Science.gov

Sample records for laser heating arrangement

  1. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  2. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  3. Arrangement for damping the resonance in a laser diode

    NASA Technical Reports Server (NTRS)

    Katz, J.; Yariv, A.; Margalit, S. (Inventor)

    1985-01-01

    An arrangement for damping the resonance in a laser diode is described. This arrangement includes an additional layer which together with the conventional laser diode form a structure (35) of a bipolar transistor. Therein, the additional layer serves as the collector, the cladding layer next to it as the base, and the active region and the other cladding layer as the emitter. A capacitor is connected across the base and the collector. It is chosen so that at any frequency above a certain selected frequency which is far below the resonance frequency the capacitor impedance is very low, effectively shorting the base to the collector.

  4. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  5. Thermosyphon coil arrangement for heat pump outdoor unit

    DOEpatents

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  6. Thermosyphon coil arrangement for heat pump outdoor unit

    DOEpatents

    Draper, Robert

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  7. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  8. Enhanced temperature uniformity by tetrahedral laser heating

    SciTech Connect

    Schroers, Jan; Bossuyt, Sven; Rhim, Won-Kyu; Li Jianzhong; Zhou Zhenhua; Johnson, William L.

    2004-11-01

    Temperature profile on a spherical sample that is heated by laser beams in various geometries while processed in vacuum is analyzed. Sample heating by one or four laser beams was considered. An analytical expression was derived for directional sample heating cases. It suggests an enhanced temperature uniformity over the samples when heated with four diffuse laser beams arranged in a tetrahedral geometry. This was experimentally verified by heating a spherical stainless steel sample by laser beams. Both the calculated and experimentally determined temperature variations over the sample suggest that use of diffuse four beams arranged in tetrahedral geometry would be effective in reducing temperature variation to within 1 K. The enhancement in the temperature uniformity for four diffuse beams arranged in a tetrahedral geometry by a factor of 50 over a single focused beam is promising to accurately measure of thermophysical properties. This drastic improvement in temperature uniformity might even enable atomic diffusion measurements in the undercooled liquid states of the bulk glass forming alloys since Marangoni and gravity driven convection will be substantially reduced.

  9. Octahedral spherical hohlraum and its laser arrangement for inertial fusion

    SciTech Connect

    Lan, Ke; He, Xian-Tu; Liu, Jie; Zheng, Wudi; Lai, Dongxian

    2014-05-15

    A recent publication [K. Lan et al., Phys. Plasmas 21, 010704 (2014)] proposed a spherical hohlraum with six laser entrance holes of octahedral symmetry at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and superiority on low backscatter without supplementary technology. This paper extends the previous one by studying the laser arrangement and constraints of octahedral hohlraum in detail. As a result, it has serious beam crossing at θ{sub L}≤45°, and θ{sub L}=50° to 60° is proposed as the optimum candidate range for the golden octahedral hohlraum, here θ{sub L} is the opening angle that the laser quad beam makes with the Laser Entrance Hole (LEH) normal direction. In addition, the design of the LEH azimuthal angle should avoid laser spot overlapping on hohlraum wall and laser beam transferring outside hohlraum from a neighbor LEH. The octahedral hohlraums are flexible and can be applicable to diverse inertial fusion drive approaches. This paper also applies the octahedral hohlraum to the recent proposed hybrid indirect-direct drive approach.

  10. Laser induced biological heating analyzed

    NASA Astrophysics Data System (ADS)

    Liu, Phue

    1985-08-01

    A quantitative analysis of the vaporization of tumors by pulsed CO2 lasers, incision by CW CO2 lasers, tissue coagulation by argon lasers, thermal killing of cancerous cells by He-Ne lasers, and the application of heat by CO2 lasers is presented. Although the calculations are based on a simplified skin model, it may prove useful in clinical treatments.

  11. Heat exchanger and water tank arrangement for passive cooling system

    DOEpatents

    Gillett, James E.; Johnson, F. Thomas; Orr, Richard S.; Schulz, Terry L.

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  12. Heat exchanger and water tank arrangement for passive cooling system

    DOEpatents

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  13. A fluorescent laser-diffuser arrangement for uniform backlighting

    NASA Astrophysics Data System (ADS)

    Jain, Saransh; Somasundaram, S.; Anand, T. N. C.

    2016-02-01

    Laser-light diffusers are used in conjunction with pulsed lasers to generate bright, spatially uniform background illumination for imaging and particle sizing applications. The present paper describes a cost effective way of fabricating a fluorescent laser-light diffuser. The procedure to obtain a uniform background using laser illumination is explained. To characterize the diffuser, images are acquired using a CCD camera with the illumination provided using the diffuser and the variations of pixel intensity values along the centerline of the images are plotted. It is observed that the standard deviation of pixel intensity values is fairly small. Hence, these diffusers are suitable for experiments that need a uniform background.

  14. Laser-heated rocket studies

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.; Wu., P. K. S.; Caledonia, G. E.; Pirri, A. N.

    1976-01-01

    CW laser heated rocket propulsion was investigated in both the flowing core and stationary core configurations. The laser radiation considered was 10.6 micrometers, and the working gas was unseeded hydrogen. The areas investigated included initiation of a hydrogen plasma capable of absorbing laser radiation, the radiation emission properties of hot, ionized hydrogen, the flow of hot hydrogen while absorbing and radiating, the heat losses from the gas and the rocket performance. The stationary core configuration was investigated qualitatively and semi-quantitatively. It was found that the flowing core rockets can have specific impulses between 1,500 and 3,300 sec. They are small devices, whose heating zone is only a millimeter to a few centimeters long, and millimeters to centimeters in radius, for laser power levels varying from 10 to 5,000 kW, and pressure levels of 3 to 10 atm. Heat protection of the walls is a vital necessity, though the fraction of laser power lost to the walls can be as low as 10% for larger powers, making the rockets thermally efficient.

  15. Stress and Heat Transfer Analyses for Different Channel Arrangements of PCHE

    SciTech Connect

    Jong B. Lim; Robert G. Shrake; Eung S. Kim; Chang H. Oh

    2008-11-01

    Stress and heat transfer analyses are being performed on the different channel arrangements of Printed Circuit Heat Exchanger (PCHE) proposed for application of VHTRs using ABAQUS [ABAQUS, 2007] and COMSOL [COMSOL, 2007], respectively. The work is being done to determine the configuration that would result in minimum stress for the same heat performance. This paper discusses the effects of shifting the coolant channels in every other row to reduce stress.

  16. Compact laser through improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1975-01-01

    A 16-joule-pulse laser has been developed in which a boron nitride heat-conductor enclosure is used to remove heat from the elements. Enclosure is smaller and lighter than systems in which cooling fluids are used.

  17. Plant heat cycles, vessel internal arrangement, and auxiliary systems. Volume five

    SciTech Connect

    Not Available

    1986-01-01

    This volume covers nuclear power plant heat cycles (type of nuclear power cycles, power cycle refinements, BWR/PWR power cycle, BWR/PWR reactor coolant system), reactor vessel internal arrangement (reactor vessel features, BWR/PWR reactor vessel and internals, BWR/PWR reactor core), reactor auxiliary systems (purpose of reactor auxiliary systems, PWR and BWR reactor auxiliary systems, PWR and BWR control rod drive mechanisms).

  18. Numerical investigation of thermal performance of a water-cooled mini-channel heat sink for different chip arrangement

    NASA Astrophysics Data System (ADS)

    Tikadar, Amitav; Hossain, Md. Mahamudul; Morshed, A. K. M. M.

    2016-07-01

    Heat transfer from electronic chip is always challenging and very crucial for electronic industry. Electronic chips are assembled in various manners according to the design conditions and limitationsand thus the influence of chip assembly on the overall thermal performance needs to be understand for the efficient design of electronic cooling system. Due to shrinkage of the dimension of channel and continuous increment of thermal load, conventional heat extraction techniques sometimes become inadequate. Due to high surface area to volume ratio, mini-channel have the natural advantage to enhance convective heat transfer and thus to play a vital role in the advanced heat transfer devices with limited surface area and high heat flux. In this paper, a water cooled mini-channel heat sink was considered for electronic chip cooling and five different chip arrangements were designed and studied, namely: the diagonal arrangement, parallel arrangement, stacked arrangement, longitudinal arrangement and sandwiched arrangement. Temperature distribution on the chip surfaces was presented and the thermal performance of the heat sink in terms of overall thermal resistance was also compared. It is found that the sandwiched arrangement of chip provides better thermal performance compared to conventional in line chip arrangement.

  19. An Experimental Study of a Radially Arranged Thin Film Heat Flux Gauge

    NASA Technical Reports Server (NTRS)

    Cho, Christoper S. K.; Fralick, Gustave C.; Bhatt, Hemanshu D.

    1997-01-01

    A new thin-film heat-flux gauge was designed and fabricated on three different substrate materials. Forty pairs of Pt-Pt/10% Rh thermocouple junctions were deposited in a circular pattern on the same plane of the substrate. Over the thermocouples, 5 and 10 micron thick thermal resistance layers were deposited to create a temperature gradient across those layers. Calibration and testing of these gauges were carried out in an arc-lamp calibration facility. The heat flux calculated from the gauge output is in good agreement with the value obtained from the pre-calibrated standard sensor. A CO2 laser was also used to test the steady-state and dynamic responses of the heat-flux gauge. During the steady-state test, the time constant for the heating period was 30 s. The frequency response of the heat-flux gauge was measured in the frequency domain using a CO2 laser and a chopper. The responses from an infrared detector and the heat-flux gauge were measured simultaneously and compared. It was found that the thin-film heat-flux gauge has a dynamic frequency response of 3 kHz.

  20. Heating of solid targets with laser pulses

    NASA Technical Reports Server (NTRS)

    Bechtel, J. H.

    1975-01-01

    Analytical and numerical solutions to the heat-conduction equation are obtained for the heating of absorbing media with pulsed lasers. The spatial and temporal form of the temperature is determined using several different models of the laser irradiance. Both surface and volume generation of heat are discussed. It is found that if the depth of thermal diffusion for the laser-pulse duration is large compared to the optical-attenuation depth, the surface- and volume-generation models give nearly identical results. However, if the thermal-diffusion depth for the laser-pulse duration is comparable to or less than the optical-attenuation depth, the surface-generation model can give significantly different results compared to the volume-generation model. Specific numerical results are given for a tungsten target irradiated by pulses of different temporal durations and the implications of the results are discussed with respect to the heating of metals by picosecond laser pulses.

  1. Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium

    NASA Astrophysics Data System (ADS)

    Andreu, Irene; Natividad, Eva; Solozábal, Laura; Roubeau, Olivier

    2015-04-01

    The heating ability of the same magnetic nanoparticles (MNPs) dispersed in different media has been studied in the 170-310 K temperature range. For this purpose, the biggest non-twinned nanoparticles have been selected among a series of magnetite nanoparticles of increasing sizes synthesized via a seeded growth method. The sample with nanoparticles dispersed in n-tetracosane, thermally quenched from 100 °C and solid in the whole measuring range, follows the linear response theoretical behavior for non-interacting nanoparticles, and displays a remarkably large maximum specific absorption rate (SAR) value comparable to that of magnetosomes at the alternating magnetic fields used in the measurements. The other samples, with nanoparticles dispersed either in alkane solvents of sub-ambient melting temperatures or in epoxy resin, display different thermal behaviors and maximum SAR values ranging between 11 and 65% of that achieved for the sample with n-tetracosane as dispersive medium. These results highlight the importance of the MNPs environment and arrangement to maintain optimal SAR values, and may help to understand the disparity sometimes found between MNPs heating performance measured in a ferrofluid and after injection in an animal model, where MNP arrangement and environment are not the same.

  2. Joining of materials using laser heating

    DOEpatents

    Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.

    2003-07-01

    A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.

  3. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  4. Formation of periodic mesoscale structures arranged in a circular symmetry at the silicon surface exposed to radiation of a single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Ashitkov, S. I.; Ovchinnikov, A. V.; Kondratenko, P. S.; Agranat, M. B.

    2016-06-01

    The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.

  5. Local Laser Heat Treatments of Steel Sheets

    NASA Astrophysics Data System (ADS)

    Järvenpää, A.; Jaskari, M.; Hietala, M.; Mäntyjärvi, K.

    In this work UHS structural and abrasion resistant (AR) steels were heat treated with a single 4 kW Yb: YAG-laser beam. Aim of the softening heat treatments was to enhance the formability locally with minimized strength lose. 1.8 mm thick B24CR boron steel was used for hardening tests. Study presents the possibilities and limitations in laser processing showing that a single laser beam is suitable for heat treating of sheets through the whole cross-section up to the thickness of 6 mm. In the case of the 6 mm thick sheets, the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the center of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. The 10 mm thick sheet was heat treated separately on the both surfaces by heating to a lower temperature range to produce a shallow tempered layer. The tensile and bendability tests as well as hardness measurements indicated that laser heat treatment can be used to highly improve the bendability locally without significant strength losses. Laser process has been optimized by transverse scanning movement and with a simple FE-model.

  6. Measurement of heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  7. Heat profiles of laser-irradiated nails

    NASA Astrophysics Data System (ADS)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A.; Kendler, Michael; Simon, Jan C.; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  8. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  9. Laser-heated rocket thruster

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1977-01-01

    A space vehicle application using 5,000-kw input laser power was conceptually evaluated. A detailed design evaluation of a 10-kw experimental thruster including plasma size, chamber size, cooling, and performance analyses, was performed for 50 psia chamber pressure and using hydrogen as a propellant. The 10-kw hardware fabricated included a water cooled chamber, an uncooled copper chamber, an injector, igniters, and a thrust stand. A 10-kw optical train was designed.

  10. The Effect of Circuiting Arrangement on the Thermal Performance of Refrigeration Mixtures in Tube-and-Fin Condensing Heat Exchangers

    SciTech Connect

    Chen, D.T.; Conklin, J.C.

    1999-03-15

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated

  11. The effect of circuiting arrangement on the thermal performance of refrigerant mixtures in tube-and-fin condensing heat exchangers

    SciTech Connect

    Conklin, J.C.; Chen, D.T.

    1999-07-01

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossflow, counterflow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or glide, and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of two different circuiting arrangements on the thermal performance of a zeotropic refrigerant mixture and an almost azeotropic refrigerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-counterflow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region (identical order) and the other has refrigerant alternating flow direction in the active heat transfer region (inverted order). All other geometric parameters, such as face area, fin louver geometry, refrigerant tube size and enhancement, etc., are the same for both heat exchangers. One refrigerant mixture (R-410A) undergoes a small temperature change (low glide) during phase change, and the other refrigerant mixture (a multi-component proprietary mixture) has a substantial temperature change (high glide) of approximately 10 C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of residential cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the identical order arrangement for high

  12. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  13. Convective heat flux in a laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Wu, P. K. S.

    1978-01-01

    An analysis is performed to estimate the convective heating to the wall in a laser-heated thruster on the basis of a solution of the laminar boundary-layer equations with variable transport properties. A local similiarity approximation is used, and it is assumed that the gas phase is in equilibrium. For the thruster described by Wu (1976), the temperature and pressure distributions along the nozzle are obtained from the core calculation. The similarity solutions and heat flux are obtained from the freestream conditions of the boundary layer, in order to determine if it is necessary to couple the boundary losses directly to the core calculation. In addition, the effects of mass injection on the convective heat transfer across the boundary layer with large density-viscosity product gradient are examined.

  14. Laser-induced heating in optical traps.

    PubMed

    Peterman, Erwin J G; Gittes, Frederick; Schmidt, Christoph F

    2003-02-01

    In an optical tweezers experiment intense laser light is tightly focused to intensities of MW/cm(2) in order to apply forces to submicron particles or to measure mechanical properties of macromolecules. It is important to quantify potentially harmful or misleading heating effects due to the high light intensities in biophysical experiments. We present a model that incorporates the geometry of the experiment in a physically correct manner, including heat generation by light absorption in the neighborhood of the focus, balanced by outward heat flow, and heat sinking by the glass surfaces of the sample chamber. This is in contrast to the earlier simple models assuming heat generation in the trapped particle only. We find that in the most common experimental circumstances, using micron-sized polystyrene or silica beads, absorption of the laser light in the solvent around the trapped particle, not in the particle itself, is the most important contribution to heating. To validate our model we measured the spectrum of the Brownian motion of trapped beads in water and in glycerol as a function of the trapping laser intensity. Heating both increases the thermal motion of the bead and decreases the viscosity of the medium. We measured that the temperature in the focus increased by 34.2 +/- 0.1 K/W with 1064-nm laser light for 2200-nm-diameter polystyrene beads in glycerol, 43.8 +/- 2.2 K/W for 840-nm polystyrene beads in glycerol, 41.1 +/- 0.7 K/W for 502-nm polystyrene beads in glycerol, and 7.7 +/- 1.2 K/W for 500-nm silica beads and 8.1 +/- 2.1 K/W for 444-nm silica beads in water. Furthermore, we observed that in glycerol the heating effect increased when the bead was trapped further away from the cover glass/glycerol interface as predicted by the model. We show that even though the heating effect in water is rather small it can have non-negligible effects on trap calibration in typical biophysical experimental circumstances and should be taken into consideration when

  15. Experimental Study of Heat Transfer of Parallel Louvered Fins through Laser Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yasuo; Kashiwagi, Takao; Kobayashi, Hiroki; Uzuhashi, Hideo; Tang, Xue-Zhong

    The objectives of this paper are experimentally to study the detail of heat transfer in louver-array and to propose the preferable geometrical arrangement of louver from the point of view of improving the performance of heat exchanger. Our approach toward that goal was made via the following steps. The first step in the present study is optically to visualize the temperature field around louvers by employing the primitive heated flat louver model consisting of thin bakelite plate and thin Nichrome foil as a heater, and to measure the heat transfer coefficients of the louvers. Our experiment achieved to visualize the isotherms through the Laser holographic interferometry. The clear isotherms for various louver arrangements were successfully obtained. The thermal boundary layer and wake generated by an upstream louver were clearly observed to extend toward downstream ones ; the heat transfer coefficients obtained by the experiment were virtually affected by those boundary layers and wakes. The second step is to examine the plausible arrangement of louver for enhancing heat transfer. The slight position shift of downstream louvers toward the direction avoiding the influence of heated air wake was proposed from both the observation of isotherms and the measurement of heat transfer coefficients in staggered louver array ; its effectiveness was varified by the experiment. The improvement of the performance of heat exchanger is expected by applying the proposed minor rearrangement of louver array for enhanced fins.

  16. Hybrid Heat Capacity - Moving Slab Laser Concept

    SciTech Connect

    Stappaerts, E A

    2002-04-01

    A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module.

  17. Hybrid heat capacity-moving slab solid-state laser

    DOEpatents

    Stappaerts, Eddy A.

    2005-03-01

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  18. Laser-heated emissive plasma probe.

    PubMed

    Schrittwieser, Roman; Ionita, Codrina; Balan, Petru; Gstrein, Ramona; Grulke, Olaf; Windisch, Thomas; Brandt, Christian; Klinger, Thomas; Madani, Ramin; Amarandei, George; Sarma, Arun K

    2008-08-01

    Emissive probes are standard tools in laboratory plasmas for the direct determination of the plasma potential. Usually they consist of a loop of refractory wire heated by an electric current until sufficient electron emission. Recently emissive probes were used also for measuring the radial fluctuation-induced particle flux and other essential parameters of edge turbulence in magnetized toroidal hot plasmas [R. Schrittwieser et al., Plasma Phys. Controlled Fusion 50, 055004 (2008)]. We have developed and investigated various types of emissive probes, which were heated by a focused infrared laser beam. Such a probe has several advantages: higher probe temperature without evaporation or melting and thus higher emissivity and longer lifetime, no deformation of the probe in a magnetic field, no potential drop along the probe wire, and faster time response. The probes are heated by an infrared diode laser with 808 nm wavelength and an output power up to 50 W. One probe was mounted together with the lens system on a radially movable probe shaft, and radial profiles of the plasma potential and of its oscillations were measured in a linear helicon discharge. PMID:19044350

  19. Radiation drive in laser heated hohlraums

    SciTech Connect

    Suter, L.J.; Kauffman, R.L.; Darrow, C.B.

