Science.gov

Sample records for laser presentation material

  1. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  2. Laser speckle micro rheology for micro-mechanical mapping of bio-materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hajjarian Kashany, Zeinab; Ahn, Shawn; Tavakoli Nia, Hadi; Tshikudi, Diane M.; Grodzinsky, Alan; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-03-01

    Laser speckle Micro-rheology (LSM) is a novel optical tool for evaluating the viscoelastic properties of biomaterials. In LSM, a laser beam illuminates the specimen and scattered rays are collected through an objective by a high-speed CMOS camera. The self-interference of light rays forms a fluctuating speckle pattern captured by the CMOS sensor. Spatio-temporal correlation analysis of speckle images provides the intensity autocorrelation function, g2(t), for individual pixels. Next, the mean square displacements (MSD) of Brownian particles are deduced and substituted in the generalized Stokes-Einstein relation (GSER) to yield a 2D map of viscoelastic modulus, |G*(ω)|. To compare the accuracy, sensitivity, and dynamic range of LSM measurements with standard mechanical testing methods, homogeneous polyethylene glycol (PEG), agarose, and polyacrylamide (PA) gels, of assorted viscoelastic properties were fabricated and evaluated using LSM, shear rheology, and indentation-mode atomic force microscopy (AFM). Results showed a statistically significant, strong correlation between G* values measured by LSM and shear rheology (R=0.94, p<5x10-6) (|G*|: 30 Pa - 30 kPa at ω = 1 Hz). Likewise, strong correlation was observed between G* values measured by LSM and indentation moduli of AFM (R=0.94, p,0.05). Next, polyacrylamide substrates with micro-scale stiffness patterns were tested using LSM. The reconstructed |G*| maps illustrated the high sensitivity of LSM in resolving mechanical heterogeneities below 100 microns. These findings demonstrate the competent accuracy and sensitivity of LSM measurements. Moreover, the non-contact nature of LSM provides a major advantage over mechanical tests, making it suitable for in vivo studies in future.

  3. Laser Plasma Material Interactions

    NASA Astrophysics Data System (ADS)

    Schaaf, Peter; Carpene, Ettore

    2004-12-01

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  4. Laser Material Processing in Manufacturing

    NASA Astrophysics Data System (ADS)

    Jones, Marshall

    2014-03-01

    This presentation will address some of the past, present, and potential uses of lasers for material processing in manufacturing. Laser processing includes welding, drilling, cutting, cladding, etc. The U.S. was the hot bed for initial uses of lasers for material processing in the past with Europe, especially Germany, presently leading the way. The future laser processing leader may still be Germany. Selected uses, past and present, of lasers within GE will also be highlighted as seen in such business units as Aviation, Lighting, Power and Water, Healthcare, and Transportation.

  5. Modern solid state laser materials

    SciTech Connect

    Krupke, W.F.

    1984-06-20

    This document contains visual aids used in an invited talk entitled Modern Solid State Laser Materials, presented at the Conference on Lasers and Electro-Optics (CLEO) held in Anaheim, California, on June 20, 1984. Interest at LLNL in solid state lasers focuses on evaluating the potential of solid state laser media for high average power applications, including inertial fusion power production. This talk identifies the relevant bulk material parameters characterizing average power capacity and uses chromium and neodymium co-doped gadolinium scandium gallium garnet (Nd:Cr:GSGG) as an example of a laser material with improved laser properties relative to Nd:YAG (plausible large-scale growth, more efficient spectral coupling to xenon flashlamp radiation, reduced stimulated emission cross section, adequate thermal shock and optical damage threshold parameters, etc.). Recently measured spectroscopic, kinetic, and thermo-mechanical properties of Nd:Cr:GSGG are given.

  6. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  7. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  8. Ceramic Laser Materials

    SciTech Connect

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I

    2005-02-15

    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  9. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  10. Present status and future aspects of high-power diode laser materials processing under the view of a German national research project

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.

    2000-06-01

    High power diode lasers from a few Watts up to several Kilowatts have entered industrial manufacturing environment for materials processing applications. The technology has proven to show unique features, e.g. high efficiency, small size, low energy consumption and high reliability. In the first part of this paper a short description of state-of- the-art high power diode laser technology and applications is provided and the benefits and restrictions of this laser technology will be evaluated. For large scale penetration into the manufacture market, the restrictions, especially the rather poor beam quality of high power diode lasers compared to conventional lasers have to be overcome. Also, the specialities of the high power diode lasers, i.e. their modular structure and their extremely small size have to be translated into laser manufacturing technology. The further improvement of high power diode lasers as well as the development of new diode laser specific manufacturing technologies are the essential topics of a National German Minister Priority Project entitled 'Modular Diode Laser Beam Tools': 22 Partners from industry and institutions, 4 semiconductor experts, 5 laser manufacturers and 14 applicants are working together in frame of this project to work out and transfer a joint strategy and system technology to the benefits of the future of high power diode laser technology. The goals, the structure and the work of this project will be described in the second part of this paper.

  11. Laser interaction with materials: introduction.

    PubMed

    Phipps, Claude R; Zhigilei, Leonid; Polynkin, Pavel; Baumert, Thomas; Sarnet, Thierry; Bulgakova, Nadezhda; Bohn, Willy; Reif, Juergen

    2014-11-01

    Laser-materials interaction is the fascinating nexus where laser physics, optical physics, and materials science intersect. Applications include microdeposition via laser-induced forward transfer of thin films, clean materials processing with femtosecond beams, creating color filters with nanoparticles, generating very high density storage sites on subpicosecond time scales, structuring solar cell surfaces for higher efficiency, making nanostructures that would be impossible by other means, and creating in-volume waveguiding structures using femtosecond laser filaments. PMID:25402939

  12. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  13. Laser Material Processing for Microengineering Applications

    NASA Technical Reports Server (NTRS)

    Helvajian, H.

    1995-01-01

    The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.

  14. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  15. Laser applications in machining slab materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping

    1990-10-01

    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  16. Laser cutting plastic materials

    SciTech Connect

    Van Cleave, R.A.

    1980-08-01

    A 1000-watt CO/sub 2/ laser has been demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics have been laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass-reinforced laminates, Kevlar/epoxy composites, fiberglass-reinforced phenolics, nylon/epoxy laminates, ceramics, and disposable tooling made from acrylic.

  17. Laser Processing Architecture for Improved Material Processing

    NASA Astrophysics Data System (ADS)

    Livingston, Frank E.; Helvajian, Henry

    This chapter presents a novel architecture and software-hardware design system for materials processing techniques that are widely applicable to laser direct-write patterning tools. This new laser material processing approach has been crafted by association with the genome and genotype concepts, where predetermined and prescribed laser pulse scripts are synchronously linked with the tool path geometry, and each concatenated pulse sequence is intended to induce a specific material transformation event and thereby express a particular material attribute. While the experimental approach depends on the delivery of discrete amplitude modulated laser pulses to each focused volume element with high fidelity, the architecture is highly versatile and capable of more advanced functionality. The capabilities of this novel architecture fall short of the coherent spatial control techniques that are now emerging, but can be readily applied to fundamental investigations of complex laser-material interaction phenomena, and easily integrated into commercial and industrial laser material processing applications. Section 9.1 provides a brief overview of laser-based machining and materials processing, with particular emphasis on the advantages of controlling energy deposition in light-matter interactions to subtly affect a material's thermodynamic properties. This section also includes a brief discussion of conventional approaches to photon modulation and process control. Section 9.2 comprehensively describes the development and capabilities of our novel laser genotype pulse modulation technique that facilitates the controlled and precise delivery of photons to a host material during direct-write patterning. This section also reviews the experimental design setup and synchronized photon control scheme, along with performance tests and diagnostic results. Section 9.3 discusses selected applications of the new laser genotype processing technique, including optical property variations

  18. Laser Materials Processing for NASA's Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Hunyady, Thomas A.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, and surface treatment. Due to the multifunctional nature of a single tool and the variety of materials that can be processed, these attributes are attractive in order to support long-term missions in space. However, current laser technology also has drawbacks for space-based applications. Specifically, size, power efficiency, lack of robustness, and problems processing highly reflective materials are all concerns. With the advent of recent breakthroughs in solidstate laser (e.g., diode-pumped lasers) and fiber optic technologies, the potential to perform multiple processing techniques in space has increased significantly. A review of the historical development of lasers from their infancy to the present will be used to show how these issues may be addressed. The review will also indicate where further development is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. Both short- and long-term space missions will benefit from the development of a universal laser-based tool with low power consumption, improved process flexibility, compactness (e.g., miniaturization), robustness, and automation for maximum utility with a minimum of human interaction. The potential advantages of using lasers with suitable wavelength and beam properties for future space missions to the moon, Mars and beyond will be discussed. The laser processing experiments in the present report were performed using a diode pumped, pulsed/continuous wave Nd:YAG laser (50 W max average laser power), with a 1064 nm wavelength. The processed materials included Ti-6AI-4V, Al-2219 and Al-2090. For Phase I of this project, the laser process conditions were varied and optimized

  19. Materials working with low power CO2 lasers

    NASA Astrophysics Data System (ADS)

    Fry, S. M.

