Science.gov

Sample records for laser na morfologia

  1. Optically pumped Na/sub 2/ laser

    SciTech Connect

    Kanorskii, S.I.; Kaslin, V.M.; Yakushev, O.F.

    1980-10-01

    A pulsed copper vapor laser emitting the 578.2 nm line was used as the pump source in achieving stimulated emission as a result of the electronic A/sup 1/..sigma../sup +//sub u/ to X/sup 1/..sigma../sup +//sub g/ transitions in the Na/sub 2/ molecule in the spectral range 0.765 to 0.804 ..mu... The average power of all the emission lines was 10 mW when the pulsed pump power was 150 W and the efficiency of conversion of the optical pump energy was about 3%. The pulse repetition frequency was 3.3 kHz. Violet diffuse radiation of the Na/sub 2/ molecules, generated by pumping with the copper vapor laser, was observed. The superradiance regime was found for some of the lines.

  2. Laser trapping of {sup 21}Na atoms

    SciTech Connect

    Lu, Zheng-Tian

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  3. Laser vaporized Li2, Na2, K2, and LiNa molecules observed by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Labazan, I.; Milošević, S.

    2003-09-01

    Laser ablation of solid lithium, sodium, potassium, and lithium-sodium alloy was performed using a 308-nm excimer laser at fluences close to 1 J cm-2. Frequency and time resolved A-X and B-X electronic transitions of 6,7Li2, Na2, LiNa and K2 respectively, were observed. Lithium atom, dimer velocities, and influence of the background gas on dimer content of the plume have been measured. The origin of dimers at high densities, with subthermal internal energy, is discussed.

  4. Room-temperature diode-pumped Yb, Na: PbF2 laser.

    PubMed

    Yin, Jigang; Hang, Yin; He, Xiaoming; Zhang, Lianhan; Zhao, Chengchun; Gong, Juan

    2012-01-01

    Growth, spectroscopic properties, and laser performance of Yb, Na:PbF(2) crystals have been investigated. With a 2 mol.% Yb(3+)-doped sample we obtained 2.65 W output power at 1045 nm for 7.5 W of incident power at 976 nm. The laser wavelength could be tuned from 1017 to 1078 nm, showing the great potential of Yb, Na:PbF(2) as an amplifier medium for femtosecond pulses. PMID:22212807

  5. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    SciTech Connect

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  6. Low-NA fiber laser pumps powered by high-brightness single emitters

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-03-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed high-brightness NEON multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber enabling low-NA power delivery to a customer's fiber laser network. Brightness-enhanced single emitters are engineered with ultra-low divergence for compatibility with the low-NA delivery fiber, with the latest emitters delivering 14 W with 95% of the slow-axis energy contained within an NA of 0.09. The reduced slow-axis divergence is achieved with an optimized epitaxial design, where the peak optical intensity is reduced to both lessen filamentation within the laser cavity and reduce the power density on the output facet thus increasing the emitter reliability. The low mode filling of the fiber allows it to be coiled with diameters down to 70 mm at full operating power despite the small NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules. 50W fiber pump products at 915, 950 and 975 nm wavelengths are presented, including a wavelengthstabilized version at 976 nm.

  7. Optically pumped gas laser using electronic transitions in the NaRb molecule

    SciTech Connect

    Kaslin, V.M.; Yakushev, O.F.

    1983-12-01

    Laser superradiance was achieved for the first time as a result of an electronic transition in a diatomic heteronuclear molecule as a result of direct optical pumping. This superradiance was observed in the region of 670 nm due to a transition to the ground state X/sup 1/..sigma../sup +/ of the intermetallic alkali molecule NaRb pumped by radiation from a pulsed copper vapor laser (lambda = 510.6 nm).

  8. Pulsed, room-temperature operation of a tunable NaCl color-center laser

    SciTech Connect

    Culpepper, C.F.; Carrig, T.J.; Pinto, J.F.; Georgiou, E.; Pollock, C.R.

    1987-11-01

    A room-temperature, pulsed, color-center laser using OH/sup : /-doped NaCl crystals is reported. Crystals were transversely pumped by a Q-switched Nd:YAG laser at 1.06 ..mu..m and produced output energies of 8.6 mJ in 20-nsec pulses. The tuning range extended from 1.37 to 1.77 ..mu..m. During 40 h of operation (>10/sup 6/ pulses), a gradual power fading was observed. Laser action is tentatively ascribed to F/sub 2//sup //sup +/ centers.

  9. Lasers: Cw and Q-switched Nd:NaLa(MoO4)2 laser noncritical to the temperature drift of the diode pump laser wavelength

    NASA Astrophysics Data System (ADS)

    Ushakov, S. N.; Romanyuk, V. A.; Ryabochkina, P. A.; Shestakova, I. A.; Lis, Denis A.; Subbotin, Kirill A.; Shestakov, A. V.; Zharikov, Evgeny V.

    2010-08-01

    Lasing in Nd:NaLa(MoO4)2 crystals is obtained without stabilisation of the diode pump wavelength. A dependence of the cw laser power (at a wavelength of 1059 nm) on the pump diode temperature is found within a range of 10—458C. It is shown that the variations in the diode temperature within this region change the lasing efficiency no more than by 30%. In the passive Q-switching regime, the experiments were performed under both pulsed and cw pumping. Upon pulsed pumping, the laser energy was 16 μJ at the output pulse duration of 11 ns. The laser wavelength was 1059 nm, as well as in the case of cw operation. Upon cw pumping with a power of 1.5 W, laser pulses were obtained with an energy of 15 μJ.

  10. Simple design for singlemode high power CW fiber laser using multimode high NA fiber

    NASA Astrophysics Data System (ADS)

    Morasse, Bertrand; Chatigny, Stéphane; Desrosiers, Cynthia; Gagnon, Éric; Lapointe, Marc-André; de Sandro, Jean-Philippe

    2009-02-01

    A large number of high power CW fiber lasers described in the literature use large mode area (LMA) double cladding fibers. These fibers have large core and low core numerical aperture (NA) to limit the number of supported modes and are typically operated under coiling to eliminate higher order modes. We describe here multimode (MM) high NA ytterbium doped fibers used in single mode output high power laser/amplifier configuration. Efficient single mode amplification is realized in the multimode doped fiber by matching the fundamental mode of the doped fiber to the LP01 mode of the fiber Bragg grating (FBG) and by selecting the upper V-number value that limits the overlap of the LP01 to the higher order modes. We show that negligible mode coupling is realized in the doped fiber, which ensures a stable power output over external perturbation without the use of tapers. Fundamental mode operation is maintained at all time without coiling through the use of FBG written in a single mode fiber. We show that such fiber is inherently more photosensitive and easier to splice than LMA fiber. We demonstrate an efficient 75W singlemode CW fiber laser using this configuration and predict that the power scaling to the kW level can be achieved, the design being more practical and resistant to photodarkening compared to conventional low NA LMA fiber.

  11. Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass

    PubMed Central

    2012-01-01

    The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications. PMID:22809176

  12. [Joint Analyses of Na2SO4 Solution by Laser Induced Breakdown Spectroscopy and Raman Spectroscopy].

    PubMed

    Guo, Jin-jia; Lu, Yuan; Liu, Chun-hao; Zheng, Rong-er

    2016-01-01

    Spectroscopic sensor is becoming an important issue for the deep-sea exploration due to the advantages of multi-specie, multi-phases and stand-off detection. Different approach have been developing in recent years based on LIBS (Laser Induced Breakdown Spectroscopy) and Raman spectroscopy since Raman-LIBS are complementary techniques with the similar components and the capability of molecular and elementary analysis. In this work, we built a LIBS-Raman system and detected Na2SO4 in aqueous solution to evaluate the potential ocean application. With the same laser, spectrometer and detector, a hybrid of Raman and LIBS system was developed to realize the detection of anions and cations in the seawater. The optics was composed by two parts. Raman channel and LIBS channel, and the signal was collected by a Y type optical fiber bundle. The signal from two channels was separated by imaging on different arrays of the CCD detector. The Raman spectra of SO4(2-) and LIBS spectra of Na was successfully detected simultaneously when the pulse energy was above 3.6 mJ. However, due to the strong bremsstrahlung radiation of LIBS, the signal to noise ratio of Raman was significantly decreased as the laser energy increasing. The results manifested the great potential of Raman-LIBS combination for the underwater detection. PMID:27228778

  13. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  14. Performance of a new high-NA scanned-laser mask lithography system

    NASA Astrophysics Data System (ADS)

    Hamaker, Henry Chris; Buck, Peter D.

    1997-02-01

    To meet the challenges of peak production of 0.25-micrometer design rule photomasks, a new generation of scanned-laser reticle writers has been developed. Based on the architecture of the ALTA 3000, the resolution and critical dimension (CD) control have been improved by integrating a new 33X, 0.8- NA reduction lens. The spot size of 0.27-micrometer FWHM represents a reduction by a factor of 0.6 relative to preceding scanned-laser products, thereby providing excellent CD linearity down to 0.5 micrometer. High throughput is maintained by reducing the number of averaging passes from eight to four. The sharper aerial image produced by the system limits the CD biasing which may be obtained using dose adjustment, so a dry etch process with zero etch bias must be used for optimal performance. Early characterization of the system indicates performance consistent with that required for 0.25 micrometer integrated circuits.

  15. Dissipative soliton operation of a diode pumped Yb:NaY(WO₄)₂ laser.

    PubMed

    Ma, Jie; Wang, Jun; Shen, Deyuan; Yu, Haohai; Zhang, Huaijin; Tang, Dingyuan

    2015-12-14

    We report on the dissipative soliton operation of a diode pumped Yb:NaY(WO₄)₂ (Yb:NYW) solid-state laser. The dissipative solitons and their features as the net cavity group velocity dispersion is changed from the normal to the anomalous dispersion regime are experimentally investigated. Taking advantage of the dissipative soliton shaping of the mode-locked pulses we have generated stable near transform-limited pulses as short as 54 fs. To our knowledge, this is so far the shortest pulse directly obtained from the mode-locked Yb:NYW oscillator. PMID:26699021

  16. Doubly passively Q-switched Yb:NaY(WO4)2 laser with dual-wavelength phenomenon

    NASA Astrophysics Data System (ADS)

    Lan, Ruijun

    2015-06-01

    A diode pumped doubly passively Q-switched \\text{Yb:NaY}≤ft(\\text{W}{{\\text{O}}4}\\right)2/\\text{C}{{\\text{r}}4+}\\text{:YAG}/\\text{GaAs} laser was realized for the first time to our knowledge. Compared with the singly passively Q-switched \\text{Yb:NaY}≤ft(\\text{W}{{\\text{O}}4}\\right)2/\\text{C}{{\\text{r}}4+}\\text{:YAG} laser, this laser can generate a higher repetition rate, and more symmetric and shorter pulses. The highest repetition rate and shortest pulse width was measured to be 82 kHz and 6 ns. At certain pump power, 1022 and 1026 nm dual-wavelength lasers were obtained, and the mechanism of this phenomenon was discussed.

  17. Synthesis and characterization of AgCl nanoparticles produced by laser ablation of Ag in NaCl solution

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Afsaneh; Shoorshinie, Seyedeh Zahra; Dorranian, Davoud

    2016-04-01

    In this work, the structural and optical properties of silver chloride nanoparticles produced by laser ablation of Ag plate in NaCl solution were investigated. Five different concentrations of NaCl solution were used as the ablation environment. The beam of a Q-switched Nd:YAG laser of 1064 nm wavelength and 7 ns pulse width was employed to irradiate the Ag target in NaCl solutions. Fluence of laser pulse was 1.5 J/cm2, and repetition rate was 5 Hz. Samples were prepared using 1500 pulses. Produced nanoparticles were characterized using UV-visible-NIR absorption, and transmission spectrum, transmission electron microscopy, scanning electron microscopy, X-ray diffraction pattern, photoluminescence spectrum, and dynamic light scattering method. Results show that laser ablation is a promising method to produce AgCl nanoparticles. Size of nanoparticles, their lattice structure, and bandgap energy as well as the production rate may be controlled by the concentration of NaCl in the ablation environment.

  18. Applications of spectral analysis and filter design in laser frequency locking for Na Doppler lidars

    NASA Astrophysics Data System (ADS)

    Smith, John A.; Chu, Xinzhao; Huang, Wentao; Tan, Bo

    2009-10-01

    A dye ring laser is stabilized to a D2a Doppler-free feature of sodium vapor using a LabVIEW®-based, phase-sensitive servo. Locking precision and stability, at better than +/-1 MHz, are suitable for Na lidar applications. This performance was achieved with improved digital filtering and new approaches to the problem. The inverse (type II) Chebyshev discrete filter employed demonstrates superior filtering and computational efficiency plus improved flexibility. New approaches include the determination of optimum modulation frequency, laser-tuning sensitivity, and bandwidth requirements via spectral analyses of the noise spectrum, derivative scan, and modulated spectrum. This practice guides a user in selecting the system operation parameters and negotiating the trade-offs involved when expanding the filter's passband. Allan deviation plots provide a quantitative description of the short- and long-term frequency excursions. A comparison of Allan deviation plots before and after locking shows a substantial improvement in stability throughout time scales from 0.10 to 10 s.

  19. High brightness laser-diode device emitting 160 watts from a 100 μm/NA 0.22 fiber.

    PubMed

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-11-10

    A practical method of achieving a high-brightness and high-power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by a beam transformation system, free-space beam combining, and polarization beam combining based on a mini-bar laser-diode chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 100 μm core diameter and 0.22 numerical aperture (NA) could reach 174 W, with equalizing brightness of 14.2  MW/(cm2·sr). By this method, much wider applications of fiber-coupled laser-diodes are anticipated. PMID:26560762

  20. High brightness laser-diode device emitting 500 W from a 200 μm/NA0.22 fiber

    NASA Astrophysics Data System (ADS)

    Junhong, Yu; Linhui, Guo; Hualing, Wu; Zhao, Wang; Hao, Tan; Songxin, Gao; Deyong, Wu; Kai, Zhang

    2016-06-01

    A practical method of achieving high brightness and high power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by technologies of precision beam collimation, free space beam combining and polarization beam combining based on mini-bar diode laser chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 200 μm core diameter and 0.22 numerical aperture (NA) could reach 528 W, equalizing brightness is 11.0 MW/(cm2 sr) and electro-optical efficiency (defined as fiber output power divided by voltage and current of the module) is 43.0%. By this method, much wider applications of fiber-coupled laser-diode are anticipated.

  1. Structural, spectroscopic, and tunable laser properties of Yb3+ -doped NaGd(WO4)2

    NASA Astrophysics Data System (ADS)

    Cascales, C.; Serrano, M. D.; Esteban-Betegón, F.; Zaldo, C.; Peters, R.; Petermann, K.; Huber, G.; Ackermann, L.; Rytz, D.; Dupré, C.; Rico, M.; Liu, J.; Griebner, U.; Petrov, V.

    2006-11-01

    Single crystals of Yb3+ -doped NaGd(WO4)2 with up to 20mol% ytterbium content have been grown by the Czochralski technique in air or in N2+O2 atmosphere and cooled to room temperature at different rates (4-250°C/h) . Only the noncentrosymmetric tetragonal space group I4¯ accounts for all reflections observed in the single crystal x-ray diffraction analysis. The distortion of this symmetry with respect to the centrosymmetric tetragonal space group I41/a is much lower for crystals cooled at a fast rate. Na+ , Gd3+ , and Yb3+ ions share the two nonequivalent 2b and 2d sites of the I4¯ structure, but Yb3+ (and Gd3+ ) ions are found preferentially in the 2b site. Optical spectroscopy at low (5K) temperature provides additional evidence of the existence of these two sites contributing to the line broadening. The comparison with the F7/22(n) and F5/22(n') Stark energy levels calculated using the crystallographic Yb-O bond distances allows to correlate the experimental optical bands with the 2b and 2d sites. As a novel uniaxial laser host for Yb3+ , NaGd(WO4)2 is characterized also with respect to its transparency, band-edge, refractive indices, and main optical phonons. Continuous-wave Yb3+ -laser operation is studied at room temperature both under Ti:sapphire and diode laser pumping. A maximum slope efficiency of 77% with respect to the absorbed power is achieved for the π polarization by Ti:sapphire laser pumping in a three-mirror cavity with Brewster geometry. The emission is tunable in the 1014-1079nm spectral range with an intracavity Lyot filter. Passive mode locking of this laser produces 120fs long pulses at 1037.5nm with an average power of 360mW at ≈97MHz repetition rate. Using uncoated samples of Yb:NaGd(WO4)2 at normal incidence in simple two-mirror cavities, output powers as high as 1.45W and slope efficiencies as high as 51% are achieved with different diode laser pump sources.

  2. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  3. Resonant infrared laser-induced desorption of methane condensed on NaCl(100): isotope mixture experiments.

    PubMed

    Redlich, Britta; Zacharias, Helmut; Meijer, Gerard; von Helden, Gert

    2006-01-28

    Resonantly enhanced infrared laser-induced desorption of methane condensed on a single-crystal NaCl(100) surface is observed after excitation with the widely tunable infrared laser output of the free-electron laser at the free-electron laser for infrared experiments facility using mass spectroscopic detection and time-of-flight analysis. Desorption of methane is observed only when the exciting light is in resonance with an internal vibrational mode of the molecule. Different intramolecular modes of the three methane isotopologues under study--CH(4), CD(4), and CD(3)H--are excited; the degenerate deformation mode nu(4) is observed for CH(4) and CD(4) at 7.69 and 10.11 microm, respectively, as well as the nu(2) and nu(4) modes of CD(3)H at 7.79, 9.75, and 9.98 microm. The desorption signals for the pure layers of these different methane isotopologues as well as for different mixtures of two of these are investigated as a function of the infrared wavelength and the laser fluence. The desorption behavior for pure and mixed layers is compared and the underlying desorption mechanism is discussed. PMID:16460197

  4. Fluorescence and laser photon counting: measurements of epithelial [Ca2+]i or [Na+]i with ciliary beat frequency.

    PubMed

    Mao, H; Wong, L B

    1998-01-01

    We describe a system we developed that enabled simultaneous measurements of either epithelial calcium ion concentration ([Ca2+]i) or sodium ion concentration ([Na+]i) with the ciliary beat frequency (CBF) in native ciliated epithelia using either Fura-2 (AM) or SBFI (AM) ratiometric fluorescence photon counting along with nonstationary laser light scattering. Studies were performed using native epithelial tissues obtained from ovine tracheae. The dynamic range of the laser light-scattering system was determined by a simulated light "beating" experiment. The nonstationary CBF was demonstrated by the time-frequency analysis of the raw photon count sequences of backscattered heterodyne photons from cultured and native epithelia. Calibrations of calcium and sodium ion concentrations were performed using the respective Fura-2 and SBFI impermanent salts as well as in native epithelia. The cumulative responses of 10(-6), 10(-5), and 10(-4) M nifedipine on [Ca2+]i together with the CBF as well as the cumulative responses of 10(-5), 10(-4), and 10(-3) M amiloride on [Na+]i together with the CBF were also determined. Nifedipine decreased [Ca2+]i but had no effect on CBF. Amiloride decreased [Na+]i and CBF. Stimulation of CBF corresponded with either an increase of [Na+]i or an increase of [Ca2+]i. Decreases of [Na+]i or substantial decreases of [Ca2+]i were associated with decreases in the CBF. These data demonstrate the utility of this system for investigating the regulatory mechanisms of intracellular ions dynamics and the CBF in native epithelia. PMID:9662158

  5. Alterações Induzidas Pelo Exercício no Número, Função e Morfologia de Monócitos de Ratos

    PubMed Central

    GUERESCHI, MARCIA G.; PRESTES, JONATO; DONATTO, FELIPE F.; DIAS, RODRIGO; FROLLINI, ANELENA B.; FERREIRA, CLÍLTON KO.; CAVAGLIERI, CLAUDIA R.; PALANCH, ADRIANNE C.

    2008-01-01

    O propósito desse estudo foi verificar as alterações histofisiológicas em monócitos e macrófagos induzidas por curtos períodos de exercícios. Ratos Wistar (idade = 2 meses, peso corporal = 200g) foram divididos em sete grupos (n=6 cada): controle sedentário (C), grupos exercitados (natação) na intensidade leve por 5 (5L), 10 (10L) e 15 minutos (15L), e grupos exercitados em intensidade moderada por 5 (5M), 10 (10M) e 15 minutes (15M). Na intensidade moderada os animais carregaram uma carga de 5% do peso corporal dos mesmos em seus respectivos dorsos. Os monócitos sangüíneos foram avaliados quanto à quantidade e morfologia e os macrófagos peritoneais foram analisados quanto à quantidade e atividade fagocitária. Os dados foram analisados usando ANOVA e Tukey’s post hoc test (p ≤ 0,05). Os grupos de intensidade leve e 5M apresentaram aumento nos níveis dos monócitos quando comparados com o controle. Foi observado aumento na área celular dos monócitos para os grupos 5L, 10L, 5M e 10M; a área nuclear aumentou para os grupos 10L, 5M e 10M em comparação com o controle. Houve aumento nos macrófagos peritoneais para os grupos 15L, 10M, 15M e diminuição no grupo 5M. A capacidade fagocitária dos macrófagos aumentou nos grupos de intensidade leve e para o grupo 10M. O exercício realizado por curtos períodos modulou o número e função dos macrófagos, assim como o número e morfologia dos monócitos, sendo tais alterações dependentes da intensidade. A soma das respostas agudas observadas nesse estudo pode exercer um efeito protetor contra doenças, podendo ser utilizada para a melhora da saúde e qualidade de vida.

  6. Thermal Characterization, Crystal Field Analysis and In-Band Pumped Laser Performance of Er Doped NaY(WO4)2 Disordered Laser Crystals

    PubMed Central

    Serrano, María Dolores; Cascales, Concepción; Han, Xiumei; Zaldo, Carlos; Jezowski, Andrzej; Stachowiak, Piotr; Ter-Gabrielyan, Nikolay; Fromzel, Viktor; Dubinskii, Mark

    2013-01-01

    Undoped and Er-doped NaY(WO4)2 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ) of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T) behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er3+ levels up to 4G7/2 multiplet have been determined by the combination of experimental low (<10 K) temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the 4I13/2↔4I15/2 laser related transition have been determined at 77 K. The 4I13/2 Er3+ lifetime (τ) was measured in the temperature range of 77–300 K, and was found to change from τ (77K) ≈ 4.5 ms to τ (300K) ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the 4I13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm) diode laser source perfectly matching the 77 K crystal 4I15/2 → 4I13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration. PMID:23555664

  7. High-NA high-throughput scanner compatible 2-kHz KrF excimer laser for DUV lithography

    NASA Astrophysics Data System (ADS)

    Nakarai, Hiroaki; Hisanaga, Naoto; Suzuki, Natsushi; Matsunaga, Takeshi; Asayama, Takeshi; Akita, Jun; Igarashi, Toru; Ariga, Tatsuya; Bushida, Satoru; Enami, Tatsuo; Nodomi, Ryoichi; Takabayashi, Yuichi; Sakanishi, Syouich; Suzuki, Takashi; Tomaru, Hitoshi; Nakao, Kiyoharu

    2000-07-01

    We have succeeded in the development of an excimer laser with ultra narrow bandwidth applicable to high N.A. scanners targeting on the 0.13micrometers -design rule. Key word of our solution for 0.13micrometers -design rule was 'extended technologies of currently available KrF excimer laser unit. As the result we could shorten development time remarkably. The narrower the laser spectrum, the less the influence of chromatic aberration on exposure projection lens; this is a well-known fact. We have developed the technologies to achieve spectral bandwidths less than 0.5pm, 20 percent narrower than our current model G20K. In order to attain this number, the major design change was made on line narrowing module, which was redesigned to minimize the dispersion of wavelength element. In addition gas condition was fine-tuned for the new line narrowing module. Integrated energy stability has been improved within +/- 0.35 percent with 35 pulses window by the introduction of a high efficiency pules power module and a faster gas circulation system. The rest of oscillation performances and durability equate with the base model G20K. The intelligent gas control system extended gas exchange interval up to 200 million pulses or 7 days. The G20K already passed through 10 billion-pulse test. Total energy loss was within 4mJ which is small enough to be compensated by gas injection and voltage change; it is a unique compensation system of Komatsu.

  8. Article on Trident Laser Facility for NA-11 Stockpile Stewardship Quarterly

    SciTech Connect

    Barnes, Cris W.

    2012-08-13

    The Trident Intermediate-Scale Laser Facility at Los Alamos National Laboratory is an extremely versatile Nd:glass laser system dedicated to high energy density laboratory physics and weapons physics research and fundamental laser-matter interactions. Trident is a three-beam, 200 J/beam at the second harmonic for glass (527 nm wavelength), facility with tremendous flexibility and high beam quality. Pulse durations varying over 6 orders of magnitude, from 0.5 picoseconds to 1.0 microsecs, can be directed to either of two different target chambers with changeable illumination geometries, including the ability to achieve near-diffraction limited focus. This provides a unique range of capability at one facility from sub-picosecond pulses (and high-intensity laser science) to nanosecond pulses (and LPI physics relevant to ICF) to microsecond pulses (and driving flyer plates for supported shock dynamic materials science.) When in short-pulse mode (less than picosecond pulse), a single beam can provide up to 200 TW of power with uniquely controllable and measured pre-pulse contrast of 10 orders of magnitude. A recent external capability review at Los Alamos concluded that 'Trident is generating excellent, cutting edge science and is a leading intermediate scale laser system worldwide.'

  9. Giant enhancement of upconversion in ultra-small Er3+/Yb3+:NaYF4 nanoparticles via laser annealing

    NASA Astrophysics Data System (ADS)

    Bednarkiewicz, A.; Wawrzynczyk, D.; Gagor, A.; Kepinski, L.; Kurnatowska, M.; Krajczyk, L.; Nyk, M.; Samoc, M.; Strek, W.

    2012-04-01

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ˜8 nm NaYF4 nanocrystals (NCs) co-doped with 2% Er3+ and 20% Yb3+ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm-2 (˜354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications.

  10. Thermoelectric conversion via laser-induced voltage in highly textured polycrystalline Na{sub x}CoO{sub 2} ceramic

    SciTech Connect

    Yan, G. W.; Wang, Y.; Zhang, H.; Yu, L.; Zhang, P. X.; Habermeier, H.-U.

    2011-11-15

    We have studied and analyzed the laser-induced voltage effect in highly c-axis-oriented polycrystalline Na{sub x}CoO{sub 2}. The textured and layered stacking Na{sub x}CoO{sub 2} (x {approx} 0.7) bulks were prepared by a solid-state reaction process. Under the irradiation on Na{sub 0.67}CoO{sub 2} bulk surface with pulsed laser ({lambda} = 248 nm), the induced voltage signals were observed on the inclined surface with rise time 30 ns-43 ns and peak voltage 200 mV-500 mV; the voltage peak values show a linear dependence of laser energy densities. The crystal grains orientation plays a critical role in voltage peak value whether in film or texture bulk. The transverse voltage signal brings the information of thermoelectric anisotropy. In Na{sub x}CoO{sub 2} band structure, the Fermi surface is different in the ab plane and along the c axis, leading to anisotropy of Seebeck coefficient. Additionally, the artificial structure of the inclined surface for highly textured bulk enables us to obtain a transverse voltage on inclined surface. These results demonstrated the layered textured bulk has potential applications in waste-heat conversion via transverse thermoelectric effect.

  11. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of {sup 21}Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary A.

    1999-05-24

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive {sup 21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of {sup 21}Na to the experiment. Efficient manipulation of the {sup 21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of {sup 21}Na. She measured the 3S{sub 1/2}(F=1,m=0)-3S{sub 1/2}(F=2,m=0) atomic level splitting of {sup 21}Na to be 1,906,471,870{+-}200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  12. Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser

    SciTech Connect

    Caird, J.A.; Payne, S.A.; Staver, P.R.; Ramponi, A.J.; Chase, L.L.; Krupke, W.F.

    1988-06-01

    Few of the existing Cr/sup 3+/ vibronic lasers have achieved the slope efficiency and tuning range expected based on their known spectroscopic properties. In order to discover the causes of this behavior, the performance of chromium doped gallium fluoride garnet, Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, as a laser material has been investigated experimentally. The data reported here include absorption and emission spectra, emission rates, quantum efficiency, laser wavelength tuning range, laser output slope efficiencies, and excited state absorption spectra. Similar properties of the alexandrite laser material were studied for comparison. The results indicate that the performance of the gallium fluoride garnet laser is severely limited by Cr/sup 3+/ excited state absorption (ESA). A model is presented to account for the unexpected nature of the ESA, which appears to be a common problem for all Cr/sup 3+/ vibronic lasers. Criteria are suggested for choosing Cr/sup 3+/ hosts for which the effects of ESA will be minimized.

  13. Q-switching of an alexandrite laser by (F/sup +//sub 2/)/sub A/ color centers in NaF

    SciTech Connect

    Kolyago, S.S.; Matrosov, V.N.; Pestryakov, E.V.; Trunov, V.I.; Gusev, Y.L.; Shkadarevich, A.P.

    1985-12-01

    Investigations were made of the characteristics of (F/sup +//sub 2/)/sub A/ color centers in NaF and of the spectral and lasing properties of an alexandrite laser Q-switched by centers of this type. When a Lyot filter and a switch having an initial transmission of approx.70% were used in this laser resonator, pulses of 80--100 nsec duration with a spectral width of approx.0.1 cm/sup -1/ and a tuning range of 0.73--0.783 ..mu.. were obtained under pulse-periodic conditions (12.5 Hz).

  14. Interaction of Wide-Band-Gap Single Crystals with 248-nm Excimer Laser Irradiation: X. Laser-Induced Near-Surface Absorption in Single-Crystal NaCl

    SciTech Connect

    Nwe, K H.; Langford, Stephen C.; Dickinson, J T.; Hess, Wayne P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand Kelvin, even in the absence of visible surface damage. The origin of the laser required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. Diffuse reflectance spectra acquired after exposure suggest that near surface V-type centers are responsible for most of the absorption at 248 nm in single crystal NaCl.

  15. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.; Hess, W.P.

    2005-02-15

    Ultraviolet laser-induced desorption of neutral atoms and molecules from nominally transparent, ionic materials can yield particle velocities consistent with surface temperatures of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption required for this surface heating has been often overlooked. In this work, we report simultaneous neutral emission and laser transmission measurements on single-crystal NaCl exposed to 248-nm excimer laser radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region to account for the observed particle velocities. We show that the laser absorption grows from low values over several pulses and saturates at values sufficient to account for the surface temperatures required to explain the observed particle velocity distributions. The growth of absorption in these early pulses is accompanied by a corresponding increase in the emission intensities. The diffuse reflectance spectra acquired after exposure suggest that near-surface V-type centers are responsible for most of the absorption at 248 nm in single-crystal NaCl.

  16. Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW

    PubMed Central

    Liu, Jing; Wu, Ruitao; Li, Nana; Zhang, Xin; Zhan, Qiuqiang; He, Sailing

    2015-01-01

    It is challenging to achieve deep microscopic imaging for the strong scattering in biotissue. An efficient three-photon luminescence can effectively increase the penetration depth. Here we report that β-NaYF4: Er3+/NaYF4 UCNPs were excited by a 1480-nm CW-laser and emitted 543/653-nm light through a three-photon process. With the merit of the hexagonal crystal phase, sub-milliwatt laser power was utilized to excite the UCNP-probed cells to minimize the heating effect. The polymer-coated UCNPs were shown to be harmless to cells. The deep, high contrast in vitro microscopic imaging was implemented through an artificial phantom. Imaging depth of 800 μm was achieved using only 1.5 mW excitation and a 0.7 NA objective. The green/red emission intensities ratio after penetrating the phantom was studied, indicating that longer emission wavelength is preferred for deep multiphoton microscopy. The proposed and demonstrated β-UCNPs would have great potential in three-photon microscopy. PMID:26137385

  17. Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er(3+)/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW.

    PubMed

    Liu, Jing; Wu, Ruitao; Li, Nana; Zhang, Xin; Zhan, Qiuqiang; He, Sailing

    2015-05-01

    It is challenging to achieve deep microscopic imaging for the strong scattering in biotissue. An efficient three-photon luminescence can effectively increase the penetration depth. Here we report that β-NaYF4: Er(3+)/NaYF4 UCNPs were excited by a 1480-nm CW-laser and emitted 543/653-nm light through a three-photon process. With the merit of the hexagonal crystal phase, sub-milliwatt laser power was utilized to excite the UCNP-probed cells to minimize the heating effect. The polymer-coated UCNPs were shown to be harmless to cells. The deep, high contrast in vitro microscopic imaging was implemented through an artificial phantom. Imaging depth of 800 μm was achieved using only 1.5 mW excitation and a 0.7 NA objective. The green/red emission intensities ratio after penetrating the phantom was studied, indicating that longer emission wavelength is preferred for deep multiphoton microscopy. The proposed and demonstrated β-UCNPs would have great potential in three-photon microscopy. PMID:26137385

  18. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er{sup 3+}:NaYF{sub 4} nanocrystals under excitation of two near infrared femtosecond lasers

    SciTech Connect

    Shang, Xiaoying; Cheng, Wenjing; Zhou, Kan; Ma, Jing; Feng, Donghai; Zhang, Shian; Sun, Zhenrong; Jia, Tianqing; Chen, Ping; Qiu, Jianrong

    2014-08-14

    In this paper, we report fine tunable red-green upconversion luminescence of glass ceramic containing 5%Er{sup 3+}: NaYF{sub 4} nanocrystals excited simultaneously by two near infrared femtosecond lasers. When the glass ceramic was irradiated by 800 nm femtosecond laser, weak red emission centered at 670 nm was detected. Bright red light was observed when the fs laser wavelength was tuned to 1490 nm. However, when excited by the two fs lasers simultaneously, the sample emitted bright green light centered at 550 nm, while the red light kept the same intensity. The dependences of the red and the green light intensities on the two pump lasers are much different, which enables us to manipulate the color emission by adjusting the two pump laser intensities, respectively. We present a theoretical model of Er{sup 3+} ions interacting with two fs laser fields, and explain well the experimental results.

  19. INTERACTION OF LASER RADIATION WITH MATTER: Influence of Ca and Pb impurities on the bulk optical strength of ultrapure NaCl and KCl crystals

    NASA Astrophysics Data System (ADS)

    Vinogradov, An V.; Voszka, R.; Kovalev, Valerii I.; Faĭzullov, F. S.; Janszky, J.

