch, Kubo, and Brownian oscillator relaxation models. For sample solutions longer than a wavelength, the resonant propagation distortions are larger than resonant local field distortions by a factor of ˜L/λ, where L is the sample thickness and λ is the optical wavelength. For the square boxcars geometry, the phase-matching distortion is usually least important, and depends on the dimensionless parameter, Lsin2(β )Δω/(nc), where β is the half angle between beams, n is the refractive index, c is the speed of light, and Δω is the width of the spectrum. Directional filtering distortions depend on the dimensionless parameter, [(Δω )w0sin(β)/c]2, where w0 is the beam waist at the focus. Qualitatively, the directional filter discriminates against off diagonal amplitude. Resonant absorption and dispersion can distort 2D spectra by 10% (20%) at a peak optical density of 0.1 (0.2). Complicated distortions of the 2DFT peak shape due to absorption and dispersion can be corrected to within 10% (15%) by simple operations that require knowledge only of the linear optical properties of the sample and the distorted two-dimensional spectrum measured at a peak optical density of up to 0.5 (1).

  14. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  15. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  16. Influence of thermal deformations of resonators on propagation properties of laser annular beams through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Peng, Yufeng; Peng, Fang; Han, Junpeng

    2013-02-01

    Based on the laser field from a positive confocal unstable resonator, considering the influence of thermal distortion of the internal resonator mirror on the annular beam, the propagation characteristics of the annular beam through turbulent atmosphere are investigated by means of the fast Fourier transform algorithm (FFT). The intensity distributions of the output laser far-field are obtained to analyze the propagation characteristics of laser annular beam through the turbulent atmosphere, which is a function about different propagation distances. The results show that the peak intensity of the laser pattern becomes depressed and the spread of the far field diagram patterns is broadened under the increasing of the transmission distance and the thermal distortion of the laser resonator. β-parameter and strehl ratio are introduced to estimate the annular beam quality characteristics. It is found that the annular beam through strong turbulence influences much less obviously than the annular beam through weak turbulence on the quality characteristics with thermal distortion. In the same atmospheric conditions with a certain distance, the greater the mirror thermal distortion is, the worse the annular beam quality characteristics is.

  17. Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift.

    PubMed

    Wan, Yuhang; Zheng, Zheng; Zhu, Jinsong

    2009-11-01

    The propagation-dependent profile distortion of the reflected beam is studied via deriving the theoretical model of the optical field distribution in both the near and far field. It is shown that strong and fast-varying beam distortions can occur along the propagation path, compared to the profile on the reflecting surface. Numerical simulations for the case of a typical SPR configuration with a sharp angular response curve reveal that, when the phase distribution in the angular range covered by the input beam becomes nonlinear, previous theories based on the linear phase approximation fail to predict the Goos-Hanchen shift and its propagation-dependent variations precisely. Our study could shed light on more accurate modeling of the Goos-Hanchen effect's impact on the relevant photonic devices and measurement applications. PMID:19997370

  18. Raman beam combining for laser brightness enhancement

    SciTech Connect

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  19. Cascaded injection resonator for coherent beam combining of laser arrays

    DOEpatents

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  20. Generation mechanism of distortion aberration in a symmetric magnetic doublet for an electron beam projection system

    SciTech Connect

    Nakasuji, M.; Shimizu, H.

    1996-07-01

    Radial and azimuthal distortion aberrations are increasingly a function of the image side lens bore radius in the range from 1.25 to 5 times as large as the maximum image field radius. This phenomenon is inconsistent with our previous understanding. An assumption is made that these large distortions for the large bore radii come from the influence of the magnetic field of one on the other, thereby destroying the symmetry. This assumption is confirmed from the following simulation. When these distortions are calculated for the ideal case where the magnetic fields are calculated in the condition without the other lens, they are decreased to around 1/10 of those for the case where the magnetic fields are calculated in the real condition with the lenses in proximity. When the object{endash}image distance is 800 mm and the bore radii of lens 1 are 100 and 20 mm, the residual radial and azimuthal distortions are 1.5 and 0.7 nm, the beam blur is smaller than 45 nm for the beam semiangle from 0.05 to 0.7 mrad, where the main-field and subfield sizes in the image plane are 20 mm and 250 {mu}m, respectively, the beam energy is 100 keV, and the space charge effects are neglected. {copyright} {ital 1996 American Vacuum Society}

  1. Pulse distortion and modulation instability in laser plasma interaction

    SciTech Connect

    Jha, Pallavi; Singh, Ram Gopal; Upadhyay, Ajay K.

    2009-01-15

    The present paper deals with the propagation of a short, intense, Gaussian laser pulse in plasma. Using a one dimensional model, a wave equation including finite pulse length and group velocity dispersion is set up and solved to obtain the intensity distribution across the laser pulse. It is shown that the pulse profile becomes asymmetric as it propagates through plasma. Further, the growth rate of modulation instability and range of unstable frequencies across the laser pulse have been derived and graphically analyzed.

  2. Separating Isotopes With Laser And Electron Beams

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor

    1989-01-01

    Need for second laser eliminated. In scheme for separation of isotopes, electrons of suitable kinetic energy ionize specific isotope excited by laser beam in magnetic field. Ionization by electron beams cheap and efficient in comparison to ionization by laser beams, and requires no special technical developments. Feasibility of new scheme demonstrated in selective ionization of Ba138, making possible separation of isotope from Ba isotopes of atomic weight 130, 132, 134, 135, 136, and 137.

  3. System evaluations of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    1992-01-01

    The major technology options for high-energy FELs and adaptive optics available to the Space Laser Energy (SELENE) program are reviewed. Initial system evaluations of these options are described. A feasibility assessment of laser power beaming is given.

  4. Method for splitting low power laser beams

    SciTech Connect

    Pierscionek, B.K. )

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  5. Experimental investigation on the beam quality improvement of the fiber laser by adaptive optics

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Huang, L.; Wang, X. J.; Ma, X. K.; Yan, P.; Gong, M. L.

    2015-12-01

    This paper describes an adaptive optical system that is introduced to improve the beam quality of a fiber laser. Since a distorted wavefront would degrade the beam quality of a laser beam, a deformable mirror is employed to compensate for the wavefront aberration using closed-loop control in this system. The beam quality factor is measured and the far-field focus spot is detected as well. The experiment results show that the beam quality factor can be improved from 5-7 to 3-4 and the focus spot can be improved as well. The feasibility of the system is proved.

  6. Fluorescent paint simplifies laser-beam alinement

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1978-01-01

    Usually to aline optics safely, low power laser which can safely operated without safety goggles is substituted for higher power laser during alinement procedure. Need for lower power substitute laser can be eliminated by painting target area with commercial paint which fluoresces strongly in red or yellow portion of spectrum when excited by argon laser beam.

  7. Diplexer for laser-beam heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Koepf, G.

    1981-01-01

    Four prism interferometer superposes local oscillator beam on signal beam. Position of movable prism directs incident energy in both beams out one output port. Output port is spatially separated from input ports, and there is no limitation on size of frequency difference between laser beams.

  8. 200 Hz repetition frequency joule-level high beam quality Nd:YAG nanosecond laser

    NASA Astrophysics Data System (ADS)

    Qiu, Jisi; Tang, Xiongxin; Fan, Zhongwei; Wang, Haocheng

    2016-06-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed out. The laser is designed as a MOPA system mainly including single longitudinal mode seed, pre-amplifier unit an d power amplifier unit. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate the laser beam distortion. Under the condition of 200 Hz high repetition frequency and 8.19 μJ single pulse energy injected by the single longitudinal mode seed, 1.53 J output energy is gained. The output laser beam is of 9 mm diameter, 7.41 ns pulse width, the far field beam spot 1.32 times the value of the diffraction limit, 1.2% energy stability (RMS) and less than 13 μrad far field beam spot angle shift.

  9. Space–time characterization of ultra-intense femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Pariente, G.; Gallet, V.; Borot, A.; Gobert, O.; Quéré, F.

    2016-08-01

    Femtosecond lasers can now deliver ultrahigh intensities at focus, making it possible to induce relativistic motion of charged particles with light and opening the way to new generations of compact particle accelerators and X-ray sources. With diameters of up to tens of centimetres, ultra-intense laser beams tend to suffer from spatiotemporal distortions, that is, a spatial dependence of their temporal properties that can dramatically reduce their peak intensities. At present, however, these intense electromagnetic fields are characterized and optimized in space and time separately. Here, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, and reveal the spatiotemporal distortions that can affect such beams. This new measurement capability opens the way to in-depth characterization and optimization of ultra-intense lasers and ultimately to the advanced control of relativistic motion of matter with femtosecond laser beams structured in space–time.

  10. CO/sub 2/ laser beam weldability of Zircaloy 2

    SciTech Connect

    Ram, V.; Kohn, G.; Stern, A.

    1986-07-01

    BWR (boiling water reactor) fuel rods are manufactured by stacking pellets into a zirconium alloy, cladding tube-zircaloy 2(Zr2). A fuel rod is designed as a pressure vessel in order to prevent failure of the cladding and release of radioactive fission products. As a result, there are very strict requirements from the welding methods employed. The usual welding methods for Zr2 are based on the tungsten inert gas (GTAW) resistance welding (RW) and electron beam welding (EBW) processes. There is very little information about laser beam welding (LBW) of Zr2. The recent development of multikilowatt laser systems has led to dramatic improvements in their welding performance. In the present work, laser beam welding of Zr2 was investigated. A comparison with GTA welding was carried out. The use of a high-power laser beam to weld nuclear fuel containers made of zircaloy has many advantages: (1) The high-power density of the focused laser beam enables very high welding speeds in comparison with arc welding. As a result, a narrow heat-affected zone is produced and the distortion of the parts is reduced to a minimum. (2) The beam can be transmitted to different stations alternatively, even to ones located far from one another. It also transmits to hot cells, glove boxes or any inert gas pressure chamber through suitable windows. (3) The process can easily be automated to enhance mass production. It is very simple, does not require skilled welders, and does not need the use of different electrodes, collets, etc. (4) The laser beam does not contaminate the weld metal with tungsten or other elements.