    1980-01-01

    While the application of high power (50-5000 W) lasers to materials working is well known, the use of low power (1-5w) CO2 lasers has received little attention. This paper presents methods of utilizing low power CO2 lasers in materials processing, such as cutting, drilling, and welding of small organic (e.g., plastic) parts. Laser hardware is discussed and the waveguide laser is presented as an example of low-power materials working hardware. This paper also reports some of the applications which are ideally-handled by low power CO2 lasers, and reviews the factors which contribute to the successful use of these lasers.

  20. Laser detection of material thickness

    DOEpatents

    Early, James W.

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  1. Novel materials for laser refrigeration

    NASA Astrophysics Data System (ADS)

    Hehlen, Markus P.

    2009-02-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which hωmax < Ep/8, where h&omegamax is the maximum phonon energy of the host material and Ep is the pump energy for the rare-earth dopant. Transition-metal and OH- impurities at levels >100 ppb are believed to be the main reason for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF3-LiF are considered as alternatives to ZBLAN, and the crystalline system KPb2Cl5 :Dy3+ is identified as a prime candidate for high-efficiency laser cooling.

  2. Laser cutting of energetic materials

    SciTech Connect

    Rivera, T.; Muenchausen, R.; Sanchez, J.

    1998-12-01

    The authors have demonstrated the feasibility of safely and efficiently cutting and drilling metal cases containing a variety of high explosives (HE) using a Nd:YAG laser. Spectral analysis of the optical emission, occurring during the laser-induced ablation process, is used to identify the removed material. By monitoring changes in the optical emission during the cutting process, the metal-He interface can be observed in real time and the cutting parameters adjusted accordingly. For cutting the HE material itself, the authors have demonstrated that this can be safely and efficiently accomplished by means of a ultraviolet (UV) laser beam obtained from the same Nd:YAG laser using the third or fourth harmonics. They are currently applying this technology to UXO identification and ordnance demilitarization.

  3. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B.C.

    1997-02-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas.

  4. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  5. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  6. Possibilities of Laser Processing of Paper Materials

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi

    Nowadays, lasers are applied in many industrial processes: the most developed technologies include such processes as laser welding, hybrid welding, laser cutting of steel, etc. In addition to laser processing of metallic materials, there are also many industrial applications of laser processing of non-metallic materials, like laser welding of polymers, laser marking of glass and laser cutting of wood-based materials. It is commonly known that laser beam is suitable for cutting of paper materials as well as all natural wood-fiber based materials. This study reveals the potential and gives overview of laser application in processing of paper materials. In 1990's laser technology increased its volume in papermaking industry; lasers at paper industry gained acceptance for different perforating and scoring applications. Nowadays, with reduction in the cost of equipment and development of laser technology (especially development of CO2 technology), laser processing of paper material has started to become more widely used and more efficient. However, there exists quite little published research results and reviews about laser processing of paper materials. In addition, forest industry products with pulp and paper products in particular are among major contributors for the Finnish economy with 20% share of total exports in the year 2013. This has been the standpoint of view and motivation for writing this literature review article: when there exists more published research work, knowledge of laser technology can be increased to apply it for processing of paper materials.

  7. Fatigue Lives of Materials Cut by Lasers

    NASA Technical Reports Server (NTRS)

    Martin, Michael R.

    1987-01-01

    Laser machining helps to balance high-speed rotating machinery. Report describes continuing studies of fatigue lives of materials cut by lasers. One long-term objective of such studies is use of laser machining to balance rotors operating at high speeds. To achieve objective, necessary to know relationship between effects of conventional and laser machining on fatigue lives of machined materials.

  8. Heat accumulation during pulsed laser materials processing.

    PubMed

    Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Christian; Feuer, Anne

    2014-05-01

    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. PMID:24921828

  9. Novel materials for laser refrigeration

    SciTech Connect

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  10. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  11. Bulk Laser Material Modification: Towards a Kerfless Laser Wafering Process

    NASA Astrophysics Data System (ADS)

    LeBeau, James

    Due to the ever increasing relevance of finer machining control as well as necessary reduction in material waste by large area semiconductor device manufacturers, a novel bulk laser machining method was investigated. Because the cost of silicon and sapphire substrates are limiting to the reduction in cost of devices in both the light emitting diode (LED) and solar industries, and the present substrate wafering process results in >50% waste, the need for an improved ingot wafering technique exists. The focus of this work is the design and understanding of a novel semiconductor wafering technique that utilizes the nonlinear absorption properties of band-gapped materials to achieve bulk (subsurface) morphological changes in matter using highly focused laser light. A method and tool was designed and developed to form controlled damage regions in the bulk of a crystalline sapphire wafer leaving the surfaces unaltered. The controllability of the subsurface damage geometry was investigated, and the effect of numerical aperture of the focusing optic, energy per pulse, wavelength, and number of pulses was characterized for a nanosecond pulse length variable wavelength Nd:YAG OPO laser. A novel model was developed to describe the geometry of laser induced morphological changes in the bulk of semiconducting materials for nanosecond pulse lengths. The beam propagation aspect of the model was based on ray-optics, and the full Keldysh multiphoton photoionization theory in conjuncture with Thornber's and Drude's models for impact ionization were used to describe high fluence laser light absorption and carrier generation ultimately resulting in permanent material modification though strong electron-plasma absorption and plasma melting. Although the electron-plasma description of laser damage formation is usually reserved for extremely short laser pulses (<20 ps), this work shows that it can be adapted for longer pulses of up to tens of nanoseconds. In addition to a model

  12. Diode-pumped dysprosium laser materials

    NASA Astrophysics Data System (ADS)

    Bowman, S. R.; Condon, N. J.; O'Connor, S.; Rosenberg, A.

    2009-05-01

    We are investigating materials for direct blue solid-state lasers assuming UV excitation with GaN based laser diodes. Room temperature spectroscopy is reported relevant to a proposed quasi-three level laser from the 4F9/2 level in trivalent dysprosium. Modeling based on these measurements suggests this is a promising new laser transition.

  13. Modeling of Laser Material Interactions

    NASA Astrophysics Data System (ADS)

    Garrison, Barbara

    2009-03-01

    Irradiation of a substrate by laser light initiates the complex chemical and physical process of ablation where large amounts of material are removed. Ablation has been successfully used in techniques such as nanolithography and LASIK surgery, however a fundamental understanding of the process is necessary in order to further optimize and develop applications. To accurately describe the ablation phenomenon, a model must take into account the multitude of events which occur when a laser irradiates a target including electronic excitation, bond cleavage, desorption of small molecules, ongoing chemical reactions, propagation of stress waves, and bulk ejection of material. A coarse grained molecular dynamics (MD) protocol with an embedded Monte Carlo (MC) scheme has been developed which effectively addresses each of these events during the simulation. Using the simulation technique, thermal and chemical excitation channels are separately studied with a model polymethyl methacrylate system. The effects of the irradiation parameters and reaction pathways on the process dynamics are investigated. The mechanism of ablation for thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case where an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. The study provides insight into the influence of thermal and chemical processes in polymethyl methacrylate and facilitates greater understanding of the complex nature of polymer ablation.

  14. Review of Tm and Ho Materials; Spectroscopy and Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2008-01-01

    A review of Tm and Ho materials is presented, covering some fundamental aspects on the spectroscopy and laser dynamics in both single and co-doped systems. Following an introduction to 2- m lasers, applications and historical development, the physics of quasi-four level lasers, energy transfer and modeling are discussed in some detail. Recent developments in using Tm lasers to pump Ho lasers are discussed, and seen to offer some advantages over conventional Tm:Ho lasers. This article is not intended as a complete review, but as a primer for introducing concepts and a resource for further study.

  15. Mid-infrared solid-state lasers and laser materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Byvik, Charles E.

    1988-01-01

    An account is given of NASA-Langley's objectives for the development of advanced lasers and laser materials systems applicable to remote sensing in the mid-IR range. Prominent among current concerns are fiber-optic spectroscopy, eye-safe solid-state lasers for both Doppler sensing and mid-IR wavelength-generation laser pumping, and nonlinear optics generating tunable mid-IR radiation. Ho:YAG lasers are noted to exhibit intrinsic advantages for the desired applications, and are pumpable by GaAlAs laser diodes with a quantum efficiency approaching 2.

  16. Laser damage threshold measurements of optical materials for direct laser accelerators

    SciTech Connect

    Soong, Ken; Byer, R. L.; Colby, E. R.; England, R. J.; Peralta, E. A.

    2012-12-21

    The laser-damage threshold is a fundamental limit for any dielectric laser-driven accelerator and is set by the material of the structure. In this paper, we present a theoretical model of the laser damage mechanism, in comparison with experimental data on the damage threshold of silicon. Additionally, we present damage threshold measurement data of various optical materials, most of which have not been previously characterized in the picosecond-regime.

  17. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  18. Laser guide star adaptive optics: Present and future

    SciTech Connect

    Olivier, S.S.; Max, C.E.

    1993-03-01

    Feasibility demonstrations using one to two meter telescopes have confirmed the utility of laser beacons as wavefront references for adaptive optics systems. Laser beacon architectures suitable for the new generation of eight and ten meter telescopes are presently under study. This paper reviews the concept of laser guide star adaptive optics and the progress that has been made by groups around the world implementing such systems. A description of the laser guide star program at LLNL and some experimental results is also presented.