    1987-06-01

    A significant increase (by a factor of about 3) of the bulk damage threshold in the case of interaction of CO2 laser radiation pulses with ultrapure NaCl and KCl crystals grown in a reactive atmosphere was observed on introduction of divalent metal ions Ca and Pb in concentrations of 10-5-10-6 mol/mol. Impurities were introduced in concentrations of 10-8-10-3 and 2×10-7-10-4 mol/mol into the melts of KCl and NaCl, respectively. The concentration of other impurities (including OH) did not exceed ~10-6 mol/mol. A physical model was developed to account for the observed dependence on the basis of an analogy between a system of colloidal particles and F centers in a crystal and a liquid-vapor system.

  20. Dynamics of electron excitations in densely packed plasmonic Ag/Na3AlF6 nanostructures under pulsed laser action

    NASA Astrophysics Data System (ADS)

    Buganov, O. V.; Zamkovets, A. D.; Ponyavina, A. N.; Tikhomirov, S. A.; Baran, L. V.

    2011-11-01

    Differential transient absorption spectra have been studied for planar densely packed Ag/Na3AlF6 nanostructures under ultrashort laser pulse excitation. The nanostructures were fabricated by sequential thermal evaporation of cryolite (Na3AlF6) and silver in vacuo onto glass and quartz substrates. A nonmonotonic variation in relaxation times of induced changes in a surface plasmon resonance band was observed with an increase in the metal surface density that resulted in nanoparticle size growth and structural modification of the densely packed layer. The tendency of the relaxation times to vary nonmonotonically is explained by both features of intrinsic size effects and electron-tunneling processes in plasmonic densely packed nanostructures of various topologies.

  1. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. IX. Photoinduced atomic desorption from cleaved NaCl(100) surfaces

    SciTech Connect

    Nwe, K.H.; Langford, S.C.; Dickinson, J.T.

    2005-07-01

    Neutral atomic sodium and chlorine emissions from cleaved, single-crystal NaCl(100) surfaces due to pulsed, 248-nm excimer laser irradiation have been characterized by time-resolved, quadrupole mass spectroscopy. At laser fluences below the threshold for optical breakdown, the resulting time-of-flight signals are consistent with particles emitted in thermal equilibrium with a laser-heated surface. Activation energy measurements made by varying the substrate temperature are consistent with F-H pair formation under UV excitation. By varying the laser fluence and estimating the effective surface temperature from the time-of-flight signals, additional activation energy measurements were made. The corresponding rate-limiting step is attributed to a thermally assisted, photoelectronic process involving atomic steps. Atomic force microscope images of surfaces irradiated at low fluences show monolayer islands that are created by the aggregation of material desorbed from steps. At somewhat higher fluences, monolayer pits due to F-center aggregation are also observed.

  2. Laser cooling of the vibrational motion of Na{sub 2} combining the effects of zero-width resonances and exceptional points

    SciTech Connect

    Lefebvre, R.; Jaouadi, A.; Dulieu, O.; Atabek, O.

    2011-10-15

    We propose various scenarios for molecular vibrational cooling combining the effects of two kinds of resonance states occurring during the photodissociation of Na{sub 2} taken as an illustrative example. Such resonances result from an appropriate sampling of laser parameters (wavelength and intensity): (a) For particular choices of intensity and wavelength, two resonance energies can be brought to complete coalescence, with their positions and widths becoming equal and leading to a so-called exceptional point (EP) in the parameter plane. Advantage can be taken from such points for very selective laser-controlled vibrational transfer strategies. (b) For specific intensities, far beyond the perturbation regime, some resonances can have a zero width (infinite lifetime). They are referred to as a zero-width resonance (ZWR) and may be used for vibrational purification purposes. We show how appropriately shaped, experimentally reachable laser pulses, encircling EPs or inducing ZWRs, may be used for a thorough and comprehensive control aiming at population transfer or purification schemes, which, starting from an initial field-free vibrational distribution, ends up in the ground vibrational level.

  3. Giant enhancement of upconversion in ultra-small Er³⁺/Yb³⁺:NaYF₄ nanoparticles via laser annealing.

    PubMed

    Bednarkiewicz, A; Wawrzynczyk, D; Gagor, A; Kepinski, L; Kurnatowska, M; Krajczyk, L; Nyk, M; Samoc, M; Strek, W

    2012-04-13

    Most of the synthesis routes of lanthanide-doped phosphors involve thermal processing which results in nanocrystallite growth, stabilization of the crystal structure and augmentation of luminescence intensity. It is of great interest to be able to transform the sample in a spatially localized manner, which may lead to many applications like 2D and 3D data storage, anti-counterfeiting protection, novel design bio-sensors and, potentially, to fabrication of metamaterials, 3D photonic crystals or plasmonic devices. Here we demonstrate irreversible spatially confined infrared-laser-induced annealing (LIA) achieved in a thin layer of dried colloidal solution of ultra-small ∼8 nm NaYF₄ nanocrystals (NCs) co-doped with 2% Er³⁺ and 20% Yb³⁺ ions under a localized tightly focused beam from a continuous wave 976 nm medium power laser diode excitation. The LIA results from self-heating due to non-radiative relaxation accompanying the NIR laser energy upconversion in lanthanide ions. We notice that localized LIA appears at optical power densities as low as 15.5 kW cm⁻² (∼354 ± 29 mW) threshold in spots of 54 ± 3 µm diameter obtained with a 10 × microscope objective. In the course of detailed studies, a complete recrystallization to different phases and giant 2-3 order enhancement in luminescence yield is found. Our results are highly encouraging and let us conclude that the upconverting ultra-small lanthanide-doped nanophosphors are particularly promising for direct laser writing applications. PMID:22433162

  4. Highly efficient Yb-free Er-La-Al doped ultra-low NA large mode area single-trench fiber laser.

    PubMed

    Jain, D; Alam, S; Jung, Y; Barua, P; Velazquez, M N; Sahu, J K

    2015-11-01

    We demonstrate a 60µm core diameter Yb free Er-La-Al doped single-trench fiber having a 0.038 ultra-low-NA, fabricated using conventional MCVD process in conjunction with solution doping technique. Numerical simulations predict an effective single mode operation with effective area varying from 1,820µm(2) to 1,960µm(2) (taking bend-induced modal distortion into account) for different thicknesses of trenches and resonant rings at a constant bend radius of 25cm. Moreover, all solid structure favors easy cleaving and splicing. Experimental measurements demonstrate a robust effective single mode operation. Furthermore, with a 4%-4% laser cavity, this fiber shows a record efficiency of 46% with respect to the absorbed pump power. PMID:26561099

  5. Experimental demonstration of intracavity solid-state laser cooling of Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF glass

    SciTech Connect

    Heeg, B.; Stone, M.D.; Khizhnyak, A.; DeBarber, P.A.; Rumbles, G.; Mills, G.

    2004-08-01

    We report an approach to bulk optical cooling of solid-state materials by placing the cooling medium inside a laser cavity. The laser system is a diode-pumped Yb{sup 3+}:KY(WO{sub 4}){sub 2} (KYW) laser, while the cooling medium is an uncoated sample of 2%-doped Yb{sup 3+}:ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF (ZBLAN) glass. A typical drop of 6 K from ambient temperature was obtained from a noncontact temperature measurement based on the anti-Stokes luminescence profile, using diode pump power at the gain medium of 6 W, a laser wavelength of 1027 nm, and an absorbed power of 1.25 W.

  6. The vector behavior of aberrations in high numerical aperture (0.9 < NA < 3.1) laser focusing systems

    NASA Astrophysics Data System (ADS)

    Jo, Sseunhyeun

    This dissertation investigates vector behavior of aberrations for high numerical aperture optical systems using a solid immersion lens (SIL). In order to analyze the system, this dissertation introduces the illumination system transfer function (ISTF), which is a map in the space of the exit pupil that shows reflection and transmission properties of individual plane waves that are emitted from corresponding points in the exit pupil. A vector analysis using ISTF presents the role of propagating and evanescent energy in the SIL systems, where the boundary between the them is defined by total internal reflection. The behavior of third-order aberrations such as coma and astigmatism, are dramatically affected by polarization in high NA systems. The irradiance distribution exhibits significantly different characteristics, depending on how coma or astigmatism is aligned with the incident linear polarized light. Vector effects including diffraction, polarization, and aberration, are used to analyze tolerances along with a comparison to geometrical optics. Apodization in amplitude and phase of the angular spectrum is generated in high NA focusing systems due to the difference in vector transmission and reflection for each plane wave. The size of the incident gaussian beam is effectively reduced at the exit pupil by the amplitude apodization and causes a spot size increase in image space. The apodization in phase is called gap-induced aberration due to its dependence on the air gap. The gap- induced aberration does not come from lens surface imperfection, and it exhibits multiple orders of spherical aberration and astigmatism. The apodization in amplitude and phase is well characterized by separable supergaussian functions, where each function depends on the refractive index of the SIL n SIL and the air gap height h. The best defocus, based on characteristics of gap-induced aberration, is suggested to be a good compensator only for low nSIL and h. The system performance, as

  7. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers.

    PubMed

    Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K

    2015-03-23

    In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1. PMID:25837082

  8. Photofragmentation of Na

    SciTech Connect

    Assion, A.; Baumert, T.; Weichmann, U.; Gerber, G.

    2001-06-18

    Photofragmentation of Na{sup +}{sub 2} molecules in well prepared vibrational levels has been studied employing intense (10{sup 11}{endash}10{sup 14} W/cm{sup 2} ) and ultrashort (80fs) 790nm laser fields. Four fragmentation channels with different released kinetic energies are observed. Depending on the applied laser intensity, the fragmentation of Na{sup +}{sub 2} is governed by photodissociation on light-induced potentials and field ionization followed by Coulomb explosion. Below 1{times}10{sup 12} W /cm{sup 2} , only photodissociation on light-induced potentials is seen. For intermediate laser intensities, field ionization at large internuclear distances competes with photodissociation, thus preventing the observation of above threshold dissociation. Field ionization at small internuclear distances dominates for the highest laser intensities used.

  9. Enhanced 1.0 μm emission and simultaneously suppressed upconversion emission in Yb:PbF2 laser crystal codoped with NaF

    NASA Astrophysics Data System (ADS)

    Zhang, P. X.; Yin, J. G.; Hang, Y.; Yin, J. P.

    2013-04-01

    Na-codoped and only Yb-doped Yb:PbF2 crystals were successfully grown using the vertical Bridgman method. The influence of the ions codoped with Na+ on the distribution coefficients has been studied. Enhanced ˜1.0 μm emission and simultaneously suppressed upconversion emission was observed for Yb:PbF2 crystals codoped with 2 mol% NaF. A time-resolved spectroscopy study showed that the ions codoped with Na+ lengthen the fluorescence lifetime by 6%. Absorption spectra were also studied and showed that the ions codoped with Na+ can effectively suppress the formation of Yb2+ ions.

  10. Annual Scientific Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    SciTech Connect

    Prof. Henry C. Kapteyn

    2005-05-03

    In this project, we use coherent short-wavelength light generated using high-order harmonic generation as a probe of laser-plasma dynamics and phase transitions on femtosecond time-scales. The interaction of ultrashort laser pulses with materials and plasmas is relevant to stockpile stewardship, to understanding the equation of state of matter at high pressures and temperatures, and to plasma concepts such as the fast-ignitor ICF fusion concept and laser-based particle acceleration. Femtosecond laser technology makes it possible to use a small-scale setup to generate 20fs pulses with average power >10W at multiple kHz repetition rates, that can be focused to intensities in excess of 1017W/cm2. These lasers can be used either to rapidly heat materials to initiate phase transitions, or to create laser plasmas over a wide parameter space. These lasers can also be used to generate fully spatially coherent XUV beams with which to probe these materials and plasma systems. We are in process of implementing imaging studies of plasma hydrodynamics and warm, dense matter. The data will be compared with simulation codes of laser-plasma interactions, making it possible to refine and validate these codes.

  11. Na2ZnGe2S6: A New Infrared Nonlinear Optical Material with Good Balance between Large Second-Harmonic Generation Response and High Laser Damage Threshold.

    PubMed

    Li, Guangmao; Wu, Kui; Liu, Qiong; Yang, Zhihua; Pan, Shilie

    2016-06-15

    The development of frequency-conversion technology in the infrared region is in urgent need of new excellent infrared nonlinear optical (IR NLO) materials. How to achieve a good balance between laser damage threshold (LDT) and NLO coefficient (dij) for new IR NLO candidates is still a challenge. The combination of the highly electropositive alkali metal (Na) and Zn with d(10) electronic configuration into crystal structure affords one new IR NLO material, Na2ZnGe2S6. It exhibits excellent properties including a wide transparent region (0.38-22 μm), large band gap (3.25 eV), and especially a balance between a strong NLO coefficient (30-fold that of KDP) and a high LDT (6-fold that of AgGaS2), indicating a promising application in the IR region. Moreover, novel common-vertex-linked wavelike ∞[GeS3]n chains are interestingly discovered in Na2ZnGe2S6, which rarely exist in the reported thiogermanides containing alkali metals. In addition, calculated SHG density and dipole moment demonstrate that the large NLO response is mainly attributed to the cooperative effects of the [GeS4] and [ZnS4] units. PMID:27196357

  12. Enhanced ferroelectric and piezoelectric response in Mn-doped Bi0.5Na0.5TiO3-BaTiO3 lead-free film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Jin, Chengchao; Wang, Feifei; Leung, Chung Ming; Yao, Qirong; Tang, Yanxue; Wang, Tao; Shi, Wangzhou

    2013-10-01

    Mn-doped Bi0.5Na0.5TiO3-BaTiO3 thin film with the composition around the morphotropic phase boundary was grown on Pt-electrodized Si substrate by pulsed laser deposition. Highly (1 0 0)-oriented film with pure perovskite structure was obtained through carefully controlling the growth conditions. Well-defined ferroelectric P-E loop was obtained with the average remnant polarization Pr and coercive field Ec of ∼11.3 μC/cm2 and ∼6.5 kV/mm, respectively. Polycrystalline structures and multidomain states were revealed by piezoresponse force microscopy and large local strain response was obtained with the normalized strain Smax/Emax up to 92 pm/V. The excellent global electrical properties make it quite promising in environmental-friendly ferroelectric and piezoelectric devices.

  13. Growth and electric properties of (100)-oriented Mn-doped (Bi0.5Na0.5)TiO3-BaTiO3 thin film by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Jin, Chengchao; Wang, Feifei; Leung, Chung Ming; Tang, Yanxue; Wang, Tao; Yao, Qirong; Shi, Wangzhou

    2014-06-01

    Mn-doped (Bi0.5Na0.5)TiO3-BaTiO3 (BNBMT) thin film with the composition near the morphotropic phase boundary was grown on (La0.6Sr0.4)CoO3-electroded SrTiO3 single-crystal substrate by using pulsed laser deposition method. Ascribed to the crystal structure and lattice similarity, (100)-oriented BNBMT film with pure single-phase perovskite structure was obtained through carefully controlling the growth conditions. Enhanced ferroelectric and dielectric properties were obtained with large remanent polarization P r of ˜21 μC/cm2, coercive field E c of ˜7.4 kV/mm and dielectric constant of ˜750 at 1 kHz. The excellent global electrical properties of the BNBMT film are promising for environmentally friendly ferroelectric devices.

  14. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  15. Pulsed laser deposition of lead-free (Na0.5Bi0.5)1-xBaxTiO3 ferroelectric thin films with enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    Andrei, A.; Scarisoreanu, N. D.; Birjega, R.; Dinescu, M.; Stanciu, G.; Craciun, F.; Galassi, C.

    2013-08-01

    Ferroelectric lead-free (Na0.5Bi0.5)1-xBaxTiO3 thin films obtained by pulsed laser deposition have been structurally and electrically investigated for compositions, x = 0 and x = 0.06, in and out of the morphotropic phase boundary (MPB). Sodium bismuth titanate Na0.5Bi0.5TiO3 (NBT), pure or in solid solution with other materials (like BaTiO3), is considered to be the best candidate material for lead-free ferroelectric and piezoelectric applications such as actuators and nonvolatile memory devices. Bulk solid solutions with BaTiO3 (BT), (1-x)NBT-xBT (NBT-x%BT) have been investigated widely, also due to a morphotropic phase boundary (MPB) with enhanced dielectric and ferroelectric properties between a rhombohedral and a tetragonal ferroelectric phase, at x = 0.06. Nonetheless, to transpose bulk properties to NBT-BT thin films is a major achievement. XRD technique has been used for structural characterizations of NBT-BT films. Dielectric spectroscopy measurements were performed at room temperature in the frequency range 100 Hz-1 MHz. The best films show pure perovskite phase and good crystalline structure, as a function of specific deposition conditions. Unusual characteristics, especially dielectric constant values higher than those for bulk, have been found for films with specific crystallographic orientations.

  16. Nonlinear optical properties of pulsed laser deposited Gd2O3 and Dy2O3 doped K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Peddigari, Mahesh; Pattipaka, Srinivas; Bharti, Gyan Prakash; Khare, Alika; Dobbidi, Pamu

    2016-08-01

    We report the structural and nonlinear optical properties of Gd2O3 and Dy2O3 doped (K0.5Na0.5)NbO3 (KNN) lead-free thin films fabricated by pulsed laser deposition technique. The crystal structure of the films was analyzed by using Rietveld method. The higher tetragonality and improved surface morphology was observed for the rare-earth oxide doped films. The change in crystal structure and tetragonality with these dopants was explained in terms of change in the internal vibration modes of NbO6 octahedra. The nonlinear optical properties of the films were measured by using single beam Z-scan technique with a continuous wave He-Ne laser (λ = 632.8 nm). All the films have shown a large third-order nonlinear susceptibility and observed to be enhanced for rare-earth doped KNN thin films (|χ(3)| = 2.69 × 10-3 esu). The maximum nonlinear refractive index, n2 = 2.02 × 10-5 cm2/W, and nonlinear absorption coefficient, β = 3.48 cm/W, were obtained for Gd2O3, and Dy2O3 doped films respectively. These results indicate that rare-earth doped KNN thin films are potential candidates for nonlinear photonic applications.

  17. Final Scientific/Technical Report for DE-FG03-02NA00063 Coherent imaging of laser-plasma interactions using XUV high harmonic radiation

    SciTech Connect

    Henry Kapteyn

    2006-06-06

    The objective of this project was to develop experimental techniques for using coherent extreme-ultraviolet (EUV) radiation generated using the high-order harmonic generation technique, as an illumination source for studies of high-density plasmas relevant to the stockpile stewardship mission. In this project, we made considerable progress, including the first demonstration of imaging of dynamic processes using this coherent ultrashort pulse light. This work also stimulated considerable progress in the development of the required ultrashort EUV pulses, and in the development of new laser technologies that have been commercialized. We also demonstrated the first EUV sources that exhibit full intrinsic optical coherence. This work resulted in 12 publications.

  18. Highly-reproducible Raman scattering of NaYF4:Yb,Er@SiO2@Ag for methylamphetamine detection under near-infrared laser excitation.

    PubMed

    Ma, Yongmei; Liu, Honglin; Han, Zhenzhen; Yang, Liangbao; Liu, Jinhuai

    2015-08-01

    This study reported the significantly improved Raman enhancement ability of silver nanoparticles (Ag NPs) by decorating them on single NaYF4:Yb,Er@SiO2 core-shell particles (UC@SiO2@Ag) under a 785 nm excitation. The optimal thickness of the silica shell can be easily obtained by adjusting the amounts of TEOS, which is the crucial element to balance the upconversion and the formation of a hot spot by Ag NP aggregation. This substrate revealed highly reproducible properties, which is crucial to the practical application of SERS technology. This substrate exhibited an excellent sensitivity for methylamphetamine detection under near-infrared excitation. The advantages of NIR excitation in our SERS sensing open up a new application field of UC-noble metal composites, and also promise a new research direction for the synthesis and applications of SERS-active nanostructures. PMID:26090604

  19. Sol-gel synthesis and characterizations of crystalline NaGd(WO4)2 powder for anisotropic transparent ceramic laser application

    NASA Astrophysics Data System (ADS)

    Durairajan, A.; Thangaraju, D.; Balaji, D.; Moorthy Babu, S.

    2013-02-01

    NaGd(WO4)2 powders were synthesized at different pH (3.5, 4.5, 5.5, 6.5 and 7.5) values by conventional Pechini method. Sodium and gadolinium nitrate salts and ammonium paratungstate are used as starting precursors. Metal cations were chelated by citric acid and individual citrates were bound together with ethylene glycol. Synthesized gel was analyzed using differential thermal analysis (DTA), thermo gravimetric (TG) and FT-IR spectroscopy to understand the degradation of gel and formation of metal citrates. Calcined powders (250, 600, 700 and 800 °C) were characterized by powder XRD, FT-IR, Raman and FE-SEM analysis. The temperature dependent phase formation was examined by powder XRD. The morphological changes at different pH derived powders were observed with FE-SEM micrographs. Stepwise organic liberation with respect to temperature and presence of carbon content in the pre-fired powder were analyzed using FT-IR analysis. Raman spectrum reveals disordered tungstate vibrations in the NGW matrix.

  20. Electrical behaviors of c-axis textured 0.975Bi0.5Na0.5TiO3-0.025BiCoO3 thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Guo, Feifei; Yang, Bin; Zhang, Shantao; Liu, Danqing; Wu, Fengmin; Wang, Dali; Cao, Wenwu

    2013-10-01

    The thin films of 0.975Bi0.5Na0.5TiO3-0.025BiCoO3 (BNT-BC) have been successfully deposited on (1 1 1) Pt/Ti/SiO2/Si (1 0 0) substrates by pulse laser deposition and their ferroelectric, dielectric, local piezoelectric properties and temperature dependent leakage current behaviors have been investigated systematically. X-ray diffraction indicates the films are single phased and c-axis oriented. The thin films exhibit ferroelectric polarization-electric field (P-E) hysteresis loop with a remnant polarization (Pr) of 10.0 μC/cm2 and an excellent fatigue resistance property up to 5 × 109 switching cycles. The dielectric constant and dielectric loss are 500 and 0.22 at 1 kHz, respectively. The tunability of the dielectric constant is about 12% at 20 kV/mm. The piezo-phase response hysteresis loop and piezo-amplitude response butterfly curve are observed by switching spectroscopy mode of piezoelectric force microscope (SS-PFM) and the piezoelectric coefficient d33 is about 19-63 pm/V, which is comparable to other reports. The dominant leakage current conduction mechanisms are ohmic conduction at low electric field and Schottky emission at high electric field, respectively. Our results may be helpful for further work on BNT-based thin films with improved electric properties.

  1. Electrical properties of (110) epitaxial lead-free ferroelectric Na0.5Bi0.5TiO3 thin films grown by pulsed laser deposition: Macroscopic and nanoscale data

    NASA Astrophysics Data System (ADS)

    Bousquet, M.; Duclère, J.-R.; Gautier, B.; Boulle, A.; Wu, A.; Députier, S.; Fasquelle, D.; Rémondière, F.; Albertini, D.; Champeaux, C.; Marchet, P.; Guilloux-Viry, M.; Vilarinho, P.

    2012-05-01

    We report the electrical properties, measured both at the macroscopic and nanometric scales, of epitaxial (110)-Na0.5Bi0.5TiO3 (NBT) thin films grown on (110)Pt/(110)SrTiO3 by pulsed laser deposition (PLD). The influence of the A-site composition (Na and/or Bi excess) on both the structural/microstructural characteristics and the electrical properties is discussed. Whatever the composition of the NBT target, the final layers are systematically epitaxially grown, with NBT crystallites mainly (110)-oriented, and as well (100)-oriented for some minor proportion. Atomic force microscopy (AFM) images reveal the coexistence of two kinds of grains presenting different shapes: namely flat and elongated grains, corresponding to (100)- and (110)-oriented NBT crystallites, respectively. The macroscopic ferroelectric properties were measured at room temperature. A rather well-defined shape of the hysteresis loops was obtained: the incorporation of a Bi excess in the target clearly improves the saturation of the loops. The ferroelectric performances are a remanent polarization (Pr) value, ranging from 7 to 14 μC/cm2, associated with a coercive field (Ec) in the range 68-85 kV/cm. In addition, at 105 Hz, the relative permittivity was about ɛr ˜ 255-410 and the dielectric losses (tan δ) were ˜6%-7%. Finally, the electrical properties at the local scale were investigated by coupling piezoresponse force microscopy (PFM) and tunneling AFM (TUNA) measurements. The collected data reveal that the two types of grains behave differently. The PFM amplitude signal of (110)-oriented grains is very contrasted and such grains are often divided in ferroelectric bi-domains of nanometric sizes, whereas the response of (100)-oriented grains is less contrasted and more homogeneous. The interpretation of the PFM signal is provided. The piezoloop recorded on a (110)NBT grain is strongly distorted and shifted along the vertical axis, in agreement with the vertical drift observed for macroscopic

  2. Laser Technology.

    ERIC Educational Resources Information Center

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  3. Understanding lasers

    SciTech Connect

    Gibilisco, S.

    1989-01-01

    Covering all different types of laser applications-Gibilisco offers an overview of this fascinating phenomenon of light. Here he describes what lasers are and how they work and examines in detail the different kinds of lasers in use today. Topics of particular interest include: the way lasers work; the different kinds of lasers; infrared, ultraviolet and x-ray lasers; use of lasers in industry and manufacturing; use of lasers for long-distance communications; fiberoptic communications; the way laser shows work; the reality of Star Wars; lasers in surgical and medical applications; and holography and the future of laser technology.

  4. Analysis of Laser Breakdown Data

    NASA Astrophysics Data System (ADS)

    Becker, Roger

    2009-03-01

    Experiments on laser breakdown for ns pulses of 532 nm or 1064 nm light in water and dozens of simple hydrocarbon liquids are analyzed and compared to widely-used models and other laser breakdown experiments reported in the literature. Particular attention is given to the curve for the probability of breakdown as a function of the laser fluence at the beam focus. Criticism is made of the na"ive forms of both ``avalanche'' breakdown and multi-photon breakdown. It appears that the process is complex and is intimately tied to the chemical group of the material. Difficulties with developing an accurate model of laser breakdown in liquids are outlined.

  5. Teradiode's high brightness semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz

    2016-03-01

    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, <0.08 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. Our TeraBlade industrial platform achieves world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  6. Many-body perturbation theory calculations on the electronic states of Li 2, LiNa and Na 2

    NASA Astrophysics Data System (ADS)

    Davies, D. W.; Jones, G. J. R.

    1981-07-01

    Quasi-degenerate many-body perturbation theory with a multi-configuration reference space is used to obtain potential curves for the ground and excited electronic states of Li 2, LiNa and Na 2. Correlation contributions are analyzed and the effect of potential curve crossing on laser action is discussed.

  7. Diode-pumped CW molecular lasers

    NASA Astrophysics Data System (ADS)

    Wellegehausen, B.; Luhs, W.

    2016-05-01

    First continuous laser oscillation on many lines in the range of 533-635 nm on different transitions of Na2 and Te2 molecules has been obtained, optically pumped with common cw blue emitting InGaN diode lasers operating around 445 and 460 nm. Spectral narrowing of the diode laser is achieved with a beamsplitter and grating setup, allowing use of more than 50 % of the diode power. Operation conditions and properties of the laser systems are presented, and perspectives for the realization of compact low cost molecular lasers are discussed.

  8. Using short pulse lasers to drive X-ray lasers

    SciTech Connect

    Nilsen, J

    2009-07-27

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive. One challenge has been the difficulty of finding an adequate resonance between a strong pump line and a line in the laser plasma that drives the laser transition. Given a good resonance, a second challenge has been to create both the pump and laser plasma in close proximity so as to allow the pump line to transfer its energy to the laser material. With the advent of the X-FEL at LCLS we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of photo-pumped laser schemes. In this paper we model the Na-pumped Ne X-ray laser scheme that was proposed and studied many years ago by replacing the Na He-{alpha} pump line at 1127 eV with the X-FEL at LCLS. We predict gain on the 4f - 3d transition at 231 {angstrom}. We also examine the feasibility of photo-pumping He-like V and lasing on the 4f - 3d transition at 38.7 {angstrom}, which would be within the water-window. In addition we look at the possibility of photo-pumping Ne-like Fe and creating gain on the 4d - 3p transition at 53 {angstrom} and the 3p - 3s transition at 255 {angstrom}.

  9. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  10. Lasers of All Sizes

    NASA Astrophysics Data System (ADS)

    Balcou, Philippe; Forget, Sébastien Robert-Philip, Isabelle

    2015-10-01

    * Introduction * The Laser in All Its Forms * Gas lasers * Dye lasers * Solid-state lasers * Lasers for Every Taste * The rise of lasers * Lasers of all sizes * The colors of the rainbow... and beyond * Shorter and shorter lasers * Increasingly powerful lasers * Lasers: A Universal Tool? * Cutting, welding, and cleaning * Communicating * Treating illnesses * Measuring * Supplying energy? * Entertaining * Understanding * Conclusion

  11. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  12. Laser therapy

    MedlinePlus

    ... be used for many medical purposes. Because the laser beam is so small and precise, it allows health care providers to safely treat tissue without injuring the surrounding area. Lasers are often used to: Treat varicose veins Improve ...

  13. Laser microphone

    DOEpatents

    Veligdan, James T.

    2000-11-14

    A microphone for detecting sound pressure waves includes a laser resonator having a laser gain material aligned coaxially between a pair of first and second mirrors for producing a laser beam. A reference cell is disposed between the laser material and one of the mirrors for transmitting a reference portion of the laser beam between the mirrors. A sensing cell is disposed between the laser material and one of the mirrors, and is laterally displaced from the reference cell for transmitting a signal portion of the laser beam, with the sensing cell being open for receiving the sound waves. A photodetector is disposed in optical communication with the first mirror for receiving the laser beam, and produces an acoustic signal therefrom for the sound waves.

  14. Nonablative lasers.

    PubMed

    Nouri, Keyvan; Rivas, Maria Patricia; Bouzari, Navid; Faghih, Sahar

    2006-06-01

    The trend toward minimally invasive rejuvenation techniques has led to the widespread use of nonablative lasers. Nonablative lasers can be classified in two groups based on their wavelengths: lasers emitting light in the visible range, and those emitting in the infrared range. In this review, different laser and intense pulsed light (IPL) systems are presented and critically discussed along with findings of the studies in the literature. PMID:17173583

  15. Laser driver

    SciTech Connect

    Culpepper, C.F.

    1989-03-14

    A laser driver for a laser diode is described, consisting of: an impedance matched input buffer amplifier to which a modulation signal is applied; and a current source coupled to the output of the impedance matched input buffer amplifier, the output of the current source providing an essentially constant amplitude a.c. current component coupled to drive the laser diode.

  16. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2004-01-13

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  17. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  18. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  19. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  20. Glass lasers.

    PubMed

    Snitzer, E

    1966-10-01

    After a general discussion of the merits of glass vs. crystals as host materials for laser ions, a summary is given of the various glass lasers. Because of its importance as an efficient, room temperature laser the properties of neodymium are considered in greater detail. This includes the nonlaser properties of Nd(3+) in glass, the spectral and temporal emission characteristics of Nd(3+) lasers, and Nd(3+) laser configurations. Separate sections deal with the other two room temperature lasers which use Yb(3+) or Er(3+). The problem of thermal stability of laser cavities is also discussed. Finally, a survey is given of the glasses that are useful as Faraday rotators. PMID:20057584

  1. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  2. Effect of green laser irradiation on hydrogen production

    NASA Astrophysics Data System (ADS)

    Bidin, Noriah; Razak, Siti Noraiza A.; Radiana Azni, Siti; Nguroho, Waskito; Mohsin, Ali Kamel; Abdullah, Mundzir; Krishnan, Ganesan; Bakhtiar, Hazri

    2014-06-01

    The effect of green laser irradiation on hydrogen production via water electrolysis was investigated. Diode pumped solid-state laser operating in second harmonic generation was employed as a source of irradiation. The hydrogen production system was also irradiated by a conventional light, a halogen source, for comparison. The best catalyst was identified by mixing distilled water with two types of salt: NaCl and Na2SO4. Optimization of hydrogen production from water electrolysis was realized by using NaCl and green laser irradiation. The power of green laser irradiation and the concentration of NaCl in water contribute to hydrogen production. The hydrogen yield also depends on the distance and direction of the green beam to the electrode.

  3. Issue of data acquisition and processing using short range photogrammetry and terrestrial laser scanning for educational portals and virtual museums based on Wawel cathedral. (Polish Title: Problematyka pozyskiwania i przetwarzania danych fotogrametrycznych i z naziemnego skaningu laserowego na potrzeby tworzenia portali edukacyjnych i wirtualnych muzeów na przykładzie Katedry Wawelskiej)

    NASA Astrophysics Data System (ADS)

    Mitka, B.; Szelest, P.

    2013-12-01

    This paper presents the issues related to the acquisition and processing of terrestrial photogrammetry and laser scanning for building educational portals and virtual museums. Discusses the specific requirements of measurement technology and data processing for all kinds of objects, ranging from architecture through sculpture and architectural detail on the fabric and individual museum exhibits. Educational portals and virtual museums require a modern, high-quality visuals (3D models, virtual tours, animations, etc.) supplemented by descriptive content or audio commentary. Source for obtaining such materials are mostly terrestrial laser scanning and photogrammetry as technologies that provide complete information about the presented geometric objects. However, the performance requirements of web services impose severe restrictions on the presented content. It is necessary to use optimalization geometry process to streamline the way of its presentation. Equally important problem concerns the selection of appropriate technology and process measurement data processing presented for each type of objects. Only skillful selection of measuring equipment and data processing tools effectively ensure the achievement of a satisfactory end result. Both terrestrial laser scanning technology and digital close range photogrammetry has its strengths which should be used but also the limitations that must be taken into account in this kind of work. The key is choosing the right scanner for both the measured object and terrain such as pixel size in the performance of his photos.

