Sample records for laser beam propagating

  1. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  2. Coherent superposition of propagation-invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, R.; Soskind, M.; Soskind, Y. G.

    2012-10-01

    The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.

  3. Formation of propagation invariant laser beams with anamorphic optical systems

    NASA Astrophysics Data System (ADS)

    Soskind, Y. G.

    2015-03-01

    Propagation invariant structured laser beams play an important role in several photonics applications. A majority of propagation invariant beams are usually produced in the form of laser modes emanating from stable laser cavities. This work shows that anamorphic optical systems can be effectively employed to transform input propagation invariant laser beams and produce a variety of alternative propagation invariant structured laser beam distributions with different shapes and phase structures. This work also presents several types of anamorphic lens systems suitable for transforming the input laser modes into a variety of structured propagation invariant beams. The transformations are applied to different laser mode types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian field distributions. The influence of the relative azimuthal orientation between the input laser modes and the anamorphic optical systems on the resulting transformed propagation invariant beams is presented as well.

  4. Rapid and efficient formation of propagation invariant shaped laser beams.

    PubMed

    Chriki, Ronen; Barach, Gilad; Tradosnky, Chene; Smartsev, Slava; Pal, Vishwa; Friesem, Asher A; Davidson, Nir

    2018-02-19

    A rapid and efficient all-optical method for forming propagation invariant shaped beams by exploiting the optical feedback of a laser cavity is presented. The method is based on the modified degenerate cavity laser (MDCL), which is a highly incoherent cavity laser. The MDCL has a very large number of degrees of freedom (320,000 modes in our system) that can be coupled and controlled, and allows direct access to both the real space and Fourier space of the laser beam. By inserting amplitude masks into the cavity, constraints can be imposed on the laser in order to obtain minimal loss solutions that would optimally lead to a superposition of Bessel-Gauss beams forming a desired shaped beam. The resulting beam maintains its transverse intensity distribution for relatively long propagation distances.

  5. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  6. Laser beam propagation in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  7. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  8. Laser Beam Propagation in Inertial Confinement Plasmas*

    NASA Astrophysics Data System (ADS)

    Froula, Dustin

    2006-10-01

    A study of the relevant laser-plasma interaction processes in a long-scale length high-temperature transparent plasma has been performed using a new target platform to emulate the plasma conditions in an indirect drive fusion target. Recent experiments in this plasma emulator have demonstrated that for ignition relevant conditions (Te>3 keV, I < 2x10^15 W-cm-2) the 3φ laser light propagates through a high-density (5x10^20 cm-3) plasma with a peak transmission of 90%. Experiments have demonstrated an understanding of filamentation in these conditions that is consistent with theory increasing our confidence in our ability to execute the beam conditioning and focal spot designs for future ignition experiments. This target has been well characterized using Thomson-scattering where the peak electron temperature is shown to be 3.5 keV. The electron temperature measurements agree with HYDRA flux-limited radiation hydrodynamics calculations. Using a recently implemented 3φ transmitted beam diagnostic, the filamentation threshold has been experimentally measured for a beam that employs a continuous phase plate (CPP). For intensities above the threshold for filamentation, the beam was shown to spray. Defocusing the high-power laser beam reduced the backscatter while filamentation was not changed as predicted. Recent experiments investigating the importance of polarization and temporal smoothing of laser beams for propagation in this target platform will be presented. Detailed hydrodynamic and laser-plasma interaction simulations capture the stimulated Brillouin, stimulated Raman, and filamentation thresholds providing significant confidence that our models used for ignition designs can correctly predict the conditions where energy loss and beam propagation through the under dense NIF hohlraum plasmas will be small. ** Collaborators: L. Divol, S. H. Glenzer, J. S. Ross, N. Meezan, S. Prisbrey, S. Dixit.

  9. Laser beam propagation through a full scale aircraft turboprop engine exhaust

    NASA Astrophysics Data System (ADS)

    Henriksson, Markus; Gustafsson, Ove; Sjöqvist, Lars; Seiffer, Dirk; Wendelstein, Norbert

    2010-10-01

    The exhaust from engines introduces zones of extreme turbulence levels in local environments around aircraft. This may disturb the performance of aircraft mounted optical and laser systems. The turbulence distortion will be especially devastating for optical missile warning and laser based DIRCM systems used to protect manoeuvring aircraft against missile attacks, situations where the optical propagation path may come close to the engine exhaust. To study the extent of the turbulence zones caused by the engine exhaust and the strength of the effects on optical propagation through these zones a joint trial between Germany, the Netherlands, Sweden and the United Kingdom was performed using a medium sized military turboprop transport aircraft tethered to the ground at an airfield. This follows on earlier trials performed on a down-scaled jet-engine test rig. Laser beams were propagated along the axis of the aircraft at different distances relative to the engine exhaust and the spatial beam profiles and intensity scintillations were recorded with cameras and photodiodes. A second laser beam path was directed from underneath the loading ramp diagonally past one of the engines. The laser wavelengths used were 1.5 and 3.6 μm. In addition to spatial beam profile distortions temporal effects were investigated. Measurements were performed at different propeller speeds and at different distances from exhaust nozzle to the laser path. Significant increases in laser beam wander and long term beam radius were observed with the engine running. Corresponding increases were also registered in the scintillation index and the temporal fluctuations of the instantaneous power collected by the detector.

  10. On the exploration of effect of critical beam power on the propagation of Gaussian laser beam in collisionless magnetized plasma

    NASA Astrophysics Data System (ADS)

    Urunkar, T. U.; Valkunde, A. T.; Vhanmore, B. D.; Gavade, K. M.; Patil, S. D.; Takale, M. V.

    2018-05-01

    It is quite known that critical power of the laser plays vital role in the propagation of Gaussian laser beam in collisionless plasma. The nonlinearity in dielectric constant considered herein is due to the ponderomotive force. In the present analysis, the interval of critical beam power has been explored to sustain the competition between diffraction and self-focusing of Gaussian laser beam during propagation in collisionless magnetized plasma. Differential equation for beam-width parameter has been established by using WKB and paraxial approximations under parabolic equation approach. The effect of critical power on the propagation of Gaussian laser beam has been presented graphically and discussed.

  11. Laser Beam Propagation Through Inhomogeneous Media with Shock-Like Profiles: Modeling and Computing

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Ida, Nathan

    1997-01-01

    Wave propagation in inhomogeneous media has been studied for such diverse applications as propagation of radiowaves in atmosphere, light propagation through thin films and in inhomogeneous waveguides, flow visualization, and others. In recent years an increased interest has been developed in wave propagation through shocks in supersonic flows. Results of experiments conducted in the past few years has shown such interesting phenomena as a laser beam splitting and spreading. The paper describes a model constructed to propagate a laser beam through shock-like inhomogeneous media. Numerical techniques are presented to compute the beam through such media. The results of computation are presented, discussed, and compared with experimental data.

  12. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    DTIC Science & Technology

    2016-09-01

    thesis modeling tools is discussed. In Chapter 6, the thesis validated the model with analytical computations and simulations result from...using propagation model . Based on both the analytical computation and WaveTrain results, the diraction e ects simulated in the propagation model are...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee

  13. High power tube solid-state laser with zigzag propagation of pump and laser beam

    NASA Astrophysics Data System (ADS)

    Savich, Michael

    2015-02-01

    A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.

  14. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  15. Excitation of Accelerating Plasma Waves by Counter-Propagating Laser Beams

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady

    2001-10-01

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes the momentum transfer to the plasma and wave excitiation. We describe a novel approach to plasma wake excitation, colliding-beam accelerator (CBA), which involves the photon exchange between the long and short counter-propagating laser beams. Depending on frequency detuning Δ ω between beams and duration τL of the short pulse, there are two approaches to CBA. First approach assumes (τL ≈ 2/ω_p). Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake ^1. It can also be used for developing an injector/pulse compressor for the particles of either sign (electrons or positrons)^2. In the second approach, one utilizes a longer pulse with τL >> ω_p-1, which is detuned by Δ ω ~ 2 ωp from the counter-propagating beam. While the parametric excitation of plasma waves by the electromagnetic beatwave at 2 ωp of two co-propagating lasers was first predicted by Rosenbluth and Liu in 1972, we realized, for the first time, that the two excitation beams can be counter-propagating^4. The advantages of using this geometry (lower threshold laser intensity, insensitivity to plasma inhomogeneity) will be explained, and the results of the numerical simulations presented. footnotetext[1]G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. E 60, 2218 (1999). footnotetext[2]G. Shvets, N. J. Fisch, and A. Pukhov, 28, 1194 (2000). footnotetext[5]G. Shvets and N. J. Fisch, Phys. Rev. Lett. 86, 3328 (2001).

  16. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  17. Safe Laser Beam Propagation for Interplanetary Links

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  18. Experimental determination of thermal turbulence effects on a propagating laser beam

    NASA Astrophysics Data System (ADS)

    Ndlovu, Sphumelele C.; Chetty, Naven

    2015-08-01

    The effect of turbulence on propagating laser beams has been a subject of interest since the evolution of lasers back in 1959. In this work, an inexpensive and reliable technique for producing interferograms using a point diffraction interferometer (PDI) was considered to experimentally study the turbulence effects on a laser beam propagating through air. The formed interferograms from a propagating beamwere observed and digitally processed to study the strength of atmospheric turbulence. This technique was found to be sensitive enough to detect changes in applied temperature with distance between the simulated turbulence and laser path. These preliminary findings indicated that we can use a PDI method to detect and localise atmospheric turbulence parameters. Such parameters are very important for use in the military (defence laser weapons) and this is vital for South Africa (SA) since it has natural resources, is involved in peace keeping and mediation for other countries, and hence must have a strong defence system that will be able to locate, detect and destroy incoming missiles and other threatening atmospheric systems in order to protect its environment and avoid the initiation of countermeasures on its land.

  19. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    PubMed

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  20. Bolt beam propagation analysis

    NASA Astrophysics Data System (ADS)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  1. Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.

    PubMed

    Eyyuboğlu, Halil Tanyer

    2005-08-01

    Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.

  2. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  3. Numerical studies of laser beam propagation with phase screen method using Non-Kolmogorov atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Yıldız, Fehmiye; Kurt, Hamza

    2017-09-01

    It is well known that atmospheric turbulence severely limits the applications based on the laser propagation though the atmosphere. The most common disturbances occurring due to the atmospheric turbulence are beam spreading, beam wandering, and scintillation. These effects are continuously changing in response to atmospheric conditions. In this study, we create a Non-Kolmogorov turbulence model which is based on the geometrical optics approximation and the property of Gamma function and integrate with in Gaussian beam analytically. This approach helps us to understand the propagation of the laser beam at different wavelengths in the atmospheric turbulence.

  4. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  5. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  6. Laser beam propagation through bulk nonlinear media: Numerical simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kovsh, Dmitriy I.

    This dissertation describes our efforts in modeling the propagation of high intensity laser pulses through optical systems consisting of one or multiple nonlinear elements. These nonlinear elements can be up to 103 times thicker than the depth of focus of the laser beam, so that the beam size changes drastically within the medium. The set of computer codes developed are organized in a software package (NLO_BPM). The ultrafast nonlinearities of the bound-electronic n2 and two-photon absorption as well as time dependent excited-state, free-carrier and thermal nonlinearities are included in the codes for modeling propagation of picosecond to nanosecond pulses and pulse trains. Various cylindrically symmetric spatial distributions of the input beam are modeled. We use the cylindrical symmetry typical of laser outputs to reduce the CPU and memory requirements making modeling a real- time task on PC's. The hydrodynamic equations describing the rarefaction of the medium due to heating and electrostriction are solved in the transient regime to determine refractive index changes on a nanosecond time scale. This effect can be simplified in some cases by an approximation that assumes an instantaneous expansion. We also find that the index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulse width and the acoustic transit time is greater than unity. We numerically study the sensitivity of the closed- aperture Z-scan experiment to nonlinear refraction for various input beam profiles. If the beam has a ring structure with a minimum (or zero) on axis in the far field, the sensitivity of Z-scan measurements can be increased by up to one order of magnitude. The linear propagation module integrated with the nonlinear beam propagation codes allows the simulation of typical experiments such as Z-scan and optical limiting experiments. We have used these codes to model the performance of optical limiters. We study two of the

  7. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    NASA Astrophysics Data System (ADS)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  8. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  9. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  10. Backscattering enhancement factor dependence of a Laguerre-Gaussian laser beam propagating on the location path in the atmosphere on optical turbulence intensity

    NASA Astrophysics Data System (ADS)

    Rytchkov, D. S.

    2017-11-01

    The paper presents the results of a study of the backscattering enhancement factor (BSE) dependence of vortex LaguerreGaussian beams propagating on monostatic location paths in the atmosphere on optical turbulence intensity. The numeric simulation split-step method of laser beam propagation was used to obtain BSE factor values of a laser beam propagated on monostatic location path in the turbulent atmosphere and reflected from a diffuse target. It is shown that BSE factor of the averaged intensity of a backscattered vortex laser beam of any topological charge is less than BSE factor values of backscattered Gaussian beam in arbitrary turbulent conditions.

  11. Effects of the Atmosphere on the Propagation of 10.6-micro Laser Beams.

    PubMed

    Hayes, J N; Ulrich, P B; Aitken, A H

    1972-02-01

    This paper gives an overview of the use of a wave optics computer code to model the propagation of high power CO(2) laser beams in the atmosphere. The nonlinear effects of atmospheric heating and kinetic cooling phenomena are included in the analysis. Only steady-state, nonturbulent cases are studied. Thermal conduction and free convection are assumed negligible compared to other effects included in the calculation. Results showing the important effect of water vapor concentration on beam quality are given. Beam slewing is also studied. Comparison is made with geometrical optics results, and good agreement is found with laboratory experiments that simulate atmospheric propagation.

  12. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    PubMed

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  13. Optical vortex beams: Generation, propagation and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  14. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  15. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  16. A computational study of laser-supported detonation waves propagating up an oblique incident beam

    NASA Astrophysics Data System (ADS)

    Bohn, C. L.; Crawford, M. L.

    1987-01-01

    A series of numerical experiments was conducted to study the propagation of laser-supported detonation waves (LSDWs) in the case that a CO2 laser beam strikes an aluminum surface obliquely in air. A reflected shock formed at the aluminum surface was more prominent at higher angles of incidence theta of the beam, but otherwise the hydrodynamics of the plasma and the LSDW were insensitive to theta. Furthermore, the total impulse delivered to the aluminum varied approximately as 1/cos theta, a result that can be modeled with elementary blast-wave theory.

  17. Ideal laser-beam propagation through high-temperature ignition Hohlraum plasmas.

    PubMed

    Froula, D H; Divol, L; Meezan, N B; Dixit, S; Moody, J D; Neumayer, P; Pollock, B B; Ross, J S; Glenzer, S H

    2007-02-23

    We demonstrate that a blue (3omega, 351 nm) laser beam with an intensity of 2 x 10(15) W cm(-2) propagates nearly within the original beam cone through a millimeter scale, T(e)=3.5 keV high density (n(e)=5 x 10(20) cm(-3)) plasma. The beam produced less than 1% total backscatter at these high temperatures and densities; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  18. LASER BEAMS: On alternative methods for measuring the radius and propagation ratio of axially symmetric laser beams

    NASA Astrophysics Data System (ADS)

    Dementjev, Aleksandr S.; Jovaisa, A.; Silko, Galina; Ciegis, Raimondas

    2005-11-01

    Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments.

  19. Meteorological effects on laser propagation for power transmission

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1982-01-01

    An examination of possible laser operating parameters for power transmission to earth from solar power satellites is presented, with particular attention paid to assuring optimal delivery at midlatitudes. The degradation of beam efficiency due to molecular scattering, molecular absorption, aerosol scattering, and aerosol absorption during beam propagation through the atmosphere can be alleviated by judicious choice of wavelength windows, elevating the receptor sites, using a vertical propagation path, or by hole boring, i.e., vaporizing the aerosol particles in the beam path. Analyses are given for the beam propagation through fog, haze, clouds, and snow using various transitions. Only weapons-quality lasers are seen as being capable of boring through clouds and aerosols, employing a CW beam with superimposed pulses at high power densities. It is concluded that further short wavelength transmission experiments be performed to demonstrate transmission feasibility with the CW/pulsed mode of beam propagation.

  20. More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method.

    PubMed

    Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael

    2009-01-01

    A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.

  1. Evolution of branch points for a laser beam propagating through an uplink turbulent atmosphere.

    PubMed

    Ge, Xiao-Lu; Liu, Xuan; Guo, Cheng-Shan

    2014-03-24

    Evolution of branch points in the distorted optical field is studied when a laser beam propagates through turbulent atmosphere along an uplink path. Two categories of propagation events are mainly explored for the same propagation height: fixed wavelength with change of the turbulence strength and fixed turbulence strength with change of the wavelength. It is shown that, when the beam propagates to a certain height, the density of the branch-points reaches its maximum and such a height changes with the turbulence strength but nearly remains constant with different wavelengths. The relationship between the density of branch-points and the Rytov number is also given. A fitted formula describing the relationship between the density of branch-points and propagation height with different turbulence strength and wavelength is found out. Interestingly, this formula is very similar to the formula used for describing the Blackbody radiation in physics. The results obtained may be helpful for atmospheric optics, astronomy and optical communication.

  2. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka; Chauhan, Prashant

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled lasermore » beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.« less

  3. Challenges of laser beam propagation near/within marine boundary layer

    NASA Astrophysics Data System (ADS)

    Manzur, Tariq; Katz, Richard A.; Olson, Joshua

    2015-05-01

    Marine atmospheric condition plays a critical role on imaging, laser beam propagation, and optical communication of the commercial and military platform. In Military platforms, ships and sailors must be able to defend and communicate with other maritime platform in sometimes volatile and hostile regions around the globe. Naval combatants need defensive and offensive capabilities against a variety of potential threats - many coming at low altitude, UAV, USV etc. High energy lasers (HELs) are currently in development, which have sufficient power levels (~100 kW) to destroy/disable most types of threats. Though target engagement and energy delivery are challenging, a HEL weapon can engage targets at the speed of light, does not require physical ammunition, and is able to run for hours at a time.

  4. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  5. Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.

    PubMed

    Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul

    2009-03-30

    The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.

  6. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  7. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    wave Brillouin mixing [89,90]. transmitted beam is phase conjugated target initial wave front nn  1 turbulent air Figure 14. Using phase and...discussed in connection with both high-power and high-intensity lasers is propagation in a turbulent atmosphere . Laser propagation in atmospheric ... turbulence can results in beam centroid wander, spreading and intensity scintillation. A phase conjugation technique to mitigate the effects of atmospheric

  8. Influence of turbulent atmosphere on laser beams from confocal unstable resonators

    NASA Astrophysics Data System (ADS)

    Peng, Yu-feng; Wang, Juan; Bi, Xiao-qun; Zhang, Ming-gao; Cheng, Zu-hai

    2009-07-01

    Based on the laser fields from a positive confocal unstable resonator (ab initio), the propagation characteristics of the beam through turbulent atmosphere are investigated by means of fast Fourier transform algorithm (FFT). To conveniently investigate the propagation characteristics of laser beam through the atmosphere, as far as known, in the previous many works, a mathematical expression was generally artificially predefined to represent the given laser beam, such as Gaussian beam, Hermite-cosh-Gaussian beam, flat topped beam, dark-hollow (annular) beam, etc. In this paper, by basing on the initial built in oscillation of a laser resonator, such as a positive confocal unstable resonator (CUR), we studied the intensity distributions of the output laser field to obtain the propagation characteristics of laser beam through the turbulent atmosphere as functions of different propagation distances. The results show that the turbulence will result in the degradation of the peak value of the laser intensity in the far field, the spread of the far field diagram patterns, and the beam quality characteristics greatly degraded.

  9. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    NASA Astrophysics Data System (ADS)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  10. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  11. Hollow Gaussian beams and their propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Lu, Xuanhui; Lin, Qiang

    2003-07-01

    A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre-Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.

  12. Hollow Gaussian beams and their propagation properties.

    PubMed

    Cai, Yangjian; Lu, Xuanhui; Lin, Qiang

    2003-07-01

    A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre-Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.

  13. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    PubMed

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  14. A laser beam quality definition based on induced temperature rise.

    PubMed

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  15. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  16. Beam wandering statistics of twin thin laser beam propagation under generalized atmospheric conditions.

    PubMed

    Pérez, Darío G; Funes, Gustavo

    2012-12-03

    Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.

  17. Terahertz generation by relativistic ponderomotive focusing of two co-axial Gaussian laser beams propagating in ripple density plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Subodh; Singh, Ram Kishor, E-mail: ram007kishor@gmail.com; Sharma, R. P.

    Terahertz (THz) generation by beating of two co-axial Gaussian laser beams, propagating in ripple density plasma, has been studied when both ponderomotive and relativistic nonlinearities are operative. When the two lasers co-propagate in rippled density plasma, electrons acquire a nonlinear velocity at beat frequency in the direction transverse to the direction of propagation. This nonlinear oscillatory velocity couples with the density ripple to generate a nonlinear current, which in turn generates THz radiation at the difference frequency. The necessary phase matching condition is provided by the density ripple. Relativistic ponderomotive focusing of the two lasers and its effects on yieldmore » of the generated THz amplitude have been discussed. Numerical results show that conversion efficiency of the order of 10{sup −3} can be achieved in the terahertz radiation generation with relativistic ponderomotive focusing.« less

  18. Propagation of high-energy laser beams through the earth's atmosphere II; Proceedings of the Meeting, Los Angeles, CA, Jan. 21-23, 1991

    NASA Technical Reports Server (NTRS)

    Ulrich, Peter B. (Editor); Wilson, Leroy E. (Editor)

    1991-01-01

    Consideration is given to turbulence at the inner scale, modeling turbulent transport in laser beam propagation, variable wind direction effects on thermal blooming correction, realistic wind effects on turbulence and thermal blooming compensation, wide bandwidth spectral measurements of atmospheric tilt turbulence, remote alignment of adaptive optical systems with far-field optimization, focusing infrared laser beams on targets in space without using adaptive optics, and a simplex optimization method for adaptive optics system alignment. Consideration is also given to ground-to-space multiline propagation at 1.3 micron, a path integral approach to thermal blooming, functional reconstruction predictions of uplink whole beam Strehl ratios in the presence of thermal blooming, and stability analysis of semidiscrete schemes for thermal blooming computation.

  19. Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels.

    PubMed

    Fuchs, J; d'Humières, E; Sentoku, Y; Antici, P; Atzeni, S; Bandulet, H; Depierreux, S; Labaune, C; Schiavi, A

    2010-11-26

    The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.

  20. Experimental study: Underwater propagation of polarized flat top partially coherent laser beams with a varying degree of spatial coherence

    NASA Astrophysics Data System (ADS)

    Avramov-Zamurovic, S.; Nelson, C.

    2018-10-01

    We report on experiments where spatially partially coherent laser beams with flat top intensity profiles were propagated underwater. Two scenarios were explored: still water and mechanically moved entrained salt scatterers. Gaussian, fully spatially coherent beams, and Multi-Gaussian Schell model beams with varying degrees of spatial coherence were used in the experiments. The main objective of our study was the exploration of the scintillation performance of scalar beams, with both vertical and horizontal polarizations, and the comparison with electromagnetic beams that have a randomly varying polarization. The results from our investigation show up to a 50% scintillation index reduction for the case with electromagnetic beams. In addition, we observed that the fully coherent beam performance deteriorates significantly relative to the spatially partially coherent beams when the conditions become more complex, changing from still water conditions to the propagation through mechanically moved entrained salt scatterers.

  1. Atmospheric propagation of high power laser radiation at different weather conditions

    NASA Astrophysics Data System (ADS)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-05-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  2. Probability density function of the intensity of a laser beam propagating in the maritime environment.

    PubMed

    Korotkova, Olga; Avramov-Zamurovic, Svetlana; Malek-Madani, Reza; Nelson, Charles

    2011-10-10

    A number of field experiments measuring the fluctuating intensity of a laser beam propagating along horizontal paths in the maritime environment is performed over sub-kilometer distances at the United States Naval Academy. Both above the ground and over the water links are explored. Two different detection schemes, one photographing the beam on a white board, and the other capturing the beam directly using a ccd sensor, gave consistent results. The probability density function (pdf) of the fluctuating intensity is reconstructed with the help of two theoretical models: the Gamma-Gamma and the Gamma-Laguerre, and compared with the intensity's histograms. It is found that the on-ground experimental results are in good agreement with theoretical predictions. The results obtained above the water paths lead to appreciable discrepancies, especially in the case of the Gamma-Gamma model. These discrepancies are attributed to the presence of the various scatterers along the path of the beam, such as water droplets, aerosols and other airborne particles. Our paper's main contribution is providing a methodology for computing the pdf function of the laser beam intensity in the maritime environment using field measurements.

  3. Hankel-Bessel laser beams.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A; Soifer, Victor A

    2012-05-01

    An analytical solution of the scalar Helmholtz equation to describe the propagation of a laser light beam in the positive direction of the optical axis is derived. The complex amplitude of such a beam is found to be in direct proportion to the product of two linearly independent solutions of Kummer's differential equation. Relationships for a particular case of such beams-namely, the Hankel-Bessel (HB) beams-are deduced. The focusing of the HB beams is studied. © 2012 Optical Society of America

  4. Curvature aided long range propagation of short laser pulses in the atmosphere

    NASA Astrophysics Data System (ADS)

    Yedierler, Burak

    2013-03-01

    The pre-filamentation regime of propagation of a short and intense laser pulse in the atmosphere is considered. Spatiotemporal self-focusing dynamics of the laser beam are investigated by calculating the coupled differential equations for spot size, pulse length, phase, curvature, and chirp functions of a Gaussian laser pulse via a variational technique. The effect of initial curvature parameter on the propagation of the laser pulse is taken into consideration. A method relying on the adjustment of the initial curvature parameter can expand the filamentation distance of a laser beam of given power and chirp is proposed.

  5. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems.

    PubMed

    Cai, Yangjian; Lin, Qiang

    2004-06-01

    A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

  6. Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Lin, Qiang

    2004-06-01

    A new mathematical model called hollow elliptical Gaussian beam (HEGB) is proposed to describe a dark-hollow laser beam with noncircular symmetry in terms of a tensor method. The HEGB can be expressed as a superposition of a series of elliptical Hermite-Gaussian modes. By using the generalized diffraction integral formulas for light passing through paraxial optical systems, analytical propagation formulas for HEGBs passing through paraxial aligned and misaligned optical systems are obtained through vector integration. As examples of applications, evolution properties of the intensity distribution of HEGBs in free-space propagation were studied. Propagation properties of HEGBs through a misaligned thin lens were also studied. The HEGB provides a convenient way to describe elliptical dark-hollow laser beams and can be used conveniently to study the motion of atoms in a dark-hollow laser beam.