  19. Laser welding of thermoplastic materials.

    PubMed

    Chipperfield, F A; Jones, I A

    2001-06-01

    The capabilities of the three main types of laser are compared and a new technique is introduced, which laser welds plastics using an infrared absorber to create a joint that is almost invisible to the human eye. PMID:11488201

  20. Optofluidic lasers and their applications in bioanalysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fan, Xudong

    2016-03-01

    The optofluidic laser is an emerging technology that integrates microfluidics, miniaturized laser cavity, and laser gain medium in liquid. It is unique due to its biocompatibility, thus can be used for unconventional bioanalysis, in which biointeraction or process takes place within the optical cavity mode volume. Rather than using fluorescence, the optofluidic laser based detection employs laser emission, i.e., stimulated emission, as the sensing signal, which takes advantage of optical amplification provided by the laser cavity to achieve much higher sensitivity. In this presentation, I will first introduce the concept of optofluidic laser based bioanalysis. Then I will discuss each of the three components (cavity, gain medium, and fluidics) of the optofluidic laser and describe how to use the optofluidic laser in bioanalysis at the molecular, cellular, and tissue level. Finally, I will discuss future research and application directions.

  1. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  2. Laser Ignition of Energetic Materials Workshop

    NASA Astrophysics Data System (ADS)

    Devries, Nora M.; Oreilly, John J.; Forch, Brad E.

    1993-11-01

    Lasers inherently possess many desirable attributes making them excellent igniters for a wide range of energetic materials such as pyrotechnics, explosives, and gun propellants. Lasers can be made very small, have modest powereD requirements, are invulnerable to external stimuli, are very reliable, and can deliver radiative energy to remote locations through optical fibers. Although the concept of using lasers for the initiation of energetic materials is not new, successful integration of laser technology into military systems has the potential to provide significant benefits. In order to efficiently expedite the evolution of the laser ignition technology for military applications, it was desirable to coordinate the effort with the JANNAF combustion community. The laser ignition of Energetic Materials Workshop was originated by Brad Forch, Austin Barrows, Richard Beyer and Arthur Cohen of the Army Research Laboratory (ARL).

  3. Lasant Materials for Blackbody-Pumped Lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J. (Editor); Chen, K. Y. (Editor)

    1985-01-01

    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.

  4. Division of Materials Science (DMS) meeting presentation

    SciTech Connect

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  5. Laser hearth melt processing of ceramic materials

    NASA Astrophysics Data System (ADS)

    Richard Weber, J. K.; Felten, J. J.; Nordine, Paul C.

    1996-02-01

    A new technique for synthesizing small batches of oxide-based ceramic and glass materials from high purity powders is described. The method uses continuous wave CO2 laser beam heating of material held on a water-cooled copper hearth. Contamination which would normally result during crucible melting is eliminated. Details of the technique are presented, and its operation and use are illustrated by results obtained in melting experiments with a-aluminum oxide, Y-Ba-Cu-O superconductor material, and the mixtures, Al2O3-SiO2, Bi2O3-B2O3, Bi2O3-CuO. Specimen masses were 0.05-1.5 g.

  6. New laser materials: Final report

    SciTech Connect

    Not Available

    1986-10-01

    In the Interim Report No. 1, it was reported that the fluorescence lifetime (greater than or equal to 750..mu..s) in Nd doped Y(PO/sub 3/)/sub 3/ was longer by a factor of three as compared to YAG. This means potentially three times as much energy storage and consequently more efficient for flashlamp pumping. It also makes diode pumping easier. In addition, since the Y site is octahedrally coordinated, there is a possibility of energy transfer using Cr as the sensitizing element. As suggested by W. Krupke, we decided to explore the trivalent cation metaphosphates systematically. The compounds investigated can be represented by the general formula A(PO/sub 3/)/sub 3/ where A = Y, Lu, In, Sc, GA and Al. The object is to study the fluorescence characteristics of Nd and Cr as well as the effectiveness of energy transfer from Cr to Nd. In addition, we also investigated other possible laser host crystals, notably CaMgSi/sub 2/O/sub 6/ (diopside), LaBO/sub 3/ and La(BO/sub 2/)/sub 3/. Results on these materials will also be discussed.

  7. Enhanced peak power CO2 laser processing of PCB materials

    NASA Astrophysics Data System (ADS)

    Moorhouse, C. J.; Villarreal, F.; Wendland, J. J.; Baker, H. J.; Hall, D. R.; Hand, D. P.

    2005-06-01

    Laser drilling has become a common processing step in the fabrication of printed circuit boards (PCB's). For this work, a recently developed enhanced peak power CO2 laser (~2.5 kW peak power, 200W average) or ultra-super pulse (USP) laser is used to drill alumina and copper coated dielectric laminate materials. The higher peak power and faster response times (than conventional CO2 lasers) produced by the USP laser are used to produce high speed alumina laser scribing and copper coated laminate microvia drilling processes. Alumina is a common PCB material used for applications, where its resistance to mechanical and thermal stresses is required. Here we present a comprehensive study of the melt eject mechanisms and recast formation to optimise the speed and quality of alumina laser scribing. Scribe speeds of up to 320 mms-1 (1.8 times current scribe rate) have been achieved using novel temporal pulse shapes unique to the USP laser. Also presented is the microvia drilling process of copper dielectric laminates, where the multi-level configuration presents different optical and thermal properties complicating their simultaneous laser ablation. In our experiments the USP laser has been used to drill standard thickness copper films (up to 50 μm thick) in a single shot. This investigation concentrates on understanding the mechanisms that determine the dielectric undercut dimensions.

  8. Efficiency of Nd laser materials with laser diode pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Cross, Patricia L.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    For pulsed laser-diode-pumped lasers, where efficiency is the most important issue, the choice of the Nd laser material makes a significant difference. The absorption efficiency, storage efficiency, and extraction efficiency for Nd:YAG, Nd:YLF, Nd:GSGG, Nd:BEL, Nd:YVO4, and Nd:glass are calculated. The materials are then compared under the assumption of equal quantum efficiency and damage threshold. Nd:YLF is found to be the best candidate for the application discussed here.

  9. Laser materials processing at Sandia National Laboratories

    SciTech Connect

    Jellison, J.L.; Cieslak, M.J.

    1994-11-01

    The interest in laser processing has been driven by Sandia`s responsibility to design, prototype, manufacture, and steward high reliability defense hardware for the Department of Energy. The system requirements for the hardware generally necessitate hermetic sealing for ensured long life operation. With the advent of miniaturized electronic devices, traditional welding processes were no longer practical choices because of their limited ability to make very small weld closures without heat damage to the hardware. Gas and solid state lasers offered the opportunity to make hermetic closure welds in small, heat sensitive hardware. In order to consistently produce quality product, the Sandia laser materials processing team performed research aimed at identifying those critical parameters which controlled the laser welding process. This has been directed towards both the development of quantitative engineering data needed in product design and process control, and research to achieve fundamental process understanding. In addition, they have developed novel diagnostic systems to measure these important parameters, pioneered the use of calorimetric techniques to measure energy transfer efficiencies, and correlated the occurrence of welding defects with alloy compositions and type of laser welding process. Today, Sandia`s laser materials processing team continues to advance the state of laser processing technology in many areas, including aluminum laser welding, the design of novel optics for specific laser processing needs, laser micromachining of silicon and diamond for microelectronics applications, and fluxless laser soldering. This paper will serve to highlight some examples of where Sandia has made contributions to the field of laser materials processing and will indicate the directions where they expect to focus their future efforts.

  10. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  11. Laser-material interactions; fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Bloembergen, N.

    1993-10-01

    The interaction of light with matter leads to electronic excitation by the absorption of photons. A large fraction of the high excitation energy of the electrons is transformed into heat on a time scale of about one picosecond in many circumstances. With lasers, power flux densities or intensities exceeding a terawatt/cm2 are readily achieved and any material may be converted into a high temperature plasma. The material response has been investigated over a wide range of intensities and irradiation times. Applications include heat treatment and ablation of surfaces, cutting, drilling, and welding of a wide variety of materials, laser recording and printing, and laser surgery. Phase transitions induced by ultrashort femtosecond laser pulses enlarge our understanding of materials under extreme conditions of pressure and temperature.

  12. Development of Ceramic Solid-State Laser Host Material

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  13. Characterization of laser beam interaction with carbon materials

    NASA Astrophysics Data System (ADS)

    Janićijević, Milovan; Srećković, Milesa; Kaluđerović, Branka; Bojanić, Slobodan; Družijanić, Dragan; Dinulović, Mirko; Kovačević, Aleksander

    2013-05-01

    This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser-material interaction spots, and characterization of the laser induced changes in the materials investigated.

  14. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  15. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  16. Femtosecond laser system for micromachining of the materials

    NASA Astrophysics Data System (ADS)

    Barbucha, R.; Kocik, M.; Tański, M.; Garasz, K.; Petrov, T.; Radzewicz, C.

    2015-01-01

    Femtosecond-pulse laser micromachining is based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Moreover it does not require any post processing. Removal of the material occurs only in the laser focus, since the lack of thermal interaction, neither heat affected zone (HAZ) nor debris ocur. Research results have shown that shortening the duration of the laser pulse significantly reduces HAZ, which translates into the high quality of the machined structures. It is the main argument for the use of femtosecond-pulse lasers in the precise micromachining. In this paper, a femtosecond laser system consisting of a solid-state oscillator and the ytterbium-doped pulse fiber amplifier are presented. Average beam power at 343 nm with mode-locking is 4W @25A and pulse length at the oscillator output is 500 fs. Laser micro and nano-machining has found application in different fields. It's primary use is industrial micromachining of metals, ceramics, polymers, glass, biological material for medical use in eye surgery, and photovoltaic cells.