    1995-11-03

    Nearly 10 years of Nova experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser heated hohlraums. Our most successful quantitative modelling tool is 2D Lasnex numerical simulations. Analysis of the simulations provides us with insight into the details of the hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high Z blow-off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding.

  20. The Solid-State Heat-Capacity Laser

    SciTech Connect

    Rotter, M D; Dane, C B; Gonzales, S A; Merrill, R D; Mitchell, S C; Parks, C W; Yamamoto, R M

    2003-12-08

    Heat-capacity operation of a laser is a novel method by which high average powers can be generated. In this paper, we present the principles behind heat-capacity operation, in addition to describing the results of recent experiments.

  1. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude. PMID:17902946

  2. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery.

    PubMed

    Mirkhalili, Seyyed Mostafa; Ramazani S A, Ahmad; Nazemidashtarjandi, Saeed

    2015-11-01

    Blood vessels, especially large vessels have a greater thermal effect on freezing tissue during cryosurgery. Vascular networks act as heat sources in tissue, and cause failure in cryosurgery and reappearance of cancer. The aim of this study is to numerically simulate the effect of probe location and multiprobe on heat transfer distribution. Furthermore, the effect of nanoparticles injection is studied. It is shown that the small probes location near large blood vessels could help to reduce the necessary time for tissue freezing. Nanoparticles injection shows that the thermal effect of blood vessel in tissue is improved. Using Au, Ag and diamond nanoparticles have the most growth of ice ball during cryosurgery. However, polytetrafluoroethylene (PTFE) nanoparticle can be used to protect normal tissue around tumor cell due to its influence on reducing heat transfer in tissue. Introduction of Au, Ag and diamond nanoparticles combined with multicryoprobe in this model causes reduction of tissue average temperature about 50% compared to the one probe. PMID:26406880

  3. High-intensity laser heating in liquids: Multiphoton absorption

    SciTech Connect

    Longtin, J.P.; Tien, C.L.

    1995-12-31

    At high laser intensities, otherwise transparent liquids can absorb strongly by the mechanism of multiphoton absorption, resulting in absorption and heating several orders of magnitude greater than classical, low-intensity mechanisms. The use of multiphoton absorption provides a new mechanism for strong, controlled energy deposition in liquids without bulk plasma formation, shock waves, liquid ejection, etc., which is of interest for many laser-liquid applications, including laser desorption of liquid films, laser particle removal, and laser water removal from microdevices. This work develops a microscopically based model of the heating during multiphoton absorption in liquids. The dependence on pulse duration, intensity, wavelength, repetition rate, and liquid properties is discussed. Pure water exposed to 266 nm laser radiation is investigated, and a novel heating mechanism for water is proposed that uses multiple-wavelength laser pulses.

  4. Laser Measurement Of Convective-Heat-Transfer Coefficient

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  5. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  6. In-volume heating using high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heating with different approaches to make the heat distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media (vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out several pilot experiments with high-power diodes heating the chosen media.

  7. Modeling of Material Removal by Solid State Heat Capacity Lasers

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2002-04-17

    Pulsed lasers offer the capability of rapid material removal. Here we present simulations of steel coupon tests by two solid state heat capacity lasers built at LLNL. Operating at 1.05 pm, these deliver pulse energies of about 80 J at 10 Hz, and about 500 J at 20 Hz. Each is flashlamp-pumped. The first laser was tested at LLNL, while the second laser has been delivered to HELSTF, White Sands Missile Range. Liquid ejection appears to be an important removal mechanism. We have modeled these experiments via a time-dependent code called THALES, which describes heat transport, melting, vaporization, and the hydrodynamics of liquid, vapor, and air. It was previously used, in a less advanced form, to model drilling by copper vapor lasers [1] . It was also used to model vaporization in beam dumps for a high-power laser [2]. The basic model is in 1D, while the liquid hydrodynamics is handled in 2D.

  8. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  9. Study, optimization, and design of a laser heat engine

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, were analyzed to determine which engine concepts best meet the requirements of high efficiency (50 percent or better) continuous operation in space. The best laser heat engine for a near-term experimental demonstration, selected on the basis of high overall operating efficiency, high power-to-weight characteristics, and availability of the required technology, is an Otto/Diesel cycle piston engine using a diamond window to admit CO2 laser radiation. The technology with the greatest promise of scaling to megawatt power levels in the long term is the energy exchanger/gas turbine combination.

  10. Delay of explosive vaporization in pulsed laser-heated droplets.

    PubMed

    Park, B S; Biswas, A; Armstrong, R L; Pinnick, R G

    1990-02-15

    Measurements of time delays for explosion of pulsed CO(2) laser-heated droplets are presented. A simple model based on classical nucleation theory in superheated liquids, which neglects heat and mass transport, is used to interpret the data. The model shows good agreement with the experimental observations. PMID:19759758

  11. Heating power feedback control for CO2 laser fusion splicers

    NASA Astrophysics Data System (ADS)

    Zheng, Wenxin; Sugawara, Hiroshi; Mizushima, Toshirou; Klimowych, William

    2013-02-01

    A novel feedback control method has been developed for an automated splicer using a CO2 laser as the heating element. The feedback method employs a sensor for laser beam power and CMOS cameras as sensors for fiber luminescence which is directly related to glass temperature. The CO2 laser splicer with this type of feedback system provides a consistent platform for the fiber laser and bio-medical industry for fabrication of fused glass components such as tapers, couplers, combiners, mode-field adaptors, and fusion splices. With such a closed loop feedback system, both splice loss and peak-to-peak taper ripple are greatly reduced.

  12. Thermoluminescence for nonlinear heating profiles with application to laser heated emissions

    SciTech Connect

    Lawless, John L.; Lo, D.

    2001-06-01

    A general formula is found to predict thermoluminescence emission over a wide range of heating profiles. This is particularly useful for rapid laser heating which generates very nonlinear temperature{endash}time profiles. Special cases of the general formula are considered for power-law and logarithmic temperature{endash}time curves. The results compare well to previous CO{sub 2} laser heated thermoluminescence experiments. The agreement between theory and experiment extends over several orders of magnitude change in the heating rate. {copyright} 2001 American Institute of Physics.

  13. Experimental study on EHD heat transfer enhancement from flush-mounted ribbons with different arrangements of wire electrodes in a channel

    NASA Astrophysics Data System (ADS)

    Alami nia, Amin; Campo, Antonio

    2016-03-01

    In the present study, the heat transfer enhancement of a bundle of flush-mounted ribbons placed on the floor of a rectangular duct was investigated experimentally. The flush-mounted ribbons act as heat sources and the cooling happens with air. The air flow was three-dimensional, steady, viscous and incompressible under both laminar and turbulent conditions (500 ≤ {Re}_{{Dh }} ≤ 4500 ). The hydrodynamics and heat transfer behavior of the air flow was studied by means of an active method with application of corona wind. The state of the art of this work revolves around an experimental investigation of an electrohydrodynamics (EHD) active method and heat transfer enhancement from the surfaces of the flush-mounted ribbons. Due to the intricacies of the required experiment, a special apparatus needed to be designed and constructed. The aim of this work is application of EHD active method for convective heat transfer enhancement. In this method the different arrangement of wire electrodes has been achieved. The results show that in same Reynolds numbers and voltages of wires, the heat transfer enhancement was increase in arrangement 1 than other 4 arrangements.

  14. Analytical modeling of high precision measurement of thermal heat transfer by laser heating

    NASA Astrophysics Data System (ADS)

    Jain, Abhishek

    2005-04-01

    Study of precise thermal heat transfer due to laser heating of metals and other structures has been found to be of great use in different applications ranging from MEMS, nanostructures and biomedical devices. In this paper an analytical modeling of measuring the temperature at a junction of the thermocouple and the metal surface is done. Analytical treatment is also done to calculate the temperature distribution inside the metal assuming the laser as a point heat source. The metal in consideration is stainless steel and is heated using laser. When a thermocouple is mounted on the metal surface there is a fall in the junction temperature due to the depression of the thermocouple inside the metal, which results in the error in the final measurement. In the present study an analytical investigation is done to measure the error generated due to this depression. Temperature distribution inside the block is also calculated based on heat diffusion equation in cylindrical coordinates.

  15. Laser-Material Interaction Studies Utilizing the Solid-State Heat Capacity Laser

    SciTech Connect

    Yamamoto, R; Parker, J; Boley, C; Cutter, K; Fochs, S; Rubenchik, A

    2007-04-19

    A variety of laser-material interaction experiments have been conducted at Lawrence Livermore National Laboratory (LLNL) utilizing the solid-state heat capacity laser (SSHCL). For these series of experiments, laser output power is 25kW, on-target laser spot sizes of up to 16 cm by 16 cm square, with air speeds of approximately 100 meters per second flowing across the laser-target interaction surface as shown in Figure 1. The empirical results obtained are used to validate our simulation models.

  16. Surface heat transfer coefficient, heat efficiency, and temperature of pulsed solid-state lasers

    SciTech Connect

    Mann, K.; Weber, H.

    1988-08-01

    The temperature of solid-state lasers is a critical parameter. Efficiency and output power are strongly influenced by it. The two parameters which determine the temperature are the heat generation efficiency (HGE) and the surface heat transfer coefficient (SHTC) of the laser rod. These parameters allow the scaling of the rod temperature up to high pumping powers. Moreover, from the temperature inside the rod, the temperature gradients and the mechanical stress can be evaluated. Using transient temperature measurements, the SHTC and the HGE were determined for air- and water-cooled Nd:YAG and alexandrite lasers. The SHTC can be confirmed by theoretical considerations.

  17. In situ cleaning of probe surfaces by pulsed laser heating

    SciTech Connect

    Tagle, J.A.; Pospieszczyk, A.

    1984-09-01

    Inconel 600, Inconel 625 and austenitic steel (AISI 304LN) surfaces were cleaned in UHV by laser pulses of 1J total energy. Residual surface contamination layers were dissociated and desorbed. The surface cleanness degree reached was equivalent to that obtained by conventional cleaning techniques like bulk heating and sputtering by ion bombardment. A comparison between these three techniques is presented. The laser cleaning efficiency was found to be strongly dependent on the initial surface contamination degree and on the residual gas composition. In particular the effect of laser shots on the activation of the surface oxidation process at ambient pressures of about 10/sup -9/ mbar of CO was studied. The possibilities of using the laser heating technique as a tool in plasma edge diagnostic (in situ cleaning of probes, analysis of trapped particles, redeposition measurements,...) in fusion devices is discussed.

  18. Surface temperature transients from pulsed laser heating of UO 2

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.; Olander, D. R.

    1988-07-01

    Surface heating of UO 2 by a pulsed laser was investigated theoretically and experimentally. Targets of solid uranium dioxide in vacuum were rapidly heated to peak temperatures of 3700 K, as measured by a fast-response automatic optical pyrometer. The measured target surface temperatures were compared with a one-dimensional heat transport model that accounts for conduction and melting in the solid and ablation and radiation from the surface. Congruent vaporization of UO 2 was assumed. The measured temporal and spatial characteristics of the laser beam as well as temperature-dependent physical and thermodynamic properties of UO 2 are used as input to the calculations. Agreement of the theory with the measurements was further validated by post-irradiation microscopic examination of the target surface. Additional tests were performed to assess qualitatively the attenuation of laser light and thermal radiation from the surface by the vapor blow-off from the target. This effect was found to be insignificant.

  19. Laser heating of dielectric particles for medical and biological applications

    PubMed Central

    Tribelsky, Michael I.

    2016-01-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the characteristic depth of light absorption in the material of the particle and the two heat diffusion lengths: in the particle and in the embedding liquid. A new quantitative characteristic of the laser action, that is the cooling time, describing the temporal scale of the cooling down of the particle after the laser pulse is over, is introduced and discussed. Simple analytical formulas for the temperature rise in the center of the particle and at its surface as well as for the cooling time are obtained. We show that at the appropriate choice of the problem parameters the cooling time may be by many orders of magnitude larger the laser pulse duration. It makes possible to minimize the undesirable damage of healthy tissues owing to the finite size of the laser beam and scattering of the laser radiation, simultaneously keeping the total hyperthermia period large enough to kill the pathogenic cells. An example of application of the developed approach to optimization of the therapeutic effect at the laser heating of particles for cancer therapy is presented. PMID:27446706

  20. Laser heating of dielectric particles for medical and biological applications.

    PubMed

    Tribelsky, Michael I; Fukumoto, Yasuhide

    2016-07-01

    We consider the general problem of laser pulse heating of a spherical dielectric particle embedded in a liquid. The discussed range of the problem parameters is typical for medical and biological applications. We focus on the case, when the heat diffusivity in the particle is of the same order of magnitude as that in the fluid. We perform quantitative analysis of the heat transfer equation based on interplay of four characteristic scales of the problem, namely the particle radius, the characteristic depth of light absorption in the material of the particle and the two heat diffusion lengths: in the particle and in the embedding liquid. A new quantitative characteristic of the laser action, that is the cooling time, describing the temporal scale of the cooling down of the particle after the laser pulse is over, is introduced and discussed. Simple analytical formulas for the temperature rise in the center of the particle and at its surface as well as for the cooling time are obtained. We show that at the appropriate choice of the problem parameters the cooling time may be by many orders of magnitude larger the laser pulse duration. It makes possible to minimize the undesirable damage of healthy tissues owing to the finite size of the laser beam and scattering of the laser radiation, simultaneously keeping the total hyperthermia period large enough to kill the pathogenic cells. An example of application of the developed approach to optimization of the therapeutic effect at the laser heating of particles for cancer therapy is presented. PMID:27446706

  1. Laser-induced local heating of moving multilayer media.

    PubMed

    Mansuripur, M; Connell, G A

    1983-03-01

    Earlier work on the local heating of stationary multilayer structures by focused laser light has been extended to deal with nonstationary situations. The numerical procedures described here are therefore applicable to many important technologies including optical recording, thermal marking, and laser annealing. We demonstrate this in two examples, namely, the effects of readout intensity on the readout signal from a quadrilayer magnetooptic disk and the writing threshold for ablative materials in single-layer and three-layer structures. PMID:18195853

  2. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system. PMID:25607209

  3. Laser heating challenges of high yield MagLIF targets

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Direct heating of compressed core by ultra-intense laser

    NASA Astrophysics Data System (ADS)

    Sunahara, A.; Johzaki, T.; Sakagami, H.; Nagatomo, H.; Mima, K.; Abe, Y.; Arikawa, Y.; Fujioka, S.; Shiraga, H.; Azechi, H.; Mori, Y.; Sentoku, Y.; Kitagawa, Y.

    2016-05-01

    We propose a new scheme for heating an imploded core in the fast-ignition scheme. In this method, a heating laser irradiates an imploded core plasma directly. The accelerated fast-ions as well as fast-electrons heat the core. Two-dimensional particle in cell (PIC) simulation confirmed that carbon C6+ and deuteron D+ ions were accelerated as well as fast electrons when ultra-intense laser irradiates the CD plasma. In order to estimate the temperature scaling of the heated core in this scheme, we conducted transport simulations in the one-dimensional conical geometry. Our results show that 5 keV of ignition temperature can be achieved at the intensity of 1021 W/cm2, and 1.5 ps pulse for the compressed CD plasma with 10g/cm3 density.

  5. Window decompression in laser-heated MagLIF targets

    NASA Astrophysics Data System (ADS)

    Woodbury, Daniel; Peterson, Kyle; Sefkow, Adam

    2015-11-01

    The Magnetized Liner Inertial Fusion (MagLIF) concept requires pre-magnetized fuel to be pre-heated with a laser before undergoing compression by a thick solid liner. Recent experiments and simulations suggest that yield has been limited to date by poor laser preheat and laser-induced mix in the fuel region. In order to assess laser energy transmission through the pressure-holding window, as well as resultant mix, we modeled window disassembly under different conditions using 1D and 2D simulations in both Helios and HYDRA. We present results tracking energy absorption, time needed for decompression, risk of laser-plasma interaction (LPI) that may scatter laser light, and potential for mix from various window thicknesses, laser spot sizes and gas fill densities. These results indicate that using thinner windows (0.5-1 μm windows) and relatively large laser spot radii (600 μm and above) can avoid deleterious effects and improve coupling with the fuel. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04- 94AL85000.

  6. How to detect melting in laser heating diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Liuxiang, Yang

    2016-07-01

    Research on the melting phenomenon is the most challenging work in the high pressure/temperature field. Until now, large discrepancies still exist in the melting curve of iron, the most interesting and extensively studied element in geoscience research. Here we present a summary about techniques detecting melting in the laser heating diamond anvil cell.

  7. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  8. Modeling thermionic emission from laser-heated nanoparticles

    DOE PAGESBeta

    Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; Raitses, Y.

    2016-02-01

    An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less

  9. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  10. Modeling thermionic emission from laser-heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; Raitses, Y.

    2016-02-01

    An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles is greater than the van der Waals bond energy. Since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.

  11. Axial laser heating of three meter theta pinch plasma columns

    NASA Astrophysics Data System (ADS)

    Hoffman, A. L.; Lowenthal, D. D.

    1980-10-01

    A 3-m long plasma column formed and confined by a fast rising solenoidal field was irradiated from one end by a powerful pulsed CO2 laser. It was found that beam trapping density minima could be maintained for the length of the laser pulse if the plasma diameter exceeded about 1.5 cm. The erosion of the density minimum was governed by classical diffusion processes. Three meter long plasmas in 2.6 cm bore plasma tubes could be fairly uniformly heated by 3.0 kJ of CO2 laser irradiation. Best results were obtained when heating began before or during the theta pinch implosion phase and the plasma fill pressure exceeded 1.0 torr H2. Plasma line energies of about 1 kJ/m could be obtained in a magnetic field rising to 6 T in 4.7 microseconds.

  12. Heat transfer model for cw laser material processing

    SciTech Connect

    Mazumder, J.; Steen, W.M.

    1980-02-01

    A three-dimensional heat transfer model for laser material processing with a moving Gaussian heat source is developed using finite difference numerical techniques. In order to develop the model, the process is physically defined as follows: A laser beam, having a defined power distribution, strikes the surface of an opaque substrate of infinite length but finite width and depth moving with a uniform velocity in the positive x direction (along the length). The incident radiation is partly reflected and partly absorbed according to the value of the reflectivity. The reflectivity is considered to be zero at any surface point where the temperature exceeds the boiling point. This is because a ''keyhole'' is considered to have formed which will act as a black body. Some of the absorbed energy is lost by reradiation and convection from both the upper and lower surfaces while the rest is conducted into the substrate. That part of the incident radiant power which falls on a keyhole is considered to pass into the keyhole losing some power by absorption and reflection from the plasma within the keyhole as described by a Beer Lambert absorption coefficient. Matrix points within the keyhole are considered as part of the solid conduction network, but operating at fictitiously high temperatures. The convective heat transfer coefficient is enhanced to allow for a concentric gas jet on the upper surface as used for shielding in welding and surface treatment, but not cutting. The system is considered to be in a quasi-steady-state condition in that the thermal profile is considered steady relative to the position of the laser beam. The advantages of this method of calculation over others are discussed together with comparisons between the model predictions and experiments in laser welding, laser arc augmented welding, laser surface treatment, and laser glazing.

  13. Review of controlled fusion research using laser heating.

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1973-01-01

    Development of methods for generating high laser pulse energy has stimulated research leading to new ideas for practical controlled thermonuclear fusion machines. A review is presented of some important efforts in progress, and two different approaches have been selected as examples for discussion. One involves the concept of very short pulse lasers with power output tailored, in time, to obtain a nearly isentropic compression of a deuterium-tritium pellet to very high densities and temperatures. A second approach utilizing long wavelength, long pulse, efficient gas lasers to heat a column of plasma contained in a solenoidal field is also discussed. The working requirements of the laser and various magnetic field geometries of this approach are described.