  7. Modeling laser beam diffraction and propagation by the mode-expansion method.

    PubMed

    Snyder, James J

    2007-08-01

    In the mode-expansion method for modeling propagation of a diffracted beam, the beam at the aperture can be expanded as a weighted set of orthogonal modes. The parameters of the expansion modes are chosen to maximize the weighting coefficient of the lowest-order mode. As the beam propagates, its field distribution can be reconstructed from the set of weighting coefficients and the Gouy phase of the lowest-order mode. We have developed a simple procedure to implement the mode-expansion method for propagation through an arbitrary ABCD matrix, and we have demonstrated that it is accurate in comparison with direct calculations of diffraction integrals and much faster.

  8. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.

    PubMed

    Zhao, Chengliang; Cai, Yangjian

    2010-03-01

    Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.

  9. 1D array of dark spot traps formed by counter-propagating nested Gaussian laser beams for trapping and moving atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Frazer, Travis D.

    2017-04-01

    The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.

  10. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  11. Mobile terawatt laser propagation facility (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Roumayah, Patrick; Bodnar, Nathan; Bradford, Joshua D.; Maukonen, Douglas; Richardson, Martin C.

    2017-03-01

    This presentation will describe the design and construction status of a new mobile high-energy femtosecond laser systems producing 500 mJ, 100 fs pulses at 10 Hz. This facility is built into a shipping container and includes a cleanroom housing the laser system, a separate section for the beam director optics with a retractable roof, and the environmental control equipment necessary to maintain stable operation. The laser system includes several innovations to improve the utility of the system for "in field" experiments. For example, this system utilizes a fiber laser oscillator and a monolithic chirped Bragg grating stretcher to improve system robustness/size and employs software to enable remote monitoring and system control. Uniquely, this facility incorporates a precision motion-controlled gimbal altitude-azimuth mount with a coudé path to enable aiming of the beam over a wide field of view. In addition to providing the ability to precisely aim at multiple targets, it is also possible to coordinate the beam with separate tracking/diagnostic sensing equipment as well as other laser systems. This mobile platform will be deployed at the Townes Institute Science and Technology Experimental Facility (TISTEF) located at the Kennedy Space Center in Florida, to utilize the 1-km secured laser propagation range and the wide array of meteorological instrumentation for atmospheric and turbulence characterization. This will provide significant new data on the propagation of high peak power ultrashort laser pulses and detailed information on the atmospheric conditions in a coastal semi-tropical environment.

  12. Extension of filament propagation in water with Bessel-Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaya, G.; Sayrac, M.; Boran, Y.

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.

  13. Enhancement of thermal blooming effect on free space propagation of high power CW laser beam

    NASA Astrophysics Data System (ADS)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    In this paper, we present an enhanced model to predict the effect of thermal blooming and atmospheric turbulence, on high energy laser beams free space propagation. We introduce an implementation technique for the proposed mathematical models describing the effect of thermal blooming and atmospheric turbulence including wind blowing, and how it effect high power laser beam power, far field pattern, phase change effect and beam quality . An investigated model of adaptive optics was introduced to study how to improve the wave front and phase distortion caused by thermal blooming and atmospheric turbulence, the adaptive optics model with Actuator influence spacing 3 cm the that shows observed improvement in the Strehl ratio and in wave front and phase of the beam. These models was implemented using cooperative agents relying on GLAD software package. Without taking in consideration the effect of thermal blooming It was deduced that the beam at the source takes the Gaussian shape with uniform intensity distribution, we found that the beam converge on the required distance 4 km using converging optics, comparing to the laser beam under the effect of thermal blooming the far field pattern shows characteristic secondary blip and "sugar scoop" effect which is characteristic of thermal blooming. It was found that the thermal blooming causes the beam to steer many centimeters and to diverge beyond about 1.8 km than come to a focus at 4 km where the beam assumed to be focused on the required target. We assume that this target is moving at v = (4,-4) m/sec at distance 4 km and the wind is moving at v = (-10,-10) m/sec, it was found that the effect will be strongest when wind and target movement are at the same velocity. GLAD software is used to calculate the attenuation effects of the atmosphere as well as the phase perturbations due to temperature change in the air and effects caused as the beam crosses through the air due to wind and beam steering.

  14. Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens.

    PubMed

    Dios, Federico; Recolons, Jaume; Rodríguez, Alejandro; Batet, Oscar

    2008-02-04

    Temporal analysis of the irradiance at the detector plane is intended as the first step in the study of the mean fade time in a free optical communication system. In the present work this analysis has been performed for a Gaussian laser beam propagating in the atmospheric turbulence by means of computer simulation. To this end, we have adapted a previously known numerical method to the generation of long phase screens. The screens are displaced in a transverse direction as the wave is propagated, in order to simulate the wind effect. The amplitude of the temporal covariance and its power spectrum have been obtained at the optical axis, at the beam centroid and at a certain distance from these two points. Results have been worked out for weak, moderate and strong turbulence regimes and when possible they have been compared with theoretical models. These results show a significant contribution of beam wander to the temporal behaviour of the irradiance, even in the case of weak turbulence. We have also found that the spectral bandwidth of the covariance is hardly dependent on the Rytov variance.

  15. Turbulence-induced persistence in laser beam wandering.

    PubMed

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  16. Propagation in compressed matter of hot electrons created by short intense lasers

    NASA Astrophysics Data System (ADS)

    Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.

    1998-02-01

    We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.

  17. Intelligent correction of laser beam propagation through turbulent media using adaptive optics

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2014-10-01

    Adaptive optics methods have long been used by researchers in the astronomy field to retrieve correct images of celestial bodies. The approach is to use a deformable mirror combined with Shack-Hartmann sensors to correct the slightly distorted image when it propagates through the earth's atmospheric boundary layer, which can be viewed as adding relatively weak distortion in the last stage of propagation. However, the same strategy can't be easily applied to correct images propagating along a horizontal deep turbulence path. In fact, when turbulence levels becomes very strong (Cn 2>10-13 m-2/3), limited improvements have been made in correcting the heavily distorted images. We propose a method that reconstructs the light field that reaches the camera, which then provides information for controlling a deformable mirror. An intelligent algorithm is applied that provides significant improvement in correcting images. In our work, the light field reconstruction has been achieved with a newly designed modified plenoptic camera. As a result, by actively intervening with the coherent illumination beam, or by giving it various specific pre-distortions, a better (less turbulence affected) image can be obtained. This strategy can also be expanded to much more general applications such as correcting laser propagation through random media and can also help to improve designs in free space optical communication systems.

  18. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    PubMed

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  19. Femtosecond laser beam propagation through corneal tissue: Evaluation of therapeutic laser-stimulated second and third- harmonic generation

    NASA Astrophysics Data System (ADS)

    Calhoun, William R., III

    One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of

  20. Stochastic Models for Laser Propagation in Atmospheric Turbulence.

    NASA Astrophysics Data System (ADS)

    Leland, Robert Patton

    In this dissertation, stochastic models for laser propagation in atmospheric turbulence are considered. A review of the existing literature on laser propagation in the atmosphere and white noise theory is presented, with a view toward relating the white noise integral and Ito integral approaches. The laser beam intensity is considered as the solution to a random Schroedinger equation, or forward scattering equation. This model is formulated in a Hilbert space context as an abstract bilinear system with a multiplicative white noise input, as in the literature. The model is also modeled in the Banach space of Fresnel class functions to allow the plane wave case and the application of path integrals. Approximate solutions to the Schroedinger equation of the Trotter-Kato product form are shown to converge for each white noise sample path. The product forms are shown to be physical random variables, allowing an Ito integral representation. The corresponding Ito integrals are shown to converge in mean square, providing a white noise basis for the Stratonovich correction term associated with this equation. Product form solutions for Ornstein -Uhlenbeck process inputs were shown to converge in mean square as the input bandwidth was expanded. A digital simulation of laser propagation in strong turbulence was used to study properties of the beam. Empirical distributions for the irradiance function were estimated from simulated data, and the log-normal and Rice-Nakagami distributions predicted by the classical perturbation methods were seen to be inadequate. A gamma distribution fit the simulated irradiance distribution well in the vicinity of the boresight. Statistics of the beam were seen to converge rapidly as the bandwidth of an Ornstein-Uhlenbeck process was expanded to its white noise limit. Individual trajectories of the beam were presented to illustrate the distortion and bending of the beam due to turbulence. Feynman path integrals were used to calculate an

  1. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Real-time determination of laser beam quality by modal decomposition.

    PubMed

    Schmidt, Oliver A; Schulze, Christian; Flamm, Daniel; Brüning, Robert; Kaiser, Thomas; Schröter, Siegmund; Duparré, Michael

    2011-03-28

    We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.

  3. Lateral scattered light used to study laser light propagation in turbid media phantoms

    NASA Astrophysics Data System (ADS)

    Valdes, Claudia; Solarte, Efrain

    2010-02-01

    Laser light propagation in soft tissues is important because of the growing biomedical applications of lasers and the need to optically characterize the biological media. Following previous developments of the group, we have developed low cost models, Phantoms, of soft tissue. The process was developed in a clean room to avoid the medium contamination. Each model was characterized by measuring the refractive index, and spectral reflectance and transmittance. To study the laser light propagation, each model was illuminated with a clean beam of laser light, using sources such as He-Ne (632nm) and DPSSL (473 nm). Laterally scattered light was imaged and these images were digitally processed. We analyzed the intensity distribution of the scattered radiation in order to obtain details of the beam evolution in the medium. Line profiles taken from the intensity distribution surface allow measuring the beam spread, and to find expressions for the longitudinal (along the beam incident direction) and transversal (across the beam incident direction) intensities distributions. From these behaviors, the radiation penetration depth and the total coefficient of extinction have been determined. The multiple scattering effects were remarkable, especially for the low wavelength laser beam.

  4. Propagation characteristics of a focused laser beam in a strontium barium niobate photorefractive crystal under reverse external electric field.

    PubMed

    Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J

    2014-10-01

    The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.

  5. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  6. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    PubMed

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  7. Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Li, Xiangyin

    2010-01-01

    Normalized intensity distribution, the complex degree of coherence and power in the bucket for partially coherent controllable dark hollow beams (DHBs) with various symmetries propagating in atmospheric turbulence are derived using tensor method and investigated in detail. Analytical results show that, after sufficient propagation distance, partially coherent DHBs with various symmetries eventually become circular Gaussian beam (without dark hollow) in turbulent atmosphere, which is different from its propagation properties in free space. The partially coherent DHBs return to a circular Gaussian beam rapidly for stronger turbulence, higher coherence, lower beam order, smaller p or smaller beam waist width. Another interesting observation is that the profile of the complex degree of coherence attains a similar profile to that of the average intensity of the related beam propagating in a turbulent atmosphere. Besides the laser power focusablity of DHBs are better than that of Gaussian beam propagating in turbulent atmosphere.

  8. Analysis of the fluctuations of a laser beam due to thermal turbulence

    NASA Astrophysics Data System (ADS)

    Ndlovu, Sphumelele C.; Chetty, Naven

    2014-07-01

    A laser beam propagating in air and passing through a point diffraction interferometer (PDI) produces stable interferograms that can be used to extract wavefront data such as major atmospheric characteristics: turbulence strength, inner scale and outer scale of the refractive index. These parameters need to be taken into consideration when developing defense laser weapons since they can be affected by thermal fluctuations that are due to the changes in temperature in close proximity to the propagating beam and results in phase shifts that can be used to calculate the temperature which causes wavefront perturbations on a propagating beam.

  9. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    PubMed

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  10. Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere.

    PubMed

    Chu, Xiuxiang

    2007-12-24

    The propagation of a cosh-Gaussian beam through an arbitrary ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity at any receiver plane are obtained. As an elementary example, the average intensity and its radius at the image plane of a cosh-Gaussian beam through a thin lens are studied. To show the effects of a lens on the average intensity and the intensity radius of the laser beam in turbulent atmosphere, the properties of a collimated cosh-Gaussian beam and a focused cosh-Gaussian beam for direct propagation in turbulent atmosphere are studied and numerically calculated. The average intensity profiles of a cosh-Gaussian beam through a lens can have a shape similar to that of the initial beam for a longer propagation distance than that of a collimated cosh-Gaussian beam for direct propagation. With the increment in the propagation distance, the average intensity radius at the image plane of a cosh-Gaussian beam through a thin lens will be smaller than that at the focal plane of a focused cosh-Gaussian beam for direct propagation. Meanwhile, the intensity distributions at the image plane of a cosh-Gaussian beam through a lens with different w(0) and Omega(0) are also studied.

  11. Propagation of flat-topped multi-Gaussian beams through a double-lens system with apertures.

    PubMed

    Gao, Yanqi; Zhu, Baoqiang; Liu, Daizhong; Lin, Zunqi

    2009-07-20

    A general model for different apertures and flat-topped laser beams based on the multi-Gaussian function is developed. The general analytical expression for the propagation of a flat-topped beam through a general double-lens system with apertures is derived using the above model. Then, the propagation characteristics of the flat-topped beam through a spatial filter are investigated by using a simplified analytical expression. Based on the Fluence beam contrast and the Fill factor, the influences of a pinhole size on the propagation of the flat-topped multi-Gaussian beam (FMGB) through the spatial filter are illustrated. An analytical expression for the propagation of the FMGB through the spatial filter with a misaligned pinhole is presented, and the influences of the pinhole offset are evaluated.

  12. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  13. Gaussian content as a laser beam quality parameter.

    PubMed

    Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal

    2011-08-01

    We propose the Gaussian content (GC) as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is especially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode laser and a single-mode fiber are elaborated as application examples. The measurement of the GC and its conservation upon propagation are experimentally confirmed.

  14. Propagation of ultrashort laser pulses in optically ionized gases

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Luo, Y.; Suckewer, S.; Gordon, D. F.; Sprangle, P.

    2010-02-01

    Propagation of 800 nm, 120 fs laser pulses with intensities of 4×1016 W/cm2 in supersonic gas jets of N2 and H2 is studied using a shear-type interferometer. The plasma density distribution resulting from photoionization is resolved in space and time with simultaneously measured initial neutral density distribution. A distinct difference in laser beam propagation distance is observed when comparing propagation in jets of H2 and N2. This is interpreted in terms of ionization induced refraction, which is stronger when electrons are produced from states of higher ionization potential. Three dimensional particle-in-cell simulations, based on directly solving the Maxwell-Lorentz system of equations, show the roles played by the forward Raman and ionization scattering instabilities, which further affect the propagation distance.

  15. Suppression of small-scale self-focusing of high-power laser beams due to their self-filtration during propagation in free space

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. N.; Kochetkov, A. A.; Potemkin, A. K.; Khazanov, E. A.

    2018-04-01

    It has been experimentally confirmed that self-cleaning of a laser beam from spatial noise during propagation in free space makes it possible to suppress efficiently the self-focusing instability without applying spatial filters. Measurements of the instability increment by two independent methods have demonstrated quantitative agreement with theory and high efficiency of small-scale self-focusing suppression. This opens new possibilities for using optical elements operating in transmission (frequency doublers, phase plates, beam splitters, polarisers, etc.) in beams with intensities on the order of a few TW cm‑2.

  16. Laser Beam and Resonator Calculations on Desktop Computers.

    NASA Astrophysics Data System (ADS)

    Doumont, Jean-Luc

    There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to

  17. Influence of laser beam profiles on received power fluctuation

    NASA Astrophysics Data System (ADS)

    Dordova, Lucie; Diblik, Jan

    2011-09-01

    Gaussian beam is very often used for the transmission of information in optical wireless links. The usage of this optical beam has its advantages and, of course, disadvantages. This work focuses on possibilities of using laser beams with different distribution of optical intensity - Top Hat beam. Creation of the optical beam with selected optical intensity profile will be briefly described. Optical beams will propagate through the "clear" and stationary atmosphere in the experimental part of this work. These results will be compared with the data obtained after a laser beam is passed through the turbulent and attenuated atmosphere. We will use an ultrasound fog generator for laser beam attenuation testing. To create the turbulence, infra radiators will be applied. Particular results obtained from different atmospheric conditions will be compared and using different types of optical beams will be assessed.

  18. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  19. Smith-Purcell terahertz radiation from laser modulated electron beam over a metallic grating

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Bhasin, Lalita; Tripathi, V. K.; Kumar, Ashok; Kumar, Manoj

    2016-09-01

    We propose a novel scheme of terahertz (THz) radiation generation from the beat frequency modulation of an electron beam by two co-propagating lasers and the generation of terahertz radiation by the modulated beam passing over a periodic metallic grating. The lasers cause velocity modulation of the beam by exerting a longitudinal ponderomotive force on it. In the drift space between the modulator and metallic grating, the velocity modulation translates into density and current modulation. The modulated beam, propagating over the grating of specific wave number, induces space periodic image current in the conductor that emits beat frequency Smith-Purcell radiation. With 1 μm, 4 × 1016 W/cm2 lasers, beam current modulation of the order of 50% can be achieved at optimum lengths of the modulator and drift space. Employing 10 mA, 0.5 MeV short-period electron beam, propagating at a height of 50 μ m above the grating of period 150 μm, one may obtain THz radiated power of the order of 6 mW at 10 THz.

  20. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.

    2016-05-06

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  1. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  2. Propagation of laser beams in scattering media.

    PubMed

    Zuev, V E; Kabanov, M V; Savelev, B A

    1969-01-01

    Experimental investigations have been undertaken of some aspects of the propagation of helium-neon gas laser radiation at lambda = 0.63 micro for different scattering media (artificial water fogs, wood smokes, model media). It has been shown that the attenuation coefficients practically coincide when coherent and incoherent radiation is scattered. The applicability limits of Bouguer-Beer's law for describing the attenuation of radiation in scattering media are investigated and the intensity of multiple forward-scattered light for different geometrical parameters of the source and radiation receiver are measured. The applicability of single scattering theory formulas for describing forward-scattered light intensity are discussed.

  3. A finite element beam propagation method for simulation of liquid crystal devices.

    PubMed

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  4. Appropriate Measures and Consistent Standard for High Energy Laser Beam Quality (Postprint)

    DTIC Science & Technology

    2006-08-01

    another. a We follow the 99% criteria [ Siegman , Lasers , chapter 17.1] which corresponds to a... Siegman , “ Lasers ” University Science Books, 1986. • A.E. Siegman , “New developments in laser resonators”, SPIE Vol. 1224, Optical Resonators, 1990...pp. 1-14. • Anthony E. Siegman & Steven W. Townsend, “Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser ”, IEEE Journal

  5. Intense laser pulse propagation in ionizing gases

    NASA Astrophysics Data System (ADS)

    Bian, Zhigang

    2003-10-01

    There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The

  6. Airyprime beams and their propagation characteristics

    NASA Astrophysics Data System (ADS)

    Zhou, Guoquan; Chen, Ruipin; Ru, Guoyun

    2014-02-01

    A type of Airyprime beam is introduced in this document. An analytical expression of Airyprime beams passing through a separable ABCD paraxial optical system is derived. The beam propagation factor of the Airyprime beam is proved to be 3.676. An analytical expression of the kurtosis parameter of an Airyprime beam passing through a separable ABCD paraxial optical system is also presented. The kurtosis parameter of the Airyprime beam passing through a separable ABCD paraxial optical system depends on the two ratios B/(Azrx) and B/(Azry). As a numerical example, the propagation characteristics of an Airyprime beam is demonstrated in free space. In the source plane, the Airyprime beam has nine lobes, one of which is the central dominant lobe. In the far field, the Airyprime beam becomes a dark-hollow beam with four uniform lobes. The evolvement of an Airyprime beam propagating in free space is well exhibited. Upon propagation, the intensity distribution of the Airyprime beam becomes flatter and the kurtosis parameter decreases from the maximum value 2.973 to a saturated value 1.302. The Airyprime beam is also compared with the second-order elegant Hermite-Gaussian beam. The novel propagation characteristics of Airyprime beams denote that they could have potential application prospects such as optical trapping.

  7. Beam wavefront and farfield control for ICF laser driver

    NASA Astrophysics Data System (ADS)

    Dai, Wanjun; Deng, Wu; Zhang, Xin; Jiang, Xuejun; Zhang, Kun; Zhou, Wei; Zhao, Junpu; Hu, Dongxia

    2010-10-01

    Five main problems of beam wavefront and farfield control in ICF laser driver are synthetically discussed, including control requirements, beam propagation principle, distortions source control, system design and adjustment optimization, active wavefront correction technology. We demonstrate that beam can be propagated well and the divergence angle of the TIL pulses can be improved to less than 60μrad with solving these problems, which meets the requirements of TIL. The results can provide theoretical and experimental support for wavefront and farfield control designing requirements of the next large scale ICF driver.

  8. Influence of each Zernike aberration on the propagation of laser beams through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Azarian, Adrian; Gladysz, Szymon

    2014-10-01

    We study the influence of each Zernike mode on the propagation of a laser beam through the atmosphere by two different numerical methods. In the first method, an idealized adaptive optics system is modeled to subtract a certain number of Zernike modes from the beam. The effect of each aberration is quantified using the Strehl ratio of the longterm exposure in target/receiver plane. In the second method, the strength of each Zernike mode is varied using a numerical space-filling design during the generation of the phase screens. The resulting central intensity for each point of the design is then studied by a linear discriminant analysis, which yields to the importance of each Zernike mode. The results of the two methods are consistent. They indicate that, for a focused Gaussian beam and for certain geometries and turbulence strengths, the hypothesis of diminishing gains with correction of each new mode is not true. For such cases, we observe jumps in the calculated criteria, which indicate an increased importance of some particular modes, especially coma. The implications of these results for the design of adaptive optics systems are discussed.

  9. Development of a safe ground to space laser propagation system for the optical communications telescope laboratory

    NASA Technical Reports Server (NTRS)

    Wu, Janet P.

    2003-01-01

    Furthering pursuits in high bandwidth communications to future NASA deep space and neat-Earth probes, the Jet Propulsion Laboratory (JPL) is building the Optical communications Telescope Laboratory (OCTL) atop Table Mountain in Southern California. This R&D optical antenna will be used to develop optical communication strategies for future optical ground stations. Initial experiments to be conducted include propagating high-powered, Q-switched laser beams to retro-reflecting satellites. Yet laser beam propagation from the ground to space is under the cognizance of various government agencies, namely: the Occupational Safety and Health Administration (ISHA) that is responsible for protecting workforce personnel; the Federal Aviation Administration (FAA) responsible for protecting pilots and aircraft; and the Laser Clearinghouse of Space Command responsible for protecting space assets. To ensure that laser beam propagation from the OCTL and future autonomously operated ground stations comply with the guidelines of these organizations, JPL is developing a multi-tiered safety system that will meet the coordination, monitoring, and reporting functions required by the agencies. At Tier 0, laser operators will meet OSHA safety standards for protection and access to the high power lasers area will be restricted and interlocked. Tier 1, the area defined from the telescope dome out to a range of 3.4-km, will utilize long wave infrared camera sensors to alert operators of at risk aircraft in the FAA controlled airspace. Tier 2, defined to extend from 3.4-km out to the aircraft service ceiling in FAA airspace, will detect at risk aircraft by radar. Lastly, beam propagation into space, defined as Tier 3, will require coordination with the Laser Clearinghouse. A detailed description of the four tiers is presented along with the design of the integrated monitoring and beam transmission control system.

  10. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  11. A nonlinear OPC technique for laser beam control in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Markov, V.; Khizhnyak, A.; Sprangle, P.; Ting, A.; DeSandre, L.; Hafizi, B.

    2013-05-01

    A viable beam control technique is critical for effective laser beam transmission through turbulent atmosphere. Most of the established approaches require information on the impact of perturbations on wavefront propagated waves. Such information can be acquired by measuring the characteristics of the target-scattered light arriving from a small, preferably diffraction-limited, beacon. This paper discusses an innovative beam control approach that can support formation of a tight laser beacon in deep turbulence conditions. The technique employs Brillouin enhanced fourwave mixing (BEFWM) to generate a localized beacon spot on a remote image-resolved target. Formation of the tight beacon doesn't require a wavefront sensor, AO system, or predictive feedback algorithm. Unlike conventional adaptive optics methods which allow wavefront conjugation, the proposed total field conjugation technique is critical for beam control in the presence of strong turbulence and can be achieved by using this non-linear BEFWM technique. The phase information retrieved from the established beacon beam can then be used in conjunction with an AO system to propagate laser beams in deep turbulence.

  12. Research on propagation properties of controllable hollow flat-topped beams in turbulent atmosphere based on ABCD matrix

    NASA Astrophysics Data System (ADS)

    Liu, Huilong; Lü, Yanfei; Zhang, Jing; Xia, Jing; Pu, Xiaoyun; Dong, Yuan; Li, Shutao; Fu, Xihong; Zhang, Angfeng; Wang, Changjia; Tan, Yong; Zhang, Xihe

    2015-01-01

    This paper studies the propagation properties of controllable hollow flat-topped beams (CHFBs) in turbulent atmosphere based on ABCD matrix, sets up a propagation model and obtains an analytical expression for the propagation. With the help of numerical simulation, the propagation properties of CHFBs in different parameters are studied. Results indicate that in turbulent atmosphere, with the increase of propagation distance, the darkness of CHFBs gradually annihilate, and eventually evolve into Gaussian beams. Compared with the propagation properties in free space, the turbulent atmosphere enhances the diffraction effect of CHFBs and reduces the propagation distance for CHFBs to evolve into Gaussian beams. In strong turbulence atmospheric propagation, Airy disk phenomenon will disappear. The study on the propagation properties of CHFBs in turbulence atmosphere by using ABCD matrix is simple and convenient. This method can also be applied to study the propagation properties of other hollow laser beams in turbulent atmosphere.

  13. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements

    NASA Astrophysics Data System (ADS)

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  14. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements.

    PubMed

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  15. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  16. Aerodynamic distortion propagation calculation in application of high-speed target detection by laser

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Sun, Huayan; Zhao, Yanzhong; Chen, Jianbiao

    2015-10-01

    Active laser detection technique has a broad application prospect in antimissile and air defense, however the aerodynamic flow field around the planes and missiles cause serious distortion effect on the detecting laser beams. There are many computational fluid dynamics(CFD) codes that can predict the air density distribution and also the density fluctuations of the flow field, it's necessary for physical optics to be used to predict the distortion properties after propagation through the complex process. Aiming at the physical process of laser propagation in "Cat-eye" lenses and aerodynamic flow field for twice, distortion propagation calculation method is researched in this paper. In the minds of dividing the whole process into two parts, and tread the aero-optical optical path difference as a phase distortion, the incidence and reflection process are calculated using Collins formula and angular spectrum diffraction theory respectively. In addition, turbulent performance of the aerodynamic flow field is estimated according to the electromagnetic propagation theory through a random medium, the rms optical path difference and Strehl ratio of the turbulent optical distortion are obtained. Finally, Computational fluid mechanics and aero-optical distortion properties of the detecting laser beams are calculated with the hemisphere-on-cylinder turret as an example, calculation results are showed and analysed.