  17. Modeling of Material Removal by Solid State Heat Capacity Lasers

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2002-04-17

    Pulsed lasers offer the capability of rapid material removal. Here we present simulations of steel coupon tests by two solid state heat capacity lasers built at LLNL. Operating at 1.05 pm, these deliver pulse energies of about 80 J at 10 Hz, and about 500 J at 20 Hz. Each is flashlamp-pumped. The first laser was tested at LLNL, while the second laser has been delivered to HELSTF, White Sands Missile Range. Liquid ejection appears to be an important removal mechanism. We have modeled these experiments via a time-dependent code called THALES, which describes heat transport, melting, vaporization, and the hydrodynamics of liquid, vapor, and air. It was previously used, in a less advanced form, to model drilling by copper vapor lasers [1] . It was also used to model vaporization in beam dumps for a high-power laser [2]. The basic model is in 1D, while the liquid hydrodynamics is handled in 2D.

  18. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul

    2014-10-01

    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  19. Thermal lensing of laser materials

    NASA Astrophysics Data System (ADS)

    Davis, Mark J.; Hayden, Joseph S.

    2014-10-01

    This paper focuses on the three main effects that can induce wave-front distortion due to thermal lensing in laser gain media: 1) thermo-optic (dn/dT); 2) stress-optic; and 3) surface deformation (e.g., "end-bulging" of a laser rod). Considering the simple case of a side-pumped cylindrical rod which is air- or water-cooled along its length, the internal temperature distribution has long been known to assume a simple parabolic profile. Resulting from this are two induced refractive index variations due to thermo-optic and stress-optic effects that also assume a parabolic profile, but generally not of the same magnitude, nor even of the same sign. Finally, a small deformation on the rod ends can induce a small additional lensing contribution. We had two goals in this study: a) use finite-element simulations to verify the existing analytical expressions due to Koechner1 and Foster and Osterink; and b) apply them to glasses from the SCHOTT laser glass portfolio. The first goal was a reaction to more recent work by Chenais et al. who claimed Koechner made an error in his analysis with regard to thermal stress, throwing into doubt conclusions within studies since 1970 which made use of his equations. However, our re-analysis of their derivations, coupled with our FE modeling, confirmed that the Koechner and Foster and Osterink treatments are correct, and that Chenais et al. made mistakes in their derivation of the thermally-induced strain. Finally, for a nominal laser rod geometry, we compared the thermally-induced optical distortions in LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2. While LG-750, -760, and -770 undergo considerable thermo-optic lensing, their stress-optic lensing is nearly of the same magnitude but of opposite sign, leading to a small total thermal lensing signature.

  20. -doped laser materials at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Körner, J.; Jambunathan, V.; Hein, J.; Seifert, R.; Loeser, M.; Siebold, M.; Schramm, U.; Sikocinski, P.; Lucianetti, A.; Mocek, T.; Kaluza, M. C.

    2014-07-01

    We present measurements of the absorption and emission cross-sections for Yb:YAG, Yb:LuAG and Yb:CaF 2 as a function of temperature between 80 and 340 K. The cross-sections are determined by the combination of the McCumber relation and the Fuchtbauer-Ladenburg (FL) equation to achieve reliable results in spectral regions of high and low absorption. The experimental setup used for the fluorescence measurements minimizes re-absorption effects due to the measurement from small sample volume, providing nearly undisturbed raw data for the FL approach. The retrieved cross-sections together with the spectral characteristics of the tested materials provide important information for the design of energy efficient, high-power laser amplifiers.

  1. Optical pumping of generalized laser active materials.

    PubMed

    Fry, F H

    1967-11-01

    Results are presented of a computer-based study on the rate of excitation in the active cores of two types of optically pumped lasers as a function of a number of parameters of the active core. The absorption bands of the active materials are generated by Lorentzian and Gaussian functions. The excitation rate of the active core is proportional to the width of the absorption band at all depths of penetration. The plots of excitation rate as a function of frequency show curves similar to line reversal spectra and emphasize the importance of excitation some distance from the center of the absorption band in the slab model. In the cylindrical model, this wing pumping is even more important due to focusing. The effect of refractive index on the excitation rate is also described. PMID:20062337

  2. Photovoltaic materials: Present efficiencies and future challenges.

    PubMed

    Polman, Albert; Knight, Mark; Garnett, Erik C; Ehrler, Bruno; Sinke, Wim C

    2016-04-15

    Recent developments in photovoltaic materials have led to continual improvements in their efficiency. We review the electrical characteristics of 16 widely studied geometries of photovoltaic materials with efficiencies of 10 to 29%. Comparison of these characteristics to the fundamental limits based on the Shockley-Queisser detailed-balance model provides a basis for identifying the key limiting factors, related to efficient light management and charge carrier collection, for these materials. Prospects for practical application and large-area fabrication are discussed for each material. PMID:27081076

  3. Past, present, and future of endobronchial laser photoresection.

    PubMed

    Khemasuwan, Danai; Mehta, Atul C; Wang, Ko-Pen

    2015-12-01

    Laser photoresection of central airway obstruction is a useful tool for an Interventional Pulmonologist (IP). Endobronchial therapy of the malignant airway obstruction is considered as a palliative measure or a bridge therapy to the definite treatment of cancer. Several ablative therapies such as electrocautery, argon plasma coagulation (APC), cryotherapy and laser photoresection exist in the armamentarium of IP to tackle such presentations. Besides Neodymium-Yttrium, Aluminum, Garnet (Nd:YAG) laser, there are several different types of laser that have been used by the pulmonologist with different coagulative and cutting properties. This chapter focuses on the historical perspective, current status, and potentials of lasers in the management of central airway lesions. PMID:26807285

  4. Past, present, and future of endobronchial laser photoresection

    PubMed Central

    Khemasuwan, Danai; Wang, Ko-Pen

    2015-01-01

    Laser photoresection of central airway obstruction is a useful tool for an Interventional Pulmonologist (IP). Endobronchial therapy of the malignant airway obstruction is considered as a palliative measure or a bridge therapy to the definite treatment of cancer. Several ablative therapies such as electrocautery, argon plasma coagulation (APC), cryotherapy and laser photoresection exist in the armamentarium of IP to tackle such presentations. Besides Neodymium-Yttrium, Aluminum, Garnet (Nd:YAG) laser, there are several different types of laser that have been used by the pulmonologist with different coagulative and cutting properties. This chapter focuses on the historical perspective, current status, and potentials of lasers in the management of central airway lesions. PMID:26807285

  5. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  6. Laser-beam interactions with materials

    SciTech Connect

    Allmen, M.V.

    1987-01-01

    Lasers are becoming popular tools and research instruments in materials research, metallurgy, semiconductor technology and engineering. This text treats, from a physicist's point of view, the processes that lasers can induce in materials. A broad view of the field and its perspectives is given: physical topics covered range from optics to shock waves, and applications range from semiconductor annealing to fusion-plasma production. Intuitive analytical models are used whenever possible, in order to foster creative thinking and facilitate access to newcomers and nonspecialists.

  7. Laser-induced reactions in energetic materials

    NASA Astrophysics Data System (ADS)

    Ling, Ping

    1999-07-01

    Several energetic materials have been investigated under shock wave loading, heating, and photodissociation. This dissertation highlights some efforts to understand energetic material from an angle of basic physical processes and elementary chemical reactions. The first series of experiments was performed to study laser-generated shock waves in energetic materials. Shock waves are generated by pulsed laser vaporization of thin aluminum films. The rapidly expanding aluminum plasma launches a shock wave into the adjacent layer of energetic material, initiating chemical reactions. The shock velocity has been measured by a velocity interferometer. Shock pressures as high as 8 GPa have been generated in this manner. A simple model is proposed to predict laser-generated shock pressure. Several energetic materials have been studied under laser- generated shock wave. The second series of experiments was conducted to study thermal decomposition and photodissociation of energetic materials. Glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (PGN) have been investigated by pulsed infrared laser pyrolysis and ultraviolet laser photolysis of thin films at 17-77 K. Reactions are monitored by transmission infrared spectroscopy. Photolysis of GAP at 266 nm shows that the initial reaction steps are elimination of molecular nitrogen with subsequent formation of imines. Thermal decomposition of GAP by infrared laser pyrolysis reveals products similar to the UV experiments after warming. Laser pyrolysis of PGN indicated that the main steps of decomposition are elimination of NO2 and CH2O from the nitrate ester functional group. It seems that the initial thermal decomposition mechanism of GAP and PGN are the same from heating rate of several degrees per second to 107 oC/s. The third series of experiments is about detailed study of photodissociation mechanism of methyl nitrate. Photodissociation of methyl nitrate isolated in an argon matrix at 17 K has been investigated by 266 nm

  8. Towards 3-D laser nano patterning in polymer optical materials

    NASA Astrophysics Data System (ADS)

    Scully, Patricia J.; Perrie, Walter

    2015-03-01

    Progress towards 3-D subsurface structuring of polymers using femtosecond lasers is presented. Highly localised refractive index changes can be generated deep in transparent optical polymers without pre doping for photosensitisation or post processing by annealing. Understanding the writing conditions surpasses the limitations of materials, dimensions and chemistry, to facilitate unique structures entirely formed by laser-polymeric interactions to overcome materials, dimensional, refractive index and wavelength constraints.. Numerical aperture, fluence, temporal pulselength, wavelength and incident polarisation are important parameters to be considered, in achieving the desired inscription. Non-linear aspects of multiphoton absorption, plasma generation, filamentation and effects of incident polarisation on the writing conditions will be presented.