  4. New nonlinear-laser properties of ferroelectric Nd{sup 3+}:Ba{sub 2}NaNb{sub 5}O{sub 15} - cw stimulated emission ({sup 4}F{sub 3/2} {yields} {sup 4}I{sub 11/2} and {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 13/2} ), collinear and diffuse self-frequency doubling and summation

    SciTech Connect

    Kaminskii, Alexandr A; Jaque, D; Garsia, Sole J; Capmany, J; Bagayev, S N; Ueda, Ken-ichi

    1999-02-28

    A new cw laser with self-frequency doubling and summation of 1-{mu}m oscillation ({sup 4}F{sub 3/2} {yields} {sup 4}I{sub 11/2}) was constructed on the basis of an orthorhombic Nd{sup 3+}:Ba{sub 2}NaNb{sub 5}O{sub 15} crystal. The {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 13/2} inter-Stark transition was used to excite cw 1.3-{mu}m stimulated emission from this ferroelectric. (letters to the editor)

  5. Semi-automated building extraction from airborne laser scanning data. (Polish Title: Półautomatyczne modelowanie brył budynków na podstawie danych z lotniczego skaningu laserowego)

    NASA Astrophysics Data System (ADS)

    Marjasiewicz, M.; Malej, T.

    2014-12-01

    The main idea of this project is to introduce a conception of semi - automated method for building model extraction from Airborne Laser Scanning data. The presented method is based on the RANSAC algorithm, which provides automatic collection planes for roofs model creation. In the case of Airborne Laser Scanning, the algorithm can process point clouds influenced with noise and erroneous measurement (gross errors). The RANSAC algorithm is based on the iterative processing of a set of points in order to estimate the geometric model. Research of u sing algorithm for ALS data was performed in available Cloud Compare and SketchUP software. An important aspect in this research was algorithm parameters selection, which was made on the basis of characteristics of point cloud and scanned objects. Analysis showed that the accuracy of plane extraction with RANSAC algorithm does not exceed 20 centimeters for point clouds of density 4 pts . /m 2 . RANSAC can be successfully used in buildings modelling based on ALS data. Roofs created by the presented method could be used in visualizations on a much better level than Level of Detail 2 by CityGML standard. If model is textured it can represent LoD3 standard.

  6. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  7. Explosive vaporization of metallic sodium microparticles by CW resonant laser radiation.

    PubMed

    Atutov, S N; Baldini, W; Biancalana, V; Calabrese, R; Guidi, V; Mai, B; Mariotti, E; Mazzocca, G; Moi, L; Pod'yachev, S P; Tomassetti, L

    2001-11-19

    Explosive vaporization of metallic Na microparticles stimulated by resonant cw laser radiation has been observed in a glass cell. Vaporization occurs at low laser-power density. The effect consists in the generation of optically thick and sharply localized Na vapor clouds propagating in the cell against the laser beam. The effect is explained by laser excitation of Na atoms, which collide onto the surface of the microparticles and transfer their internal energy. This causes other atoms to be vaporized and to continue the avalanche process. PMID:11736344

  8. Evaporation of solids by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafast, H.; Von Przychowski, M.

    The focused beam of a KrF laser (248 nm) has been applied to irradiate targets of Al 2O 3, SiC, graphite, Pb, Ni, Cr, quartz, and NaCl at variable laser energy flux is the range 0-13 J/cm 2. The amount of target material ejected into the vacuum (background pressure about 8 × 10 -4 Torr) was determined from the target weight before and after laser irradiation. The average number of particles (formula weight) evaporated per laser pulse and per unit of irradiated target area is non-linearly dependent on the laser energy flux. The evaporation of Al 2O 3, SiC, and graphite is showing a well-defined flux threshold while the vaporization of Pb, Ni and Cr is rising smoothly with increasing flux. With both groups of materials laser evaporation is monotonically increasing with the laser energy flux. NaCl and quartz, on the other hand, are showing an intermediate maximum in the laser vaporization efficiency.

  9. Laser pyrometry

    NASA Technical Reports Server (NTRS)

    Stein, Alexander

    1988-01-01

    A method of determining the emissivity of a hot target from a laser-based reflectance measurement which is conducted simultaneously with a measurement of the target radiance is described. Once the correct radiance and emissivity are determined, one calculates the true target temperature from these parameters via the Planck equations. The design and performance of a laser pyrometer is described. The accuracy of laser pyrometry and the effect of ambient radiance are addressed.

  10. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  11. Laser polishing

    NASA Astrophysics Data System (ADS)

    Temmler, A.; Willenborg, E.; Wissenbach, K.

    2012-03-01

    A new approach to polish metallic freeform surfaces is polishing by means of laser radiation. In this technology a thin surface layer is molten and the surface tension leads to a material flow from the peaks to the valleys. No material is removed but reallocated while molten. As the typical processing time is 1 min/cm2 laser polishing is up to 30 times faster than manual polishing. Reducing the roughness by laser polishing is achieved for several different materials such as hot work steels for the die and molding industries or titanium alloys for medical engineering. Enhancing the appearance of design surfaces is achieved by creating a dual-gloss effect by selective laser polishing (SLP). In comparison to conventional polishing processes laser polishing opens up the possibility of selective processing of small areas (< 0.1 mm2). A dual-gloss effect is based on a space-resolved change in surface roughness. In comparison to the initial surface the roughness of the laser polished surface is reduced significantly up to spatial wavelengths of 80 microns and therefore the gloss is raised considerably. The surface roughness is investigated by a spectral analysis which is achieved by a discrete convolution of the surface profile with a Gaussian loaded function. The surfaces roughness is split into discrete wavelength intervals and can be evaluated and optimized. Laser polishing is carried out by using a special tailored five-axis mechanical handling system, combined with a three axis laser scanning system and a fibre laser.

  12. Biocavity Lasers

    SciTech Connect

    Gourley, P.L.; Gourley, M.F.

    2000-10-05

    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  13. Laser apparatus

    DOEpatents

    Lewis, Owen; Stogran, Edmund M.

    1980-01-01

    Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.

  14. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  15. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  16. Lasers in Cancer Treatment

    MedlinePlus

    ... Cancer Treatment On This Page What is laser light? What is laser therapy, and how is it ... future hold for laser therapy? What is laser light? The term “ laser ” stands for light amplification by ...

  17. Laser Therapy

    MedlinePlus

    ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ... Non-ablative Laser Rejuvenation Non-invasive Body Contouring Treatments Skin Cancer Skin Cancer Information Free Skin Cancer Screenings Skin ...

  18. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  19. Highly efficient Raman distributed feedback fibre lasers.

    PubMed

    Shi, Jindan; Alam, Shaif-ul; Ibsen, Morten

    2012-02-27

    We demonstrate highly efficient Raman distributed feedback (DFB) fibre lasers for the first time with up to 1.6 W of continuous wave (CW) output power. The DFB Bragg gratings are written directly into two types of commercially available passive germano-silica fibres. Two lasers of 30 cm length are pumped with up to 15 W of CW power at 1068 nm. The threshold power is ~2 W for a Raman-DFB (R-DFB) laser written in standard low-NA fibre, and only ~1 W for a laser written in a high-NA fibre, both of which oscillate in a narrow linewidth of <0.01 nm at ~1117 nm and ~1109 nm, respectively. The slope efficiencies are ~74% and ~93% with respect to absorbed pump power in the low-NA fibre and high-NA fibre respectively. Such high conversion efficiency suggests that very little energy is lost in the form of heat through inefficient energy transfer. Our results are supported by numerical simulations, and furthermore open up for the possibility of having narrow linewidth all-fibre laser sources in wavelength bands not traditionally covered by rare-earth doped silica fibres. Simulations also imply that this technology has the potential to produce even shorter R-DFB laser devices at the centimetre-level and with mW-level thresholds, if Bragg gratings formed in fibre materials with higher intrinsic Raman gain coefficient than silica are used. These materials include for example tellurite or chalcogenide glasses. Using glasses like these would also open up the possibility of having narrow linewidth fibre sources with DFB laser oscillating much further into the IR than what currently is possible with rare-earth doped silica glasses. PMID:22418313

  20. Autokeratomileusis Laser

    NASA Astrophysics Data System (ADS)

    Kern, Seymour P.

    1987-03-01

    Refractive defects such as myopia, hyperopia, and astigmatism may be corrected by laser milling of the cornea. An apparatus combining automatic refraction/keratometry and an excimer type laser for precision reshaping of corneal surfaces has been developed for testing. When electronically linked to a refractometer or keratometer or holographic imaging device, the laser is capable of rapidly milling or ablating corneal surfaces to preselected dioptric power shapes without the surgical errors characteristic of radial keratotomy, cryokeratomileusis or epikeratophakia. The excimer laser simultaneously generates a synthetic Bowman's like layer or corneal condensate which appears to support re-epithelialization of the corneal surface. An electronic feedback arrangement between the measuring instrument and the laser enables real time control of the ablative milling process for precise refractive changes in the low to very high dioptric ranges. One of numerous options is the use of a rotating aperture wheel with reflective portions providing rapid alternate ablation/measurement interfaced to both laser and measurement instrumentation. The need for the eye to be fixated is eliminated or minimized. In addition to reshaping corneal surfaces, the laser milling apparatus may also be used in the process of milling both synthetic and natural corneal inlays for lamellar transplants.

  1. Laser propulsion

    NASA Technical Reports Server (NTRS)

    Rom, F. E.; Putre, H. A.

    1972-01-01

    The use of an earth-based high-power laser beam to provide energy for earth-launched rocket vehicle is investigated. The laser beam energy is absorbed in an opaque propellant gas and is converted to high-specific-impulse thrust by expanding the heated propellant to space by means of a nozzle. This laser propulsion scheme can produce specific impulses of several thousand seconds. Payload to gross-weight fractions about an order of magnitude higher than those for conventional chemical earth-launched vehicles appear possible. There is a potential for a significant reduction in cost per payload mass in earth orbit.

  2. Laser goniometer

    DOEpatents

    Fairer, George M.; Boernge, James M.; Harris, David W.; Campbell, DeWayne A.; Tuttle, Gene E.; McKeown, Mark H.; Beason, Steven C.

    1993-01-01

    The laser goniometer is an apparatus which permits an operator to sight along a geologic feature and orient a collimated lamer beam to match the attitude of the feature directly. The horizontal orientation (strike) and the angle from horizontal (dip), are detected by rotary incremental encoders attached to the laser goniometer which provide a digital readout of the azimuth and tilt of the collimated laser beam. A microprocessor then translates the square wave signal encoder outputs into an ASCII signal for use by data recording equipment.

  3. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  4. Chemical lasers

    NASA Astrophysics Data System (ADS)

    Khariton, Y.

    1984-08-01

    The application and the advances of quantum electronics, specifically, of optical quantum generators lasers is reviewed. Materials are cut, their surfaces are machined, chemical transformations of substances are carried out, surgical operations are performed, data are transmitted, three dimensional images are produced and the content of microimpurities, in the atmosphere, are analyzed by use of a beam. Laser technology is used in conducting investigations in the most diverse fields of the natural and technical sciences from controlled thermonuclear fusion to genetics. Many demands are placed on lasers as sources of light energy. The importance of low weight, compactness of the optical generator and the efficiency of energy conversion processes is emphasized.

  5. Laser arthroscopy.

    PubMed

    Sherk, H H; Lane, G J; Black, J D

    1992-09-01

    Lasers have become widely used in several medical and surgical disciplines. In ophthalmology and plastic surgery, their use has permitted the development of therapeutic modalities that would have been otherwise impossible. In such specialties as gynecology and general surgery, lasers provide advantages that make certain procedures more convenient and easier to perform. In contrast, orthopaedic surgeons have, to date, been slow to accept these devices into the therapeutic armamentarium. The purpose of this paper is to describe the status of laser use in the orthopaedic subspecialty of arthroscopy. PMID:1437258

  6. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  7. Laser barometer

    SciTech Connect

    Abercrombie, K.R.; Shiels, D.; Rash, T.

    1998-04-01

    This paper describes an invention of a pressure measuring instrument which uses laser radiation to sense the pressure in an enclosed environment by means of measuring the change in refractive index of a gas - which is pressure dependent.

  8. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  9. Laser Research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Eastman Kodak Company, Rochester, New York is a broad-based firm which produces photographic apparatus and supplies, fibers, chemicals and vitamin concentrates. Much of the company's research and development effort is devoted to photographic science and imaging technology, including laser technology. Eastman Kodak is using a COSMIC computer program called LACOMA in the analysis of laser optical systems and camera design studies. The company reports that use of the program has provided development time savings and reduced computer service fees.

  10. Laser Technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Amoco Laser Company, a subsidiary of Amoco Corporation, has developed microlasers for the commercial market based on a JPL concept for optical communications over interplanetary distances. Lasers emit narrow, intense beams of light or other radiation. The beams transmit communication signals, drill, cut or melt materials or remove diseased body tissue. The microlasers cover a broad portion of the spectrum, and performance is improved significantly. Current applications include medical instrumentation, color separation equipment, telecommunications, etc.

  11. Laser optomechanics.

    PubMed

    Yang, Weijian; Gerke, Stephen Adair; Ng, Kar Wei; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  12. Laser Angioplasty

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The principal method of dealing with coronary artery blockage is bypass surgery. A non-surgical alternative available to some patients is balloon angioplasty. For several years, medical researchers have been exploring another alternative that would help a wider circle of patients than the balloon treatment and entail less risk than bypass surgery. A research group is on the verge of an exciting development: laser angioplasty with a 'cool' type of laser, called an excimer laser, that does not damage blood vessel walls and offers non-surgical cleansing of clogged arteries with extraordinary precision. The system is the Dymer 200+ Excimer Laser Angioplasty System, developed by Advanced Intraventional Systems. Used in human clinical tests since 1987, the system is the first fully integrated 'cool' laser capable of generating the requisite laser energy and delivering the energy to target arteries. Thirteen research hospitals in the U.S. have purchased Dymer 200+ systems and used them in clinical trials in 121 peripheral and 555 coronary artery cases. The success rate in opening blocked coronary arteries is 85 percent, with fewer complications than in balloon angioplasty. Food and Drug Administration approval for the system is hoped for in the latter part of 1990. * Advanced Intraventional Systems became Spectranetics in 1994 and discontinued the product.

  13. Laser optomechanics

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-09-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors.

  14. Laser optomechanics

    PubMed Central

    Yang, Weijian; Adair Gerke, Stephen; Wei Ng, Kar; Rao, Yi; Chase, Christopher; Chang-Hasnain, Connie J.

    2015-01-01

    Cavity optomechanics explores the interaction between optical field and mechanical motion. So far, this interaction has relied on the detuning between a passive optical resonator and an external pump laser. Here, we report a new scheme with mutual coupling between a mechanical oscillator supporting the mirror of a laser and the optical field generated by the laser itself. The optically active cavity greatly enhances the light-matter energy transfer. In this work, we use an electrically-pumped vertical-cavity surface-emitting laser (VCSEL) with an ultra-light-weight (130 pg) high-contrast-grating (HCG) mirror, whose reflectivity spectrum is designed to facilitate strong optomechanical coupling, to demonstrate optomechanically-induced regenerative oscillation of the laser optomechanical cavity. We observe >550 nm self-oscillation amplitude of the micromechanical oscillator, two to three orders of magnitude larger than typical, and correspondingly a 23 nm laser wavelength sweep. In addition to its immediate applications as a high-speed wavelength-swept source, this scheme also offers a new approach for integrated on-chip sensors. PMID:26333804

  15. Laser therapy for cancer

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000905.htm Laser therapy for cancer To use the sharing features ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used ...

  16. Tunable solid state lasers

    SciTech Connect

    Hammerling, R.; Budgor, A.B.; Pinto, A.

    1985-01-01

    This book presents the papers given at a conference on solid state lasers. Topics considered at the conference included transition-metal-doped lasers, line-narrowed alexandrite lasers, NASA specification, meteorological lidars, laser materials spectroscopy, laser pumped single pass gain, vibronic laser materials growth, crystal growth methods, vibronic laser theory, cross-fertilization through interdisciplinary fields, and laser action of color centers in diamonds.

  17. Collisional Transfer of Population and Orientation in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2010-03-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v'=16, J') <- X^1&+circ;(v''=0, J'±1) transition, creating an orientation (non-uniform MJ' level distribution) in both levels. The linearly polarized probe laser is scanned over various 3^1π(v, J'±1) <- A^1&+circ;(v'=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system.

  18. Active beam shaping in multiple laser guide stars

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    Adaptive beam shaping is a critical part of multiple Laser Guide Stars (LGS) for Multiple Conjugate Adaptive Optics (MCAO) for ground-based astronomical telescopes. There are two kinds of Laser Guide Stars: Na Laser Guide Stars (at 589 nm and 92 km altitude) and Rayleigh Laser Guide Stars (at 532 nm and 20 km altitude). Multiple Conjugate Adaptive Optics (MCAO) corrects for each "layer" of atmosphere independently. Multiple Laser Guide Stars are being developed to achieve a measure of tilt and increase the isoplanatic patch. Multiple Laser Guide Stars are being combined with Multiple Conjugate Optics in the Large Binocular Telescope (LBT): more than one Laser Guide Star (4-5) and two different wavelengths: 589 nm and 532 nm. Other observatories have multiple Laser Guide Stars but only one wavelength: 589 nm or 532 nm. Because Laser Guide Stars are launched into the atmosphere, adaptive beam shaping will be carried out before the laser is launched and will be different depending on which laser is being used, presumably to effect the tightest beam which can be achieved at the power level which is required to provide the requisite return to gound-based wavefront sensors. A complete range of devices are used. Beam attenuation and divergnece will take place. Multiple Laser Guide Stars of major observatories (SOR, LBT, MMT, ESO VLT and Gemini South) will be evaluated for effective adaptive beam shaping and impact on performance

  19. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  20. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  1. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  2. Laser barometer

    DOEpatents

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim

    2001-02-06

    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  3. Lidar observations of Na density, Ca ion density, temperature, and wind in the mesopause region

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chikao; Abo, Makoto; Shibata, Yasukuni

    2001-02-01

    We have developed the resonance scattering lidar system for measurements of mesospheric metallic species such as Na, K, Fe atoms and Ca ions and mesospheric temperature and wind. The flashlamp pumped Ti:sapphire laser injected by the seeder that consists of an external cavity laser diode is applied for measurements of the K and Fe atoms and the Ca ions. The sophisticated lidar system which consists of a pulsed dye oscillator and an amplifier system injection-seeded by a stabilized cw ring dye laser is also applied for Na atoms, temperature and wind measurements. Its injection-seeder consists of the single mode ring dye laser locked to the Na fluorescence line using the wavemeter and the Na vapor cell. The most characteristic of this laser system is to generate the comparatively high pulse energy ( more than 100mJ/pulse ) keeping up the narrow bandwidth ( about 0.1pm ). In this paper, the details of the laser design and the results observed by these lidar system are shown.

  4. Blue satellites of absorption spectrum study of sodium based excimer-pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Hu, Shu; Gai, Baodong; Guo, Jingwei; Tan, Yannan; Liu, Jinbo; Li, Hui; Cai, Xianglong; Shi, Zhe; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Sodium based excimer-pump alkali laser (Na-XPAL) is expected to be an efficient method to generate sodium beacon light, but the information about the spectroscopic characters of Na-XPAL remains sparse so far. In this work, we utilized the relative fluorescence intensity to study the absorption spectrum of blue satellites of complexes of sodium with different collision partners. The yellow fluorescence of Na D1 and D2 line was clearly visible. After processing the fluorescence intensity and the input pumping laser relative intensity, we obtained the Na-CH4 system's blue satellites was from 553nm to 556nm. Meanwhile, we experimentally demonstrated the Na-Ar and Na-Xe system's wavelength range of blue satellites. Also, it was observed that the Na-Xe system's absorption was stronger than the other two systems.

  5. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system.

    PubMed

    Hao, Jie; Lu, Jiaojiao; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2016-08-01

    Oxidized starch, one of the most important starch derivatives, has many different properties and applications. Currently, there are two ways to produce oxidized starch, through specific and nonspecific oxidation. Specific oxidation using the stable nitroxyl radical, 2,2,6,6-tetramethyl preparidinloxy (TEMPO), with NaBr and NaClO can produce oxidized starches with different properties under good quality control. In the current study, we examine the products of specifically oxidized starch. As the amount of oxidant and the temperature, two critical factors impacting the oxidation of starch were thoroughly investigated. Analysis of the molecular weight (MW), degree of oxidization (DO) and the detailed structures of corresponding products was accomplished using gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and quadrapole time-of-flight mass spectrometry (Q/TOF-MS). According to the analytical results, the oxidation patterns of starch treated with specific oxidant TEMPO-NaBr-NaClO were established. When high amounts of oxidant was applied, more glucose residues within starch were oxidized to glucuronic acids (higher DO) and substantial degradation to starch oligosaccharides was observed. By selecting a reaction temperature of 25°C a high DO could be obtained for a given amount of oxidant. The reducing end sugar residue within oxidized starch was itself oxidized and ring opened in all TEMPO-NaBr-NaClO reactions. Furthermore, extra oxidant generated additional novel structures in the reducing end residues of some products, particularly in low temperature reactions. PMID:27112871

  6. Laser Cladding

    NASA Astrophysics Data System (ADS)

    Lepski, Dietrich; Brückner, Frank

    Laser cladding is a modern technology whose uses include, for example, the creation of protective coatings to reduce wear and corrosion on engine parts and tools. The aircraft and automotive industries are examples of industries in which it is much used. This account considers the theory of a number of aspects of the process in detail. The first to be studied is the interaction of the laser beam directly with the powder that is being deposited; the effects of gravity, beam shadowing, and particle heating are investigated. This is followed by a discussion of the mechanisms by which the particles adhere to the surface of the work piece and are absorbed into it. In order to understand the process, a study of the melt pool and the associated temperature distribution is necessary; it is then possible to infer the final bead geometry. An inevitable consequence of a thermal process such as laser cladding is the induced thermal stress and resulting distortion of the work piece. The fundamentals are discussed, a numerical model presented and in addition a simple heuristic model is given. The use of induction-assisted laser cladding as a means of preventing the formation of cracks is discussed.

  7. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  8. Laser iridotomy.

    PubMed

    Perkins, E S

    1970-06-01

    A ruby laser has been used to produce a permeable lesion in the iris to establish a communication between the anterior and posterior chambers. In a preliminary study in nine patients the technique gave satisfactory results in the prophylactic treatment of four cases of incipient closed-angle glaucoma and of two cases of iris bombé following uveitis. PMID:5526615

  9. Laser altimeter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of a laser altimeter for use in the Apollo Lunar Orbital Experiments mission is discussed. The altimeter provides precise measurement of an Apollo vehicle above the lunar surface from an orbit of 40 to 80 nautical miles. The technical characteristics of the altimeter are described. Management of the altimeter development program is analyzed.

  10. Laser capture.

    PubMed

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  11. Nanowire Lasers

    NASA Astrophysics Data System (ADS)

    Couteau, C.; Larrue, A.; Wilhelm, C.; Soci, C.

    2015-05-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  12. Perovskite-to-postperovskite transitions in NaNiF3 and NaCoF3 and disproportionation of NaCoF3 postperovskite under high pressure and high temperature.

    PubMed

    Yusa, Hitoshi; Shirako, Yuichi; Akaogi, Masaki; Kojitani, Hiroshi; Hirao, Naohisa; Ohishi, Yasuo; Kikegawa, Takumi

    2012-06-18

    High-pressure structural phase transitions in NaNiF(3) and NaCoF(3) were investigated by conducting in situ synchrotron powder X-ray diffraction experiments using a diamond anvil cell. The perovskite phases (GdFeO(3) type) started to transform into postperovskite phases (CaIrO(3) type) at about 11-14 GPa, even at room temperature. The transition pressure is much lower than those of oxide perovskites. The anisotropic compression behavior led to heavily tilted octahedra that triggered the transition. Unlike oxide postperovskites, fluoropostperovskites remained after decompression to 1 atm. The postperovskite phase in NaCoF(3) broke down into a mixture of unknown phases after laser heating above 26 GPa, and the phases changed into amorphous ones when the pressure was released. High-pressure and high-temperature experiments using a multianvil apparatus were also conducted to elucidate the phase relations in NaCoF(3). Elemental analysis of the recovered amorphous samples indicated that the NaCoF(3) postperovskite disproportionated into two phases. This kind of disproportionation was not evident in NaNiF(3) even after laser heating at 54 GPa. In contrast to the single postpostperovskite phase reported in NaMgF(3), such a postpostperovskite phase was not found in the present compounds. PMID:22656193

  13. Laser weapons. II - Strategic laser weapons

    NASA Astrophysics Data System (ADS)

    Hecht, J.

    1982-07-01

    Potential strategic missions for laser weapons, particularly those involving space-based lasers, are discussed. The functions of space-based lasers and the history of their conceptual development are summarized, and the problems of implementing such systems, including the building of a suitable laser and power source, and resolving the problem of optics, are discussed. Ongoing development programs are described, and the contrasting views of the necessity and usefulness of strategic laser systems are set forth.

  14. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  15. Preparation of platinum nanoparticles in liquids by laser ablation method

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, The; Dinh Nguyen, Thanh; Nguyen, Quang Dong; Trinh Nguyen, Thi

    2014-09-01

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7-9 nm and 10-12 nm, respectively. The results showed advantages of the laser ablation method.

  16. Laser radiometer

    SciTech Connect

    Stein, A.; Kaldor, A.; Rabinowitz, P.

    1983-11-29

    The present invention teaches a unique laser radiometer capable of accurately measuring the radiation temperature of a radiant surface and independently measuring the surface's emissivity. A narrow-band radiometer is combined with a laser reflectometer to measure concurrently radiance and emissivity of a remote, hot surface. Together, radiance and emissivity yield the true surface temperature of the remote target. A narrow receiver bandwidth is attained by one of two methods; (a) heterodyne detection or (b) optical filtering. A direct measurement of emissivity is used to adjust the value obtained for the thermal radiation signal to substantially enhance the accuracy of the temperature measurement for a given subject surface. The technique provides substantially high detection sensitivity over a very narrow spectral bandwidth.

  17. Sequential growth of sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell-shell nanoparticles for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Peng, Huang-Yong; Ding, Bin-Bin; Ma, Yin-Chu; Sun, Shi-Qi; Tao, Wei; Guo, Yan-Chuan; Guo, Hui-Chen; Yang, Xian-Zhu; Qian, Hai-Sheng

    2015-12-01

    Upconversion (UC) nanostructures have attracted much interest for their extensive biological applications. In this work, we describe a sequential synthetic route to prepare sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell upconversion nanoparticles. The as-prepared products were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM, JEM 2100F), respectively. The as-prepared core-shell nanoparticles of NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb are composed of elliptical nanoparticles with a length of 80 nm and width of 42 nm, which show efficient upconversion fluorescence excited at 808 nm indicating the formation of core-shell-shell sandwiched nanostructures. In addition, the as-prepared sandwiched NaYF4:Yb/Er@NaYF4:Yb@NaNdF4:Yb core-shell upconversion nanoparticles also show strong upconversion fluorescence excited at 980 nm. Amphiphilic mPEG2k-b-PEBEP6K copolymers (denoted as PPE) were chosen to transfer these hydrophobic UCNPs into the aqueous phase for biological application. In vitro photodynamic therapy of cancer cells show that the viability of cells incubated with the nanoparticles loaded with MC 540 was significantly lower as compared to the nanoparticles without photosensitizers exposed to NIR laser.

  18. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  19. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)

  20. Making a Laser Level

    ERIC Educational Resources Information Center

    Hawkins, Harry

    2004-01-01

    This article describes how to construct a laser level. This laser level can be made using a typical 4' (or shorter) bubble level and a small laser point. The laser unit is detachable, so the bubble level can also be used in the conventional way. However, the laser level works better than a simple bubble level. Making this inexpensive device is an…

  1. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  2. Laser nitriding and laser carburizing of surfaces

    NASA Astrophysics Data System (ADS)

    Schaaf, Peter

    2003-11-01

    Laser irradiation of surfaces with short pulses in reactive atmospheres (nitrogen, methane) can lead to very effective nitrification and carburization via complicated laser-surface-gas-plasma-interactions. This laser nitriding and laser carburizing and their basic underlying phenomena will be presented and partly explained by results of example materials (iron, titanium, aluminum, silicon) where nitride and carbide coatings can be formed by fast and easily by Excimer Laser, Nd:YAG laser, Free Electron Laser and also by femtosecond Ti:sapphire laser. This implies laser pulse durations from the nanosecond to the femtosecond regime and wavelengths from ultra-violet to infrared. The resulting surfaces, thin films, coatings and their properties are investigated by combining Mossbauer Spectroscopy, x-ray diffraction, x-ray absorption spectroscopy, Nanoindentation, Resonant Nuclear Reaction Analysis, and Rutherford Backscattering Spectroscopy.

  3. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1983-01-01

    Metallic vapor lasers of Na2 and Li2 are examined as solar energy converters. The absorbed photons cause transitions to vibrational-rotational levels in an upper electronic state. With broad band absorption the resultant levels can have quantum numbers considerably higher than the upper lasing level. The excited molecule then relaxes to the upper lasing level which is one of the lower vibrational levels in the upper electronic state. The relaxation occurs from collisions, provided the molecule is not quenched into the ground level electronic state. Lasing occurs with a transition to a vibrational level in the lower electronic state. Rough estimates of solar power efficiencies are 1 percent for Na2 and probably a similar figure for Li2. The nondissociative lasers from a family distinct from materials which dissociate to yield an excited atom.

  4. Holmium laser pumped with a neodymium laser

    SciTech Connect

    Bowman, S.R.; Rabinovich, W.S.

    1991-07-30

    This patent describes a solid-state laser device. It comprises a holmium laser having a first host material doped with an amount of holmium ions sufficient to produce an output laser emission at about 3 {mu}m when the holmium ions in the holmium laser are pumped by a pump beam at a wavelength of about 1.1 {mu}m; and neodymium laser pump source means for supplying a pump beam to pump the holmium ions in the holmium laser at a wavelength of about 1.1 {mu}m.

  5. Mars Observer Laser Altimeter: laser transmitter.

    PubMed

    Afzal, R S

    1994-05-20

    The Mars Observer Laser Altimeter utilizes a space-qualified diode-laser-pumped Q-switched Nd:YAG laser transmitter. A simple numerical model of the laser energetics is presented, which predicts the pulse energy and pulse width. Comparisons with the measured data available are made. The temperature dependence of the laser transmitter is also predicted. This dependence prediction is particularly important in determining the operational temperature range of the transmitter. Knowing the operational temperature range is especially important for a passive, thermally controlled laser operating in space. PMID:20885685

  6. Hypersonic gasdynamic laser system

    SciTech Connect

    Foreman, K.M.; Maciulaitis, A.

    1990-05-22

    This patent describes a visible, or near to mid infra-red, hypersonic gas dynamic laser system. It comprises: a hypersonic vehicle for carrying the hypersonic gas dynamic laser system, and also providing high energy ram air for thermodynamic excitation and supply of the laser gas; a laser cavity defined within the hypersonic vehicle and having a laser cavity inlet for the laser cavity formed by an opening in the hypersonic vehicle, such that ram air directed through the laser cavity opening supports gas dynamic lasing operations at wavelengths less than 10.6{mu} meters in the laser cavity; and an optical train for collecting the laser radiation from the laser cavity and directing it as a substantially collimated laser beam to an output aperture defined by an opening in the hypersonic vehicle to allow the laser beam to be directed against a target.

  7. Laser therapy (image)

    MedlinePlus

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  8. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  9. Lasers in Medicine.

    ERIC Educational Resources Information Center

    Hill, P. D.

    1989-01-01

    Described are the characteristics of the laser and its effects on the body. Discussed are examples of laser treatments, including angioplasty, ophthalmology, and dermatology. A discussion of lasers of clinical interest and their applications is presented. (YP)

  10. Efficient high-brightness diode laser modules offer new industrial applications

    NASA Astrophysics Data System (ADS)

    Revermann, Markus; Timmermann, Andre; Meinschien, Jens; Bruns, Peter

    2007-02-01

    We present new developed high power diode laser modules which are performing at outstanding brightness and their applications. The combination of recently designed laser diode bars on passive heat sinks and optimized micro-optics results to laser modules up to 50W out of a 100μm fibre with a 0.22 NA at one single wavelength based on broad area laser bars (BALB) and up to 50W out of 50μm fibre with a 0.22 NA based on single-mode emitter array laser (SEAL) bars. The fibre coupled systems are based on diode lasers with a collimated beam of superior beam data, namely < 10 mm x 10 mm beam diameter (FW1/e2) and < 2mrad x 2mrad divergence (FW1/e2). Such free beam diode lasers deliver 30 W or 60 W output power. The applications for such laser diode modules varies from direct marking, cutting and welding of metals and other materials up to pumping of fibre lasers and amplifiers. Marking speed with up to 30mm/s on stainless steel was observed with 20W laser power and 50μm fibre with a conventional marking setup. Cutting speed of about 1m/min of 0.2mm Kovar sheet was shown with a diode laser module with 50W laser power from a 100μm fibre.

  11. Laser accidents: Being Prepared

    SciTech Connect

    Barat, K

    2003-01-24

    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  12. Dissolution in a supercritical liquid as a mechanism of laser ablation of sapphire

    SciTech Connect

    Dolgaev, Sergei I; Karasev, M E; Kulevskii, L A; Simakin, Aleksandr V; Shafeev, Georgii A

    2001-07-31

    The laser ablation of sapphire is studied by irradiating its interface with water and aqueous solutions of KOH, KCl and Na{sub 2}CO{sub 3} by 2.92-{mu}m 130-ns holmium laser pulses. The ablation rate depends on the concentration and type of the dissolved substance. The highest ablation rate is 2.5{mu}m per pulse for a laser fluence of 120 J cm{sup -2}. The ablation of sapphire is attributed to its dissolution in water or in aqueous solutions in the supercritical state. (interaction of laser radiation with matter. laser plasma)

  13. PHYSICAL AND OPTICAL PROPERTIES OF STEAM-EXPLODED LASER-PRINTED PAPER

    EPA Science Inventory

    Laser-printed paper was pulped by the steam-explosion process. A full-factorial experimental design was applied to determine the effects of key operating variables on the properties of steam-exploded pulp. The variables were addition level for pulping chemicals (NaOH and/or Na2SO...

  14. New laser protective eyewear

    NASA Astrophysics Data System (ADS)

    McLear, Mark

    1996-04-01

    Laser technology has significantly impacted our everyday life. Lasers are now used to correct your vision, clear your arteries, and are used in the manufacturing of such diverse products as automobiles, cigarettes, and computers. Lasers are no longer a research tool looking for an application. They are now an integral part of manufacturing. In the case of Class IV lasers, this explosion in laser applications has exposed thousands of individuals to potential safety hazards including eye damage. Specific protective eyewear designed to attenuate the energy of the laser beam below the maximum permissible exposure is required for Class 3B and Class IV lasers according to laser safety standards.