  17. Coupling efficiency of laser beam to multimode fiber

    NASA Astrophysics Data System (ADS)

    Niu, Jinfu; Xu, Jianqiu

    2007-06-01

    The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M2 is analyzed. An equivalent factor MF2 for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M2/MF2 by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M2 to MF2 but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M2.

  18. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  19. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Golmohammady, Shole; Mashal, Ahmad; Kashani, Fatemeh Dabbagh

    2015-11-01

    In this paper, on the basis of the extended Huygens-Fresnel principle, a semianalytical expression for describing on-axis scintillation index of a partially coherent flat-topped (PCFT) laser beam of weak to moderate oceanic turbulence is derived; consequently, by using the log-normal intensity probability density function, the bit error rate (BER) is evaluated. The effects of source factors (such as wavelength, order of flatness, and beam width) and turbulent ocean parameters (such as Kolmogorov microscale, relative strengths of temperature and salinity fluctuations, rate of dissipation of the mean squared temperature, and rate of dissipation of the turbulent kinetic energy per unit mass of fluid) on propagation behavior of scintillation index, and, hence, on BER, are studied in detail. Results indicate that, in comparison with a Gaussian beam, a PCFT laser beam with a higher order of flatness is found to have lower scintillations. In addition, the scintillation index and BER are most affected when salinity fluctuations in the ocean dominate temperature fluctuations.

  20. Multimode laser beam analyzer instrument using electrically programmable optics.

    PubMed

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  1. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    NASA Astrophysics Data System (ADS)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  2. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  3. Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.

    2018-05-01

    In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.

  4. Engineering equations for characterizing non-linear laser intensity propagation in air with loss.

    PubMed

    Karr, Thomas; Stotts, Larry B; Tellez, Jason A; Schmidt, Jason D; Mansell, Justin D

    2018-02-19

    The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.

  5. Research of beam conditioning technologies on SG-III laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Su, Jingqin; Yuan, Haoyu; Li, Ping; Tian, Xiaocheng; Wang, Jianjun; Dong, Jun; Zhang, Ying; Yuan, Qiang; Wang, Yuancheng; Zhou, Wei; Peng, Zhitao; Wang, Fang; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo; Zhang, Xiaomin

    2014-12-01

    Multi-FM SSD and CPP was experimentally studied in high fluence and will be equipped on all the beams of SG-III laser facility. The output spectrum of the cascade phase modulators are stable and the residual amplitude modulation is small. FM-to-AM effect caused by free-space propagation after using smoothing by spectral dispersion is theoretically analyzed. Results indicate inserting a dispersion grating in places with larger beam aperture could alleviate the FM-to- AM effect, suggesting minimizing free-space propagation and adopting image relay. Experiments taken on SG-III laser facility indicate when the number of color cycles (Nc) adopts 1, imposing of SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spot using Multi-FM SSD and CPP drops to 0.26, comparing to 0.84 only using CPP. The experiments solve some key technical problems using SSD and CPP on SG-III laser facility, and provide a flexible platform for laser-plasma interaction experiments. Combined beam smoothing and polarization smoothing are also analyzed. Simulation results indicate through adjusting dispersion directions of one-dimensional SSD beams in a quad, two-dimensional SSD could be obtained. The near field and far field properties of beams using polarization smoothing were also studied, including birefringent wedge and polarization control plate (PCP). By using PCP, cylindrical vector beams could be obtained. New solutions will be provided to solve the LPI problem encountered in indirect drive laser fusion.

  6. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schollmeier, M.; Harres, K.; Nuernberg, F.

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained duringmore » the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.« less

  7. Laser-induced propagation and destruction of amyloid beta fibrils.

    PubMed

    Yagi, Hisashi; Ozawa, Daisaku; Sakurai, Kazumasa; Kawakami, Toru; Kuyama, Hiroki; Nishimura, Osamu; Shimanouchi, Toshinori; Kuboi, Ryoichi; Naiki, Hironobu; Goto, Yuji

    2010-06-18

    The amyloid deposition of amyloid beta (Abeta) peptides is a critical pathological event in Alzheimer disease (AD). Preventing the formation of amyloid deposits and removing preformed fibrils in tissues are important therapeutic strategies against AD. Previously, we reported the destruction of amyloid fibrils of beta(2)-microglobulin K3 fragments by laser irradiation coupled with the binding of amyloid-specific thioflavin T. Here, we studied the effects of a laser beam on Abeta fibrils. As was the case for K3 fibrils, extensive irradiation destroyed the preformed Abeta fibrils. However, irradiation during spontaneous fibril formation resulted in only the partial destruction of growing fibrils and a subsequent explosive propagation of fibrils. The explosive propagation was caused by an increase in the number of active ends due to breakage. The results not only reveal a case of fragmentation-induced propagation of fibrils but also provide insights into therapeutic strategies for AD.

  8. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  9. The effects of induced heat loads on the propagation of Ince-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Nadgaran, H.; Servatkhah, M.

    2011-10-01

    Thermal effects are very much influential in high power beam generators. Their impacts on special types of beams such as Helmholtz-Gauss beams have attracted special attentions. This work reports thermal effects on the generation and propagation of Ince-Gaussian beams. The results show considerable beam spot size variations for near fields under various induced heat loads. As Ince-Gaussian beams are directly related to cavity symmetry breaking, the results can greatly help system designers for circumventing these types of symmetry breaks usually encountered in high power lasers.

  10. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2012-01-17

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  11. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com; Singh, Navpreet, E-mail: navpreet.nit@gmail.com

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on amore » numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.« less

  12. Generation of a dark hollow beam by a nonlinear ZnSe crystal and its propagation properties in free space: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Du, Xiangli; Yin, Yaling; Zheng, Gongjue; Guo, Chaoxiu; Sun, Yu; Zhou, Zhongneng; Bai, Shunjie; Wang, Hailing; Xia, Yong; Yin, Jianping

    2014-07-01

    A new nonlinear optical method to generate a dark hollow beam (DHB) with a dielectric ZnSe crystal is proposed. From Huygens-Fresnel diffraction theory, we calculate the intensity distributions of the DHB and its propagating properties in free space, and study the dependences of the optimal propagation position and the dark-spot size (DSS) of the hollow beam on the waist radius of the incident Gaussian laser beam. Our study shows that the intensity distribution of the DHB presents symmetrical distribution with increasing the propagation distance, the optimal distance zopt becomes farther and the DSS becomes larger with the increase of the waist radius w of the incident Gaussian laser beam. This generated DHB will have applications in the optical guiding and trapping of macroscopic objects, atoms or molecules.

  13. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  14. Multifractality of laser beam spatial intensity in a turbulent medium

    NASA Astrophysics Data System (ADS)

    Barille, Régis; Lapenna, Paolo

    2006-05-01

    We present the results of a laser beam passing through a turbulent medium. First we measure the geometric parameters and the spatial coherence of the beam as a function of wind velocities. A multifractal detrended fluctuation analysis algorithm is applied to determine the multifractal scaling behavior of the intensity patterns. The measurements are fitted with models used in the analysis of river runoff records. We show the surprising result that the multifractality decreases when the spatial coherence of the laser is decreased. Universal scaling properties could be applied to the spatial characterization of a laser propagating in a turbulent medium or random medium.

  15. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    PubMed

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  16. Application of Gaussian beam ray-equivalent model and back-propagation artificial neural network in laser diode fast axis collimator assembly.

    PubMed

    Yu, Hao; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido

    2016-08-10

    The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported.

  17. Analysis of beam propagation characteristics in gain-guided, index antiguided fibers with the beam propagation method.

    PubMed

    Ai, Fei; Qian, Jianqiang; Shi, Junfeng; Zhang, Machi

    2017-10-10

    The transmission properties of beams in gain fibers are studied with the complex refractive index beam propagation method (CRI-BPM). The method is checked by comparison with an analytic method. The behavior of a gain-guided, index antiguided (GG-IAG) fiber with different gain coefficients is studied. The simulation results show that the signal can transfer in the fiber with almost no loss when the gain coefficient reaches the threshold of the fundamental mode, and the shape of output spot will have no major changes when the gain coefficient is over the thresholds of high-order modes, even when the mode competition is not obvious. The CRI-BPM can predict the changes in light power and light mode at the same time, and will be very useful in the designing of fiber amplifiers and lasers with complex structures. More factors will be considered in this method to provide reference for practical application in our further research.

  18. 2.1 μm high-power laser diode beam combining(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel

    2016-10-01

    Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation

  19. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  20. High-power beam combining: a step to a future laser weapon system

    NASA Astrophysics Data System (ADS)

    Protz, Rudolf; Zoz, Jürgen; Geidek, Franz; Dietrich, Stephan; Fall, Michael

    2012-11-01

    Due to the enormous progress in the field of high-power fiber lasers during the last years commercial industrial fiber lasers are now available, which deliver a near-diffraction limited beam with power levels up to10kW. For the realization of a future laser weapon system, which can be used for Counter-RAM or similar air defence applications, a laser source with a beam power at the level of 100kW or more is required. At MBDA Germany the concept for a high-energy laser weapon system is investigated, which is based on such existing industrial laser sources as mentioned before. A number of individual high-power fiber laser beams are combined together, using one common beam director telescope. By this "geometric" beam coupling scheme, sufficient laser beam power for an operational laser weapon system can be achieved. The individual beams from the different lasers are steered by servo-loops, using fast tip-tilt mirrors. This principle enables the concentration of the total laser beam power at the common focal point on a distant target, also allowing fine tracking of target movements and first order compensation of turbulence effects on laser beam propagation. The proposed beam combination concept was demonstrated using several experimental set-ups. Different experiments were performed, to investigate laser beam target interaction and target fine tracking also at large distances. Content and results of these investigations are reported. An example for the lay-out of an Air Defence High Energy Laser Weapon (ADHELW ) is given. It can be concluded, that geometric high-power beam combining is an important step for the realization of a laser weapon system in the near future.

  1. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less

  2. Hollow Gaussian Schell-model beam and its propagation

    NASA Astrophysics Data System (ADS)

    Wang, Li-Gang; Wang, Li-Qin

    2008-03-01

    In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.

  3. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  4. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence.

    PubMed

    Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G; Rosso, Osvaldo A

    2017-10-01

    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H=5/6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.

  5. Modeling the ponderomotive interaction of high-power laser beams with collisional plasma: the FDTD-based approach.

    PubMed

    Lin, Zhili; Chen, Xudong; Ding, Panfeng; Qiu, Weibin; Pu, Jixiong

    2017-04-03

    The ponderomotive interaction of high-power laser beams with collisional plasma is modeled in the nonrelativistic regime and is simulated using the powerful finite-difference time-domain (FDTD) method for the first time in literature. The nonlinear and dissipative dielectric constant function of the collisional plasma is deduced that takes the ponderomotive effect into account and is implemented in the discrete framework of FDTD algorithms. Maclaurin series expansion approach is applied for implementing the obtained physical model and the time average of the square of light field is extracted by numerically evaluating an integral identity based on the composite trapezoidal rule for numerical integration. Two numerical examples corresponding to two different types of laser beams, Gaussian beam and vortex Laguerre-Gaussian beam, propagating in collisional plasma, are presented for specified laser and plasma parameters to verify the validity of the proposed FDTD-based approach. Simulation results show the anticipated self-focusing and attenuation phenomena of laser beams and the deformation of the spatial density distributions of electron plasma along the beam propagation path. Due to the flexibility of FDTD method in light beam excitation and accurate complex material modeling, the proposed approach has a wide application prospect in the study of the complex laser-plasma interactions in a small scale.

  6. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  7. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  8. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosik, V. L., E-mail: v-nosik@yandex.ru, E-mail: nosik@ns.crys.ras.ru

    2016-05-15

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of “hollow” atomic shells as a result of the photoelectric effect.

  9. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  10. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  11. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com; Niknam, A. R.

    2016-07-15

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. Itmore » is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).« less

  12. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  13. Generation of vortex array laser beams with Dove prism embedded unbalanced Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Chun

    2009-02-01

    This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.

  14. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadwick, Bradley A.; Kalmykov, S. Y.

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of themore » pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm

  15. Spatial Control of Laser Wakefield Accelerated Electron Beams

    NASA Astrophysics Data System (ADS)

    Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.

    2017-10-01

    The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.

  16. Simulation of alternate hohlraum shapes for improved inner beam propagation in indirectly-driven ICF implosions

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L. F.

    2017-10-01

    Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  17. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  18. Electron beam magnetic switch for a plurality of free electron lasers

    DOEpatents

    Schlitt, Leland G.

    1984-01-01

    Apparatus for forming and utilizing a sequence of electron beam segments, each of the same temporal length (substantially 15 nsec), with consecutive beams being separated by a constant time interval of the order of 3 nsec. The beam sequence is used for simultaneous inputs to a plurality of wiggler magnet systems that also accept the laser beams to be amplified by interaction with the co-propagating electron beams. The electron beams are arranged substantially in a circle to allow proper distribution of and simultaneous switching out of the beam segments to their respective wiggler magnets.

  19. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  20. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  1. Laser beam monitoring system

    DOEpatents

    Weil, B.S.; Wetherington, G.R. Jr.

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  2. Coherence of beam arrays propagating in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2010-04-01

    We analyze some recent publications addressing propagation of the partially coherent polarized beams and beam arrays in the turbulent atmosphere. We show that the published results are limited to the scalar propagation model, and are not particular to the beam polarization. Therefore these results are equally relevant for the scalar beam pairs and arrays discriminated by some parameters such as small frequency shift, time delay or geometry, but not necessary the polarization. We use the virtual incoherent source model to derive the general form of the mutual coherence function of the two Schell-type beams. We discuss some physical stochastic models that result in the creation of the Schell-type beams and beam arrays. New classes of the uniformly, nonuniformly and nonlocally coherent beam pairs emerge naturally from this analysis. Rigorous, Markov approximation-based, propagation model provides relatively simple analytic results for the second-order moments of the optical field of the partially-coherent individual beams and beam pairs. We examine the changes of the beam mutual coherence in the process of the free-space propagation and propagation through the turbulent atmosphere.

  3. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  4. Beam-Riding Analysis of a Parabolic Laser-thermal Thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter

    2011-11-10

    Flight experiments with laser-propelled vehicles (lightcrafts) are often performed by wire-guidance or with spin-stabilization. Nevertheless, the specific geometry of the lightcraft's optics and nozzle may provide for inherent beam-riding properties. These features are experimentally investigated in a hovering experiment at a small free flight test range with an electron-beam sustained pulsed CO{sub 2} high energy laser. Laser bursts are adapted with a real-time control to lightcraft mass and impulse coupling for ascent and hovering in a quasi equilibrium of forces. The flight dynamics is analyzed with respect to the impulse coupling field vs. attitude, given by the lightcraft's offset andmore » its inclination angle against the beam propagation axis, which are derived from the 3D-reconstruction of the flight trajectory from highspeed recordings. The limitations of the experimental parameters' reproducibility and its impact on flight stability are explored in terms of Julia sets. Solution statements for dynamic stabilization loops are presented and discussed.« less

  5. Progress understanding how hohlraum foam-liners can be used to improve laser beam propagation through hohlraum plasmas

    NASA Astrophysics Data System (ADS)

    Moore, Alastair; Meezan, N.; Thomas, C.; Baker, K.; Baumann, T.; Biener, M.; Bhandarkar, S.; Goyon, C.; Hsing, W.; Izumi, N.; Landen, O.; Nikroo, A.; Rosen, M.; Moody, J.

    2017-10-01

    The expansion of a laser-heated hohlraum wall can quickly fill the cavity and reduce or prevent propagation of other laser beams into the hohlraum. To delay such plasma filling, ignition hohlraums have typically used a high-density gas-fill or have been irradiated with a short (< 10 ns) laser pulse; the former can cause laser plasma instabilities (LPI), while a short laser pulse limits the design space required to reach symmetric implosions. Foam-liners are predicted to mitigate wall motion in a low gas-fill hohlraum, and so would enable the hohlraum to usefully drive a capsule over a longer duration. On the National Ignition Facility we have been engaged in two types of experiments to study foam-lined hohlraums. The first aims to radiograph the expansion of a foam-lined Au wall in a cylindrical geometry and, using simulation, infer the location of the 1/4 ncrit surface. We observe that a 20 mg/cc Ta2O5 foam, 200 μm thick delays the expansion of Au hohlraum wall by 0.5 - 0.7 ns. The second type introduces a Ta2O5 foam-liner into a hohlraum and are designed to measure the effect of the foam-liner on capsule drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Solitonic characteristics of Airy beam nonlinear propagation

    NASA Astrophysics Data System (ADS)

    Bouchet, Thomas; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2018-05-01

    We analyze the nonlinear propagation of a one-dimensional Airy beam. Under nonlinear focusing conditions, the Airy beam splits into a weak accelerating structure and a beam that has been named an "off-shooting soliton." Experimental measurements and numerical results related to the off-shooting Airy beam are compared to soliton theoretical profiles and a good agreement is found in terms of transverse shape, width, and amplitude. We identify the different parameters to generate an Airy beam off-shooting soliton and demonstrate that its profile is also preserved through propagation over long distances.

  7. Laser beam propagation in nematic liquid crystals at the temperature close to the nematicisotropic critical point.

    PubMed

    Chen, Yu-Jen; Lin, Yu-Sung; Jiang, I-Min; Tsai, Ming-Shan

    2008-03-17

    This study investigates the optical nonlinearity of beam propagation in homogeneously aligned nematic liquid crystal (NLC) cells at a temperature close to the nematic-isotropic temperature (TNI). The undulate propagation mode with convergent and divergent loops appearing alternately is reported and the thermally enhanced optical reorientation nonlinearity at the focus is described. The optically induced phase transition exists along the pump beam direction. With the application of the conscopic technique, the arrangements of LC at the focus are proposed in this study. Results of this study demonstrate that the evolution of the LC configuration was affected by the pump beam based on the analysis of conoscopic patterns.

  8. Propagation of intense short laser pulses in the atmosphere.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B

    2002-10-01

    The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.

  9. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    PubMed

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  10. Multi-GeV electron-positron beam generation from laser-electron scattering.

    PubMed

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  11. FAST TRACK COMMUNICATION: Stable propagation of a modulated positron beam in a bent crystal channel

    NASA Astrophysics Data System (ADS)

    Kostyuk, A.; Korol, A. V.; Solov'yov, A. V.; Greiner, W.

    2010-08-01

    The propagation of a modulated positron beam in a planar crystal channel is investigated. It is demonstrated that the beam preserves its modulation at sufficiently large penetration depths, which opens the prospect of using a crystalline undulator as a coherent source of hard x-rays. This finding is a crucial milestone in developing a new type of laser radiating in the hard x-ray and gamma-ray range.

  12. Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence.

    PubMed

    Yousefi, Masoud; Kashani, Fatemeh Dabbagh; Golmohammady, Shole; Mashal, Ahmad

    2017-12-01

    In this paper, the performance of underwater wireless optical communication (UWOC) links, which is made up of the partially coherent flat-topped (PCFT) array laser beam, has been investigated in detail. Providing high power, array laser beams are employed to increase the range of UWOC links. For characterization of the effects of oceanic turbulence on the propagation behavior of the considered beam, using the extended Huygens-Fresnel principle, an analytical expression for cross-spectral density matrix elements and a semi-analytical one for fourth-order statistical moment have been derived. Then, based on these expressions, the on-axis scintillation index of the mentioned beam propagating through weak oceanic turbulence has been calculated. Furthermore, in order to quantify the performance of the UWOC link, the average bit error rate (BER) has also been evaluated. The effects of some source factors and turbulent ocean parameters on the propagation behavior of the scintillation index and the BER have been studied in detail. The results of this investigation indicate that in comparison with the Gaussian array beam, when the source size of beamlets is larger than the first Fresnel zone, the PCFT array laser beam with the higher flatness order is found to have a lower scintillation index and hence lower BER. Specifically, in the sense of scintillation index reduction, using the PCFT array laser beams has a considerable benefit in comparison with the single PCFT or Gaussian laser beams and also Gaussian array beams. All the simulation results of this paper have been shown by graphs and they have been analyzed in detail.

  13. Atmospheric Propagation of High Energy Lasers and Applications

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2005-04-01

    It has been over forty years since the invention of the laser, which has inspired the imagination of scientists and science fiction writers alike. Many ideas have been realized, still many remain as dreams, and new ones are still being conceived. The High Energy Laser (HEL) has been associated with weapon applications during the past three decades. Much of the same technology can be directly applied to power beaming, laser propulsion, and other potential remote energy and power transfer applications. Economically, these application areas are becoming increasingly more viable. This paper reviews the evolutionary history of the HEL device technologies. It points out the basic system components and layouts with associated key technologies that drive the effectiveness and efficiency of the system level performance. It describes the fundamental properties and wavelength dependencies of atmospheric propagation that in turn have become the prescription for wavelength properties that are desired from the device.

  14. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  15. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Hao, Z.; Martin, M.C.

    2004-07-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less

  16. Propagation properties of cylindrical sinc Gaussian beam

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.; Bayraktar, Mert

    2016-09-01

    We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.

  17. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  18. NONLINEAR AND FIBER OPTICS: Transmission of submillimeter laser beams along hollow-core dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Epishin, V. A.; Maslov, Vyacheslav A.; Ryabykh, V. N.; Svich, V. A.; Topkov, A. N.

    1990-04-01

    Theoretical and experimental investigations are reported of the propagation of axisymmetric linearly polarized laser radiation beams along hollow-core dielectric waveguides. The conditions for transmission with minimum distortion of the complex amplitude and minimum excitation losses are established for beams in the form of Gaussian-Laguerre modes. A scaling relationship is obtained for the attenuation constant of the EH11 mode in glass waveguides acting as transmission lines and for laser cells handling submillimeter wavelengths.

  19. Quantification of optical turbulence in the ocean and its effects on beam propagation.

    PubMed

    Nootz, Gero; Jarosz, Ewa; Dalgleish, Fraser R; Hou, Weilin

    2016-11-01

    The influence of optically active turbulence on the propagation of laser beams is investigated in clear ocean water over a path length of 8.75 m. The measurement apparatus is described and the effects of optical turbulence on the laser beam are presented. The index of refraction structure constant is extracted from the beam deflection and the results are compared to independently made measures of the turbulence strength (Cn2) by a vertical microstructure profiler. Here we present values of Cn2 taken from aboard the R/V Walton Smith during the Bahamas optical turbulence exercise (BOTEX) in the Tongue of the Ocean between June 30 and July 12, 2011, spanning a range from 10-14 to 10-10  m-2/3. To the best of our knowledge, this is the first time such measurements are reported for the ocean.

  20. Laser beam self-focusing in turbulent dissipative media.

    PubMed

    Hafizi, B; Peñano, J R; Palastro, J P; Fischer, R P; DiComo, G

    2017-01-15

    A high-power laser beam propagating through a dielectric in the presence of fluctuations is subject to diffraction, dissipation, and optical Kerr nonlinearity. A method of moments was applied to a stochastic, nonlinear enveloped wave equation to analyze the evolution of the long-term spot radius. For propagation in atmospheric turbulence described by a Kolmogorov-von Kármán spectral density, the analysis was benchmarked against field experiments in the low-power limit and compared with simulation results in the high-power regime. Dissipation reduced the effect of self-focusing and led to chromatic aberration.

  1. Propagation of an Airy beam through the atmosphere.

    PubMed

    Ji, Xiaoling; Eyyuboğlu, Halil T; Ji, Guangming; Jia, Xinhong

    2013-01-28

    In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.

  2. External-cavity beam combining of 4-channel quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Zhang, Jin-Chuan; Zhou, Yu-Hong; Jia, Zhi-Wei; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2017-09-01

    We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.

  3. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    NASA Astrophysics Data System (ADS)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  4. Hypergeometric Gaussian beam and its propagation in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer; Cai, Yangjian

    2012-10-01

    We study propagation characteristics of hypergeometric Gaussian beam in turbulence. In this context, we formulate the receiver plane intensity using extended Huygens-Fresnel integral. From the graphical results, it is seen that, after propagation, hypergeometric Gaussian will in general assume the shape of a dark hollow beam at topological charges other than zero. Increasing values of topological charge will make the beam broader with steeper walls. On the other hand, higher values of hollowness parameter will contract into a narrower shape. Raising the topological charge or the hollowness parameter individually will cause outer rings to appear. Both increased levels of turbulence and longer propagation distances will accelerate the beam evolution and help reach the final Gaussian shape sooner. At lower wavelengths, there will be less beam spreading.

  5. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  6. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    PubMed Central

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  7. Accurately modeling Gaussian beam propagation in the context of Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Hokr, Brett H.; Winblad, Aidan; Bixler, Joel N.; Elpers, Gabriel; Zollars, Byron; Scully, Marlan O.; Yakovlev, Vladislav V.; Thomas, Robert J.

    2016-03-01

    Monte Carlo simulations are widely considered to be the gold standard for studying the propagation of light in turbid media. However, traditional Monte Carlo methods fail to account for diffraction because they treat light as a particle. This results in converging beams focusing to a point instead of a diffraction limited spot, greatly effecting the accuracy of Monte Carlo simulations near the focal plane. Here, we present a technique capable of simulating a focusing beam in accordance to the rules of Gaussian optics, resulting in a diffraction limited focal spot. This technique can be easily implemented into any traditional Monte Carlo simulation allowing existing models to be converted to include accurate focusing geometries with minimal effort. We will present results for a focusing beam in a layered tissue model, demonstrating that for different scenarios the region of highest intensity, thus the greatest heating, can change from the surface to the focus. The ability to simulate accurate focusing geometries will greatly enhance the usefulness of Monte Carlo for countless applications, including studying laser tissue interactions in medical applications and light propagation through turbid media.

  8. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-20

    Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.