  14. Modeling Heat Flow for a Distributed Moving Heat Source in Micro-Laser Welding of Plastics

    NASA Astrophysics Data System (ADS)

    Grewell, David; Benatar, Avraham

    2004-06-01

    Polymer use in micro-devices, especially in the medical industry has been rapidly increasing. During assembly of micro-devices it is desirable to produce weld joints that are about 100 μm in width. This paper reviews the modeling of heat flow during through transmission infrared micro-welding of plastic using fiber coupled laser diodes. Two models were used to predict the temperature distributions within welded samples. Both models were based on a moving heat source and moving coordinate system. For the simpler model a moving point heat source was used and for the more complex model a Gaussian distributed heat source was used. It was found that the distributed model can accurately predict temperature fields in plastic laser welds for all ranges of the parameters evaluated. However, the point heat source model was only able to accurately predict temperature fields with a relatively small laser focal spot (25 μm). In addition it was found that for micro-welding of plastics, when the dimensionless distribution parameter is less than two, a point heat source model predicts similar widths to those predicted by a distributed heat source model.

  15. Simulation of planetary entry radiative heating with a CO2 gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.; Howe, J. T.

    1975-01-01

    Heating encountered during entry into the atmospheres of Jupiter, Saturn, and Uranus is described, followed by a discussion of the use of a CO2 gasdynamic laser to simulate the radiative component of the heating. Operation and performance of the laser is briefly described. Finally, results of laser tests of some candidate heat-shield materials are presented.

  16. Plasma Heating and Ultrafast Semiconductor Laser Modulation Through a Terahertz Heating Field

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2000-01-01

    Electron-hole plasma heating and ultrafast modulation in a semiconductor laser under a terahertz electrical field are investigated using a set of hydrodynamic equations derived from the semiconductor Bloch equations. The self-consistent treatment of lasing and heating processes leads to the prediction of a strong saturation and degradation of modulation depth even at moderate terahertz field intensity. This saturation places a severe limit to bandwidth achievable with such scheme in ultrafast modulation. Strategies for increasing modulation depth are discussed.

  17. High temperature thermographic measurements of laser heated silica

    SciTech Connect

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  18. High power laser heating of low absorption materials

    NASA Astrophysics Data System (ADS)

    Olson, K.; Ogloza, A.; Thomas, J.; Talghader, J.

    2014-09-01

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO2 and SiO2 were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm2, on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m2) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W / m ṡ tan - 1 ( √ t / m ) in the transition region between the two.

  19. High power laser heating of low absorption materials

    SciTech Connect

    Olson, K.; Talghader, J.; Ogloza, A.; Thomas, J.

    2014-09-28

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO₂ and SiO₂were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m∙ tan⁻¹(√(t)/m) in the transition region between the two.

  20. Space and Time Resolved Measurements of the Heating of Solids to Ten Million Kelvin by a Petawatt Laser

    SciTech Connect

    Nakatsutsumi, M.; Davies, J.R.; Kodama, R.; Green, J.S.; Lancaster, K.L.; Akli, K.U.; Beg, F.N.; Chen, S.N.; Clark, D.; Freeman, R.R.; Gregory, C.D.; Habara, H.; Heathcote, R.; Hey, D.S.; Highbarger, K.; Jaanimagi, P.; Key, M.H.; Krushelnick, K.; Ma, T.; MacPhee, A.; MacKinnon, A.J.; Nakamura, H.; Stephens, R.B.; Storm, M.; Tampo, M.; Theobald, W.; Van Woerkom, L.; Weber, R.L.; Wei, M.S.; Woolsey, N.C.; Norreys, P.A.

    2008-04-29

    The heating of plane solid targets by the Vulcan petawatt laser at powers of 0.32-0.73 PW and intensities of up to 4 x 10^20 W cm^-2 has been diagnosed with a temporal resolution of 17 ps and a spatial resolution of 30 um, by measuring optical emission from the opposite side of the target to the laser with a streak camera. Second harmonic emission was filtered out and the target viewed at an angle to eliminate optical transition radiation. Spatial resolution was obtained by imaging the emission onto a bundle of fibre optics, arranged into a one-dimensional array at the camera entrance. The results show that a region 160 um in diameter can be heated to a temperature of ~10^7 K (kT/e ~ keV) in solid targets from 10 to 20 um thick and that this temperature is maintained for at least 20 ps, confirming the utility of PW lasers in the study of high energy density physics. Hybrid code modelling shows that magnetic field generation prevents increased target heating by electron refluxing above a certain target thickness and that the absorption of laser energy into electrons entering the solid target was between 15-30%, and tends to increase with laser energy.

  1. Rewriting magnetic phase change memory by laser heating

    NASA Astrophysics Data System (ADS)

    Timmerwilke, John; Liou, Sy-Hwang; Cheng, Shu Fan; Edelstein, Alan S.

    2016-04-01

    Magnetic phase change memory (MAG PCM) consists of bits with different magnetic permeability values. The bits are read by measuring their effect on a magnetic probe field. Previously low permeability crystalline bits had been written in high permeability amorphous films of Metglas via laser heating. Here data is presented showing that by applying short laser pulses with the appropriate power to previously crystallized regions they can first be vitrified and then again crystallized. Thus, MAG PCM is rewriteable. Technical issues in processing the bits are discussed and results on thermal modeling are presented.

  2. Tritium removal by CO{sub 2} laser heating

    SciTech Connect

    Skinner, C.H.; Kugel, H.; Mueller, D.; Doyle, B.L.; Wampler, W.R.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO{sub 2} or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm{sup 2} flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally.

  3. Tritium Removal by CO{sub 2} Laser Heating

    SciTech Connect

    B.L. Doyle; C.H. Skinner; D. Mueller; H. Kugel; W.R. Wampler

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO(subscript 2) or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. We have modeled the heat propagation into a surface layer and find that a multi-kW/cm(superscript2) flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000-2,000 degrees. Improved wall conditioning may be a significant side benefit. We identify remaining issues that need to be addressed experimentally.

  4. Tritium removal by CO{sub 2} laser heating

    SciTech Connect

    Skinner, C.H.; Kugel, H.; Mueller, D.; Doyle, B.L.; Wampler, W.R.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO{sub 2} or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm{sup 2} flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally.

  5. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOEpatents

    Beer, Neil Reginald; Kennedy, Ian

    2013-12-17

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  6. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOEpatents

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  7. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  8. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  9. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  10. Convection flows driven by laser heating of a liquid layer

    NASA Astrophysics Data System (ADS)

    Rivière, David; Selva, Bertrand; Chraibi, Hamza; Delabre, Ulysse; Delville, Jean-Pierre

    2016-02-01

    When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at different beam powers, using a particle image velocimetry technique on the other hand. Temperature measurements were also used in numerical simulations in order to compare predictions to the experimental velocity profiles. The combination of our numerical and experimental approaches allows a detailed description of the convection flows induced by the absorption of light, which reveals a transition between a thin and a thick liquid layer regime. This supports the basis of optothermal approaches for microfluidic applications.

  11. Calibrated Heat Flow Model for Determining the Heat Conduction Losses in Laser Cutting of CFRP

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Weber, R.; Speker, N.; Berger, P.; Sommer, B.; Graf, T.

    Laser machining has great potential regarding automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts, due to the nearly force and tool-wear free processing at high process speeds. The high vaporization temperatures and the large heat conductivity of the carbon fibers lead to a large heat transport into the sample. This causes the formation of a heat-affected zone and a decrease of the process speed. In the present paper,an analytical heat flow model was adapted in order to understand and investigate the heat conduction losses. Thermal sensors were embedded in samples at different distances from the kerf to fit the calculated to the measured temperatures. Heat conduction losses of up to 30% of the laser power were determined. Furthermore, the energy not absorbed by the sample, the energy for sublimating the composite material in the kerf, the energy for the formation of the HAZ, and the residual heat in the sample are compared in an energy balance.

  12. Ballistic heat transport in laser generated nano-bubbles.

    PubMed

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. PMID:27461058

  13. Strongly-coupled plasmas formed from laser-heated solids

    PubMed Central

    Lyon, M.; Bergeson, S. D.; Hart, G.; Murillo, M. S.

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  14. Strongly-coupled plasmas formed from laser-heated solids.

    PubMed

    Lyon, M; Bergeson, S D; Hart, G; Murillo, M S

    2015-01-01

    We present an analysis of ion temperatures in laser-produced plasmas formed from solids with different initial lattice structures. We show that the equilibrium ion temperature is limited by a mismatch between the initial crystallographic configuration and the close-packed configuration of a strongly-coupled plasma, similar to experiments in ultracold neutral plasmas. We propose experiments to demonstrate and exploit this crystallographic heating in order to produce a strongly coupled plasma with a coupling parameter of several hundred. PMID:26503293

  15. Tritium Removal by Laser Heating and Its Application to Tokamaks

    SciTech Connect

    C.H. Skinner; C.A. Gentile; G. Guttadora; A. Carpe; S. Langish; K.M. Young; M. Nishi; W. Shu

    2001-11-16

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm{sup 2}, and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed.

  16. Ballistic heat transport in laser generated nano-bubbles

    NASA Astrophysics Data System (ADS)

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A

  17. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  18. Portable laser-heating system for diamond anvil cells

    SciTech Connect

    Dubrovinsky, L.; Glazyrin, K.; McCammon, C.; Narygina, O.; Greenberg, E.; Ubelhack, S.; Chumakov, A.I.; Pascarelli, S.; Prakapenka, V.; Bock, J.; Dubrovinskaia, N.

    2009-10-21

    The diamond anvil cell (DAC) technique coupled with laser heating has become the most successful method for studying materials in the multimegabar pressure range at high temperatures. However, so far all DAC laser-heating systems have been stationary: they are linked either to certain equipment or to a beamline. Here, a portable laser-heating system for DACs has been developed which can be moved between various analytical facilities, including transfer from in-house to a synchrotron or between synchrotron beamlines. Application of the system is demonstrated in an example of nuclear inelastic scattering measurements of ferropericlase (Mg{sub 0.88}Fe{sub 0.12})O and h.c.p.-Fe{sub 0.9}Ni{sub 0.1} alloy, and X-ray absorption near-edge spectroscopy of (Mg{sub 0.85}Fe{sub 0.15})SiO{sub 3} majorite at high pressures and temperatures. Our results indicate that sound velocities of h.c.p.-Fe{sub 0.9}Ni{sub 0.1} at pressures up to 50 GPa and high temperatures do not follow a linear relation with density.

  19. Heat damage-free laser-microjet cutting achieves highest die fracture strength

    NASA Astrophysics Data System (ADS)

    Perrottet, Delphine; Housh, Roy; Richerzhagen, Bernold; Manley, John

    2005-04-01

    Unlike conventional laser-based technologies, the water jet guided laser does not generate heat damage and contamination is also very low. The negligible heat-affected zone is one reason why die fracture strength is higher than with sawing. This paper first presents the water jet guided laser technology and then explains how it differs from conventional dry laser cutting. Finally, it presents the results obtained by three recent studies conducted to determine die fracture strength after Laser-Microjet cutting.

  20. Electron heating enhancement by frequency-chirped laser pulses

    SciTech Connect

    Yazdani, E.; Afarideh, H.; Sadighi-Bonabi, R.; Riazi, Z.; Hora, H.

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.

  1. Model of Heat and Mass Transfer in Random Packing Layer of Powder Particles in Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Kovaleva, I.; Kovalev, O.; Smurov, I.

    Discretegrid model of heat transfer in granular porous mediumto describe the processes of selective laser melting of powdersis developed. The thermal conductivity in this mediumis performed through thecontact surfaces between the particles. The calculation method of morphology of random packing layer of powder considering the adhesive interaction between the particles is proposed. The internal structure of the obtained loose powder layer is a granular medium where spherical particles of different sizes are arranged in contact with each other randomly. Analytical models of powder balling process and formation of the remelted track are proposed.

  2. Energy transport in short-pulse-laser-heated targets measured using extreme ultraviolet laser backlighting.

    PubMed

    Wilson, L A; Tallents, G J; Pasley, J; Whittaker, D S; Rose, S J; Guilbaud, O; Cassou, K; Kazamias, S; Daboussi, S; Pittman, M; Delmas, O; Demailly, J; Neveu, O; Ros, D

    2012-08-01

    The accurate characterization of thermal electron transport and the determination of heating by suprathermal electrons in laser driven solid targets are both issues of great importance to the current experiments being performed at the National Ignition Facility, which aims to achieve thermonuclear fusion ignition using lasers. Ionization, induced by electronic heat conduction, can cause the opacity of a material to drop significantly once bound-free photoionization is no longer energetically possible. We show that this drop in opacity enables measurements of the transmission of extreme ultraviolet (EUV) laser pulses at 13.9 nm to act as a signature of the heating of thin (50 nm) iron layers with a 50-nm thick parylene-N (CH) overlay irradiated by 35-fs pulses at irradiance 3×10(16) Wcm(-2). Comparing EUV transmission measurements at different times after irradiation to fluid code simulations shows that the target is instantaneously heated by hot electrons (with approximately 10% of the laser energy), followed by thermal conduction with a flux limiter of ≈0.05. PMID:23005868

  3. Liquid metal heat sink for high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Litt, Amardeep S.; Copeland, Drew A.; Junghans, Jeremy; Durkee, Roger

    2013-02-01

    We report on the development of a novel, ultra-low thermal resistance active heat sink (AHS) for thermal management of high-power laser diodes (HPLD) and other electronic and photonic components. AHS uses a liquid metal coolant flowing at high speed in a miniature closed and sealed loop. The liquid metal coolant receives waste heat from an HPLD at high flux and transfers it at much reduced flux to environment, primary coolant fluid, heat pipe, or structure. Liquid metal flow is maintained electromagnetically without any moving parts. Velocity of liquid metal flow can be controlled electronically, thus allowing for temperature control of HPLD wavelength. This feature also enables operation at a stable wavelength over a broad range of ambient conditions. Results from testing an HPLD cooled by AHS are presented.

  4. Combined Laser Ultrasonics, Laser Heating and Raman Scattering in Diamond Anvil Cell System

    NASA Astrophysics Data System (ADS)

    Zinin, Pavel; Prakapenka, Vitali; Odake, Shoko; Burgess, Katherine

    2013-06-01

    We developed a unique and multifunctional in-situ measurement system under high pressure equipped with laser ultrasonics system, Raman device, and laser heating system (LH-LU-DAC) at the University of Hawaii. The system consists of four components: (1) LU-DAC system (probe and pump lasers, photodetector, and oscilloscope); (2) a fiber laser (1064 nm), which is designed to allow precise control of the total power in the range from 2 to 100 W by changing the diode current, for heating samples; (3) a spectrometer for measuring the temperature of the sample (using Black body radiation), fluorescence spectrum (spectrum of the ruby for pressure measurement), and Raman scattering measurements inside DAC under high pressure and high temperature (HPHT) conditions; and (4) an optical system for focusing laser beams (pump, probe, and 100 W CW lasers) on the sample in DAC and for imaging a sample inside the DAC. The system allows us to: (a) measure acoustical properties of materials under HPHT; (b) synthesize new phases under HPHT; and (c) measure Raman scattering under HPHT conditions for detection of phase transition. This work was supported by the U.S. DOE Grant, NO. DE-FG02-07ER46408, and NSF Grant, NO. EAR-1215796.

  5. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  6. Frequency analysis of optoacoustic signals in laser heated tissues

    NASA Astrophysics Data System (ADS)

    Ladéroute, Annie; Patterson, Michelle P.; Kolios, Michael C.; Whelan, William M.

    2012-02-01

    Laser thermal therapy involves heating tissue using light to temperatures between 55 °C and 95 °C for several minutes resulting in coagulation and cell death. This treatment method has been under investigation for use as a minimally invasive method for treating solid tumors and cancer cells. Heating tissues results in highly variable outcomes and challenges; for example, ensuring complete coagulation of the target tissue while avoiding damage to surrounding healthy tissues. Overcoming such challenges requires precise and real-time monitoring. Optoacoustic imaging has been proposed as a real-time, noninvasive method for monitoring laser thermal. Ex-vivo porcine tenderloin samples were heated using a 1000 μm core optical fiber coupled to an 810 nm diode laser at a constant power of 7 W for 10 minutes. Lesions (6-7 mm diameter) were scanned using a prototype reverse-mode optoacoustic system consisting of a pulsed laser which operates at 1064 nm coupled to a bifurcated fibre bundle, and an 8 element annular array wideband ultrasound transducer with a central frequency ~5 MHz. Scanning was done across native and coagulated tissue with an energy of 6.5 mJ at a 1064 nm wavelength. Three lesions of similar size, shape and coagulation state were chosen for analysis. Thermal coagulation effects were analyzed using optoacoustic signal amplitude and spectral analysis of the optoacoustic RF data. Results show that the signal amplitude and the intercept and midband fit of the power spectrum exhibit interesting differences between native and coagulated tissue states.

  7. High energy bursts from a solid state laser operated in the heat capacity limited regime

    SciTech Connect

    Albrecht, G.; George, E.V.; Krupke, W.

    1994-12-31

    Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

  8. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  9. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  10. Collaborative Arrangements.

    ERIC Educational Resources Information Center

    Cota-Robles, Eugene; Doby, Winston

    Two conference papers describing various collaborative arrangements within the educational community among teachers, students and others are presented in this document. The first paper, "Successful Collaborations" (Eugene Cota-Robles), describes the following projects in California that seek to forge collaborations to improve the education of…

  11. Performance and heat transfer characteristics of the laser-heated rocket - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.; Larson, V. R.

    1976-01-01

    The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.

  12. Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Mao, Xiaoan; Jaworski, Artur J.

    2010-11-01

    This paper describes the development of an experimental arrangement and the application of acetone-based planar laser-induced fluorescence (PLIF) measurement techniques to study the unsteady characteristics of heat transfer processes in the parallel-plate heat exchangers of thermoacoustic devices. The experimental rig is a quarter-wavelength acoustic resonator where a standing wave imposes oscillatory flow conditions. Two mock-up heat exchangers, 'hot' and 'cold', have their fins kept at constant temperatures by electrical heating and water cooling, respectively. A purpose-designed acetone tracer seeding mechanism is used for PLIF temperature measurement. Acetone concentration is optimized from the viewpoint of PLIF signal intensity. Two-dimensional temperature distributions in the gas surrounding the heat exchanger plates, as a function of phase angle in the acoustic cycle, are obtained. Local and global (instantaneous and cycle-averaged) heat flux values on the fin surface are estimated and used to obtain the dependence of the space-cycle averaged Nusselt versus Reynolds number. Measurement uncertainties are discussed.

  13. Nonlinear heating of underdense collisional plasma by a laser pulse

    SciTech Connect

    Abari, M. Etehadi; Shokri, B.

    2011-05-15

    The nonlinear interaction of a laser pulse with a homogenous unmagnetized underdense plasma, taking ohmic heating and the effects of ponderomotive force into account, is theoretically studied. Since the ponderomotive force modifies the electrons density and temperature distribution, the nonlinear dielectric permittivity of plasma is obtained in non-relativistic regime. Furthermore, electric and magnetic fields, electron density, temperature distribution, and the effective permittivity variations are obtained in terms of plasma length by making use the steady state solutions of the Maxwell and hydrodynamic equations. It is shown that the oscillations wave length of electric and magnetic fields decreases when the laser intensity increases. At the same time, in this case, electron density oscillations become highly peaked. Also, the amplitude of the electron temperature oscillations increase and their wavelength decreases.

  14. Study, optimization, and design of a laser heat engine. [for satellite applications

    NASA Technical Reports Server (NTRS)

    Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.

    1978-01-01

    Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.

  15. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect

    Rainey, E. S. G.; Kavner, A.; Hernlund, J. W.