  9. Materials processing with a high power diode laser

    SciTech Connect

    Li, L.; Lawrence, J.; Spencer, J.T.

    1996-12-31

    This paper reports on work exploring the feasibility of a range of materials processing applications using a Diomed 60W diode laser delivered through a 600{mu}m diameter optical fibre to a 3 axis CNC workstation. The applications studied include: marking/engraving natural stones (marble and granite), marking ceramic tiles, sealing tile grouts, cutting and marking glass, marking/engraving wood, stripping paint and lacquer, and welding metallic wires. The study shows that even at the present limited power level of diode lasers, many materials processing applications can be accomplished with satisfactory results. Through the study an initial understanding of interaction of high power diode laser (HPDL) beam with various materials has been gained. Also, within the paper basic beam characteristics, and current R&D activities in HPDL technology and materials processing applications are reviewed.

  10. Laser remote cutting of metallic materials: opportunities and limitations

    NASA Astrophysics Data System (ADS)

    Wetzig, Andreas; Baumann, Robert; Herwig, Patrick; Siebert, René; Beyer, Eckhard

    2015-07-01

    The fundamentals of laser remote cutting will be introduced as well as a comparison to the conventional laser fusion cutting process. The opportunities and limitations of this alternative laser cutting technology will be discussed in detail by means of recent application examples. Here to name cutting of typical punching and bending parts, battery foils, metals foams and electrical steel sheets. Questions that are concerning the cutting thickness, the cutting quality, the cycle time, and the impact on the material will be answered. Finally, conclusions and an outlook on future developments will be presented.

  11. Tetravalent chromium doped laser materials and NIR tunable lasers

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0laser materials are characterized by a relatively high concentration of Cr.sup.4+-lasing ion in crystalline host that makes these materials suitable for compact high power (thin disk/wedge) NIR laser applications.

  12. Laser surface conditioning of semimetallic friction materials

    SciTech Connect

    Patten, D.T.

    1986-01-01

    Surface conditioning is one way of reducing the duration and magnitude of the initial transients occurring in friction materials. In developing a laser searing system for semimetallic materials the changes occurring on the surface were characterized as a function of the power density. Excessive power melted the surface of the lining and produced an undesirable microstructure, while too little power did not produce the changes desired. The changes produced by laser searing were found to be similar to the changes produced by other types of surface conditioning. The friction and wear performance was studied for linings seared with different power densities. Laser searing primarily increased the low speed, low temperature, pre-burnish friction level. The amount of increase was proportional to the amount of searing. After burnishing the searing did not effect the friction level of the lining. Excessive power densities produced undesirable surface microstructures and persistent rotor scoring.

  13. Review of selective laser melting: Materials and applications

    NASA Astrophysics Data System (ADS)

    Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L.

    2015-12-01

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  14. Review of selective laser melting: Materials and applications

    SciTech Connect

    Yap, C. Y.; Chua, C. K. Liu, Z. H. Zhang, D. Q. Loh, L. E. Sing, S. L.; Dong, Z. L.

    2015-12-15

    Selective Laser Melting (SLM) is a particular rapid prototyping, 3D printing, or Additive Manufacturing (AM) technique designed to use high power-density laser to melt and fuse metallic powders. A component is built by selectively melting and fusing powders within and between layers. The SLM technique is also commonly known as direct selective laser sintering, LaserCusing, and direct metal laser sintering, and this technique has been proven to produce near net-shape parts up to 99.9% relative density. This enables the process to build near full density functional parts and has viable economic benefits. Recent developments of fibre optics and high-power laser have also enabled SLM to process different metallic materials, such as copper, aluminium, and tungsten. Similarly, this has also opened up research opportunities in SLM of ceramic and composite materials. The review presents the SLM process and some of the common physical phenomena associated with this AM technology. It then focuses on the following areas: (a) applications of SLM materials and (b) mechanical properties of SLM parts achieved in research publications. The review is not meant to put a ceiling on the capabilities of the SLM process but to enable readers to have an overview on the material properties achieved by the SLM process so far. Trends in research of SLM are also elaborated in the last section.

  15. Modeling of laser interactions with composite materials

    DOE PAGESBeta

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  16. Femtosecond laser ablation properties of transparent materials: impact of the laser process parameters on the machining throughput

    NASA Astrophysics Data System (ADS)

    Matylitsky, V. V.; Hendricks, F.; Aus der Au, J.

    2013-03-01

    High average power, high repetition rate femtosecond lasers with μJ pulse energies are increasingly used for bio-medical and material processing applications. With the introduction of femtosecond laser systems such as the SpiritTM platform developed by High Q Lasers and Spectra-Physics, micro-processing of solid targets with femtosecond laser pulses have obtained new perspectives for industrial applications [1]. The unique advantage of material processing with subpicosecond lasers is efficient, fast and localized energy deposition, which leads to high ablation efficiency and accuracy in nearly all kinds of solid materials. The study on the impact of the laser processing parameters on the removal rate for transparent substrate using femtosecond laser pulses will be presented. In particular, examples of micro-processing of poly-L-lactic acid (PLLA) - bio-degradable polyester and XensationTM glass (Schott) machined with SpiritTM ultrafast laser will be shown.

  17. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOEpatents

    Welle, Eric J.; Tappan, Alexander S.; Palmer, Jeremy A.

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  18. WinGEONET: What's New? (Presentation material)

    SciTech Connect

    Gaydosh, M.; Langer, L.; LeCocq, C.; /SLAC

    2005-08-23

    The name GEONET means data reduction software for the accelerator alignment community. It was developed in the early 1980's but the only thing left from the original version is the hierarchical directory structure to hold the observations and results. This poster presents the three components of WinGEONET: the Windows interface, the computational engine and the visualization tool. It also presents further developments towards a more versatile toolbox architecture.

  19. Direct laser writing of auxetic structures: present capabilities and challenges

    NASA Astrophysics Data System (ADS)

    Hengsbach, Stefan; Díaz Lantada, Andrés

    2014-08-01

    Auxetic materials (or metamaterials) are those with a negative Poisson ratio (NPR) and that display the unexpected property of lateral expansion when stretched, as well as an equal and opposing densification when compressed. Such geometries are being progressively employed in the development of novel products, especially in the fields of intelligent expandable actuators, shape morphing structures and minimally invasive implantable devices. Although several micromanufacturing technologies have already been applied to the development of auxetic geometries and devices, additional precision is needed to take full advantage of their special mechanical properties. In this study we present a very promising approach for the development of auxetic metamaterials and devices based on the use of direct laser writing. The process stands out for its precision and complex three-dimensional (3D) geometries attainable without the need of supporting structures. To our knowledge it represents one of the first examples of the application of this technology to the manufacture of auxetic geometries and mechanical metamaterials, with details even more remarkable than those shown in very recent studies, almost reaching the current limit of this additive manufacturing technology. We have used some special 3D auxetic designs whose remarkable NPR has been previously highlighted.

  20. Laser Photothermal Analysis of Magnetoelectric Materials

    NASA Astrophysics Data System (ADS)

    Penchev, S.; Pencheva, V.; Nedkov, I.; Kutzarova, T.; Naboko, V.

    2010-01-01

    Modulated optical reflectance (MOR) technique of laser photothermal analysis is implemented to magnetoresistive La0,7Sr0,3MnO3 (LSMO) thin film. The sensor signal is based on the measurement of the variations of optical reflectivity of the sample subjected to periodic photothermal modulation. Assuming Drude model, it is proportional to the variations of the charge carrier concentration. The optical setup is mounted as a flexible laser microscope, based on elements of integral and fibre optics. The noncontact, nondestructive measurement scheme is prospective for applications to structural analysis and characterization of new magnetic and magnetoelectric materials for the next generation electronic devices.

  1. Enhancing the Recall of Presented Material

    ERIC Educational Resources Information Center

    Larson, Ronald B.

    2009-01-01

    Many educators distribute either complete or incomplete handouts so students can follow along with their lectures. This research examines a teaching system that combines computer-generated graphics presentations and detailed outline handouts with blanks added. An experiment found that this system produced significantly higher short-term recall of…

  2. Laser photoacoustics for gas analysis and materials testing

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus W.

    1995-07-01

    The application of laser photoacoustics to two different areas is discussed. First, laser-induced spallation and interferometric detection of transient surface displacements is proposed as a powerful noncontact tool for the investigation of adhesion properties of solid surface coatings. Results for nickel and plasma-sprayed ceramic coatings are presented. Delamination processes at the interface between substrate and coating could be detected with excellent spatial and temporal resolution and adhesion strengths in the 0.2 to 2 GPa range be determined. Second, laser photoacoustic spectroscopy is applied to trace gas monitoring. An automated mobile CO2$ laser photoacoustic system is employed for in situ air monitoring with parts per billion sensitivity in industrial, urban, and rural environments. An improvement in detection selectivity for multicomponent gas mixtures is achieved with a continuously tunable high- pressure CO2 laser with a narrow linewidth of 0.017 cm-1. A CO laser photoacoustic system previously used for the analysis of motor vehicle exhausts is now employed for studying dimerization phenomena in fatty acid vapors. Finally, emphasis is put on the development of widely tunable, narrow-band, mid-IR laser sources based on optical parametric oscillation or difference frequency generation employing tunable diode lasers and AgGaSe2 as nonlinear material.