  9. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    NASA Astrophysics Data System (ADS)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  10. Backscatter spectra measurements of the two beams on the same cone on Shenguang-III laser facility

    NASA Astrophysics Data System (ADS)

    Zha, Weiyi; Yang, Dong; Xu, Tao; Liu, Yonggang; Wang, Feng; Peng, Xiaoshi; Li, Yulong; Wei, Huiyue; Liu, Xiangming; Mei, Yu; Yan, Yadong; He, Junhua; Li, Zhichao; Li, Sanwei; Jiang, Xiaohua; Guo, Liang; Xie, Xufei; Pan, Kaiqiang; Liu, Shenye; Jiang, Shaoen; Zhang, Baohan; Ding, Yongkun

    2018-01-01

    In laser driven hohlraums, laser beams on the same incident cone may have different beam and plasma conditions, causing beam-to-beam backscatter difference and subsequent azimuthal variations in the x-ray drive on the capsule. To elucidate the large variation of backscatter proportion from beam to beam in some gas-filled hohlraum shots on Shenguang-III, two 28.5° beams have been measured with the Stimulated Raman Scattering (SRS) time-resolved spectra. A bifurcated fiber is used to sample two beams and then coupled to a spectrometer and streak camera combination to reduce the cost. The SRS spectra, characterized by a broad wavelength, were further corrected considering the temporal distortion and intensity modulation caused by components along the light path. This measurement will improve the understanding of the beam propagation inside the hohlraum and related laser plasma instabilities.

  11. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  12. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  13. Beam propagation factor based on the Rényi entropy.

    PubMed

    Vaveliuk, Pablo; da Silva, Marcone Lopes

    2008-09-15

    A beam width measure based on Rényi entropy was introduced by Luis [Opt. Lett 31, 3644 (2006)]. That one-dimensional analysis was limited to beam profiles with rectangular symmetry. In this Letter, we derive a general Rényi beam width measure that accounts for the diffraction properties of beams with profiles of arbitrary symmetry. We also show that the square of this measure has a quadratic dependence as a function of the propagation coordinate, so that it can be applied to propagation through arbitrary ABCD paraxial systems. The Rényi beam propagation factor, here introduced, is discussed in examples where the M(2) factor seems to have a limited effectiveness in describing the beam spreading.

  14. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  15. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    PubMed

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  16. Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Jiang, ShengBao; Jiang, Chun; Zhu, Haibin

    2014-07-01

    A hollow sinh-Gaussian beam (HsG) is an appropriate model to describe the dark-hollow beam. Based on Collins integral formula and the fact that a hard-edged-aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of a HsG beam passing through fractional Fourier transform (FRFT) optical systems with and without apertures have been studied in detail by some typical numerical examples. The results obtained using the approximate analytical formula are in good agreement with those obtained using numerical integral calculation. Further, the studies indicate that the normalized intensity distribution of the HsG beam in FRFT plane is closely related with not only the fractional order but also the beam order and the truncation parameter. The FRFT optical systems provide a convenient way for laser beam shaping.

  17. The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.; Meezan, N. B.

    2018-01-01

    Recent work in indirectly-driven inertial confinement fusion implosions on the National Ignition Facility has indicated that late-time propagation of the inner cones of laser beams (23° and 30°) is impeded by the growth of a "bubble" of hohlraum wall material (Au or depleted uranium), which is initiated by and is located at the location where the higher-intensity outer beams (44° and 50°) hit the hohlraum wall. The absorption of the inner cone beams by this "bubble" reduces the laser energy reaching the hohlraum equator at late time driving an oblate or pancaked implosion, which limits implosion performance. In this article, we present the design of a new shaped hohlraum designed specifically to reduce the impact of this bubble by adding a recessed pocket at the location where the outer cones hit the hohlraum wall. This recessed pocket displaces the bubble radially outward, reducing the inward penetration of the bubble at all times throughout the implosion and increasing the time for inner beam propagation by approximately 1 ns. This increased laser propagation time allows one to drive a larger capsule, which absorbs more energy and is predicted to improve implosion performance. The new design is based on a recent National Ignition Facility shot, N170601, which produced a record neutron yield. The expansion rate and absorption of laser energy by the bubble is quantified for both cylindrical and shaped hohlraums, and the predicted performance is compared.

  18. Study on elucidation of bactericidal effects induced by laser beam irradiation Measurement of dynamic stress on laser irradiated surface

    NASA Astrophysics Data System (ADS)

    Furumoto, Tatsuaki; Kasai, Atsushi; Tachiya, Hiroshi; Hosokawa, Akira; Ueda, Takashi

    2010-09-01

    In dental treatment, many types of laser beams have been used for various surgical treatments, and the influences of laser beam irradiation on bactericidal effect have been investigated. However, most of the work has been performed by irradiating to an agar plate with the colony of bacteria, and very few studies have been reported on the physical mechanism of bactericidal effects induced by laser beam irradiation. This paper deals with the measurement of dynamic stress induced in extracted human enamel by irradiation with Nd:YAG laser beams. Laser beams can be delivered to the enamel surface through a quartz optical fiber. Dynamic stress induced in the specimen using elastic wave propagation in a cylindrical long bar made of aluminum alloy is measured. Laser induced stress intensity is evaluated from dynamic strain measured by small semiconductor strain gauges. Carbon powder and titanium dioxide powder were applied to the human enamel surface as absorbents. Additionally, the phenomenon of laser beam irradiation to the human enamel surface was observed with an ultrahigh speed video camera. Results showed that a plasma was generated on the enamel surface during laser beam irradiation, and the melted tissues were scattered in the vertical direction against the enamel surface with a mushroom-like wave. Averaged scattering velocity of the melted tissues was 25.2 m/s. Induced dynamic stress on the enamel surface increased with increasing laser energy in each absorbent. Induced dynamic stresses with titanium dioxide powder were superior to those with carbon powder. Induced dynamic stress was related to volume of prepared cavity, and induced stress for the removal of unit volume of human enamel was 0.03 Pa/mm 3.

  19. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    PubMed

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  20. Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.

    2013-10-15

    We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less

  1. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology.

    PubMed

    Li, Yanlu; Zhu, Jinghao; Duperron, Matthieu; O'Brien, Peter; Schüler, Ralf; Aasmul, Soren; de Melis, Mirko; Kersemans, Mathias; Baets, Roel

    2018-02-05

    This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.

  2. Propagation and wavefront ambiguity of linear nondiffracting beams

    NASA Astrophysics Data System (ADS)

    Grunwald, R.; Bock, M.

    2014-02-01

    Ultrashort-pulsed Bessel and Airy beams in free space are often interpreted as "linear light bullets". Usually, interconnected intensity profiles are considered a "propagation" along arbitrary pathways which can even follow curved trajectories. A more detailed analysis, however, shows that this picture gives an adequate description only in situations which do not require to consider the transport of optical signals or causality. To also cover these special cases, a generalization of the terms "beam" and "propagation" is necessary. The problem becomes clearer by representing the angular spectra of the propagating wave fields by rays or Poynting vectors. It is known that quasi-nondiffracting beams can be described as caustics of ray bundles. Their decomposition into Poynting vectors by Shack-Hartmann sensors indicates that, in the frame of their classical definition, the corresponding local wavefronts are ambiguous and concepts based on energy density are not appropriate to describe the propagation completely. For this reason, quantitative parameters like the beam propagation factor have to be treated with caution as well. For applications like communication or optical computing, alternative descriptions are required. A heuristic approach based on vector field based information transport and Fourier analysis is proposed here. Continuity and discontinuity of far field distributions in space and time are discussed. Quantum aspects of propagation are briefly addressed.

  3. Higher order mode laser beam intensity fluctuations in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2017-05-01

    Intensity fluctuations of the higher order mode laser beams are evaluated when these beams propagate in a medium exhibiting strong oceanic turbulence. Our formulation involves the modified Rytov solution that extends the Rytov solution to cover strong turbulence as well, and our recently reported expression that relates the atmospheric turbulence structure constant to the oceanic turbulence parameters and oceanic wireless optical communication link parameters. The variations of the intensity fluctuations are reported against the changes of the ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, viscosity and the source size of the higher order mode laser beam. Our results indicate that under any oceanic turbulence parameters, it is advantageous to employ higher order laser modes in reducing the scintillation noise in wireless optical communication links operating in a strongly turbulent ocean.

  4. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  5. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less

  6. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires

  7. Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system.

    PubMed

    Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-12-01

    Quantum cascade laser (QCL) is a very attractive seed source for a multikilowatt pulsed CO2 lasers applied for driving extreme ultraviolet emitting plasmas. In this Letter, we investigate output beam properties of a QCL designed to address P18 and P20 lines of 10.6 micron band of CO2 molecule. In particular, output beam quality and stability are investigated for the first time. A well-defined linear polarization and a single-mode operation enabled a use of phase retrieval method for full description of QCL output beam. A direct, multi-image numerical phase retrieval technique was developed and successfully applied to the measured intensity patterns of a QCL beam. Very good agreement between the measured and reconstructed beam profiles was observed at distances ranging from QCL aperture to infinity, proving a good understanding of the beam propagation. The results also confirm a high spatial coherence and high stability of the beam parameters, the features expected from an excellent seed source.

  8. Propagation of various dark hollow beams in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; He, Sailing

    2006-02-01

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

  9. Propagation of various dark hollow beams in a turbulent atmosphere.

    PubMed

    Cai, Yangjian; He, Sailing

    2006-02-20

    Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or noncircular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

  10. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  11. A simple three dimensional wide-angle beam propagation method

    NASA Astrophysics Data System (ADS)

    Ma, Changbao; van Keuren, Edward

    2006-05-01

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  12. A simple three dimensional wide-angle beam propagation method.

    PubMed

    Ma, Changbao; Van Keuren, Edward

    2006-05-29

    The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.

  13. Modified hollow Gaussian beam and its paraxial propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Chen, Chiyi; Wang, Fei

    2007-10-01

    A model named modified hollow Gaussian beam (HGB) is proposed to describe a dark hollow beam with adjustable beam spot size, central dark size and darkness factor. In this modified model, both the beam spot size and the central dark size will be convergent to finite constants as the beam order approaches infinity, which are much different from that of the previous unmodified model, where the beam spot size and the central dark size will not be convergent as the beam order approaches infinity. The dependences of the propagation factor of modified and unmodified HGBs on the beam order are found to be the same. Based on the Collins integral, analytical formulas for the modified HGB propagating through aligned and misaligned optical system are derived. Some numerical examples are given.

  14. Investigation of propagation dynamics of truncated vector vortex beams.

    PubMed

    Srinivas, P; Perumangatt, C; Lal, Nijil; Singh, R P; Srinivasan, B

    2018-06-01

    In this Letter, we experimentally investigate the propagation dynamics of truncated vector vortex beams generated using a Sagnac interferometer. Upon focusing, the truncated vector vortex beam is found to regain its original intensity structure within the Rayleigh range. In order to explain such behavior, the propagation dynamics of a truncated vector vortex beam is simulated by decomposing it into the sum of integral charge beams with associated complex weights. We also show that the polarization of the truncated composite vector vortex beam is preserved all along the propagation axis. The experimental observations are consistent with theoretical predictions based on previous literature and are in good agreement with our simulation results. The results hold importance as vector vortex modes are eigenmodes of the optical fiber.

  15. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui [Yorktown, VA; Shinn, Michelle D [Newport News, VA

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  16. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd:YVO4 laser amplifiers.

    PubMed

    Liu, Bin; Liu, Chong; Shen, Lifeng; Wang, Chunhua; Ye, Zhibin; Liu, Dong; Xiang, Zhen

    2016-04-18

    A method for beam quality management is presented in a master oscillator power amplifier (MOPA) using Nd:YVO4 as the gain medium by extra-cavity periodic reproduction of wavefront aberrations. The wavefront aberration evolution of the intra-cavity beams is investigated for both symmetrical and asymmetrical resonators. The wavefront aberration reproduction process is successfully realized outside the cavity in four-stage amplifiers. In the MOPA with a symmetrical oscillator, the laser power increases linearly and the beam quality hardly changes. In the MOPA with an asymmetrical oscillator, the beam quality is deteriorated after the odd-stage amplifier and is improved after the even-stage amplifier. The wavefront aberration reproduction during the extra-cavity beam propagation in the amplifiers is equivalent to that during the intra-cavity propagation. This solution helps to achieve the effective beam quality management in laser amplifier chains.

  17. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  18. Study on power coupling of annular vortex beam propagating through a two-Cassegrain-telescope optical system in turbulent atmosphere.

    PubMed

    Wu, Huiyun; Sheng, Shen; Huang, Zhisong; Zhao, Siqing; Wang, Hua; Sun, Zhenhai; Xu, Xiegu

    2013-02-25

    As a new attractive application of the vortex beams, power coupling of annular vortex beam propagating through a two- Cassegrain-telescope optical system in turbulent atmosphere has been investigated. A typical model of annular vortex beam propagating through a two-Cassegrain-telescope optical system is established, the general analytical expression of vortex beams with limited apertures and the analytical formulas for the average intensity distribution at the receiver plane are derived. Under the H-V 5/7 turbulence model, the average intensity distribution at the receiver plane and power coupling efficiency of the optical system are numerically calculated, and the influences of the optical topological charge, the laser wavelength, the propagation path and the receiver apertures on the power coupling efficiency are analyzed. These studies reveal that the average intensity distribution at the receiver plane presents a central dark hollow profile, which is suitable for power coupling by the Cassegrain telescope receiver. In the optical system with optimized parameters, power coupling efficiency can keep in high values with the increase of the propagation distance. Under the atmospheric turbulent conditions, great advantages of vortex beam in power coupling of the two-Cassegrain-telescope optical system are shown in comparison with beam without vortex.

  19. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    PubMed

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  20. Modelling of propagation and scintillation of a laser beam through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Shugaev, Fedor V.; Shtemenko, Ludmila S.; Dokukina, Olga I.; Nikolaeva, Oxana A.; Suhareva, Natalia A.; Cherkasov, Dmitri Y.

    2017-09-01

    The investigation was fulfilled on the basis of the Navier-Stokes equations for viscous heat-conducting gas. The Helmholtz decomposition of the velocity field into a potential part and a solenoidal one was used. We considered initial vorticity to be small. So the results refer only to weak turbulence. The solution has been represented in the form of power series over the initial vorticity, the coefficients being multiple integrals. In such a manner the system of the Navier- Stokes equations was reduced to a parabolic system with constant coefficients at high derivatives. The first terms of the series are the main ones that determine the properties of acoustic radiation at small vorticity. We modelled turbulence with the aid of an ensemble of vortical structures (vortical rings). Two problems have been considered : (i) density oscillations (and therefore the oscillations of the refractive index) in the case of a single vortex ring; (ii) oscillations in the case of an ensemble of vortex rings (ten in number). We considered vortex rings with helicity, too. The calculations were fulfilled for a wide range of vortex sizes (radii from 0.1 mm to several cm). As shown, density oscillations arise. High-frequency oscillations are modulated by a low-frequency signal. The value of the high frequency remains constant during the whole process excluding its final stage. The amplitude of the low-frequency oscillations grows with time as compared to the high-frequency ones. The low frequency lies within the spectrum of atmospheric turbulent fluctuations, if the radius of the vortex ring is equal to several cm. The value of the high frequency oscillations corresponds satisfactorily to experimental data. The results of the calculations may be used for the modelling of the Gaussian beam propagation through turbulence (including beam distortion, scintillation, beam wandering). A method is set forth which describes the propagation of non-paraxial beams. The method admits generalization

  1. Propagation of electron beams in space

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.

    1988-01-01

    Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.

  2. Modeling and measurement of angle-beam wave propagation in a scatterer-free plate

    NASA Astrophysics Data System (ADS)

    Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.

    2017-02-01

    Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.

  3. Development of Laser Beam Transmission Strategies for Future Ground-to-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.; Kovalik, Joseph M.; Biswas, Abhijit; Roberts, William T.

    2007-01-01

    Optical communications is a key technology to meet the bandwidth expansion required in the global information grid. High bandwidth bi-directional links between sub-orbital platforms and ground and space terminals can provide a seamless interconnectivity for rapid return of critical data to analysts. The JPL Optical Communications Telescope Laboratory (OCTL) is located in Wrightwood California at an altitude of 2.2.km. This 200 sq-m facility houses a state-of- the-art 1-m telescope and is used to develop operational strategies for ground-to-space laser beam propagation that include safe beam transmission through navigable air space, adaptive optics correction and multi-beam scintillation mitigation, and line of sight optical attenuation monitoring. JPL has received authorization from international satellite owners to transmit laser beams to more than twenty retro-reflecting satellites. This paper presents recent progress in the development of these operational strategies tested by narrow laser beam transmissions from the OCTL to retro-reflecting satellites. We present experimental results and compare our measurements with predicted performance for a variety of atmospheric conditions.

  4. A miracle happening to a laser beam in a soap film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Startsev, Aleksandr V; Stoilov, Yurii Yu

    2003-05-31

    When a 10 {mu}W - 3 W laser beam (for example, at 632.8 nm) is focused into a usual soap film of thickness between 10 nm and 10 {mu}m from the side or through a defect on the film surface, the self-channeling of the beam propagating in the film is observed. The beam also exhibits self-branching into submicron filaments, the so-called whiskers of length several tens of centimetres. The results of experiments on the dynamics of behaviour of these whiskers in a soap film, their polariton nature, and possible applications are discussed. (letters)

  5. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  6. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    NASA Astrophysics Data System (ADS)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  7. Relativistically Induced Transparency Acceleration (RITA) - laser-plasma accelerated quasi-monoenergetic GeV ion-beams with existing lasers?

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.

    2013-10-01

    Laser-plasma ion accelerators have the potential to produce beams with unprecedented characteristics of ultra-short bunch lengths (100s of fs) and high bunch-charge (1010 particles) over acceleration length of about 100 microns. However, creating and controlling mono-energetic bunches while accelerating to high-energies has been a challenge. If high-energy mono-energetic beams can be demonstrated with minimal post-processing, laser (ω0)-plasma (ωpe) ion accelerators may be used in a wide-range of applications such as cancer hadron-therapy, medical isotope production, neutron generation, radiography and high-energy density science. Here we demonstrate using analysis and simulations that using relativistic intensity laser-pulses and heavy-ion (Mi ×me) targets doped with a proton (or light-ion) species (mp ×me) of trace density (at least an order of magnitude below the cold critical density) we can scale up the energy of quasi-mono-energetically accelerated proton (or light-ion) beams while controlling their energy, charge and energy spectrum. This is achieved by controlling the laser propagation into an overdense (ω0 <ωpeγ = 1) increasing plasma density gradient by incrementally inducing relativistic electron quiver and thereby rendering them transparent to the laser while the heavy-ions are immobile. Ions do not directly interact with ultra-short laser that is much shorter in duration than their characteristic time-scale (τp <<√{mp} /ω0 <<√{Mi} /ω0). For a rising laser intensity envelope, increasing relativistic quiver controls laser propagation beyond the cold critical density. For increasing plasma density (ωpe2 (x)), laser penetrates into higher density and is shielded, stopped and reflected where ωpe2 (x) / γ (x , t) =ω02 . In addition to the laser quivering the electrons, it also ponderomotively drives (Fp 1/γ∇za2) them forward longitudinally, creating a constriction of snowplowed e-s. The resulting longitudinal e--displacement from

  8. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.

  9. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  10. Energetic electrons driven in the polarization direction of an intense laser beam incident normal to a solid target

    DOE PAGES

    Seely, J. F.; Hudson, L. T.; Pereira, N.; ...

    2016-02-24

    Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic electrons propagated through vacuum to spectator metal wires in the polarization direction and in the perpendicular direction, and the K shell spectra from the different wire materials were recorded as functions of the distance from the laser focal spot. It was found that the fluence of the energetic electrons driven into the spectator wires in the polarization direction compared to themore » perpendicular direction was larger and increased with the distance from the focal spot. Finally, this indicates that energetic electrons are preferentially driven in the direction of the intense oscillating electric field of the incident laser beam in agreement with the multiphoton inverse Bremsstrahlung absorption process.« less

  11. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Jovicevic, S.; Carpanese, M.

    2012-07-01

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  12. Laser-driven relativistic electron beam interaction with solid dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phasemore » shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.« less

  13. Advanced TIL system for laser beam focusing in a turbulent regime

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip A.; Ting, Antonio C.; Kaganovich, Dmitry; Khizhnyak, Anatoliy I.; Tomov, Ivan V.; Markov, Vladimir B.; Korobkin, Dmitriy V.

    2014-10-01

    This paper discusses an advanced target in the loop (ATIL) system with its performance based on a nonlinear phase conjugation scheme that performs rapid adjustment of the laser beam wavefront to mitigate effects associated with atmospheric turbulence along the propagation path. The ATIL method allows positional control of the laser spot (the beacon) on a remote imaged-resolved target. The size of this beacon is governed by the reciprocity of two counterpropagating beams (one towards the target and another scattered by the target) and the fidelity of the phase conjugation scheme. In this presentation we will present the results of the thorough analysis of ATIL operation, factors that affect its performance, its focusing efficiency and the comparison of laboratory experimental validation and computer simulation results.

  14. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  15. Simulation of laser beam reflection at the sea surface

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2011-05-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.

  16. REVIEWS OF TOPICAL PROBLEMS: Spiral light beams

    NASA Astrophysics Data System (ADS)

    Abramochkin, Evgenii G.; Volostnikov, Vladimir G.

    2004-12-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity strusture during propagation and focusing. We describe a family of laser beams termed spiral whose intensity remains invariable, up to scale and rotation, during propagation. Several properties of spiral beams are of practical interest for laser technologies, medicine, and microbiology. The problem of synthesis of spiral beams with the intensity distribution given by an arbitrary planar curve is considered. We emphasize the feasibility, in principle, of making lasers that directly generate beams with desired properties without additional unconventional optics.

  17. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  18. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  19. Propagation properties of a partially coherent radially polarized beam in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zheng, Guo; Wang, Lin; Wang, Jue; Zhou, Muchun; Song, Minmin

    2018-07-01

    Based on the extended Huygens-Fresnel integral, second-order moments of the Wigner distribution function of a partially coherent radially polarized beam propagating through atmospheric turbulence are derived. Besides, propagation properties such as the mean-squared beam width, angular width, effective radius of curvature, beam propagation factor and Rayleigh range can also be obtained and calculated numerically. It is shown that the propagation properties are dependent on the spatial correlation length, refraction index structure constant and propagation distance.

  20. Generation of spirally polarized propagation-invariant beam using fiber microaxicon.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2011-10-01

    We present here a fiber microaxicon (MA)based method to generate spirally polarized propagation-invariant optical beam. MA chemically etched in the tip of a two-mode fiber efficiently converts the generic cylindrically polarized vortex fiber mode into a spirally polarized propagation-invariant (Bessel-type) beam via radial dependence of polarization rotation angle. The combined roles of helico-conical phase and nonparaxial propagation in the generation and characteristics of the output beam from the fiber MA are discussed. © 2011 Optical Society of America

  1. Terahertz beam propagation measured through three-dimensional amplitude profile determination

    NASA Astrophysics Data System (ADS)

    Reiten, Matthew T.; Harmon, Stacee A.; Cheville, Richard Alan

    2003-10-01

    To determine the spatio-temporal field distribution of freely propagating terahertz bandwidth pulses, we measure the time-resolved electric field in two spatial dimensions with high resolution. The measured, phase-coherent electric-field distributions are compared with an analytic model in which the radiation from a dipole antenna near a dielectric interface is coupled to free space through a spherical lens. The field external to the lens is limited by reflection at the lens-air dielectric interface, which is minimized at Brewster's angle, leading to an annular field pattern. Field measurements compare favorably with theory. Propagation of terahertz beams is determined both by assuming a TEM0,0 Gaussian profile as well as expanding the beam into a superposition of Laguerre-Gauss modes. The Laguerre-Gauss model more accurately describes the beam profile for free-space propagation and after propagating through a simple optical system. The accuracy of both models for predicting far-field beam patterns depend upon accurately measuring complex field amplitudes of terahertz beams.

  2. Characterizing the propagation evolution of wave patterns and vortex structures in astigmatic transformations of Hermite-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.

    2018-01-01

    Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite-Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.

  3. Approach to atmospheric laser-propagation theory based on the extended Huygens-Fresnel principle and a self-consistency concept.

    PubMed

    Bochove, Erik J; Rao Gudimetla, V S

    2017-01-01

    We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.

  4. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  5. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  6. Propagation properties of the chirped Airy beams through the gradient-index medium

    NASA Astrophysics Data System (ADS)

    Feng, Liyan; Zhang, Jianbin; Pang, Zihao; Wang, Linyi; Zhong, Tianfen; Yang, Xiangbo; Deng, Dongmei

    2017-11-01

    Through analytical derivation and numerical analysis, the propagation properties of the chirped Airy(CAi) beams in the gradient-index medium are investigated. The intensity and the phase distributions, the propagation trajectory and the Poynting vector of the CAi beams are demonstrated to investigate the propagation properties. Owing to the special and symmetrical refractive index profile of the gradient-index medium, the CAi beams propagate periodically. The effects of the distribution factor and the chirped parameter on the propagation of the CAi beams are analyzed. As the increasing of the distribution factor, the intensity distribution of the CAi beams is more scattering. However, with the chirped parameter increasing, the focusing property of the CAi beams strengthens. The variation of the chirped parameter can change the position of the peak intensity maximum, but it cannot alter the period of the peak intensity. The variations of the initial phase and the energy of the beams in the transverse plane expedite accordingly.

  7. Beam shaping by using small-aperture SLM and DM in a high power laser

    NASA Astrophysics Data System (ADS)

    Li, Sensen; Lu, Zhiwei; Du, Pengyuan; Wang, Yulei; Ding, Lei; Yan, Xiusheng

    2018-03-01

    High-power laser plays an important role in many fields, such as directed energy weapon, optoelectronic contermeasures, inertial confinement fusion, industrial processing and scientific research. The uniform nearfield and wavefront are the important part of the beam quality for high power lasers, which is conducive to maintaining the high spatial beam quality in propagation. We demonstrate experimentally that the spatial intensity and wavefront distribution at the output is well compensated in the complex high-power solid-state laser system by using the small-aperture spatial light modulator (SLM) and deformable mirror (DM) in the front stage. The experimental setup is a hundred-Joule-level Nd:glass laser system operating at three wavelengths at 1053 nm (1ω), 527 nm (2ω) and 351 nm (3ω) with 3 ns pulse duration with the final output beam aperture of 60 mm. While the clear arperture of the electrically addressable SLM is less than 20 mm and the effective diameter of the 52-actuators DM is about 15 mm. In the beam shaping system, the key point is that the two front-stage beam shaping devices needs to precompensate the gain nonuniform and wavefront distortion of the laser system. The details of the iterative algorithm for improving the beam quality are presented. Experimental results show that output nearfield and wavefont are both nearly flat-topped with the nearfield modulation of 1.26:1 and wavefront peak-to-valley value of 0.29 λ at 1053nm after beam shaping.

  8. Propagation dynamics of Helical Hermite-Gaussian beams

    NASA Astrophysics Data System (ADS)

    López-Mariscal, Carlos; Gutiérrez-Vega, Julio C.