    2013-11-28

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  16. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    NASA Astrophysics Data System (ADS)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T.; Symietz, C.; Bonse, J.; Andree, S.; Krüger, J.; Heidmann, B.; Schmid, M.; Lux-Steiner, M.

    2016-03-01

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  17. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  18. Beta dosimetry using pulsed laser heating of TLD materials

    SciTech Connect

    Quam, W.

    1983-01-01

    Use of a pulsed CO/sub 2/ laser to heat the surface of hot-pressed LiF chips has been investigated. The thermoluminescent traps in the first 10 to 20 ..mu..m of depth may be read out with good efficiency, which will allow entrance dose and exit dose to be determined using a standard chip. These dose data can be used to calculate beta dose and gamma dose separately. Readout speed is estimated to be a few milliseconds per chip.

  19. Effects of nonlocal heat transport on laser implosion

    SciTech Connect

    Mima, K.; Honda, M.; Miyamoto, S.; Kato, S.

    1996-05-01

    A numerical simulation code describing the spherically symmetric implosion hydrodynamics has been developed to investigate the nonlocal heat transport effects on stable high velocity implosion and fast ignition. In the implosion simulation code HIMICO, the Fokker Planck equation for electron transport is solved to describe the nonlocal effects. For high ablation pressure implosion with a pressure higher than 200 Mbar, the isentrope is found higher by a factor 2 in the nonlocal transport model than in the Spitzer Harm model. As for the fast ignition simulation, the neutron yield for the high density compression with 10 KJ laser increases to be 20 times by injecting an additional heating pulse of 10 KJ with 1 psec. {copyright} {ital 1996 American Institute of Physics.}

  20. SiC growth by Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali; Spry, David J.; Trunek, Andrew J.; Powell, J. Anthony

    2011-01-01

    In an effort to grow single crystal SiC fibers for seed crystals the following two growth methods have been coupled in this work: traveling solvent and laser heated floating zone to create the solvent-laser heated floating zone (Solvent-LHFZ) crystal growth method. This paper discusses the results of these initial experiments, which includes: source material, laser heating, and analysis of the first ever Solvent-LHFZ SiC crystals (synchrotron white beam x-ray topography confirmed).

  1. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: X-ray spectral diagnostics of plasmas heated by picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Bryunetkin, B. A.; Skobelev, I. Yu; Faenov, A. Ya; Khakhalin, S. Ya; Kalashnikov, M. P.; Nickles, P. V.; Schnürer, M.

    1993-06-01

    The properties of a magnesium plasma heated by picosecond laser pulses have been determined by x-ray spectral methods. Experiments were carried out at a laser power density ~ 1.5 · 1018 W/cm2. The x-ray spectra were detected by spectrographs with a plane CsAP crystal and a mica crystal bent into part of a spherical surface 10 cm in radius. The experimental data are compared with predictions of a calculation on the time-varying kinetics of multiply charged magnesium ions.

  2. Fiber laser heating and penetration of aluminum in shear flow

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Hurst, Benjamin E.; Marciniak, Michael A.; Perram, Glen P.

    2014-12-01

    Laser damage experiments were performed on painted and unpainted aluminum coupons using a 1.07-μm fiber laser at irradiances ranging from 0.2 to 1.4 kW/cm2 in a wind tunnel operating at Mach 0.1 to 0.9. Coupon penetration times of ˜0.5 to 10 s were measured using a silicon photodiode viewing a Lambertian scatter plate placed behind the target. Despite the thin, 0.81 to 0.95 mm, samples and large laser spot diameters, 2 to 3 cm, the effects of radial heat conduction dominate for irradiances of <1 kW/cm2. The fluence required to melt the back surface scales linearly with paint absorbance and the effects of paint aging have been observed. Penetration times for gray-painted aluminum at 287 W/cm2 decrease by 45% as the airflow speed increases from M=0.1 to M=0.2, but remains constant for flow speeds up to M=0.7.

  3. Seal arrangement

    DOEpatents

    Lundholm, Gunnar

    1987-01-01

    A seal arrangement is provided for preventing gas leakage along a reciprocating piston rod or other reciprocating member passing through a wall which separates a high pressure gas chmber and a low pressure gas chamber. Liquid lubricant is applied to the lower pressure side of a sealing gland surrounding the piston rod to prevent the escape of gas between the rod and the gland. The sealing gland is radially forced against the piston rod by action of a plurality of axially stacked O-rings influenced by an axially acting spring as well as pressure from the gas.

  4. Analysis of heat and mass transfer enhancement in porous material subjected to electric fields (effects of particle sizes and layered arrangement)

    SciTech Connect

    Chaktranond, Chainarong; Rattanadecho, Phadungsak

    2010-11-15

    This research experimentally investigates the influences of electrical voltage, particle sizes and layer arrangement on the heat and mass transfer in porous packed bed subjected to electrohydrodynamic drying. The packed bed consists of a single and double layers of glass beads, water and air. Sizes of glass beads are 0.125 and 0.38 mm in diameter. Electric fields are applied in the range of 0-15 kV. Average velocity and temperature of hot airflow are controlled at 0.33 m/s and 60 C, respectively. The results show that the convective heat transfer coefficient and drying rate are enhanced considerably with a Corona wind. In the single-layered case, due to effects of porosity, the packed bed containing small beads has capillary pressure higher than that with big beads, resulting in higher removal rate of water and higher rate of heat transfer. Considering the effect of capillary pressure difference, temperature distribution and removal rate of moisture in the double-layered case appear to be different than those observed in the single-layered case. Moreover, in the double-layered case, the fine-coarse packed bed gives drying rate higher than that given by the coarse-fine packed bed. (author)

  5. Analysis of laser-produces jets from locally heated targets

    NASA Astrophysics Data System (ADS)

    Schmitz, Holger; Robinson, Alex

    2015-11-01

    Recent simulations showed that it might be possible to produce a jet by locally heating a foil target with a high intensity laser, so as to produce a single blast wave which then drives jet formation. In contrast to many earlier experimental setups, the jets in this configuration are formed by a two stage process similar to that thought to be responsible for jets from young stellar objects. As the blast wave expands into the ambient medium it creates an inverse conical density structure. This inverse cone focuses the flow into a conically converging flow which then turns into a narrow jet. The realisation of this two step process in an experiment could make it possible to study the formation of stellar jets in the laboratory. We present new results investigating the criteria that lead to the creation of the inverse conical structure and the subsequent jet formation. The localised heating necessary for driving the jet is achieved by guiding the electrons in self generated magnetic fields at resistivity gradients. We present simulations demonstrating the geometries that lead to the localised heating suitable for jet formation. This work is funded by the European Research Council, grant STRUCMAGFAST (ERC-StG-2012).

  6. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion. PMID:26024175

  7. Infrared laser heating for studies of cellulose degradation

    SciTech Connect

    Jackson, J.P.; Arthurs, E.; Schwalbe, L.A.; Sega, R.M.; Windish, D.; Long, W.H.; Stappaerts, E.A.

    1988-09-15

    We describe a new technique for studying thermally induced chemical transformations in cellulose. The apparatus consists of a carbon dioxide laser for heating, an IR thermometer, and an optical reflectance spectrometer for tracking the progressive discoloration of the sample. To illustrate the technique, we present measurements from a single piece of sample linen along five isotherms in the 200--290/sup 0/C range. We derive an algebraic expression for the reflectivity of the sample as a function of the areal concentrations of the chromophoric states produced at temperature. The results are then explained in terms of first-order chemical rate theory and a four-step model. From the measurements we derive the activation energies, Arrhenius constants, and reflectivities of the chromophoric states.

  8. High-definition color image in dye thermal transfer printing by laser heating

    NASA Astrophysics Data System (ADS)

    Kitamura, Takashi

    1999-12-01

    In laser thermal transfer printing using dye sublimation type medium, a high definition and continuous tone image can be obtained easily because the laser beam is focused to small spot and heat energy can be controlled by the pulse width modulation of laser light. The donor ink sheet is composed of the laser absorbing layer and sublimation dye layer. The tone reproduction was depend on the mixture ratio of dye to binder and thickness of ink layer. The four color ink sheets such as cyan, magenta, yellow and black were prepared for color printing image which have a high resolution and good continuous tone reproduction using sublimation dye transfer printing by laser heating.

  9. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  10. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  11. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells

    SciTech Connect

    Kupenko, I. Strohm, C.; McCammon, C.; Cerantola, V.; Petitgirard, S.; Dubrovinsky, L.; Glazyrin, K.; Vasiukov, D.; Aprilis, G.; Chumakov, A. I.; Rüffer, R.

    2015-11-15

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe{sub 3}C using synchrotron Mössbauer source spectroscopy, FeCO{sub 3} using nuclear inelastic scattering, and Fe{sub 2}O{sub 3} using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

  12. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells.

    PubMed

    Kupenko, I; Strohm, C; McCammon, C; Cerantola, V; Glazyrin, K; Petitgirard, S; Vasiukov, D; Aprilis, G; Chumakov, A I; Rüffer, R; Dubrovinsky, L

    2015-11-01

    Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe3C using synchrotron Mössbauer source spectroscopy, FeCO3 using nuclear inelastic scattering, and Fe2O3 using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses. PMID:26628151

  13. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    SciTech Connect

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-05-18

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to <5kW. Even at the maximum demonstrated average powers, the output is most often delivered as continuous wave (CW) or as small energy pulses at high pulse repetition frequency (PRF) and the beam divergence is typically >10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is

  14. Small-scale heat detection using catalytic microengines irradiated by laser.

    PubMed

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-02-21

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. PMID:23291927

  15. Petawatt-laser direct heating of uniformly imploded deuterated-polystyrene shell target.

    PubMed

    Kitagawa, Yoneyoshi; Sentoku, Yasuhiko; Akamatsu, Shin; Sakamoto, Wataru; Tanaka, Kazuo A; Kodama, Ryosuke; Nishimura, Hiroaki; Inubushi, Yuichi; Nakai, Mitsuo; Watari, Takeshi; Norimatsu, Takayoshi; Sunahara, Atsushi

    2005-01-01

    A uniformly imploded deuterated polystyrene (CD) shell target is fast-heated by a Petawatt (PW) laser without cone guide. The best illumination timing is found to be in a narrow region around 80+/-20 picoseconds from the onset of the stagnation phase, where thermal neutrons are enhanced four to five times by the PW laser of energy less than 10% of the implosion laser. The timing agrees with the timings of enhancement of the x-ray emission from the core and reduction of the bremsstrahlung radiation from scattered hot electrons. The PW laser, focused to the critical density point, generates the energetic electrons within as narrow an angle as 30 degrees , which then heats the imploded CD shell to enhance thermal neutrons. These results first demonstrate that the PW laser directly heats the imploded core without any conelike laser guide. PMID:15697731

  16. The UC2-x - Carbon eutectic: A laser heating study

    NASA Astrophysics Data System (ADS)

    Manara, D.; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-01

    The UC2-x - carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC2-x - C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U - C - O composition of the samples was checked by using a combustion method in an ELTRA® analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic - tetragonal (α → β) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC2.82). Due to fast solid state diffusion, also fostered by the cubic - tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC2-x composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the α → β transition, uranium dicarbide covers again the almost entire external surface.

  17. Effects of the arrangement of triangle-winglet-pair vortex generators on heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Shang, Bojun; Meng, Huibo; Li, Yaxia; Wang, Cuihua; Gong, Bin; Wu, Jianhua

    2016-04-01

    To improve heat transfer performance of the shell side of a double-pipe heat exchanger enhanced by helical fins, triangle-winglet-pair vortex generators (VG) were installed along the centerline of the helical channel with rectangular cross section. The effects of the arrangement of the triangle-winglet-pair VG, such as the geometry, the angle of attack and the quantity on heat transfer performance and pressure drop characteristics have been investigated experimentally to find out the optimal design of the VG. Air was used as working fluid within the range of Re from 680 to 16,000. The results show that, the heat exchange effectiveness of the shell side with VG is 16.6 % higher than that without VG. The vortices and the unsteadiness of the flow introduced by the VG make a great contribution to the increase. Under identical pressure drop condition, the angle of attack of 30° is the best choice compared with 45° and 60°. Under the three constraints, i.e., identical mass flow rate, identical pressure drop and identical pumping power, the largest VG size can achieve the best enhancement effect. Installation of three pairs of VG within one pitch is an optimal design for the shell side used in the present experiments. The enhancement effect of isosceles right triangle is better than that of right triangle in which one acute angle is 30°.

  18. Laser heating of an absorbing and conducting media applied to laser flash property measurements

    SciTech Connect

    Gritzo, L.A.; Anderson, E.E.

    1993-12-31

    The laser flash technique is widely used for determining the thermal diffusivity of a sample. In this work, the temperature distribution throughout the sample is investigated, identifying localized, highly-heated regions near the front surface of the sample as a function of: (1) pulse duration, (2) incident beam uniformity, and (3) sample opacity. These high-temperature regions result in an increase in the uncertainty due to temperature-dependent properties, an increase in the heat loss from the sample, and an increased risk of sample damage. The temperature within a semi-transparent media is also investigated in order to establish a regime for which the media can reasonably be considered as opaque. This analysis illustrates that, for same total energy deposition, treatment of the incident energy as a continuous heat source, as opposed to an infinitesimal pulse of energy, results in a factor of 2 increase in the front surface temperature during heating. Also, for the same total energy deposition and approximate beam size, use of a Gaussian intensity distribution increases the front surface temperature during heating by more than a factor of 2 as compared to the use of a uniform temperature distribution. By analyzing the front surface temperature of an absorbing and conducting semi-transparent sample subjected to a Gaussian intensity distribution, it is concluded that the media can be treated as opaque, (i.e. the energy can be applied as a boundary condition) for {var_epsilon} = kd > 50, where k is the extinction coefficient and d is the beam diameter. For materials with a sufficiently small absorption coefficient and thermal diffusivity, a closed-form solution suitable for design use is presented for the front-surface temperature at a location coincident with the beam centerline.

  19. Displacement analysis of a bend plate test with mechanical loading and laser heating

    SciTech Connect

    Lam, P.S.

    1997-09-01

    The surface displacment of a steel plate caused by a permanent deformation as a result of local yielding was modeled by a finite element analysis. The local yielding occurs when a small area of the plate is heated by a laser beam. The calculated displacments are in good agreement with the preliminary experimental data obtained using a bend specimen with laser heating at the University of Alabama at Huntsville. It has been shown computuationally and optically that the relative displacments are less than 1mm near the laser heated area of the specimen. The results demonstrate that the experimental approach is a feasible technique for determining the residual stress under multiaxial stress field.

  20. Electron heating in radiation-pressure-driven proton acceleration with a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Paradkar, B. S.; Krishnagopal, S.

    2016-02-01

    Dynamics of electron heating in the radiation-pressure-driven acceleration through self-induced transparency (SIT) is investigated with the help of particle-in-cell simulations. The SIT is achieved through laser filamentation which is seeded by the transverse density modulations due to the Rayleigh-Taylor-like instability. We observe stronger SIT induced electron heating for the longer duration laser pulses leading to deterioration of accelerated ion beam quality (mainly energy spread). Such heating can be controlled to obtain a quasimonoenergetic beam by cascaded foils targets where a second foil behind the main accelerating foil acts as a laser reflector to suppress the SIT.

  1. An inductively heated hot cavity catcher laser ion source.

    PubMed

    Reponen, M; Moore, I D; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined. PMID:26724021

  2. An inductively heated hot cavity catcher laser ion source

    SciTech Connect

    Reponen, M.; Moore, I. D. Pohjalainen, I.; Savonen, M.; Voss, A.; Rothe, S.; Sonnenschein, V.

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  3. Warm dense matter created by isochoric laser heating

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Correa, A. A.; Ogitsu, T.; Draeger, E.; Schwegler, E.; Ao, T.; Widmann, K.; Price, D. F.; Lee, E.; Tam, H.; Springer, P. T.; Hanson, D.; Koslow, I.; Prendergast, D.; Collins, G.; Ng, A.

    2010-06-01

    Warm Dense Matter (WDM) physics has been a growing field of high energy density physics, driven by the fundamental urge to understand the convergence between plasma and condensed matter physics, and the practical need to understand dynamic behavior of materials under extreme conditions. A platform for creating and probing WDM by isochoric heating of free-standing nano-foils has been developed recently to study the non-equilibrium processes. Results of optical measurements reveal the existence of a quasi-steady state in the time history, during which the interband component of the dielectric function shows both enhancement and a red shift. First-principles calculations of the dielectric function suggest that the enhanced red shift of the interband transition peak might be explained by a positive charge state of the gold foil due to ejection of electrons by the high intensity laser pulse. The impact on optical properties by the formation of an electronic sheath was examined by the Thomas-Fermi theory with local equilibrium approximation.

  4. An inductively heated hot cavity catcher laser ion source

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  5. Energy coupling and plume dynamics during high power laser heating of metals

    SciTech Connect

    Jeong, S. |

    1997-05-01

    High power laser heating of metals was studied utilizing experimental and numerical methods with an emphasis on the laser energy coupling with a target and on the dynamics of the laser generated vapor flow. Rigorous theoretical modeling of the heating, melting, and evaporation of metals due to laser radiation with a power density below the plasma shielding threshold was carried out. Experimentally, the probe beam deflection technique was utilized to measure the propagation of a laser induced shock wave. The effects of a cylindrical cavity in a metal surface on the laser energy coupling with a solid were investigated utilizing photothermal deflection measurements. A numerical calculation of target temperature and photothermal deflection was performed to compare with the measured results. Reflection of the heating laser beam inside the cavity was found to increase the photothermal deflection amplitude significantly and to enhance the overall energy coupling between a heating laser beam and a solid. Next, unsteady vaporization of metals due to nanosecond pulsed laser heating with an ambient gas at finite pressure was analyzed with a one dimensional thermal evaporation model for target heating and one dimensional compressible flow equations for inviscid fluid for the vapor flow. Lastly, the propagation of a shock wave during excimer laser heating of aluminum was measured with the probe beam deflection technique. The transit time of the shock wave was measured at the elevation of the probe beam above the target surface; these results were compared with the predicted behavior using ideal blast wave theory. The propagation of a gaseous material plume was also observed from the deflection of the probe beam at later times.

  6. Research and application of surface heat treatment for multipulse laser ablation of materials

    NASA Astrophysics Data System (ADS)

    Cai, Song; Chen, Genyu; Zhou, Cong

    2015-11-01

    This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model.

  7. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  8. Bone tissue heating and ablation by short and ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2010-02-01

    Biological hard tissues, such as those found in bone and teeth, are complex tissues that build a strong mineral structure over an organic matrix framework. The laser-matter interaction for bone hard tissues holds great interest to laser surgery and laser dentistry; the use of short/ultrashort pulses, in particular, shows interesting behaviors not seen in continuous wave lasers. High laser energy densities in ultrashort pulses can be focused on a small irradiated surface (spot diameter is 10-50 μm) leading to rapid temperature rise and thermal ablation of the bone tissue. Ultrashort pulses, specifically those in the picosecond and femtosecond ranges, impose several challenges in modeling bone tissue response. In the present paper we perform time-dependent thermal simulations of short and ultrashort pulse laser-bone interactions in singlepulse and multipulse (set of ultrashort pulses) modes of laser heating. A comparative analysis for both radiation modes is discussed for laser heating of different types of the solid bone on the nanosecond, picosecond and femtosecond time scales. It is shown that ultrashort laser pulses with high energy densities can ablate bone tissue without heating tissues bordering the ablation creator. This reaction is particularly desirable as heat accumulation and thermal damage are the main factors affecting tissue regrowth rates, and thus patient recovery times.

  9. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.