  11. Laser Beam Delivery and Image Transmission Through Multimode Optical Fibers

    NASA Astrophysics Data System (ADS)

    Pan, Anpei

    This dissertation is dedicated to two important branches of optical fiber applications in biomedical engineering: laser beam delivery and image transmission. The optical phase of a light wave is distorted when it propagates through a multimode fiber. To compensate the distortion, a new hologram-generated phase conjugation theoretical model and experimental method has been developed. In the process, a self-pumped phase-conjugating mirror is introduced for recording the hologram. The coherence conditions are carefully matched so that only the desired optical signal is recorded. As a result, a high fidelity phase conjugation wave is produced. The resolution is 4.4 mum, which corresponds the diffraction-limited value of the system. Multimode optical fibers are widely used to deliver laser beams for medical diagnoses and treatments. However the spatial quality of the output beam is very poor. By use of holographic phase precompensation we present a new method to deliver high-quality laser beams. As a result, a highly collimated output beam with only 1.9 mrad divergence, which is 250 times smaller than the usual divergence, is obtained. The brightness is greatly increased. Other desired waves such as spherical wave or Gaussian beams can also be obtained. Another method, which is based on the formation at the remote end of a holographic filter, is also presented. The final output beams are nearly diffraction -limited. The hologram-generated phase conjugation is applied to image transmission through single multimode fibers. By use of Fourier transform theory and the formalism established in this study, the system resolution and the space bandwidth product are analyzed. The resolution of a multimode fiber can be 50 times higher than that of an imaging bundle if their diameters are the same. In the experiments a resolution chart was tested. The experimental results are quite consistent with the theory. A 3-D biological sample--a tooth--was also tested. The limitations of the

  12. Wavefront control of high power laser beams for the National Ignition Facility (NIF)

    SciTech Connect

    Bliss, E; Feldman, M; Grey, A; Koch, J; Lund, L; Sacks, R; Smith, D; Stolz, C; Van Atta, L; Winters, S; Woods, B; Zacharias, R

    1999-09-22

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focus ability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  13. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  14. Propagation modeling results for narrow-beam undersea laser communications

    NASA Astrophysics Data System (ADS)

    Fletcher, Andrew S.; Hardy, Nicholas D.; Hamilton, Scott A.

    2016-03-01

    Communication links through ocean waters are challenging due to undersea propagation physics. Undersea optical communications at blue or green wavelengths can achieve high data rates (megabit- to gigabit-per-second class links) despite the challenging undersea medium. Absorption and scattering in ocean waters attenuate optical signals and distort the waveform through dense multipath. The exponential propagation loss and the temporal spread due to multipath limit the achievable link distance and data rate. In this paper, we describe the Monte Carlo modeling of the undersea scattering and absorption channel. We model photon signal attenuation levels, spatial photon distributions, time of arrival statistics, and angle of arrival statistics for a variety of lasercom scenarios through both clear and turbid water environments. Modeling results inform the design options for an undersea optical communication system, particularly illustrating the advantages of narrow-beam lasers compared to wide beam methods (e.g. LED sources). The modeled pupil plane and focal plane photon arrival distributions enable beam tracking techniques for robust pointing solutions, even in highly scattering harbor waters. Laser communication with collimated beams maximizes the photon transfer through the scattering medium and enables spatial and temporal filters to minimize waveform distortion and background interference.

  15. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  16. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOEpatents

    Comaskey, Brian J.; Ault, Earl R.; Kuklo, Thomas C.

    2005-07-05

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  17. Laser steering of particle beams: Refraction and reflection ofparticle beams

    SciTech Connect

    Esarey, Eric; Katsouleas, T.; Mori, W.B.; Dodd, E.; Lee, S.; Hemker, R.; Clayton, C.; Joshi, C.

    1999-11-01

    The co-propagation of an intense particle beam with an ionizing laser beam in a working gas/plasma is considered. When the axes of the laser and particle beam are not aligned, then asymmetric plasma lensing results in a net dipole field acting on the particle beam. The particle beam can be steered or bent (as well as focused) by steering the laser. An analogy is made between the bending of the particle beam by collective effects at a plasma boundary and the refraction or reflection of light at an interface. This mechanism of particle steering may be of interest in applications for which permanent magnets are inconvenient of a fast turn on is required. 3-D particle-in-cell simulations and relevance to a recent experiment are discussed.

  18. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  19. Optical distortions in end-pumped zigzag slab lasers.

    PubMed

    Tang, Bing; Zhou, Tangjian; Wang, Dan; Li, Mi

    2015-04-01

    Ray tracing is performed to investigate the optical distortions in the end-pumped, zigzag slab. Optical path differences caused by temperature, slab deformation, and stress birefringence are calculated under uniform pumping; the results show a steep edge in the width dimension and a thermal lens with an effective focal length as short as several meters in the thickness dimension. Dependence of depolarization on total internal reflection phase retardance as well as the slab's cut angle is studied by the Jones matrix technique; results show that although at the pumping power of 10 kW, the mean depolarization of the 2.5  mm×30  mm×150.2  mm Nd:YAG slab is generally below 3%, and it increases rapidly with pumping power. Besides, for the 0°- or 60°-cut slab, an optimal phase retardance range of 5° to 13° exists, in which the depolarization loss can be lower than 0.5%. Finally, experiments on temperature and depolarization measurements verify the numerical results. PMID:25967178

  20. Beam Stop For High-Power Lasers

    NASA Technical Reports Server (NTRS)

    Mcdermid, Iain S.; Williamson, William B.

    1990-01-01

    Graphite/aluminum plate absorbs most of light. Beam stop fits on standard optical mounting fixture. Graphite plate thick enough to absorb incident laser beam but thin enough to transfer heat quickly to heat sink. Device used for variety of blocking purposes. For example, blocks laser beam after it passes through experimental setup, or at each stage of setup so stages checked and tested in sequence. Negligible reflectance of device is valuable safety feature, protecting both users and equipment from reflections.

  1. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  2. Robotics For High Power Laser Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Watson, Henry E.

    1989-03-01

    The research and development programs in manufacturing science at The Pennsylvania State University have a major emphasis on laser materials processing technology development. A major thrust of this program is the development of an intelligent robotic system which can manipulate a laser beam in three dimension with the precision required for welding. The robot is called LARS for Laser Articulated Robotic System. A gantry based robot was selected as the foundation for LARS and the system is divided into five major subsystems: robot, electronic control, vision, workhead, beam transport, and software. An overview of the Laser Robotics program including laser materials processing research programs will be provided.

  3. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  4. Ultra stable carbon fiber high power CO2 laser with high quality laser beam and AOM implementation

    NASA Astrophysics Data System (ADS)

    Bohrer, Markus

    2015-03-01

    High security printing as well as ultra high precision engraving need laser resonators with very stable laser beams (600 - 800W) especially in combination with AOMs. Based upon a unique carbon fiber structure - stable within the sub-micrometer range - a new resonator has been developed, accompanied by most recent thermo-mechanical FEM calculations. The resulting beam is evaluated on an automated optical bench allowing to optimize the complete beam path with collimators and AOM. Synchronous on-line evaluation with PyroCams and thus knowledge about how to minimize distortions within the nonlinear elements is presented in this paper.

  5. Correction of amplitude distortions for truncated Bessel beam and SER estimation for 4ASK

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2016-08-01

    We apply amplitude corrections to a truncated Bessel beam that has propagated through turbulent atmosphere modelled by random phase screens. These corrections are realized via transmitting an unmodulated beam in parallel to the one carrying the 4 amplitude shift keying (ASK) modulated message signal. On the receiver side, the amplitude corrections are obtained by dividing the intensity of the unmodulated beam by its free space equivalence. The corrections are then used to restore the amplitude distortions of the beam carrying the 4ASK modulated message signal and in the determination of decision boundaries for the received 4ASK symbols. The success of the system is visually inspected by comparing the received intensity profiles before and after the application of corrections. Furthermore, simulation analysis of symbol error rate (SER) is made, where the proposed set-up is found to be quite insensitive to wavelength difference between the unmodulated and modulated beams. On the other hand, the difference in the structure constant values of these two beams seems to have profound effect on system performance.

  6. Correction of vignetting and distortion errors induced by two-axis light beam steering

    PubMed Central

    Gao, Liang; Tkaczyk, Tomasz S.

    2012-01-01

    A mirror facet’s angle correction approach is presented for eliminating pupil plane distortions and sub-field image vignetting in the image mapping spectrometry (IMS). The two-axis light reflection problem on the image mapper is solved and a rigorous analytical solution is provided. The cellular fluorescence imaging experiment demonstrates that, with an angle-corrected image mapper, the acquired image quality of spectral channels has been significantly improved compared to previous IMS images. The proposed mathematical model can also be used in solving general two-axis beam steering problems for instruments with active optical mirrors. PMID:24976654

  7. Beam distortion detection and deflectometry measurements of gigahertz surface acoustic waves.

    PubMed

    Higuet, Julien; Valier-Brasier, Tony; Dehoux, Thomas; Audoin, Bertrand

    2011-11-01

    Gigahertz acoustic waves propagating on the surface of a metal halfspace are detected using different all-optical detection schemes, namely, deflectometry and beam distortion detection techniques. Both techniques are implemented by slightly modifying a conventional reflectometric setup. They are then based on the measurement of the reflectivity change but unlike reflectometric measurements, they give access to the sample surface displacement. A semi-analytical model, taking into account optical, thermal, and mechanical processes responsible for acoustic waves generation, allows analyzing the physical content of the detected waveforms. PMID:22129002

  8. Adaptive optics for laser power beaming

    NASA Technical Reports Server (NTRS)

    Leland, Robert P.