    2007-09-01

    We investigate theoretically and experimentally the propagation characteristics of the Helical Hermite-Gauss beams corresponding to the helical Ince-Gauss beams in the limit of infinite ellipticity. Particular attention is paid to the transverse irradiance structure, the orbital angular momentum density, and the vortex distribution.

  9. Focusing elliptical laser beams

    NASA Astrophysics Data System (ADS)

    Marchant, A. B.

    1984-03-01

    The spot formed by focusing an elliptical laser beam through an ordinary objective lens can be optimized by properly filling the objective lens. Criteria are given for maximizing the central irradiance and the line-spread function. An optimized spot is much less elliptical than the incident laser beam. For beam ellipticities as high as 2:1, this spatial filtering reduces the central irradiance by less than 14 percent.

  10. Direct-writing lithography using laser diode beam focused with single elliptical microlens

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Nazmul; Haque, Muttahid-Ull; Trisno, Jonathan; Lee, Yung-Chun

    2015-10-01

    A lithography method is proposed for arbitrary patterning using an elliptically diverging laser diode beam focused with a single planoconvex elliptical microlens. Simulations are performed to model the propagation properties of the laser beam and to design the elliptical microlens, which has two different profiles in the x- and y-axis directions. The microlens is fabricated using an excimer laser dragging method and is then attached to the laser diode using double-sided optically cleared adhesive (OCA) tape. Notably, the use of OCA tape removes the need for a complicated alignment procedure and thus significantly reduces the assembly cost. The minimum focused spot of the laser diode beam is investigated by performing single-shot exposure tests on a photoresist (PR) layer. Finally, the practical feasibility of this lithography technique to generate an arbitrary pattern is demonstrated by dotted and continuous features through thin chromium layer deposition on PR and a metal lift-off process. The results show that the minimum feature size for the dotted patterns is around 6.23 μm, while the minimum linewidths for continuous patterns is 6.44 μm. In other words, the proposed focusing technique has significant potential for writing any arbitrary high-resolution pattern for applications like printed circuit board fabrication.

  11. Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kononenko, T V; Zavedeev, E V

    2016-03-31

    We report a theoretical and experimental study of the energy profile deformation along the laser beam axis during the fabrication of graphite microstructures inside a diamond crystal. The numerical simulation shows that the use of a focusing lens with a numerical aperture NA < 0.1 at a focusing depth of up to 2 mm makes it possible to avoid a noticeable change in the energy profile of the beam due to the spherical aberration that occurs in the case of refraction of the focused laser beam at the air – diamond interface. The calculation results are confirmed by experimental datamore » on the distribution of the laser intensity along the beam axis in front of its focal plane, derived from observations of graphitisation wave propagation in diamond. The effect of radiation self-focusing on laser-induced graphitisation of diamond is analysed. It is shown that if the wavefront distortion due to self-focusing can be neglected at a minimum pulse energy required for the optical breakdown of diamond, then an increase in the beam distortion with increasing pulse energy has no effect on the graphitisation process. (interaction of laser radiation with matter)« less

  12. Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2011-10-01

    The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.

  13. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R.F.; Moore, C.I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approximately}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported. {copyright} {ital 1999 American Institute of Physics.}« less

  14. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R. F.; Moore, C. I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approx}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported.« less

  15. Study of laser preheating dependence on laser wavelength and intensity for MagLIF

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Harvey-Thompson, A. J.; Glinsky, M.; Nagayama, T.; Weis, M.; Geissel, M.; Peterson, K.; Fooks, J.; Krauland, C.; Giraldez, E.; Davies, J.; Campbell, E. M.; Bahr, R.; Edgell, D.; Stoeckl, C.; Glebov, V.; Emig, J.; Heeter, R.; Strozzi, D.

    2017-10-01

    The magnetized liner inertial fusion (MagLIF) scheme requires preheating underdense fuel to 100's eV temperature by a TW-scale long pulse laser via collisional absorption. To better understand how laser preheat scales with laser wavelength and intensity as well as to provide data for code validation, we have conducted a well-characterized experiment on OMEGA to directly compare laser propagation, energy deposition and laser plasma instabilities (LPI) using 2 ω (527 nm) and 3 ω (351 nm) lasers with intensity in the range of (1-5)x1014 Wcm-2. The laser beam (1 - 1.5 ns square pulse) enters the gas-filled plastic liner though a 2-µm thick polyimide window to heat an underdense Ar-doped deuterium gas with electron density of 5.5% of critical density. Laser propagation and plasma temperature are diagnosed by time-resolved 2D x-ray images and Ar emission spectroscopy, respectively. LPI is monitored by backscattering and hard x-ray diagnostics. The 2 ω beam propagation shows a noticeable larger lateral spread than the 3 ω beam, indicating laser spray due to filamentation. LPI is observed to increase with laser intensity and the 2 ω beam produces more hot electrons compared with the 3 ω beam under similar conditions. Results will be compared with radiation hydrodynamic simulations. Work supported by the U.S. DOE ARPA-E and NNSA.

  16. Two spatial light modulator system for laboratory simulation of random beam propagation in random media.

    PubMed

    Wang, Fei; Toselli, Italo; Korotkova, Olga

    2016-02-10

    An optical system consisting of a laser source and two independent consecutive phase-only spatial light modulators (SLMs) is shown to accurately simulate a generated random beam (first SLM) after interaction with a stationary random medium (second SLM). To illustrate the range of possibilities, a recently introduced class of random optical frames is examined on propagation in free space and several weak turbulent channels with Kolmogorov and non-Kolmogorov statistics.

  17. Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Jayaprasath, E.; Sivaprakasam, S.

    2017-11-01

    Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.

  18. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  19. Laser beam generating apparatus

    DOEpatents

    Warner, Bruce E.; Duncan, David B.

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  20. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F [Berkeley, CA

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  1. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  2. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications

  3. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  4. General wave optics propagation scaling law.

    PubMed

    Shakir, Sami A; Dolash, Thomas M; Spencer, Mark; Berdine, Richard; Cargill, Daniel S; Carreras, Richard

    2016-12-01

    A general far-field wave propagation scaling law is developed. The formulation is simple but predicts diffraction peak irradiance accurately in the far field, regardless of the near-field beam type or geometry, including laser arrays. We also introduce the concept of the equivalent uniform circular beam that generates a far-field peak irradiance and power-in-the-bucket that are the same as an arbitrary laser source. Applications to clipped Gaussian beams with an obscuration, both as a single beam and as an array of beams, are shown.

  5. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    PubMed

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  6. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence.

    PubMed

    Liu, Dajun; Yin, Hongming; Wang, Guiqiu; Wang, Yaochuan

    2017-11-01

    The partially coherent Lorentz-Gauss vortex beam generated by a Schell-model source has been introduced. Based on the extended Huygens-Fresnel principle, the cross-spectral density function of a partially coherent Lorentz-Gauss vortex beam propagating in oceanic turbulence is derived. The influences of coherence length, topological charge M, and oceanic turbulence on the spreading properties and position of the coherence vortex for a partially coherent Lorentz-Gauss vortex beam are analyzed in detail. The results show that a partially coherent Lorentz-Gauss vortex beam propagating in stronger oceanic turbulence will evolve into a Gaussian-like beam more rapidly as the propagation distance increases, and the number of coherent vortices will change.

  7. E-beam-pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  8. A phase screen model for simulating numerically the propagation of a laser beam in rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, I P; Rychkov, D S; Falits, A V

    2009-09-30

    The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less

  9. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  10. Hydrodynamics simulations of 2{omega} laser propagation in underdense gasbag plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N.B.; Divol, L.; Marinak, M.M.

    2004-12-01

    Recent 2{omega} laser propagation and stimulated Raman backscatter (SRS) experiments performed on the Helen laser have been analyzed using the radiation-hydrodynamics code HYDRA [M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001)]. These experiments utilized two diagnostics sensitive to the hydrodynamics of gasbag targets: a fast x-ray framing camera (FXI) and a SRS streak spectrometer. With a newly implemented nonlocal thermal transport model, HYDRA is able to reproduce many features seen in the FXI images and the SRS streak spectra. Experimental andmore » simulated side-on FXI images suggest that propagation can be explained by classical laser absorption and the resulting hydrodynamics. Synthetic SRS spectra generated from the HYDRA results reproduce the details of the experimental SRS streak spectra. Most features in the synthetic spectra can be explained solely by axial density and temperature gradients. The total SRS backscatter increases with initial gasbag fill density up to {approx_equal}0.08 times the critical density, then decreases. Data from a near-backscatter imaging camera show that severe beam spray is not responsible for the trend in total backscatter. Filamentation does not appear to be a significant factor in gasbag hydrodynamics. The simulation and analysis techniques established here can be used in ongoing experimental campaigns on the Omega laser facility and the National Ignition Facility.« less

  11. Self-focusing and defocusing of Gaussian laser beams in collisional underdense magnetized plasmas with considering the nonlinear ohmic heating and ponderomotive force effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir

    2015-10-15

    The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show thatmore » the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.« less

  12. Laser beam delivery at ELI-NP

    DOE PAGES

    Ursescu, Daniel; Cheriaux, G.; Audebert, P.; ...

    2017-01-01

    The Laser Beam Delivery (LBD) system technical design report covers the interface between the High Power Laser System (HPLS) and the experiments, together with the pulse quality management. Here, the laser transport part of the LBD has a number of subsystems as follows: the beam transport lines for the six main outputs of HPLS, the additional short and long pulses and the synchronization system including the timing of the laser pulses with the Gamma Beam System (GBS) and the experiments on femtosecond timescale. Pulse quality management, discussed further here, consist in the generation and delivery of multiple HPLS pulses, coherentmore » combining of the HPLS arms, laser pulse diagnostics on target, laser beam dumps, shutters and output energy adaption.« less

  13. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  14. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  15. Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere.

    PubMed

    Zhang, Yuqiu; Ji, Xiaoling; Zhang, Hao; Li, Xiaoqing; Wang, Tao; Wang, Huan; Deng, Yu

    2018-05-28

    We study self-focusing and group-velocity dispersion (GVD) effects in the inhomogeneous atmosphere on pulsed-laser space debris removal facilitated by a ground-based laser. It is found that changes of the pulse duration and the beam spot size with the propagation distance are noticeable due to the interplay of the GVD effect and the self-focusing effect, which is quite different from the behavior in the linear case. It is shown that the temporal pulse splitting may appear on the space debris, and the spatial side lobe usually appears together with the temporal pulse splitting. As compared with the linear case, the beam width and the pulse width on the debris target increase. On the other hand, crucial formulae of the modified focal length and the M 2 -factor for laser debris removal are also derived. It is found that the beam quality on the debris target becomes better if our modified focal length is adopted, and the beam quality on the debris target will be good if the value of M 2 -factor is less than 1.6.

  16. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  17. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  18. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, S. H.; Shen, B. F., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn; Wang, W. P., E-mail: bfshen@mail.shcnc.ac.cn, E-mail: wwpvin@hotmail.com, E-mail: yqgu@caep.cn

    2016-05-23

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  19. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere.

    PubMed

    Dan, Youquan; Zhang, Bin

    2008-09-29

    The Wigner distribution function (WDF) has been used to study the beam propagation factor (M(2)-factor) for partially coherent flat-topped (PCFT) beams with circular symmetry in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle and the definition of the WDF, an expression for the WDF of PCFT beams in turbulence has been given. By use of the second-order moments of the WDF, the analytical formulas for the root-mean-square (rms) spatial width, the rms angular width, and the M(2)-factor of PCFT beams in turbulence have been derived, which can be applied to cases of different spatial power spectra of the refractive index fluctuations. The rms angular width and the M(2)-factor of PCFT beams in turbulence have been discussed with numerical examples. It can be shown that the M(2)-factor of PCFT beams in turbulence depends on the beam order, degree of global coherence of the source, waist width, wavelength, spatial power spectrum of the refractive index fluctuations, and propagation distance.

  20. Laser effect on the 248 nm KrF transition using heavy ion beam pumping

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Jacoby, J.; Turtikov, V.; Fertman, A.; Golubev, A.; Hoffmann, D. H. H.; Ulrich, A.; Varentsov, D.; Wieser, J.

    2007-07-01

    In December 2005 the first successful operation of a UV excimer laser pumped with a heavy ion beam was demonstrated at GSI. It was the first experiment in which the specific power deposition was sufficient to overcome laser threshold for a UV excimer scheme. The well known KrF* excimer laser line at λ=248 nm has been chosen for this experiment, because the wavelength is short, but still in the range of usual optical diagnostic tools and the emitted light can propagate in air without attenuation. A bunch compressed U+73238 beam with a particle energy of 250 MeV/u and about 110 ns pulse duration (FWHM) was used for this experiment. Single pulses of a beam intensity up to 2.5×109 particles per bunch were focused into the laser cell along the cavity axis. Compact spectrometers, high speed UV-photodiodes and gated CCD-cameras were used for diagnostics of the spontaneous and stimulated emission. As a main result of the experiment laser effect on the 248 nm KrF* excimer laser line has been obtained and verified by temporal and spectral narrowing of the laser line as well as the threshold behaviour and exponential growth of intensity with increasing pumping power. In summary it could be shown that the pumping power of the heavy ion beam at GSI is now sufficient to pump short wavelength lasers. It is planned to extend laser experiments in near future to the VUV range of the spectrum (λ<200 nm).

  1. Quasi-Airy beams along tunable propagation trajectories and directions.

    PubMed

    Qian, Yixian; Zhang, Site

    2016-05-02

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation.

  2. Quasi-static modeling of beam-plasma and laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun

    Plasma wave wakefields excited by either laser or particle beams can sustain acceleration gradients three orders of magnitude larger than conventional RF accelerators. They are promising for accelerating particles in short distances for applications such as future high-energy colliders, and medical and industrial accelerators. In a Plasma Wakefield Accelerator (PWFA) or a Laser Wakefield Accelerator (LWFA), an intense particle or laser beam drives a plasma wave and generates a strong wakefield which has a phase velocity equal to the velocity of the driver. This wakefield can then be used to accelerate part of the drive beam or a separate trailing beam. The interaction between the plasma and the driver is highly nonlinear and therefore a particle description is required for computer modeling. A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell code called QuickPIC for simulating plasma and laser wakefield acceleration has been developed. The model is based on the quasi-static or frozen field approximation, which assumes that the drive beam and/or the laser does not evolve during the time it takes for it to pass a plasma particle. The electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the driver using very large time steps. This algorithm reduces the computational time by at least 2 to 3 orders of magnitude. Comparison between the new algorithm and a fully explicit model (OSIRIS) are presented. The agreement is excellent for problems of interest. Direction for future work is also discussed. QuickPIC has been used to study the "afterburner" concept. In this concept a fraction of an existing high-energy beam is separated out and used as a trailing beam with the goal that the trailing beam acquires at least twice the energy of the drive beam. Several critical issues such as the efficient transfer of energy and the stable propagation of both the drive and trailing beams in

  3. Remote steering of laser beams by radar- and laser-induced refractive-index gradients in the atmosphere Remote steering of laser beams

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Shneider, M. N.; Voronin, A. A.; Sokolov, A. V.; Scully, M. O.

    2012-01-01

    Refractive-index gradients induced in the atmospheric air by properly tailored laser and microwave fields are shown to enable a remote steering of laser beams. Heating-assisted modulation of the refractive index of the air by microwave radiation is shown to support small-angle laser-beam bending with bending angles on the order of 10-2. Ionization of the atmospheric air by dyads of femto- and nanosecond laser pulses, on the other hand, can provide beam deflection angles in excess of π/5, offering an attractive strategy for radiation transfer, free-space communications, and laser-based standoff detection.

  4. Laser Beam Shaping

    NASA Astrophysics Data System (ADS)

    Aït-Ameur, Kamel; Passilly, Nicolas; de Saint Denis, R.; Fromager, Michaël

    2008-09-01

    We consider the promising properties of very simple Diffractive Optical Elements (DOE) for reshaping the intensity profile of a laser beam. The first type of DOE that we have considered is a phase aperture which consists in a transparent plate with a circular relief introducing a π phase shift in the central region of the incident beam. The phase aperture is able to convert a Gaussian beam into a super-Gaussian, a ring-shaped or a doughnut profile. The second DOE that has been considered is an adjustable axicon able to transform a Gaussian laser beam into a dark hollow beam or a Bessel-Gauss beam. The desired conical geometry is obtained from a deformable mirror formed by a 2 inches, 0.25mm thick silicon wafer supported by a standard 2 inches optical mount. To achieve the adequate deformation a small metallic ball pushes the back of the mirror wafer. The realized shape is monitored with a Shack-Hartmann wave-front sensor and it is shown that conical shape cannot be achieved. Nevertheless, recorded wave fronts exhibit important third order spherical aberration able to achieve beam profile transformation as conical lenses.

  5. Cascaded injection resonator for coherent beam combining of laser arrays

    DOEpatents

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  6. Straightness measurement using laser beam straight datum

    NASA Astrophysics Data System (ADS)

    Uchikoshi, Junichi; Shimada, Shoichi; Ikawa, Naoya; Komura, Akio

    1995-08-01

    Using the direction stabilized laser beam as a physical straight datum, instead of the tangible reference surface, a method is proposed for the measurement of an error motion of a slide table and/or surface profile of mechanical components. A specially designed 2D position sensor/compensator for laser beam center is developed combining a quadrant photo-diode (QPD) position sensor for beam center and the piezo-compensator which compensates the beam shift from the center of QPD. By the use the sensor/compensator proposed, the positional and angular fluctuations of laser beam path is evaluated with nanometric resolution. Combining the sensor with the piezo-driven mirror compensator, the directional stabilizer for the laser beam is also designed in the same manner as the sensor/compensator. The stabilized He-Ne laser beam can be used as the metrological datum of straightness within the accuracy of 2 X 10 -8 rad. By mounting the position sensor/compensator on a slide table, the carriage with working distance of 1 m is so designed and built as to move straight along the stabilized laser beam. The carriage can be used as a mechanical straight datum with the accuracy equivalent to the laser beam stability.

  7. Average intensity and spreading of an astigmatic sinh-Gaussian beam with small beam width propagating in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhu, Kaicheng; Tang, Huiqin; Xia, Hui

    2017-10-01

    Propagation properties of astigmatic sinh-Gaussian beams (ShGBs) with small beam width in turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, analytical formulae for the average intensity and the effective beam size of an astigmatic ShGB are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of an astigmatic ShGB propagating in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of atmospheric turbulence on the propagation properties of astigmatic ShGBs are also discussed in detail. In particular, for sufficiently small beam width and sinh-part parameter as well as suitable astigmatism, we show that the average intensity pattern converts into a perfect dark-hollow profile from initial two-petal pattern when ShGBs with astigmatic aberration propagate through atmospheric turbulence.

  8. Linear self-focusing of continuous UV laser beam in photo-thermo-refractive glasses.

    PubMed

    Sidorov, Alexander I; Gorbyak, Veronika V; Nikonorov, Nikolay V

    2018-03-19

    The experimental and theoretical study of continuous UV laser beam propagation through thick silver-containing photo-thermo-refractive glass is presented. It is shown for the first time that self-action of UV Gaussian beam in glass results in its self-focusing. The observed linear effect is non-reversible and is caused by the transformation of subnanosized charged silver molecular clusters to neutral state under UV laser radiation. Such transformation is accompanied by the increase of molecular clusters polarizability and the refractive index increase in irradiated area. As a result, an extended positive lens is formed in glass bulk. In a theoretical study of linear self-focusing effect, the "aberration-free" approximation was used, taking into account spatial distribution of induced absorption.

  9. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  10. Laser beam riding artillery missiles guidance device is designed

    NASA Astrophysics Data System (ADS)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  11. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.

    PubMed

    Kim, D J; Kim, J W

    2015-02-01

    A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.

  12. Beam uniformity of flat top lasers

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  13. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  14. Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan; Tang, Lei

    2018-01-01

    A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.

  15. Laser-driven ultrafast antiproton beam

    NASA Astrophysics Data System (ADS)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  16. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  17. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOEpatents

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  18. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOEpatents

    Skupsky, Stanley; Craxton, R. Stephen; Soures, John

    1990-01-01

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.

  19. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  20. A Comparison of Propagation Between Apertured Bessel and Gaussian beams

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Yu, Yanzhong

    2009-04-01

    A true Bessel beam is a family of diffraction-free beams. Thus the most interesting and attractive characteristic of such beam is non-diffracting propagation. In optics, the comparisons of maximum propagation distance had been done between Bessel and Gaussian beams by Durnin and Sprangle, respectively. However, the results obtained by them are conflict due to the difference between their criteria. Because Bessel beams have many potential applications in millimeter wave bands, therefore, it is necessary and significant that the comparison is carried out at these bands. A new contrast criterion at millimeter wavelengths is proposed in our paper. Under this criterion, the numerical results are presented and a new conclusion is drawn.

  1. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    PubMed

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  2. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  3. Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai

    2018-01-01

    Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.

  4. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  5. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  6. Beam Propagator for Weather Radars, Modules 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Edwin Campos

    2013-10-08

    This program simulates the beam propagation of weather radar pulses under particular and realistic atmospheric conditions (without using the assumption of standard refraction conditions). It consists of two modules: radiosondings_refract_index_many.pro (MAIN MODULE) beam_propagation_function.pro(EXTERNAL FUNCTION) FOR THE MAIN MODULE, THE CODE DOES OUTPUT--INTO A FILE--THE BEAM HEIGHT AS A FUNCTION OF RANGE. THE RADIOSONDE INPUT FILES SHOULD BE ALREADY AVAILABLE BY THE USER. FOR EXAMPLE, RADIOSONDE OBSERVATION FILES CAN BE OBTAINED AT: RADIOSONDE OBSERVATIONS DOWNLOADED AT "http://weather.uwyo.edu/upperair/soounding.html" OR "http://jervis.pyr.ec.gc.ca" THE EXTERNAL FUNCTION DOES THE ACTUAL COMPUTATION OF BEAM PROPAGATION. IT INCLUDES CONDITIONS OF ANOMALOUS PROPAGATION AND NEGATIVE ELEVATION ANGLES. THE EQUATIONSmore » USED HERE WERE DERIVED BY EDWIN CAMPOS, BASED ON THE SNELL-DESCARTES LAW OF REFRACTION, CONSIDERING THE EARTH CURVATURE. THE PROGRAM REQUIRES A COMPILER FOR THE INTERACTIVE DATA LANGUAGE (IDL). DESCRIPTION AND VALIDATION DETAILS HAVE BEEN PUBLISHED IN THE PEER-REVIEWED SCIENTIFIC LITERATURE, AS FOLLOWS: Campos E. 2012. Estimating weather radar coverage over complex terrain, pp.26-32, peer reviewed, in Weather Radar and Hydrology, edited by Moore RJ, Cole SJ and Illingworth AJ. International Association of Hydrological Sciences (IAHS) Press, IAHS Publ. 351. ISBN 978-1-907161-26-1.« less

  7. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.

    PubMed

    Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei

    2018-03-05

    We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.

  8. Fitting relationship between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam

    NASA Astrophysics Data System (ADS)

    Ji, Zhong-Ye; Zhang, Xiao-Fang

    2018-01-01

    The mathematical relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam is important in beam quality control theory of the high-energy laser weapon system. In order to obtain this mathematical relation, numerical simulation is used in the research. Firstly, the Zernike representations of typically distorted atmospheric wavefront aberrations caused by the Kolmogoroff turbulence are generated. And then, the corresponding beam quality β factors of the different distorted wavefronts are calculated numerically through fast Fourier transform. Thus, the statistical distribution rule between the beam quality β factors of high-energy laser and the wavefront aberrations of the beam can be established by the calculated results. Finally, curve fitting method is chosen to establish the mathematical fitting relationship of these two parameters. And the result of the curve fitting shows that there is a quadratic curve relation between the beam quality β factor of high-energy laser and the wavefront aberration of laser beam. And in this paper, 3 fitting curves, in which the wavefront aberrations are consisted of Zernike Polynomials of 20, 36, 60 orders individually, are established to express the relationship between the beam quality β factor and atmospheric wavefront aberrations with different spatial frequency.

  9. Propagation properties of hollow sinh-Gaussian beams in quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Zou, Defeng; Li, Xiaohui; Pang, Xingxing; Zheng, Hairong; Ge, Yanqi

    2017-10-01

    Based on the Collins integral formula, the analytical expression for a hollow sinh-Gaussian (HsG) beam propagating through the quadratic-index medium is derived. The propagation properties of a single HsG beam and their interactions have been studied in detail with numerical examples. The results show that inhomogeneity can support self-repeating intensity distributions of HsG beams. With high-ordered beam order n, HsG beams could maintain their initial dark hollow distributions for a longer distance. In addition, interference fringes appear at the interactional region. The central intensity is a prominent peak for two in-phase beams, which is zero for two out-of phase beams. By tuning the initial beam phase shift, the distribution of the fringes can be controlled.

  10. Atmospheric effects on CO2 laser propagation

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.; Bilbro, J. W.

    1978-01-01

    An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system.

  11. Self-proton/ion radiography of laser-produced proton/ion beam from thin foil targets

    NASA Astrophysics Data System (ADS)

    Paudel, Y.; Renard-Le Galloudec, N.; Nicolai, Ph.; d'Humieres, E.; Ya. Faenov, A.; Kantsyrev, V. L.; Safronova, A. S.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Sentoku, Y.

    2012-12-01

    Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time that the protons/ions accelerated from the front surface of the target, in a direction opposite to the laser propagation direction, are turned around and pulled back to the rear surface, in the laser propagation direction. This proton/ion beam is able to create a self-radiograph of the target and glass stalk holding the target itself recorded through the radiochromic film stack. This unique result indicates strong long-living (ns time scale) magnetic fields present in the laser-produced plasma, which are extremely important in energy transport during the intense laser irradiation. The magnetic field from laser main pulse expands rapidly in the preformed plasma to rotate the laser produced protons. Radiation hydrodynamic simulations and ray tracing found that the magnetic field created by the amplified spontaneous emission prepulse is not sufficient to explain the particle trajectories, but the additional field created by the main pulse interaction estimated from particle-in-cell simulation is able to change the particle trajectories.

  12. Excimer laser beam delivery systems for medical applications

    NASA Astrophysics Data System (ADS)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  13. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  14. Turbulence characterization by studying laser beam wandering in a differential tracking motion setup

    NASA Astrophysics Data System (ADS)

    Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario

    2009-09-01

    The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.

  15. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  16. Evolution of phase singularities of vortex beams propagating in atmospheric turbulence.