    PubMed

    Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  10. Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma

    SciTech Connect

    Tanabe, M; Nishimura, H; Ohnishi, N; Fournier, K B; Fujioka, S; Iwamae, A; Hansen, S B; Nagai, K; Girard, F; Primout, M; Villette, B; Brebion, D; Mima, K

    2009-02-23

    The propagation of a laser-driven heat-wave into a Ti-doped aerogel target was investigated. The temporal evolution of the electron temperature was derived by means of Ti K-shell x-ray spectroscopy, and compared with two-dimensional radiation hydrodynamic simulations. Reasonable agreement was obtained in the early stage of the heat-wave propagation. In the later phase, laser absorption, the propagation of the heat wave, and hydrodynamic motion interact in a complex manner, and the plasma is mostly re-heated by collision and stagnation at the target central axis.

  11. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  12. Femtosecond laser heat affected zones profiled in Co/Si multilayer thin films

    SciTech Connect

    Picard, Yoosuf N.; Yalisove, Steven M.

    2008-01-07

    In this letter, we describe an approach for assessing collateral thermal damage resulting from high intensity, femtosecond laser irradiation. Polycrystalline Co thin films deposited on Si (100) substrates and buried under an amorphous Si film were prepared for plan-view transmission electron microscopy (TEM) prior to laser irradiation by femtosecond laser pulses. A heat affected zone (HAZ) resulting from single pulse irradiation at a fluence of 0.9 J/cm{sup 2} was determined by TEM imaging and point-wise selected area diffraction. The spatially Gaussian laser pulse generated a HAZ extending up to 3 {mu}m radially from the femtosecond laser irradiated region.

  13. Finite element analysis of laser-diode heat emission and design of PI fuzzy cooling system

    NASA Astrophysics Data System (ADS)

    Yu, Fusheng; Shen, Xiaoqin; Leng, Changlin; Li, Zhi

    2005-01-01

    In order to realize the coupling of the crystal spectrum line, the wavelength output by the laser-diode must be adjusted to be accordant with the peak value absorbed by laser crystal in the solid laser of the laser-diode pump. In this paper, the finite element analysis (FEA) of the heat emission of the to-3 encapsulated laser-diode was researched and an accurate PI+Fuzzy temperature control system was developed. The refrigeration and the accurate temperature control of the high-power laser-diode was realized by the semiconductor refrigerator. Combined with fussy control and PI control, a full solid refrigerator of the laser-diode was developed. AT89C51 MCU and CRI[1] fussy control arithmetic were used in this system. So the system has high temperature control precision and little chatting. The rate of change of the optical power peak value output by the laser-diode was less than 1%.

  14. Investigation of laser heating effect of metallic nanoparticles on cancer treatment

    NASA Astrophysics Data System (ADS)

    Shan, G. S.; Liu, X. M.; Chen, H. J.; Yu, J. S.; Chen, X. D.; Yao, Y.; Qi, L. M.; Chen, Z. J.

    2016-07-01

    Metallic nanoparticles can be applied for hyperthermia therapy of cancer treatment to enhance the efficacy because of their high absorption rate. The absorption of laser energy by metallic nanoparticles is strongly dependent on the concentration, shape, material of nanoparticles and the wavelength of the laser. However, there is no systematic investigation on the heating effect involving different material, concentration and laser wavelength. In this paper, gold nanoparticles (AuNPs), sliver nanoparticles (AgNPs) and sliver nanowires (AgNWs) with different concentrations are heated by 450nm and 532nm wavelength laser to investigate the heating effect. The result shows that the temperature distribution of heated metallic nanoparticles is non-uniform.

  15. Heat exchange and hydraulic resistance of compact laser mirror cooling systems

    NASA Astrophysics Data System (ADS)

    Shanin, Yu. I.; Shanin, O. I.

    2013-07-01

    The hydraulic resistance of cooling systems for laser mirrors and the heat exchange in them have been investigated experimentally. The data obtained have been generalized for several cooling systems with different porous elements.

  16. Thermal denaturation of egg protein under nanosecond pulsed laser heating of gold nanoparticles

    SciTech Connect

    Meshalkin, Yu P; Lapin, I N; Svetlichnyi, Valery A

    2011-08-31

    Thermal denaturation of egg protein in the presence of gold nanoparticles via their heating at the plasmon resonance wavelength by the pulsed radiation of the second harmonic of an Nd:YAG laser (532 nm) is investigated. The experimental dependence of the protein denaturation time on the mean laser power is obtained. The heating temperature of the medium with gold nanoparticles is calculated. The numerical estimates of the temperature of the heated medium containing protein and gold nanoparticles (45.3 deg. C at the moment of protein denaturation) are in good agreement with the literature data on its thermal denaturation and with the data of pyrometric measurements (42.0 {+-} 1.5 deg. C). The egg protein may be successfully used to investigate the specific features of laser heating of proteins in the presence of metal nanoparticles under their excitation at the plasmon resonance wavelength. (laser methods in biology)

  17. A comparative study of sheath potential profile measurements with laser-heated and current-heated emissive probes

    NASA Astrophysics Data System (ADS)

    Kella, Vara Prasad; Mehta, Payal; Sarma, A.; Ghosh, J.; Chattopadhyay, P. K.

    2016-04-01

    Emissive Langmuir probe is one of the most efficient diagnostic tools available for plasma potential measurements. Extensive studies have been carried out in designing different kinds of conventional (electrically heated) emissive probes (CEPs) to estimate the plasma potential. Laser heated emissive probe (LHEP) has been developed with certain advantages over the conventional probes such as low evaporation rate of the probe material, high lifetime, and high emission levels. Most importantly, the LHEP uses laser to heat the probe-tip and does not require electric current to heat the probe-tip like in CEP. The heating current in CEP substantially affects the plasma potential measurements, especially in the regions of plasma where high electric and magnetic field gradients are present. In this paper, we studied the plasma potential structures in sheath-presheath region using both LHEP and CEP in an unmagnetized dc-filament discharge plasma. Measurements of sheath spatial potential profile using laser heated emissive probe are compared with those obtained using conventional emissive probe.

  18. Heating dynamics and extreme ultraviolet radiation emission of laser-produced Sn plasmas

    SciTech Connect

    Yuspeh, S.; Sequoia, K. L.; Tao, Y.; Tillack, M. S.; Burdt, R. A.; Najmabadi, F.

    2010-06-28

    The impact of 1.064 mum laser absorption depth on the heating and in-band (2% bandwidth) 13.5 nm extreme ultraviolet emissions in Sn plasmas is investigated experimentally and numerically. In-band emission lasting longer than the laser pulse and separation between the laser absorption and in-band emission region are observed. Maximum efficiency is achieved by additional heating of the core of the plasma to allow the optimal temperature to expand to a lower and more optically thin density. This leads to higher temperature plasma that emits less in-band light as compared to CO{sub 2} produced plasma sources for the same application.

  19. Stochastic Ion Heating from Many Overlapping Laser Beams in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Michel, P.; Rozmus, W.; Williams, E. A.; Divol, L.; Berger, R. L.; Town, R. P. J.; Glenzer, S. H.; Callahan, D. A.

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (∝N2) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm3-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ˜4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems.

  20. Stochastic ion heating from many overlapping laser beams in fusion plasmas.

    PubMed

    Michel, P; Rozmus, W; Williams, E A; Divol, L; Berger, R L; Town, R P J; Glenzer, S H; Callahan, D A

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems. PMID:23215392

  1. Mixed field dosimetry using focused and unfocused laser heating of thermoluminescent materials

    SciTech Connect

    Han, S.

    1994-03-01

    The incidents at the Three Mile Island and Chernobyl have triggered the need for better personnel dosimetry methods in mixed radiation fields. This thesis presents a detailed computational study of a new method for mixed radiation field dosimetry using single-element TL dosimeters with pulsed laser heating schemes. The main objective of this study was to obtain an optimum heating scheme so that the depth-dose distribution in a thick TL dosimeter could be accurately determined. The major parts of the study include: (a) heat conduction calculations for TL dosimeters with various heating schemes, (b) glow curve calculations for TL dosimeters based on a first-order kinetic model, (c) unfolding of the depth-dose distribution based on the glow curve data, and (d) estimation of shallow and deep doses from the unfolded depth-dose distribution. Two optimum heating schemes were obtained in this study. The first one was obtained for a focused laser beam, and the second one was obtained for a uniform laser beam. Both heating schemes consist of two processes: top surface heating and bottom surface heating, and each process in turn consists of a sequence of laser pulses with various heating durations and power levels. Compared to the ``true`` depth-dose distribution obtained using Monte Carlo transport code EGS4, relative errors associated with the shallow and deep doses obtained from the unfolded depth-dose distributions are 5% and 25%, respectively, for the focused laser beam, and 15% in both doses for the uniform laser beam. 74 refs., 148 figs.

  2. Low-level laser effects on bacterial cultures submitted to heat stress

    NASA Astrophysics Data System (ADS)

    Gonçalves, E. M.; Guimarães, O. R.; Geller, M.; Paoli, F.; Fonseca, A. S.

    2016-06-01

    Low-level lasers have been used worldwide to treat a number of diseases, pain relief, and wound healing. Some studies demonstrated that low-level laser radiations induce effects depending on the physiological state and DNA repair mechanisms of cells. In this work we evaluated the effects of low-level red and infrared lasers on Escherichia coli cells deficient in SOS responses submitted to heat stress. Exponential and stationary E. coli cultures of wild type (AB1157), RecA deficient (AB2463) and LexA deficient (AB2494), both SOS response deficient, were exposed to low-level red and infrared lasers at different fluences and submitted to heat stress (42 °C, 20 min). After that, cell survival and morphology were evaluated. Previous exposure to red, but not infrared lasers, increases survival fractions and decreases the area ratios of E. coli AB1157 cells submitted to heat stress. Our research suggests that a low-level red laser increases cell viability and protects cells from morphological alteration in E. coli cultures submitted to heat stress depending on laser wavelength and SOS response.

  3. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  4. Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    SciTech Connect

    Bagratashvili, Viktor N; Bagratashvili, N V; Omel'chenko, A I; Sviridov, A P; Sobol', E N; Tsypina, S I; Gapontsev, V P; Minaev, V P; Samartsev, I E; Makhmutova, G Sh

    2001-06-30

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 {mu}m is studied. The laser-induced bleaching (at 1.56 {mu}m) and darkening (at 0.97 {mu}m) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues. (laser applications and other topics in quantum electronics)

  5. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  6. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2015-11-05

    This report describes rapid heating technology with ion sources. LANL calculated the expected heating per atom and temperatures of the target materials, used alumium ion beams to heat gold and diamond, produced deuterium fusion plasmas and then measured the ion temperature at the time of the fusion reactions.

  7. Laser beam filamentation and stochastic electron heating at upper hybrid layer

    SciTech Connect

    Sharma, Prerana; Mahmoud, S. T.; Gupta, M. K.; Sharma, R. P.

    2008-04-15

    This paper presents an investigation of the filamentation (single hot spot) of an ultrahigh-power laser beam in homogeneous plasma. Upper hybrid wave (UHW) coupling in these filaments has been studied. We have discussed two extreme scenarios: (1) The laser beam has ultrahigh power so that relativistic and ponderomotive nonlinearities are operative; and (2) the laser beam power is moderate, therefore only ponderomotive nonlinearity dominates. At ultrahigh laser powers, relativistic and ponderomotive nonlinearities lead to filamentation of the laser beam. In these filamentary regions, the UHW gets coupled to the laser beam, and a large fraction of the pump (laser beam) energy gets transferred to UHW and this excited UHW can accelerate the electrons. In the second case, nonlinear coupling between the laser beam and the upper hybrid wave leads to the localization of the UHW. Electrons interacting with the localized fields of the UHW demonstrate chaotic motion. The simulation result confirms the presence of chaotic fields, and interaction of these fields with electrons leads to velocity space diffusion, which is accompanied by particle heating. Using the Fokker-Planck equation, the heating of electrons has been estimated. The effect of the change of background magnetic field strength on heating has also been discussed.

  8. Heat exchange model in absorption chamber of water-direct-absorption-typed laser energy meter

    NASA Astrophysics Data System (ADS)

    Feng Wei, Ji; Qun Sun, Li; Zhang, Kai; Hu, XiaoYang; Zhou, Shan

    2015-04-01

    The interaction between laser and water flow is very complicated in the absorption chamber of a high energy laser (HEL) energy meter which directly uses water as an absorbing medium. Therefore, the heat exchange model cannot be studied through traditional methods, but it is the most important factor to improve heat exchange efficiency in the absorption chamber. After the exchanges of heat and mass were deeply analyzed, experimental study and numerical fitting were brought out. The original testing data of laser power and water flow temperature at one moment were utilized to calculate those at the next moment, and then the calculated temperature curve was compared with the measured one. If the two curves matched well, the corresponding coefficient was obtained. Meanwhile, numerous experiments were performed to study the effects of laser power, duration, focal spot scale, and water flow rate on heat exchange coefficient. In addition, the relationship between water phase change and heat exchange was analyzed. The heat exchange coefficient was increased by optimizing the construction of the absorption chamber or increasing water flow rate. The results provide the reference for design of water-direct-absorption-typed HEL energy meters, as well as for analysis of the interaction between other similar lasers and water flow.

  9. Laser irradiation of carbon nanotube films: Effects and heat dissipation probed by Raman spectroscopy

    SciTech Connect

    Mialichi, J. R.; Brasil, M. J. S. P.; Iikawa, F.; Verissimo, C.; Moshkalev, S. A.

    2013-07-14

    We investigate the thermal properties of thin films formed by single- and multi-walled carbon nanotubes submitted to laser irradiation using Raman scattering as a probe of both the tube morphology and the local temperature. The nanotubes were submitted to heating/cooling cycles attaining high laser intensities ({approx}1.4 MW/cm{sup 2}) under vacuum and in the presence of an atmosphere, with and without oxygen. We investigate the heat diffusion of the irradiated nanotubes to their surroundings and the effect of laser annealing on their properties. The presence of oxygen during laser irradiation gives rise to an irreversible increase of the Raman efficiency of the carbon nanotubes and to a remarkable increase of the thermal conductivity of multi-walled films. The second effect can be applied to design thermal conductive channels in devices based on carbon nanotube films using laser beams.

  10. A Diode Laser gas Extraction System for Heating Minerals for Geochronology

    NASA Astrophysics Data System (ADS)

    Foeken, J. P.; Stuart, F. M.; Persano, C.; Vilbert, D.

    2005-12-01

    Diode lasers, in comparison to Ar ion and Nd:YAG lasers, are compact, and cheap to purchase and maintain. We have developed a 25 W diode laser (808 nm) system for He extraction from minerals primarily for (U-Th)/He chronometry. The laser beam is delivered via a 600 μm fibre cable and focused using a binocular microscope. Temperatures necessary for He release from apatite and zircon encapsulated in Pt foil are attained by heating to 0.5 W and 1-1.5 W using a defocused beam. Analysis of 11 fragments from two different Durango apatite crystals yield (U-Th)/He ages of 32.8 +/- 0.7 Ma (1s). Five aliquots of apatite grains from 97MR22 (California Institute of Technology internal standard) yields ages of 4.5 +/- 0.5 Ma. The (U-Th)/He ages, and U/Th ratios are well within the published ages for these minerals. In order to test the diode laser for other geochronological and isotope applications we have heated various un-encapsulated crystals. The diode laser couples well with optically opaque minerals (e.g. hornblende, biotite, muscovite, garnet) and basalt groundmass. Heating and partial melting typically occurs at less than 4 W using a defocused beam. Coupling with muscovite, plagioclase, and semi-transparent sanidine required laser power of 5-10 W to initiate melting. Heating of near-transparent sanidine did not produce partial melting even at laser power in excess of 20 W. These results are consistent with other visible/near-infra red lasers and suggests that diode lasers offer a cheap, small, low-maintenance alternative for 40Ar/39Ar chronology and stable isotope studies.

  11. Modified Laser Flash Method for Thermal Properties Measurements and the Influence of Heat Convection

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    The study examined the effect of natural convection in applying the modified laser flash method to measure thermal properties of semiconductor melts. Common laser flash method uses a laser pulse to heat one side of a thin circular sample and measures the temperature response of the other side. Thermal diffusivity can be calculations based on a heat conduction analysis. For semiconductor melt, the sample is contained in a specially designed quartz cell with optical windows on both sides. When laser heats the vertical melt surface, the resulting natural convection can introduce errors in calculation based on heat conduction model alone. The effect of natural convection was studied by CFD simulations with experimental verification by temperature measurement. The CFD results indicated that natural convection would decrease the time needed for the rear side to reach its peak temperature, and also decrease the peak temperature slightly in our experimental configuration. Using the experimental data, the calculation using only heat conduction model resulted in a thermal diffusivity value is about 7.7% lower than that from the model with natural convection. Specific heat capacity was about the same, and the difference is within 1.6%, regardless of heat transfer models.

  12. Comparison of 1470nm laser and 1470nm laser heat head for ex-vivo kidney tissue cutting: a preliminary study

    NASA Astrophysics Data System (ADS)

    Zhou, Zhentian; Zhang, Lupeng; Liu, Jiafeng; Shun, Zhi; Li, Wenzhi; Liu, Zhuwen; Liang, Zhiyuan

    2014-11-01

    Purpose: Compare of the efficiency of 1470nm laser and 1470nm laser heat head for tissue cutting in vitro porcine kidney tissue . Method: We designed a laser heat head that convert laser energy into thermal energy by the absorbing materials. Fresh kidney tissue was harvested from a porcine and then placed on a turntable with constant speed . The same power of 1470nm laser and 1470nm laser heat head was used to cutting tissue, respectively .The cutting results and the range of thermal damage was compared after cutting . Result: Compared with 1470nm laser, 1470nm laser heat head's cutting traces is more smooth and the thermal damage area is very regular ,so it has smaller damage to deep tissue . Conclusion: The efficiency of laser heat head for tissue cutting was better. This study indicate that we might be able to make laser which the tissue have a low absorption coefficient about it to obtain good results for tissue cutting through the laser point heat source.

  13. Analysis of thermal radiation from laser-heated nanoparticles formed by laser-induced decomposition of ferrocene

    NASA Astrophysics Data System (ADS)

    Landström, L.; Elihn, K.; Boman, M.; Granqvist, C. G.; Heszler, P.

    2005-09-01

    Thermal radiation, originating from laser-heated gas-phase nanoparticles, was detected in the 400 700 nm wavelength range by means of optical emission spectroscopy. The particles were formed upon laser-induced photolytic decomposition of ferrocene (Fe(C5H5)2) and consisted of an iron core surrounded by a carbon shell. The laser-induced excitation was performed as the particles were still within the reactor zone, and the temperature of the particles could be determined from thermal emission. Both the temperature of the nanoparticles and the relative intensity changes of the emission were monitored as a function of time (with respect to the laser pulse), laser fluence and Ar ambient pressure. At high laser fluences, the particles reached high temperatures, and evidence was found for boiling of iron. Modeling of possible energy-releasing mechanisms such as black-body radiation, thermionic electron emission, evaporation and heat transfer by the ambient gas was also performed. The dominant cooling mechanisms at different ranges of temperature were clarified, together with a determination of the accommodation factor for the Ar nanoparticle collisions. The strong evaporation at elevated temperatures also led to significant iron loss from the produced particles.

  14. Heating and ablation of tokamak graphite by pulsed nanosecond Nd-YAG lasers

    SciTech Connect

    Semerok, A.; Fomichev, S. V.; Weulersse, J.-M.; Brygo, F.; Thro, P.-Y.; Grisolia, C.

    2007-04-15

    The results on laser heating and ablation of graphite tiles of thermonuclear tokamaks are presented. Two pulsed Nd-YAG lasers (20 Hz repetition rate, 5 ns pulse duration and 10 kHz repetition rate, 100 ns pulse duration) were applied for ablation measurements. The ablation thresholds (1.0{+-}0.5 J/cm{sup 2} for 5 ns and 2.5{+-}0.5 J/cm{sup 2} for 100 ns laser pulses) were determined for the Tore Supra tokamak graphite tiles (backside) nonexposed to plasma. The high repetition rate Nd-YAG laser (10 kHz, 100 ns pulse duration) and the developed pyrometer system were applied for graphite heating measurements. Some unexpected features of laser heating of the graphite surface were observed. They were explained by the presence of a thin surface layer with the properties different from those of the bulk graphite. The theoretical models of laser heating and near-threshold ablation of graphite with imperfectly adhered layer were developed to interpret the experimental results.