    1992-01-01

    It has been proposed to use a high energy pulsed laser to beam power into space for satellites or a lunar base. The effects of atmospheric transmission are critical to such a system. Thermal blooming in the atmosphere can cause the beam to spread rapidly. Atmospheric turbulence can cause beam bending or beam spreading, resulting in the loss of transmitted energy that fails to hit the target receiver.

  9. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  10. Image distortion and its correction in linear galvanometric mirrors-based laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Wu, Zhenguo; Zeng, Haishan

    2015-05-01

    To simplify imaging focusing and calibration tasks, a laser-scanning microscope needs to scan at a moderate frame rate. The inertia of a galvanometric scanner leads to time delays when following external commands, which subsequently introduces image distortions that deteriorate as scan frequency increases. Sinusoidal and triangular waveforms were examined as fast axis driving patterns. The interplay among driving pattern, frequency, sampling rate, phase shift, linear scanning range, and their effect on reconstructed images was discussed. Utilizing position feedback from the linear galvo scanners, the effect of response time could be automatically compensated in real time. Precompensated triangular driving waveform offered the least amount of image distortion.

  11. Laser Beam Welding of Nitride Steel Components

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Yin, Guobin; Shulkin, Boris

    Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.

  12. Electro-optic and acousto-optic laser beam scanners

    NASA Astrophysics Data System (ADS)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  13. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  14. Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.

    PubMed

    Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul

    2009-03-30

    The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis. PMID:19333251

  15. High power laser beam delivery monitoring for laser safety

    NASA Astrophysics Data System (ADS)

    Corder, D. A.; Evans, D. R.; Tyrer, J. R.; Freeland, C. M.; Myler, J. K.

    1997-07-01

    The output of high power lasers used for material processing presents extreme radiation hazards. In normal operation this hazard is removed by the use of local shielding to prevent accidental exposure and system design to ensure efficient coupling of radiation into the workpiece. Faults in laser beam delivery or utilization can give rise to hazardous levels of laser radiation. A passive hazard control strategy requires that the laser system be enclosed such that the full laser power cannot burn through the housing under fault conditions. Usually this approach is too restrictive. Instead, active control strategies can be used in which a fault condition is detected and the laser cut off. This reduces the requirements for protective housing. In this work a distinction is drawn between reactive and proactive strategies. Reactive strategies rely on detecting the effects of an errant laser beam, whereas proactive strategies can anticipate as well as detect fault conditions. This can avoid the need for a hazardous situation to exist. A proactive strategy in which the laser beam is sampled at the final turning mirror is described in this work. Two control systems have been demonstrated; the first checks that beam power is within preset limits, the second monitors incoming beam power and position, and the radiation reflected back from the cutting head. In addition to their safety functions the accurate monitoring of power provides an additional benefit to the laser user.

  16. Satellites Would Transmit Power By Laser Beams

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Walker, Gilbert H.; HUMES D. H.; Kwon, J. H.

    1995-01-01

    Arrays of diode lasers concentrate power into narrow beams. Baseline design of system formulated with regard to two particular missions that differ greatly in power requirements, thus showing scalability and attributes of basic system. Satellite system features large-scale array amplifier of high efficiency, injection-locked amplifiers, coherent combination of beams, and use of advanced lithographic technology to fabricate diode lasers in array. Extremely rapid development of applicable technologies make features realizable within decade.

  17. Apparatus for laser beam profile measurements

    DOEpatents

    Barnes, N.P.; Gettemy, D.J.

    1985-01-30

    Apparatus for measuring the spatial intensity profile of the output beam from a continuous-wave laser oscillator. The rapid and repetitive passing of a small aperture through the otherwise totally blocked output beam of the laser under investigation provides an easily interpretable, real-time measure of the intensity characteristics thereof when detected by a single detector and the signal generated thereby displayed on an oscilloscope synthronized to the motion of the aperture.

  18. Laser beam riding artillery missiles guidance device is designed

    NASA Astrophysics Data System (ADS)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  19. Modeling laser beam-rock interaction.

    SciTech Connect

    Leong, K. H.

    2003-07-23

    The optimal use of lasers requires the understanding of the primary parameters pertinent to laser beam-material interactions. Basically, the laser beam is a heat source that can be controlled to deliver a wide range in intensities and power. When interacting with a material, reflection at the surface, and transmission and absorption through the material occur. The material interaction process is governed by the irradiance (power/unit area) of the incident beam and the interaction time resulting in an amount of heat/energy applied to the material per unit area. The laser beam is a flexible heat source where its intensity and interaction with materials can be controlled by varying the power and size of the beam or the interaction time. For any material, a minimum amount of energy has to be absorbed for the material to be ablated by the laser beam, i.e., a solid has to be heated to liquefy and then vaporize. Under certain conditions, the photon energy may be able to break the molecular bonds of the material directly. In general, the energy absorbed is needed to vaporize the material and account for any heat that may be conducted away. Consequently, the interaction is a heat transfer problem. The relevant parameters are the heat flux and total heat input to the material. The corresponding parameters for the laser beam- material interaction are the irradiance of the beam and the interaction time. The product of these two parameters is the energy applied per unit area. A high irradiance beam may be able to ablate a material rapidly without significant heat transfer to surrounding areas. For drilling or cutting materials, a high intensity beam is required for laser ablation with minimal heat lost to the surrounding areas. However, at high beam irradiance (>1 GW cm{sup -2} for Nd:YAG beams), plasma formed from ionization of gases and vapor will partially absorb or diffract the beam. Reduced penetration of the material results. Similarly, in welding using CO2 lasers where

  20. Nonlinear distortion evaluation in a directly modulated distributed feedback laser diode-based fiber-optic cable television transport system

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Ying, Cheng-Ling; Lin, Chun-Yu; Chu, Chien-An

    2015-12-01

    This study evaluated a directly modulated distributed feedback (DFB) laser diode (LD) for cable TV systems with respect to carrier-to-nonlinear distortion of LDs. The second-order distortion-to-carrier ratio is found to be proportional to that of the second-order coefficient-to-first-order coefficient of the DFB laser diode driving current and to the optical modulation index (OMI). Furthermore, the third-order distortion-to-carrier ratio is proportional to that of the third-order coefficient-to-first-order coefficient of the DFB laser diode driving current, and to the OMI2.

  1. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  2. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.

    PubMed

    Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T

    2013-05-10

    We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics. PMID:23669829

  3. Beam current controller for laser ion source

    SciTech Connect

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  4. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  5. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  6. Laser cooling of a stored ion beam: A first step towards crystalline beams

    SciTech Connect

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  7. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  8. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  9. Varying the Divergence of Multiple Parallel Laser Beams

    NASA Technical Reports Server (NTRS)

    Kovalik, Joseph M.; Wright, Malcolm W.

    2008-01-01

    A provision for controlled variation of the divergence of a laser beam or of multiple parallel laser beams has been incorporated into the design of a conceptual free-space optical-communication station from which the transmitted laser beam(s) would be launched via a telescope. The original purpose to be served by this provision was to enable optimization, under various atmospheric optical conditions, of the divergence of a laser beam or beams transmitted from a ground station to a spacecraft.

  10. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    SciTech Connect

    Hawryluk, A.M.; Ceglio, N.M.

    1991-04-10

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  11. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  12. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOEpatents

    Hawryluk, Andrew M.; Ceglio, Natale M.

    1993-01-01

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  13. An Alternative Form of Laser Beam Characterization

    SciTech Connect

    KNOROVSKY,GERALD A.; MACCALLUM,DANNY O.

    2000-06-30

    Careful characterization of laser beams used in materials processing such as welding and drilling is necessary to obtain robust, reproducible processes and products. Recently, equipment and techniques have become available which make it possible to rapidly and conveniently characterize the size, shape, mode structure, beam quality (Mz), and intensity of a laser beam (incident power/unit area) as a function of distance along the beam path. This facilitates obtaining a desired focused spot size and also locating its position. However, for a given position along the beam axis, these devices typically measure where the beam intensity level has been reduced to I/ez of maximum intensity at that position to determine the beam size. While giving an intuitive indication of the beam shape since the maximum intensity of the beam varies greatly, the contour so determined is not an iso-contour of any parameter related to the beam intensity or power. In this work we shall discuss an alternative beam shape formulation where the same measured information is plotted as contour intervals of intensity.

  14. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  15. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  16. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  17. Integration of a laser doppler vibrometer and adaptive optics system for acoustic-optical detection in the presence of random water wave distortions

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Robinson, Dennis; Roeder, James; Cook, Dean; Majumdar, Arun K.