    PubMed

    Ge, Xiao-Lu; Wang, Ben-Yi; Guo, Cheng-Shan

    2015-05-01

    Optical vortex beams propagating through atmospheric turbulence are studied by numerical modeling, and the phase singularities of the vortices existing in the turbulence-distorted beams are calculated. It is found that the algebraic sum of topological charges (TCs) of all the phase singularities existing in test aperture is approximately equal to the TC of the input vortex beam. This property provides us a possible approach for determining the TC of the vortex beam propagating through the atmospheric turbulence, which could have potential application in optical communication using optical vortices.

  17. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    NASA Astrophysics Data System (ADS)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  18. Propagation and scattering of optical light beams in free space, in atmosphere and in biological media

    NASA Astrophysics Data System (ADS)

    Sahin, Serkan

    With their first production implemented around 1960's, lasers have afterwards proven to be excellent light sources in building the technology. Subsequently, it has been shown that the extraordinary properties of lasers are related to their coherence properties. Recent developments in optics make it possible to synthesize partially coherent light beams from fully coherent ones. In the last several decades it was seen that using partially coherent light sources may be advantageous, in the areas such as laser surface processing, fiber and free-space optical communications, and medical diagnostics. In this thesis, I study extensively the generation, the propagation in different media, and the scattering of partially coherent light beams with respect to their spectral polarization and coherence states. For instance, I analyze the evolution of recently introduced degree of cross-polarization of light fields in free space; then develop a novel partially coherent light source which acquires and keeps a flat intensity profile around the axis at any distance in the far field; and investigate the interaction of electromagnetic random light with the human eye lens. A part of the thesis treats the effect of atmospheric turbulence on random light beams. Due to random variations in the refractive index, atmospheric turbulence modulates all physical and statistical properties of propagating beams. I have explored the possibility of employing the polarimetric domain of the beam for scintillation reduction, which positively affects the performance of free-space communication systems. I also discuss novel techniques for the sensing of rough targets in the turbulent atmosphere by polarization and coherence properties of light. The other contribution to the thesis is the investigation of light scattering from deterministic or random collections of particles, within the validity of first Born approximation. In the case of a random collection, I introduce and model the new quantity

  19. Demonstration of adaptive optics for mitigating laser propagation through a random air-water interface

    NASA Astrophysics Data System (ADS)

    Land, Phillip; Majumdar, Arun K.

    2016-05-01

    This paper describes a new concept of mitigating signal distortions caused by random air-water interface using an adaptive optics (AO) system. This is the first time the concept of using an AO for mitigating the effects of distortions caused mainly by a random air-water interface is presented. We have demonstrated the feasibility of correcting the distortions using AO in a laboratory water tank for investigating the propagation effects of a laser beam through an airwater interface. The AO system consisting of a fast steering mirror, deformable mirror, and a Shack-Hartmann Wavefront Sensor for mitigating surface water distortions has a unique way of stabilizing and aiming a laser onto an object underneath the water. Essentially the AO system mathematically takes the complex conjugate of the random phase caused by air-water interface allowing the laser beam to penetrate through the water by cancelling with the complex conjugates. The results show the improvement of a number of metrics including Strehl ratio, a measure of the quality of optical image formation for diffraction limited optical system. These are the first results demonstrating the feasibility of developing a new sensor system such as Laser Doppler Vibrometer (LDV) utilizing AO for mitigating surface water distortions.

  20. Novel theory for propagation of tilted Gaussian beam through aligned optical system

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Gao, Yunguo; Han, Xudong

    2017-03-01

    A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.

  1. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  2. High-Brightness Lasers with Spectral Beam Combining on Silicon

    NASA Astrophysics Data System (ADS)

    Stanton, Eric John

    Modern implementations of absorption spectroscopy and infrared-countermeasures demand advanced performance and integration of high-brightness lasers, especially in the molecular fingerprint spectral region. These applications, along with others in communication, remote-sensing, and medicine, benefit from the light source comprising a multitude of frequencies. To realize this technology, a single multi-spectral optical beam of near-diffraction-limited divergence is created by combining the outputs from an array of laser sources. Full integration of such a laser is possible with direct bonding of several epitaxially-grown chips to a single silicon (Si) substrate. In this platform, an array of lasers is defined with each gain material, creating a densely spaced set of wavelengths similar to wavelength division multiplexing used in communications. Scaling the brightness of a laser typically involves increasing the active volume to produce more output power. In the direction transverse to the light propagation, larger geometries compromise the beam quality. Lengthening the cavity provides only limited scaling of the output power due to the internal losses. Individual integrated lasers have low brightness due to combination of thermal effects and high optical intensities. With heterogeneous integration, many lasers can be spectrally combined on a single integrated chip to scale brightness in a compact platform. Recent demonstrations of 2.0-microm diode and 4.8-microm quantum cascade lasers on Si have extended this heterogeneous platform beyond the telecommunications band to the mid-infrared. In this work, low-loss beam combining elements spanning the visible to the mid-infrared are developed and a high-brightness multi-spectral laser is demonstrated in the range of 4.6-4.7-microm wavelengths. An architecture is presented where light is combined in multiple stages: first within the gain-bandwidth of each laser material and then coarsely between each spectral band to a

  3. Emission and Propagation Properties of Midinfrared Quantum Cascade Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswami, Kannan; Bernacki, Bruce E.; Cannon, Bret D.

    2008-02-15

    We report divergence, astigmatism and M 2 measurements of quantum cascade lasers (QCL) with an emission wavelength of 8.77 mum. Emission profiles from the QCL facet showed divergence angles of 62° and 32° FWHM ± 2° for the fast and slow axes, respectively. The observation of far field structure superimposed on the fast axes profiles was attributed to the position of the QCL die with respect to the edge of the laser submount, emphasizing the need for careful placement. Two diffraction-limited Germanium aspheric microlenses were designed and fabricated to efficiently collect, collimate, and focus QCL emission. A confocal system comprisedmore » of these lenses was used to measure the beam propagation figure of merit (M2) yielding 1.8 and 1.2 for the fast and slow axes, respectively. Astigmatism at the exit facet was calculated to be about 3.4 mum, or less than half a wave. To the best of our knowledge, this is the first experimental measurement of astigmatism and M 2 reported for mid-IR QCLs.« less

  4. Propagation of a laser beam in a plasma

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.

    1975-01-01

    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.

  5. Laser beam control device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, H.L.

    1976-01-06

    The shutter and beam expander for diverting the output of a high power laser into an absorption body comprises a onepiece metallic structure having a convex spherically shaped portion adapted to be moved into the beam path for simultaneously reflecting and expanding the beam into energy absorption material.

  6. Laser-Beam-Absorption Chemical-Species Monitor

    NASA Technical Reports Server (NTRS)

    Gersh, Michael; Goldstein, Neil; Lee, Jamine; Bien, Fritz; Richtsmeier, Steven

    1996-01-01

    Apparatus measures concentration of chemical species in fluid medium (e.g., gaseous industrial process stream). Directs laser beam through medium, and measures intensity of beam after passage through medium. Relative amount of beam power absorbed in medium indicative of concentration of chemical species; laser wavelength chosen to be one at which species of interest absorbs.

  7. Free-beam soliton self-compression in air

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  8. Laser propagation and soliton generation in strongly magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, W.; Li, J. Q.; Kishimoto, Y.

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Mostmore » interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.« less

  9. Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity

    NASA Astrophysics Data System (ADS)

    Castro-Olvera, Gustavo; Garduño-Mejía, Jesus; Rosete-Aguilar, Martha; Roman-Moreno, Carlos J.

    2016-09-01

    In this work we present a numerical analysis of the mode coupling between the pump-beam and the laser-beam in a Ti:Sapphire crystal used as a gain medium of a femtosecond laser. Using the Matrix ABCD and propagation gaussian beam models, we obtained an optimal configuration for compensate the astigmatism in the output beam laser. Also we analysed pump-beam propagation and got the settings to fix the astigmatism in the crystal. Furthermore we apply this configuration to a homemade femtosecond laser, accomplishing an overall efficiency of laser to 20% in continuum wave (CW) and 16% in mode looking (ML) operation. The femtosecond laser have 30 nm bandwidth to FWHM at 810 nm corresponding 30fs.

  10. Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses.

    PubMed

    Rhodes, Michelle; Guang, Zhe; Pease, Jerrold; Trebino, Rick

    2017-04-10

    Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of pulses in a meaningful way. Here, we propose a general solution to plotting the electric fields of pulses in three-dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial phase evolution. Using this plotting technique, we generate two- and three-dimensional images and movies that show the effects of spatiotemporal couplings.

  11. Modes in light wave propagating in semiconductor laser

    NASA Technical Reports Server (NTRS)

    Manko, Margarita A.

    1994-01-01

    The study of semiconductor laser based on an analogy of the Schrodinger equation and an equation describing light wave propagation in nonhomogeneous medium is developed. The active region of semiconductor laser is considered as optical waveguide confining the electromagnetic field in the cross-section (x,y) and allowing waveguide propagation along the laser resonator (z). The mode structure is investigated taking into account the transversal and what is the important part of the suggested consideration longitudinal nonhomogeneity of the optical waveguide. It is shown that the Gaussian modes in the case correspond to spatial squeezing and correlation. Spatially squeezed two-mode structure of nonhomogeneous optical waveguide is given explicitly. Distribution of light among the laser discrete modes is presented. Properties of the spatially squeezed two-mode field are described. The analog of Franck-Condon principle for finding the maxima of the distribution function and the analog of Ramsauer effect for control of spatial distribution of laser emission are discussed.

  12. Output Beam Polarisation of X-ray Lasers with Transient Inversion

    NASA Astrophysics Data System (ADS)

    Janulewicz, K. A.; Kim, C. M.; Matouš, B.; Stiel, H.; Nishikino, M.; Hasegawa, N.; Kawachi, T.

    It is commonly accepted that X-ray lasers, as the devices based on amplified spontaneous emission (ASE), did not show any specific polarization in the output beam. The theoretical analysis within the uniform (single-mode) approximation suggested that the output radiation should show some defined polarization feature, but randomly changing from shot-to-shot. This hypothesis has been verified by experiment using traditional double-pulse scheme of transient inversion. Membrane beam-splitter was used as a polarization selector. It was found that the output radiation has a significant component of p-polarisation in each shot. To explain the effect and place it in the line with available, but scarce data, propagation and kinetic effects in the non-uniform plasma have been analysed.

  13. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  14. 80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers

    NASA Astrophysics Data System (ADS)

    Beloglazov, A.; Martino, M.; Nassisi, V.

    1996-05-01

    Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.

  15. Detection of errant laser beams

    NASA Astrophysics Data System (ADS)

    Taylor, Arthur F. D. S.; Edwards, Stanley A.; Barrett, J. A.; Bandle, Anthony M.

    1990-10-01

    The new generation of automated laser machine tools poses problems for those responsible for setting safety standards. While traditional safeguarding will frustrate full exploitation of this hybrid technology, wholesale abandonment of effective containment in favour of safety monitoring and control systems is unlikely to be acceptable. Long term, quantitative risk assessment will resolve this dilemma. Short term, guide lines will have to be derived from practical considerations of the laser facility design, materials, primary safety devices and procedures. Earlier risk assessments are reviewed relative to the emerging perspective of high average power laser installations. Aspects of extended beam delivery systems and equipment utilization and maintenance are examined to assess possible interaction with operational safety and in particular the potential to adversely influence errant laser beam occurrances (ELBO). To satisfy international safety standards for a laser enclosure which offers flexibility and is cost effective a detection system is described which continuously surveys the inside of the enclosure. Extensive trials have been carried out with high average power lasers (up to 10kW) where a range of engineering materials has been exposed to a laser beam. It is shown that the ratio of detection and shut down time to the burn through time can be an acceptable risk and thus indicate which materials will prove adequate.

  16. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  17. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  18. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe

    PubMed Central

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-01-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42–1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue. PMID:29675327

  19. Observation of laser-induced elastic waves in agar skin phantoms using a high-speed camera and a laser-beam-deflection probe.

    PubMed

    Laloš, Jernej; Gregorčič, Peter; Jezeršek, Matija

    2018-04-01

    We present an optical study of elastic wave propagation inside skin phantoms consisting of agar gel as induced by an Er:YAG (wavelength of 2.94 μm) laser pulse. A laser-beam-deflection probe is used to measure ultrasonic propagation and a high-speed camera is used to record displacements in ablation-induced elastic transients. These measurements are further analyzed with a custom developed image recognition algorithm utilizing the methods of particle image velocimetry and spline interpolation to determine point trajectories, material displacement and strain during the passing of the transients. The results indicate that the ablation-induced elastic waves propagate with a velocity of 1 m/s and amplitudes of 0.1 mm. Compared to them, the measured velocities of ultrasonic waves are much higher, within the range of 1.42-1.51 km/s, while their amplitudes are three orders of magnitude smaller. This proves that the agar gel may be used as a rudimental skin and soft tissue substitute in biomedical research, since its polymeric structure reproduces adequate soft-solid properties and its transparency for visible light makes it convenient to study with optical instruments. The results presented provide an insight into the distribution of laser-induced elastic transients in soft tissue phantoms, while the experimental approach serves as a foundation for further research of laser-induced mechanical effects deeper in the tissue.

  20. Laser beam shaping design based on micromirror array

    NASA Astrophysics Data System (ADS)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  1. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  2. Diffractive beam shaping for enhanced laser polymer welding

    NASA Astrophysics Data System (ADS)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  3. Kurtosis parameter K of arbitrary electromagnetic beams propagating through non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Xu, Yonggen; Dan, Youquan; Yu, Jiayi; Cai, Yangjian

    2017-10-01

    General analytical formulae for the kurtosis parameters K (K parameters) of the arbitrary electromagnetic (AE) beams propagating through non-Kolmogorov turbulence are derived, and according to the unified theory of polarization and coherence, the effect of degree of polarization (DOP) of an electromagnetic beam on the K parameter is studied. The analytical formulae can be given by the second-order moments and fourth-order moments of the Wigner distribution function for AE beams at source plane, the two turbulence quantities relating to the spatial power spectrum, and the propagation distance. Our results can also be extended to the arbitrary beams and the arbitrary spatial power spectra of Kolmogorov turbulence or non-Kolmogorov turbulence. Taking the stochastic electromagnetic Gaussian Schell-model (SEGSM) beam as an example, the numerical examples indicate that the K parameters of a SEGSM beam in non-Kolmogorov turbulence depend on propagation distance, the beam parameters and turbulence parameters. The K parameter of a SEGM beam is more sensitive to effect of turbulence with smaller inner scale and generalized exponent parameter. A non-polarized light has the strongest ability of resisting turbulence (ART), however, a fully polarized SEGSM beam has the poorest ART.

  4. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean

    NASA Astrophysics Data System (ADS)

    Tang, Miaomiao; Zhao, Daomu

    2014-02-01

    Based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, the spectral changes of stochastic anisotropic electromagnetic beams propagating through oceanic turbulence are revealed. As an example, some numerical calculations are illustrated for an anisotropic electromagnetic Gaussian Schell-model beam propagating in a homogeneous and isotropic turbulent ocean. It is shown that, under the influence of oceanic turbulence, the on-axis spectrum is always blue-shifted along with the propagation distance, however, for the off-axis positions, red-blue spectral switch can be found.

  5. Statistical characterization of fluctuations of a laser beam transmitted through a random air-water interface: new results from a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Majumdar, Arun K.; Land, Phillip; Siegenthaler, John

    2014-10-01

    New results for characterizing laser intensity fluctuation statistics of a laser beam transmitted through a random air-water interface relevant to underwater communications are presented. A laboratory watertank experiment is described to investigate the beam wandering effects of the transmitted beam. Preliminary results from the experiment provide information about histograms of the probability density functions of intensity fluctuations for different wind speeds measured by a CMOS camera for the transmitted beam. Angular displacements of the centroids of the fluctuating laser beam generates the beam wander effects. This research develops a probabilistic model for optical propagation at the random air-water interface for a transmission case under different wind speed conditions. Preliminary results for bit-error-rate (BER) estimates as a function of fade margin for an on-off keying (OOK) optical communication through the air-water interface are presented for a communication system where a random air-water interface is a part of the communication channel.

  6. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  7. Coherent beam combiner for a high power laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  8. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  9. Collimated Propagation of Fast Electron Beams Accelerated by High-Contrast Laser Pulses in Highly Resistive Shocked Carbon.

    PubMed

    Vaisseau, X; Morace, A; Touati, M; Nakatsutsumi, M; Baton, S D; Hulin, S; Nicolaï, Ph; Nuter, R; Batani, D; Beg, F N; Breil, J; Fedosejevs, R; Feugeas, J-L; Forestier-Colleoni, P; Fourment, C; Fujioka, S; Giuffrida, L; Kerr, S; McLean, H S; Sawada, H; Tikhonchuk, V T; Santos, J J

    2017-05-19

    Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1  kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

  10. Propagation characteristics of partially coherent anomalous elliptical hollow Gaussian beam propagating through atmospheric turbulence along a slant path

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Xu, Yonggen; Yang, Ting; Ma, Zairu; Wang, Shijian; Dan, Youquan

    2017-02-01

    Based on the extended Huygens-Fresnel principal and the Wigner distribution function, the root mean square (rms) angular width and propagation factor (M2-factor) of partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam propagating through atmospheric turbulence along a slant path are studied in detail. Analytical formulae of the rms angular width and M2-factor of PCAEHG beam are derived. Our results show that the rms angular width increases with increasing of wavelength and zenith angle and with decreasing of transverse coherence length, beam waist sizes and inner scale. The M2-factor increases with increasing of zenith angle and with decreasing of wavelength, transverse coherence length, beam waist sizes and inner scale. The saturation propagation distances (SPDs) increase as zenith angle increases. The numerical calculations also indicate that the SPDs of rms angular width and M2-factor for uplink slant paths with zenith angle of π/12 are about 0.2 and 20 km, respectively.

  11. Double wedge prism based beam deflector for precise laser beam steering

    NASA Astrophysics Data System (ADS)

    Tyszka, Krzysztof; Dobosz, Marek; Bilaszewski, Tomasz

    2018-02-01

    Aiming to increase laser beam pointing stability required in interferometric measurements, we designed a laser beam deflector intended for active laser beam stabilization systems. The design is based on two wedge-prisms: the deflecting wedge driven by a tilting piezo-platform and the fixed wedge to compensate initial beam deflection. Our design allows linear beam steering, independently in the horizontal or vertical direction, with resolution of less than 1 μrad in a range of more than 100 μrad, and no initial deflection of the beam. Moreover, the ratio of the output beam deflection angle and the wedge tilt angle is less than 0.1; therefore, the noise influence is significantly reduced in comparison to standard mirror-based deflectors. The theoretical analyses support the designing process and can serve as a guide to wedge-prism selection. The experimental results are in agreement with theory and confirm the advantages of the presented double wedge system.

  12. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  13. Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.

    PubMed

    Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng

    2013-11-20

    Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.

  14. Experimental investigation of complex circular Airy beam characteristics

    NASA Astrophysics Data System (ADS)

    Porfirev, A. P.; Fomchenkov, S. A.; Khonina, S. N.

    2018-04-01

    We demonstrate a new type of circular Airy beams, the so-called azimuthally modulated circular Airy beams, generated by utilizing a diffraction element, whose transmission function is the sum of the transmission function of the element generating a "petal" pattern and the transmission function of the element generating a circular Airy beam. We experimentally investigate the propagation dynamics of such beams and demonstrate that their autofocusing and selfhealing properties are strongly dependent on the number of generated petals. These beams are a combination of a conventional circular Airy beam and vortex laser beams (or their superpositions). Using a spatial light modulator, we demonstrate that these beams have unique properties such as autofocusing, "nondiffractive" propagation and self-healing after passing through an obstacle. The experimental results are in good agreement with the simulation. We believe that these results can be very useful for lensless laser fabrication and laser manipulation techniques, as well as for development of new filament plasma multi-channel formation methods.

  15. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  16. Multiple-beam propagation in an Anderson localized optical fiber.

    PubMed

    Karbasi, Salman; Koch, Karl W; Mafi, Arash

    2013-01-14

    We investigate the simultaneous propagation of multiple beams in a disordered Anderson localized optical fiber. The profiles of each beam fall off exponentially, enabling multiple channels at high-density. We examine the influence of fiber bends on the movement of the beam positions, which we refer to as drift. We investigate the extent of the drift of localized beams induced by macro-bending and show that it is possible to design Anderson localized optical fibers that can be used for practical beam-multiplexing applications.

  17. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  18. Rapid assessment of nonlinear optical propagation effects in dielectrics

    PubMed Central

    Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243

  19. Rapid assessment of nonlinear optical propagation effects in dielectrics.

    PubMed

    del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J

    2015-01-07

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.

  20. Rapid assessment of nonlinear optical propagation effects in dielectrics

    NASA Astrophysics Data System (ADS)

    Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.

  1. Effects of laser parameters on propagation characteristics of laser-induced stress wave for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.

  2. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  3. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  4. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  5. Effects of laser fluence on silicon modification by four-beam laser interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Le; Li, Dayou; JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU

    2015-12-21

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, andmore » the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.« less

  6. Flat-top beam for laser-stimulated pain

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark

    2005-04-01

    One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.

  7. Visualizing spatiotemporal pulse propagation: first-order spatiotemporal couplings in laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, Michelle; Guang, Zhe; Pease, Jerrold

    2017-04-06

    Even though a general theory of first-order spatiotemporal couplings exists in the literature, it is often difficult to visualize how these distortions affect laser pulses. In particular, it is difficult to show the spatiotemporal phase of pulses in a meaningful way. We propose a general solution to plotting the electric fields of pulses in three-dimensional space that intuitively shows the effects of spatiotemporal phases. The temporal phase information is color-coded using spectrograms and color response functions, and the beam is propagated to show the spatial phase evolution. In using this plotting technique, we generate two- and three-dimensional images and moviesmore » that show the effects of spatiotemporal couplings.« less

  8. Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam

    PubMed Central

    Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu

    2016-01-01

    We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications. PMID:27443798

  9. Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.

    PubMed

    Hu, Yuhui; Zhao, Di; Wang, Zhenghan; Chen, Fei; Xiong, Xiang; Peng, Ruwen; Wang, Mu

    2017-05-01

    Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.

  10. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  11. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu; INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequencymore » (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.« less

  12. Dual-Beam Atom Laser Driven by Spinor Dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  13. Account of an optical beam spreading caused by turbulence for the problem of partially coherent wavefield propagation through inhomogeneous absorbing media

    NASA Astrophysics Data System (ADS)

    Dudorov, Vadim V.; Kolosov, Valerii V.

    2003-04-01

    The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.

  14. Propagation of hollow Gaussian beam through a misaligned first-order optical system and its propagation properties

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng Liang; Lu, Xuan Hui

    2007-06-01

    Propagation properties of hollow Gaussian beam through a misaligned first-order ABCD system is studied using the generalized Huygens-Fresnel diffraction integral, augmented matrix. It is shown that, as a hollow Gaussian beam passes through the misaligned first-order ABCD system, the beam shape is not preserved, the out-put beams have differences when passing different misaligned optical systems. We can adjust the size of dark region through adjusting the misaligned transverse vector E.

  15. Towards ion beam therapy based on laser plasma accelerators.

    PubMed

    Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg

    2017-11-01

    Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.

  16. Multi-focus beam shaping of high power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  17. Detecting the propagation effect of terahertz wave inside the two-color femtosecond laser filament in the air

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zhang, X.; Li, S.; Liu, C.; Chen, Y.; Peng, Y.; Zhu, Y.

    2018-03-01

    In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric-optic sampling setup. The phenomenon of temporal advance of the THz waveform's peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.

  18. Large tuning of narrow-beam terahertz plasmonic lasers operating at 78 K

    DOE PAGES

    Wu, Chongzhao; Jin, Yuan; Reno, John L.; ...

    2016-12-19

    A new tuning mechanism is demonstrated for single-mode metal-clad plasmonic lasers, in which the refractive-index of the laser’s surrounding medium affects the resonant-cavity mode in the same vein as the refractive-index of gain medium inside the cavity. Reversible, continuous, and mode-hop-free tuning of ~57 GHz is realized for single-mode narrow-beam terahertz plasmonic quantum-cascade lasers (QCLs), which is demonstrated at a much more practical temperature of 78 K. The tuning is based on post-process deposition/etching of a dielectric (silicon-dioxide) on a QCL chip that has already been soldered and wire-bonded onto a copper mount. This is a considerably larger tuning rangemore » compared to previously reported results for terahertz QCLs with directional far-field radiation patterns. The key enabling mechanism for tuning is a recently developed antenna-feedback scheme for plasmonic lasers, which leads to the generation of hybrid surface-plasmon-polaritons propagating outside the cavity of the laser with a large spatial extent. The effect of dielectric deposition on QCL’s characteristics is investigated in detail including that on maximum operating temperature, peak output power, and far-field radiation patterns. Single-lobed beam with low divergence (<7°) is maintained through the tuning range. The antenna-feedback scheme is ideally suited for modulation of plasmonic lasers and their sensing applications due to the sensitive dependence of spectral and radiative properties of the laser on its surrounding medium.« less

  19. Laser-phased-array beam steering based on crystal fiber

    NASA Astrophysics Data System (ADS)

    Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei

    2011-06-01

    Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.

  20. Turbulence effects in a horizontal propagation path close to ground: implications for optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Gustafsson, Ove; Henriksson, Markus; Pettersson, Magnus

    2011-11-01

    Atmospheric turbulence effects close to ground may affect the performance of laser based systems severely. The variations in the refractive index along the propagation path cause effects such as beam wander, intensity fluctuations (scintillations) and beam broadening. Typical geometries of interest for optics detection include nearly horizontal propagation paths close to the ground and up to kilometre distance to the target. The scintillations and beam wander affect the performance in terms of detection probability and false alarm rate. Of interest is to study the influence of turbulence in optics detection applications. In a field trial atmospheric turbulence effects along a 1 kilometre horizontal propagation path were studied using a diode laser with a rectangular beam profile operating at 0.8 micrometer wavelength. Single-path beam characteristics were registered and analysed using photodetectors arranged in horizontal and vertical directions. The turbulence strength along the path was determined using a scintillometer and single-point ultrasonic anemometers. Strong scintillation effects were observed as a function of the turbulence strength and amplitude characteristics were fitted to model distributions. In addition to the single-path analysis double-path measurements were carried out on different targets. Experimental results are compared with existing theoretical turbulence laser beam propagation models. The results show that influence from scintillations needs to be considered when predicting performance in optics detection applications.

  1. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    NASA Astrophysics Data System (ADS)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  2. Flying Focus: Spatiotemporal Control of the Laser Beam Intensity

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Turnbull, D.; Kessler, T. J.; Haberberger, D.; Bahk, S.-W.; Begishev, I. A.; Boni, R.; Bucht, S.; Davies, A.; Katz, J.; Sefkow, A. B.; Shaw, J. L.