  3. Novel materials as potential infrared laser hosts

    NASA Astrophysics Data System (ADS)

    Sarkies, Julian Richard

    The work presented in this thesis has concentrated on an assessment and characterisation of potential laser host media which will only support low phonon or vibrational modes. This is a necessary criterion if systems in which the active ions are lanthanides are to be made to lase in the mid-infrared, as in conventional host media non- radiative processes dominate transitions in this region. Research has concentrated upon two main areas. Firstly a spectroscopic study of lanthanide doped PBr3/AlBr3/SbBr3 was undertaken. A detailed investigation and characterisation of the stable solution formation region was carried out. The doping levels achievable were seen to vary across the lanthanide series from a maximum 0.24mol% for praesodymium to a minimum 0.15mol% for ytterbium. Energies of the characteristic 4 f absorptions of the trivalent lanthanides were measured, along with their oscillator strengths. Judd-Ofelt parameters were found for several rare earths. Stimulated emission cross sections were found to be higher than in conventional glass hosts for certain transitions, such as 6.83 × 10 -20 cm2 for the 4F3/2 --> 4I11/2 transition in the Nd3+ doped liquid. This was verified both experimentally and by the Ladenburg-Fuchtbauer relation when compared to a standard silicate glass. The behaviour, both spectroscopic and physical, of the doped solutions was seen to change dramatically upon heating. Heating the solutions gave rise to higher crystallisation rates, but lower non-radiative relaxation rates. Waveguide and laser experiments were attempted in both bulk and capillary geometries, however material factors such as crystallisation and thermal lensing prevented laser action. Secondly, rare earth doped planar waveguides of zinc sulphide were prepared. A full characterisation of the way in which waveguide loss was affected by factors such as deposition rate, doping level and waveguide masking during evaporation was performed. Waveguide losses as low as 1.5dB/cm at 980nm

  4. Tubular filamentation for laser material processing.

    PubMed

    Xie, Chen; Jukna, Vytautas; Milián, Carles; Giust, Remo; Ouadghiri-Idrissi, Ismail; Itina, Tatiana; Dudley, John M; Couairon, Arnaud; Courvoisier, Francois

    2015-01-01

    An open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 10(13) W/cm(2) has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation. This regime is seeded from higher order nondiffracting Bessel beams, which carry an optical vortex charge. Numerical simulations are quantitatively confirmed by experiments where a novel experimental approach allows direct imaging of the 3D fluence distribution within transparent solids. We also analyze the transitions to other propagation regimes in near and far fields. We demonstrate how the generation of plasma in this tubular geometry can lead to applications in ultrafast laser material processing in terms of single shot index writing, and discuss how it opens important perspectives for material compression and filamentation guiding in atmosphere. PMID:25753215

  5. Tubular filamentation for laser material processing

    PubMed Central

    Xie, Chen; Jukna, Vytautas; Milián, Carles; Giust, Remo; Ouadghiri-Idrissi, Ismail; Itina, Tatiana; Dudley, John M.; Couairon, Arnaud; Courvoisier, Francois

    2015-01-01

    An open challenge in the important field of femtosecond laser material processing is the controlled internal structuring of dielectric materials. Although the availability of high energy high repetition rate femtosecond lasers has led to many advances in this field, writing structures within transparent dielectrics at intensities exceeding 1013 W/cm2 has remained difficult as it is associated with significant nonlinear spatial distortion. This letter reports the existence of a new propagation regime for femtosecond pulses at high power that overcomes this challenge, associated with the generation of a hollow uniform and intense light tube that remains propagation invariant even at intensities associated with dense plasma formation. This regime is seeded from higher order nondiffracting Bessel beams, which carry an optical vortex charge. Numerical simulations are quantitatively confirmed by experiments where a novel experimental approach allows direct imaging of the 3D fluence distribution within transparent solids. We also analyze the transitions to other propagation regimes in near and far fields. We demonstrate how the generation of plasma in this tubular geometry can lead to applications in ultrafast laser material processing in terms of single shot index writing, and discuss how it opens important perspectives for material compression and filamentation guiding in atmosphere. PMID:25753215

  6. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, M A

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  7. Experiments on multiplane balancing using a laser for material removal

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.

    1979-01-01

    The modifications of a flexible rotor system for two-plane laser balancing is described. Experimental testing of the laser material removal method for balancing through the first bending critical speed was demonstrated. The test rig, optical configuration, and a neodymium glass laser system were assembled and calibrated for static and rotating material removal rates. The laser control computer program was combined with the influence coefficient balancing process, resulting in a completely automated data acquisition, laser, and balancing system. The laser system rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  8. Laser nano-surgery for neuronal manipulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarker, Hori Pada; Chudal, Lalit; Mahapatra, Vasu; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Optical manipulation has enabled study of bio-chemical and bio-mechanical properties of the cells. Laser nanosurgery by ultrafast laser beam with appropriate laser parameters provides spatially-targeted manipulation of neurons in a minimal invasiveness manner with high efficiency. We utilized femto-second laser nano-surgery for both axotomy and sub-axotomy of rat cortical neurons. Degeneration and regeneration after axotomy was studied with and without external growth-factor(s) and biochemical(s). Further, axonal injury was studied as a function of pulse energy, exposure and site of injury. The ability to study the response of neurons to localized injury opens up opportunities for screening potential molecules for repair and regeneration after nerve injury. Sub-axotomy enabled transient opening of axonal membrane for optical delivery of impermeable molecules to the axoplasm. Fast resealing of the axonal membrane after sub-axotomy without significant long-term damage to axon (monitored by its growth) was observed. We will present these experimental results along with theoretical simulation of injury due to laser nano-surgery and delivery via the transient pore. Targeted delivery of proteins such as antibodies, genes encoding reporter proteins, ion-channels and voltage indicators will allow visualization, activation and detection of the neuronal structure and function.

  9. Ultrafast laser spectroscopy in complex solid state materials

    SciTech Connect

    Li, Tianqi

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  10. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  11. Reinforced direct bonding of optical materials by femtosecond laser welding.

    PubMed

    Hélie, David; Bégin, Michael; Lacroix, Fabrice; Vallée, Réal

    2012-04-20

    A process for reinforcing a direct bond between optical materials using femtosecond laser welding is presented. As a side benefit, the optical transmission properties of the joined components are shown not to be altered by the joining process. The joints exhibits higher shear breakage loads, yielding a maximum measured joint strength of 5.25 MPa for an applied load of 75 kg in fused silica. The laser sealing of direct bonds between dissimilar materials improves their resistance to thermal shocks. Direct bonds sealed by a circular weld seam can withstand thermal shocks at temperatures at least twice as great as nonreinforced direct bonds. The combination of ultrashort laser welding and direct bonding provides an innovative joining method that benefits from the advantages of both contributing physical processes. PMID:22534922

  12. Micromachining of packaging materials for MEMS using lasers

    NASA Astrophysics Data System (ADS)

    Kancharla, Vijay; Hendricks, Kira; Chen, Shaochen

    2001-09-01

    New lithographic, deposition, and etching tools for micro fabrication on planar silicon substrates have led to remarkable advances in miniaturization of silicon devices. However silicon is often not the substrate material of choice for applications in which there are requirements for electrically or thermally insulating substrates, low capacitance, resistance to corrosion, or hermetic sealing. Some of the MEMS packaging materials such as ceramics, polymers, and glass are currently being used to fabricate many microdevices. To support the rapid advancements of non-silicon MEMS it is necessary to introduce innovative techniques to process these MEMS packaging materials. In this study we present the application of pulsed laser ablation of ceramics, polymers and glass (MEMS packaging materials) to assist in fabrication of MEMS devices. Microstructuring of Al2O3 ceramic, polymers Poly-Vinyl-Alcohol (PVA), polystyrene (PS), and Pyrex glass were performed and studied by pulsed lasers at 193-nm, 266-nm and 308-nm wavelengths.

  13. Kilowatt average-power laser for subpicosecond materials processing

    NASA Astrophysics Data System (ADS)

    Benson, Stephen V.; Neil, George R.; Bohn, Courtlandt L.; Biallas, George; Douglas, David; Dylla, H. Frederick; Fugitt, Jock; Jordan, Kevin; Krafft, Geoffrey; Merminga, Lia; Preble, Joe; Shinn, Michelle D.; Siggins, Tim; Walker, Richard; Yunn, Byung

    2000-04-01

    The performance of laser pulses in the sub-picosecond range for materials processing is substantially enhanced over similar fluences delivered in longer pulses. Recent advances in the development of solid state lasers have progressed significantly toward the higher average powers potentially useful for many applications. Nonetheless, prospects remain distant for multi-kilowatt sub-picosecond solid state systems such as would be required for industrial scale surface processing of metals and polymers. We present operation results from the world's first kilowatt scale ultra-fast materials processing laser. A Free Electron Laser (FEL) called the IR Demo is operational as a User Facility at Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA. In its initial operation at high average power it is capable of wavelengths in the 2 to 6 micron range and can produce approximately 0.7 ps pulses in a continuous train at approximately 75 MHz. This pulse length has been shown to be nearly optimal for deposition of energy in materials at the surface. Upgrades in the near future will extend operation beyond 10 kW CW average power in the near IR and kilowatt levels of power at wavelengths from 0.3 to 60 microns. This paper will cover the design and performance of this groundbreaking laser and operational aspects of the User Facility.