  15. Laser satellite power systems

    SciTech Connect

    Walbridge, E.W.

    1980-01-01

    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  16. Time-Resolved Spectroscopy With A Narrow-Band Pulsed Dye Laser At High Irradiances

    NASA Astrophysics Data System (ADS)

    van Bergen, A. R.; Hollander, Tj.; Alkemade, C. T.

    1985-03-01

    We measured the fluorescence spectrum of the Na-D lines in a sodium vapour cell filled with Ar gas, excited by an intense, nearly monochromatic laser near resonance. In this case the theory (dressed-atom model) predicts a line splitting dependent on the laser intensity.

  17. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  18. Laser Stabilization

    SciTech Connect

    Hall, John L.; Taubman, Matthew S.; Ye, Jun

    2010-01-01

    This book chapter covers the basics of the field of stabilizing lasers to optical frequency references such as optical cavities and molecular transitions via the application of servo control systems. These discussions are given with reference to the real-life frequency metrology experienced in Hall-Labs (now Ye-Labs), JILA, University of Colorado. The subjects covered include: the basics of control system stability, a discussion of both the theoretical and experimental limitations, an outline of optical cavity susceptibility to environmental noise, and a brief introduction to the use and limitations of molecular transitions as frequency references.

  19. Laser biophotonics

    NASA Astrophysics Data System (ADS)

    Bashkatov, A. N.; Genina, E. A.; Priezzhev, A. V.; Tuchin, V. V.

    2016-06-01

    This issue of Quantum Electronics presents the papers that reflect the state-of-the-art of laser technologies used in biomedical studies and medical practice. Among the new technologies, one can note the methods of correlation and Doppler spectroscopy, as well as THz spectroscopy, in which biologically significant molecules are characterised by specific resonances. The latter topic is considered in the paper by Nazarov et al., where the dielectric function of aqueous solutions of glucose and albumin is studied using pulsed THz spectroscopy.

  20. Laser Propulsion - Quo Vadis

    SciTech Connect

    Bohn, Willy L.

    2008-04-28

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

  1. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  2. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  3. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  4. Single-frequency glass waveguide lasers

    NASA Astrophysics Data System (ADS)

    Taccheo, S.; Della Valle, G.; Milanese, D.

    2008-10-01

    We report results on a single-end pumped waveguide laser for sensing applications Output power in excess of 20 mW with 17% slope efficiency in robust single-frequency operation at 1533.5 nm is demonstrated. The overall laser cavity laser was 60-mm long but the active medium, an Er:Yb-doped phosphate glass, was only 9-mm long. The waveguide was fabricated by two-step Ag-Na ion-exchange technique. The overall cavity length including butt-coupled fiber- Bragg-grating mirrors was <60 mm. We also reports on recent work to reach 100-mW single-frequency output power. To extend the operation wavelength to 2-micron wavelength region we also developed new tellurite glasses. Preliminary results on glass investigation are also reported.

  5. Above threshold dissociation of LiNa +: monitoring an avoided crossing with femtosecond spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnier, S.; Toniolo, A.

    2001-04-01

    Computer simulations of one- and two-color experiments in above threshold dissociation (ATD) are reported for the first heteronuclear alkali ion LiNa +. We focus on the 1 2Σ +→1 2Π→4,5 2Σ + process, with dissociation to Li ++Na(3p) or Li(3s)+Na +. The product yields are determined by the presence of an avoided crossing between the 4 and 5 2Σ + potential curves, according to the frequency and delay of the second laser pulse.

  6. Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Dai, Nengli; Long, Hua; Lu, Peixiang; Li, Wan; Jiang, Fagang

    2010-07-01

    Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×10 14 W/cm 2. The depths of the linear lesions increased linearly with both pulse energy (37.5-150 μJ) and exposure time (0.1-0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.

  7. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Y.T.; Payne, S.A.; Hayden, J.S.; Campbell, J.H.; Aston, M.K.; Elder, M.L.

    1996-06-11

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  8. Phosphate glass useful in high energy lasers

    DOEpatents

    Hayden, Yuiko T.; Payne, Stephen A.; Hayden, Joseph S.; Campbell, John H.; Aston, Mary Kay; Elder, Melanie L.

    1996-01-01

    In a high energy laser system utilizing phosphate laser glass components to amplify the laser beam, the laser system requires a generated laser beam having an emission bandwidth of less than 26 nm and the laser glass components consist essentially of (on an oxide composition basis) in mole percent: P{sub 2}O{sub 5}, 50--75; Al{sub 2}O{sub 3}, {gt}0--10; K{sub 2}O, {gt}0--30; MgO, 0--30; CaO, 0--30; Li{sub 2}O, 0--20; Na{sub 2}O, 0--20; Rb{sub 2}O, 0--20; Cs{sub 2}O, 0--20; BeO, 0--20; SrO, 0--20; BaO, 0--20; ZnO, 0--20; PbO, 0--20; B{sub 2}O{sub 3}, 0--10; Y{sub 2}O{sub 3}, 0--10; La{sub 2}O{sub 3}, 0--8; Ln{sub 2}O{sub 3}, 0.01--8; wherein the sum of MgO and CaO is >0--30; the sum of Li{sub 2}O, Na{sub 2}O, Rb{sub 2}O, and Cs{sub 2}O is 0--20; the sum of BeO, SrO, BaO, ZnO, and PbO is 0--20; the sum of B{sub 2}O{sub 3} and Y{sub 2}O{sub 3} is 0--10; and Ln{sub 2}O{sub 3} represents the sum of the oxides of active lasing lanthanides of atomic number 58--71. 21 figs.

  9. Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Katori, H.; Yoneda, H.; Nakagawa, K.; Shimizu, F.

    2010-02-01

    .] -- Ultracold Ytterbium atoms in optical lattices / S. Sugawa ... [et al.] -- Ultracold polar molecules in the rovibrational ground state / J. Deiglmayr ... [et al.] -- Polar molecules near quantum degeneracy / J. Ye and D. S. Jin -- Production of a quantum gas of rovibronic ground-state molecules in an optical lattice / J. G. Danzl ... [et al.] -- Recent progress in x-ray nonlinear optics / K. Tamasaku, K. Sawada, and T. Ishikawa -- Gas in scattering media absorption spectroscopy - laser spectroscopy in unconventional environments / S. Svanberg -- Laser spectroscopy on relativistic ion beams / S. Reinhardt ... [et al.] -- Single frequency microcavity lasers and applications / L. Xu ... [et al.].

  10. The combined use of Er,Cr:YSGG laser and fluoride to prevent root dentin demineralization

    PubMed Central

    GERALDO-MARTINS, Vinícius Rangel; LEPRI, Cesar Penazzo; FARAONI-ROMANO, Juliana Jendiroba; PALMA-DIBB, Regina Guenka

    2014-01-01

    The use of erbium lasers to prevent caries in enamel has shown positive results. However, it is not known if Er,Cr:YSGG laser can also be used to increase acid resistance of root dentine, which is another dental tissue susceptible to the action of cariogenic bacteria. Objective To analyze the effects of the Er,Cr:YSGG laser (λ=2.78 μm, 20 Hz) irradiation associated with 2% neutral sodium fluoride (NaF) to prevent root dentin demineralization. Material and Methods One hundred human root dentin samples were divided into 10 groups (G) and treated as follows: G1: no treatment; G2: NaF; G3: laser (4.64 J/cm2) with water cooling (WC=5.4 mL/min); G4: laser (4.64 J/cm2) without WC; G5: laser (8.92 J/cm2) with WC; G6: laser (8.92 J/cm2) without WC; G7: laser (4.64 J/cm2) with WC and NaF; G8: laser (4.64 J/cm2) without WC and NaF; G9: laser (8.92 J/cm2) with WC and NaF; G10: laser (8.92 J/cm2) without WC and NaF. The NaF gel was applied alone or after 4 min of irradiation. After 14 days of acid challenge, the samples were sectioned and the Knoop microhardness (KHN) test was done at different depths (30, 60, 90 and 120 μm) from the outer dentin surface. Data were analyzed by one-way ANOVA and Fisher's test (α=5%). Results The results showed that G8 and G10 presented higher KHN than the G1 for the depths of 30 and 60 μm, indicating an increase of the acid resistance of the dentin in up to 35% (p<0.05). Conclusions The use of Er,Cr:YSGG laser irradiation at 4.64 J/ cm2 and 8.92 J/cm2 without water cooling and associated with 2% NaF can increase the acid resistance of human root dentin. PMID:25466479

  11. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  12. Reverse laser drilling

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1984-01-01

    This invention provides a method for laser drilling small diameter, closely-spaced, and accurately located holes in a body of material which is transparent or substantially transparent to the laser radiation employed whereby the holes are drilled through the thickness of the body from the surface opposite to that on which the laser beam impinges to the surface of laser beam impingement.

  13. Longitudinal discharge laser baffles

    DOEpatents

    Warner, B.E.; Ault, E.R.

    1994-06-07

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

  14. Longitudinal discharge laser baffles

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1994-01-01

    The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

  15. Obstacles to Laser Safety

    SciTech Connect

    Barat, K

    2005-04-25

    The growth of laser development & technology has been remarkable. Unfortunately, a number of traps or obstacles to laser safety have also developed with that growth. The goal of this article is to highlight those traps, in the hope that an aware laser user will avoid them. These traps have been the cause or contributing factor of many a preventable laser accident.

  16. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  17. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  18. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  19. Laser surgery - skin

    MedlinePlus

    A laser is a light beam that can be focused on a very small area. The laser heats cells in the area being ... burst." There are several types of lasers. Each laser has specific uses. The color of the light beam used is directly related to the type of ...

  20. Laser accelerometer

    SciTech Connect

    Vescial, F.; Aronowitz, F.; Niguel, L.

    1990-04-24

    This patent describes a laser accelerometer. It comprises: an optical cavity characterizing a frame having an input axis (x), a cross axis (y) orthogonal to and co-planar with the input axis and a (z) axis passing through the intersection of the (x) and (y) axes, the (z) axis being orthogonal to the plane of the (x) and (y) axes; and (x) axis proof mass having a predetermined blanking surface; a flexible beam having a first end coupled to the (x) axis proof mass and a second end coupled to the frame, deflection of the flexible beams permitting a predetermined range of movement of the (x) proof mass on the input axis in a direction opposite to sensed acceleration of the frame; a laser light source having a mirror means within the cavity for providing a light ray coaxially aligned with the (z) axis; detector means having at least a first detector on a sensitive plane, the plane being normal to the (z) axis; bias and amplifier means coupled to the detector means for providing a bias current to the first detector and for amplifying the intensity signal; the (x) axis proof mass blanking surface being centrally positioned within and normal to the light ray null intensity region to provide increased blanking of the light ray in response to transverse movement of the mass on the input axis; control means responsive to the intensity signal for applying an (x) axis restoring force to restore the (x) axis proof mass to the central position and for providing an (x) axis output signal proportional to the restoring force.

  1. What is a Laser?

    NASA Astrophysics Data System (ADS)

    Julien, Lucile; Schwob, Catherine

    2015-10-01

    The first laser was built more than 50 years ago, inMay 1960: it was a pulsed ruby laser. It was a simple laboratory curiosity and nobody knew what its usefulness could be. Other devices were rapidly demonstrated, and the variety and number of lasers in the world increased at a huge rate. Currently, the annual laser world market is worth about 6 billion dollars. Thanks to the remarkable properties of laser light, laser applications increase steadily in the domains of industry, building, medicine, telecommunications, etc. One can find many lasers in research laboratories, and they are used more and more in our everyday life and almost everybody has already seen a laser beam. The goal of the first chapter of this book is to explain simply what a laser is, how it is built and how it operates. Firstly, let us point out the outstanding properties of the laser light.

  2. Tunable lasers- an overview

    SciTech Connect

    Guenther, B.D.; Buser, R.G.

    1982-08-01

    This overview of tunable lasers describes their applicability to spectroscopy in the ultraviolet and middle infrared ranges; to rapid on-line diagnostics by ultrashort cavity lasers; to exploration, by the free electron laser, for its wide tuning in the far infrared to submillimeter region; to remote detection, in areas such as portable pollution monitors, on-line chemical analyzers, auto exhaust analyzers, and production line controls; to photochemistry; and to other potential areas in diagnostics, communications, and medical and biological sciences. The following lasers are characterized by their tunability: solid state lasers, primarily alexandrite, with a tuning range of ca 1000 Angstroms; color center lasers; semiconductor lasers; dye lasers; gas lasers, where high-pressure CO/sub 2/ discharges are the best known example for a wide tunability range, and research is continuing in systems such as the alkali dimers; and, at wavelengths beyond 10 micrometers, the possibilities beyond Cerenkov and free electron lasers.

  3. Assignment of the /Li-7/2 optically pumped laser transitions pumped by Ar/+/ and Kr/+/ laser lines

    NASA Technical Reports Server (NTRS)

    Verma, K. K.; Stwalley, W. C.; Zemke, W. T.

    1981-01-01

    Welling and Wellegehausen (1977) have reported a list of Na2 and Li2 lines (belonging to B-X and A-X systems) which lase when vapors of these dimers are pumped with an Ar(+) or Kr(+) laser. A description is presented of a fluorescence study of the A-X system of the (Li-7)2 molecule excited by a Kr(+) laser (6471 A). The optically pumped laser lines are identified as P and R doublets in two different fluorescence series. The conditions which favor lasing action of these lines are pointed out. All but one of the known optically pumped laser lines of (Li-7)2 along with their assignments are presented in a table. For each pumping line, several additional wavelengths are listed which satisfy the condition for laser oscillations and which might well lase well under slightly improved conditions.

  4. Effect of ADP on Na+-Na+ Exchange Reaction Kinetics of Na,K-ATPase

    PubMed Central

    Peluffo, R. Daniel

    2004-01-01

    The whole-cell voltage-clamp technique was used in rat cardiac myocytes to investigate the kinetics of ADP binding to phosphorylated states of Na,K-ATPase and its effects on presteady-state Na+-dependent charge movements by this enzyme. Ouabain-sensitive transient currents generated by Na,K-ATPase functioning in electroneutral Na+-Na+ exchange mode were measured at 23°C with pipette ADP concentrations ([ADP]) of up to 4.3 mM and extracellular Na+ concentrations ([Na]o) between 36 and 145 mM at membrane potentials (VM) from −160 to +80 mV. Analysis of charge-VM curves showed that the midpoint potential of charge distribution was shifted toward more positive VM both by increasing [ADP] at constant Na+o and by increasing [Na]o at constant ADP. The total quantity of mobile charge, on the other hand, was found to be independent of changes in [ADP] or [Na]o. The presence of ADP increased the apparent rate constant for current relaxation at hyperpolarizing VM but decreased it at depolarizing VM as compared to control (no added ADP), an indication that ADP binding facilitates backward reaction steps during Na+-Na+ exchange while slowing forward reactions. Data analysis using a pseudo three-state model yielded an apparent Kd of ∼6 mM for ADP binding to and release from the Na,K-ATPase phosphoenzyme; a value of 130 s−1 for k2, a rate constant that groups Na+ deocclusion/release and the enzyme conformational transition E1∼P → E2-P; a value of 162 s−1M−1 for k−2, a lumped second-order VM-independent rate constant describing the reverse reactions; and a Hill coefficient of ∼1 for Na+o binding to E2-P. The results are consistent with electroneutral release of ADP before Na+ is deoccluded and released through an ion well. The same approach can be used to study additional charge-moving reactions and associated electrically silent steps of the Na,K-pump and other transporters. PMID:15298896

  5. FY 2005 Quantum Cascade Laser Alignment System Final Report

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  6. Surgical lasers in dermatology

    NASA Astrophysics Data System (ADS)

    Szymanczyk, Jacek; Nowakowski, Wlodzimierz; Golebiowska, Aleksandra; Michalska, I.; Mindak, Marek K.

    1997-10-01

    Almost every laser for medical applications was first tried in dermatology. The efficiency of YAG, CO2, and Argon lasers on this area and their potential advantages over conventional methods were mostly evaluated by cosmetic effect of laser therapy. The indications for different laser treatment in such dermatological cases as: angiomas, telangiectasias, pigmented lesions, nevus flammeus congenitus, deep cavernous angiomas, skin neoplasms and condylomata acuminata are discussed in this paper and the results of the laser therapy are also presented.

  7. The laser in urology

    NASA Astrophysics Data System (ADS)

    Hofstetter, Alfons G.

    2002-10-01

    Laser is an acronym for a physical principle and means: Light Amplification by stimulated Emission of Radiation. This principle offers a lot of tissue/light effects caused by the parameters: power density/time and the special qualities of the laser light. Nowadays for diagnosis and therapy following lasers are used in urology: Krypton- and Dye-lasers as well as the Neodymium-YAG- (nd:YAG-), Holmium-YAG (Ho:YAG-), Diode-, Argon- and the CO2-lasers.

  8. Intracavity Raman lasers

    SciTech Connect

    Band, Y.B.; Ackerhalt, J.R.; Krasinski, J.S.; Heller, D.F.

    1989-02-01

    Experimental and theoretical studies of intracavity Raman lasers are presented. Advantages of intracavity Raman lasers, particularly for low-emission cross section and broadly tunable vibronic gain media, are described. Experimental studies of a hydrogen gas Raman laser pumped inside the cavity of an alexandrite laser are presented. A theoretical model of the dynamics of a unidirectional intracavity Raman ring laser is developed and solved analytically. This model is adapted to simulate experiments.

  9. Tunable Dual Semiconductor Laser

    NASA Technical Reports Server (NTRS)

    Mukai, Seiji; Kapon, Eli; Katz, Joseph; Margalit, Shlomo; Yariv, Amnon

    1987-01-01

    Parallel lasers interact in shared space to alter output wavelength. New device consists of two stripe lasers in aluminum gallium arsenide chip. Parallel stripes close enough so light from lower laser coupled into upper laser and vice versa. Lasers operated by low-duty-cycle current pulses. Lasing threshold of each about 100 mA. Currents controlled independently. Useful in optical communications systems employing wavelength-division multiplexing.

  10. Na Cauda do Cometa

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.

    2009-01-01

    Quando viam um cometa, os antigos gregos imaginavam uma estrela com uma vasta cabeleira. Não à toa, a palavra deriva do termo koma, que significa cabelo. Constituídos por fragmentos de gelo e gases, os cometas possuem um núcleo sólido, que pode ter vários quilômetros de diâmetro, e uma cauda que sempre aponta na direção contrária ao Sol, devido aos ventos solares. Graças à aparência de pontos luminosos em movimento (ao contrário de outros astros, que parecem estáticos), esses corpos celestes foram interpretados por diferentes povos com muito misticismo, inspirando mitos tanto de boas-novas como de maus presságios. Conheça algumas dessas histórias:

  11. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    SciTech Connect

    Bunkin, N F; Shkirin, A V; Burkhanov, I S; Chaikov, L L; Lomkova, A K

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  12. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Bunkin, N. F.; Shkirin, A. V.; Burkhanov, I. S.; Chaikov, L. L.; Lomkova, A. K.

    2014-11-01

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ~10 - 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions.

  13. Blue upconversion thulium laser

    SciTech Connect

    Nguyen, D.C.; Faulkner, G.E.; Weber, M.E.; Dulick, M.

    1990-01-01

    Upconversion has been an active area of research for at least two decades, mainly because of its wide ranging applications from infrared quantum counters, visible-emitting phosphors, to upconversion lasers. The upconversion lasers have recently become attractive with the advent of semiconductor laser diodes as the pump source. In an upconversion laser, the laser active ion is excited by internal upconversion of near-ir or red light via multiphoton excitation or cooperative processes and emits anti-Stokes visible light. Since the laser diode output wavelength can be composition turned to match the upconversion laser ion absorption lines, a substantial fraction of the ions can be driven into higher energy levels, thus enhancing the upconversion process. These upconversion solid-state lasers offer a potentially simple and compact source of visible coherent light with semiconductor laser diode excitation. We recently reported a novel upconversion thulium laser that emits blue light at 77 K. In this paper additional data on this 77 K upconversion laser as well as preliminary results on the room temperature upconversion laser are presented. In these demonstrations, dye lasers were used instead of diode lasers because they were more readily available than high power semiconductor laser diodes and their wavelengths could be adjusted easily. 14 refs., 5 figs., 1 tab.

  14. Investigation of laser injuries

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Keeler, Natalie; Dennis, Jerome E.; Figueroa, Colin L.; Press, Howard A.; Rockwell, R. James, Jr.; Stuck, Bruce E.; Roach, William P.; Wartick, Ardith L.

    2003-06-01

    Recently a review of multiple laser injury and accident databases was initiated. Last year we reported on preliminary findings in this area. This past year the search for laser injury and accident reports was expanded, and a significant number of additional laser incidents were located. The database from the Food and Drug Administration"s Center for Devices and Radiological Health was supplemented with more up to date information and non-medical laser incidents were added. Rockwell Laser Industries database was verified to not contain duplicates from the new information, as was the Army"s Laser Accidents and Incidents Registry. Information from the Federal Aviation Administration regarding laser accidents and incidents were also included. Incidents not resulting in laser specific injuries has been tracked. This information was not included in our previous report. In this study, case reports are used to show gross trends in laser injury, accident and incident reporting. This study is still in progress, and evaluation is incomplete.

  15. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph

    1982-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  16. Infrared laser system

    DOEpatents

    Cantrell, Cyrus D.; Carbone, Robert J.; Cooper, Ralph S.

    1977-01-01

    An infrared laser system and method for isotope separation may comprise a molecular gas laser oscillator to produce a laser beam at a first wavelength, Raman spin flip means for shifting the laser to a second wavelength, a molecular gas laser amplifier to amplify said second wavelength laser beam to high power, and optical means for directing the second wavelength, high power laser beam against a desired isotope for selective excitation thereof in a mixture with other isotopes. The optical means may include a medium which shifts the second wavelength high power laser beam to a third wavelength, high power laser beam at a wavelength coincidental with a corresponding vibrational state of said isotope and which is different from vibrational states of other isotopes in the gas mixture.

  17. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  18. Laser in dermatology.

    PubMed

    Boord, Mona

    2006-08-01

    The laser is a tool that will augment the surgical techniques available to the veterinarian. When using the laser compared with traditional surgery there are multiple procedures that can be performed with much greater ease, and some procedures that previously could not be performed. Specialty and academic practices have used lasers for photodynamic therapy, lithotripsy of urinary calculi, and percutaneous disk ablation. This article will focus on the lasers use in dermatology. It is essential that the surgeon learn the basics of laser physics, how the laser interacts with tissue and the safety issues one needs to consider during its use. On deciding to use the laser the surgical techniques chosen should always be based on considering the advantages and disadvantages the laser has to offer. The use of biomedical lasers is a "cutting edge" technique now available to our veterinary field. PMID:16933481

  19. Developments in laser trabeculoplasty.

    PubMed

    Tsang, Susanna; Cheng, Jason; Lee, Jacky W Y

    2016-01-01

    Laser trabeculoplasty has an increasing important role in the management of glaucoma as more emphasis is placed on minimally invasive therapies. In recent years, the following laser trabeculoplasty technologies have been introduced: micropulse laser trabeculoplasty, titanium-sapphire laser trabeculoplasty and pattern scanning trabeculoplasty. These lasers help to reduce the intraocular pressure (IOP) and the burden of glaucoma medical therapy. Literature findings regarding the safety and efficacy of these newer forms of laser trabeculoplasty in the treatment of open-angle glaucoma is summarised. These relatively newer procedures appear to have similar efficacy when compared with the former selective laser trabeculoplasty or argon laser trabeculoplasty. In addition, they potentially offer a more favourable safety profile with fewer complications, including postlaser inflammation and IOP spikes. Further large-scale studies are necessary to evaluate the long-term benefits of these newer forms of laser trabeculoplasty. Their initial promising results offer patients with glaucoma additional treatment alternatives. PMID:26377417

  20. Quantum well lasers

    SciTech Connect

    Zory, P.S. Jr.

    1993-01-01

    The semiconductor quantum well (QW) laser structure is rapidly becoming the preferred design in many applications because of its low threshold, design flexibility, and high reliability. The book begins with a brief, interesting foreword by C.H. Henry on the history of the QW laser concept and its early development. Following this introduction is a 79-page chapter by S.W. Corzine et al. on optical gain in III-V bulk and QW lasers. The next chapter on intraband relaxation and line broadening effects by M. Asada is an excellent expanded review of a topic introduced by Corzine. The remaining chapters describe multiple QW lasers, low-threshold QW laser, special aspects of AlGaAs and (short-wavelength) InGaAsP lasers, valence-band engineering, strained-layer QW lasers, AlGaInP QW lasers, and quantum wire lasers. These chapters are well written by recognized experts in the field.

  1. Laser Surveying

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has produced a laser-aided system for surveying land boundaries in difficult terrain. It does the job more accurately than conventional methods, takes only one-third the time normally required, and is considerably less expensive. In surveying to mark property boundaries, the objective is to establish an accurate heading between two "corner" points. This is conventionally accomplished by erecting a "range pole" at one point and sighting it from the other point through an instrument called a theodolite. But how do you take a heading between two points which are not visible to each other, for instance, when tall trees, hills or other obstacles obstruct the line of sight? That was the problem confronting the U.S. Department of Agriculture's Forest Service. The Forest Service manages 187 million acres of land in 44 states and Puerto Rico. Unfortunately, National Forest System lands are not contiguous but intermingled in complex patterns with privately-owned land. In recent years much of the private land has been undergoing development for purposes ranging from timber harvesting to vacation resorts. There is a need for precise boundary definition so that both private owners and the Forest Service can manage their properties with confidence that they are not trespassing on the other's land.

  2. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  3. Alexandrite laser pumped by semiconductor lasers

    SciTech Connect

    Scheps, R.; Gately, B.M.; Myers, J.F. ); Krasinski, J.S. ); Heller, D.F. )

    1990-06-04

    We report the first operation of a direct diode-pumped tunable chromium-doped solid-state laser. A small alexandrite (Cr:BeAl{sub 2}O{sub 4}) crystal was longitudinally pumped by two visible laser diodes. The threshold pump power was 12 mW using the {ital R}{sub 1} line at 680.4 nm for the pump transition, and the slope efficiency was 25%. The measured laser output bandwidth was 2.1 nm.

  4. Laser Safety Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A major focus of work done at Air Products and Chemicals' Laser Application Laboratory is on use of ultraviolet radiation using high energy excimer lasers. Because light within the wavelength of excimer lasers is invisible, it can cause serious damage to eyes and tissue. To contain the laser beam, Air Products Incorporated a Jet Propulsion Laboratory invention described in a technical support package into its beam stops. The technology interrupts the laser pathway and allows workers to remain in the target area without shutting off the laser.

  5. Laser ablation of blepharopigmentation

    SciTech Connect

    Tanenbaum, M.; Karas, S.; McCord, C.D. Jr. )

    1988-01-01

    This article discusses laser ablation of blepharopigmentation in four stages: first, experimentally, where pigment vaporization is readily achieved with the argon blue-green laser; second, in the rabbit animal model, where eyelid blepharopigmentation markings are ablated with the laser; third, in human subjects, where the argon blue-green laser is effective in the ablation of implanted eyelid pigment; and fourth, in a case report, where, in a patient with improper pigment placement in the eyelid, the laser is used to safely and effectively ablate the undesired pigment markings. This article describes in detail the new technique of laser ablation of blepharopigmentation. Potential complications associated with the technique are discussed.

  6. Tunable chromium lasers

    SciTech Connect

    Chase, L.L.; Payne, S.A.

    1989-01-01

    During the decade that has passed since the discovery of the alexandrite laser, many other tunable vibronic sideband lasers based on Cr/sup 3 +/ have been developed. These lasers span the wavelength range from 700 nm to at least 1235 nm. Experimental and theoretical research has provided an understanding of the important factors that influence the performance of these Cr/sup 3 +/ lasers and other solid state vibronic lasers. The intrinsic performance levels of some of the most promising Cr/sup 3 +/ lasers are evaluated from extrapolated slope efficiency measurements. 7 refs., 4 figs., 2 tabs.

  7. Lasers in aviation

    NASA Astrophysics Data System (ADS)

    Goncharov, I. N.; Dezhin, V. N.; Kutakhov, V. P.; Petukhov, A. V.; Sidorin, V. M.; Sukhar, I. M.

    The way in which lasers are being incorporated into the military aircraft of the United States and the countries of Western Europe is discussed. Descriptions are given of laser weapons-guiding systems (including ranger finders and systems for target illumination), laser systems for navigation and flight-safety assurance (gyroscopes, velocity gauges, altimeters, systems providing meteorological data, proximity warning systems), and laser systems for air reconnaissance, communications, and control. Attention is also given to the Glissada laser guide path system, developed in the USSR. The physics of the systems is emphasized in the description and the principles underlying the operation of a laser are discussed in the introduction.

  8. Laser peening of metals- enabling laser technology

    SciTech Connect

    Dane, C.B.; Hackel, L.A.; Daly, J.; Harrisson, J.

    1997-11-13

    Laser peening, a surface treatment for metals, employs laser induced shocks to create deep and intense residual stresses in critical components. In many applications this technology is proving to be superior to conventional treatments such as shot peening. The laser peening process has generated sufficiently impressive results to move it from a laboratory demonstration phase into a significant industrial process. However until now this evolution has been slowed because a laser system meeting the average power requirements for a high throughput process has been lacking.

  9. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    SciTech Connect

    Matsuoka, T.; McGuffey, C.; Dollar, F.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Horovitz, Y.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changing the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.

  10. Geodynamic laser ranging system laser transmitter

    NASA Technical Reports Server (NTRS)

    Dallas, J. L.; Czechanski, J. P.; Coyle, D. B.; Zukowski, B. J.; Seery, B. D.

    1991-01-01

    A description is given of the requirements and design options in the development of a spaceborne laser transmitter for NASA's Geodynamic Laser Ranging System. Three different oscillators are considered. The first is an injection-seeded ring oscillator yielding 1 mJ of energy within a 120-ps pulse. The second is a frequency-modulated mode-locked oscillator emitting 0.30 nJ in a 20-ps pulse. The third is a self-starting, additive pulse mode-locked laser. Detailed design considerations and preliminary results of these lasers are reported as well as the design of a unique multipass amplifier.

  11. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  12. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  13. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  14. Laser gas assisted treatment of AISI H12 tool steel and corrosion properties

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Toor, Ihsan-ul-Haq; Malik, Jahanzaib; Patel, F.

    2014-03-01

    Laser gas assisted treatment of AISI H12 tool steel surface is carried out and the electrochemical response of the laser treated surface is investigated. Morphological and metallurgical changes in the treated layer are examined using a scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Potentiodynamic polarization tests are carried out for untreated and laser treated specimen in 0.2 M NaCl solution at room temperature. It is found that the laser treated AISI H12 workpiece surfaces exhibit higher corrosion resistance as compared to untreated specimen as confirmed by lower corrosion rate, higher pitting potential, and lower passive current density.

  15. Laser device and method

    SciTech Connect

    Myers, J. D.

    1985-06-25

    A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulses is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.

  16. Laser programs highlights 1993

    SciTech Connect

    1995-06-01

    Over the last two decades, the scope of our laser research has grown immensely. The small, low-power laser systems of our early days have given way to laser systems of record-breaking size and power. Now we are focusing our activities within the target physics and laser science programs to support the ignition and gain goals of the proposed glass-laser National Ignition Facility. In our laser isotope separation work, we completed the most important set of experiments in the history of the AVLIS Program in 1993, which culminated in a spectacularly successful run that met or exceeded all our objectives. We are also developing lasers and laser-related technologies for a variety of energy, commercial, and defense uses. On the horizon are transfers of important technologies for waste treatment, x-ray lithography, communications and security, optical imaging, and remote sensing, among others.

  17. Transmyocardial Laser Revascularization

    MedlinePlus

    ... Vascular Access for Hemodialysis Ventricular Assist Devices Transmyocardial Laser Revascularization Like every other organ or tissue in ... bypass surgery, there is a procedure called transmyocardial laser revascularization, also called TMLR or TMR. TMLR cannot ...

  18. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  19. Laser Acne Treatment

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Acne Treatment, Laser A A A BEFORE: This patient wanted laster ... A popular approach is to combine an infrared laser with skin cooling to target oil gland production, ...

  20. LASIK - Laser Eye Surgery

    MedlinePlus

    ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ...

  1. Laser surgery - skin

    MedlinePlus

    Surgery using a laser ... used is directly related to the type of surgery being performed and the color of the tissue ... Laser surgery can be used to: Close small blood vessels to reduce blood loss Remove warts , moles , sunspots, and ...

  2. Laser particle sorter

    DOEpatents

    Martin, John C.; Buican, Tudor N.

    1989-01-01

    Method and apparatus for sorting particles, such as biological particles. A first laser defines an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam interrogates the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam intersects the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis.

  3. Laser particle sorter

    DOEpatents

    Martin, J.C.; Buican, T.N.

    1987-11-30

    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  4. Laser therapy (image)

    MedlinePlus

    ... is used for many medical purposes. Because the laser beam is so small and precise, it enables physicians to safely treat specific tissue without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  5. Laser therapy for cancer

    MedlinePlus

    Laser therapy uses a very narrow, focused beam of light to shrink or destroy cancer cells. It can ... to cut out tumors without damaging other tissue. Laser therapy is often given through a thin, lighted tube ...

  6. MESSENGER Laser Altimeter

    NASA Video Gallery

    MESSENGER's Mercury Laser Altimeter sends out laser pulses that hit the ground and return to the instrument. The amount of light that returns for each pulse gives the reflectance at that point on t...

  7. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  8. Laser hair removal.

    PubMed

    Wanner, Molly

    2005-01-01

    Since 1996, there have been numerous advances in hair laser removal that utilize melanin as a chromophore. All of the devices on the market may be used in patients with light skin (phototypes I-III) and yield hair reduction near 75%. The ruby (694 nm) laser, alexandrite (755 nm) laser, and diode (810 nm) laser, as well as intense pulsed light are commonly used devices for hair laser removal. The long-pulsed Nd:YAG (1064 nm) laser represents the safest device for hair removal in dark-skinned patients because of its long wavelength, although the diode laser, alexandrite laser, and intense pulse light may be used. For treatment of light hair, combination radiofrequency and optical devices as well as photodynamic therapy are under investigation. PMID:16229722

  9. Slender tip laser scalpel

    DOEpatents

    Veligdan, James T.