    2017-10-01

    A ``flying focus'' is presented: this advanced focusing scheme provides unprecedented spatiotemporal control over the laser focal volume. A chromatic focusing system combined with chirped laser pulses enabled the speed of a small-diameter laser focus to propagate over nearly 100 × its Rayleigh length. Furthermore, the flying focus decouples the speed at which the peak intensity propagates from the group velocity of the laser pulse, allowing the laser focus to co- or counter-propagate along its axis at any velocity. Experiments have demonstrated a nearly constant intensity over 4.5 mm while the velocity of the focus ranged from subluminal (0.01 c) to superluminal (15 c) . These properties could provide the opportunity to overcome current fundamental limitations in laser-plasma amplifiers, laser-wakefield accelerators, photon accelerators, ion accelerators, and high-order frequency conversion. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Research on atmospheric transmission distortion of Gauss laser using multiple phase screen method

    NASA Astrophysics Data System (ADS)

    Zhang, Yizhuo; Wang, Qiushi; Gu, Haidong

    2018-02-01

    The laser beam is attenuated, broadened, defocused and may even be deflected from its initial propagation direction as it propagates through the atmosphere. It leads to the decrease of the laser intensity of the receiving surface. Gauss beam is the fundamental components of all possible laser waveforms. Therefore, research on the transmission of the Gauss laser has far-reaching consequences in optical communication, weaponry, target designation, ranging, remote sensing and other applications that require transmission of laser beams through the atmosphere. In this paper, we propose a laboratory simulation method using multi-phase screen to calculate the effects of atmospheric turbulence. Theoretical analysis of Gauss laser transmission in the atmosphere is given. By calculating the propagation of the Gauss beam TEM00, the far field intensity and phase distribution is shown. By the given method, the optical setup is presented and used for optimizing the adaptive optics algorithm.

  4. Experimental Aspects in Beam Characterization

    NASA Astrophysics Data System (ADS)

    Sona, Alberto

    2004-08-01

    Beam characterization is the pre-requisite of any research exploiting light beams, especially in cases involving laser beams. One can rely on the beam parameters provided by the manufacturer but often they are inadequate and/or not sufficient for the experimental data analysis. The full characterization of a laser beam can require the determination of many parameters (about ten for a generic beam); however for symmetrical beams the significant ones can reduce to only to a few. The characterization can be performed with the accuracy requested by the application and limited to the relevant parameters. The main parameters of interest will be defined and the measurement procedures and equipment will be discussed. The ISO standards consider the following parameters mainly of interest for industrial applications: 1) Beam widths, divergence angle and beam propagation ratio. 2) Power, energy density distribution 3) Parameters for stigmatic and simple astigmatic beams 4) Parameters for general astigmatic beams 5) Geometrical laser beams classification and propagation 6) Power, energy and temporal characteristics 7) Beam positional stability 8) Beam polarization 9) Spectral characteristics 10) Shape of a laser wavefront: Phase distribution All the above points will be briefly discussed as regards the experimental problems involved. Special attention will be given to the methods for measuring the intensity distribution and to the related instrumentation to derive the Beam propagation ratio, the Beam Quality factor M2 or the Beam Parameters Product. Examples of the parameters relevance for specific applications will be given. Depending on the spectral range, specific detectors are used: CCD cameras with detector arrays in the visible and near infrared, thermocameras with a single detector and scanning system for the medium and far IR. The major problems in data collection and processing will be discussed. Another new and not yet fully investigated area is the characterization

  5. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  6. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.

    PubMed

    Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu

    2004-06-01

    A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.

  7. Multi-image acquisition-based distance sensor using agile laser spot beam.

    PubMed

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  8. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam.

    PubMed

    Kang, Minjung; Han, Heung Nam; Kim, Cheolhee

    2018-04-23

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility.

  9. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam

    PubMed Central

    Kang, Minjung; Han, Heung Nam

    2018-01-01

    Oscillating laser beam welding for Al 6014 alloy was performed using a single mode fiber laser and two-axis scanner system. Its effect on the microstructural evolution of the fusion zone was investigated. To evaluate the influence of oscillation parameters, self-restraint test specimens were fabricated with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For most oscillation conditions, the microstructure resembled that of linear welds. A columnar structure was formed near the fusion line and an equiaxed structure was generated at its center. The wide equiaxed zone of oscillation welding increased solidification crack susceptibility. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion fluctuated. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. PMID:29690630

  10. Propagation and scattering of vector light beam in turbid scattering medium

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Milione, Giovanni; Meglinski, Igor; Alfano, Robert R.

    2014-03-01

    Due to its high sensitivity to subtle alterations in medium morphology the vector light beams have recently gained much attention in the area of photonics. This leads to development of a new non-invasive optical technique for tissue diagnostics. Conceptual design of the particular experimental systems requires careful selection of various technical parameters, including beam structure, polarization, coherence, wavelength of incident optical radiation, as well as an estimation of how the spatial and temporal structural alterations in biological tissues can be distinguished by variations of these parameters. Therefore, an accurate realistic description of vector light beams propagation within tissue-like media is required. To simulate and mimic the propagation of vector light beams within the turbid scattering media the stochastic Monte Carlo (MC) technique has been used. In current report we present the developed MC model and the results of simulation of different vector light beams propagation in turbid tissue-like scattering media. The developed MC model takes into account the coherent properties of light, the influence of reflection and refraction at the medium boundary, helicity flip of vortexes and their mutual interference. Finally, similar to the concept of higher order Poincaŕe sphere (HOPS), to link the spatial distribution of the intensity of the backscattered vector light beam and its state of polarization on the medium surface we introduced the color-coded HOPS.

  11. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  12. Implementation of a diode-pumped Nd:YAG laser with quick-change output couplers for high-beam quality 1064 or 532 nm wavelength generation

    NASA Astrophysics Data System (ADS)

    Li, Chun-Hao; Tsai, Ming-Jong

    2009-06-01

    A novel diode-pumped Nd:YAG laser system that employs a fixed active laser medium and a pair of quick-change output couplers on a precision linear stage for 1064 or 532 nm wavelength generation is presented. Fixed elements include a rear mirror, an acousto-optical Q-switch, and a diode-pumped solid-state laser (DPSSL). Movable elements for 1064 nm generation include an intra-cavity aperture as a mode selection element (MSE) and an output coupler. Movable elements for 532 nm generation include an intra-cavity frequency conversion with KTP, an intra-cavity aperture as a mode selection element (MSE), and an output coupler. Under stable operating conditions, the 1064 nm configuration produced a beam propagation ratio of 1.18 whereas the 532 nm configuration produced a beam propagation ratio of 1.1, both of which used an intra-cavity MSE with an aperture of 1.2 mm and a length of 5 mm.

  13. Generation of various partially coherent beams and their propagation properties in turbulent atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian

    2011-03-01

    Partially coherent beams, such as Gaussian Schell-model beam, partially coherent dark hollow beam, partially coherent flat-topped beam and electromagnetic Gaussian Schell-model beam, have important applications in free space optical communications, optical imaging, optical trapping, inertial confinement fusion and nonlinear optics. In this paper, experimental generations of various partially coherent beams are introduced. Furthermore, with the help of a tensor method, analytical formulae for such beams propagating in turbulent atmosphere are derived, and the propagation properties of such beams in turbulent atmosphere are reviewed.

  14. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    NASA Astrophysics Data System (ADS)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  15. Undersea Laser Communication with Narrow Beams

    DTIC Science & Technology

    2015-09-29

    Abstract Laser sources enable highly efficient optical communications links due to their ability to be focused into very directive beam profiles...Recent atmospheric and space optical links have demonstrated robust laser communications links at high rate with techniques that are applicable to the...undersea environment. These techniques contrast to the broad-angle beams utilized in most reported demonstrations of undersea optical communications

  16. Scaling relations for a needle-like electron beam plasma from the self-similar behavior in beam propagation

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei

    2017-10-01

    Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.

  17. Quality factor analysis for aberrated laser beam

    NASA Astrophysics Data System (ADS)

    Ghafary, B.; Alavynejad, M.; Kashani, F. D.

    2006-12-01

    The quality factor of laser beams has attracted considerable attention and some different approaches have been reported to treat the problem. In this paper we analyze quality factor of laser beam and compare the effect of different aberrations on beam quality by expanding pure phase term of wavefront in terms of Zernike polynomials. Also we analyze experimentally the change of beam quality for different Astigmatism aberrations, and compare theoretical results with experimentally results. The experimental and theoretical results are in good agreement.

  18. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  19. Laser beam-plasma plume interaction during laser welding

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  20. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    NASA Astrophysics Data System (ADS)

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  1. Manipulation by multiple filamentation of subpicosecond TW KrF laser beam

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2018-05-01

    A self-focusing of TW-level subpicosecond UV KrF laser pulses in ambient air produces a few 100 randomly distributed filaments over 100-m propagation distance. A control of multiple filamentation process by a number of methods was demonstrated in the present work envisaging applications for a HV discharge guiding, remote excitation of an atmospheric air laser, MW radiation transfer by virtual plasma waveguide, as well as filamentation suppression to improve short pulse parameters in direct amplification scheme. Under the laser beam focusing, a multitude of filaments coalesced into a superfilament with highly increased intensity and plasma conductivity. A superradiant forward lasing was obtained in the superfilament around 1.07-µm wavelength of atmospheric nitrogen. A regular 2D array of a 100 superfilaments was configured over 20-m distance by Fresnel diffraction on periodic amplitude masks. Effective Kerr defocusing and a subsequent filaments suppression over 50-m distance was demonstrated in Xe due to 2-photon resonance of laser radiation with 6p state being accompanied by a narrow-angle coherent conical emission at 828-nm wavelength.

  2. The effect of optically active turbulence on Gaussian laser beams in the ocean

    NASA Astrophysics Data System (ADS)

    Nootz, G.; Matt, S.; Jarosz, E.; Hou, W.

    2016-02-01

    Motivated by the high resolution and data transfer potential, optical imaging and communication methods are intensely investigated for marine applications. The majority of research focuses on overcoming the strong scattering of light by particles present in the ocean. However when operating in very clear water the limiting factor for such applications can be the strongly forward biased scattering from optically active turbulent layers. For this presentation the effect of optically active turbulence on focused Gaussian beams has been studied in the field, in a controlled laboratory test tank, and by numerical simulations. For the field experiments a telescoping rigid underwater sensor structure (TRUSS) was deployed in the Bahamas equipped with a diffractive optics element projecting a matrix of beams towards a fast beam profiler. Image processing techniques are used to extract the beam wander and beam breathing. The results are compared to theoretical values for the optical turbulence strength derived from the measured temperature microstructure at the test side. Laboratory and simulated experiments are carried out in a physical and numerical Rayleigh-Benard convection turbulence tank of the same geometry. A focused Gaussian laser beam is propagated through the test tank and recorded with a camera from the back side of a diffuser. Similarly, a focused Gaussian beam is propagated numerically by means of split-step Fourier method through the simulated turbulence environment. Results will be presented for weak to moderate turbulence as they are most typical for oceanic conditions. Conclusions about the effect on optical imaging and communication applications will be discussed.

  3. Laser Beam Welding of Nitride Steel Components

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Yin, Guobin; Shulkin, Boris

    Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.

  4. Beam uniformity analysis of infrared laser illuminators

    NASA Astrophysics Data System (ADS)

    Allik, Toomas H.; Dixon, Roberta E.; Proffitt, R. Patrick; Fung, Susan; Ramboyong, Len; Soyka, Thomas J.

    2015-02-01

    Uniform near-infrared (NIR) and short-wave infrared (SWIR) illuminators are desired in low ambient light detection, recognition, and identification of military applications. Factors that contribute to laser illumination image degradation are high frequency, coherent laser speckle and low frequency nonuniformities created by the laser or external laser cavity optics. Laser speckle analysis and beam uniformity improvements have been independently studied by numerous authors, but analysis to separate these two effects from a single measurement technique has not been published. In this study, profiles of compact, diode laser NIR and SWIR illuminators were measured and evaluated. Digital 12-bit images were recorded with a flat-field calibrated InGaAs camera with measurements at F/1.4 and F/16. Separating beam uniformity components from laser speckle was approximated by filtering the original image. The goal of this paper is to identify and quantify the beam quality variation of illumination prototypes, draw awareness to its impact on range performance modeling, and develop measurement techniques and methodologies for military, industry, and vendors of active sources.

  5. Nonlinear propagation of phase-conjugate focused sound beams in water

    NASA Astrophysics Data System (ADS)

    Brysev, A. P.; Krutyansky, L. M.; Preobrazhensky, V. L.; Pyl'nov, Yu. V.; Cunningham, K. B.; Hamilton, M. F.

    2000-07-01

    Nonlinear propagation of phase-conjugate, focused, ultrasound beams is studied. Measurements are presented of harmonic amplitudes along the axis and in the focal plane of the conjugate beam, and of the waveform and spectrum at the focus. A maximum peak pressure of 3.9 MPa was recorded in the conjugate beam. The measurements are compared with simulations based on the KZK equation, and satisfactory agreement is obtained.

  6. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.

  7. Tailored laser beam shaping for efficient and accurate microstructuring

    NASA Astrophysics Data System (ADS)

    Häfner, T.; Strauß, J.; Roider, C.; Heberle, J.; Schmidt, M.

    2018-02-01

    Large-area processing with high material removal rates by ultrashort pulsed (USP) lasers is coming into focus by the development of high-power USP laser systems. However, currently the bottleneck for high-rate production is given by slow and inefficient beam manipulation. On the one hand, slow beam deflection with regard to high pulse repetition rates leads to heat accumulation and shielding effects, on the other hand, a conventional focus cannot provide the optimum fluence due to the Gaussian intensity profile. In this paper, we emphasize on two approaches of dynamic laser beam shaping with liquid crystal on silicon spatial light modulation and acousto-optic beam shaping. Advantages and limitations of dynamic laser beam shaping with regard to USP laser material processing and methods for reducing the influence of speckle are discussed. Additionally, the influence of optics induced aberrations on speckle characteristics is evaluated. Laser material processing results are presented correlating the achieved structure quality with the simulated and measured beam quality. Experimental and analytical investigations show a certain fluence dependence of the necessary number of alternative holograms to realize homogeneous microstructures.

  8. Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction.

    PubMed

    Verma, Shwetabh; Hesser, Juergen; Arba-Mosquera, Samuel

    2017-04-01

    Controversial opinions exist regarding optimum laser beam characteristics for achieving smoother ablations in laser-based vision correction. The purpose of the study was to outline a rigorous simulation model for simulating shot-by-shot ablation process. The impact of laser beam characteristics like super Gaussian order, truncation radius, spot geometry, spot overlap, and lattice geometry were tested on ablation smoothness. Given the super Gaussian order, the theoretical beam profile was determined following Lambert-Beer model. The intensity beam profile originating from an excimer laser was measured with a beam profiler camera. For both, the measured and theoretical beam profiles, two spot geometries (round and square spots) were considered, and two types of lattices (reticular and triangular) were simulated with varying spot overlaps and ablated material (cornea or polymethylmethacrylate [PMMA]). The roughness in ablation was determined by the root-mean-square per square root of layer depth. Truncating the beam profile increases the roughness in ablation, Gaussian profiles theoretically result in smoother ablations, round spot geometries produce lower roughness in ablation compared to square geometry, triangular lattices theoretically produce lower roughness in ablation compared to the reticular lattice, theoretically modeled beam profiles show lower roughness in ablation compared to the measured beam profile, and the simulated roughness in ablation on PMMA tends to be lower than on human cornea. For given input parameters, proper optimum parameters for minimizing the roughness have been found. Theoretically, the proposed model can be used for achieving smoothness with laser systems used for ablation processes at relatively low cost. This model may improve the quality of results and could be directly applied for improving postoperative surface quality.

  9. Propagation characteristics of two-color laser pulses in homogeneous plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemlata,; Saroch, Akanksha; Jha, Pallavi

    2015-11-15

    An analytical and numerical study of the evolution of two-color, sinusoidal laser pulses in cold, underdense, and homogeneous plasma has been presented. The wave equations for the radiation fields driven by linear as well as nonlinear contributions due to the two-color laser pulses have been set up. A variational technique is used to obtain the simultaneous equations describing the evolution of the laser spot size, pulse length, and chirp parameter. Numerical methods are used to graphically analyze the simultaneous evolution of these parameters due to the combined effect of the two-color laser pulses. Further, the pulse parameters are compared withmore » those obtained for a single laser pulse. Significant focusing, compression, and enhanced positive chirp is obtained due to the combined effect of simultaneously propagating two-color pulses as compared to a single pulse propagating in plasma.« less

  10. KrF laser pumping by electron beam discharge

    NASA Astrophysics Data System (ADS)

    Bonnet, J.; Fournier, G.; Pigache, D.

    1981-09-01

    The pumping of excimer lasers used in nuclear fusion and isotope separation is considered. Homogeneous ionization with an electron beam permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This result does not modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate.

  11. Effect of beam types on the scintillations: a review

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian

    2009-02-01

    When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam

  12. Propagation and Loss-Cone Properties of Relativistic Electron Beams in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Sanchez, E. R.; Powis, A.; Greklek, M.; Porazik, P.; Kaganovich, I.

    2017-12-01

    One of the main obstacles for achieving closure of several key outstanding questions in magnetospheric physics has been the lack of accurate magnetic field mapping between processes or regions in the magnetosphere and their ionospheric foot-points. Accurate correspondence between magnetospheric processes or regions and their ionospheric foot-points can be achieved with beams of MeV electrons that propagate along magnetic-field lines in fractions of a second, emitted by compact linear accelerators under controlled conditions at specified points in the magnetosphere, while the atmospheric imprint created by their precipitation is detected by an array of ground-based optical imagers, radars, riometers or X-ray detectors. To prove that successful magnetic field mapping is possible, we must ensure that the beam can be injected into the loss cone, that the spacecraft potentials induced by the beam emission are manageable, that the beam propagates all the way into the topside ionosphere, and that the beam produces a signature detectable from the ground or from low altitude. In this work, we present the latest results of calculations of beam injection and propagation for a wide range of injection distances in the magnetotail equator and geomagnetic conditions to determine under what conditions beams emitted from the magnetosphere would be able to propagate to the topside ionosphere with enough intensity to be detected by ground-based or low-altitude instrumentation. Using ballistic simulations of charged particle motion, we demonstrate that relativistic electron beams can be successfully injected into the loss cone under both ideal (analytic dipole) and realistic (MHD modeled) magnetosphere conditions from a wide range of injection positions. For identical injection coordinates, the impact location on the top of the atmosphere is dependent on the current magnetosphere conditions, demonstrating that this technique can distinguish between the phases of a geomagnetic storm

  13. Propagation of Ince-Gaussian beams in a thermal lens medium

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Wang, Shaomin

    2006-09-01

    The propagation of Ince-Gaussian beams in a thermal lens medium is studied in this paper. Based on the ABCD matrix for Gaussian beams passing through a thermal lens medium, distinct expressions for the beam transverse intensity distributions and the longitudinal phase shift are deduced and discussed. Similar to Laguerre and Hermite-Gaussian beams, Ince-Gaussian beams, which constitute the third complete family of exact and orthogonal solutions of the paraxial wave equation, can also be used in other inhomogeneous media such as lenslike media and saturated absorption media.

  14. Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil Tanyer

    2008-02-01

    We formulate and evaluate in terms of graphical outputs, source and receiver plane expressions, the complex degree of coherence, beam size variation and power in bucket performance for higher order partially coherent dark hollow beams propagating in turbulent atmosphere. Our formulation is able to cover square, rectangular, circular, elliptical geometries for dark hollow and flat-topped beams in one single expression. From the graphical outputs of the receiver plane, it is observed that higher order partially coherent dark hollow beams will initially develop an outer ring around a central lobe, but will eventually evolve towards a Gaussian shape as the propagation distance is extended. It is further observed that stronger turbulence levels and greater partial coherence have similar effects on beam profile. During propagation, modulus of complex degree of coherence of partially coherent dark hollow beams appears to rise above that of the source plane values, reaching as high as near unity. Beam size analysis shows that, among the types examined, (nearly) flat-topped beam experiences the least beam expansion. Power in bucket analysis indicates that lowest order square fully coherent dark beam offers the best power capturing.

  15. Laser streaming: Turning a laser beam into a flow of liquid

    PubMed Central

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-01-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming. PMID:28959726

  16. Laser streaming: Turning a laser beam into a flow of liquid.

    PubMed

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  17. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    PubMed

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  18. Nonlinear laser pulse response in a crystalline lens.

    PubMed

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  19. Laser beam guard clamps

    DOEpatents

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  20. Laser beam distribution system for the HiLASE Center

    NASA Astrophysics Data System (ADS)

    Macúchová, Karolina; Heřmánek, Jan; Kaufman, Jan; Muresan, Mihai-George; Růžička, Jan; Řeháková, Martina; Divoký, Martin; Švandrlík, Luděk.; Mocek, Tomáś

    2017-12-01

    We report recent progress in design and testing of a distribution system for high-power laser beam delivery developed within the HiLASE project of the IOP in the Czech Republic. Laser beam distribution system is a technical system allowing safe and precise distribution of different laser beams from laboratories to several experimental stations. The unique nature of HiLASE lasers requires new approach, which makes design of the distribution system a state-of-the-art challenge.

  1. Beacon Beams for Deep Turbulence High Energy Laser Beam Directors

    DTIC Science & Technology

    2012-11-02

    variance and nC is the atmospheric refractive index structure constant. The effect of turbulence on the focused beacon beam on target, TR...complete phase conjugation of the beacon beam is accomplished by employing Brillouin enhanced optical four wave mixing. A beacon beam formed by...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6790--12-9445 Beacon Beams for Deep Turbulence High Energy Laser Beam Directors P

  2. Atmospheric Effects upon Laser Beam Propagation: An Annotated Bibliography

    DTIC Science & Technology

    1979-02-14

    pp. 2711-2720, September 1978. [ Measurements in long path white cell and spietro- phone using a tunable DF laser on normal and deuterium depleted...34Backscatter in Clouds at 0.9 pm and Its Effect on Optical Fuzing Systems ," Proc. 7th Laser Conf., Vol. I1, p. 15, June 1976. [ Measured extinction and...relative transmission measurements during March at the White Sands HELSTF (High Energy Laser Standard Test 12 Facility) 6.5 km path . In May they are

  3. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  4. Characteristics of laser beam focusing with single spherical mirrors during laser treatment

    NASA Astrophysics Data System (ADS)

    Borkin, A. G.; Drobyazko, S. V.; Kosheleva, G. A.; Pavlovich, Yu. V.; Senatorov, Yu. M.; Fromm, V. A.; Kurchatov, I. V.

    1988-04-01

    Focusing of a laser beam with a single spherical mirror is analyzed, such a mirror being combined with a rotatable annular plane mirror in a coaxial configuration. Its focal length must be sufficiently large to ensure adequately high power density and to avoid shielding. When the distance from mirror to laser cavity is too large, then the laser beam may degenerate into a nonannular one and its focusing without loss may become unattainable. Tilting the spherical mirror will make this possible, even when the laser beam is not annular, if astigmatism as well as spherical aberration are minimized. Such a focusing mirror made of metal is theoretically shown to be much more effective than a focusing lens made of KC1 crystal; this has been confirmed experimentally in a CO sub 2 laser facility for perforation of tubular seperator meshes.

  5. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can

  6. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.

    2018-06-01

    We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.

  7. Propagation of a phase-locked circular dark hollow beams array in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Xu, Xiaojun; Liu, Zejin

    2010-10-01

    The propagation of phase-locked circular dark hollow beams array in a turbulent atmosphere is studied. An analytical expression for the average intensity distribution at the receiving plane is obtained based on the extended Huygens-Fresnel principle. The effects of turbulence, dark parameter and beam order of the beams array on the intensity pattern are studied and analyzed. It is found that the intensity pattern of the phase-locked circular dark hollow beams array will evolve from a multiple-spot-pattern into a Gaussian beam spot under the isotropic influence of the turbulence. The intensity pattern of beam array with a larger dark parameter and beam order evolves into the Gaussian-shape faster with increasing propagation distance.

  8. Laser-excited pulse propagation in a crystallized complex plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.

  9. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics.

    PubMed

    Zheng, Yi; Ma, Ping; Li, Haibo; Liu, Zhichao; Chen, Songlin

    2013-07-15

    UV laser induced damage (LID) on exit surface of fused silica could cause modulation effect to transmitted beam and further influence downstream propagation properties. This paper presents our experimental and analytical studies on this topic. In experiment, a series of measurement instruments are applied, including beam profiler, interferometer, microscope, and optical coherent tomography (OCT). Creating and characterizing of LID on fused silica sample have been implemented. Morphological features are studied based on their particular modulation effects on transmitted beam. In theoretical investigation, analytical modeling and numerical simulation are performed. Modulation effects from amplitude, phase, and size factors are analyzed respectively. Furthermore, we have novelly designed a simplified polygon model to simulate actual damage site with multiform modulation features, and the simulation results demonstrate that the modeling is usable and representative.

  10. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  11. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  12. High energy micro electron beam generation using chirped laser pulse in the presence of an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akou, H., E-mail: h.akou@nit.ac.ir; Hamedi, M.

    2015-10-15

    In this paper, the generation of high-quality and high-energy micro electron beam in vacuum by a chirped Gaussian laser pulse in the presence of an axial magnetic field is numerically investigated. The features of energy and angular spectra, emittances, and position distribution of electron beam are compared in two cases, i.e., in the presence and absence of an external magnetic field. The electron beam is accelerated with higher energy and qualified in spatial distribution in the presence of the magnetic field. The presence of an axial magnetic field improves electron beam spatial quality as well as its gained energy throughmore » keeping the electron motion parallel to the direction of propagation for longer distances. It has been found that a 64 μm electron bunch with about MeV initial energy becomes a 20 μm electron beam with high energy of the order of GeV, after interacting with a laser pulse in the presence of an external magnetic field.« less

  13. Apparatus Translates Crossed-Laser-Beam Probe Volume

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; South, Bruce W.; Exton, Reginald J.

    1994-01-01

    Optomechanical apparatus translates probe volume of crossed-beam laser velocimeter or similar instrument while maintaining optical alignment of beams. Measures velocity, pressure, and temperature of flowing gas at several locations. Repeated tedious realignments no longer necessary. Designed to accommodate stimulated-Raman-gain spectrometer for noninvasive measurement of local conditions in flowing gas in supersonic wind tunnel. Applicable to other techniques like coherent anti-Stokes Raman spectroscopy involving use of laser beams crossed at small angles (10 degrees or less).