  15. Numerical simulation of heat transfer and fluid flow in laser drilling of metals

    NASA Astrophysics Data System (ADS)

    Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2015-05-01

    Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.

  16. Growing Crystaline Sapphire Fibers By Laser Heated Pedestal Techiques

    DOEpatents

    Phomsakha, Vongvilay; Chang, Robert S. F.; Djeu, Nicholas I.

    1997-03-04

    An improved system and process for growing crystal fibers comprising a means for creating a laser beam having a substantially constant intensity profile through its cross sectional area, means for directing the laser beam at a portion of solid feed material located within a fiber growth chamber to form molten feed material, means to support a seed fiber above the molten feed material, means to translate the seed fiber towards and away from the molten feed material so that the seed fiber can make contact with the molten feed material, fuse to the molten feed material and then be withdrawn away from the molten feed material whereby the molten feed material is drawn off in the form of a crystal fiber. The means for creating a laser beam having a substantially constant intensity profile through its cross sectional area includes transforming a previously generated laser beam having a conventional gaussian intensity profile through its cross sectional area into a laser beam having a substantially constant intensity profile through its cross sectional area by passing the previously generated laser beam through a graded reflectivity mirror. The means for directing the laser beam at a portion of solid feed material is configured to direct the laser beam at a target zone which contains the molten feed material and a portion of crystal fiber drawn off the molten feed material by the seed fiber. The means to support the seed fiber above the molten feed material is positioned at a predetermined height above the molten feed material. This predetermined height provides the seed fiber with sufficient length and sufficient resiliency so that surface tension in the molten feed material can move the seed fiber to the center of the molten feed material irrespective of where the seed fiber makes contact with the molten feed material. The internal atmosphere of the fiber growth chamber is composed substantially of Helium gas.

  17. Surface alloying of carbon tool steels using laser heating

    NASA Astrophysics Data System (ADS)

    Chudina, O. V.; Brezhnev, A. A.

    2015-12-01

    The problems of surface hardening of high-carbon steels by alloying using laser radiation are considered. The effect of the laser treatment parameters on the thickness, the structure, the phase composition, the microhardness, and the residual stresses of the surface layer is studied, and the influence of alloying elements on the strength of the surface layer in carbon steels and their wear resistance is investigated.

  18. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  19. Thermal transport in shock wave-compressed solids using pulsed laser heating

    NASA Astrophysics Data System (ADS)

    La Lone, B. M.; Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-01

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ˜25 GPa and ˜1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  20. Thermal transport in shock wave–compressed solids using pulsed laser heating

    SciTech Connect

    La Lone, B. M. Capelle, G.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.

    2014-07-15

    A pulsed laser heating method was developed for determining thermal transport properties of solids under shock-wave compression. While the solid is compressed, a laser deposits a known amount of heat onto the sample surface, which is held in the shocked state by a transparent window. The heat from the laser briefly elevates the surface temperature and then diffuses into the interior via one-dimensional heat conduction. The thermal effusivity is determined from the time history of the resulting surface temperature pulse, which is recorded with optical pyrometry. Thermal effusivity is the square root of the product of thermal conductivity and volumetric heat capacity and is the key thermal transport parameter for relating the surface temperature to the interior temperature of the sample in a dynamic compression experiment. Therefore, this method provides information that is needed to determine the thermodynamic state of the interior of a compressed metal sample from a temperature measurement at the surface. The laser heat method was successfully demonstrated on tin that was shock compressed with explosives to a stress and temperature of ∼25 GPa and ∼1300 K. In this state, tin was observed to have a thermal effusivity of close to twice its ambient value. The implications on determining the interior shock wave temperature of tin are discussed.

  1. Benefits of CO2 laser heating for high reliability fiber splicing

    NASA Astrophysics Data System (ADS)

    Duke, Douglas M.; Nasir, Usman; Saravanos, Elli

    2016-03-01

    The use of a CO2 laser as a heat source became commercially available for optical fiber splicing and component fabrication only in recent years. In addition to long-term trouble-free and low-maintenance heat source operation, laser fusion splicing offers unique benefits for fabricating high-power optical components, as well as for splice reliability. When used as the heating method for fiber splicing, the energy of the CO2 laser beam is efficiently absorbed by the outer layer of the glass, and is then conducted inwards. This heating method is well controlled, and results in a smooth and contamination-free glass surface. Other heating methods, such as arc fusion or resistive heating, may leave tungsten, graphite, or metal oxide deposits on the spliced fiber surface. By contrast, with CO2 laser splicing, the lack of surface irregularities and contamination enables remarkable spliced-fiber strength results, with some strength results nearly within the range of coated fiber breaking strength.

  2. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Fuchs, Julien; Mancic, Ana; Robiche, Jerome; Antici, Patrizio; Lancia, Livia; Audebert, Patrick; Combis, Patrick; Renaudin, Patrick; Kimura, Tomoaki; Kodama, Ryosuke; Nakatsutsumi, Motoaki

    2008-04-01

    Producing matter at a high temperature (1-25 eV) and solid density is of prime interest for fundamental plasma physics or ICF. The use of laser-based high energy proton beams to achieve such state of matter is interesting since they are short (< 1 ps) and they deposit their energy volumetrically; thus can heat, before they expand, much thicker samples than allowed using laser-heating. We performed, using two intense short pulses of the LULI 100 TW facility, experiments to characterize the achieved state of matter, coupled to a detailed hydro-modeling. A laser-generated proton beam irradiated and heated a secondary target positioned after a vacuum gap. Three diagnostics were used: (i) 1D time-resolved optical self-emission of the heated target rear-surface at two wavelengths, (ii) time-resolved interferometry of a chirped probe beam reflecting off the heated target rear-surface, (iii) x-ray absorption spectroscopy through the heated target using a laser-produced backlighter detecting its Kα-edge softening.

  3. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    PubMed

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces. PMID:27131543

  4. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Joly, Alan G.; Tonkyn, Russell G.; Kay, Bruce D.; Kimmel, Greg A.

    2016-04-01

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ˜1010 K/s for temperature increases of ˜100-200 K are obtained. Subsequent rapid cooling (˜5 × 109 K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ˜±2.7% leading to a temperature uncertainty of ˜±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  5. Heat generation and thermo-mechanical effect modeling in longitudinally diode-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Lakhdari, Fouad; Osmani, Ismahen; Tabet, Saida

    2015-09-01

    Thermal management in solid state laser is a challenge to the high power laser industry's ability to provide continued improvements in device and system performance. In this work an investigation of heat generation and thermo-mechanical effect in a high-power Nd:YAG and Yb:YAG cylindrical-type solid state laser pumped longitudinally with different power by fibre coupled laser diode is carried out by numerical simulation based on the finite element method (FEM). Impact of the dopant concentration on the power conversion efficiency is included in the simulation. The distribution of the temperature inside the lasing material is resolute according to the thermal conductivity. The thermo-mechanical effect is explored as a function of pump power in order to determine the maximum pumping power allowed to prevent the crystal's fracture. The presented simulations are in broad agreement with analytical solutions; provided that the boundary condition of the pump induced heat generation is accurately modelled.

  6. On stochastic heating of electrons by intense laser radiation in the presence of electrostatic potential well

    SciTech Connect

    Krasheninnikov, S. I.

    2014-10-15

    A simple model developed by Paradkar et al. [Phys. Plasmas 19, 060703 (2012)] for the study of synergistic effects of electrostatic potential well and laser radiation is extended for the case where electric field of the well is accelerating electrons moving in the direction of the laser field propagation. It was found that in these cases, the rate of stochastic heating of energetic electrons remains virtually the same as in Paradkar et al. [Phys. Plasmas 19, 060703 (2012)], where electric field in electrostatic potential was slowing down electrons moving in the direction of the laser field propagation. However, the heating of electrons with relatively low energy can be sensitive to the orientation of the electrostatic potential well with respect to the direction of the laser radiation propagation.

  7. High-speed measurement of an air transect's temperature shift heated by laser beam

    NASA Astrophysics Data System (ADS)

    Li, WenYu; Jiang, ZongFu; Xi, Fengjie; Li, Qiang; Xie, Wenke

    2005-02-01

    Laser beam heat the air on the optic path, Beam-deflection optical tomography is a non-intrusive method to measure the 2-dimension temperature distribution in the transect. By means of linear Hartmann Sensor at the rate of 27kHz, the optic path was heated by a 2.7μm HF laser, continuous and high time resolution gradients of optic phase were obtained. the result of analysing and calculation showed the temperament shift in the heated beam path was not higher than 50K when the HF laser power was 9W. The experiment showed that it is a practical non-intrusive temperature shift measurement method for a small area aero-optical medium.

  8. Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a cw CO2 laser

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Berger, P.; Weber, R.; Speker, N.; Sommer, B.; Graf, T.

    2015-03-01

    Laser machining has great potential for automated manufacturing of parts made of carbon-fiber-reinforced plastic (CFRP) due to the nearly force and tool-wear free processing. The high vaporization temperatures and the large heat conductivity of the carbon fibers, however, lead to unintentional heat conduction into the material causing damage in zones close to the process. In this paper, the matrix damage zone (MDZ) is subdivided into a matrix sublimation zone (MSZ) where the matrix material was sublimated and a zone where the temperature temporarily exceeded a value causing structural damage in the matrix. In order to investigate the extent of these zones, a one-dimensional heat flow model was applied, which was calibrated by cutting experiments using temperature sensors embedded in the CFRP samples. The investigations showed that the extents of the MSZ and MDZ are dominated by a total interaction time, which includes the passage of the laser beam and the continued interaction of the cloud of hot ablation products with the carbon fibers at the kerf wall and that from a practical point of view, the experimentally determined effective heat conductivity is suitable for simple estimations of the heat-affected zones in CFRP.

  9. Heat shock protein expression as guidance for the therapeutic window of retinal laser therapy

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seungjun; Tan, Gavin; Lee, Daeyoung; Lavinksy, Daniel; Palanker, Daniel

    2016-03-01

    Unlike conventional photocoagulation, non-damaging retinal laser therapy (NRT) limits laser-induced heating to stay below the retinal damage threshold and therefore requires careful dosimetry. Without the adverse effects associated with photocoagulation, NRT can be applied to critical areas of the retina and repeatedly to manage chronic disorders. Although the clinical benefits of NRT have been demonstrated, the mechanism of therapeutic effect and width of the therapeutic window below damage threshold are not well understood. Here, we measure activation of heat shock response via laser-induced hyperthermia as one indication of cellular response. A 577 nm laser is used with the Endpoint Management (EpM) user interface, a titration algorithm, to set experimental pulse energies relative to a barely visible titration lesion. Live/dead staining and histology show that the retinal damage threshold in rabbits is at 40% of titration energy on EpM scale. Heat shock protein 70 (HSP70) expression in the retinal pigment epithelium (RPE) was detected by whole-mount immunohistochemistry after different levels of laser treatment. We show HSP70 expression in the RPE beginning at 25% of titration energy indicating that there is a window for NRT between 25% and 40% with activation of the heat shock protein expression in response to hyperthermia. HSP70 expression is also seen at the perimeter of damaging lesions, as expected based on a computational model of laser heating. Expression area for each pulse energy setting varied between laser spots due to pigmentation changes, indicating the relatively narrow window of non-damaging activation and highlighting the importance of proper titration.

  10. Derivation of heating rate dependent exposure strategies for the selective laser melting of thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Drummer, Dietmar; Drexler, Maximilian; Wudy, Katrin

    2015-05-01

    The selective laser melting of polymer powder is for rapid prototyping applications an established technology, although a lack in basic process knowledge appears. Considering demands of series production the selective laser melting technique is faced with varies challenges concerning processable material systems, process strategies and part properties. Consequently basic research is necessary to shift from rapid prototyping to rapid manufacturing of small lot sized series. Based on basic research the high potential of selective laser melting for the production of complex parts without any tools can be opened up. For the derivation of part quality increasing process strategies knowledge about interactions between sub-processes of selective laser melting and resulting part properties is necessary. The selective laser melting consists of three major sub-processes: Geometry exposure, tempering and powder feeding. According to the interaction of sub-processes resulting temperature fields during the selective laser melting process determine the part properties by changing micro structural pore number and distribution. Beneath absolute temperatures also the time-dependency of the thermal fields influences the porosity of molten parts. Present process strategies tend to decrease building time by increasing scanning speed and laser power. Although the absolute energy input into the material is constant for increasing scanning speed and laser power in the same ratio, time dependent material effects are neglected. The heating rate is a combined parameter derived from absolute temperature and time. Within the paper the authors analyze the basic interactions between different heating rates and part properties (e.g. porosity, mechanical strengths). Therefore with different heating rates produced specimens are analyzed with imaging technologies as well as mechanical tests. Based on the done basic investigations new heating rate dependent process strategies can be established

  11. The response of heat-shield materials to intense laser radiation

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.

    1978-01-01

    Experimental results for the response of ATJ graphite, Carbitex 100, and carbon phenolic to intense continuous-wave laser radiation are presented. Both penetration and mass-loss test techniques are used and compared. The results are also compared with a simple ablation theory applicable to laser irradiation. Reasons for the disparity between experiment and theory, and applicability of the results to other heating situations, such as planetary entry, are discussed.

  12. Improving the efficiency of high-power diode lasers using diamond heat sinks

    SciTech Connect

    Parashchuk, Valentin V; Baranov, V V; Telesh, E V; Mien, Vu Doan; Luc, Vu Van; Truong, Pham Van; Belyaeva, A K

    2010-06-23

    Using multifunctional ion beam and magnetron sputtering systems, we have developed chemical and vacuum techniques for producing metallic coatings firmly adherent to various surfaces, with application to copper and diamond heat sinks for diode lasers. Conditions have been optimised for mounting diode lasers and bars using the proposed metallisation processes, and significant improvements in the output parameters of the devices have been achieved. The power output of cw laser diodes on diamond heat sinks increases by up to a factor of 2, the linear (working) portion of their power-current characteristic becomes markedly broader, and their slope efficiency increases by a factor of 1.5 - 2 relative to that of lasers on copper heat spreaders. The use of diamond heat sinks extends the drive current range of pulsed diode bars by a factor of 2 - 3 and enables them to operate at more than one order of magnitude longer pump pulse durations (up to milliseconds) when the pulse repetition rate is at least 10 Hz. (lasers)

  13. Structural changes in connective tissues caused by a moderate laser heating

    SciTech Connect

    Bagratashvili, Viktor N; Bagratashvili, N V; Sviridov, A P; Shakh, G Sh; Ignat'eva, Natalia Yu; Lunin, Valery V; Grokhovskaya, T E; Averkiev, S V

    2002-10-31

    The structural changes in adipose and fibrous tissues caused by 2- and 3-W IR laser irradiation are studied by the methods of IR and Raman spectroscopy and differential scanning calorimetry. It is shown that heating of fibrous tissue samples to 50 {sup 0}C and adipose tissue samples to 75 {sup 0}C by IR laser radiation changes the supramolecular structure of their proteins and triacylglycerides, respectively, without the intramolecular bond breaking. Heating of fibrous tissue to 70 {sup 0}C and adipose tissue to 90 - 110 {sup 0}C leads to a partial reversible denaturation of proteins and to oxidation of fats.

  14. A New Method to Grow SiC: Solvent-Laser Heated Floating Zone

    NASA Technical Reports Server (NTRS)

    Woodworth, Andrew A.; Neudeck, Philip G.; Sayir, Ali

    2012-01-01

    The solvent-laser heated floating zone (solvent-LHFZ) growth method is being developed to grow long single crystal SiC fibers. The technique combines the single crystal fiber growth ability of laser heated floating zone with solvent based growth techniques (e.g. traveling solvent method) ability to grow SiC from the liquid phase. Initial investigations reported in this paper show that the solvent-LHFZ method readily grows single crystal SiC (retains polytype and orientation), but has a significant amount of inhomogeneous strain and solvent rich inclusions.

  15. Direct evidence of strongly inhomogeneous energy deposition in target heating with laser-produced ion beams.

    PubMed

    Brambrink, E; Schlegel, T; Malka, G; Amthor, K U; Aléonard, M M; Claverie, G; Gerbaux, M; Gobet, F; Hannachi, F; Méot, V; Morel, P; Nicolai, P; Scheurer, J N; Tarisien, M; Tikhonchuk, V; Audebert, P

    2007-06-01

    We report on strong nonuniformities in target heating with intense, laser-produced proton beams. The observed inhomogeneity in energy deposition can strongly perturb equation of state (EOS) measurements with laser-accelerated ions which are planned in several laboratories. Interferometric measurements of the target expansion show different expansion velocities on the front and rear surfaces, indicating a strong difference in local temperature. The nonuniformity indicates at an additional heating mechanism, which seems to originate from electrons in the keV range. PMID:17677318

  16. An application of CO{sub 2} laser interference heating for polymer injection molding process

    SciTech Connect

    Saito, Takushi; Satoh, Isao; Kurosaki, Yasuo

    1999-07-01

    In this paper, the authors studied the small scale (less than 1 mm) local heat transfer control of injection molded polymer products by using CO{sub 2} laser interferometry. This technique could provide precise local temperature control of the product surface during the process. Residual birefringence of the irradiated surface was successfully distributed according to the interference pattern. This scale of heat transfer control has not been realized through common conductive heat transfer methods. To establish the laser interference heating, a CO{sub 2} laser, a set of optical equipment, and a transparent window of Zinc-selenide were used. To control the heat transfer on the molded polymer surface, the interfered laser beam was introduced through the window. Polystyrene resin was used to investigate the feasibility of this method. In the experiment, the control ability of the property distribution on a molded polymer surface was studied under various conditions. To confirm the viability of this technique, optical strain frozen in the molded polymer surface was measured with a polarizing microscope as birefringence. As the result, it was clearly shown that the residual birefringence had an equal spaced distribution. Also, the contrast between the irradiated and un-irradiated portions was obvious regardless of the polymer melt velocity and radiation intensity. This method may be applied to the production of diffraction gratings which have geometrically smooth surfaces.

  17. Latest developments on the Er3+:YAG solid state heat-capacity laser

    NASA Astrophysics Data System (ADS)

    Bigotta, Stefano; Ibach, Thierry; Eichhorn, Marc

    2013-10-01

    In this paper, we illustrate the latest advancement on the eye-safe Solid State Heat-Capacity Laser (SSHCL) investigated for the development of medium and high energy laser sources. Nearly all the solid-state lasers considered for defence applications in the range of 10 kW up to over 100 kW emit at a wavelength of 1.03 μm- 1.06 μm. Therefore, we perform research on an alternative emitting around 1.6 μm, which unites many advantages in use (robustness, a simple technology, flexibility in volume and weight). The heat-capacity principle, in which the laser material is cooled only after the laser action has ended, results in low temperature gradients in the laser medium, leading to a good beam quality and a high performance. Previous investigations on Er3+:YAG SSHCL demonstrated the scalability of the heat-capacity laser principle and up to 4.65 kW and 440 J in less than 800 ms have been achieved, representing the current world record in eye-safe diode-pumped solid-state laser technology. Optical-to-optical efficiencies of over 41% and slope efficiencies of over 51% are obtained with respect to the incident pump power. In this report we further investigate the possibility of compensating any parasitic residual heating. Indeed, it has been shown that the optimal laser operation is directly coupled with the intensity distribution of the laser mode inside the laser medium. The ideal resonator configurations are those which allow an extraction of the laser energy as homogeneous as possible. Using an intra-cavity adaptive optics system beams with phase fronts as flat as possible, on the order of less that 1/10 of the wavelength for each of the considered Zernike polynomials have been generated, and the shot duration has been lengthened by 50%. The influence of the crystal geometry on the pump distribution homogeneity and the possible ways for maximizing the extraction efficiency are investigated.