    2004-01-06

    A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.

  10. Optics and lasers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Report describes twenty-seven optical concepts developed for holographic viewing, spectral transmission, and film camera technology. Articles include developments in laser-Doppler systems, laser beam deflection controls, X-ray photography, and camera components.

  11. Comparison of laser spectroscopic PNC method with laser integral fluorescence in optical caries diagnostics

    NASA Astrophysics Data System (ADS)

    Masychev, Victor I.

    2001-05-01

    In this research we represent the results of approbation of two methods of optical caries diagnostics: PNC-spectral diagnostics and caries detection by laser integral fluorescence. The research was conducted in a dental clinic. PNC-method analyzes parameters of probing laser radiation and PNC-spectrums of stimulated secondary radiations: backscattering and endogenous fluorescence of caries- involved bacteria. Ia-Ne laser ((lambda) equals632.8 nm, 1-2 mW) was used as a source of probing (stimulated) radiation. For registration of signals, received from intact and pathological teeth PDA-detector was applied. PNC-spectrums were processed by special algorithms, and were displayed on PC monitor. The method of laser integral fluorescence was used for comparison. In this case integral power of fluorescence of human teeth was measured. As a source of probing (stimulated) radiation diode lasers ((lambda) equals655 nm, 0.1 mW and 630 nm, 1 mW) and Ia-Na laser were applied. For registration of signals Si-photodetector was used. Integral power was shown in a digital indicator. Advantages and disadvantages of these methods are described in this research. It is disclosed that the method of laser integral power of fluorescence has the following characteristics: simplicity of construction and schema-technical decisions. However the method of PNC-spectral diagnostics are characterized by considerably more sensitivity in diagnostics of initial caries and capability to differentiate pathologies of various stages (for example, calculus/initial caries). Estimation of spectral characteristics of PNC-signals allows eliminating a number of drawbacks, which are character for detection by method of laser integral fluorescence (for instance, detection of fluorescent fillings, plagues, calculus, discolorations generally, amalgam, gold fillings as if it were caries).

  12. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  13. Short wavelength laser

    DOEpatents

    Hagelstein, Peter L.

    1986-01-01

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  14. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  15. Tunable high pressure lasers

    NASA Technical Reports Server (NTRS)

    Hess, R. V.

    1976-01-01

    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  16. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  17. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  18. Laser cutting system

    SciTech Connect

    Dougherty, Thomas J

    2015-03-03

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  19. Single mode cavity laser

    SciTech Connect

    Martin, D.W.; Levy, J.L.

    1984-01-17

    This external cavity laser utilizes an unstable resonator in conjuction with a high reflectivity stripe end mirror which is oriented substantially parallel to the plane of the maximum divergence of the laser diode output beam and whose axis is substantially parallel to the plane of the junction of the laser diode. This configuration operates with high efficiency to select only the fundamental mode of the laser diode with a minimal divergence in the output beam.

  20. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  1. Laser Programs Highlights 1998

    SciTech Connect

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  2. Carbon Dioxide Laser Guidelines

    PubMed Central

    Krupa Shankar, DS; Chakravarthi, M; Shilpakar, Rachana

    2009-01-01

    The carbon dioxide (CO2) laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO2 laser and offers guidelines for use in many of the above indications. PMID:20808594

  3. Laser Detection of Pollution.

    ERIC Educational Resources Information Center

    Patel, C. K. N.

    1978-01-01

    Discusses the use of laser spectroscopy in determining the presence of specific gaseous constituents. Three of currently used modes for laser detection of pollution are reviewed; (1) long-path measurements; (2) laser raman (differential absorption) measurements; and (3) optoacoustic detection. (HM)

  4. Carbon dioxide laser guidelines.

    PubMed

    Krupa Shankar, Ds; Chakravarthi, M; Shilpakar, Rachana

    2009-07-01

    The carbon dioxide (CO(2)) laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO(2) laser and offers guidelines for use in many of the above indications. PMID:20808594

  5. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  6. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  7. Laser power transmission

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1992-01-01

    An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.

  8. Laser Fundamentals and Experiments.

    ERIC Educational Resources Information Center

    Van Pelt, W. F.; And Others

    As a result of work performed at the Southwestern Radiological Health Laboratory with respect to lasers, this manual was prepared in response to the increasing use of lasers in high schools and colleges. It is directed primarily toward the high school instructor who may use the text for a short course in laser fundamentals. The definition of the…

  9. Strontium aluminum fluoride laser

    SciTech Connect

    Jenssen, H.P.

    1986-07-08

    A laser is described which consists of: a resonant cavity having a means for outputting coherent radiation and a laser medium comprising a crystal of SrAlF/sub 5/:Cr/sup 3 +/, and pump means for exciting the laser medium.

  10. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  11. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  12. Laser processing of plastics

    NASA Astrophysics Data System (ADS)

    Atanasov, Peter A.

    1995-03-01

    CO2-laser processing of plastics has been studied experimentally and theoretically. Welding of cylindrical parts made from polycarbonate and polypropylene, cutting of polymethyl-methacrylate plates, and drilling holes in polypropylene are presented as examples. A good coincidence between theoretical and experimental results in case of laser welding has been found. Some practical aspects of laser processing of plastics has been given.

  13. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  14. LaserFest Celebration

    SciTech Connect

    Dr. Alan Chodos; Elizabeth A. Rogan

    2011-08-25

    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  15. Initial Experiments Using the OMEGA EP Laser System

    NASA Astrophysics Data System (ADS)

    Meyerhofer, D. D.; Boehly, T. R.; Betti, R.; Glebov, V. Yu.; Kelly, J. H.; Knauer, J. P.; Loucks, S. J.; McCrory, R. L.; Morse, S. F. B.; Myatt, J. F.; Nilson, P. M.; Regan, S. P.; Sangster, T. C.; Smalyuk, V. A.; Stoeckl, C.; Theobald, W.

    2008-11-01

    The OMEGA EP Laser System was completed in April 2008 as a significant enhancement of the OMEGA Laser System. It consists of four NIF-like beamlines, two of which can be operated as high-energy petawatt laser beams. The initial experimental plan includes developing bright backlighter sources (line and bremsstrahlung), isochoric heating, hot-electron conversion-efficiency measurements (to compare with results from other systems), long-pulse LPI at NIF-relevant scale lengths, and fast-ignition integrated experiments using cone-in-shell targets. Backlighter experiments are designed to optimize the fluence for cryogenic implosion core radiography. This talk will describe the current status of the OMEGA EP Laser System and some initial target-physics experiments. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  16. Extremely low NA Yb doped preforms (<0.03) fabricated by MCVD

    NASA Astrophysics Data System (ADS)

    Petit, Vincent; Tumminelli, Richard P.; Minelly, John D.; Khitrov, Victor

    2016-03-01

    We report the fabrication of extremely low NA preforms (<0.03), highly doped with Yb using a conventional Modified Chemical Vapor Deposition (MCVD) system. Our lowest NA preform (0.025 NA) was drawn to a 52um core step-index double-clad fiber operating in a single mode regime (M2=1.04). The fiber had a mode field diameter (MFD) and an effective area (Aeff) greater than 35um and 1000um2 respectively. In a fiber laser configuration, the efficiency was greater than 85% without any sign of photodarkening. To the best of our knowledge, by using our extremely low NA preforms we have demonstrated the largest MFD and Aeff to date for a single-mode step index double-clad Yb doped fiber without involving any micro-structuration.

  17. Treatment of Dentine Hypersensitivity by Diode Laser: A Clinical Study

    PubMed Central

    Umberto, Romeo; Claudia, Russo; Gaspare, Palaia; Gianluca, Tenore; Alessandro, Del Vecchio

    2012-01-01

    Introduction. Dentine hypersensitivity (DH) is characterized by pain after stimuli that usually provoke no symptoms. This study compared the effectiveness of GaAlAs diode laser alone and with topical sodium fluoride gel (NaF). Materials and Methods. The study was conducted on 10 patients (8 F/2 M, age 25–60) and 115 teeth with DH assessed by air and tactile stimuli measured by Numeric Rating Scale (NRS). Teeth were randomly divided into G1 (34 teeth) treated by 1.25% NaF; G2 (33 teeth) lased at 0.5 W PW (T on 100 m and T off 100 ms), fluence 62.2 J/cm2 in defocused mode with a 320 μ fiber. Each tooth received three 1′ applications; G3 (48 teeth) received NaF gel plus laser at same G2 parameters. NRS was checked at each control. Results. Significant pain reduction was showed. The NRS reduction percentages were calculated, and there was a concrete decrease of DH above all in G3 than G2 and G1. Conclusion. Diode laser is a useful device for DH treatment if used alone and mainly if used with NaF gel. PMID:22792109

  18. Lasers: invention to application. Final report

    SciTech Connect

    Ausubel, J.H.; Langford, H.D.

    1987-08-01

    Contents include: The laser--still young at 25; Lasers in modern industries; Lasers in communications and information processing; Lasers in medicine; Lasers in science; Interactions between the science and technology of lasers; Glossary.

  19. Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: Observations of laser-produced-plasma

    NASA Astrophysics Data System (ADS)

    Evans, R.; Camacho-López, S.

    2010-11-01

    This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, λ =532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 μJ, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher on previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].

  20. Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: Observations of laser-produced-plasma

    SciTech Connect

    Evans, R.; Camacho-Lopez, S.

    2010-11-15

    This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, {lambda}=532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 {mu}J, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher on previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].

  1. Frequency discriminating laser

    SciTech Connect

    Thomas, M.D.

    1987-10-20

    A laser is described for discriminating between a higher gain transition and a lower gain transition to permit the laser to lase at the lower gain transition. It consists of: a laser cavity, including more than two mirrors each of which is highly transmissive at the frequency of the higher gain transition, one of which is partially reflective at the frequency of the lower gain transition, and all but the one of which are highly reflective at the frequency of the lower gain transition; an active laser medium disposed within the cavity; and means for pumping the active laser medium.

  2. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-01

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action. PMID:21165022

  3. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  4. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  5. Stabilized Zeeman split laser

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a stablized Zeeman split laser for use in a polarization profilometer is discussed. A Hewlett-Packard laser was modified to stabilize the Zeeman split beat frequency thereby increasing the phase measurement accuracy from the Hewlett-Packard 3 degrees to an accuracy of .01 degrees. The addition of a two layered inductive winding converts the laser to a current controlled oscillator whose frequency is linearly related to coil current. This linear relationship between coil current and laser frequency permits phase locking the laser frequency to a stable crystal controlled reference frequency. The stability of the system is examined and the equipment operation procedures are outlined.

  6. Laser nanoablation of graphite

    NASA Astrophysics Data System (ADS)

    Frolov, V. D.; Pivovarov, P. A.; Zavedeeev, E. V.; Komlenok, M. S.; Kononenko, V. V.; Konov, V. I.

    2014-01-01

    Experimental data on laser ablation of highly oriented pyrolitic graphite by nanosecond pulsed UV ( nm) and green ( nm) lasers are presented. It was found that below graphite vaporization threshold 1 J/cm, the nanoablation regime can be realized with material removal rates as low as 10 nm/pulse. The difference between physical (vaporization) and physical-chemical (heating + oxidation) ablation regimes is discussed. Special attention is paid to the influence of laser fluence and pulse number on ablation kinetics. Possibility of laser-induced graphite surface nanostructuring has been demonstrated. Combination of tightly focused laser beam and sharp tip of scanning probe microscope was applied to improve material nanoablation.

  7. Laser assisted deposition

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1983-01-01

    Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.

  8. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  9. Lasers in otorhinolaryngology

    NASA Astrophysics Data System (ADS)

    Pais Clemente, Manuel P.

    1992-03-01

    Lasers are now commonly accepted and widely used surgical instruments in otorhinolaryngology. There have been a great number of technological advances with lasers that have contributed to the expansion of this new surgical modality with an increased number of medical applications. Surgical strategies have also changed and are more favorable toward conservative surgery in which less tissues is removed than with more radical resections. This combination of improving technology and medical attitudes has changed the field of otorhinolaryngology, and resulted in an expanding use of laser surgery. Since 1973 we have been using the carbon dioxide laser in the treatment of diseases of the upper aero digestive systems, learning this new surgical technique from the pioneer work of Strong, Jako, and Vaughan. It is our conviction that a laser surgeon must have a thorough knowledge of laser biophysics, instrumentation, safety protocols, and surgical indications, and have the technical skills to perform laser surgery. Laser technology continues to improve at an increased speed, and it is imperative to update knowledge of current and potential applications of lasers in our specialty. It is the purpose of this article to present our clinical experience of 18 years with the use of lasers in surgery of ORL, emphasizing the carbon dioxide laser.

  10. Laser surgery: using the carbon dioxide laser.

    PubMed Central

    Wright, V. C.

    1982-01-01

    In 1917 Einstein theorized tha through an atomic process a unique kind of electromagnetic radiation could be produced by stimulated emission. When such radiation is in the optical or infrared spectrum it is termed laser (light amplification by stimulated emission of radiation) light. A laser, a high-intensity light source, emits a nearly parallel electromagnetic beam of energy at a given wavelength that can be captured by a lens and concentrated in the focal spot. The wavelength determines how the laser will be used. The carbon dioxide laser is now successfully employed for some surgical procedures in gynecology, otorhinolaryngology, neurosurgery, and plastic and general surgery. The CO2 laser beam is directed through the viewing system of an operating microscope or through a hand-held laser component. Its basic action in tissue is thermal vaporization; it causes minimal damage to adjacent tissues. Surgeons require special training in the basic methods and techniques of laser surgery, as well as in the safety standards that must be observed. Images FIG. 5 PMID:7074503

  11. Laser radar improvements

    NASA Astrophysics Data System (ADS)

    Jelalian, A. V.

    1981-11-01

    A short history of the uses of various laser radars is presented, and appropriate applications of laser and microwave radars are discussed. CO2 laser radar, operating at 10.6 microns, is considered for use in aircraft navigation systems, fire-control systems for armored vehicle and aircraft, missile guidance, severe storm research, line-of-sight command of missiles, wind turbine site surveys, clear-air turbulence monitors for aircraft, and satellite tracking. Microwave radar is all-weather, but is subject to multipath inaccuracies, countermeasures, and angular resolution limitations, so hybrid laser microwave systems look promising for microwave target acquisition and laser tracking. Advantages and disadvantages of the use of ruby, YAG, and CO2 lasers in varying atmospheric conditions are discussed. Development of a laser radar pod for obstacle detection, Doppler navigation, automatic terrain following, hover control, weapon delivery, and precision searching is noted.

  12. Laser diode protection circuit

    SciTech Connect

    Burgyan, L.; Hand, W.L.

    1990-05-08

    This patent describes a method for protecting a laser diode included within an electro-optical circuit. It comprises: the laser diode, a DC bias supply for supplying forward conduction current to the laser diode to cause it to emit light energy at a predetermined quiescent operating point, and an RF amplifier means for supplying an RF amplitude of an analog modulating signal to the laser diode for modulating the intensity of the emitted light energy about the quiescent operating point thereof, the method including providing a very high impedance to the laser diode during its nominal operating conditions about the quiescent point and, sensing an instantaneous amplitude of the RF amplitude modulating signal to detect amplitude surges therein, and responding to the sensing means by removing forward conduction current from the laser diode during the sense amplitude surges int he RF amplitude of the analog modulating signal, thereby causing the laser diode to reduce emission of light energy to a safe level.

  13. Laser beam shaping techniques

    SciTech Connect

    DICKEY,FRED M.; WEICHMAN,LOUIS S.; SHAGAM,RICHARD N.

    2000-03-16

    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  14. Endoscopic Gastrointestinal Laser Therapy

    PubMed Central

    Buchi, Kenneth N.

    1985-01-01

    The development of flexible fibers for the delivery of laser energy led to the first endoscopic laser applications in humans in the early 1970s. Since that time, much has been learned about applications throughout the gastrointestinal tract. The risks appear to be minimal. The coagulative effect of laser energy is used to treat gastrointestinal hemorrhage and small, benign mucosal lesions. The ablative effect of the Nd:YAG laser on tissue is used for palliative therapy for malignant gastrointestinal disorders and incisional therapy for anatomic lesions such as strictures or cysts. New laser modalities that potentially can be tuned throughout large segments of the electromagnetic spectrum, new fiber-optic delivery systems with specialized tips and new methods of sensitizing tissue to laser energy all indicate that the endoscopic laser should continue to have many new and innovative applications. ImagesFigure 1.Figure 2.Figure 3. PMID:3911589

  15. Laser Applications in Orthodontics

    PubMed Central

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  16. Laser safety in dentistry

    NASA Astrophysics Data System (ADS)

    Wigdor, Harvey A.

    1997-05-01

    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  17. ORION laser target diagnostics

    SciTech Connect

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.; and others

    2012-10-15

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  18. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  19. ORION laser target diagnosticsa)

    NASA Astrophysics Data System (ADS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.; Wright, M. J.; Hood, B. A.; Kemshall, P.

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  20. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics. PMID:23126904

  1. Nanofabrication with Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Delaporte, Ph.; Pereira, A.; Grojo, D.; Torres, R.; Sarnet, Th.; Sentis, M.

    2010-03-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser-matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  2. Lasers in orthodontics

    PubMed Central

    Nalcaci, Ruhi; Cokakoglu, Serpil

    2013-01-01

    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  3. Laser Channeling in an Inhomogeneous Plasma for Fast-Ignition Laser Fusion

    NASA Astrophysics Data System (ADS)

    Ivancic, S.; Haberberger, D.; Theobald, W.; Anderson, K. S.; Froula, D. H.; Meyerhofer, D. D.; Tanaka, K.; Habara, H.; Iwawaki, T.

    2014-10-01

    The evacuation of a plasma cavity by a high-intensity laser beam is of practical importance to the channeling fast-ignition concept. The channel in the plasma corona of an imploded inertial confinement fusion capsule provides a clear path through the plasma so that the energy from a second high-intensity laser can be deposited close to the dense core of the assembled fuel to achieve ignition. This study reports on experiments that demonstrate the transport of high-intensity (>1017 W/cm2) laser light through an inhomogeneous kilojoule-laser-produced plasma up to overcritical density. The multikilojoule high-intensity light evacuates a cavity inside the focal spot, leaving a parabolic trough that is observed using a novel optical probing technique--angular filter refractometery. The cavity forms in less than 100 ps using a 20-TW laser pulse and bores at a velocity of ~ 2 μm/ps. The experimentally measured depths of the cavity are consistent with a ponderomotive hole-boring model. The experiments show that 100-ps IR pulses with an intensity of ~ 5 ×1017 W/cm2 produced a channel up to the critical density, while 10-ps pulses with the same energy but higher intensity did not propagate as far. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Drugs preventing Na+ and Ca2+ overload.

    PubMed

    Ravens, U; Himmel, H M

    1999-03-01

    Cardiac intracellular Na+and Ca2+homeostasis is regulated by the concerted action of ion channels, pumps and exchangers. The Na+, K+-ATPase produces the electrochemical concentration gradient for Na+, which is the driving force for Ca2+removal from the cytosol via the Na+/Ca2+exchange. Reduction of this gradient by increased intracellular Na+concentration leads to cellular Ca2+overload resulting in arrhythmias and contractile dysfunction. Na+and Ca2+overload-associated arrhythmias can be produced experimentally by inhibition of Na+efflux (digitalis-induced intoxication) and by abnormal Na+influx via modulated Na+channels (veratridine, DPI 201-106; hypoxia) or via the Na+, H+exchanger. Theoretically, blockers of Na+and Ca2+channels, inhibitors of abnormal oscillatory release of Ca2+from internal stores or modulators of the Na+, Ca2+and Na+, H+exchanger activities could protect against cellular Na+and Ca2+overload. Three exemplary drugs that prevent Na+and Ca2+overload, i.e. the benzothiazolamine R56865, the methylenephenoxydioxy-derivative CP-060S, and the benzoyl-guanidine Hoe 642, a Na+, H+exchange blocker, are briefly reviewed with respect to their efficacy on digitalis-, veratridine- and ischaemia/reperfusion-induced arrhythmias. PMID:10094840

  5. Alternative technique for laser cooling with superradiance

    SciTech Connect

    Nemova, Galina; Kashyap, Raman

    2011-01-15

    We present a theoretical scheme for laser cooling of rare-earth-doped solids with optical superradiance (SR), which is the coherent, sharply directed spontaneous emission of photons by a system of laser-excited rare-earth ions in the solid-state host (glass or crystal). We consider an Yb{sup +}-doped ZnF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF (ZBLAN) sample pumped at a wavelength 1015 nm, with a rectangular pulsed source with a power of {approx}433 W and a duration of 10 ns. The intensity of the SR is proportional to the square of the number of excited ions. This unique feature of SR permits an increase in the rate of the cooling process in comparison with the traditional laser cooling of the rare-earth-doped solids with anti-Stokes spontaneous incoherent radiation (fluorescence). This scheme overcomes the limitation of using only low phonon energy glasses for laser cooling.

  6. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  7. Lasers in space

    NASA Astrophysics Data System (ADS)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  8. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  9. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  10. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  11. Distribution of sodium and potassium within individual human erythrocytes by pulsed-laser vaporization in a sheath flow

    SciTech Connect

    Cheung, N.H.; Yeung, E.S. )

    1994-04-01

    Simultaneous determination of the amounts of Na and K inside single human erythrocytes was accomplished by laser vaporization and monitoring the atomic emission produced. By using a modified sheath-flow arrangement, detection of 8 fg (0.35 fmol) of Na is possible with one laser pulse. By using Poisson statistics, one can obtain single-cell information even when multiple cells are vaporized per laser pulse. The intracellular contents for a given individual were found to vary significantly. The [+-]55% and [+-]155% variations for Na and K, respectively, cannot be explained by changes in cell volume. There is only a weak correlation between the Na and K contents in single cells. The results reflect the age distribution of erythrocytes in the sample. Presumably, the enzymes regulating ion transport lose their activities in the older cells. 28 refs., 11 figs., 2 tabs.

  12. A Laser Technique for State-Selected Time-of-Flight Analysis by Pseudo-Random Modulation

    NASA Astrophysics Data System (ADS)

    Baba, Hiroshi; Horiguchi, Hiroyuki; Kondo, Masamichi; Sakurai, Katsumi; Tsuchiya, Soji

    1983-11-01

    A laser technique has been developed for the time-of-flight (TOF) analysis of state-selected atomic or molecular beams. The technique was applied to TOF measurements of Na atoms seeded in supersonic rare gas beams. When a dye laser excited Na atoms in one of the hyperfine levels of the 32S1/2 state, this level was completely depopulated as a result of the optical pumping effect. This depopulation could be detected at a downstream position by the same laser light, since the optically-pumped atoms were transparent, and thus the TOF spectrum could be derived by taking the time correlation between the pseudo-randomly modulated pump laser light and the depopulation detected by LIF. A preliminary scattering experiment of Na by CO2 and SF6 was carried out to confirm the effectiveness of this method.

  13. Laser system using ultra-short laser pulses

    SciTech Connect

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  14. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    NASA Astrophysics Data System (ADS)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  16. Materials processing with a tightly focused femtosecond laser vortex pulse.

    PubMed

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness. PMID:20967085

  17. Measurements of Laser Imprinting Using 2-D Velocity Interferometry

    NASA Astrophysics Data System (ADS)

    Boehly, T. R.; Fiksel, G.; Hu, S. X.; Goncharov, V. N.; Sangster, T. C.; Celliers, P. M.

    2014-10-01

    Evaluating laser imprinting and its effect on target performance is critical to direct-drive inertial confinement fusion research. Using high-resolution velocity interferometry, we measure modulations in the velocity of shock waves produced by the 351-nm beams on OMEGA. These modulations result from nonuniformities in the drive laser beams. We use these measurements to evaluate the effect on imprinting of multibeam irradiation and metal layers on both plastic and cryogenic deuterium targets driven with 100-ps pulses. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Laser treatment in gynecology

    NASA Astrophysics Data System (ADS)

    de Riese, Cornelia

    2004-07-01

    This presentation is designed as a brief overview of laser use in gynecology, for non-medical researchers involved in development of new laser techniques. The literature of the past decade is reviewed. Differences in penetration, absorption, and suitable delivery media for the beams dictate clinical application. The use of CO2 laser in the treatment of uterine cervical intraepithelial lesions is well established and indications as well as techniques have not changed over 30 years. The Cochrane Systematic Review from 2000 suggests no obviously superior technique. CO2 laser ablation of the vagina is also established as a safe treatment modality for VAIN. CO2 laser permits treatment of lesions with excellent cosmetic and functional results. The treatment of heavy menstrual bleeding by destruction of the endometrial lining using various techniques has been the subject of a 2002 Cochran Database Review. Among the compared treatment modalities are newer and modified laser techniques. Conclusion by reviewers is that outcomes and complication profiles of newer techniques compare favorably with the gold standard of endometrial resection. The ELITT diode laser system is one of the new successful additions. CO2 laser is also the dominant laser type used with laparoscopy for ablation of endometriotic implants. Myoma coagulation or myolysis with Nd:Yag laser through the laparoscope or hysteroscope is a conservative treatment option. Even MRI guided percutaneous approaches have been described. No long-term data are available.

  19. Photobiomodulation in laser surgery

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Rong, Dong-Liang; Huang, Jin; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-01-01

    Laser surgery provides good exposure with clear operating fields and satisfactory preliminary functional results. In contrast to conventional excision, it was found that matrix metalloproteinases and the tissue inhibitors of metalloproteinases -1 mRNA expression is higher, myofibroblasts appeared and disappeared slower in laser excision wounds. It has been suggested that the better anatomical and functional results achieved following laser cordectomy may be explained by the fact that such procedures result in better, more rapid healing processes to recover vocal cord for early glottic tumors and better. In this paper, the role of photobiomodulation in laser surgery will be discussed by the cultured monolayer normal human skin fibroblast model of the photobiomodulation of marginal irradiation of high intensity laser beam, the photobiomodulation related to the irradiated tissue, the biological information model of photobiomodulation and the animal models of laser surgery. Although high intensity laser beam is so intense that it destroys the irradiated cells or tissue, its marginal irradiation intensity is so low that there is photobiomodulation on non-damage cells to modulate the regeneration of partly damaged tissue so that the surgery of laser of different parameters results in different post-surgical recovery. It was concluded that photobiomodulation might play an important role in the long-term effects of laser surgery, which might be used to design laser surgery.

  20. Lasers in medicine

    NASA Astrophysics Data System (ADS)

    Peng, Qian; Juzeniene, Asta; Chen, Jiyao; Svaasand, Lars O.; Warloe, Trond; Giercksky, Karl-Erik; Moan, Johan

    2008-05-01

    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser

  1. Interactions of external and internal H+ and Na+ with Na+/Na+ and Na+/H+ exchange of rabbit red cells: evidence for a common pathway.

    PubMed

    Morgan, K; Canessa, M

    1990-12-01

    We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Nai and Hi were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Nao-stimulated Na+ efflux and Na+/H+ EXC as Nao-stimulated H+ efflux and delta pHo-stimulated Na+ influx into acid-loaded cells. The activation of Na+/Na+ EXC by Nao at pHi 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (Km 2.2 mM) and low affinity (Km 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Nao (pHi 6.6, Nai less than 1 mM) also showed high (Km 11 mM) and low (Km 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Nao site (KH 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Nai and allosteric activators (pK 7.0) at high Nai. Na+/H+ EXC was also inhibited by acid pHo and allosterically activated by Hi (pK 6.4). We also established the presence of a Nai regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Nao of both pathways. At low Nai, Na+/Na+ EXC was inhibited by acid pHi and Na+/H+ stimulated but at high Nai, Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Nao sites, cis-inhibited by external Ho, allosterically modified by the binding of H+ to a Hi regulatory site and regulated by Nai. These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger. Na+/H+ EXC was partially inhibited (80-100%) by dimethyl-amiloride (DMA) but basal or

  2. Population transfer of a NaH molecule via stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Zai, Jing-Bo; Zhan, Wei-Shen; Wang, Shuo; Dang, Hai-Ping; Han, Xiao

    2016-09-01

    The population transfer of a NaH molecule from the ground state {{X}1}{Σ+} to the target state {{A}1}{Σ+} via stimulated Raman adiabatic passage (STIRAP) is investigated. The results show that the intensity, delay time and detuning have a significant effect on population transfer. A large population transfer is observed with increased pump and Stokes intensity, especially when the pump and Stokes intensity match. Population transfer also depends on the delay time between the pump laser pulse and the Stokes laser pulse. The detuning of the two pulses influences the population transfer. Efficient population transfer can be realized under the resonant or two-photon resonant condition.

  3. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4

  4. Photonic crystal microcavity lasers and laser arrays

    NASA Astrophysics Data System (ADS)

    Cao, Jiang-Rong

    As a state-of-the-art technology, photonic crystal microcavity lasers have great potentials to resolve many semiconductor laser performance challenges, owing to their compact size, high spontaneous emission factor, and inherent advantages in dimension scalability. This thesis describes efficient numerical analyzing methods for multimode photonic crystal microcavities, including a parallel computing three-dimensional finite-difference time-domain method combined with Pade interpolation, point group projection, and vectorial Green's function method. With the help of these analyzing tools, various experimental photonic crystal microcavity devices fabricated in InGaAsP/InP based materials were studies. Room temperature optical pumped InGaAsP suspended membrane photonic crystal microcavity lasers were demonstrated. Their lithographical fine-tuning, above room temperature operations, mode identifications and polarizations were demonstrated. Room temperature continuous wave (CW) optically pumped photonic crystal microcavity lasers at diameter less than 3.2 mum were demonstrated with crystalline alpha-Al 2O3 (sapphire) as a cladding layer to the InGaAsP membrane. The far-field radiation profiles from these microcavity lasers were measured and compared with our numerical modeling predictions. Two electrical injection scenes for photonic crystal microcavity lasers were introduced, together with some preliminary results including the demonstrations of optically pumped lasing of highly doped cavities and cavities with an electrical conduction post underneath. Electrically excited photonic crystal microcavity light emitting diodes (LEDs) were also experimentally demonstrated.

  5. Peculiarities of filamentation of sharply focused ultrashort laser pulses in air

    SciTech Connect

    Geints, Yu. E.; Zemlyanov, A. A.; Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V. Sinitsyn, D. V.; Sunchugasheva, E. S.

    2010-11-15

    Peculiarities of the self-focusing and filamentation of high-power femtosecond laser pulses in air have been experimentally and theoretically studied under conditions of broad variation of the beam focusing parameter. The influence of the numerical aperture (NA) of the initial radiation focusing on the main characteristics of laser-induced plasma columns (characteristic transverse size, length, and concentration of free electrons) is considered. It is established that, for a rigid (NA > 0.05) initial laser beam focusing, the transverse size of the plasma channel ceases to decrease at a level of R{sub pl} {approx} 2-4 {mu}m as a result of strong refraction of radiation on the plasma formed at the focal waist, which prevents further contraction of the laser beam due to its focusing and self-focusing.

  6. Laser induced biological heating analyzed

    NASA Astrophysics Data System (ADS)

    Liu, Phue

    1985-08-01

    A quantitative analysis of the vaporization of tumors by pulsed CO2 lasers, incision by CW CO2 lasers, tissue coagulation by argon lasers, thermal killing of cancerous cells by He-Ne lasers, and the application of heat by CO2 lasers is presented. Although the calculations are based on a simplified skin model, it may prove useful in clinical treatments.

  7. Laser Safety Inspection Criteria

    SciTech Connect

    Barat, K

    2005-02-11

    A responsibility of the Laser Safety Officer (LSO) is to perform laser safety audits. The American National Standard Z136.1 Safe use of Lasers references this requirement in several sections: (1) Section 1.3.2 LSO Specific Responsibilities states under Hazard Evaluation, ''The LSO shall be responsible for hazards evaluation of laser work areas''; (2) Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''; and (3) Appendix D, under Survey and Inspections, it states, ''the LSO will survey by inspection, as considered necessary, all areas where laser equipment is used''. Therefore, for facilities using Class 3B and or Class 4 lasers, audits for laser safety compliance are expected to be conducted. The composition, frequency and rigueur of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms. In many institutions, a sole Laser Safety Officer (LSO) or a number of Deputy LSO's perform these audits. For that matter, there are institutions that request users to perform a self-assessment audit. Many items on the common audit list and the associated findings are subjective because they are based on the experience and interest of the LSO or auditor in particular items on the checklist. Beam block usage is an example; to one set of eyes a particular arrangement might be completely adequate, while to another the installation may be inadequate. In order to provide more consistency, the National Ignition Facility Directorate at Lawrence Livermore National Laboratory (NIF-LLNL) has established criteria for a number of items found on the typical laser safety audit form. These criteria are distributed to laser users, and they serve two broad purposes: first, it gives the user an expectation of what will be reviewed by an auditor, and second, it is an

  8. Slow inactivation of Na(+) channels.

    PubMed

    Silva, Jonathan

    2014-01-01

    Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation. PMID:24737231

  9. Laser plasmadynamic energy conversion

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1976-01-01

    The generation of electrons ions by interacting an intense laser beam with cesium vapor is considered. Theoretical calculation shows that the conversion efficiency is as high as 40 percent if the entire photon energy is utilized in ionizing the cesium vapor that is generated initially by the incoming laser beam. An output voltage is expected to be generated across two electrodes, one of which is the liquid cesium, by keeping the other electrode at a different work function. Evaluation of the laser plasmadynamic (LPD) converter was performed using pulsed ruby and Nd-glass lasers. Although the results obtained to date indicate an efficiency smaller than that of theoretical predictions, an unoptimized LPD converter did demonstrate the capability of converting laser energy at large power levels. The limitations in the performance may by due to converter geometry, the types of lasers used, and other limitations inherent to the cesium plasma.

  10. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  11. Laser radar in robotics

    SciTech Connect

    Carmer, D.C.; Peterson, L.M.