  14. Optical materials for space based laser systems

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Armagan, G.; Byvik, C. E.; Albin, S.

    1989-01-01

    The design features and performance characteristics of a sensitized holmium laser applicable to differential lidar and Doppler windshear measurements are presented, giving attention to the optimal choice of sensitizing/activating dopant ions. This development of a 2-micron region eye-safe laser, where holmium is sensitized by either hulium or erbium, has called for interionic energy transfer processes whose rate will not result in gain-switched pulses that are excessively long for atmospheric lidar and Doppler windshear detection. The application of diamond films for optical component hardening is noted.

  15. Emerging Laser Materials Processing Techniques for Future Industrial Applications

    NASA Astrophysics Data System (ADS)

    Kukreja, L. M.; Kaul, R.; Paul, C. P.; Ganesh, P.; Rao, B. T.

    Lasers are not only the proven and indispensable tools for some of the contemporary manufacturing technologies but have the potential for providing solutions to some of the upcoming intricate problems of industrial materials processing. The ongoing research is spearheading in the direction to develop novel fabrication techniques for improving qualities of the products, possibilities to engineer integrated multi-materials and multi-functional components and enhancing economic or procedural benefits. To explore the possibilities of achieving some of these objectives, we have carried out studies on the laser rapid manufacturing of structures of different metals with control over porosity, bimetallic integration, and other technologically important mechanical characteristics, laser melting based surface processing , laser shock peening , hybrid welding , and laser profile cutting of metal sheets. The results of these studies with comprehensiveness are presented and discussed in this chapter. A brief review of their scope for the industrial acceptability and adaptability has also been presented to assess the real potential of these research areas.

  16. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  17. Damage thresholds in laser irradiated optical materials

    SciTech Connect

    Guignard, F.; Autric, M.; Baudinaud, V.

    1997-12-01

    An experimental study on the damage induced by laser irradiation on different materials, borosilicate glass, fused silicate, moulded and stretched polymethylmethacrylate (PMMA), has been performed. The irradiation source is a 1KJ pulsed cold cathode electron gun preionized TEA CO{sub 2} laser. Damage mechanisms are controlled by the in-depth absorption of the 10,6 {mu}m radiation according to the Beer-Lambert law. The heating of the interaction area gives rise to thermal or thermo-mechanical damages. PMMA is damaged following a boiling process. Stretched PMMA is fractured first, releasing stresses, then boiled like moulded PMMA at higher energy. BK7 crazed after the irradiation due to thermomechanical stresses, silicate melt and vaporized. Optical damages have been characterized by measuring the contrast transfer function through the irradiated samples.

  18. Laser Ablation of Materials for Propulsion of Spacecraft

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Carruth, Ralph; Campbell, Jonathan; Gray, Perry

    2004-01-01

    A report describes experiments performed as part of a continuing investigation of the feasibility of laser ablation of materials as a means of propulsion for small spacecraft. In each experiment, a specimen of ablative material was mounted on a torsion pendulum and irradiated with a laser pulse having an energy of 5 J. The amplitude of the resulting rotation of the torsion pendulum was taken to be an indication of the momentum transferred from the laser beam. Of the ablative materials tested, aluminum foils yielded the smallest rotation amplitudes of the order of 10 degrees. Black coating materials yielded rotation amplitudes of the order of 90 degrees. Samples of silver coated with a fluorinated ethylene propylene (FEP) copolymer yielded the largest rotation amplitudes 6 to 8 full revolutions. The report presents a theory involving heating of a confined plasma followed by escape of the plasma to explain the superior momentum transfer performance of the FEP specimens. It briefly discusses some concepts for optimizing designs of spacecraft engines to maximize the thrust obtainable by exploiting the physical mechanisms of the theory. Also discussed is the use of laser-ablation engines with other types of spacecraft engines.

  19. HO:LULF and HO:LULF Laser Materials

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Morrison, Clyde A. (Inventor); Filer, Elizabeth D. (Inventor); Jani, Mahendra G. (Inventor); Murray, Keith E. (Inventor); Lockard, George E. (Inventor)

    1998-01-01

    A laser host material LULF (LuLiF4) is doped with holmium (Ho) and thulium (Tm) to produce a new laser material that is capable of laser light production in the vicinity of 2 microns. The material provides an advantage in efficiency over conventional Ho lasers because the LULF host material allows for decreased threshold and upconversion over such hosts as YAG and YLF. The addition of Tm allows for pumping by commonly available GaAlAs laser diodes. For use with flashlamp pumping, erbium (Er) may be added as an additional dopant. For further upconversion reduction, the Tm can be eliminated and the Ho can be directly pumped.

  20. High precision laser processing of sensitive materials by Microjet

    NASA Astrophysics Data System (ADS)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  1. Qualification of materials for applications in high fluence lasers

    NASA Astrophysics Data System (ADS)

    Pryatel, James A.; Gourdin, William H.; Hampton, George J.; Behne, Daniel M.; Meissner, Richard A.

    2007-01-01

    High power laser systems require nearly contamination free optics to maintain desired transport efficiency and to minimize optic damage. The required cleanliness is generally achieved through practices that preclude or remove foreign particle contamination. However, laser optic systems may also be contaminated by vapor-borne contaminants from material outgassing, by particles ablated from surfaces exposed to amplifier or laser light, or by contact with items used in the production and cleaning of optics and components. To minimize such contamination on the optics of the National Ignition Facility (NIF), a rigorous screening test program was introduced. This test program replicates conditions in the beam path as well as conditions during production and cleaning. The former is represented by sol-gel exposure tests and by subjecting materials to amplifier flashlamp light and 1ω laser light. The latter is represented by organic solvent extraction tests and surface contact tests for items that could contact optic surfaces. This paper will discuss the methodology for, and administration of, these tests and present results for selected materials.

  2. Electron microscopy of compound oxide laser materials

    NASA Astrophysics Data System (ADS)

    Eakins, Daniel E.; LeBret, Joel B.; Norton, M. G.; Bahr, David F.; Dumm, John Q.

    2003-06-01

    Oxide single crystals, such as yttrium aluminum garnet (YAG) and yttrium orthovanadate (YVO4), are important host crystals for solid-state laser applications. These crystals are often grown by the Czochralski process and are doped with neodymium during growth. The microstructure of the resultant crystal affects the overall laser performance and it is necessary to be able to characterize grown-in defects in the material. Scanning electron microscopy has been used to examine the fracture surfaces of YAG and has shown the presence of microscopic voids, which act as stress concentrators and in some cases appear to be the cause of fracture. Transmission electron microscopy (TEM) has been used to characterize various defects in both YAG and YVO4 crystals. The defects found depend on the growth conditions, specifically the Nd concentration in the crystal and the position within the boule. One of the most common defects identified in both materials were microscopic spherical particles. In YAG these particles appeared to be located primarily in the core regions and analysis of high resolution images indicate that they are due to regions that are both compositionally and orientationally different from the matrix phase. Direct observation of dislocations in YVO4 was made using TEM. In YAG only indirect evidence for dislocations could be found from the observation of river marks on fracture surfaces.

  3. Contribution to the beam plasma material interactions during material processing with TEA CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Konrad, Peter E.; Mayerhofer, Roland; Bergmann, Hans W.; Bickel, Peter G.; Kowalewicz, Roland; Kuttenberger, Alfred; Christiansen, Jens

    1995-03-01

    The TEA-CO2-laser (transversely excited atmospheric pressure) is a tool for the pulsed processing of materials with peak power densities up to 1010 W/cm2 and a FWHM of 70 ns. The interaction between the laser beam, the surface of the work piece and the surrounding atmosphere as well as gas pressure and the formation of an induced plasma influences the response of the target. It was found that depending on the power density and the atmosphere the response can take two forms. (1) No target modification due to optical break through of the atmosphere and therefore shielding of the target (air pressure above 10 mbar, depending on the material). (2) Processing of materials (air pressure below 10 mbar, depending on the material) with melting of metallic surfaces (power density above 0.5 109 W/cm2), hole formation (power density of 5 109 W/cm2) and shock hardening (power density of 3.5 1010 W/cm2). All those phenomena are usually linked with the occurrence of laser supported combustion waves and laser supported detonation waves, respectively for which the mechanism is still not completely understood. The present paper shows how short time photography and spatial and temporal resolved spectroscopy can be used to better understand the various processes that occur during laser beam interaction. The spectra of titanium and aluminum are observed and correlated with the modification of the target. If the power density is high enough and the gas pressure above a material and gas composition specific threshold, the plasma radiation shows only spectral lines of the background atmosphere. If the gas pressure is below this threshold, a modification of the target surface (melting, evaporation and solid state transformation) with TEA-CO2- laser pulses is possible and the material specific spectra is observed. In some cases spatial and temporal resolved spectroscopy of a plasma allows the calculation of electron temperatures by comparison of two spectral lines.

  4. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado. PMID:20212622

  5. Materials Development and Evaluation of Selective Laser Sintering Manufacturing Applications

    SciTech Connect

    Smith, Peter F.; Mitchell, Russell R.