  18. Two-dimensional Lagrangian calculation of a laser-heated solenoid

    NASA Astrophysics Data System (ADS)

    Makomaski, A. H.; Pietrzyk, Z. A.

    1980-02-01

    A two-dimensional Lagrangian code is used to model a laser-heated solenoid. The results indicate important two-dimensional effects and the global behavior of the plasma is found to be different from the predictions of one-dimensional theories. Most of the laser energy transferred to the plasma appears in the form of internal energy, suggesting that the bleaching wave approach for reactor calculations is correct. The plasma parameters are significantly changed when the peak of the laser beam profile is flattened.

  19. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  20. The birth and development of laser heating in diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Bassett, William A.

    2001-02-01

    In 1968 Taro Takahashi and I observed a phase transition that resulted from laser heating under pressure in a diamond anvil cell. Using a ruby laser, we successfully converted graphite to diamond. We soon realized that the ruby laser had such limited capabilities that we acquired a yttrium-aluminum-garnet (YAG) laser that could be used in both continuous and pulsed modes. The road to successfully applying the technique was not without a few bumps. Thirty years later, these seem more amusing than they did at the time. It was with the YAG laser that Ming and Liu investigated a number of silicate phase transitions important to our understanding of the earth's mantle. Since then it has been gratifying to watch as others have adopted the technique and made many important contributions with it.

  1. Anomalous inverse bremsstrahlung heating of laser-driven plasmas

    NASA Astrophysics Data System (ADS)

    Kundu, Mrityunjay

    2016-05-01

    Absorption of laser light in plasma via electron-ion collision (inverse bremsstrahlung) is known to decrease with the laser intensity as I 0 -3/2 or with the electron temperature as T e -3/2 where Coulomb logarithm ln Λ = 0.5ln(1 + k 2 min/k 2 max) in the expression of electron-ion collision frequency v ei is assumed to be independent of ponderomotive velocity v 0 = E0/ω which is unjustified. Here k -1 min = v th/max(ω, ω p), and k -1 max = Z/v 2 th are maximum and minimum cut-off distances of the colliding electron from the ion, v th = √T e is its thermal velocity, ω, ω p are laser and plasma frequency. Earlier with a total velocity v = (v 2 0 + v 2 th)1/2 dependent ln Λ(v) it was reported that v ei and corresponding fractional laser absorption (α) initially increases with increasing intensity, reaches a maximum value, and then fall according to the conventional I 0 -3/2 scaling. This anomalous increase in v ei and α may be objected due to an artifact introduced in ln Λ(v) through k-1 min ∝ v. Here we show similar anomalous increase of v ei and α versus I 0 (in the low temperature and under-dense density regime) with quantum and classical kinetic models of v ei without using ln Λ, but a proper choice of the total velocity dependent inverse cut-off length kmax -1 ∝ v 2 (in classical case) or kmax ∝ v (in quantum case). For a given I 0 < 5 × 1014Wcm-2, v ei versus T e also exhibits so far unnoticed identical anomalous increase as v ei versus Io, even if the conventional k max ∝ v2 th, or k max ∝ v th is chosen. However, for higher T e > 15 eV, anomalous growth of vei and a disappear. The total velocity dependent k max in kinetic models, as proposed here, may explain anomalous increase of a with I 0 measured in some earlier laser-plasma experiments. This work may be important to understand collisional absorption in the under-dense pre-plasma region due to low intensity pre-pulses and amplified spontaneous emission (ASE) pedestal in the

  2. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    NASA Astrophysics Data System (ADS)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  3. Investigation into pulse laser heating of nanoscale Au film using dual-phase-lag model.

    PubMed

    Ho, Ching-Yen; Tsai, Yu-Hsiang; Chen, Bor-Chyuan

    2013-10-01

    In this study the thermal field is presented for pulse laser processing of nanoscale Au films. Fourier law is inadequate for describing the heat conduction in nanoscale process due to the boundary scattering and the finite relaxation time of heat carriers. In the regime where the particle description of electrons and phonons is valid, the Boltzmann equation is the most accurate option to model heat transfer in such problems. However, solving the Boltzmann equation is generally difficult due to involving three spatial, three momentums and one time. Dual-phase-lag (DPL) model is averaged over the momentum space and thus involves only spatial coordinates plus time, as in the Fourier equation. Therefore this paper utilizes the dual-phase-lag (DPL) model with scattering boundary condition to study the temperature field for laser processing of nanometer-sized thin films instead of Boltzmann equation. The results obtained from the dual-phase-lag heat conduction model, hyperbolic and parabolic heat conduction equations were compared with the available experimental data to validate the compatibility of the thermal models for analyzing the heat transfer in nanoscale thin film irradiated by laser. The temperature history at different locations of the thin film and the effects of boundary phonon scattering on the normalized temperature were also discussed. PMID:24245230

  4. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    NASA Astrophysics Data System (ADS)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  5. Radiation temperature measurements in laser-heated hohlraums

    SciTech Connect

    Cobble, J.A.; Goldman, S.R.; Bessarab, A.V.; Kunin, A.V.; Tokarev, V.A.

    1997-11-01

    Two x-ray spectrographs have been used on the Trident laser at LANL to monitor the radiation temperature of small Au hohlraums. The cylindrical targets are smaller than 1 mm. The x radiation produced by {approximately} 400 J of 0.53-{micro}m laser light is detected with a 7-channel VNIIEF soft-x-ray spectrometer. Each channel employs a multi-layer mirror and a filter to limit the channel bandwidth to 1--3% of the channel energy. X rays are detected with calibrated Al x-ray diodes. A second spectrometer is based on a free-standing Au transmission grating for spectral dispersion and a multi-channel diamond photo-conductive device detector. The small hohlraum results are consistent with radiation temperatures exceeding 100 eV. Simple computer modeling shows that late in the plasma discharge, radiation of this temperature is emitted from the target.

  6. Inverse bremsstrahlung heating rate for dense plasmas in laser fields

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2013-07-01

    We report a theoretical analysis of inverse bremsstrahlung heating rate in the eikonal approximation. The present analysis is performed for a dense plasma using the screened electron-ion interaction potential for the ion charge state Zi = 1 and for both the weak and strong plasma screening cases. We have also compared the eikonal results with the first Born approximation (FBA) [M. Moll et al., New J. Phys. 14, 065010 (2012)] calculation. We find that the magnitudes of inverse bremsstrahlung heating rate within the eikonal approximation (EA) are larger than the FBA values in the weak screening case (κ = 0.03 a.u.) in a wide range of field strength for three different initial electron momenta (2, 3, and 4 a.u.). But for strong screening case (κ = 0.3 a.u.), the heating rates predicted by the two approximations do not differ much after reaching their maximum values. Furthermore, the individual contribution of photoemission and photoabsorption processes to heating rate is analysed for both the weak and strong screening cases. We find that the single photoemission and photoabsorption rates are the same throughout the field strength while the multiphoton absorption process dominates over the multiphoton emission process beyond the field strength ≈ 4×108 V/cm. The present study of the dependence of heating rate on the screening parameter ranging from 0.01 to 20 shows that whereas the heating rate predicted by the EA is greater than the FBA up to the screening parameter κ = 0.3 a.u., the two approximation methods yield results which are nearly identical beyond the above value.

  7. Smectic liquid crystal cell with heat pulse and laser

    SciTech Connect

    Mash, D.H.

    1984-10-16

    A method of operating a homeotropically aligned smectic liquid crystal cell in which the cell is turned from a clear to a scattering state by illumination with an intense flash of light after which a focused laser beam is scanned across the layer to leave clear tracks where homeotropic alignment has been restored thereby producing a display providing, in projection, bright lines on a dark background.

  8. Voltage generation of piezoelectric cantilevers by laser heating

    PubMed Central

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-01-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  9. Voltage generation of piezoelectric cantilevers by laser heating.

    PubMed

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-15

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity. PMID:23258941

  10. Voltage generation of piezoelectric cantilevers by laser heating

    NASA Astrophysics Data System (ADS)

    Hsieh, Chun-Yi; Liu, Wei-Hung; Chen, Yang-Fang; Shih, Wan Y.; Gao, Xiaotong; Shih, Wei-Heng

    2012-11-01

    Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity.

  11. Calculation of the temperature and thermal expansion of a STM tip heated by a short laser pulse

    NASA Astrophysics Data System (ADS)

    Geshev, P. I.; Klein, S.; Dickmann, K.

    A mathematical model for the calculation of the temperature field in a scanning tunneling microscope (STM) tip under laser illumination is developed. The duration of the laser pulse is a few nanoseconds or shorter. A Gaussian distribution of the laser light intensity in time and space is assumed. Two different mechanisms of tip heating are taken into account: 1. due to an enhanced electric field on the tip; 2. due to heating of the side surface of the tip by the focused spot of laser light. An average tip temperature is calculated using the heat conductivity equation. The enhanced electric field on the tip is calculated by the method of boundary integral equations.

  12. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    NASA Astrophysics Data System (ADS)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  13. Changes in relative light fluence measured during laser heating: implications for optical monitoring and modelling of interstitial laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chin, L. C. L.; Whelan, W. M.; Sherar, M. D.; Vitkin, I. A.

    2001-09-01

    Dynamic changes in internal light fluence were measured during interstitial laser heating of tissue phantoms and ex vivo bovine liver. In albumen phantoms, the results demonstrate an unexpected rise in optical power transmitted ≈1 cm away from the source during laser exposure at low power (0.5-1 W), and a decrease at higher powers (1.5-2.5 W) due to coagulation and possibly charring. Similar trends were observed in liver tissue, with a rise in interstitial fluence observed during 0.5 W exposure and a drop in interstitial fluence seen at higher powers (1-1.5 W) due to tissue coagulation. At 1.5 W irradiation an additional, later decrease was also seen which was most likely due to tissue charring. Independent spectrophotometric studies in Naphthol Green dye indicate the rise in fluence observed in the heated albumen phantoms may have been primarily due to light exposure causing photobleaching of the absorbing chromophore, and not due to heat effects. Experiments in liver tissue demonstrated that the observed rise in fluence is dependent on the starting temperature of the tissue. Correlating changes in light fluence with key clinical endpoints/events such as the onset of tissue coagulation or charring may be useful for on-line monitoring and control of laser thermal therapy via interstitial fluence sensors.

  14. Oil fence arrangement

    SciTech Connect

    Muto, I.; Tatsuguchi, M.

    1984-01-10

    An oil fence arrangement for effectively preventing oil spills from spreading or diffusing over the surface of the sea. The arrangement is of a double wall construction and can fold into a small space.

  15. Optimization of the design and mode of operation of a QD laser for reducing the heat-to-bitrate ratio

    SciTech Connect

    Zhukov, A. E. Savelyev, A. V.; Maximov, M. V.; Kryzhanovskaya, N. V.; Gordeev, N. Yu.; Shernyakov, Yu. M.; Payusov, A. S.; Nadtochiy, A. M.; Zubov, F. I.; Korenev, V. V.

    2013-08-15

    Heat dissipation under the high-speed modulation of quantum dot edge-emitting lasers is considered. It is shown that, for a given laser diode, there is a bias current at which the heat-to-bitrate ratio is minimized. Moreover, there exists a certain optimal optical loss of the laser cavity at which the lowest heat-to-bitrate ratio is provided for any design of edge-emitting lasers that can be fabricated from an epitaxial structure. The heat-to-bitrate ratio and the corresponding bitrate are numerically calculated and analytical expressions are derived. It is demonstrated that the heat-to-bitrate ratio of quantum dot edge-emitting lasers can be less than 0.4 pJ/bit at a bitrate exceeding 10 Gbit/s.

  16. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  17. Effect of pulse duration on resonant heating of laser-irradiated argon and deuterium clusters.

    PubMed

    Gupta, Ayush; Antonsen, T M; Taguchi, T; Palastro, J

    2006-10-01

    We study the effect of pulse duration on the heating of single van der Waals bound argon and deuterium clusters by a strong laser field using a two-dimensional (2D) electrostatic particle-in-cell (PIC) code in the range of laser-cluster parameters such that kinetic as well as hydrodynamic effects are active. Heating is dominated by a collisionless resonant absorption process that involves energetic electrons transiting through the cluster. A size-dependent intensity threshold defines the onset of this resonance [T. Taguchi, Physical Review Letters, 92, 20 (2004)]. It is seen that increasing the laser pulse duration lowers this intensity threshold and the energetic electrons take multiple laser periods to transit the cluster instead of one laser period. Our simulations also show that strong electron heating is accompanied by the generation of a high-energy peak in the ion energy distribution function. We also calculate the yield of thermonuclear fusion neutrons from exploding deuterium clusters using the PIC model with periodic boundary conditions that allows for the interaction of ions from neighboring clusters. PMID:17155183

  18. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  19. Measurement of intrinsic and laser heating-induced stress in microcrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Farsari, E.; Amanatides, E.; Papatheodorou, G. N.; Mataras, D.

    2016-05-01

    In this work we employed a relatively simple experimental procedure to separate the mechanisms that contribute to the total stress of partially crystalline silicon thin films. Raman spectroscopy has been utilized to elucidate the influence of the laser irradiation (λ0 = 441.6 nm) on the μc-Si:H thin film by analyzing the observed peak shift of the Si-Si TO phonon mode in an effort to separate the different mechanisms that impose spectral changes after the applied laser treatment. When external mechanical stress is not applied, only two distinct mechanisms contribute to the frequency shift of the Raman band, namely the heating-induced stress and the internal stress due to the deposition conditions. The use of the appropriate fitting procedure of the experimental spectrum allows the estimation of the observed frequency shift, which is attributed to both local heating due to the laser irradiation and the intrinsic tensile stress of the μc-Si:H films. In the limit where the laser is highly attenuated, the induced heating is negligible and we are able to isolate and evaluate tensile stress directly from the spectroscopic data in the context of current theoretical models. Beyond this limit, the values of internal and total stress have been used to calculate the laser-induced stress. Crystallinity seems to be the key factor to control the volume change induced by the displacement of the surrounding atoms, which is spread over medium in long-range order.

  20. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    SciTech Connect

    Benafan, O. E-mail: raj@ucf.edu; Vaidyanathan, R. E-mail: raj@ucf.edu; Chen, S.-Y.; Kar, A.

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  1. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment.

    PubMed

    Benafan, O; Chen, S-Y; Kar, A; Vaidyanathan, R

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction. PMID:26724043

  2. Mechanical Properties of Laser Heat Treated 6 mm Thick UHSS-Steel

    SciTech Connect

    Jaervenpaeae, Antti; Maentyjaervi, Kari; Maeaettae, Antti; Hietala, Mikko; Merklein, Marion; Karjalainen, Jussi

    2011-05-04

    In this work abrasion resistant (AR) steel with a sheet thickness of 6 mm was heat treated by a 4 kW Nd:YAG and a 4 kW Yb:Yag-laser, followed by self-quenching. In the delivered condition, test material blank (B27S) is water quenched from 920 deg. C. In this condition, fully martensitic microstructure provides excellent hardness of over 500 HB. The test material is referred to AR500 from now onwards. Laser heat treatment was carried out only on top surface of the AR500 sheet: the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the centre of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. For a wide heat treatment track, the laser beam was moved by scanning. Temperatures were measured using thermographic camera and thermocouples. Laser heat treated AR500 samples were tested in hardness tests and by air bending using a press brake machine. Microstructures were studied using a light microscope and FE-SEM/SEM-EBSD. At least three kind of microstructure layers were observed: 1) Dual-Phase ferritic/martensitic (T = A{sub C1}-A{sub C3}), 2) ferritic (T{approx}A{sub C3}) and 3) bainitic/martensitic (T>A{sub C3}).

  3. Ion heating dynamics in solid buried layer targets irradiated by ultra-short intense laser pulses

    SciTech Connect

    Huang, L. G.; Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden; University of Chinese Academy of Sciences, 100049 Beijing ; Bussmann, M.; Kluge, T.; Lei, A. L.; Yu, W.; Cowan, T. E.; Technische Universität Dresden, 01062 Dresden

    2013-09-15

    We investigate bulk ion heating in solid buried layer targets irradiated by ultra-short laser pulses of relativistic intensities using particle-in-cell simulations. Our study focuses on a CD{sub 2}-Al-CD{sub 2} sandwich target geometry. We find enhanced deuteron ion heating in a layer compressed by the expanding aluminium layer. A pressure gradient created at the Al-CD{sub 2} interface pushes this layer of deuteron ions towards the outer regions of the target. During its passage through the target, deuteron ions are constantly injected into this layer. Our simulations suggest that the directed collective outward motion of the layer is converted into thermal motion inside the layer, leading to deuteron temperatures higher than those found in the rest of the target. This enhanced heating can already be observed at laser pulse durations as low as 100 fs. Thus, detailed experimental surveys at repetition rates of several ten laser shots per minute are in reach at current high-power laser systems, which would allow for probing and optimizing the heating dynamics.

  4. Probing the disassembly of ultrafast laser heated gold using frequency domain interferometry.

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Ping, Yuan; Lee, Edward

    2005-10-01

    Ultrafast laser heating of a solid offers a unique approach to examine the behavior of non-equilibrium high energy density states. Initially, the electrons are optically excited while the ions in the lattice remain cold. This is followed by electron-electron and electron-phonon relaxation. Recently, experiments were performed in which ultrathin freestanding, gold foils were heated by a femtosecond pump laser to a strongly overdriven regime with energy densities reaching 20 MJ/kg. Interestingly, femtosecond laser reflectivity and transmission measurements on the heated sample revealed a quasi-steady-state behavior before the onset of hydrodynamic expansion. This led to the conjecture of the existence of a metastable, disordered state prior to the disassembly of the solid. To further examine the dynamics of ultrafast laser heated solids, frequency domain interferometry (FDI) was used to provide an independent observation. The highly sensitive change in the phase shift of the FDI probe clearly showed evidence of the quasi-steady-state behavior. The new experiment also yielded a detailed measurement of the time scale of such a quasi-steady-state phase that may help elucidate the process of electron-phonon coupling and disassembly in a strongly overdriven regime.

  5. Mechanical Properties of Laser Heat Treated 6 mm Thick UHSS-Steel

    NASA Astrophysics Data System (ADS)

    Järvenpää, Antti; Mäntyjärvi, Kari; Merklein, Marion; määttä, Antti; Hietala, Mikko; Karjalainen, Jussi

    2011-05-01

    In this work abrasion resistant (AR) steel with a sheet thickness of 6 mm was heat treated by a 4 kW Nd:YAG and a 4 kW Yb:Yag-laser, followed by self-quenching. In the delivered condition, test material blank (B27S) is water quenched from 920° C. In this condition, fully martensitic microstructure provides excellent hardness of over 500 HB. The test material is referred to AR500 from now onwards. Laser heat treatment was carried out only on top surface of the AR500 sheet: the achieved maximum temperature in the cross-section varies as a function of the depth. Consequently, the microstructure and mechanical properties differ between the surfaces and the centre of the cross-section (layered microstructure). For better understanding, all layers were tested in tensile tests. For a wide heat treatment track, the laser beam was moved by scanning. Temperatures were measured using thermographic camera and thermocouples. Laser heat treated AR500 samples were tested in hardness tests and by air bending using a press brake machine. Microstructures were studied using a light microscope and FE-SEM/SEM-EBSD. At least three kind of microstructure layers were observed: 1) Dual-Phase ferritic/martensitic (T = AC1-AC3), 2) ferritic (T˜AC3) and 3) bainitic/martensitic (T>AC3).

  6. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q

    NASA Astrophysics Data System (ADS)

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-01

    We describe a Brillouin spectroscopy system integrated with CO2 laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ˜13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (˜141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm).