    1996-02-01

    In this paper the authors describe the basic operating principles of laser radar sensors and the typical algorithms used to process laser radar imagery for robotic applications. The authors review 12 laser radar sensors to illustrate the variety of systems that have been applied to robotic applications wherein information extracted from the laser radar data is used to automatically control a mechanism or process. Next, they describe selected robotic applications in seven areas: autonomous vehicle navigation, walking machine foot placement, automated service vehicles, manufacturing and inspection, automotive, military, and agriculture. They conclude with a discussion of the status of laser radar technology and suggest trends seen in the application of laser radar sensors to robotics. Many new applications are expected as the maturity level progresses and system costs are reduced.

  12. Synthetic laser medium

    DOEpatents

    Stokowski, Stanley E.

    1989-01-01

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chormium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  13. Synthetic laser medium

    DOEpatents

    Stokowski, S.E.

    1987-10-20

    A laser medium is particularly useful in high average power solid state lasers. The laser medium includes a chromium dopant and preferably neodymium ions as codopant, and is primarily a gadolinium scandium gallium garnet, or an analog thereof. Divalent cations inhibit spiral morphology as large boules from which the laser medium is derived are grown, and a source of ions convertible between a trivalent state and a tetravalent state at a low ionization energy are in the laser medium to reduce an absorption coefficient at about one micron wavelength otherwise caused by the divalent cations. These divalent cations and convertible ions are dispersed in the laser medium. Preferred convertible ions are provided from titanium or cerium sources.

  14. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  15. Shipborne hydrographic laser scanning

    NASA Astrophysics Data System (ADS)

    Pfennigbauer, Martin; Rieger, Peter; Schaich, Martin

    2011-11-01

    Applications like hydro-archeology, hydrobiology, or hydraulic engineering sometimes require accurate surveying of submerged areas with point densities usually only achieved with mobile or terrestrial laser scanning. For navigable waterbodies, hydrographic laser scanning from a floating platform represents a viable solution. RIEGL's new hydrographic laser scanner VQ-820-G with its exceptionally high measurement rate of up to 110,000 net measurements per second and its small laser footprint is optimally suited for such applications. We present results from a measurement campaign surveying prehistoric lake dwellings at Lake Constance in Germany. While the aim of typical hydrographic laser scanning applications is to roughly acquire the ground's shape and structure, in this case it was tried to determine the exact position, shape, and attitude of the remainders of the piles. The special requirements with respect to mission planning and data processing are discussed and the performance of the laser scanner is assessed.

  16. Nanofabrication with Pulsed Lasers

    PubMed Central

    2010-01-01

    An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3), is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics. PMID:20672069

  17. Micro-laser

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.

  18. Countermeasure laser development

    NASA Astrophysics Data System (ADS)

    Molocher, Bernhard

    2005-11-01

    In the whole scope of developing a countermeasure system against infrared guided missiles, the development of adequate laser sources is one of many aspects, however certainly the most demanding. The article describes from a directed infrared countermeasure (DIRCM) system aspect the functional and operational basics relevant for countering strategies. DIRCM techniques can be categorized into jamming and damaging countermeasure techniques. The resulting requirements for the countermeasure laser sources are briefly explained. Jam laser source types with advantages and drawbacks as well as possible damage laser sources, including the estimation of maturity and their specific features, are described. The FLASH countermeasure demonstrator was developed to validate the concept of having a closed loop jamming and damaging system. The laser setup for the DIRCM demonstrator FLASH is briefly described and the conducted tests including laser performance are explained.

  19. Lasers in periodontics

    PubMed Central

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie

    2012-01-01

    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics. PMID:23066266

  20. Astrocytes generate Na+-mediated metabolic waves

    NASA Astrophysics Data System (ADS)

    Bernardinelli, Yann; Magistretti, Pierre J.; Chatton, Jean-Yves

    2004-10-01

    Glutamate-evoked Na+ increase in astrocytes has been identified as a signal coupling synaptic activity to glucose consumption. Astrocytes participate in multicellular signaling by transmitting intercellular Ca2+ waves. Here we show that intercellular Na+ waves are also evoked by activation of single cultured cortical mouse astrocytes in parallel with Ca2+ waves; however, there are spatial and temporal differences. Indeed, maneuvers that inhibit Ca2+ waves also inhibit Na+ waves; however, inhibition of the Na+/glutamate cotransporters or enzymatic degradation of extracellular glutamate selectively inhibit the Na+ wave. Thus, glutamate released by a Ca2+ wave-dependent mechanism is taken up by the Na+/glutamate cotransporters, resulting in a regenerative propagation of cytosolic Na+ increases. The Na+ wave gives rise to a spatially correlated increase in glucose uptake, which is prevented by glutamate transporter inhibition. Therefore, astrocytes appear to function as a network for concerted neurometabolic coupling through the generation of intercellular Na+ and metabolic waves.

  1. Excimer laser chemical problems

    SciTech Connect

    Tennant, R.; Peterson, N.

    1982-01-01

    Techniques need to be developed to maintain XeF and XeCl laser performance over long periods of time without degradation resulting from chemical processes occurring within the laser. The dominant chemical issues include optical damage, corrosions of laser materials, gas contamination, and control of halogen concentration. Each of these issues are discussed and summarized. The methods of minimizing or controlling the chemical processes involved are presented.

  2. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  3. Laser In Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Newman, Carlton; Jaggar, David H.

    1982-12-01

    Lasers have been used for some time now on animals for experimental purposes prior to their use in human medical and surgical fields. However the use of lasers in veterinary medicine and surgery per se is a recent development. We describe the application of high and low intensity laser technology in a general overview of the current uses, some limitations to its use and future needs for future inquiry and development.

  4. Nd Lasers For Processing

    NASA Astrophysics Data System (ADS)

    Basiev, T. T.; Denker, B. I.; Maliutin, A. A.; Czigany, I.; Horvath, Z. G.; Kertesz, I.

    1983-10-01

    Annealing of preheated Si-samples by Nd:YAG laser is described. A Nd:YAG laser device with and without acousto-optical Q-switching for trimming, scribing, marking, drilling and medical purposes was used. The development of a portable LiNdLa-phosphate glass laser resulting in 6 % efficiency, Q-switched by LiF with F2color centers is discussed together with some of its applications.

  5. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  6. Precision laser aiming system

    SciTech Connect

    Ahrens, Brandon R.; Todd, Steven N.

    2009-04-28

    A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.

  7. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  8. Laser diagnostics for microgravity droplet studies

    NASA Technical Reports Server (NTRS)

    Winter, Michael

    1995-01-01

    An instrument has been designed, built, and tested for performing laser diagnostic measurements of droplet combustion in low-gravity-flight aircraft. Nonintrusive measurements are of particular importance for droplet combustion (the simplest example of non-premixed combustion) and transport in microgravity environments, where physical contact would introduce an unacceptable level of perturbations. The resolution of these diagnostics can also isolate transport to length scales much smaller than the droplet diameter. These techniques can be configured to instantaneously map an entire flow field in two and three dimensions, providing either qualitative or quantitative information on the distribution of a desired scalar or vector quantity. Detailing the gas-phase flow field and position of the flame front can be achieved using planar laser-induced fluorescence (PLIF) of OH or another flame front marker. An alternative approach is to obtain LIF from a diagnostic seed included in the liquid phase fuel; it would be consumed at the flame front. The main advantage to this approach is that it is easier to choose the wavelength of the molecular absorption which coincides with convenient laser wavelengths rather than finding lasers which can be configured to access OH. Our present method uses a nitrogen-pumped dye laser tuned to a sodium absorption and addition of small concentrations of NaCl to the fuel. Particle image velocimetry (PIV) is a laser-based technique which has recently had its practicality greatly enhanced by the development of high-resolution CCD cameras and the increase in speed and capacity of computer systems. With this technique, a seeded flow is illuminated with a double-pulsed laser sheet to generate a double exposure image on a film or CCD camera. Computer analysis of the image is used to determine the particle velocity vectors and, thus, the gas velocity within the plane of the laser sheet. Our current experiment uses PIV for measuring relative droplet

  9. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  10. Optofluidic random laser

    NASA Astrophysics Data System (ADS)

    Shivakiran Bhaktha, B. N.; Bachelard, Nicolas; Noblin, Xavier; Sebbah, Patrick

    2012-10-01

    Random lasing is reported in a dye-circulated structured polymeric microfluidic channel. The role of disorder, which results from limited accuracy of photolithographic process, is demonstrated by the variation of the emission spectrum with local-pump position and by the extreme sensitivity to a local perturbation of the structure. Thresholds comparable to those of conventional microfluidic lasers are achieved, without the hurdle of state-of-the-art cavity fabrication. Potential applications of optofluidic random lasers for on-chip sensors are discussed. Introduction of random lasers in the field of optofluidics is a promising alternative to on-chip laser integration with light and fluidic functionalities.

  11. Diagrammatic semiclassical laser theory

    SciTech Connect

    Zaitsev, Oleg; Deych, Lev

    2010-02-15

    We derive semiclassical laser equations valid in all orders of nonlinearity. With the help of a diagrammatic representation, the perturbation series in powers of electric field can be resummed in terms of a certain class of diagrams. The resummation makes it possible to take into account a weak effect of population pulsations in a controlled way while treating the nonlinearity exactly. The proposed laser theory reproduces the all-order nonlinear equations in the approximation of constant population inversion and the third-order equations with population-pulsation terms as special cases. The theory can be applied to arbitrarily open and irregular lasers, such as random lasers.

  12. LCLS Injector Drive Laser

    SciTech Connect

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  13. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  14. Laser aircraft. [using kerosene

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K.; Jones, W. S.

    1979-01-01

    The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.

  15. Gigashot Optical Laser Demonstrator

    SciTech Connect

    Deri, R. J.

    2015-10-13

    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  16. Laser welding in space

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  17. Progress in alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Shand, M. L.

    Technology developments aimed at improving alexandrite laser systems are described. The effects of a low emission cross section, high damage probability, short fluorescence lifetime, and high thermal lensing on the performance of the laser are examined. The uses of higher temperatures, an improved resonator design, and high power flashlamp pumping to counter the effects of low gain are discussed. A change in rod orientation and the utilization of thermal lensing insensitive resonators to enhance thermal lensing are proposed. Consideration is given to the different types of damage possible in alexandrite lasers, and the lifetime of the lasers.

  18. Shuttle Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Garvin, James B.

    1999-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.

  19. Deep space laser communications

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Kovalik, Joseph M.; Srinivasan, Meera; Shaw, Matthew; Piazzolla, Sabino; Wright, Malcolm W.; Farr, William H.

    2016-03-01

    A number of laser communication link demonstrations from near Earth distances extending out to lunar ranges have been remarkably successful, demonstrating the augmented channel capacity that is accessible with the use of lasers for communications. The next hurdle on the path to extending laser communication and its benefits throughout the solar system and beyond is to demonstrate deep-space laser communication links. In this paper, concepts and technology development being advanced at the Jet Propulsion Laboratory (JPL) in order to enable deep-space link demonstrations to ranges of approximately 3 AU in the next decade, will be discussed.

  20. Laser applications in phlebology

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Mancini, S.; Postiglione, Marco; Postiglione, M. G.

    2001-06-01

    PURPOSE: review of laser used in phlebology METHOD: critical analysis of scientific data taken from the literature and based on 25 years personal experience. RESULTS: we have three groups of laser applications in phlebology: for the diagnosis, as physical therapy and as surgical therapy. DISCUSSION AND CONCLUSION: the laser-doppler studies the microcirculations, the no-surgical therapy shown positive results in the treatment of venous ulcers and for the wound healing. It could be indicate also as antiphlogistic and anti-edema therapy, in superficial thrombophlebitis. The surgical laser is useful for the surgical cleaning of ulcers, for haemorroids, angiomas and telangiectases.

  1. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGESBeta

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  2. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    SciTech Connect

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; Nam, Kyung -Wan; Guo, Yu -Guo

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.

  3. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  4. Laser Program annual report 1987

    SciTech Connect

    O'Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W.

    1989-07-01

    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  5. Corrosion resistant nickel superalloy coatings laser-clad with a 6 kW high power diode laser (HPDL)

    NASA Astrophysics Data System (ADS)

    Tuominen, Jari; Honkanen, Mari; Hovikorpi, Jari; Vihinen, Jorma; Vuoristo, Petri; Maentylae, Tapio

    2003-03-01

    A series of exerpiments were performed to investigate the one-step laser cladding of Inconel 625 powder, injected off-axially onto Fe37 and 42CrMo4 substrates. The experiments were carried out using a 6 kW high power diode laser (HPDL) mounted to a 6 axis robot system. The rectangular shape of the delivering beam was focused to a spot size of 22 x 5 mm on the work piece. The coating samples were produced using different levels of powder feed rate (77 - 113 g/min), traveling speed (300 - 400 mm/min) and laser power (4.8 - 6 kW). Hot corrosion resistance of laser-clad Inconel 625 coatings were tested in Na2SO4 - V2O5 at 650°C for 1000 hours. Wet corrosion properties of the obtained coatings were tested in immersion tests in 3.5 wt.% NaCl solution. Diode laser power of 6 kW (808 and 940 nm) was high enough to produce 20 mm wide laser-clad tracks with a thickness of 2.5 mm in a single pass, when powder feed rate was more than 6 kg/h and traverse speed was 400 mm/min. Wet corrosion properties of laser-clad Inconel 625 coatings were found to be superior to sprayed and welded coatings. Hot corrosion resistance was even slightly better than corresponding wrought alloy. Finally, one-step HPDL cladding was demonstrated in coating of shaft for hydraulic cylinder with Inconel 625 powder. Due to high coating quality, high deposition rate and traverse speed HPDL devices are very promising for large area cladding applications.

  6. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, na62.web.cern.ch/NA62/Documents/TD_Full_doc_v1.pdf> [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work

  7. Single crystal growth of type I Na-Si clathrate by using Na-Sn flux

    NASA Astrophysics Data System (ADS)

    Morito, Haruhiko; Shimoda, Masashi; Yamane, Hisanori

    2016-09-01

    Single crystals of type I Na-Si clathrate, Na8Si46, were synthesized by heating Na, Na4Si4, and Na15Sn4 at 723 K under an Ar gas pressure of 104 Pa for 12 h. The single crystals having {110} habit planes grew up to 1.5 mm in size due to Na evaporation from a Na-Si-Sn melt with a starting compositional molar ratio of Na/Si/Sn=5.75:2:1.

  8. Multiple laser guide stars (LGS) for multiple conjugate adaptive optics (MCAO)

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2012-10-01

    For wavefront sensing and control, the most extensive use of Mult-Conjugate Adaptive Optics (MCAO) systems for extended-path aberration compensation lies with the use of multiple Laser Guide Stars (LGS) for Multi-Conjugate Adaptive Optics (MCAO). Ground-based adaptive optics systems were initially developed by the Starfire Optical Range (SOR) in 1983. Both Rayleigh guide stars and Na guide stars have been developed. More recently, both laser systems, Na LGS at 93 km and Rayleigh guide stars at 20 km, are being combined in the Large Binocular Telescope (LBT) for multiple LGS for Multiple Conjugate Adaptive Optics (MCAO) (M. Hart et al, 2011). Each side of the LBT has 3 Rayleigh LGS which are projected into two triangular constellations. A sodium LGS will be added to each aperture using the same launch optics as the Rayleigh beacons. This will combine low altitude Rayleigh LGS and high altitude Na laser guide stars into a uniquely powerful tomographic wavefront sensing system for Multi-Conjugate Adaptive Optics. Other observatories have used either Rayleigh guide stars or Na guide stars. ESO VLT has 4 Na LGS. MMT has 5 Rayleigh guide stars. Gemini Multi-Conjugate Adaptive Optics System (GEMS) has 5 Na LGS. The many multiple LGS MCAO observatories will be compared for effective design and projected performance.

  9. Europlanet NA2 Science Networking

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Szego, Karoly; Genzer, Maria; Schmidt, Walter; Krupp, Norbert; Lammer, Helmut; Kallio, Esa; Haukka, Harri

    2013-04-01

    Europlanet RI / NA2 Science Networking [1] focused on determining the major goals of current and future European planetary science, relating them to the Research Infrastructure that the Europlanet RI project [2] developed, and placing them in a more global context. NA2 also enhanced the ability of European planetary scientists to participate on the global scene with their own agenda-setting projects and ideas. The Networking Activity NA2 included five working groups, aimed at identifying key science issues and producing reference books on major science themes that will bridge the gap between the results of present and past missions and the scientific preparation of the future ones. Within the Europlanet RI project (2009-2012) the NA2 and NA2-WGs organized thematic workshops, an expert exchange program and training groups to improve the scientific impact of this Infrastructure. The principal tasks addressed by NA2 were: • Science activities in support to the optimal use of data from past and present space missions, involving the broad planetary science community beyond the "space club" • Science activities in support to the preparation of future planetary missions: Earth-based preparatory observations, laboratory studies, R&D on advanced instrumentation and exploration technologies for the future, theory and modeling etc. • Develop scientific activities, joint publications, dedicated meetings, tools and services, education activities, engaging the public and industries • Update science themes and addressing the two main scientific objectives • Prepare and support workshops of the International Space Science Institute (ISSI) in Bern and • Support Trans National Activities (TNAs), Joined Research Activities (JRAs) and the Integrated and Distributed Information Service (IDIS) of the Europlanet project These tasks were achieved by WG workshops organized by the NA2 working groups, by ISSI workshops and by an Expert Exchange Program. There were 17 official WG

  10. Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel Microhardness of Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Lotfian, Malihe

    2015-01-01

    Objectives: Laser irradiation has been suggested as an adjunct to traditional caries prevention methods. But little is known about the cariostatic effect of diode laser and most studies available are on permanent teeth.The purpose of the present study was to investigate the effect of diode laser irradiation combined with topical fluoride on enamel surface microhardness. Materials and Methods: Forty-five primary teeth were used in this in vitro study. The teeth were sectioned to produce 90 slabs. The baseline Vickers microhardness number of each enamel surface was determined. The samples were randomly divided into 3 groups. Group 1: 5% NaF varnish, group 2: NaF varnish+ diode laser at 5 W power and group 3: NaF varnish+ diode laser at 7 W power. Then, the final microhardness number of each surface was again determined. The data were statistically analyzed by repeated measures ANOVA at 0.05 level of significance. Results: In all 3 groups, microhardness number increased significantly after surface treatment (P<0.05). However, Microhardness change after treatment was not significantly different among groups (P >0.05). Conclusion: The combined application of diode laser and topical fluoride varnish on enamel surface did not show any significant additional effect on enamel resistance to caries. PMID:26056517

  11. Laser peening with fiber optic delivery

    DOEpatents

    Friedman, Herbert W.; Ault, Earl R.; Scheibner, Karl F.

    2004-11-16

    A system for processing a workpiece using a laser. The laser produces at least one laser pulse. A laser processing unit is used to process the workpiece using the at least one laser pulse. A fiber optic cable is used for transmitting the at least one laser pulse from the laser to the laser processing unit.

  12. Deliquescence of NaCl-NaNO3 and KNO3-NaNO3 Salt Mixtures at 90C

    SciTech Connect

    Carroll, S; Craig, L; Wolery, T

    2003-12-29

    We conducted reversed deliquescence experiments in saturated NaCl-NaNO3-H2O and KNO{sub 3}-NaNO{sub 3}-H{sub 2}O systems at 90 C to determine relative humidity and solution composition. NaCl, NaNO{sub 3}, and KNO{sub 3} represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV, USA. Model predictions agree with experimental results for the NaCl-NaNO{sub 3}-H{sub 2}O system, but underestimate relative humidity by as much as 8% and solution composition by as much as 50% in the KNO{sub 3}-NaNO{sub 3}-H{sub 2}O system.

  13. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  14. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  15. Synthesis and photolysis of NaYF4@SiO2@TiO2 core-shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Shi, Guoyou; Mao, Yifu; Ren, Guozhong; Gong, Lunjun; Zhi, Zhugong

    2014-12-01

    Monodisperse β-NaYF4 nanocrystals were synthesized with oleic acid as capping ligands by solvothermal method, and then, SiO2 and TiO2 were coated successively. Intense ultraviolet light is emitted from NaYF4:Yb/Tm under the 980 nm laser and the intensity of ultraviolet light reduce dramatically after these nanocrystals were coated with SiO2 and TiO2 shells, which means NaYF4@SiO2@TiO2 core-shell nanocomposites can be used to realize the infared photocatalysis. Photocatalytic activity of these nanocomposites is demonstrated using methyl orange (MO) as a chemical probe under the 980 nm laser excitation.

  16. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

    PubMed Central

    2010-01-01

    Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP) but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na+ pump which transports only

  17. Recent advances in the development of scheelite-like MT1-xLnx(WO4)2 lasers

    NASA Astrophysics Data System (ADS)

    Zaldo, Carlos; Cascales, Concepción; Serrano, María Dolores; Han, Xiumei

    2010-04-01

    Tetragonal NaT(WO4)2, T= trivalent Y, La, Gd and Lu, single crystals doped with Yb3+ or Tm3+ have shown efficient room temperature laser operation at λ~1.05 μm and λ~1.95 μm, respectively. The broad bandwidth of the optical transitions of these lanthanides is of particular interest for diode-laser-pumped tunable and mode-locked femtosecond lasers. The present knowledge about these crystals and their applications as solid state lasers is overviewed. Results of new material preparation directions to produce epilayers and nano-, micro-particles of these compounds are described.

  18. Laser treatment of a neodymium magnet and analysis of surface characteristics

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ali, H.; Rizwan, M.; Kassas, M.

    2016-08-01

    Laser treatment of neodymium magnet (Nd2Fe14B) surface is carried out under the high pressure nitrogen assisting gas. A thin carbon film containing 12% WC carbide particles with 400 nm sizes are formed at the surface prior to the laser treatment process. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools. The corrosion resistance of the laser treated surface is analyzed incorporating the potentiodynamic tests carried out in 0.05 M NaCl+0.1 M H2SO4 solution. The friction coefficient of the laser treated surface is measured using the micro-scratch tester. The wetting characteristics of the treated surface are assessed incorporating the sessile water drop measurements. It is found that a dense layer consisting of fine size grains and WC particles is formed in the surface region of the laser treated layer. Corrosion resistance of the surface improves significantly after the laser treatment process. Friction coefficient of laser treated surface is lower than that of the as received surface. Laser treatment results in superhydrophobic characteristics at the substrate surface. The formation of hematite and grain size variation in the treated layer slightly lowers the magnetic strength of the laser treated workpiece.

  19. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  20. Ultrafast imaging the light-speed propagation of a focused femtosecond laser pulse in air and its ionized electron dynamics and plasma-induced pulse reshaping

    NASA Astrophysics Data System (ADS)

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Shi, Xueshong; Wang, Qingsong; Wang, Guoyan; Lu, Yongfeng

    2016-03-01

    The light-speed propagation of a focused femtosecond (fs) laser pulse in air was recorded by a pump-probe shadowgraph imaging technique with femtosecond time resolution. The ultrafast dynamics of the laser-ionized electrons were studied, which revealed a strong reshaping of the laser field due to laser-air nonlinear interaction. The influence of laser fluence and focusing conditions on the pulse reshaping was studied, and it was found that: (1) double foci are formed due to the refocusing effect when the laser fluence is higher than 500 J/cm2 and the focusing numeric aperture (NA) is higher than 0.30; and (2) a higher NA focusing lens can better inhibit the prefocusing effect and nonlinear distortion in the Gaussian beam waist.

  1. Lasers '83. Proceedings of the international conference

    SciTech Connect

    Powell, R.C.

    1985-01-01

    Among the topics discussed are the development history of the semiconductor diode laser, laser material processing, nonlinear spectroscopy, recent advancements in diode lasers, laser-driven particle accelerators, laser applications in the atmospheric sciences, laser-assisted collisions, novel (garnet and alexandrite) solid state laser materials, IR molecular lasers, devices and components for fiber-optic communications, free-electron lasers and masers, and picosecond optical phenomena. Also covered are laser-stimulated materials surface processes, color center laser developments, blue-green and metal vapor lasers, laser chemistry, nonlinear effects, high energy lasers, excimer lasers, laser trapping of ions, optical cavities and propagation, laser isotope separation, laser trapping of atoms, laser applications in biochemistry, tunable coherent short wavelength radiation, laser spectroscopy, picosecond studies of condensed phase molecular systems, and combustion and plasma diagnostics.

  2. Advances in high-power 9XXnm laser diodes for pumping fiber lasers

    NASA Astrophysics Data System (ADS)

    Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik

    2016-03-01

    A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.

  3. Compact laser sources for laser designation, ranging and active imaging

    NASA Astrophysics Data System (ADS)

    Goldberg, Lew; Nettleton, John; Schilling, Brad; Trussel, Ward; Hays, Alan

    2007-04-01

    Recent advances in compact solid sate lasers for laser designation, eye-safe range finding and active imaging are described. Wide temperature operation of a compact Nd:YAG laser was achieved by end pumping and the use of multi-λ diode stacks. Such lasers enabled construction of fully operational 4.7 lb laser designator prototypes generating over 50 mJ at 10-20 Hz PRF. Output pulse energy in excess of 100 mJ was demonstrated in a breadboard version of the end-pumped laser. Eye-safe 1.5 μm lasers based on flash-pumped, low PRF, Monoblock lasers have enabled compact STORM laser range finders that have recently been put into production. To achieve higher optical and electrical efficiency needed for higher PRF operation, Monoblock lasers were end-pumped by a laser diode stack. Laser diode end-pumped Monoblock lasers were operated at 10-20 Hz PRF over a wide temperature range (-20 to +50 °C). Compared with bulk compact solid state lasers, fiber lasers are characterized by lower pulse energy, higher PRF's, shorter pulses and higher electrical efficiency. An example of fiber lasers suitable for LIDAR, and atmospheric measurement applications is described. Eye-safe, low intensity diode pumped solid state green warning laser developed for US Army checkpoint and convoy applications is also described.

  4. First Results from Laser-Driven MagLIF Experiments on OMEGA: Backscatter and Transmission Measurements of Laser Preheating

    NASA Astrophysics Data System (ADS)

    Davies, J. R.; Barnak, D. H.; Betti, R.; Chang, P.-Y.

    2015-11-01

    A laser-driven version of MagLIF (magnetized liner inertial fusion) is being developed on the OMEGA laser. In the first experiment, laser preheating with a single OMEGA beam was studied. Laser energies of 60 to 200 J in 2.5-ns-long pulses were used, with a distributed phase plate giving a Gaussian intensity profile with a 96 μm full width at half maximum. We report on backscatter measurements from gas-filled cylinders and both backscatter and transmission measurements from the 1.84- μm-thick polyimide foils used for the laser entrance windows. Backscatter spectra and energies from both cylinders and foils alone were very similar. Approximately 0.5% of the total incident laser energy was backscattered. Backscattering lasted for little more than 0.5 ns. The fraction of laser energy transmitted through foils within the original beam path increased from 50% to 64% as the laser energy was increased from 60 to 200 J. Up to 10% of the laser energy was sidescattered as the foil started to transmit. Sidescattering of transmitted light lasted ~0.5 ns. The sidescattering might be avoided by using a short prepulse at least 0.5 ns prior to the main pulse. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  5. In Vitro Comparison of the Effects of Diode Laser and CO2 Laser on Topical Fluoride Uptake in Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Sorouri, Milad

    2015-01-01

    Objectives: Fluoride therapy is important for control and prevention of dental caries. Laser irradiation can increase fluoride uptake especially when combined with topical fluoride application. The objective of this study was to compare the effects of CO2 and diode lasers on enamel fluoride uptake in primary teeth. Materials and Methods: Forty human primary molars were randomly assigned to four groups (n=10). The roots were removed and the crowns were sectioned mesiodistally into buccal and lingual halves as the experimental and control groups. All samples were treated with 5% sodium fluoride (NaF) varnish. The experimental samples in the four groups were irradiated with 5 or 7W diode or 1 or 2W CO2 laser for 15 seconds and were compared with the controls in terms of fluoride uptake, which was determined using an ion selective electrode after acid dissolution of the specimens. Data were analyzed by SPSS version 16 using ANOVA treating the control measurements as covariates. Results: The estimated amount of fluoride uptake was 59.5± 16.31 ppm, 66.5± 14.9 ppm, 78.6± 12.43 ppm and 90.4± 11.51 ppm for 5W and 7 W diode and 1W and 2 W CO2 lasers, respectively, which were significantly greater than the values in the conventional topical fluoridation group (P<0.005). There were no significant differences between 7W diode laser and 1W CO2 laser, 5W and 7W diode laser, or 1W and 2W CO2 laser in this regard. Conclusion: The results showed that enamel surface irradiation by CO2 and diode lasers increases the fluoride uptake. PMID:27123018

  6. Photo-induced inhibition of insulin amyloid fibrillation on online laser measurement

    SciTech Connect

    Liu, Rui; Su, Rongxin; Qi, Wei; He, Zhimin

    2011-06-03

    Highlights: {yields} We compare the structures of insulin upon heating with or without laser irradiation. {yields} Laser irradiation inhibits insulin fibrillation and may be of insert for mechanistic disease studies. {yields} Online laser measurements should be carefully used in the study of amyloid proteins. -- Abstract: Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circular dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an {alpha}-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in {beta}-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.

  7. Laser Ranging Simulation Program

    NASA Technical Reports Server (NTRS)

    Piazolla, Sabino; Hemmati, Hamid; Tratt, David

    2003-01-01

    Laser Ranging Simulation Program (LRSP) is a computer program that predicts selected aspects of the performances of a laser altimeter or other laser ranging or remote-sensing systems and is especially applicable to a laser-based system used to map terrain from a distance of several kilometers. Designed to run in a more recent version (5 or higher) of the MATLAB programming language, LRSP exploits the numerical and graphical capabilities of MATLAB. LRSP generates a graphical user interface that includes a pop-up menu that prompts the user for the input of data that determine the performance of a laser ranging system. Examples of input data include duration and energy of the laser pulse, the laser wavelength, the width of the laser beam, and several parameters that characterize the transmitting and receiving optics, the receiving electronic circuitry, and the optical properties of the atmosphere and the terrain. When the input data have been entered, LRSP computes the signal-to-noise ratio as a function of range, signal and noise currents, and ranging and pointing errors.

  8. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  9. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  10. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  11. Learning about Lasers

    ERIC Educational Resources Information Center

    Roberts, Larry

    2011-01-01

    The word laser is an acronym. It stands for Light Amplification by Stimulated Emission of Radiation. Lasers, invented in 1958, are used to cut and fuse materials, accurately survey long distances, communicate across fiber-optic phone lines, produce 3D pictures, make special effects, help navigation, and read bar codes for cash registers. A laser…

  12. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  13. Laser Scanning In Inspection

    NASA Astrophysics Data System (ADS)

    West, Patricia; Baker, Lionel R.

    1989-03-01

    This paper is a review of the applications of laser scanning in inspection. The reasons for the choice of a laser in flying spot scanning and the optical properties of a laser beam which are of value in a scanning instrument will be given. The many methods of scanning laser beams in both one and two dimensions will be described. The use of one dimensional laser scanners for automatic surface inspection for transmitting and reflective products will be covered in detail, with particular emphasis on light collection techniques. On-line inspection applications which will be mentioned include: photographic film web, metal strip products, paper web, glass sheet, car body paint surfaces and internal cylinder bores. Two dimensional laser scanning is employed in applications where increased resolution, increased depth of focus, and better contrast are required compared with conventional vidicon TV or solid state array cameras. Such examples as special microscope laser scanning systems and a TV compatible system for use in restricted areas of a nuclear reactor will be described. The technical and economic benefits and limitations of laser scanning video systems will be compared with conventional TV and CCD array devices.

  14. Laser biostimulation in pediatrics

    NASA Astrophysics Data System (ADS)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.

    1995-01-01

    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  15. Laser Damage Lab

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Optical Damage Threshold Testing Instrumentation at NASA Langley Research Center. This work was sanctioned and funded by Code Q, R, & AE to develop a new standard for damage testing various types of optical materials and coatings. Laser Induced Damage Threshold (LIDT) testing is a destructive test procedure to determine the minimum applied laser energy level that will result in damage and is referred to as the damage threshold. The damage threshold is often the critical limitation in the section of optical materials for use in high-energy laser systems.The test station consists of diagnostic equipment, beam conditioning optical elements, an inspection microscope and three lasers: a high energy pulsed ND: Yag, which develops 650mJ at 10 hz and outputs three wavelengths which include 1.06m, 532nm and 355 nm; a Ti:sapphire laser which produces a continuum of laser output from 790nm to 900nm; and a alignment HeNe, which looks yellow when mixed with the 2nd harmonic ND:Yag laser. Laser sources are used to perform damage threshold testing at the specific wavelength of interest.

  16. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants. PMID:27220992

  17. Infrared laser bone ablation

    SciTech Connect

    Nuss, R.C.; Fabian, R.L.; Sarkar, R.; Puliafito, C.A.

    1988-01-01

    The bone ablation characteristics of five infrared lasers, including three pulsed lasers (Nd:YAG, lambda = 1064 micron; Hol:YSGG, lambda = 2.10 micron; and Erb:YAG, lambda = 2.94 micron) and two continuous-wave lasers (Nd:YAG, lambda = 1.064 micron; and CO/sub 2/, lambda = 10.6 micron), were studied. All laser ablations were performed in vitro, using moist, freshly dissected calvarium of guinea pig skulls. Quantitative etch rates of the three pulsed lasers were calculated. Light microscopy of histologic sections of ablated bone revealed a zone of tissue damage of 10 to 15 micron adjacent to the lesion edge in the case of the pulsed Nd:YAG and the Erb:YAG lasers, from 20 to 90 micron zone of tissue damage for bone ablated by the Hol:YSGG laser, and 60 to 135 micron zone of tissue damage in the case of the two continuous-wave lasers. Possible mechanisms of bone ablation and tissue damage are discussed.

  18. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  19. Lasers for Training Devices.

    ERIC Educational Resources Information Center

    Fuller, C. A.

    A breadboard model of a laser display system is described in detail and its operating procedure is outlined. The system consists of: a Model 52 argon krypton ion laser and power supply; an optical breadboard comprising a pocket cell light modulator, a galvonmeter beam deflector for vertical scanning, a unique multiple reflection beam steerer for…

  20. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal. PMID:18330794

  1. Laser Chemical Analysis.

    ERIC Educational Resources Information Center

    Zare, Richard N.