    2016-05-01

    A new technique has been developed for improving the Signal-to-Noise Ratio (SNR) of underwater acoustic signals measured above the water's surface. This technique uses a Laser Doppler Vibrometer (LDV) and an Adaptive Optics (AO) system (consisting of a fast steering mirror, deformable mirror, and Shack-Hartmann Wavefront Sensor) for mitigating the effect of surface water distortions encountered while remotely recording underwater acoustic signals. The LDV is used to perform non-contact vibration measurements of a surface via a two beam laser interferometer. We have demonstrated the feasibility of this technique to overcome water distortions artificially generated on the surface of the water in a laboratory tank. In this setup, the LDV beam penetrates the surface of the water and travels down to be reflected off a submerged acoustic transducer. The reflected or returned beam is then recorded by the LDV as a vibration wave measurement. The LDV extracts the acoustic wave information while the AO mitigates the water surface distortions, increasing the overall SNR. The AO system records the Strehl ratio, which is a measure of the quality of optical image formation. In a perfect optical system the Strehl ratio is unity, however realistic systems with imperfections have Strehl ratios below one. The operation of the AO control system in open-loop and closed-loop configurations demonstrates the utility of the AO-based LDV for many applications.

  18. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  19. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  20. Transmission Of Power Via Combined Laser Beams

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  1. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures. PMID:26133832

  2. Collimation of laser-produced proton beam

    NASA Astrophysics Data System (ADS)

    Takano, M.; Nagashima, T.; Izumiyama, T.; Gu, Y. J.; Barada, D.; Kong, Q.; Wang, P. X.; Ma, Y. Y.; Wang, W. M.; Kawata, S.

    2016-03-01

    In intense laser plasma interaction for particle acceleration several issues remain to be solved. In this paper we focus on a collimation of ion beam, which is produced by a laser plasma interaction. In this study, the ion beam is collimated by a thin film target. When an intense short pulse laser illuminates a target, target electrons are accelerated, and create an electron cloud that generates a sheath electric field at the target surface. Such the ion acceleration mechanism is called the target normal sheath acceleration (TNSA). The TNSA field would be used for the ion beam collimation by the electric field. We have successfully obtained a collimated beam in our particle-in-cell simulations.

  3. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  4. Analysis of laser beam quality degradation caused by quartic phase aberrations.

    PubMed

    Siegman, A E

    1993-10-20

    Simple formulas are derived for the degradation in the beam-quality factor, M(2), of an arbitrary laser beam caused by quartic phase distortions such as those that might occur in a spherically aberrated optical component, a thermally aberrated laser output window, or a divergent beam emerging from a high-index dielectric medium as in a wide-stripe, unstable-resonator diode laser. A new formula for the defocus correction that is needed to collimate optimally a beam with quartic phase aberration is also derived. Analytical results and numerical examples are given for both radially aberrated and one-dimensionaltransversely aberrated cases, and a simple experimental measurement of the beam-quality degradation produced by a thin plano-convex lens is shown to be in good agreement with the theory. PMID:20856411

  5. Laser power beaming for satellite applications

    SciTech Connect

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  6. Transmitted Laser Beam Diagnostic at the Omega Laser Facility

    SciTech Connect

    Niemann, C; Antonini, G; Compton, S; Glenzer, S; Hargrove, D; Moody, J; Kirkwood, R; Rekow, V; Sorce, C; Armstrong, W; Bahr, R; Keck, R; Pien, G; Seka, W; Thorp, K

    2004-04-01

    We have developed and commissioned a transmitted beam diagnostic (TBD) for the 2{omega} high intensity interaction beam at the Omega laser facility. The TBD consists of a bare-surface reflector mounted near the target, which collects and reflects 4% of the transmitted light to a detector assembly outside the vacuum chamber. The detector includes a time integrating near-field camera that measures beam spray, deflection and the absolute transmitted power. We present a detailed description of the instrument and the calibration method and include first measurements on laser heated gasbag targets to demonstrate the performance of the diagnostic.

  7. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  8. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  9. Digital Controller For Laser-Beam-Steering Subsystem: Part 2

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Voisinet, Leeann

    1995-01-01

    A report presents additional information about laser-beam-steering apparatus described in "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193) and "More About Beam-Steering Subsystem for Laser Communication" (NPO-19381). Reiterates basic principles of operation of beam-steering subsystem, with emphasis on modes of operation, basic design concepts, and initial experiments on partial prototype of apparatus.

  10. Optimization of beam configuration in laser fusion based on the laser beam pattern

    SciTech Connect

    Xu, Teng; Xu, Lixin; Wang, Anting; Gu, Chun; Wang, Shengbo; Liu, Jing; Wei, Ankun

    2013-12-15

    A simple method based on the laser beam pattern is proposed and numerically demonstrated to optimize a beam configuration for direct drive laser fusion. In this method, both the geometrical factor G{sub l} and the single beam factor B{sub l} are considered. By diminishing the product of B{sub l}·G{sub l}, the irradiation nonuniformity can be decreased to the order of 10{sup −5}. This optimization method can be applied on the design of irradiation systems for an arbitrary number of beams and any axially symmetric beam patterns.

  11. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  12. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  13. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Synchronous characterization of semiconductor microcavity laser beam

    SciTech Connect

    Wang, T. Lippi, G. L.

    2015-06-15

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam’s tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  15. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  16. Rippled beam free electron Laser Amplifier

    SciTech Connect

    Carlsten, Bruce E.

    1998-04-21

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  17. Laser beam application with high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Beyer, Eckhard; Brenner, Berndt; Morgenthal, Lothar

    2007-05-01

    With the new industrial high power fiber lasers we have already stepped into a new generation of laser applications. These lasers are smaller, better, more cost-effective, and offer a processing "on the fly." Of utmost importance is their excellent beam quality which enables us to reduce the size of the focussing head including the scanning mirrors. With the reduced mass of the mirrors we can reach scanning frequencies up to 1.5 kHz and in special configurations up to 4 kHz. Using such mirrors with this high beam quality we can shape the key hole geometry, and thus it is possible to decrease the keyhole spiking, which always occur in the case of deep penetration welding. We can generate very thin and deep welding seams, which we have only experienced with electron beam welding. The excellent beam quality of the fiber lasers offers us a lot of new applications from deep penetration welding to high speed welding. By using beam scanning we are able to easily change the beam and the seam geometry. Furthermore, it is possible to work with this kind of laser from a distance of some meters between focussing/scanning head and the work piece. This technique is called remote processing or processing "on the fly." The excellent beam quality also enables us to cut very precisely, and due to the small cutting widths with a very high speed. In this case the main problem is that the roughness of the cutting edge increases a little bit. One reason for this is that we cannot blow out the mold as easily as we can do it with higher cutting widths. There are also polarized fiber lasers on the market where we can use the Brewster effect for different applications. The presentation will cover some physical basics including different industrial applications.

  18. Laser beam welding shifts into high gear

    SciTech Connect

    Irving, B.

    1997-11-01

    Despite its high initial cost, laser beam welding is being recognized as the best method for many production lines. The automotive industry is becoming a bigger believer, with more lines being added every day for weld transmissions, mufflers and many other products. But the biggest market is tailor welded blanks. The welded blank is receiving attention from all sides. Several steelmakers have invested in tailor welded blank shops. The market for these blanks is no longer one only supported by CO{sub 2} lasers. The YAG laser is now very prominent. Only a few years ago, laser experts wondered what the market might be for 5 kW CO{sub 2} lasers. No one knew. But that has changed. Since then, lasers have become much more compact, and that means a great deal to the automotive industry in particular. The same space needed to house a 5-kW laser five years ago now can be employed for a 12-kW unit. The cost also has stabilized considerably. Dollars spent today for a kilowatt of laser power are about the same as they were five years ago. Compare that to the increase in the cost for the family automobile. It`s also a better laser. Thought also is being given to the replacement of the 3,000 spot welds per vehicle by another means of joining. Laser is a strong candidate, but it might take a total redesign of an automobile to allow that to happen. To take full advantage of laser beam welding, flanges probably would have to be eliminated. However, shorter lead time is needed between concept and production. Agile manufacturing is required to bring that about, and the laser is fast becoming a basic tool of agile manufacturing.

  19. LASER BEAM PROFILE MONITOR DEVELOPMENT AT BNL FOR SNS.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; GASSNER,D.; GRAU,M.; KESSELMAN,M.; PENG,S.; SIKORA,R.

    2002-05-06

    A beam profile monitor for H-beams based on laser photoneutralization is being developed at Brookhaven National Laboratory (BNL) for use on the Spallation Neutron Source (SNS) [l]. An H ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser (h=1064nm). To measure beam profiles, a narrow laser beam is passed through the ion beam neutralizing a portion of the H-beam struck by the laser. The laser trajectory is stepped across the ion beam. At each laser position, the reduction of the beam current caused by the laser is measured. A proof-of-principle experiment was done earlier at 750keV. This paper reports on measurements made on 200MeV beam at BNL and with a compact scanner prototype at Lawrence Berkeley National Lab on beam from the SNS RFQ.

  20. Beam shaping for laser initiated optical primers

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  1. Laser synchrotron radiation and beam cooling

    SciTech Connect

    Esarey, E.; Sprangle, P.; Ting, A.

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  2. Laser beam propagation in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  3. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters

    SciTech Connect

    Schaefer, B.; Luebbecke, M.; Mann, K.

    2006-05-15

    The suitability of the Hartmann-Shack technique for the determination of the propagation parameters of a laser beam is faced against the well known caustic approach according to the ISO 11146 standard. A He-Ne laser (543 nm) was chosen as test beam, both in its fundamental mode as well as after intentional distortion, introducing a moderate amount of spherical aberration. Results are given for the most important beam parameters M{sup 2}, divergence, and beam widths, indicating an agreement of better than 10% and for adapted beam diameter <5%. Furthermore, the theoretical background, pros and cons, as well as some features of the software implementation for the Hartmann-Shack sensor are briefly reviewed.