  14. Propagation of specular and anti-specular Gaussian Schell-model beams in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Zhou, Zhaotao; Guo, Mengwen; Zhao, Daomu

    2017-01-01

    On the basis of the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, we investigate the propagation properties of the specular and anti-specular Gaussian Schell-model (GSM) beams through oceanic turbulence. It is shown that the specularity of specular GSM beams and the anti-specularity of anti-specular GSM beams are destroyed on propagation in oceanic turbulence. The spectral density and the spectral degree of coherence are also studied in detail. The results may be helpful for underwater communication.

  15. Observation of laser beam profile progression inside an extended laser cavity

    NASA Astrophysics Data System (ADS)

    Wu, Frank F.; Farrell, Thomas C.

    2013-03-01

    This report presents the result of the laser beam profile progression in target-in-the-loop (TIL) system. This simulation experiment is to verify whether it is possible to form a tight hot spot similar to a single transversal mode in an extended laser cavity. Therefore, it is very important to observe the progression of the laser profile at a laser cavity mirror when a seeded high energy laser pulse is injected into the TIL system. The extended laser cavity is formed with a high reflectivity mirror on one end and an optical phase conjugated mirror as the second mirror, with potential disturbance media inside. The laser oscillation occurs only when it is triggered with a single frequency high energy laser pulse to overcome the threshold condition. With a laser cavity length of around 11 meters and a seeded laser pulse of 10 ns, we have been able to acquire and distinguish the laser beam profiles of each round-trip. Inserting a scattering media and other distortion elements can simulate atmospheric effects.

  16. Laser-beam scintillations for weak and moderate turbulence

    NASA Astrophysics Data System (ADS)

    Baskov, R. A.; Chumak, O. O.

    2018-04-01

    The scintillation index is obtained for the practically important range of weak and moderate atmospheric turbulence. To study this challenging range, the Boltzmann-Langevin kinetic equation, describing light propagation, is derived from first principles of quantum optics based on the technique of the photon distribution function (PDF) [Berman et al., Phys. Rev. A 74, 013805 (2006), 10.1103/PhysRevA.74.013805]. The paraxial approximation for laser beams reduces the collision integral for the PDF to a two-dimensional operator in the momentum space. Analytical solutions for the average value of PDF as well as for its fluctuating constituent are obtained using an iterative procedure. The calculated scintillation index is considerably greater than that obtained within the Rytov approximation even at moderate turbulence strength. The relevant explanation is proposed.

  17. Analytical approach of laser beam propagation in the hollow polygonal light pipe.

    PubMed

    Zhu, Guangzhi; Zhu, Xiao; Zhu, Changhong

    2013-08-10

    An analytical method of researching the light distribution properties on the output end of a hollow n-sided polygonal light pipe and a light source with a Gaussian distribution is developed. The mirror transformation matrices and a special algorithm of removing void virtual images are created to acquire the location and direction vector of each effective virtual image on the entrance plane. The analytical method is demonstrated by Monte Carlo ray tracing. At the same time, four typical cases are discussed. The analytical results indicate that the uniformity of light distribution varies with the structural and optical parameters of the hollow n-sided polygonal light pipe and light source with a Gaussian distribution. The analytical approach will be useful to design and choose the hollow n-sided polygonal light pipe, especially for high-power laser beam homogenization techniques.

  18. Space Optical Communications Using Laser Beams

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M. (Inventor)

    2017-01-01

    A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.

  19. Analytic expression and propagation properties of hollow Gaussian beams for the off-waist incident case in strongly nonlocal media

    NASA Astrophysics Data System (ADS)

    Dai, Zhiping; Ling, Xiaohui; Tang, Shiqing

    2018-06-01

    In this paper, the propagation properties of hollow Gaussian beams (HGBs) are discussed in detail when they are off-waist incident in strongly nonlocal media. A set of mathematic expressions are given to describe the evolutions of the beam intensity, the beam width, and the real beam radius. Numerical simulations are carried out to illustrate these propagation properties depended on the off-waist incidence. It is found that a HGB always periodically transforms its transverse patterns during propagation. Accordingly, the beam width and the real beam radius are also periodic during propagation.

  20. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, R.D.; Hackel, R.P.

    1996-02-06

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam. 6 figs.

  1. Method and apparatus for monitoring the power of a laser beam

    DOEpatents

    Paris, Robert D.; Hackel, Richard P.

    1996-01-01

    A method for monitoring the power of a laser beam in real time is disclosed. At least one optical fiber is placed through the laser beam, where a portion of light from the laser beam is coupled into the optical fiber. The optical fiber may be maintained in a stationary position or moved periodically over a cross section of the laser beam to couple light from each area traversed. Light reaching both fiber ends is monitored according to frequency and processed to determine the power of the laser beam.

  2. The Beam Characteristics of High Power Diode Laser Stack

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  3. High-power direct diode laser output by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  4. Nanoparticles based laser-induced surface structures formation on mesoporous silicon by picosecond laser beam interaction

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Petit, A.; Melhem, A.; Stolz, A.; Boulmer-Leborgne, C.; Gautier, G.; Defforge, T.; Semmar, N.

    2016-06-01

    In this study, laser induced periodic surface structures were formed on mesoporous silicon by irradiation of Nd:YAG picosecond pulsed laser beam at 266 nm wavelength at 1 Hz repetition rate and with 42 ps pulse duration. The effects of laser processing parameters as laser beam fluence and laser pulse number on the formation of ripples were investigated. Scanning electron microscopy and atomic force microscopy were used to image the surface morphologies and the cross section of samples after laser irradiation. At relatively low fluence ∼20 mJ/cm2, ripples with period close to the laser beam wavelength (266 nm) and with an always controlled orientation (perpendicular to the polarization of ps laser beam) appeared after a large laser pulse number of 12,000. It has been found that an initial random distribution of SiOx nanoparticles is periodically structured with an increase of the laser pulse number. Finally, it is experimentally demonstrated that we formed a 100 nm liquid phase under the protusion zones including the pores in the picosecond regime.

  5. Measurements on wave propagation characteristics of spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  6. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.

    PubMed

    Jing, Yuan; Cleveland, Robin O

    2007-09-01

    A three-dimensional model of the forward propagation of nonlinear sound beams in inhomogeneous media, a generalized Khokhlov-Zabolotskaya-Kuznetsov equation, is described. The Texas time-domain code (which accounts for paraxial diffraction, nonlinearity, thermoviscous absorption, and absorption and dispersion associated with multiple relaxation processes) was extended to solve for the propagation of nonlinear beams for the case where all medium properties vary in space. The code was validated with measurements of the nonlinear acoustic field generated by a phased array transducer operating at 2.5 MHz in water. A nonuniform layer of gel was employed to create an inhomogeneous medium. There was good agreement between the code and measurements in capturing the shift in the pressure distribution of both the fundamental and second harmonic due to the gel layer. The results indicate that the numerical tool described here is appropriate for propagation of nonlinear sound beams through weakly inhomogeneous media.

  7. Red and infrared gas laser beam for therapy

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail-Lucian; Ristici, Marin; Ristici, E.; Tivarus, Madalina-Elena

    2000-06-01

    For the low power laser therapy, the experiments show that better results are obtained when the laser beam is an overlapping of two radiations: one in the visible region of the spectrum and the other in IR region. Also, some experiments show that for good results in biostimulation it is important to have a high coherence length of laser beam; this is not the case of the laser diodes The He-Ne laser has the best coherence, being able to generate laser radiations in visible and IR. It has tow strong laser lines: 633 nm and 1.15 micrometers . Although their gains are about the same, the available power of the red radiation is 3-4 times higher because of its larger width, when they oscillate separately. Using special dichroic mirrors for simultaneous reflection of the both liens, the laser beam will consist of the two radiations, each of them having good coherence . A 420 mm active length, 1.8 mm inner diameter He-Ne laser tube and a special designed resonator has been developed. The mirrors reflect both radiations as follows: one reflects 99.9 percent and the other, the output mirror, reflects 98 percent. There is a competition between them because these lines have a common lower level. The output power of the laser beam as 6 mW for 633 nm and 4 mW for 1.15 micrometers , respectively.

  8. Influence of laser beam incidence angle on laser lap welding quality of galvanized steels

    NASA Astrophysics Data System (ADS)

    Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan

    2017-11-01

    Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.

  9. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  10. High power infrared super-Gaussian beams: generation, propagation, and application

    NASA Astrophysics Data System (ADS)

    du Preez, Neil C.; Forbes, Andrew; Botha, Lourens R.

    2008-10-01

    In this paper we present the design of a CO2 laser resonator that produces as the stable transverse mode a super-Gaussian laser beam. The resonator makes use of an intra-cavity diffractive mirror and a flat output coupler, generating the desired intensity profile at the output coupler with a flat wavefront. We consider the modal build-up in such a resonator and show that such a resonator mode has the ability to extract more energy from the cavity that a standard cavity single mode beam (e.g., Gaussian mode cavity). We demonstrate the design experimentally on a high average power TEA CO2 laser for paint stripping applications.

  11. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams

    NASA Astrophysics Data System (ADS)

    Haitao, Chen; Gao, Zenghui; Wang, Wanqing

    2017-06-01

    The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.

  12. Method of laser beam coding for control systems

    NASA Astrophysics Data System (ADS)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  13. Diffractive Combiner of Single-Mode Pump Laser-Diode Beams

    NASA Technical Reports Server (NTRS)

    Liu, Duncan; Wilson, Daniel; Qiu, Yueming; Forouhar, Siamak

    2007-01-01

    An optical beam combiner now under development would make it possible to use the outputs of multiple single-mode laser diodes to pump a neodymium: yttrium aluminum garnet (Nd:YAG) nonplanar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, an Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained below, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. Figure 1 schematically illustrates the principle of operation of a laser-diode-pumped Nd:YAG NPRO. The laser beam path is confined in a Nd:YAG crystal by means of total internal reflections on the three back facets and a partial-reflection coating on the front facet. The wavelength of the pump beam - 808 nm - is the wavelength most strongly absorbed by the Nd:YAG crystal. The crystal can lase at a wavelength of either 1,064 nm or 1,319 nm - which one depending on the optical coating on the front facet. A thermal lens effect induced by the pump beam enables stable lasing in the lowest-order transverse electromagnetic mode (the TEM00 mode). The frequency of this laser is very stable because of the mechanical stability of the laser crystal and the unidirectional nature of the lasing. The unidirectionality is a result of the combined effects of (1) a Faraday rotation induced by an externally applied magnetic field and (2) polarization associated with non-normal incidence and reflection on the front facet.

  14. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    DOE PAGES

    Liu, Y.; Rakhman, A.; Menshov, A.; ...

    2016-12-01

    A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  15. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Rakhman, A.; Menshov, A.

    A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  16. Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Zhang, Lei

    2006-07-01

    A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.

  17. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  18. Laser beam shaping for studying thermally induced damage

    NASA Astrophysics Data System (ADS)

    Masina, Bathusile N.; Bodkin, Richard; Mwakikunga, Bonex; Forbes, Andrew

    2011-10-01

    This paper presents an implementation of a laser beam shaping system for both heating a diamond tool and measuring the resulting temperature optically. The influence the initial laser parameters have on the resultant temperature profiles is shown experimentally and theoretically. A CO2 laser beam was used as the source to raise the temperature of the diamond tool and the resultant temperature was measured by using the blackbody principle. We have successfully transformed a Gaussian beam profile into a flat-top beam profile by using a diffractive optical element as a phase element in conjunction with a Fourier transforming lens. In this paper, we have successfully demonstrated temperature profiles across the diamond tool surface using two laser beam profiles and two optical setups, thus allowing a study of temperature influences with and without thermal stress. The generation of such temperature profiles on the diamond tool in the laboratory is important in the study of changes that occur in diamond tools, particularly the reduced efficiency of such tools in applications where extreme heating due to friction is expected.

  19. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  20. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    PubMed

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  1. Variable ratio beam splitter for laser applications

    NASA Technical Reports Server (NTRS)

    Brown, R. M.

    1971-01-01

    Beam splitter employing birefringent optics provides either widely different or precisely equal beam ratios, it can be used with laser light source systems for interferometry of lossy media, holography, scattering measurements, and precise beam ratio applications.

  2. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  3. Spectral Density of Laser Beam Scintillation in Wind Turbulence. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1997-01-01

    The temporal spectral density of the log-amplitude scintillation of a laser beam wave due to a spatially dependent vector-valued crosswind (deterministic as well as random) is evaluated. The path weighting functions for normalized spectral moments are derived, and offer a potential new technique for estimating the wind velocity profile. The Tatarskii-Klyatskin stochastic propagation equation for the Markov turbulence model is used with the solution approximated by the Rytov method. The Taylor 'frozen-in' hypothesis is assumed for the dependence of the refractive index on the wind velocity, and the Kolmogorov spectral density is used for the refractive index field.

  4. Binary phase plates cannot improve laser beam quality.

    PubMed

    Siegman, A E

    1993-05-01

    Binary phase plates are often suggested as a means for improving the far-field brightness of beams coming from antiphased laser arrays or waveguide lasers operating in higher-order modes. Somewhat surprisingly, however, binary phase plates actually cannot improve at all the second-moment-based beam quality factor M(2) as usually defined for such beams. Even from a power-in-the-bucket viewpoint, their usefulness is debatable.

  5. Atmospheric propagation and combining of high power lasers: comment.

    PubMed

    Goodno, Gregory D; Rothenberg, Joshua E

    2016-10-10

    Nelson et al. [Appl. Opt.55, 1757 (2016)APOPAI0003-693510.1364/AO.55.001757] recently concluded that coherent beam combining and remote phase locking of high-power lasers are fundamentally limited by the laser source linewidth. These conclusions are incorrect and not relevant to practical high-power coherently combined laser architectures.

  6. Investigation on partially coherent vector beams and their propagation and focusing properties.

    PubMed

    Hu, Kelei; Chen, Ziyang; Pu, Jixiong

    2012-11-01

    The propagation and focusing properties of partially coherent vector beams including radially polarized and azimuthally polarized (AP) beams are theoretically and experimentally investigated. The beam profile of a partially coherent radially or AP beam can be shaped by adjusting the initial spatial coherence length. The dark hollow, flat-topped, and Gaussian beam spots can be obtained, which will be useful in trapping particles. The experimental observations are consistent with the theoretical results.

  7. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  8. Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica.

    PubMed

    Fernandes, Luís A; Grenier, Jason R; Herman, Peter R; Aitchison, J Stewart; Marques, Paulo V S

    2011-06-20

    Integrated polarization beam splitters based on birefringent directional couplers are demonstrated. The devices are fabricated in bulk fused silica glass by femtosecond laser writing (300 fs, 150 nJ at 500 kHz, 522 nm). The birefringence was measured from the spectral splitting of the Bragg grating resonances associated with the vertically and horizontally polarized modes. Polarization splitting directional couplers were designed and demonstrated with 0.5 dB/cm propagation losses and -19 dB and -24 dB extinction ratios for the polarization splitting.

  9. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  10. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  11. Evidence of locally enhanced target heating due to instabilities of counter-streaming fast electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koester, Petra; Cecchetti, Carlo A.; Booth, Nicola

    2015-02-15

    The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy ofmore » the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.« less

  12. Laser damage metrology in biaxial nonlinear crystals using different test beams

    NASA Astrophysics Data System (ADS)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  13. Laser wakefield accelerated electron beam monitoring and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, J. K.; Mori, M.; Kotaki, H.

    2016-03-25

    We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10   m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.

  14. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  16. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  17. A numerical simulation of machining glass by dual CO 2-laser beams

    NASA Astrophysics Data System (ADS)

    Jiao, Junke; Wang, Xinbing

    2008-03-01

    In the flat panel display (FPD) industry, lasers may be used to cut glass plates. In order to reduce the possibility of fracture in the process of cutting glass by lasers, the thermal stress has to be less than the critical rupture strength. In this paper, a dual-laser-beam method is proposed, where an off-focus CO 2-laser beam was used to preheat the glass sample to reduce the thermal gradients and a focused CO 2-laser beam was used to machine the glass. The distribution of the thermal stress and the temperature was simulated by using finite element analysis software, Ansys. The thermal stress was studied both when the glass sample was machined by a single CO 2-laser beam and by dual CO 2-laser beams. It was concluded that the thermal stress can be reduced by means of the dual-laser-beam method.

  18. A Conceptual Design of Omni-Directional Receiving Dual-Beam Laser Engine

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Zhang, Qinghong

    2010-05-01

    The laser engine design is one of the key issues for laser propulsion technology. A concept of Omni-Directional Receiving Dual-Beam Laser Engine (ODLE) together with its configuration design is proposed in this paper. The ODLE is noted for its features as follows: First, the optical system is completely separated from the thrust system, the incident laser beams are reflected into the thrust chamber by the optics only twice, so the beam energy loss is small. Second, the optical system can be adjusted in all direction to track the incident laser beams, ensuring its wide applications in various kinds of launching trajectories. Third, the adoption of the dual-beam single-or double-engine configuration can reduce 50% of the power requirement for each laser, and a smooth laser relay can be carried out if needed during the launching process. The paper has proposed 2 launch plans into the LEO with the ODLE: the plane trajectory and the conic spiral trajectory. The simulated results indicate that the transmission distance of laser beams for the conic spiral trajectory is far less than that of the plane trajectory. As a result, it can reduce significantly the divergence and energy loss of laser beams, and is also of advantage for the measurement and control operation during the launch process.

  19. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  20. Automated beam monitoring and diagnosis for CO2 lasers

    NASA Astrophysics Data System (ADS)

    Mann, Stefan; Boeske, Lars; Kaierle, Stefan; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2002-06-01

    The usage of a quality management, in combination with a standard certification, is nearly inevitable for today's industrial manufacturing. In laser materials processing, a periodical beam diagnosis is to be executed as a quality-maintaining measure with any change of the workpiece geometry to guarantee an unambiguous allocation of the beam quality factors. Otherwise changes in the beam quality, caused by pollution, aging or defect of the optical components, remain unidentified for a long time, leading to impairments of the treatment quality or even costly down-times. As a solution a diagnosis system is integrated into a laser system. Data sources like measuring instruments, sensors and laser control transmit the diagnosis data to a diagnosis PC. A user-friendly software, based on Fuzzy algorithms, enables the operator to retrace changes in the beam quality to failures of the laser system. All diagnosis data are getting archived in a databank. The access to the archived data through the World Wide Web allows remote diagnoses. With the help of the beam diagnosis system failures can be discovered in advance, and losses of production can be avoided. The gained transparency of the beam characteristic values facilitates the integration of the laser system in the quality management. A prototype installation has been realized and latest results will be demonstrated.

  1. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  2. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  3. Self ordering threshold and superradiant backscattering to slow a fast gas beam in a ring cavity with counter propagating pump

    NASA Astrophysics Data System (ADS)

    Maes, C.; Asbóth, J. K.; Ritsch, H.

    2007-05-01

    We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.

  4. Self ordering threshold and superradiant backscattering to slow a fast gas beam in a ring cavity with counter propagating pump.

    PubMed

    Maes, C; Asbóth, J K; Ritsch, H

    2007-05-14

    We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.

  5. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  6. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  7. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  8. Photovoltaic receivers for laser beamed power in space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    There has recently been a resurgence of interest in the use of beamed power to support space exploration activities. One of the most promising beamed power concepts uses a laser beam to transmit power to a remote photovoltaic array. Large lasers can be located on cloud-free sites at one or more ground locations and illuminate solar arrays to a level sufficient to provide operating power. Issues involved in providing photovoltaic receivers for such applications are discussed.

  9. Hole-boring through clouds for laser power beaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.; Walter, R.F.

    Power beaming to satellites with a ground-based laser can be limited by clouds. Hole-boring through the clouds with a laser has been proposed as a way to overcome this obstacle. This paper reviews the past work on laser hole-boring and concludes that hole-boring for direct beaming to satellites is likely to require 10--100 MW. However, it may be possible to use an airborne relay mirror at 10--25 km altitude for some applications in order to extend the range of the laser (e.g., for beaming to satellites near the horizon). In these cases, use of the relay mirror also would allowmore » a narrow beam between the laser and the relay, as well as the possibility of reducing the crosswind if the plane matched speed with the cloud temporarily. Under these conditions, the power requirement to bore a hole through most cirrus and cirrostratus clouds might be only 500-kW if the hole is less than 1 m in diameter and if the crosswind speed is less than 10 m/s. Overcoming cirrus and cirrostratus clouds would reduce the downtime due to weather by a factor of 2. However, 500 kW is a large laser, and it may be more effective instead to establish a second power beaming site in a separate weather zone. An assessment of optimum wavelengths for hole boring also was made, and the best options were found to be 3.0--3.4 {mu}m and above 10 {mu}m.« less

  10. Laser-driven heat-front propagation in foam vs. gas

    NASA Astrophysics Data System (ADS)

    Pérez, F.; Colvin, J. D.; May, M. J.; Gammon, S. A.; Fournier, K. B.

    2014-10-01

    A high-energy laser (several kJ, 1015 W/cm2) can propagate inside an underdense plasma over millimeters, along its associated heat front. This creates a large volume of hot plasma (several keV) able to produce bright hard-x-ray sources when a high-Z dopant is included in the material. In the past years, we investigated the behavior of both gases and foams under these circumstances. Their design and predictability relies on the understanding of the heat front propagation. In the case of foams, several studies tried to assess the effect of their micro-structure in altering the laser interaction and the heat front propagation, but no experimental data has shown clear evidence. We present here the design and results of a recent experiment, using the OMEGA laser, where a Ge-doped silica foam was compared to a Ne/Kr gas of very similar characteristics, the only difference between these two materials being their micro-structure to allow for a straightforward determination of its influence. The design of future similar experiments will also be reported. J. Colvin presents theoretical and modeling aspects of this subject in a companion presentation. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344.

  11. Spatial Combining of Laser-Diode Beams for Pumping an NPRO

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco

    2008-01-01

    A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.

  12. Spiral spectrum of Airy beams propagation through moderate-to-strong turbulence of maritime atmosphere.

    PubMed

    Zhu, Yun; Zhang, Yixin; Hu, Zhengda

    2016-05-16

    The spatial coherence radius in moderate-to-strong maritime turbulence is derived on the basis of the modified Rytov approximation. Models are developed to simulate the spiral spectrum of Airy beams propagating through moderate-to-strong maritime turbulence. In the moderate-to-strong irradiance fluctuation region, we analyze the effects of maritime turbulence on the spread of the spiral spectrum of Airy beams in a horizontal propagation path. Results indicate that the increment in the inner-scale significantly increases the received power. By contrast, the outer-scale elicits a negligible effect on the received power if the ratio of the inner-scale to the outer-scale is less than 0.01. The outer-scale affects the received power only if the ratio is greater than 0.01. The performance of a light source is essential for the received power of Airy beams carrying orbital angular momentum (OAM) through moderate-to-strong maritime turbulence. Airy beams with longer wavelengths, smaller OAM numbers, larger radii of the main ring, and smaller diameters of the circular aperture are less affected by maritime turbulence. Autofocusing of Airy beams is beneficial for the propagation of the spiral spectrum in a certain propagation distance. These results contribute to the design of optical communication systems with OAM encoding for moderate-to-strong maritime turbulence.

  13. Beam-guidance optics for high-power fiber laser systems

    NASA Astrophysics Data System (ADS)

    Mohring, Bernd; Tassini, Leonardo; Protz, Rudolf; Zoz, Jürgen

    2013-05-01

    The realization of a high-energy laser weapon system by coupling a large number of industrial high-power fiber lasers is investigated. To perform the combination of the individual beams of the different fiber lasers within the optical path of the laser weapon, a special optical set-up is used. Each optical component is realized either as reflective component oras refractive optics. Both possibilities were investigated by simulations and experiments. From the results, the general aspects for the layout of the beam-guidance optics for a high-power fiber laser system are derived.

  14. The propagation of a flattened circular Gaussian beam through an optical system in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Liu, Z. J.; Wu, Y.

    2008-07-01

    Based on the Huygens-Fresnel integral, the properties of a circular flattened Gaussian beam through a stigmatic optical system in turbulent atmosphere are investigated. Analytical formulas for the average intensity are derived. As elementary examples, the average intensity distributions of a collimated circular flattened Gaussian beam and a focused circular flattened Gaussian beam through a simple optical system are studied. To see the effects of the optical system on the propagation, the average intensity distributions of the beam for direct propagation are also studied. From the analysis, comparison and numerical calculation we can see that there are many differences between the two propagations. These differences are due to the geometrical magnification of the optical system, different diffraction and different turbulence-induced spreading. Namely, an optical system not only affects the diffraction but also affects the turbulence-induced spreading.

  15. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  16. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma.

    PubMed

    Sharma, A; Misra, S; Mishra, S K; Kourakis, I

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  17. Dynamics of dark hollow Gaussian laser pulses in relativistic plasma

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Misra, S.; Mishra, S. K.; Kourakis, I.

    2013-06-01

    Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport.

  18. Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations

    NASA Astrophysics Data System (ADS)

    Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.

    2018-04-01

    Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.

  19. Effects of Relative Platform and Target Motion on Propagation of High Energy Lasers

    DTIC Science & Technology

    2016-06-01

    RELATIVE PLATFORM AND TARGET MOTION ON PROPAGATION OF HIGH ENERGY LASERS by Hayati Emir June 2016 Thesis Advisor: Joseph Blau Co-Advisor...COVERED Master’s thesis 4. TITLE AND SUBTITLE EFFECTS OF RELATIVE PLATFORM AND TARGET MOTION ON PROPAGATION OF HIGH ENERGY LASERS 5. FUNDING...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) To facilitate the study of engagement scenarios with high

  20. Stability properties of a thin relativistic beam propagation in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Jovanović, Dušan; Fedele, Renato; Belić, Milivoj; De Nicola, Sergio; Akhter, Tamina

    2018-05-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam through a plasma that is relatively strongly magnetized. Such situation is encountered when the gyro-frequency is comparable to the plasma frequency, i.e. |Ω e | ω pe . In addition, it is assumed the plasma density is much bigger than that of the beam. In the regime when the solution propagates in the comoving frame with a velocity that is much smaller than the thermal speed, a nonlinear stationary beam structure is found in which the electron motion in the transverse direction is negligible and whose transverse localization comes from the nonlinearity associated with its 3-D adiabatic expansion. Conversely, when the parallel velocity of the structure is sufficiently large to prevent the heat convection along the magnetic field, a helicoidally shaped stationary solution is found that is governed by the transverse convective nonlinearity. The profile of such beam is determined from a nonlinear dispersion relation and depends on the transverse size of the beam and its pitch angle to the magnetic field.