    1984-01-01

    Reviews applications of laser methods to analytical problems, selecting examples from multiphoton ionization and fluorescence analysis. Indicates that laser methodologies promise to improve dramatically the detection of trace substances embedded in "real" matrices, giving the analyst a most powerful means for determining the composition of…

  2. Athermal laser design.

    PubMed

    Bovington, Jock; Srinivasan, Sudharsanan; Bowers, John E

    2014-08-11

    This paper discusses circuit based and waveguide based athermalization schemes and provides some design examples of athermalized lasers utilizing fully integrated athermal components as an alternative to power hungry thermo-electric controllers (TECs), off-chip wavelength lockers or monitors with lookup tables for tunable lasers. This class of solutions is important for uncooled transmitters on silicon. PMID:25321020

  3. Hypopyon following laser iridotomy.

    PubMed

    Cohen, J S; Bibler, L; Tucker, D

    1984-07-01

    Two patients who had laser iridotomy performed for pupillary block glaucoma developed hypopyon following surgery. One case had iris bombé with rubeosis iridis, and the other had chronic angle closure glaucoma. Factors contributing to inflammation and possible hypopyon following laser iridotomy are discussed. PMID:6472786

  4. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  5. Coaxial short pulsed laser

    DOEpatents

    Nelson, M.A.; Davies, T.J.

    1975-08-01

    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors. (auth)

  6. Solid state laser

    NASA Technical Reports Server (NTRS)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)

    1993-01-01

    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  7. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  8. Sunlight-Pumped Laser

    NASA Technical Reports Server (NTRS)

    Weaver, W. R. J.; Lee, J. H.

    1982-01-01

    Organic iodide gas is stimulated by portion of Sun's spectrum to emit laser light. Chopper forms pulses from beam of Xenon-Arc light. Chopper is only necessary to avoid buildup of laser-quenching species in sealed tube of present experiment. Perfluoropropyliodide lasing medium functions at temperatures of about 670 K, a fact that reduces cooling requirements in space.

  9. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1989-01-01

    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  10. Fine welding with lasers.

    PubMed

    MacLellan, D

    2008-01-01

    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process. PMID:18557404

  11. Distributed ultrafast fibre laser

    PubMed Central

    Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei

    2015-01-01

    A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454

  12. Lasers in diagnostic dentistry

    NASA Astrophysics Data System (ADS)

    Khorana, Brij M.

    1996-09-01

    Results of a new noninvasive technique for pulp detection that is based on monitoring the time variations in the laser speckle pattern from a human tooth are presented. The paper also contains preliminary results of experiments and attempts at mathematical modeling of multiple scattering of a laser beam from a solid cylinder.

  13. Explosively pumped laser light

    SciTech Connect

    Piltch, M.S.; Michelott, R.A.

    1991-09-24

    This patent describes a single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  14. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  15. Surface treatments by laser

    NASA Astrophysics Data System (ADS)

    Thomann, A. L.; Benzerga, R.; Basillais, Armelle; Georges, Cecile; Fariaut, Francois; Semmar, Nadjib; Boulmer-Leborgne, Chantal

    2003-07-01

    Laser treatments of various metals are studying depending on the laser wavelength, pulse time duration and shape, and fluence (laser/metal interaction regime). Low fluence excimer UV laser melting process of gold layer is shown to improve the corrosion resistance of multilayer (Au/Ni/Cu alloy) electrical contacts. For this application the homogenity of the laser beam as well as the initial Cu substrate roughness are found to be limiting parameters of the process. Carburization of Al alloy, performed in C3H6 atmosphere with a KrF laser induces the incorporation of carbon atoms over about 4 μm depth. The crystalline Al4C3 synthesized at the surface leads to a strengthening of the light Al alloy, which is of great interest for application in car industry. The study shows that diffusion of C atom in the target is possible because of a plasma presence on the surface which supports the molten bath life time and induces dissociation of the ambient gas. In the last example of laser metal surface treatment presented in that paper, a commonly used steel is treated in air with different lasers at a fluence above the plasma formation threshold. It is seen that the machining oils covering the surface before the treatment can be efficiently removed and that new compounds (nitride, carbide and oxides) are formed at the surface.

  16. Laser Programs Highlight 1995

    SciTech Connect

    Jacobs, R.R.

    1997-01-31

    Our contributions to laser science and technology and corresponding applications range from concept to design of the National Ignition Facility, transfer of Atomic Vapor Laser Isotope Separation technology to the private sector, and from new initiatives in industry and defense to micro-optics for improving human vision.

  17. The Human Laser.

    ERIC Educational Resources Information Center

    Guerra, David V.

    1996-01-01

    Presents a participation activity for students of all ages that stimulates the processes that occur in the build-up of a laser pulse. Exposes students to the concepts of coherence, monochromaticity, stimulated emission, pulse build-up from background fluctuations, and the properties that dictate the shape of a typical laser pulse. (JRH)

  18. Free-Electron Lasers.

    ERIC Educational Resources Information Center

    Brau, Charles A.

    1988-01-01

    Describes the use of free-electron lasers as a source of coherent radiation over a broad range of wavelengths from the far-infrared to the far-ultraviolet regions of the spectrum. Discusses some applications of these lasers, including medicine and strategic defense. (TW)

  19. LIL laser performance status

    NASA Astrophysics Data System (ADS)

    Julien, Xavier; Adolf, Alain; Bar, Emmanuel; Beau, Vincent; Bordenave, Edouard; Chiès, Thierry; Courchinoux, Roger; Di-Nicola, Jean-Michel; Féral, Christophe; Gendeau, Patrick; Graillot, Hervé; Grosset-Grange, Claire; Henry, Olivier; Higonenq, Vincent; Journot, Eric; Lacampagne, Lionel; Lafond, Eric; Le Déroff, Laurent; Martinez, Arnaud; Patissou, Loic; Roques, Alain; Thauvin, Ludovic; Thiell, Gaston

    2011-03-01

    The Laser Integration Line (LIL) was first designed as a prototype to validate the concepts and the laser architecture of the Laser MegaJoule (LMJ). The LIL facility is a 4-beam laser representing a quad structure of the LMJ. A set of test campaigns were conducted to safely ramp up laser performance. The main goal was to measure quad-specific features such as beam synchronization and focal spot (size, smoothing contrast ratio or irradiation nonuniformity) versus the LMJ requirements. Following the laser commissioning, the LIL has become a major instrument dedicated to the achievement of plasma physics experiments for the French Simulation Program and was also opened to the academic scientific community. One of the attributes of the LIL facility is to be very flexible to accommodate the requests of plasma physicists during campaigns. The LIL is constantly evolving to best meet the needs of target physicists. Changes made or planned are either to improve the quality of laser beams, or to increase the LIL Energy-Power operating space. To optimize preparation and design of shot campaigns, the LIL performance status has been elaborated. It gives information about the characteristics of the laser in terms of near field and far field, defines the steps to maintain performance, explains how the facility responds to the request, details settings (smoothing, shaping of the focal spot, energy, temporal pulse shaping, beam pointing) and gives the limits in energy and power. In this paper, an overview of the LIL performance is presented.

  20. Coherent Polariton Laser

    NASA Astrophysics Data System (ADS)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui

    2016-01-01

    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  1. Dual IR laser shattering of a water microdroplet

    NASA Astrophysics Data System (ADS)

    Sugiyama, Akinori; Nakajima, Atsushi

    2012-10-01

    Ion desorption from the infrared (IR) laser shattering of water microdroplets (∅90 μm in diameter) was experimentally examined by ion current measurements coupled with time-resolved imaging by a charge-coupled-device camera. When a microdroplet was shattered by simultaneous illumination by two IR lasers ( λ=2.9 μm) from both the left- and right-hand sides, the time-resolved imaging shows that a lot of small fragments of splash spread around the droplet. The spatial distributions of the small fragments were symmetrically compressed. The resulting fragment swarm was effectively introduced into a vacuum chamber through an inlet skimmer ∅0.3-0.4 mm in diameter. The ion current measured from a 10-6 mol/m3 NaCl water solution microdroplet using two lasers was considerably enhanced compared to that by single IR laser shattering. When one of the two IR lasers was delayed by 0-1000 μs, the ion current gradually decreased with the delay time, and dropped substantially at delays longer than 100 ns. The results are ascribed to dynamical processes following the multi-photon excitation. The dual IR laser ablation of a liquid droplet can enhance the efficiency of ion formation with a lower dispersion velocity, which can be conveniently combined with time-of-flight mass spectrometry.

  2. Energy transmission by laser

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2015-02-01

    Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF) and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of superlong ionised channels with a characteristic diameter of ~ 100 mkm in atmosphere along the beam propagation direction. At estimated electron densities below 1016 cm-3 in these filaments and laser wavelengths in the range of 0.5 - 1.0 mm, the plasma barely absorbs laser radiation. In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~ 100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m). Not so long ago scientific group from P.N. Lebedev has improved that result, the discharge gap -1m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result - 16 m long conducting channel controlled by a laser spark at the voltage - 3 MV - was obtained more than 20years ago in Russia and Japan by using pulsed CO2 laser with energy - 0.5 kJ. An average electric field strength was < 190 kV/m. It is still too much for efficient applications.

  3. Survey of laser injury

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Dunn, J. C., II; Roach, William P.

    2002-06-01

    Laser use is pervasive and steadily expanding both in the private sector and the Department of Defense (DoD). For more than 20 years, Rockwell Laser Industries, the U.S. Army, and the Food and Drug Administration's Center for Devices and Radiological Health have separately collected data on injuries occurring during, or resultant from, the use of lasers. However, data from these sources is incomplete and has not recently undergone a thorough compiling, statistical analysis, review and summarization. It is our belief that in order to evaluate current related medical surveillance, safety and training procedures, this data needs such an examination. Persons maintaining these databases were contacted and any available data on laser injury was collected. The data was analyzed and examined for pertinent similarities and differences among a wide range of parameters. We summarize these findings in this paper and also comment on the injuries, current safety measures and injury reporting protocols associated with laser use.

  4. Auricular Acupuncture with Laser

    PubMed Central

    Bahr, Frank

    2013-01-01

    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  5. Laser-Atomic Oscillator

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Happer, William

    2008-05-01

    We report a newly developed technique, laser-atomic oscillator, for simultaneously generating stable optical and electrical modulations with a very few components. It requires only a semiconductor laser, a vapor cell, and a few optical components. No photodetector and electronic feedback are needed. In this new system, the ground-state hyperfine coherence of alkali-metal atoms is spontaneously generated. The modulated laser light with a spectrum of a small optical comb is automatically produced, and the spacing between the comb peaks is photonically locked to the hyperfine frequency. The charge carriers in the semiconductor laser are also modulated at the hyperfine frequency. Laser-atomic oscillator is purely optical. Its simple structure allows the system to be very compact. We believe this new technique will bring some advantages in the applications of atomic chronometry, atomic magnetometry, and generation of multi-coherent light.

  6. Solid State Laser

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  7. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  8. Guest Editorial: Laser Damage

    SciTech Connect

    Vitaly Gruzdev, Michelle D. Shinn

    2012-12-01

    Laser damage of optical materials, first reported in 1964, continues to limit the output energy and power of pulsed and continuous-wave laser systems. In spite of some 48 years of research in this area, interest from the international laser community to laser damage issues remains at a very high level and does not show any sign of decreasing. Moreover, it grows with the development of novel laser systems, for example, ultrafast and short-wavelength lasers that involve new damage effects and specific mechanisms not studied before. This interest is evident from the high level of attendance and presentations at the annual SPIE Laser Damage Symposium (aka, Boulder Damage Symposium) that has been held in Boulder, Colorado, since 1969. This special section of Optical Engineering is the first one devoted to the entire field of laser damage rather than to a specific part. It is prepared in response to growing interest from the international laser-damage community. Some papers in this special section were presented at the Laser Damage Symposium; others were submitted in response to the general call for papers for this special section. The 18 papers compiled into this special section represent many sides of the broad field of laser-damage research. They consider theoretical studies of the fundamental mechanisms of laser damage including laser-driven electron dynamics in solids (O. Brenk and B. Rethfeld; A. Nikiforov, A. Epifanov, and S. Garnov; T. Apostolova et al.), modeling of propagation effects for ultrashort high-intensity laser pulses (J. Gulley), an overview of mechanisms of inclusion-induced damage (M. Koldunov and A. Manenkov), the formation of specific periodic ripples on a metal surface by femtosecond laser pulses (M. Ahsan and M. Lee), and the laser-plasma effects on damage in glass (Y. Li et al). Material characterization is represented by the papers devoted to accurate and reliable measurements of absorption with special emphasis on thin films (C. Mühlig and S

  9. Laser dividing apparatus

    DOEpatents

    English, Jr., R. Edward; Johnson, Steve A.

    1995-01-01

    A laser beam dividing apparatus (10) having a first beam splitter (14) with an aperture (16) therein positioned in the path of a laser beam (12) such that a portion of the laser beam (12) passes through the aperture (16) onto a second beam splitter (20) and a portion of the laser beam (12) impinges upon the first beam splitter (14). Both the first beam splitter (14) and the second beam splitter (20) are, optionally, made from a dichroic material such that a green component (24) of the laser beam (12) is reflected therefrom and a yellow component (26) is refracted therethrough. The first beam splitter (14) and the second beam splitter (20) further each have a plurality of facets (22) such that the components (24, 26) are reflected and refracted in a number equaling the number of facets (22).

  10. Advances in chemical lasers

    SciTech Connect

    Miller, D.J.

    1987-09-25

    High-power chemical lasers thrive in an array of special environments and present many fascinating associated subjects ripe for developmental research. Included are processes to produce the source reactants; supersonic mixing and reacting flow fields; the production and dissipation of multiple vibrational-rotational molecular states; optical gain extraction in complex geometries; media inhomogeneity effects, and waste energy and reaction products removal. Some configurations require wavelength selectivity, special optical components, and coherent cavity or beam combining. In recent years, progress has been made in these areas on behalf of continuous-wave and repetitively pulsed hydrogen fluoride and deuterium fluoride lasers, subsonic and supersonic oxygen-iodine lasers, and potential shorter wavelength chemical lasers based on chemically excited higher electronic states. This paper presents a brief review of the technical approach of some of the technology areas, and the status in achieving practical, integrated high-power chemical lasers.

  11. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  12. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  13. NASA Space Laser Technology

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  14. Ultrafast laser IR countermeasures

    NASA Astrophysics Data System (ADS)

    Rafailov, Michael K.

    2009-05-01

    Directional Infrared Countermeasures (DIRCM) is an effective technique to defeat heat-seeking missiles. The major problem of existing DIRCM is that it may work like a beacon for threats that are not susceptible to the jamming code implemented: attracting a missile instead of re-directing it away from the aircraft. Ultra-fast laser pulse technology is discussed as an alternative to a conventional laser DIRCM. An ultra-fast laser is capable of providing a different type of countermeasure which is compatible with existing laser based DIRCM pointing systems as it requires much less peak power than damage inducing systems. A foundation of ultra-fast technology is its unique ability to alter the intrinsic characteristics of the semiconductor. In this paper, we will only consider the effects of a mild lattice disturbance caused by relatively low energy ultra-fast (femto-second) and, to some extent, fast (pico-second) laser pulses.

  15. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-05-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster.

  16. Catalac free electron laser

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1982-01-01

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  17. Catalac free electron laser

    DOEpatents

    Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

    1979-12-12

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

  18. Effects of different lasers on organic/inorganic ratio of radicular dentin.

    PubMed

    Lopes, F C; Roperto, R; Akkus, A; Akkus, O; Souza-Gabriel, A E; Sousa-Neto, M D

    2016-04-01

    The aim of this study was to evaluate the chemical stability of endodontic-treated root dentin after different laser irradiations through Raman spectroscopy. Fifty maxillary canines were selected and prepared with K3 system. Roots were randomly distributed into five groups (n = 10) according to the surface treatment: GI (water), GII (NaOCl + EDTA), GIII (NaOCl + EDTA + 980 nm Diode laser), GIV (NaOCl + EDTA+ 1064 nm Nd: YAG laser) and GV (NaOCl + EDTA+ 2780 nm Er,Cr: YSGG laser). Lasers were applied for 20 s. Samples were bisected, and the organic and inorganic content of dentin was analyzed by Raman spectroscopy. Data were submitted to ANOVA and Tukey tests (p < 0.05). None of the surface treatments alter the inorganic content (cts) (p = 0.183). Roots irradiated with Er,Cr: YSGG laser had a reduced collagen content (GV-290.7 ± 41.7) compared with the water-treated roots (GI-328.3 ± 63.5) and those treated with NaOCl + EDTA (GII-333.9 ± 55.8). Roots irradiated with Er,Cr: YSGG laser also showed a higher inorganic/organic ratio (GV-9.5 ± 1.1) than roots treated with water (GI-7.7 ± 1.5), NaOCl + EDTA (GII-8.0 ± 1.4) and diode laser (GIII-8.2 ± 1.6). Both organic and inorganic contents increased from cervical to apical thirds in all groups. None of the surface treatments were able to promote changes in the inorganic content of the root dentin; treatment with NaOCl + EDTA combined with Er,Cr: YSGG altered collagen. PMID:26796704

  19. Free electron laser designs for laser amplification

    DOEpatents

    Prosnitz, Donald; Szoke, Abraham

    1985-01-01

    Method for laser beam amplification by means of free electron laser techniques. With wiggler magnetic field strength B.sub.w and wavelength .lambda..sub.w =2.pi./k.sub.w regarded as variable parameters, the method(s) impose conditions such as substantial constancy of B.sub.w /k.sub.w or k.sub.w or B.sub.w and k.sub.w (alternating), coupled with a choice of either constant resonant phase angle or programmed phase space "bucket" area.

  20. SEM evaluation of smear layer removal by Er:YAG laser in root canals

    NASA Astrophysics Data System (ADS)

    Brugnera, Aldo, Jr.; Roe, Iain M.; Guerisoli, Danilo M.; Barbizam, Joao Vicente B.; Pecora, Jesus D.

    2002-06-01

    The effects of two endodontic irrigants associated or not with Er:YAG laser on a smear layer created by hand instrumentation were evaluated in vitro in the middle and apical thirds of root canals. Twenty five human maxillary canines with a single root were distributed randomly into five groups of five teeth each. Group 1 was irrigated with sodium hypochlorite 1.0%, Group 2 received EDTAC 15% as irrigating solution and Group 3 received both NaClO 1.0% and EDTAC 15%. Group 4 was irrigated with distilled water and irradiated with Er:YAG laser. Group 5 received NaClO 1.0% as irrigating solution and was irradiated with Er:YAG laser. Teeth were split longitudinally and prepared for examination under scanning electron microscopy. The teeth irrigated with NaClO (Group 1) showed the higher amount of smear layer, with statistically significant differences (p<0.05) from the teeth irrigated with distilled water and irradiated with Er:YAG laser (Group 4), which showed intermediate amounts of smear layer. The teeth irrigated with EDTAC 15%, NaClO 1.0% associated with EDTAC 15% and NaClO 1.0% with Er:YAG laser (Groups 2,3 and 5) showed the lowest amounts of smear layer, being statistically similar between them and different (p<0.05) from Groups 1 and 4. There were no differences between the radicular thirds. It can be concluded that irradiation with Er:YAG laser can be as effective as EDTAC 15% when used associated with 1.0% sodium hypochlorite, but not as effective when used together with distilled water.

  1. High-brightness 9xxnm fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Jiang, Xiaochen; Yang, Thomas; He, Xiaoguang; Gao, Yanyan; Zhu, Jing; Zhang, Tujia; Guo, Weirong; Wang, Baohua; Guo, Zhijie; Zhang, Luyan; Chen, Louisa

    2015-03-01

    We developed a high brightness fiber coupled diode laser module providing more than 140W output power from a 105μm NA 0.15 fiber at the wavelength of 915nm.The high brightness module has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.13. It is based on multi-single emitters using optical and polarization beam combining and fiber coupling technique. With the similar technology, over 100W of optical power into a 105μm NA 0.15 fiber at 976nm is also achieved which can be compatible with the volume Bragg gratings to receive narrow and stabilized spectral linewidth. The light within NA 0.12 is approximately 92%. The reliability test data of single and multiple single emitter laser module under high optical load are also presented and analyzed using a reliability model with an emitting aperture optimized for coupling into 105μm core fiber. The total MTTF shows exceeding 100,000 hours within 60% confidence level. The packaging processes and optical design are ready for commercial volume production.

  2. Laser Safety Inspection Criteria

    SciTech Connect

    Barat, K

    2005-06-13

    A responsibility of the Laser Safety Officer (LSO) is to perform laser audits. The American National Standard Z136.1 Safe Use of Lasers references this requirement through several sections. One such reference is Section 1.3.2.8, Safety Features Audits, ''The LSO shall ensure that the safety features of the laser installation facilities and laser equipment are audited periodically to assure proper operation''. The composition, frequency and rigor of that inspection/audit rests in the hands of the LSO. A common practice for institutions is to develop laser audit checklists or survey forms It is common for audit findings from one inspector or inspection to the next to vary even when reviewing the same material. How often has one heard a comment, ''well this area has been inspected several times over the years and no one ever said this or that was a problem before''. A great number of audit items, and therefore findings, are subjective because they are based on the experience and interest of the auditor to particular items on the checklist. Beam block usage, to one set of eyes might be completely adequate, while to another, inadequate. In order to provide consistency, the Laser Safety Office of the National Ignition Facility Directorate has established criteria for a number of items found on the typical laser safety audit form. The criteria are distributed to laser users. It serves two broad purposes; first, it gives the user an expectation of what will be reviewed by an auditor. Second, it is an opportunity to explain audit items to the laser user and thus the reasons for some of these items, such as labelling of beam blocks.

  3. Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis

    NASA Astrophysics Data System (ADS)

    Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.

    2011-02-01

    Femtosecond laser induced breakdown spectroscopy (LIBS) was used to identify the spatial resolution limitations and assess the minimal detectable mass restrictions in laser-ablation based chemical analysis. The atomic emission of sodium (Na) and potassium (K) dopants in transparent dielectric Mica matrices was studied, to find that both these elements could be detected from 450 nm diameter ablation craters, full-width-at-half-maximum (FWHM). Under optimal conditions, mass as low as 220 ag was measured, demonstrating the feasibility of using laser-ablation based chemical analysis to achieve high spatial resolution elemental analysis in real-time and at atmospheric pressure conditions.

  4. Test for optical systems in laser projection imaging for PCB

    NASA Astrophysics Data System (ADS)

    Qin, Ouyang; Zhou, Jinyun; Lei, Liang; Lin, Qinghua

    2010-11-01

    Projection imaging is one of the most important steps in the fabrication of Printed Circuit Board. In order to meet the increasing demand for higher resolution, speed and larger area of imaging, a novel Laser Projection Imaging (LPI) has been developed to take the place of the conventional Hg lamp exposure. We set up a system with resolution 10μm over large exposure area of 460mm×610mm on substrate materials. The system is available by the combination of three main parts: an XeF excimer laser with a wavelength of 351nm and single pulse energy of 120mJ, an illumination system with numerical aperture (NA) value of 0.02, and a double telecentric optical projection lens with NA value of 0.025. Such designs can theoretically meet the demand of actual lithography. However, experiments have shown that the propagation loss ratio of laser power from the light source to the substrate can be up to 50% or more so as to hardly achieve the expected results. In this paper, we present our results of experiments under different conditions on laser projection imaging equipment, and meanwhile, parameters such as gas lifetime, pulse repetition rate, exposure dose, as well as the optical lose of quartz microlens array are analyzed. Finally, we acquired the optimum exposure parameters.

  5. Relativistic Transparency Experiments at the Trident Laser

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Palaniyappan, S.; Gautier, D. C.; Kim, Y. H.; Clark, D. D.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Herrmann, H. W.

    2013-10-01

    With near-diffraction-limited irradiance of 3 × 1020 W/cm2 on target and prelase contrast better than 10-9, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many uC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work has been performed under the auspices of the US DOE contract number DE-AC52-06NA25396.

  6. Simultaneous phase and shape control of monodisperse NaLuF4:Yb, Er microcrystals and greatly enhanced upconversion luminescence from their superstructures

    NASA Astrophysics Data System (ADS)

    Li, Wenbin; Tan, Congbing; Zhang, Yutao

    2013-05-01

    Simultaneous phase- and shape-controlled NaLuF4 microcrystals co-doped with Yb3+/Er3+ have been synthesized via a facile hydrothermal method by only changing the precursor pH value. The UC emission efficiency of these obtained microparticles showed a strong phase- and shape-dependency. Under irradiation of 980 nm, the luminescence intensity of hexagonal NaLuF4 microcrystals presents an enhancement by at least 5.8 times relative to their cubic counterpart. Specially, an up to 168-fold enhancement of emission intensity from the NaLuF4 superstructures, compared with the microplates with identical hexagonal phase, was observed. Such improvement is likely to be dominated by the laser-cavity mirrors effect from the microcavities on their surface of the NaLuF4 superstructures. These results will permit a promising step to harness the upconversion phosphors in solid state lasers.

  7. Optical phonon modes and crystal structure of NaLaF4 single crystals

    NASA Astrophysics Data System (ADS)

    Lage, Márcio Martins; Matinaga, Franklin Massami; Gesland, Jean-Yves; Moreira, Roberto Luiz

    2006-03-01

    Polarized Raman scattering and infrared reflectivity measurements have been used to investigate the crystal structure of Czochralski-grown NaLaF4 single crystals. The phonon symmetries, the simultaneous presence of polar modes in the infrared and Raman spectra, as well as the observation of piezoelectric resonance, helped us to identify the P6 group as the correct one for this crystal. This material belongs to a family of sodium lanthanide tetrafluorides (NaLnF4) crystals, whose photoluminescence efficiency is comparable to LiYF4. Therefore, NaLaF4 crystals may be important in the development of diode pumped up-conversion solid-state lasers. The number and behavior of the observed optical phonon modes were analyzed in terms of group theory predictions for the group symmetry found. A few anomalies in the phonon characteristics are discussed in terms of cationic disorder in the crystal lattice.

  8. Investigations On Stoichiometry And Melting Behavior Of NaY(WO{sub 4}){sub 2}

    SciTech Connect

    Salunke, R. G.; Gosavi, S. W.; Singh, S. G.; Singh, A. K.; Desai, D. G.; Chauhan, A. K.; Gadkari, S. C.

    2010-12-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies were carried out to understand the melting behavior of the NaY(WO{sub 4}){sub 2}, an important functional material used for the laser production. It has been observed that the stoichiometric NaY(WO{sub 4}){sub 2} composition forms a solution with another phase of the Na{sub 2}WO{sub 4}-Y{sub 2}(WO{sub 4}){sub 3} pseudo-binary system. This is found to be detrimental for the growth of single crystals of the material. Therefore, molar fraction in the starting charge was suitably altered to successfully restrict the formation of the undesired phase in the melt. A composition is suggested for the favorable crystal growth of this material.

  9. Femtosecond probing of sodium cluster ion Na sub n sup + fragmentation

    SciTech Connect

    Baumert, T.; Roettgermann, C.; Rothenfusser, C.; Thalweiser, R.; Weiss, V.; Gerber, G. )

    1992-09-07

    We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na{sub {ital n}}{sup +} have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na{sub 2} and, observed for the first time, neutral trimer Na{sub 3} photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.

  10. Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals

    PubMed Central

    Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping

    2016-01-01

    The morphology of hexagonal phase NaYF4:Er3+ nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er3+ nanocrystals for the first time. And the MIR emission of NaYF4:Er3+ nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er3+ nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er3+ nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er3+ nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er3+ ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er3+ nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium. PMID:27453150

  11. Controllable Phase Transformation and Mid-infrared Emission from Er(3+)-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals.

    PubMed

    Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping

    2016-01-01

    The morphology of hexagonal phase NaYF4:Er(3+) nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er(3+) nanocrystals for the first time. And the MIR emission of NaYF4:Er(3+) nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er(3+) nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er(3+) nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er(3+) nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er(3+) ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er(3+) nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium. PMID:27453150

  12. Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Dandan; Chen, Dongdan; He, Huilin; Pan, Qiwen; Xiao, Quanlan; Qiu, Jianrong; Dong, Guoping

    2016-07-01

    The morphology of hexagonal phase NaYF4:Er3+ nanorods synthesized by hydrothermal method changed greatly after a continuing calcination, along with a phase transformation to cubic phase. Photoluminescence (PL) spectra indicated that mid-infrared (MIR) emission was obtained in both hexagonal and cubic phase NaYF4:Er3+ nanocrystals for the first time. And the MIR emission of NaYF4:Er3+ nanocrystals enhanced remarkably at higher calcination temperature. To prevent uncontrollable morphology from phase transformation, the cubic phase NaYF4:Er3+ nanospheres with an average size of ~100 nm were prepared via a co-precipitation method directly. In contrast, the results showed better morphology and size of cubic phase NaYF4:Er3+ nanocrystals have realized when calcined at different temperatures. And PL spectra demonstrated a more intense MIR emission in the cubic phase NaYF4:Er3+ nanocrystals with an increasing temperature. Besides, the MIR emission peak of Er3+ ions had an obvious splitting in cubic phase NaYF4. Therefore, cubic phase NaYF4:Er3+ nanospheres with more excellent MIR luminescent properties seems to provide a new material for nanocrystal-glass composites, which is expected to open a broad new field for the realization of MIR lasers gain medium.

  13. 980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Liu, Jia; Liang, Shanshan; Sun, Changsen

    2014-10-01

    Photothermal effect (PE) plays a major role in the near-infrared laser interaction with biological tissue. But, quite few interactions can be quantitatively depicted. Here, a two-step model is proposed to describe a 980-nm infrared laser interaction with neuron cell in vitro. First, the laser-induced temperature rises in the cell surrounding area were measured by using an open pipette method and also calculated by solving the heat conduction equation. Second, we recorded the modifications on sodium (Na) channel current in neuron cells directly by using a patch clamp to synchronize the 980-nm laser irradiation and obtained how the electrophysiological function of neuron cells respond to the temperature rise. Then, the activation time constants, τm, were extracted by fitting the sodium currents with the Hodgkin-Huxley model. The infrared laser modulation effect on sodium currents kinetics was examined by taking a ratio between the time constants with and without the laser irradiations. The analysis revealed that the averaged ratio at a specific laser exposure could be well related to the temperature properties of the Na channel protein. These results proved that the modulation of sodium current kinetics of a neuron cell in vitro by 980-nm laser with different-irradiation levels was linearly mediated corresponding to the laser-induced PE.

  14. Thermodynamics of dissolution of lead oxide in NaOH-Na2CO3 melts

    NASA Astrophysics Data System (ADS)

    Barbin, N. M.; Barbina, T. M.

    2016-08-01

    The solubility of lead oxide in NaOH + (20%)Na2CO3 and NaOH + (40%)Na2CO3 melts was studied by the isothermal saturation method. The model mechanisms of dissolution were considered. The thermodynamic parameters were calculated.

  15. Growth, structure, and optical properties of a self-activated crystal: Na3Nd9O3(BO3)8

    NASA Astrophysics Data System (ADS)

    Shan, Faxian; Xia, Mingjun; Zhang, Guochun; Yao, Jiyong; Zhang, Xinyuan; Xu, Tianxiang; Wu, Yicheng

    2015-03-01

    A self-activated crystal Na3Nd9O3(BO3)8 has been grown by using Na2CO3-B2O3-NaF as flux. Its structure was determined by single crystal X-ray diffraction. Na3Nd9O3(BO3)8 crystallizes in the hexagonal crystal system, space group P 6 bar 2m with unit-cell parameters a = 8.7611 Å, c = 8.4579 Å, Z = 1, and V = 562.23 Å3, which is isostructural with Na3La9O3(BO3)8. Na3Nd9O3(BO3)8 has a high Nd3+ concentration (1.60 × 1022 ions/cm3), almost three times that of the self-activated crystal NdAl3(BO3)4 (NAB). The absorption and emission spectra as well as decay time for 4F3/2 to 4I11/2 transition in Na3Nd9O3(BO3)8 were measured at room temperature. The obtained results show that Na3Nd9O3(BO3)8 may be a potential high-neodymium-content laser crystal for microchip laser application.

  16. Laser cooling of solids

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2010-08-01

    Laser cooling of solids, sometimes also known as optical refrigeration, is a fast developing area of optical science, investigating the interaction of light with condensed matter. Apart from being of fundamental scientific interest, this topic addresses a very important practical issue: design and construction of laser pumped solid-state cryocoolers, which are compact, free from mechanical vibrations, moving parts, fluids and can cause only low electromagnetic interference in the cooled area. The optical cryocooler has a broad area of applications such as in the development of magnetometers for geophysical sensors, in biomedical sensing and can be beneficial for satellite instrumentations and small sensors, where compactness and the lack of vibrations are very important. Simply, a laser cooler works on the conversion of low energy pump photons into high-energy anti-Stokes fluorescence photons by extracting some of the phonons (heat energy) in a material. That is, the process of laser cooling of solids is based on anti-Stokes fluorescence also known as luminescence upconversion, when light quanta in the red tail of the absorption spectrum are absorbed from a pump laser, and blue-shifted photons are spontaneously emitted. The extra energy extracted from the solid-state lattice in the form of the phonons is the quanta of vibrational energy which generates heat. The idea to cool solids with anti-Stokes fluorescence was proposed in 1929 by Peter Pringsheim and first demonstrated experimentally by Epstein's research team in 1995. In 1999, Steven Bowman proposed to use the optical refrigeration by anti-Stokes fluorescence within the laser medium to balance the heat generated by the Stokes shifted stimulated emission in a high-power solid-state bulk laser. Such a laser without internal heating named radiation-balanced or athermal laser was experimentally demonstrated for the first time in 2002. At the present time laser cooling of solids can be largely divided into three

  17. Bright laser source with high-power single-mode-emitting diode laser stacked array assembly and fiber coupling

    NASA Astrophysics Data System (ADS)

    Forrer, M.; Moser, H.; Gisler, T.; Spinola Durante, G.; Pierer, J.; Bosshard, C.; Krejci, M.; Lichtenstein, N.

    2011-03-01

    Single-mode-emitting high-power diode laser arrays (SM-HPDLA) are available industrially with more than 50 W emission power per bar. Based on this platform an expandable prototype solution is realized for fiber coupling of a stacked array with more than 100 W to an optical fiber with diameter of 200 micron and NA of 0.11. Advanced methods of controlled assembly of micro-optics by infrared laser-soldering have been developed therefore. We present a compact and scalable concept with scalability on 2 internal and 2 external factors. Internal factors are the increasing beam quality and power stability of high-power single-mode-emitting arrays and the improved assembly accuracy for diode bar and micro-optics. External factors are the interlaced coupling of stacked beam emission from the stacked array and the further option to use optimized polarisation coupling with several diode laser stacks.