  4. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  5. Active diaphragm rupture with laser beam irradiation

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Torikai, H.; Yang, Q. S.; Watanabe, K.; Sasoh, A.

    We performed shock tube operations with a layer of diaphragm being ruptured by laser beam irradiation. Mylar or Cellophane was examined as the diaphragm material. It has been demonstrated that shock tube can be operated with this new technique. The absorbed energy depends on the material and thickness of the diaphragm and is an important control parameter.

  6. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  7. More About Beam-Steering Subsystem For Laser Communication

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Chen, Chien-Chu; Hemmati, Hamid; Lesh, James R.

    1995-01-01

    Two reports present additional information about developmental beam-steering subsystem of laser-communication system. Aspects of this subsystem described previously in "Beam-Steering Subsystem for Laser Communication" (NPO-19069) and "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193). Reports reiterate basic principles of operation of beam-steering subsystem and of laser-communication system as whole. Also presents some of details of optical and mechanical design of prototype of subsystem, called Optical Communication Demonstrator.

  8. Laser and electron cooling of relativistic stored beams

    SciTech Connect

    Huber, G.; Schroeder, S.; Klein, R.; Boos, N.; Grieser, R.; Hoog, I.; Krieg, M.; Merz, P. ); Kuehl, T.; Neumann, R. ); Balykin, V.; Grieser, M.; Habs, D.; Jaeschke, E.; Petrich, W.; Schwalm, D.; Steck, M.; Wanner, B.; Wolf, A. )

    1991-08-05

    Laser cooling of ions at relativistic energies was first observed at the TSR storage ring in Heidelberg. A {sup 7}Li{sup +} ion beam moving at 6.4% the speed of light was overlapped with resonant co- and counter-propagating laser beams. The longitudinal temperatures were found to pass below 190 mK. Limits and applications of laser cooled relativistic ion beams are discussed. Laser cooling and electron cooling of the ion beam were combined.

  9. BECOLA Beam Line Construction and Laser System

    NASA Astrophysics Data System (ADS)

    Pedicini, Eowyn; Minamisono, Kei; Barquest, Brad; Bollen, Georg; Klose, Andrew; Mantica, Paul; Morrissey, Dave; Ringle, Ryan; Schwarz, Stefan; Vinnikova, Sophia

    2010-11-01

    The BECOLA (BEam COoler and LAser spectroscopy) facility is being installed at NSCL for experiments on radioactive nuclides.ootnotetextK. Minamisono et al, Proc. Inst. Nucl. Theory 16, 180 (2009). Low energy ion beams will be cooled/bunched in an RFQ ion trap and then extracted to a max of 60 kV. The ion beam will be neutralized through a charge exchange cell (CEC), and remaining ions will be removed by a deflector and collected in a Faraday cup. Collinear laser spectroscopy will be used to measure the atomic hyperfine structure, and nuclear properties will be extracted. The assembly, vacuum testing, and optical alignment of the CEC have been completed and the ion deflector and Faraday cup were also assembled. Stabilization of the Ti:sapphire laser to be used for spectroscopy is achieved through a feedback loop using a precision wavelength meter that is calibrated by a stabilized He-Ne laser. Coupling the He-Ne laser into a single-mode optical fiber was optimized for stable operation of the feedback loop. Finally, a wall chart of nuclear moments was prepared to view trends in μ and Q for nuclear ground states for planning future measurements.

  10. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  11. Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond

    NASA Astrophysics Data System (ADS)

    Kononenko, T. V.; Zavedeev, E. V.

    2016-03-01

    We report a theoretical and experimental study of the energy profile deformation along the laser beam axis during the fabrication of graphite microstructures inside a diamond crystal. The numerical simulation shows that the use of a focusing lens with a numerical aperture NA < 0.1 at a focusing depth of up to 2 mm makes it possible to avoid a noticeable change in the energy profile of the beam due to the spherical aberration that occurs in the case of refraction of the focused laser beam at the air – diamond interface. The calculation results are confirmed by experimental data on the distribution of the laser intensity along the beam axis in front of its focal plane, derived from observations of graphitisation wave propagation in diamond. The effect of radiation self-focusing on laser-induced graphitisation of diamond is analysed. It is shown that if the wavefront distortion due to self-focusing can be neglected at a minimum pulse energy required for the optical breakdown of diamond, then an increase in the beam distortion with increasing pulse energy has no effect on the graphitisation process.

  12. Safe Laser Beam Propagation for Interplanetary Links

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  13. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  14. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  15. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  16. Laser beam propagation through a full scale aircraft turboprop engine exhaust

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert

    2010-10-01

    The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.

  17. Power limitations and pulse distortions in an Yb : KGW chirped-pulse amplification laser system

    SciTech Connect

    Kim, G H; Yang, J; Kulik, A V; Sall, E G; Chizhov, S A; Kang, U; Yashin, V E

    2013-08-31

    We have studied self-action effects (self-focusing and self-phase modulation) and stimulated Raman scattering in an Yb : KGW chirped-pulse amplification laser system. The results demonstrate that self-focusing in combination with thermal lensing may significantly limit the chirped pulse energy in this system (down to 200 μJ) even at a relatively long pulse duration (50 ps). Nonlinear lenses in the laser crystals in combination with thermal lenses bring the regenerative amplifier cavity in the laser system to the instability zone and limit the average output power at pulse repetition rates under 50 kHz. Self-phase modulation, a manifestation of self-action, may significantly distort a recompressed femtosecond pulse at energies near the self-focusing threshold. Stimulated Raman scattering in such a laser has a weaker effect on output parameters than do self-focusing and thermal lensing, and Raman spectra are only observed in the case of pulse energy instability. (nonlinear optical phenomena)

  18. High power semiconductor laser beam combining technology and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Tong, Cunzhu; Peng, Hangyu; Zhang, Jun

    2013-05-01

    With the rapid development of laser applications, single elements of diode lasers are not able to meet the increasing requirements on power and beam quality in the material processing and defense filed, whether are used as pumping sources or directly laser sources. The coupling source with high power and high beam quality, multiplexed by many single elements, has been proven to be a promising technical solution. In this paper, the authors review the development tendency of efficiency, power, and lifetime of laser elements firstly, and then introduce the progress of laser beam combining technology. The authors also present their recent progress on the high power diode laser sources developed by beam combining technology, including the 2600W beam combining direct laser source, 1000W fiber coupled semiconductor lasers and the 1000W continuous wave (CW) semiconductor laser sources with beam quality of 12.5×14[mm. mrad]2.

  19. Laser beam probing of jet exhaust turbulence.

    PubMed

    Hogge, C B; Visinsky, W L

    1971-04-01

    A He-Ne (6328-A) laser beam was passed through the highly turbulent region in the exhaust of a jet engine (J-57 with afterburner). Estimates of a structure constant that would characterize the turbulence in the exhaust are made from the beam spread of focused and collimated beams. The structure constant obtained in this manner is then compared with that determined from scintillation measurements of a (10.6-micro) beam and with the results of hot-wire anemometer readings taken in the exhaust. The various methods yield results for the structure constant that are in good agreement (typically a structure constant of the order of 3 x 10(-5) m(-?)). PMID:20094556

  20. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    NASA Astrophysics Data System (ADS)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  1. Radiative trapping in intense laser beams

    NASA Astrophysics Data System (ADS)

    Kirk, J. G.

    2016-08-01

    The dynamics of electrons in counter-propagating, circularly polarized laser beams are shown to exhibit attractors whose ability to trap particles depends on the ratio of the beam intensities and a single parameter describing radiation reaction. Analytical expressions are found for the underlying limit cycles and the parameter range in which they are stable. In high-intensity optical pulses, where radiation reaction strongly modifies the trajectories, the production of collimated gamma-rays and the initiation of non-linear cascades of electron–positron pairs can be optimized by a suitable choice of the intensity ratio.

  2. LASER BEAM PROFILE MONITOR DEVELOPMENT AT BNL FOR SNS.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; DELLA PENNA,A.; GASSNER,D.; GRAU,M.; KESSELMAN,M.; PENG,S.; SIKORA,R.

    2002-08-19

    A beam profile monitor for H{sup -} beams using laser photoneutralization is being developed at Brookhaven National Laboratory [1] for use on the Spallation Neutron Source (SNS) [2]. An H{sup -} ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser ({lambda}=1064nm). To measure beam profiles, a narrow laser beam is passed through the ion beam neutralizing a portion of the H{sup -} beam struck by the laser, and the perturbation of the beam current caused by the laser is measured. The laser trajectory is stepped across the ion beam generating a transverse profile. Proof-of-principle experiments were done at 750keV and 200MeV. Also a compact scanner prototype was used at Lawrence Berkeley National Laboratory (LBNL) [3] during commissioning of the SNS RFQ.

  3. Freeform beam shaping for high-power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  4. Inviscid Flow Field Effects: Experimental results. [optical distortions over airborne laser turrets

    NASA Technical Reports Server (NTRS)

    Otten, L. J., III; Gilbert, K. G.

    1980-01-01

    The aero-optical distortions due to invisid flow effects over airborne laser turrets is investigated. Optical path differences across laser turret apertures are estimated from two data sources. The first is a theoretical study of main flow effects for a spherical turret assembly for a Mach number (M) of 0.6. The second source is an actual wind tunnel density field measurement on a 0.3 scale laser turret/fairing assembly, with M = 0.75. A range of azimuthal angles from 0 to 90 deg was considered, while the elevation angle was always 0 deg (i.e., in the plane of the flow). The calculated optical path differences for these two markedly different geometries are of the same order. Scaling of results to sea level conditions and an aperture diameter of 50 cm indicated up to 0.0007 cm of phase variation across the aperture for certain forward look angles and a focal length of F = -11.1 km. These values are second order for a 10.6 micron system.