  7. Single-crystal Brillouin spectroscopy with CO{sub 2} laser heating and variable q

    SciTech Connect

    Zhang, Jin S.; Bass, Jay D.; Zhu, Gaohua

    2015-06-15

    We describe a Brillouin spectroscopy system integrated with CO{sub 2} laser-heating and Raman spectroscopic capabilities. Temperature is determined by measurements of the grey-body thermal radiation emitted by the hot sample, with the system response calibrated relative to a standard tungsten ribbon lamp. High-pressure laser-heating Brillouin scattering measurements of acoustic velocities on liquid water and ice compressed in a diamond-anvil cell were performed at temperatures up to 2500 ± 150 K at high pressure. Single-crystal laser-heating Brillouin measurements were made on the (111) plane of San Carlos olivine at ∼13 GPa, 1300 ± 200 K. The pressure as measured by ruby fluorescence is shown to be within ±0.5 GPa of the pressure on the olivine sample during laser heating when KCl and KBr are used as pressure-transmitting media. In addition, the system is designed for continuously variable scattering angles from forward scattering (near 0° scattering angle) up to near back scattering (∼141°). This novel setup allows us to probe a wide range of wave vectors q for investigation of phonon dispersion on, for example, crystals with large unit cells (on the scale of hundreds of nm)

  8. Surface-selective laser sintering of thermolabile polymer particles using water as heating sensitizer

    NASA Astrophysics Data System (ADS)

    Antonov, E. N.; Krotova, L. I.; Minaev, N. V.; Minaeva, S. A.; Mironov, A. V.; Popov, V. K.; Bagratashvili, V. N.

    2015-11-01

    We report the implementation of a novel scheme for surface-selective laser sintering (SSLS) of polymer particles, based on using water as a sensitizer of laser heating and sintering of particles as well as laser radiation at a wavelength of 1.94 μm, corresponding to the strong absorption band of water. A method of sintering powders of poly(lactide-co-glycolide), a hydrophobic bioresorbable polymer, after modifying its surface with an aqueous solution of hyaluronic acid is developed. The sintering thresholds for wetted polymer are by 3 - 4 times lower than those for sintering in air. The presence of water restricts the temperature of the heated polymer, preventing its thermal destruction. Polymer matrices with a developed porous structure are obtained. The proposed SSLS method can be applied to produce bioresorbable polymer matrices for tissue engineering.

  9. Analysis of laser ablation dynamics of CFRP in order to reduce heat affected zone

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Nariyama, Tatsuya; Nakai, Kazuki; Matsuoka, Fumihiro; Takahashi, Kenjiro; Masuno, Shinichiro; Ohkubo, Tomomasa; Nakano, Hitoshi

    2014-03-01

    A carbon fiber reinforced plastic [CFRP], which has high strength, light weight and weather resistance, is attractive material applied for automobile, aircraft and so on. The laser processing of CFRP is one of suitable way to machining tool. However, thermal affected zone was formed at the exposure part, since the heat conduction property of the matrix is different from that of carbon fiber. In this paper, we demonstrated that the CFRP plates were cut with UV nanosecond laser to reduce the heat affected zone. The ablation plume and ablation mass were investigated by laser microscope and ultra-high speed camera. Furthermore, the ablation model was constructed by energy balance, and it was confirmed that the ablation rate was 0.028 μg/ pulse in good agreement with the calculation value of 0.03 μg/ pulse.

  10. Interferometric measurement of laser heating in praseodymium-doped YAG crystal

    SciTech Connect

    Farley, Carlton W. III; Reddy, B. Rami

    2011-02-01

    Temperature measurement is required for many applications but can be difficult in some cases. Laser heating or cooling studies demand accurate measurements of temperature changes. A Michelson interferometer configuration has been used to investigate laser heating in solids. An analytical formula was derived to estimate the temperature change from the fringe count by taking into account the temperature dependence of the sample length and refractive index. When 115 mW of a focused Ar{sup +} laser beam (488 nm) passes through a Pr{sup 3+}-doped YAG sample, its temperature increased by 11.7{+-}1.0 K along the beam path due to nonradiative relaxation. The power dependence of the fringe count/movement was recorded. The temperature change was estimated by the interferometric method and is in agreement with that measured by a thermocouple.

  11. Heating Mechanisms in Short-Pulse Laser-Driven Cone Targets

    SciTech Connect

    Mason, R.J.

    2006-01-27

    The fast ignitor is a modern approach to laser fusion that uses a short-pulse laser to initiate thermonuclear burn. In its simplest form the laser launches relativistic electrons that carry its energy to a precompressed fusion target. Cones have been used to give the light access to the dense target core through the low-density ablative cloud surrounding it. Here the ANTHEM implicit hybrid simulation model shows that the peak ion temperatures measured in recent cone target experiments arose chiefly from return current joule heating, mildly supplemented by relativistic electron drag. Magnetic fields augment this heating only slightly, but capture hot electrons near the cone surface and force the hot electron stream into filaments.

  12. Heating mechanisms in short-pulse laser-driven cone targets.

    PubMed

    Mason, R J

    2006-01-27

    The fast ignitor is a modern approach to laser fusion that uses a short-pulse laser to initiate thermonuclear burn. In its simplest form the laser launches relativistic electrons that carry its energy to a precompressed fusion target. Cones have been used to give the light access to the dense target core through the low-density ablative cloud surrounding it. Here the ANTHEM implicit hybrid simulation model shows that the peak ion temperatures measured in recent cone target experiments arose chiefly from return current joule heating, mildly supplemented by relativistic electron drag. Magnetic fields augment this heating only slightly, but capture hot electrons near the cone surface and force the hot electron stream into filaments. PMID:16486715

  13. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  14. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    SciTech Connect

    Kubiak, Marcin Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew; Stano, Sebastian

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  15. Analysis of heat affected zone obtained by CO2 laser cutting of low carbon steel (S235)

    NASA Astrophysics Data System (ADS)

    Zaied, M.; Miraoui, I.; Boujelbene, M.; Bayraktar, E.

    2013-12-01

    Laser cutting is associated with thermal effects at the cutting surface resulting in alteration of microstructure and mechanical properties. An abrupt change on the cutting surface is caused by a structural modified zone called heat affected zone (HAZ) due to weld heat treatment introduced by a high thermal gradient in the substrate material. Heat affected zone is often associated with undesirable effects such as surface cracking, fatigue resistance, etc. Therefore, it is important to minimize the thickness of this zone (HAZ). The objective of this work is to study the effect of high-power CO2 laser cutting on the heat affected zone. The laser cutting of low carbon steel (S235) is investigated with the aim of evaluating the effect of the input laser cutting parameters: laser power and cutting speed, on heat affected zone. An overall optimization was applied to find out the optimal cutting parameters that would minimize the thickness of heat affected zone. It was found that laser cutting parameters have an effect on the heat affected zone. The HAZ can be minimized by increasing the laser cutting speed and decreasing the laser power.

  16. Pressure-volume-temperature paths in the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Duffy, Thomas S.

    2001-02-01

    The temperature, pressure, and stress conditions in the diamond anvil cell sample chamber before, during, and after laser heating are mapped by employing standard materials as in situ pressure markers. Unit cell volumes of Pt, MgO, and NaCl were monitored by synchrotron-based x-ray diffraction at temperatures between 300 and 2290 K and pressures ranging from 14 to 53 GPa. To aid in interpreting the resulting pressure-volume-temperature paths, we perform a series of model calculations of the high-temperature, high-pressure x-ray diffraction behavior of platinum subjected to a general stress state. Thermal pressure and thermal expansion effects within the laser-heated volume are observed but are not sufficient to fully explain the measured paths. Large apparent pressure changes can also result from relaxation of deviatoric stresses during heating and partial reintroduction of those stresses during quench. Deviatoric stresses, monitored from both diffraction peak widths and lattice parameter shifts as a function of (hkl), may significantly distort equation of state results if it is assumed that the sample is under hydrostatic pressure. Large-scale, nearly isothermal pressure relaxation events are observed at ˜2000 K. It is proposed that these arise from relaxation of heated components (pressure medium, gasket, cell itself) outside of the directly laser-heated volume.

  17. Hardening of smooth pulsed laser deposited PMMA films by heating

    NASA Astrophysics Data System (ADS)

    Fuchs, Britta; Schlenkrich, Felix; Seyffarth, Susanne; Meschede, Andreas; Rotzoll, Robert; Vana, Philipp; Großmann, Peter; Mann, Klaus; Krebs, Hans-Ulrich

    2010-03-01

    Smooth poly(methyl methacrylate) (PMMA) films without any droplets were pulsed laser deposited at a wavelength of 248 nm and a laser fluence of 125 mJ/cm2. After deposition at room temperature, the films possess low universal hardness of only 3 N/mm2. Thermal treatments up to 200°C, either during deposition or afterwards, lead to film hardening up to values of 200 N/mm2. Using a combination of complementary methods, two main mechanisms could be made responsible for this temperature induced hardening effect well above the glass transition temperature of 102°C. The first process is induced by the evaporation of chain fragments and low molecular mass material, which are present in the film due to the ablation process, leading to an increase of the average molecular mass and thus to hardening. The second mechanism can be seen in partial cross-linking of the polymer film as soon as chain scission occurs at higher temperatures and the mobility and reactivity of the polymer material is high enough.

  18. Laser skin welding using water absorption and heat management

    NASA Astrophysics Data System (ADS)

    Halder, Rabindra K.; Katz, Alvin; Savage, Howard E.; Kartazayev, Vladimir; McCormick, Steven A.; Budansky, Yury; Paul, Misu; Rosen, Richard B.; Alfano, Robert R.

    2005-04-01

    Laser skin welding (LSW) is being pursued for scarless wound healing. We present a new LSW approach using a contact glass slide over the sample and rapid scanning of the laser beam around the area to be welded. This led to dramatic improvement in welding efficacy. A 400 mW beam at 1455 nm with a focused spot diameter of 80 μm in air was scanned at a rate of 5mm/second over a 5mm line of incision in 5 mm x 20 mm human skin samples. Histological analysis of the welded samples using hematoxyline and eosin under unpolarized light showed full-thickness full-length weld, and that with picrosirius red F3BA stain under polarized light revealed that there was no appreciable damage. Measured tensile strength of 2.1 kg/cm2 is markedly greater than our previous LSW results of 1.05 +/- 0.19 kg/cm2, which is greater than the typical values of 0.4 kg/cm2 obtained using sutures.

  19. Using laser radiation for the formation of capillary structure in flat ceramic heat pipes

    NASA Astrophysics Data System (ADS)

    Nikolaenko, Yu. E.; Rotner, S. M.

    2012-12-01

    The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.

  20. In-depth plasma-wave heating of dense plasma irradiated by short laser pulses.

    PubMed

    Sherlock, M; Hill, E G; Evans, R G; Rose, S J; Rozmus, W

    2014-12-19

    We investigate the mechanism by which relativistic electron bunches created at the surface of a target irradiated by a very short and intense laser pulse transfer energy to the deeper parts of the target. In existing theories, the dominant heating mechanism is that of resistive heating by the neutralizing return current. In addition to this, we find that large amplitude plasma waves are induced in the plasma in the wake of relativistic electron bunches. The subsequent collisional damping of these waves represents a source of heating that can exceed the resistive heating rate. As a result, solid targets heat significantly faster than has been previously considered. A new hybrid model, capable of reproducing these results, is described. PMID:25554889

  1. Investigation of Heat Transfer in Mini Channels using Planar Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bøgild, M. R.; Poulsen, J. L.; Rath, E. Z.; Sørensen, H.

    2012-11-01

    In this paper an experimental investigation of the heat transfer in mini channels with a hydraulic diameter of 889 μm is conducted. The method used is planar laser induced fluorescence (PLIF), which uses the principle of laser excitation of rhodamine B in water. The goal of this study is to validate the applicability of PLIF to determine the convective heat transfer coefficient in mini channels against conventional correlations of the convective heat transfer coefficient. The applicability of the conventional theory in micro and mini channels has been discussed by several researchers, but to the authors knowledge the applicability of PLIF to validate this has not yet been investigated thoroughly. The experiment shows good agreement to the conventional correlation, and the resolution of the temperature gradient at the wall is found sufficiently accurate in certain areas. However, PLIF is not found satisfactory over the whole domain, and the limitations and errors are analysed.

  2. Comprehensive analytical model for CW laser induced heat in turbid media.

    PubMed

    Erkol, Hakan; Nouizi, Farouk; Luk, Alex; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2015-11-30

    In this work, we present a new analytical approach to model continuous wave laser induced temperature in highly homogeneous turbid media. First, the diffusion equation is used to model light transport and a comprehensive solution is derived analytically by obtaining a special Greens' function. Next, the time-dependent bio-heat equation is used to describe the induced heat increase and propagation within the medium. The bio-heat equation is solved analytically utilizing the separation of variables technique. Our theoretical model is successfully validated using numerical simulations and experimental studies with agarose phantoms and ex-vivo chicken breast samples. The encouraging results show that our method can be implemented as a simulation tool to determine important laser parameters that govern the magnitude of temperature rise within homogenous biological tissue or organs. PMID:26698736

  3. 980-nm, 15-W cw laser diodes on F-mount-type heat sinks

    NASA Astrophysics Data System (ADS)

    Bezotosnyi, V. V.; Krokhin, O. N.; Oleshchenko, V. A.; Pevtsov, V. F.; Popov, Yu M.; Cheshev, E. A.

    2015-12-01

    We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power of 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts.

  4. Analytical modeling of laser pulse heating of embedded biological targets: An application to cutaneous vascular lesions

    NASA Astrophysics Data System (ADS)

    Mirkov, Mirko; Sherr, Evan A.; Sierra, Rafael A.; Lloyd, Jenifer R.; Tanghetti, Emil

    2006-06-01

    Detailed understanding of the thermal processes in biological targets undergoing laser irradiation continues to be a challenging problem. For example, the contemporary pulsed dye laser (PDL) delivers a complex pulse format which presents specific challenges for theoretical understanding and further development. Numerical methods allow for adequate description of the thermal processes, but are lacking for clarifying the effects of the laser parameters. The purpose of this work is to derive a simplified analytical model that can guide the development of future laser designs. A mathematical model of heating and cooling processes in tissue is developed. Exact analytical solutions of the model are found when applied to specific temporal and spatial profiles of heat sources. Solutions are reduced to simple algebraic expressions. An algorithm is presented for approximating realistic cases of laser heating of skin structures by heat sources of the type found to have exact solutions. The simple algebraic expressions are used to provide insight into realistic laser irradiation cases. The model is compared with experiments on purpura threshold radiant exposure for PDL. These include data from four independent groups over a period of 20 years. Two of the data sets are taken from previously published articles. Two more data sets were collected from two groups of patients that were treated with two PDLs (585 and 595 nm) on normal buttocks skin. Laser pulse durations were varied between 0.5 and 40 ms radiant exposures were varied between 3 and 20 J/cm2. Treatment sites were evaluated 0.5, 1, and 24 hours later to determine purpuric threshold. The analytical model is in excellent agreement with a wide range of experimental data for purpura threshold radiant exposure. The data collected by independent research groups over the last 20 years with PDLs with wavelengths ranged from 577 to 595 nm were described accurately by this model. The simple analytical model provides an accurate

  5. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  6. Heating dynamics of CO{sub 2}-laser irradiated silica particles with evaporative shrinking: Measurements and modeling

    SciTech Connect

    Elhadj, S.; Qiu, S. R.; Stolz, C. J.; Monterrosa, A. M.

    2012-05-01

    The heating dynamics of CO{sub 2}-laser heated micron-sized particles were determined for temperatures <3500 K measured using infrared imaging. A coupled mass and energy conservation model is derived to predict single particle temperatures and sizes, which were compared with data from particles deposited on non-absorbing substrates to assess the relevant heat transfer processes. Analysis reveals substrate conduction dominates all other heat losses, while laser absorption determined from Mie theory is strongly modulated by particle evaporative shrinking. This study provides insights into the light coupling and heating of particle arrays where the material optical properties are temperature-dependent and particle size changes are significant.

  7. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Antici, P.; Fuchs, J.; Atzeni, S.; Benuzzi, A.; Brambrink, E.; Esposito, M.; Koenig, M.; Ravasio, A.; Schreiber, J.; Schiavi, A.; Audebert, P.

    2006-06-01

    We describe an experiment on isochoric heating of matter by intense laser-accelerated protons. The experiment was performed using the LULI 100 TW facility with 15-20 J on target energy and > 1019 W.cm - 2 maximum focused intensity. Focusing the laser on a 10 micron thick Au foil, we accelerated forward a laminar proton beam with a maximum energy of 16 MeV. This proton beam irradiated and heated a secondary target positioned after a variable vacuum gap. The heating was diagnosed by 1D and 2D time-resolved measurements of the optical self-emission of the heated target rear-surface. Detailed results as a function of the Z and the thickness of the secondary target as well as analysis, including a full modelling of the target heating with a 2D hydro-code (DUED) coupled to a proton energy deposition code, were obtained. We have also studied the efficiency of heating as a function of the primary target topology, i.e. either flat, which results in a diverging proton beam, or curved, which has the ability of focusing partly the proton beam.

  8. Enhancement of binding kinetics on affinity substrates by laser point heating induced transport.

    PubMed

    Wang, Bu; Cheng, Xuanhong

    2016-03-01

    Enhancing the time response and detection limit of affinity-binding based biosensors is an area of active research. For diffusion limited reactions, introducing active mass transport is an effective strategy to reduce the equilibration time and improve surface binding. Here, a laser is focused on the ceiling of a microchamber to generate point heating, which introduces natural advection and thermophoresis to promote mass transport to the reactive floor. We first used the COMSOL simulation to study how the kinetics of ligand binding is influenced by the optothermal effect. Afterwards, binding of biotinylated nanoparticles to NeutrAvidin-treated substrates is quantitatively measured with and without laser heating. It is discovered that laser induced point heating reduces the reaction half-life locally, and the reduction improves with the natural advection velocity. In addition, non-uniform ligand binding on the substrate is induced by the laser with predictable binding patterns. This optothermal strategy holds promise to improve the time-response and sensitivity of biosensors and microarrays. PMID:26898559

  9. Conversion of heat to light using Townes' maser-laser engine: Quantum optics and thermodynamic analysis

    SciTech Connect

    Ooi, C. H. Raymond

    2011-04-15

    It is shown that thermal energy from a heat source can be converted to useful work in the form of maser-laser light by using a combination of a Stern-Gerlach device and stimulated emissions of excited particles in a maser-laser cavity. We analyze the populations of atoms or quantum dots exiting the cavity, the photon statistics, and the internal entropy as a function of atomic transit time, using the quantum theory of masers and lasers. The power of the laser light is estimated to be sufficiently high for device applications. The thermodynamics of the heat converter is analyzed as a heat engine operating between two reservoirs of different temperature but is generalized to include the change of internal quantum states. The von Neumann entropies for the internal degree are obtained. The sum of the internal and external entropies increases after each cycle and the second law is not violated, even if the photon entropy due to finite photon number distribution is not included. An expression for efficiency relating to the Carnot efficiency is obtained. We resolve the subtle paradox on the reduction of the internal entropy with regards to the path separation after the Stern-Gerlach device.

  10. Synthesis of ceramic powders and surface films from laser heated gases

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.

    1985-01-01

    Two new processes have been developed that are based on laser-heated gases. Both permit unusually precise levels of process control and, thereby, materials having superior properties. The power process yields Si, Si3N4 and SiC powders that are uniform in size, nonagglomerated, small diameter, spherically shaped and high purity. Manufacturing cost analyses show that submicron powders can be made with an energy cost of approximately 2 kWhr/kg and a dollar cost of 2-3.30 $/kg, exclusive of the costs of feed materials. The laser-induced chemical vapor deposition process (LICVD) causes reactant gases to be heated by absorbing IR light from a laser beam that passes parallel to the substrate surface. Laser heating permits independent control of gas and substrate temperatures while operating in a conventional, thermally activated chemical vapor deposition mode. Spin density, hydrogen content, electrical conductivity and mobility gap properties show the LICVD process capable of producing very high quality films.