  18. Consistency analysis on laser signal in laser guided weapon simulation

    NASA Astrophysics Data System (ADS)

    Yin, Ruiguang; Zhang, Wenpan; Guo, Hao; Gan, Lin

    2015-10-01

    The hardware-in-the-loop simulation is widely used in laser semi-active guidance weapon experiments, the authenticity of the laser guidance signal is the key problem of reliability. In order to evaluate the consistency of the laser guidance signal, this paper analyzes the angle of sight, laser energy density, laser spot size, atmospheric back scattering, sun radiation and SNR by comparing the different working state between actual condition and hardware-in-the-loop simulation. Based on measured data, mathematical simulation and optical simulation result, laser guidance signal effects on laser seeker are determined. By using Monte Carlo method, the laser guided weapon trajectory and impact point distribution are obtained, the influence of the systematic error are analyzed. In conclusion it is pointed out that the difference between simulation system and actual system has little influence in normal guidance, has great effect on laser jamming. The research is helpful to design and evaluation of laser guided weapon simulation.

  19. Multi Laser Pulse Investigation of the DEAS Concept in Hypersonic Flow

    SciTech Connect

    Minucci, M.A.S.; Toro, P.G.P.; Oliveira, A.C.; Chanes, J.B. Jr.; Ramos, A.G.; Nagamatsu, H.T.; Myrabo, L.N.

    2004-03-30

    The present paper presents recent experimental results on the Laser-Supported Directed Energy 'Air Spike' - DEAS in hypersonic flow achieved by the Laboratory of Aerothermodynamics and Hypersonics - LAH, Brazil. Two CO2 TEA lasers, sharing the same optical cavity, have been used in conjunction with the IEAv 0.3m Hypersonic Shock Tunnel - HST to demonstrate the Laser-Supported DEAS concept. A single and double laser pulse, generated during the tunnel useful test time, were focused through a NaCl lens upstream of a Double Apollo Disc model fitted with seven piezoelectric pressure transducers and six platinum thin film heat transfer gauges. The objective being to corroborate previous results as well as to obtain additional pressure and heat flux distributions information when two laser pulses are used.

  20. Very high brightness diode laser

    NASA Astrophysics Data System (ADS)

    Heinemann, Stefan; Lewis, Ben; Michaelis, Karsten; Schmidt, Torsten

    2012-03-01

    Multiple Single Emitter (MSE) modules allow highest power and highest brightness diode lasers based on standard broad area diodes. 12 single emitters, each rated at 11 W, are stacked in fast axis and with polarization multiplexing 200W are achieved in a fully collimated beam with a beam quality of 7mm*mrad in both axes. Volume Bragg Gratings (VBG) stabilize the wavelength and narrow the linewidth to less than 2nm. Dichroic mirrors are used for dense wavelength multiplexing of 4 channels within 12 nm. 400W are measured from a 0.2 mm fiber, 0.1 NA. Control and drive electronics are integrated into the 200 W platform and represent a basic building block for a variety of applications, such as a flexible turn key system comprising 12 MSE modules. An integrated beam switch directs the light in six 100 μm, or in one 0.2 mm and one 0.1 mm fiber. 800W are measured from the six 0.1 mm fibers and 700W from the 0.2 mm fiber. The technologies can be transferred to other wavelengths to include 793 nm and 1530 nm. Narrow line gratings and optimized spectral combining enable further improvements in spectral brightness and power.

  1. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  2. Laser Transmitter Design for the Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Yu, A. W.; Mamakos, W.; Lukemire, A.; Dallas, J. L.; Schroeder, B.; Green, J. W.

    1998-01-01

    NASA is embarking on a new era of laser remote sensing instruments from space. This paper focuses specifically on the laser technology involved in one of the present NASA missions. The Geoscience Laser Altimeter System (GLAS) scheduled to launch in 2001 is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter for this space-based remote sensing instrument is discussed in the context of the mission requirements.

  3. Laser Propulsion Standardization Issues

    SciTech Connect

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter; Sinko, John E.; Sasoh, Akihiro

    2010-10-08

    It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

  4. Lasers in digestive endoscopy

    NASA Astrophysics Data System (ADS)

    Brunetaud, Jean Marc; Maunoury, Vincent; Cochelard, Dominique

    1997-01-01

    Lasers were introduced in digestive endoscopy to stop active gastroduodenal hemorrhages. Their use spread progressively to the treatment of chronic hemorrhages from vascular malformations and sessile tumors. Laser face competition from other endoscopic techniques such as electrocoagulation, injection techniques, dilation, stents, and brachytherapy. Many series have reported the efficacy of lasers in digestive endoscopy used for their thermal or photochemical effects. However, they were gradually abandoned for the treatment of hemorrhages because of competition from nonlaser techniques. Lasers are still used for ablation of sessile tumors, but their true impact is difficult to evaluate. Modern methods of technology assessment did not allow gastroenterologists to clearly define the place of lasers among surgery, radio-chemotherapy, and other endoscopic techniques, and data on the daily use of lasers are not available. Therefore, the conclusion can only be subjective. The best current application of thermal lasers appears to be in the treatment of rectosigmoid villous adenomas in elderly patients. Small superficial rectal cancers may also become a good subject due to the impact of endoscopic ultrasonography. Early lesions with multifocal or diffuse disease such as early esophageal cancers could be the most promising subject of application for photodynamic therapy in the future.

  5. Excimer laser photoresist stripping

    NASA Astrophysics Data System (ADS)

    Genut, Menachem; Tehar-Zahav, Ofer; Iskevitch, Eli; Livshits, Boris

    1996-06-01

    A new method for stripping the most challenging photoresists on deep sub-micron technology semiconductor wafers has been developed. The method uses a combination of UV excimer laser ablation and reactive chemistry to strip the photoresist in a single dry process, eliminating the wet acids or solvents often used following ashing of high dose implantation (HDI) and reactive ion etching (RIE). The stripping process combines new removal mechanisms: chemical assisted UV excimer laser ablation/etching, laser induced chemical etching of side walls and residues, and enhanced combustion. During the laser pulses photolysis of the process gas occurs, UV laser radiation breaks the photoresist polymer chain bonds, and the photoresist (including foreign materials imbedded in it) is ablated. The combustion is ignited by the ablative impact of laser radiation and enhanced by the radicals formed during photo-thermal decomposition of the process gases. Following this process, the volatilized products and gases are evacuated. The optimum laser stripping conditions were developed to provide a wide process window for the most challenging stripping conditions, such as after HDI and RIE (metal, polysilicon), without causing damage to the wafer devices. A photoresist stripping system based on the described technology was designed and built. The system has been designated as the L-StripperTM and provides stripping time of 0.15 s/(micrometer cm2).

  6. Laser Plasma Material Interactions

    NASA Astrophysics Data System (ADS)

    Schaaf, Peter; Carpene, Ettore

    2004-12-01

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  7. A borane laser.

    PubMed

    Cerdán, Luis; Braborec, Jakub; Garcia-Moreno, Inmaculada; Costela, Angel; Londesborough, Michael G S

    2015-01-01

    Emission from electronically excited species forms the basis for an important class of light sources-lasers. So far, commercially available solution-processed blue-emitting laser materials are based on organic compounds or semiconductor nanocrystals that have significant limitations: either low solubility, low chemical- and/or photo-stability and/or uncompetitive prices. Here we report a novel and competitive alternative to these existing laser materials that is based on boron hydrides, inorganic cluster compounds with a rich and diverse chemistry. We demonstrate that solutions of the borane anti-B18H22 show, under pulsed excitation, blue laser emission at 406 nm with an efficiency (ratio of output/input energies) of 9.5%, and a photostability superior to many of the commercially available state-of-the-art blue laser dyes. This demonstration opens the doors for the development of a whole new class of laser materials based on a previously untapped resource for laser technology-the boranes. PMID:25583133

  8. LASER ABLATION STUDIES OF CONCRETE

    EPA Science Inventory

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-s...

  9. Analog Simulation of a Laser.

    ERIC Educational Resources Information Center

    Kessler, Gary

    1982-01-01

    Presents an analog simulation of laser properties (finding time evolution of the intensity of a ruby laser pulse) which serves as the basis of a three-four hour laboratory experiment. Includes programs for solution to rate equations of a three-level laser and production of a giant pulse in a ruby laser. (Author/SK)

  10. Lasers in light skin interaction

    NASA Astrophysics Data System (ADS)

    Chan, Benny L.; Jutamulia, Suganda

    2010-11-01

    Lasers used in dermatological treatments are presented. Commercially available semiconductor lasers (laser diodes) are also presented for comparison. Potential applications of semiconductor lasers to noninvasive information processing or diagnosis as well as medical treatment are discussed. In addition, the current application of LEDs to dermatology is also included in the paper.

  11. Piezoelectric measurement of laser power

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method for measuring the energy of individual laser pulses or a series of laser pulses by reading the output of a piezoelectric (PZ) transducer which has received a known fraction of the total laser pulse beam. An apparatus is disclosed that reduces the incident energy on the PZ transducer by means of a beam splitter placed in the beam of the laser pulses.

  12. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1983-01-01

    A flash lamp pumped dye laser suitable for use as an amplifier stage was developed. The desired output laser pulses are of nanosecond duration, tunable in center frequency, and of good optical quality. Its usefulness as a laser oscillator is emphasized, because it constitutes a compact, relatively efficient source of tunable dye laser light.

  13. Ultra-fast laser system

    SciTech Connect

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  14. Coupled parallel waveguide semiconductor laser

    NASA Technical Reports Server (NTRS)

    Katz, J.; Kapon, E.; Lindsey, C.; Rav-Noy, Z.; Margalit, S.; Yariv, A.; Mukai, S.

    1984-01-01

    The operation of a new type of tunable laser, where the two separately controlled individual lasers are placed vertically in parallel, has been demonstrated. One of the cavities ('control' cavity) is operated below threshold and assists the longitudinal mode selection and tuning of the other laser. With a minor modification, the same device can operate as an independent two-wavelength laser source.

  15. Resource Letter L-1: Lasers.

    ERIC Educational Resources Information Center

    O'Shea, Donald C.; Peckham, Donald C.

    1981-01-01

    Following a brief introduction, an annotated listing of literature and teaching aids on lasers is presented. Categories include: Background Materials; Historical References; General References and Textbooks; Specialized References; Reviews; Articles; Films; Laser Courses; Equipment, Demonstrations, and Experiments; Laser Safety; and Lasers and…

  16. 1982 laser program annual report

    SciTech Connect

    Hendricks, C.D.; Grow, G.R.

    1983-08-01

    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  17. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  18. Optimising Laser Tattoo Removal

    PubMed Central

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  19. Supersonic laser propulsion.

    PubMed

    Rezunkov, Yurii; Schmidt, Alexander

    2014-11-01

    To produce supersonic laser propulsion, a new technique based on the interaction of a laser-ablated jet with supersonic gas flow in a nozzle is proposed. It is shown that such parameters of the jet, such as gas-plasma pressure and temperature in the ablation region as well as the mass consumption rate of the ablated solid propellant, are characteristic in this respect. The results of numerical simulations of the supersonic laser propulsion are presented for two types of nozzle configuration. The feasibility to achieve the momentum coupling coefficient of C(m)∼10(-3) N/W is shown. PMID:25402938

  20. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  1. Frequency stabilized laser

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.; Henschke, R. W.

    1984-08-01

    The document describes a frequency control system for a laser for compensating for thermally-induced laser resonator length changes. The frequency control loop comprises a frequency reference for producing an error signal and electrical means to move a length-controlling transducer in response thereto. The transducer has one of the laser mirrors attached thereto. The effective travel of the transducer is multiplied severalfold by circuitry for sensing when the transducer is running out of extension and in response thereto rapidly moving the transducer and its attached mirror toward its midrange position.

  2. Diatomic gasdynamic lasers

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1971-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  3. Diatomic gasdynamic lasers.

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  4. Optimising laser tattoo removal.

    PubMed

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  5. Submarine laser communications

    NASA Astrophysics Data System (ADS)

    McConathy, D. R.

    The Department of the Navy and the Defense Advanced Research Projects Agency (DARPA) are sponsoring a joint study to investigate the use of blue-green laser technology to comunicate with submarines at operating depths. Two approaches are under investigation - one in which the laser itself is space-based, and the other in which the laser is ground-based with its beam redirected to the earth's surface by an orbiting mirror. This paper discusses these two approaches, and presents a brief history of activities which led to the current studies.

  6. Color speckle in laser displays

    NASA Astrophysics Data System (ADS)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  7. Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses

    SciTech Connect

    Ionin, Andrei A; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Mel'nik, N N; Rudenko, A A; Seleznev, L V; Sinitsyn, D V; Khmelnitskii, R A

    2013-04-30

    Periodic surface structures on aluminium are produced by femtosecond laser pulses for efficient excitation of surface electromagnetic waves using a strong objective (NA = 0.5). The local electromagnetic field enhancement on the structures is measured using the technique of surface-enhanced Raman scattering from pyridine molecules. (extreme light fields and their applications)

  8. Laser applications in neurosurgery

    NASA Astrophysics Data System (ADS)

    Cerullo, Leonard J.

    1985-09-01

    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  9. Combustion diagnostics by laser spectrometry

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kuniyuki; Morita, Shigeaki; Kodama, Kenji; Matsumoto, Kozo

    2009-03-01

    We have developed three different types of visualization methods for energy conversion systems by means of laser spectrometry. (1) Laser-induced fluorescence (LIF) spectroscopy and (2) laser ionization mass spectrometry (LIMS) have been applied to visualization of chemical species in combustion fields of flames. (3) Near-infrared laser absorption spectroscopy has been used for visualization of water in a polymer electrolyte fuel cell (PEFC). Complex physicochemical processes in the energy conversion systems have been revealed by laser spectrometry.

  10. Effect of sodium fluoride and stannous chloride associated with Nd:YAG laser irradiation on the progression of enamel erosion.

    PubMed

    João-Souza, Samira Helena; Bezerra, Sávio José Cardoso; Borges, Alessandra Bühler; Aranha, Ana Cecília; Scaramucci, Tais

    2015-12-01

    This study evaluated the progression of enamel erosion after treatment with gels containing sodium fluoride (NaF; 9047 ppm F) and stannous chloride (SnCl2; 3000 ppm Sn), associated or not with Nd:YAG laser irradiation. Sixty enamel specimens were prepared from bovine incisors and protected by a tape, leaving an exposed surface area of 4 × 1 mm. The specimens were immersed in 1 % citric acid (pH = 2.3) for 10 min to create an initial erosion lesion. After, they were randomly divided into six groups: (C) control: gel without active ingredient; (F): NaF gel; (F + Sn): NaF + SnCl2 gel; (laser): Nd:YAG laser irradiation (0.5 W; 50 mJ; ∼41.66 J/cm(2); 10 Hz; 40 s); (F + laser): NaF gel + Nd:YAG; (F + Sn + laser): NaF + SnCl2 gel + Nd:YAG. All gels had pH = 4.5 and were applied for 1 min. Laser irradiation was performed after gel application. The specimens were then submitted to a 5-day erosion-remineralization cycling model using 1 % citric acid (pH = 2.3), six times per day. Enamel surface loss (SL) was analyzed by optical profilometry in the end of the cycling (in μm). Data were analyzed by one-way ANOVA and Holm-Sidak tests (alpha = 0.05). The control and the laser groups presented the highest enamel loss (means ± SD = 53.52 ± 3.65 and 53.30 ± 2.73, respectively), followed by F + Sn (44.76 ± 2.83). The groups F (36.76 ± 2.28), F + laser (36.25 ± 3.59), and F + Sn + laser (39.83 ± 4.62) showed the lowest enamel loss, with no significant difference among them (p > 0.05). In conclusion, NaF by itself or associated with SnCl2 and Nd:YAG laser was able to reduce enamel erosion progression. Nd:YAG laser alone did not show a protective effect. PMID:26227298

  11. Laser ablation laser induced fluorescence for sensitive detection of heavy metals in water

    NASA Astrophysics Data System (ADS)

    Godwal, Yogesh

    this thesis LIBS and LA-LIF were also used to analyze ultralow volumes of analyte in liquids in micro uidic geometries. LIBS was applied for the detection of Na in liquid droplets in a microfluidic system. The detection of Na as low as 360 femtograms was demonstrated for 100 shots integrated in this system. An LOD of 7 ppm for Pb for 100 shot accumulation was demonstrated using the LA-LIF technique on an 18 mum diameter microdroplet. To study the laser interaction with the water targets the MEDUSA one dimensional hydrocode was used. The propagation of the shockwave and plume dynamics were studied using this modeling code. The expansion of the plume was studied and compared to experimentally measured values and to physical models for blast wave expansion and stagnation. Two preconcentration techniques were also studied, one of which used a wood-chip as a substrate to absorb the analyte liquid and wick the salt on to the surface for analysis and the other used an electroplating technique to plate the analyte metal as a thin film on a substrate metal used as a cathode. The electroplating method for preconcentration was also studied using a microchip laser and a LOD of 6.4 ppb for Pb in water was obtained for an accumalation of 200,000 shots.

  12. Research in laser processes. Semiannual report, 1 February-31 July 1979

    SciTech Connect

    Phelps, A.V.; Gallagher, A.C.

    1980-04-15

    A model has been completed of the NaXe discharges examined experimentally under this contract. This model includes the effects of electron excitation, deexcitation and ionization of excited Na atoms, as well as electron loss processes such as dissociative recombination with Na2(+). By adopting apparently reasonable rate coefficients and reaction end products we are able to satisfactorily reproduce the measured steady-state densities of excited Na atoms. However, a serious and unexplained discrepancy is found in the energy balance for these discharges. By extrapolating these results to high Na densities we find what appears to be a region of sufficient optical gain at 700 nm for laser oscillation. Such a laser would require a short excitation pulse (approx. 100 ns) and would have a low discharge impedance. A new technique has been developed for the measurement of electron excitation rate coefficients for the metastable states of the rare gases. A multipass absorption cell and a single mode dye laser allow measurement of metastable densities as low as 1,000,000 atom/cc.

  13. Paint removal using lasers

    NASA Astrophysics Data System (ADS)

    Liu, Katherine; Garmire, Elsa

    1995-07-01

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 107 in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m2 area of paint 14 mu m thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  14. Paint removal using lasers.

    PubMed

    Liu, K; Garmire, E

    1995-07-20

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 10(7) in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m(2) area of paint 14 µm thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power. PMID:21052275

  15. Laser-Beam Separator

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. S.

    1984-01-01

    Train of prisms and optical stop separate fundamental beam of laser from second and higher order harmonics of beam produced in certain crystals and by stimulated Raman scattering in gases and liquids.

  16. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  17. Laser machining of ceramic

    SciTech Connect

    Laudel, A.

    1980-01-01

    The Kansas City Division of The Bendix Corporation manufactures hybrid microcircuits (HMCs) using both thin film and thick film technologies. Laser machining is used to contour the ceramic substrates and to drill holes in the ceramic for frontside-backside interconnections (vias) and holes for mounting components. A 1000 W CO/sub 2/ type laser is used. The laser machining process, and methods used for removing protruding debris and debris from holes, for cleaning the machined surfaces, and for refiring are described. The laser machining process described consistently produces vias, component holes and contours with acceptable surface quality, hole locations, diameter, flatness and metallization adhesion. There are no cracks indicated by dipping in fluorescent dye penetrant and the substances are resistant to repeated thermal shock.

  18. Laser therapy for periodontitis

    NASA Astrophysics Data System (ADS)

    Efanov, O. I.

    2001-04-01

    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  19. Beamlet laser diagnostics

    SciTech Connect

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.

    1996-06-01

    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  20. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  1. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  2. Contaminant Monitor Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research contract from Langley Research Center, OPOTEK, Inc. developed a laser transmitter for remote sensing of water vapor in the upper atmosphere. As a leader in developing and using Differential Absorption Lidar, a remote sensing technique to monitor ozone and water vapor in the atmosphere, NASA was interested in upgrading the capabilities of its airborn laser systems. The laser transmitter developed for NASA was used for measuring water vapor in the infrared region. By broadening this concept to other wavelengths, OPOTEK believes a range of industrial applications can be met. In addition, the tunable laser system can be used by the Drug Enforcement Administration to discern the by-products from illegal drug manufacturing. A host of other government, university, and industrial laboratory uses for the technology are also being examined as follow-up by the company.

  3. Laser cutting nozzle

    DOEpatents

    Ramos, T.J.

    1982-09-30

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece.

  4. Laser cutting nozzle

    DOEpatents

    Ramos, Terry J.

    1984-01-01

    A laser cutting nozzle for use with a laser cutting apparatus directing a focused beam to a spot on a work piece. The nozzle has a cylindrical body with a conical tip which together have a conically shaped hollow interior with the apex at a small aperture through the tip. The conical hollow interior is shaped to match the profile of the laser beam, at full beamwidth, which passes through the nozzle to the work piece. A plurality of gas inlet holes extend through the body to the hollow interior and are oriented to produce a swirling flow of gas coaxially through the nozzle and out the aperture, aligned with the laser beam, to the work piece. BACKGROUND OF THE INVENTION

  5. Synchronization in Superradiant Lasers

    NASA Astrophysics Data System (ADS)

    Cox, Kevin; Weiner, Joshua; Bohnet, Justin; Thompson, James

    2015-05-01

    Superradiant (or bad-cavity) lasers based on highly forbidden transitions in cold atoms are expected to produce light with coherence properties exceeding the state-of-the-art, finding applications in optical atomic clocks and other precision measurements. We study experimentally and theoretically the response of a superradiant Raman laser to an applied coherent drive. We observe two forms of synchronization (injection locking) between the superradiant ensemble and the applied drive: one attractive and one repulsive in nature, in which the atomic spin degrees of freedom play a crucial role in determining the dynamics. Additionally, we present time dynamics and steady state behavior of two interacting superradiant lasers. Understanding the synchronization physics of superradiant lasers could inform future implementations with technologically relevant phase noise properties and explorations for understanding synchronization in a quantum regime.

  6. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  7. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  8. Photobiomodulation and Lasers.

    PubMed

    Chiari, Susanne

    2016-01-01

    Photobiomodulation is discussed to be a noninvasive method to accelerate orthodontic tooth movement. The stimulatory effect of low-level laser therapy is well known and includes enhancement in tissue growth and tissue regeneration, resolvement of inflammation and pain. In recent research projects, the effect of laser therapy was tested regarding the stimulatory effect on bone remodeling with the potential to influence the tooth movement rate. The results are divers. The effect of laser regarding the reduction of the postadjustment pain could be proved, but not all authors describe the acceleration of tooth movement. Depending on the protocol, low-level laser therapy with low dosage increases the amount of tooth movement while high dosage seems to result in inhibitory effects. In conclusion, future studies are necessary to find the right protocol delivering beneficial results regarding the influence on bone remodeling and tooth movement to implement this therapy in daily orthodontic routine. PMID:26599125

  9. Laser welding of venotomies.

    PubMed

    White, R A; Abergel, R P; Klein, S R; Kopchok, G; Dwyer, R M; Uitto, J

    1986-08-01

    We investigated the histologic and biochemical effects of carbon dioxide and neodymium (Nd)-YAG laser welding on the healing of venotomies. Ten canine femoral venotomies 2 cm in length were approximated and welded with 10 600-nm wavelength, 1-W power over 20 to 25 s for CO2 laser, and 1060-nm wavelength, 1-W power over 30 to 40 s for Nd-YAG laser. On removal at one to three weeks, all veins (4/4 welded by CO2 and 6/6 by Nd-YAG) were patent without hematomas. Histologic and biochemical analyses of the venous tissues demonstrated active healing at the venotomy sites. We conclude that the CO2 and Nd-YAG lasers can be used successfully to weld venotomies and may provide an alternative to conventional suture techniques for repair of vascular lesions. PMID:3089196

  10. Laser dye technology

    SciTech Connect

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  11. Laser energy conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1975-01-01

    Laser radiation could possibly provide a feasible approach for the transmission of energy between stations and vehicles in space and on earth. The transmitted energy could be used for the operational requirements of the receiving space station, lunar base, or spacecraft. In addition, laser energy could also be employed to provide power for the propulsion of vehicles in space. The present status of development regarding the various technological areas involved in an implementation of these objectives is examined, taking into account the possibility of further advances needed to satisfy the technical requirements. Attention is given to laser-induced chemistry for converting the radiation energy into chemical energy. Other subjects considered are related to photovoltaics, optical diodes, thermo-electronics, laser rockets, and photon engines.

  12. Compact ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Baird, Brian Walter

    1997-09-01

    This dissertation presents theoretical analysis and experimental investigation of a compact ultraviolet laser, comprising an unstable resonator semiconductor (URSL) laser-pumped potassium titanyl phosphate (KTP) periodically segmented waveguide (PSW) laser. A comprehensive survey of existing short wavelength visible and near ultraviolet laser technologies suitable for the development of compact ultraviolet lasers is presented. This survey establishes the suitability of a diode-pumped KTP PSW laser as an attractive approach for developing a compact ultraviolet laser. Requirements for an efficient diode-pumped KTP PSW laser are given, leading to the selection of a frequency-stabilized URSL and hydrothermal KTP PSWs as the component technologies to be developed and integrated. Since the design requirements for the URSL and KTP PSW are critically dependent on a thorough understanding of the spatial mode properties of KTP PSWs, analyses and modeling of the spatial mode properties of these devices is presented using effective index method (EIM) and beam propagation method (BPM) models. In addition, a new expression for the normalized conversion efficiency is presented which explicitly incorporates the dependence of this important parameter on the lateral variation of the refractive index and d coefficient. To assess the theoretical performance of an URSL-pumped KTP PSW, the BPM model was extended to incorporate second harmonic generation. This represents an important contribution to the development of numerical methods for modeling nonlinear waveguides, in general, and provides important information on the cooperative effects of diffraction and spatial mode beating on the SHG output from KTP PSWs. Extensive optical characterization of NUV SHG in hydrothermal KTP PSWs using an argon-ion laser-pumped Ti:Sapphire laser as the infrared laser pump source is presented. Spectral characterization, spatial mode characterization, and the temperature dependence of the QPM

  13. Laser power transmission.

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Christiansen, W. H.; Hertzberg, A.

    1971-01-01

    Description of studies which have led to the design of a conceptual device in which the limitation of transforming heat into coherent radiation can be examined. By exploring the basic thermodynamic relationships controlling the operation of this device, it is concluded that a closed-cycle gasdynamic laser is possible in which all of the shaft energy supplied can be turned into laser radiation. Hence, it is possible in principle to convert heat into coherent radiation with approximately the same efficiency with which heat may be converted into electricity. By modifying the closed-cycle-gasdynamic-laser system, this system can be operated in reverse and the incoming radiation may be used to pump the gas in the loop so that shaft power can be extracted. By carefully controlling the temperature distribution in this machine, laser energy can be converted into useful shaft energy with an efficiency approaching 1 .

  14. Laser-induced bioluminescence

    SciTech Connect

    Hickman, G.D.; Lynch, R.V. III

    1981-01-01

    A project has been initiated to determine the feasibility of developing a complete airborne remote sensing system for rapidly mapping high concentration patches of bioluminescent organisms in the world's oceans. Conceptually, this system would be composed of a laser illuminator to induce bioluminescence and a low light level image intensifier for detection of light. Initial laboratory measurements consisted of using a 2-J flash lamp pulsed optical dye laser to excite bioluminescence in the marine dinoflagellate Pyrocustis lunula at ambient temperature using Rhodamine 6G as the lasing dye (585 nm) and a laser pulse width of 1 microsec. After a latency period of 15-20 msec, the bioluminescence maximum occurred in the blue (480 nm is the wavelength maximum for most dinoflagellate bioluminescence) with the peaking occurring approximately 65 msec after the laser pulse. Planned experiments will investigate the effect of different excitation wavelengths and energies at various temperatures and salinities of the cultures.

  15. Excimer Laser Etching

    SciTech Connect

    Boatner, Lynn A; Longmire, Hu Foster; Rouleau, Christopher M; Gray, Allison S

    2008-04-01

    Excimer laser radiation at a wavelength of = 248 nm represents a new etching method for the preparation of metallographic specimens. The method is shown to be particularly effective for enhancing the contrast between different phases in a multiphase metallographic specimen.

  16. Laser Frequency and Time

    NASA Astrophysics Data System (ADS)

    Hänsch, Theodor W.

    2003-04-01

    The following two contributions in this volume are highlighting some remarkable recent developments at the interface between precision laser spectroscopy and ultrafast laser physics. After decades of struggle, we have finally found a practical method for measuring the frequency of light with extreme precision [1]. Femtosecond laser optical frequency comb synthesizers are opening exciting new perspectives for atomic spectroscopy and they can provide the clockwork for optical atomic clocks that will eventually far surpass the accuracy of the best microwave cesium clocks. J. C. Bergquist et al. [2] are reporting on a first optical atomic clock at NIST based on a single trapped Hg+ ion. The contribution by Jun Ye et al. [3] is illustrating the wealth of new opportunities for femtosecond laser frequency combs in the frequency and time domain.

  17. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  18. Laser safety eyewear.

    PubMed

    1993-04-01

    In spite of repeated warnings about laser safety practices, as well as the availability of laser safety eyewear (LSE), eye injuries continue to occur during use of surgical lasers, as discussed in the Clinical Perspective, "Laser Energy and Its Dangers to Eyes," preceding this Evaluation. We evaluated 48 models of LSE, including goggles, spectacles, and wraps, from 11 manufacturers. The evaluated models are designed with absorptive lenses that provide protection from CO2 (carbon dioxide), Nd:YAG (neodymium:yttrium-aluminum-garnet), and 532 (frequency-doubled Nd:YAG) surgical laser wavelengths; several models provide multiwavelength protection. (Refer to ECRI's Product Comparison System report on LSE for specifications of other models.) Although most of the evaluated models can adequately protect users from laser energy--provided that the eyewear is used--many models of LSE, especially goggles, are designed with little regard for the needs of actual use (e.g., adequate labeling, no alteration of color perception, sufficient field of vision [FOV], comfort). Because these factors can discourage people from using LSE, we encourage manufacturers to develop new and improved models that will be worn. We based our ratings primarily on the laser protection provided by the optical density (OD) of the lenses; we acknowledge the contribution of Montana Laser Optics Inc., of Bozeman, Montana, in performing our OD testing. We also considered actual-use factors, such as those mentioned above, to be significant. Among the models rated Acceptable is one whose labeled OD is lower than the level we determined to be adequate for use during most laser surgery; however, this model offers protection under specific conditions of use (e.g., for use by spectators some distance from the surgical site, for use during endoscopic procedures) that should be determined by the laser safety officer (LSO). LSE that would put the wearer at risk are rated Unacceptable (e.g., some models are not

  19. Nd3+-sensitized NaLuF4 luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Zhang, Peng; Yuan, Qinghai; Xu, Xia; Lei, Pengpeng; Liu, Xiuling; Su, Yue; Dong, Lile; Feng, Jing; Zhang, Hongjie

    2015-10-01

    In this paper, intense up- and down-conversion luminescence were successfully achieved in well designed and synthesized core-shell structured NaLuF4:Gd/Yb/Er@NaLuF4:Yb@NaLuF4:Nd/Yb@NaLuF4 nanoparticles (NPs) simultaneously under 808 nm continuous-wave laser excitation. The morphologies, luminescent properties and energy transfer mechanism of the nanoparticles were studied in detail. By employing this design, multimodal imaging performance including near-infrared down-conversion optical imaging and X-ray computed tomography (CT) imaging were realized in one kind of NPs. Furthermore, the 808 nm excited optical temperature sensing property of the synthesized NPs was realized in a wide temperature range by monitoring the intensities of up- and down-conversion luminescence. This study provides a novel platform based on lanthanide fluoride nanoparticles for multifunctional imaging and temperature sensing in one system.In this paper, intense up- and down-conversion luminescence were successfully achieved in well designed and synthesized core-shell structured NaLuF4:Gd/Yb/Er@NaLuF4:Yb@NaLuF4:Nd/Yb@NaLuF4 nanoparticles (NPs) simultaneously under 808 nm continuous-wave laser excitation. The morphologies, luminescent properties and energy transfer mechanism of the nanoparticles were studied in detail. By employing this design, multimodal imaging performance including near-infrared down-conversion optical imaging and X-ray computed tomography (CT) imaging were realized in one kind of NPs. Furthermore, the 808 nm excited optical temperature sensing property of the synthesized NPs was realized in a wide temperature range by monitoring the intensities of up- and down-conversion luminescence. This study provides a novel platform based on lanthanide fluoride nanoparticles for multifunctional imaging and temperature sensing in one system. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c5nr04889c

  20. Quantum Fountain Unipolar Lasers

    NASA Astrophysics Data System (ADS)

    Julien, Francois H.

    2001-03-01

    There is a strong interest in the development of semiconductor lasers for long-wavelength infrared applications. In the 2-20 um band, the recent demonstration of Quantum Cascade (QC) unipolar lasers is already challenging the currently available technology relying on electron-hole radiative recombination in narrow-gap semiconductors. Recently, an alternate type of unipolar laser relying on intersubband emission, the so-called Quantum Fountain intersubband laser (QF) has been proposed and demonstrated. The active region consists of periods of two GaAs/AlGaAs coupled quantum wells exhibiting three bound electron states. Electrons are optically excited from the ground state to the upper state. The radiative intersubband transition to the intermediate state gives rise to the infrared emission. Population inversion as well as fast recycling of electrons into the ground state is provided by insuring a short lifetime of electrons in the intermediate state through an enhanced scattering with LO-phonons. Although their operation imposes an external pumping source, QF lasers offer the advantages of a simplified design, of less stringent material requirements and of low internal losses due to free-carrier absorption as compared to QC lasers. In the talk, we will review the latest developments on high-brightness QF unipolar lasers emitting in the 8-16 um band. We will show that record high optical powers and single-transverse mode operation can be achieved by designing broad-area lasers with a top grating [1]. Novel designs relying on superlattice active regions will also be discussed. [1] O. Gauthier-Lafaye, B. Seguin-Roa, F. H. Julien, G. Strasser, P. Collot, C. Sirtori, J.-Y. Duboz, Physica E 7, p.12 (2000).