  5. Determination of wavefront distortion of an aerodynamic window in a high-power laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoning; Cheng, ZuHai; Du, Zhemin; Li, Feng; Kim, Wenjun

    1999-09-01

    The optical characteristics of new type jet injecting aerodynamic window have studied experimentally with HARTMANN diagnostic apparatus. When the pressure of sealed vacuum chamber is changed from 2500 Pa to 771.4 Pa, the Strehl ratio is determined from 0.94 to 0.90. From these optical characteristics it can be analyzed, that the injection flow pressure and the structure of aerodynamic window influences the passed beam quality on. It was shown that the passed beam well be divergence, as the injection flow pressure becomes large. It is related to the radius gradient of air density distribution, caused by gas flow from circular nozzle. And heterogeneous distribution of air bleed hole makes the wavefront tilt so that the passed laser beam well shift.

  6. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  7. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  8. Wavefront Distortion Requirements for the LISA Mission

    NASA Astrophysics Data System (ADS)

    Bender, P. L.

    2004-12-01

    The Laser Interferometer Space Antenna (LISA) gravitational wave mission will make use of laser measurements of changes in distance between test masses in spacecraft 5 million km apart. Distortions in the far field wavefronts can interact with jitter in the transmitted beam directions to give apparent variations in the distances between the test masses. About 400 mm diameter telescopes will be used to send the laser beams between the spacecraft. Stabilization of the beam pointing directions will be done using the light from the distant spacecraft as very bright beacons to lock on to. Earlier studies of the beam pointing requirements for the LISA mission assumed only simple waveform distortions, such as cylindrical distortion or astigmatism. The analysis has now been repeated, including defocus, spherical aberration, and two components each of astigmatism and coma. These lower order aberrations are expected to be among the most damaging ones near the beam axis for a given rms wavefront distortion amplitude. This is because the higher order ones will cause the laser energy to be diffracted away from the axis more. Most of the aberration amplitude is expected to come from the optics before the telescope, rather than from the telescope itself. A total wavefront distortion amplitude of 0.05 wavelength (50 nm) rms or less appears to be adequate.

  9. Beam control and laser characterization for NIF

    SciTech Connect

    Boege, S. J., LLNL

    1998-06-10

    The demanding energy, power, pulse shape, focusability, pointing, and availability requirements placed on the 192 National Ignition Facility (NIF) beams lead to the need for an automatic operation capability that is well beyond that of previous inertial confinement fusion (ICF) lasers. Alignment, diagnostic, and wavefront correction subsystems are integrated in an approach that, by permitting maximal sharing of instrumentation between subsystems, meets performance requirements at a reasonable cost.

  10. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  11. Laser beam collimation using Talbot interferometry

    NASA Technical Reports Server (NTRS)

    Ganesan, A. R.; Venkateswarlu, Putcha

    1993-01-01

    A modified method of checking laser beam collimation using a single grating and a right-angled prism is presented. The self-images (Talbot images) of a grating illuminated by a collimated beam are formed at some distance from the grating. The use of a right-angled prism makes it possible to carry out the folding of the self-image with respect to the original grating and to ensure that the grating lines in the self-image and the actual grating are inclined at equal angles with respect to horizontal direction. It is concluded that the proposed collimation test method has an in-built reference and does not require precise orientation of the grating as in the two-grating method. Large beams can be tested with a small-size assembly.

  12. Entangling the spatial properties of laser beams.

    PubMed

    Wagner, Katherine; Janousek, Jiri; Delaubert, Vincent; Zou, Hongxin; Harb, Charles; Treps, Nicolas; Morizur, Jean François; Lam, Ping Koy; Bachor, Hans A

    2008-07-25

    Position and momentum were the first pair of conjugate observables explicitly used to illustrate the intricacy of quantum mechanics. We have extended position and momentum entanglement to bright optical beams. Applications in optical metrology and interferometry require the continuous measurement of laser beams, with the accuracy fundamentally limited by the uncertainty principle. Techniques based on spatial entanglement of the beams could overcome this limit, and high-quality entanglement is required. We report a value of 0.51 for inseparability and 0.62 for the Einstein-Podolsky-Rosen criterion, both normalized to a classical limit of 1. These results are a conclusive optical demonstration of macroscopic position and momentum quantum entanglement and also confirm that the resources for spatial multimode protocols are available. PMID:18653887

  13. Scaling c-w electron-beam-pumped rare gas lasers to ultrahigh average power. Final report, 16 May-15 Nov 90

    SciTech Connect

    Not Available

    1991-04-11

    The overall objective of this program is to demonstrate the feasibility of efficiently scaling Ar:Xe lasers to ultra-high average power levels for strategic defense applications. The contractor has experimentally verified that the Ar:Xe laser system, which operates at near-IR wavelengths (1.73 micrometers), can achieve laser efficiencies of 4% with electron beam pumping at pump power densities as low as 10 watts/cc. This new efficient electron beam pumping regime promises cost-effective scaling of Ar:Xe laser systems to multi-megawatt average power levels while maintaining high electrical efficiency (4-6%) and near-diffraction-limited beam quality. In the Phase II effort, detailed experiments will be performed on an electron beam pumped Ar:Xe laser with a closed cycle flow loop at pump power densities of 10-20 W/cc. The objective of these experiments is to validate methods for correction and control of the optical distortions resulting from experiments is to validate methods for correction and control of the optical distortions resulting from CW pumping. Control of thermal distortions will be achieved by optimally contouring the spatial profile of electron beam power deposition in the active volume. With the optimal deposition profile, higher order optical distortions will be negligible and a diffraction limited beam will be obtained after tilt and focus corrections are made. These corrections can be made by a simple local loop by an adaptive optics system in the beam train.

  14. LETTER TO THE EDITOR: Distortion of molecular electron density distributions by an intense laser field: dissociative ionization of ?

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, K.; Bhardwaj, V. R.; Safvan, C. P.; Mathur, D.

    1997-05-01

    The interaction of a tetrahedral molecule (carbon tetrachloride) with intense, 532 nm, 35 ps, 0953-4075/30/10/003/img2 linearly polarized, laser fields is explored theoretically and experimentally. Distortions caused by the laser field in the molecular electron density distributions are computed in an approximate fashion using quantum-chemical techniques. A comparative experimental study is performed of the dissociative ionization of 0953-4075/30/10/003/img3 in such an intense laser field and also by electron impact. Significant differences are observed and attempts are made to explore the possibility that these can be explained using field-distorted electron density distributions. Angular distributions of the 0953-4075/30/10/003/img4 fragment ion have also been measured and show a pronounced anisotropy with the ion signal being detected mainly along the direction of the laser's polarization axis.

  15. Semiconductor Laser With Two-Dimensional Beam Steering

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1986-01-01

    Modification of monolithic semiconductor injection laser capable of one-dimensional electronic beam steering enables deflection of beam in second direction. Such laser chip provides beam pointing or raster scanning for applications in optical communications, data processing, image scanning, and optical ranging.

  16. Laser-Beam-Absorption Chemical-Species Monitor

    NASA Technical Reports Server (NTRS)

    Gersh, Michael; Goldstein, Neil; Lee, Jamine; Bien, Fritz; Richtsmeier, Steven

    1996-01-01

    Apparatus measures concentration of chemical species in fluid medium (e.g., gaseous industrial process stream). Directs laser beam through medium, and measures intensity of beam after passage through medium. Relative amount of beam power absorbed in medium indicative of concentration of chemical species; laser wavelength chosen to be one at which species of interest absorbs.

  17. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    SciTech Connect

    Agapov, I.; Blair, G.A.; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  18. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  19. Efficient laser production of energetic neutral beams

    NASA Astrophysics Data System (ADS)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  20. The Effect of Laser Scan Strategy on Distortion and Residual Stresses of Arches Made With Selective Laser Melting

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey D.; Sochalski-Kolbus, Lindsay M.; Bunn, Jeffrey R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) is developing Additive Manufacturing (AM) - both in-space AM for on-demand parts, tools, or structures, and on-earth AM for rapid, reduced-cost, small volume production of complex space-flight hardware. Selective Laser Melting (SLM) is an on-earth AM technology that MSFC is using to build Alloy 718 rocket engine components. An understanding of the SLM-718 material properties is required to design, build, and qualify these components for space flight. Residual stresses and are of particular interest for this AM process, since SLM is a series of approximately 100 micron-wide welds, where highly non-linear heating and cooling, severe thermal gradients and repeated thermal cycling can result in high residual stresses within the component. These stresses may cause degraded material properties, and warp or distort the geometry of the SLM component. The distortions can render the component out-of-tolerance when inspected, and even interrupt or halt the build process if the warped material prevents the SLM machine from operating properly. The component must be scrapped and re-designed, which is time consuming and costly. If residual stresses are better understood, and can be predicted, these effects can be mitigated early in the component's design. the compressive residual stresses in the z-direction were highest in the chess sample, followed by island then continuous. This may be due to the binding nature of the segments

  1. Quantum well, beam deflecting surface emitting lasers

    NASA Technical Reports Server (NTRS)

    Kim, Jae H. (Inventor)

    1992-01-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  2. Quantum well, beam deflecting surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Kim, Jae H.

    1992-10-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  3. Quantum well, beam deflecting surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Kim, Jae H.

    1991-06-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  4. High-power multi-beam diode laser transmitter for a flash imaging lidar

    NASA Astrophysics Data System (ADS)

    Holmlund, Christer; Aitta, Petteri; Kivi, Sini; Mitikka, Risto; Tyni, Lauri; Heikkinen, Veli

    2013-10-01

    VTT Technical Research Centre of Finland is developing the transmitter for the "Flash Optical Sensor for TErrain Relative NAVigation" (FOSTERNAV) multi-beam flash imaging lidar. FOSTERNAV is a concept demonstrator for new guidance, navigation and control (GNC) technologies to fulfil the requirements for landing and docking of spacecraft as well as for navigation of rovers. This paper presents the design, realisation and testing of the multi-beam continuous-wave (CW) laser transmitter to be used in a 256x256 pixel flash imaging lidar. Depending on the target distance, the lidar has three operation modes using either several beams with low divergence or one single beam with a large divergence. This paper describes the transmitter part of the flash imaging lidar with focus on the electronics and especially the laser diode drivers. The transmitter contains eight fibre coupled commercial diode laser modules with a total peak optical power of 32 W at 808 nm. The main requirement for the laser diode drivers was linear modulation up to a frequency of 20 MHz allowing, for example, low distortion chirps or pseudorandom binary sequences. The laser modules contain the laser diode, a monitoring photodiode, a thermo-electric cooler, and a thermistor. The modules, designed for non-modulated and low-frequency operation, set challenging demands on the design of the drivers. Measurement results are presented on frequency response, and eye diagrams for pseudo-random binary sequences.

  5. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  6. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  7. Application of reactor-pumped lasers to power beaming

    NASA Astrophysics Data System (ADS)

    Repetti, T. E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technically or economically competitive with more mature solid-state technologies for application to power beaming.

  8. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  9. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOEpatents

    Koplow, Jeffrey P.

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  10. Further remarks on electron beam pumping of laser materials.

    PubMed

    Klein, C A

    1966-12-01

    This article demonstrates that recently completed studies on the energy dissipation of kilovolt electron beams in solids provide readily applicable methods for assessing the situation in electron beam pumped lasers. PMID:20057662

  11. Resonant microphone based on laser beam deflection

    NASA Astrophysics Data System (ADS)

    Roark, Kevin; Diebold, Gerald J.

    2004-07-01

    A microphone consisting of a flexible membrane coupled to a Helmholtz resonator can be constructed to have a resonance at a specific frequency making it, unlike conventional broadband microphones, a frequency selective detector of sound. The present device uses a laser beam reflected from the membrane and directed onto a split photodiode to record the motion of the membrane. Since the microphone has a lightly damped resonance, both the thermal noise fluctuations in the displacement of the membrane from its equilibrium position and the response of the microphone to sound at the resonance frequency are large. The large amplitude of both the signal and the noise fluctuations means that effect of amplifier noise on the microphone's sensitivity is diminished relative to that in broadband microphones. Applications of the microphone include photoacoustic detection of gases employing low power lasers.

  12. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  13. Conceptual development of the Laser Beam Manifold (LBM)

    NASA Technical Reports Server (NTRS)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  14. Beam-path conditioning for high-power laser systems

    SciTech Connect

    Stephens, T.; Johnson, D.; Languirand, M.

    1990-01-01

    Heating of mirrors and windows by high-power radiation from a laser transmitter produces turbulent density gradients in the gas near the optical surfaces. If the gradients are left uncontrolled, the resulting phase errors reduce the intensity on the target and degrade the signal returned to a receiver. Beam path conditioning maximizes the efficiency of the optical system by alleviating thermal turbulence within the beam path. Keywords: High power radiation, Beam path, Optical surface, Laser beams, Reprints. (JHD)

  15. Evaluation and Correction of the Non-linear Distortion of CEBAF Beam Position Monitors

    SciTech Connect

    M. Spata, T.L. Allison, K.E. Cole, J. Musson, J. Yan

    2011-09-01

    The beam position monitors at CEBAF have four antenna style pickups that are used to measure the location of the beam. There is a strong nonlinear response when the beam is far from the electrical center of the device. In order to conduct beam experiments at large orbit excitation we need to correct for this nonlinearity. The correction algorithm is presented and compared to measurements from our stretched wire BPM test stand.

  16. Radial smoothing for improving laser-beam irradiance uniformity.

    PubMed

    Zhong, Zheqiang; Hou, Pengcheng; Zhang, Bin

    2015-12-15

    Laser-beam irradiation uniformity is a key issue in inertial confinement fusion research. We propose a radial smoothing (RS) approach in which the speckle in a focal plane is smoothed by the radial redistribution through fast focal zooming. This focal zooming is generated by introducing the periodical spherical wavefront modulation to the laser beam, based on an optical Kerr medium and its pump laser with the temporal profile of a Gaussian pulse train. The utilization of RS significantly improves the laser-beam uniformity without obvious impact on the performance of the high-power laser system. PMID:26670528

  17. Energy transfer between laser beams crossing in ignition hohlraums

    SciTech Connect

    Michel, P; Divol, L; Williams, E A; Thomas, C A; Callahan, D A; Weber, S; Haan, S W; Salmonson, J D; Dixit, S; Hinkel, D E; Edwards, M J; MacGowan, B J; Lindl, J D; Glenzer, S H; Suter, L J

    2008-10-03

    The full scale modeling of power transfer between laser beams crossing in plasmas is presented. A new model was developed, allowing calculation of the propagation and coupling of pairs of laser beams with their associated plasma wave in three dimensions. The full laser beam smoothing techniques used in ignition experiments are modeled, and their effects on crossed-beam energy transfer is investigated. A shift in wavelength between the beams can move the instability off resonance and reduce the transfer, hence preserving the symmetry of the capsule implosion.

  18. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  19. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  20. Wake fields, potential well distortion and beam stability in the LER PEP-II

    SciTech Connect

    Heifets, S.A.

    1996-02-01

    Longitudinal and transverse wake fields are constructed for LER PEP-II. The effects of potential well distortion and the single bunch longitudinal stability are discussed for LER PEP-II storage ring. The coupled-bunch stability recalculated with the updated impedance.

  1. Dye laser amplifier including an improved window configuration for its dye beam

    DOEpatents

    O'Neil, R.W.; Davin, J.M.

    1992-12-01

    A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough. 4 figs.

  2. Dye laser amplifier including an improved window configuration for its dye beam

    DOEpatents

    O'Neil, Richard W.; Davin, James M.

    1992-01-01

    A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough.

  3. Relativistic free electrons in an intense laser field: Experimental observations of optically-induced deflection of an ultrashort electron beam

    NASA Astrophysics Data System (ADS)

    Valenzuela, Anthony R.

    We present experimental evidence of the deflection of electrons via the transfer of longitudinal momentum from an intense laser beam. The electrons are in the form of a narrow divergence beam created through self-modulated laser-wakefield acceleration with energies up to 6 MeV and an expected temporal duration of about 1 ps. A second laser pulse intersects the electron beam at an angle of 135° causing part of the beam to be deflected. The deflection is detected by using the scintillating plastic LANEX that provides spatial information of the electron beam. By taking column-wise and row-wise summations of the signal from the LANEX we examine how the beam profile changes with a change in the delay between the electron pulse and the secondary laser pulse. By using a set of metrics, we show how the beam is deflected and distorted. By measuring the time elapsed through the change in the electron beam, an estimate of the electron beam duration is given as less than 2 picoseconds. Inside of the 2 ps window, we show that different periods of deflection based on electron beam temperature can be explained by the laser sampling portions of the electron beam with different temperatures. It is also demonstrated in both theory and experiment that this process has no dependence on the polarization direction of the laser field. This physical process can be altered by changing the angle of incidence and laser intensity to examine deflection of different ranges of electron energies. This provides an important tool for the temporal measurement of ultrafast electron beams that can provide electron energy information.

  4. Active beam shaping in multiple laser guide stars

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    Adaptive beam shaping is a critical part of multiple Laser Guide Stars (LGS) for Multiple Conjugate Adaptive Optics (MCAO) for ground-based astronomical telescopes. There are two kinds of Laser Guide Stars: Na Laser Guide Stars (at 589 nm and 92 km altitude) and Rayleigh Laser Guide Stars (at 532 nm and 20 km altitude). Multiple Conjugate Adaptive Optics (MCAO) corrects for each "layer" of atmosphere independently. Multiple Laser Guide Stars are being developed to achieve a measure of tilt and increase the isoplanatic patch. Multiple Laser Guide Stars are being combined with Multiple Conjugate Optics in the Large Binocular Telescope (LBT): more than one Laser Guide Star (4-5) and two different wavelengths: 589 nm and 532 nm. Other observatories have multiple Laser Guide Stars but only one wavelength: 589 nm or 532 nm. Because Laser Guide Stars are launched into the atmosphere, adaptive beam shaping will be carried out before the laser is launched and will be different depending on which laser is being used, presumably to effect the tightest beam which can be achieved at the power level which is required to provide the requisite return to gound-based wavefront sensors. A complete range of devices are used. Beam attenuation and divergnece will take place. Multiple Laser Guide Stars of major observatories (SOR, LBT, MMT, ESO VLT and Gemini South) will be evaluated for effective adaptive beam shaping and impact on performance

  5. Characterizing the beam properties of terahertz quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Richter, H.; Rothbart, N.; Hübers, H.-W.

    2014-08-01

    Terahertz quantum-cascade lasers (QCLs) are very promising radiation sources for many scientific and commercial applications. Shaping and characterizing the beam profile of a QCL is crucial for any of these applications. Usually the beam profile should be as close as possible to a fundamental Gaussian TEM00 mode. In order to completely characterize the laser beam the power and the wavefront have to be measured. We describe methods for characterizing the beam properties of QCLs. Several QCLs with single-plasmon waveguide and emission frequencies between 2 and 5 THz are investigated. The beam profiles of these lasers are shaped into almost fundamental Gaussian modes using dedicated lenses. The beam propagation factor M2 is as low as 1.2. The wavefront is measured along the axis of propagation with a THz Hartmann sensor. Its curvature behaves as expected for a Gaussian beam. The applied methods can be transferred to any other THz beam.

  6. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods

    NASA Astrophysics Data System (ADS)

    Pfistner, C.; Weber, R.; Weber, H. P.; Merazzi, S.; Gruber, R.

    1994-07-01

    The thermally induced beam distortions in end-pumped Nd:YAG, Nd:GSGG, and Nd:YLF rods were analyzed and the influence of edge- and face-cooling was investigated. The distributions of temperature, stress, and strain in the crystals were calculated by finite element analysis. Based on these data, the space-resolved changes of the refractive index were determined considering thermal dispersion, surface deformation, and strain-induced birefringence. The resulting optical path difference for one round-trip in the end-pumped rods was integrated numerically. For each rod, the induced thermal lens was determined over the extent of the pump spot radius. The calculations of the optical path difference were experimentally confirmed by investigations using a modified Twyman-Green interferometer with a polarized HeNe probe beam at 633 nm under lasing and nonlasing conditions.

  7. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  8. CW silver ion laser with electron beam excitation

    NASA Astrophysics Data System (ADS)

    Wernsman, B.; Prabhuram, T.; Lewis, K.; Gonzalez, F.; Villagran, M.

    1988-08-01

    A CW laser power of 140 mW was obtained in the 840.39-nm transition of Ag II by electron-beam excitation. The electron-beam excited metal-vapor ion laser is capable of operating using metals with high vaporization temperatures, and is of interest for generation of CW coherent radiation in the 220-260-nm spectral region.

  9. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations

    SciTech Connect

    Zhu Fan; Tan Jiubin; Cui Jiwen

    2013-06-15

    Beam splitting target reflector based compensation for the angular drift of laser beam in laser autocollimation is proposed in this article to improve the measurement accuracy and stability of small angle deviations. A beam splitting target reflector is used to replace the plane mirror in laser autocollimation to generate a reference beam when returning the measurement beam. The reference beam and measurement beam have the same angular drift, but have different sensitivities to the rotation angle of the reflector due to the unique characteristics of the reflector. Thus, the angular drift of laser beam in laser autocollimation can be compensated in real time by using the drift of reference beam. Experimental results indicate that an output stability of 0.085 arc sec in 2 h can be achieved after compensation. And a measurement accuracy of {+-}0.032 arc sec can be obtained over the range of {+-}1190 arc sec with an effective resolution of 0.006 arc sec. It is confirmed that the compensation method for the angular drift of laser beam is necessary for improving the measurement accuracy and stability in laser autocollimation.

  10. Potential-Well Distortion, Microwave Instability, and Their Effects with Colliding Beams at KEKB

    SciTech Connect

    Cai, Yunhai; Flanagan, J.; Fukuma, H.; Funakoshi, Y.; Ieiri, T.; Ohmi, K.; Oide, K.; Suetsugu, Y.; Rorie, Jamal; /Hawaii U.

    2009-04-01

    Microwave instability in the Low Energy Ring of KEKB was studied using a broadband impedance model. The model gave excellent descriptions of longitudinal dynamics for both positive and negative momentum compactions. Moreover, it predicted that the threshold of microwave instability was a factor of two lower than the machine nominal operating bunch current. The prediction was confirmed by a measurement using the Belle detector. Furthermore, we integrated the longitudinal wakefield into the beam-beam simulation and applied it to study the combined effects in KEKB. As a result, the beam-beam simulation became truly three-dimensional with emittance growth in all three dimensions simultaneously as the beam currents increase. In addition, an observed mystery of asymmetry in the horizontal scan could also be explained by our simulations.

  11. Do twisted laser beams evoke nuclear hyperpolarization?

    NASA Astrophysics Data System (ADS)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  12. Do twisted laser beams evoke nuclear hyperpolarization?

    PubMed

    Schmidt, A B; Andrews, D L; Rohrbach, A; Gohn-Kreuz, C; Shatokhin, V N; Kiselev, V G; Hennig, J; von Elverfeldt, D; Hövener, J-B

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5nm and various topological charges. We acquired (1)H and (19)F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  13. Laser cooling of electron beams for linear colliders

    SciTech Connect

    Telnov, V.

    1996-10-01

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below that given by other methods. Depolarization of a beam during the cooling is about 5--15% for one stage. This method is especially useful for photon colliders and open new possibilities for e{sup +}e{sup {minus}} colliders and x-ray FEL based on high energy linacs.

  14. Suppression of beam steering in an injection-locked laser diode array

    SciTech Connect

    Brewer, L.R. )

    1991-12-09

    Experimental measurements were made to demonstrate that the degree of beam steering in an injection-locked laser diode array is related to the divergence of the master laser beam. For a collimated master laser beam the beam steering was suppressed. The injection-locked laser diode array beam steers with the master laser wavelength because only a portion of the divergent master laser beam satisfies the round trip mode condition.

  15. Mitigating the relativistic laser beam filamentation via an elliptical beam profile.

    PubMed

    Huang, T W; Zhou, C T; Robinson, A P L; Qiao, B; Zhang, H; Wu, S Z; Zhuo, H B; Norreys, P A; He, X T

    2015-11-01

    It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations. PMID:26651801

  16. Propagation of a laser beam in a plasma

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.

    1975-01-01

    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.

  17. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  18. High energy laser testbed for accurate beam pointing control

    NASA Astrophysics Data System (ADS)

    Kim, Dojong; Kim, Jae Jun; Frist, Duane; Nagashima, Masaki; Agrawal, Brij

    2010-02-01

    Precision laser beam pointing is a key technology in High Energy Laser systems. In this paper, a laboratory High Energy Laser testbed developed at the Naval Postgraduate School is introduced. System identification is performed and a mathematical model is constructed to estimate system performance. New beam pointing control algorithms are designed based on this mathematical model. It is shown in both computer simulation and experiment that the adaptive filter algorithm can improve the pointing performance of the system.

  19. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect

    Shafer, R.E.

    1998-01-01

    Laser photodetachment can be used on high current, high energy H{sup {minus}} beams to carry out a wide variety of beam diagnostic measurements parasitically during normal operation, without having to operate the facility at either reduced current or duty cycle. Suitable Q-switched laser systems are small, inexpensive, and can be mounted on or near the beamline. Most of the proposed laser-based diagnostics techniques have already been demonstrated.

  20. Actuator requirements for laser power beaming

    SciTech Connect

    Zeiders, G.W.

    1994-12-31

    Design considerations and working formulas and graphs are presented for estimating the actuator requirements for adaptive optics correction of global tilt and residual piston error arising from atmospheric turbulence along a ground-to-space path. Frequency characteristics are calculated for several important crosswind conditions for the case where the active segments are very small compared to the full aperture; it is shown that the velocity profile has a strong effect on the power spectra and that high slew rates significantly increase the required high-frequency response and accentuate the effects of high-attitude turbulence. Predictions are given for the SELENE laser power beaming system which uses active control of a segmented primary telescope mirror.

  1. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  2. Propagation of high-energy laser beams through metallic aerosols

    SciTech Connect

    Zardecki, A.; Armstrong, R.L.

    1988-08-01

    By combining the results of the hydrodynamic code CON1D and the beam propagation code LASER, we investigate the propagation of high-energy laser beams through vaporizing metallic aerosols in the regime for which the plasma generation becomes important. An effective plasma absorption coefficient allows us to set up a coupled system of equations describing the system consisting of the beam and vapor. 14 refs., 5 figs.

  3. High resolution imaging with TM01 laser beams

    NASA Astrophysics Data System (ADS)

    Dehez, Harold; Piché, Michel; De Koninck, Yves

    2009-06-01

    Using the vectorial diffraction theory established by Richards and Wolf, we demonstrate that the resolution of a two-photon microscope can be improved with a radially polarized TM01 laser beam and an interface between dielectrics, instead of the linearly polarized Gaussian beam already used in laser scanning microscopy. To verify the theoretical results, we developed a mode converter producing radially polarized beams and we have integrated it in a commercial two-photon microscope.

  4. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  5. Apparatus Translates Crossed-Laser-Beam Probe Volume

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; South, Bruce W.; Exton, Reginald J.

    1994-01-01

    Optomechanical apparatus translates probe volume of crossed-beam laser velocimeter or similar instrument while maintaining optical alignment of beams. Measures velocity, pressure, and temperature of flowing gas at several locations. Repeated tedious realignments no longer necessary. Designed to accommodate stimulated-Raman-gain spectrometer for noninvasive measurement of local conditions in flowing gas in supersonic wind tunnel. Applicable to other techniques like coherent anti-Stokes Raman spectroscopy involving use of laser beams crossed at small angles (10 degrees or less).

  6. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-12-31

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modem, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  7. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-01-01

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modern, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  8. Hough Transform Based Corner Detection for Laser Beam Positioning

    SciTech Connect

    Awwal, A S

    2005-07-26

    In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images.

  9. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, William C.; Seppala, Lynn

    1995-01-01

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.

  10. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.