    1997-01-15

    This report summarizes the FY96 accomplishments for CRADA No. LA95C10254, "Materials Development and Evaluation of Laser Sintering Manufacturing Applications". To research the potential for processing additional materials using DTM Corporations Selective Laser Sintering rapid prototyping technology and evaluate the capability for rapid manufacturing applications, the following materials were processed experimentally using the Sinterstation 2000 platform; Linear Low Density Polyethylene thermoplastic; Polypropylene thermoplastic; Polysulfone thermoplastic; Polymethylpentene (TPX) thermoplastic; Carbon microsphere filled nylon 11; "APO-BMI" Apocure bismaleimide thermoset polyimide glass m.icrosphere filled and carbon microsphere filled formulations; and 900-24 physical properties mock for plastic bonded TATB high explosive These materials have been successfully processed to a "proof of concept" level or better (with the exception of No. 7). While none of these materials have been introduced as a standard product as of this date, the potential to do so is viable. Present status of materials processing efforts is presented in Section A 2.0. Some recent efforts in manufacturing applications is discussed in Section A 4.0.

  6. Laser spectrometry and laser ablation - an ideal solution for the analysis of nuclear materials

    SciTech Connect

    Goodall, P.; Johnson, S.G.

    1996-09-01

    Nuclear materials, consisting primarily of actinides and lanthanides, produce a plethora of emission lines from the ICP. This provides an entertaining problem for the analyst applying ICP-AES. Laser ablation ICP-AES (LA-ICP-AES) offers unique advantages for the analysis of nuclear materials as it allows remote analysis of these materials in heavily shielded environments. The use of high resolution spectrometry, when coupled with LA-ICP-AES, simplifies the spectral chaos normally encountered with these materials. This obviates the requirement for analyte separation which standard ICP-AES instrumentation demands. Examples of the analysis of nuclear fuels and materials used in the reprocessing of that fuel will be presented (e.g., the determination of U, La, Y, Ce and Nd in molten salts.). In addition to bulk (or local) chemical composition, it is also possible to extract isotopic information using high resolution LA-ICP-AES (e.g., the determination of {sup 236}U for the estimation of {open_quotes}burn-up{close_quotes} of {sup 235}U in a nuclear reactor). Laser excited atomic fluorescence (LEAFS) has the advantage of high specificity at the expense of instrumental sophistication but provides one solution to the spectral complexity encountered with nuclear materials. The potential of laser ablation coupled to ICP-LEAFS will be discussed and the determination of lanthanides by LA-ICP-LEAFS described.

  7. Blackbody absorption efficiencies for six lamp pumped Nd laser materials.

    PubMed

    Cross, P L; Barnes, N P; Skolaut, M W; Storm, M E

    1990-02-20

    Utilizing high resolution spectra, the absorption efficiency for six Nd laser materials was calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO(4), Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials. PMID:20556185

  8. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  9. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    NASA Astrophysics Data System (ADS)

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Sonina, Svetlana V.; Meshcheryakov, Yuri P.

    2015-12-01

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  10. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    SciTech Connect

    Bulgakova, Nadezhda M.; Zhukov, Vladimir P.; Sonina, Svetlana V.; Meshcheryakov, Yuri P.

    2015-12-21

    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  11. Ultrafast laser diagnostics to investigate initiation fundamentals in energetic materials.

    SciTech Connect

    Farrow, Darcie; Jilek, Brook Anton; Kohl, Ian Thomas; Kearney, Sean Patrick

    2013-08-01

    We present the results of a two year early career LDRD project, which has focused on the development of ultrafast diagnostics to measure temperature, pressure and chemical change during the shock initiation of energetic materials. We compare two single-shot versions of femtosecond rotational CARS to measure nitrogen temperature: chirped-probe-pulse and ps/fs hybrid CARS thermometry. The applicability of measurements to the combustion of energetic materials will be discussed. We have also demonstrated laser shock and particle velocity measurements in thin film explosives using stretched femtosecond laser pulses. We will discuss preliminary results from Al and PETN thin films. Agreement between our results and previous work will be discussed.

  12. Past, present and future of laser fusion research

    SciTech Connect

    Yamanaka, C.

    1996-05-01

    The concept of laser fusion was devised very shortly after the invention of laser. In 1972, the Institute of Laser Engineering, Osaka University was established by the author in accordance with the Edward Teller{close_quote}s special lecture on {open_quote}{open_quote}New Internal Combustion Engine{close_quote}{close_quote} for IQEC at Montreal which predicted the implosion fusion. In 1975 we invented the so called indirect drive fusion concept {open_quote}{open_quote}Cannonball Target{close_quote}{close_quote} which became later to be recognize as a same concept of {open_quote}{open_quote}Hohlraum Target{close_quote}{close_quote} from Livermore. As well known, ICF research in the US had been veiled for a long time due to the defense classification. While researchers from Japan, Germany and elsewhere have concentrated the efforts to investigate the inertial fusion energy which seems to be very interesting for a future civil energy. They were publishing their own works not only on the direct implosion scheme but also the indirect implosion experiment. These advanced results often frustrated the US researchers who were not allowed to talk about the details of their works. In 1988, international members of the ICF research society including the US scientists gathered together at ECLIM to discuss the necessity of freedom in the ICF research and concluded to make a statement {open_quote}{open_quote}Madrid Manifest{close_quote}{close_quote} which requested the declassification of the ICF research internationally. After 6 years of halt, the US DOE decided to declassify portions of the program as a part of secretary Hazel O{close_quote}Leary{close_quote}s openness initiative. The first revealed presentation from the US was done at Seville 1994, which however were well known already. Classification impeded the progress by restricting the flow of information and did not allow the ICF work to compete by the open scientific security. (Abstract Truncated)

  13. New laser technology to determine present weather parameters

    NASA Astrophysics Data System (ADS)

    Ellis, R. A.; Sandford, A. P.; Jones, G. E.; Richards, J.; Petzing, J.; Coupland, J. M.

    2006-07-01

    Present weather sensors are becoming increasingly important as a means to augment networks of automated weather stations and extend the capability of manned observations. The classification of hydrometeors is one of the principal tasks that is addressed by present weather sensors. In this paper, we discuss a new laser-based technology for this purpose. The system improves upon current precipitation monitors by using a derivative of phase Doppler anemometry techniques to accurately determine particle speed and size. The instrument is also capable of distinguishing between liquid droplets and solid polycrystalline hydrometeors and can be used to estimate visibility. The incorporation of this technology into a meteorological station with other sensors, such as temperature and relative humidity probes, leads to the accurate classification of particle type. The example data shown are taken from tests in Leicestershire, England and Utah, USA and show the differences between solid and liquid precipitation events.

  14. Analysis of photoacoustic response from plasmonic nanostructures irradiated by ultrafast laser in water (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Darvish, Behafarid; Dagallier, Adrien; Boutopoulos, Christos; Meunier, Michel

    2016-03-01

    Gold and silver plasmonic nanoparticles (NPs) are widely used as a contrast agent for photoacoustic (PA) imaging, taking advantage of the strong optical absorption cross-section of these particles due to their localized surface-plasmon resonance. Inspired by recent developments in ultra-high frequency wide-bandwidth transducers, we propose utilizing off-resonance ultrashort laser sources with a pulse width in the femtosecond (fs) and picosecond (ps) range to increase the efficiency of PA imaging. Also, from the fact that the laser pulse duration is shorter than the heat diffusion time of the materials, we expect practically no collateral damage of the laser irradiated biological tissues. Our preliminary studies show that irradiating the NPs with an ultrashort-pulsed laser has the potential to achieve substantially higher efficiency at generating the PA signal. Enhanced by the presence of NPs, the laser field causes a highly localized plasma nucleation around the vicinity of the NPs. Plasma relaxes through electron-ion interaction and releases a pressure wave in the surrounding medium. However, in this process, it is crucial to precisely control the heat energy absorption in the NPs to avoid their fragmentation. In this talk we present a model to simulate an optimized plasma-mediated PA signal dynamics generated from off-resonance ultrashort laser excitation (λ =800 nm, τ = 70 fs - 2 ps) of a variety of plasmonic NPs with sizes ranging from 50 nm to 100 nm.

  15. [INVITED] Ultrafast laser micro-processing of transparent material

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Li, Yan; Itoh, Kazuyoshi

    2016-04-01

    Focusing ultrafast laser pulses inside a transparent material induces localized permanent structural modifications. Using these permanent structural modifications, one can produce photonic devices and micro-channels inside the bulk of a transparent material in three-dimensions. By virtue of localized melting and resolidification in materials, joining or welding is achieved between pieces of the same or different materials. This welding technique for transparent materials using ultrafast laser pulses is also reviewed along with applications to hermetic sealing. The mechanisms and applications of ultrafast laser micro-processing in transparent material are discussed.

  16. Laser micro welding of copper and aluminium using filler materials

    NASA Astrophysics Data System (ADS)

    Esser, Gerd; Mys, Ihor; Schmidt, Michael H.

    2004-10-01

    The most evident trend in electronics production is towards miniaturization. Regarding the materials involved, another trend can be observed: intelligent combinations of different materials. One example is the combination of copper and aluminium. Copper is the material of choice for electronic packaging applications due to its superior electrical and thermal conductivity. On the other hand, aluminium offers technical and economical advantages with respect to cost and component weight -- still providing thermal and electrical properties acceptable for numerous applications. Especially for high volume products, the best solution often seems to be a combination of both materials. This fact raises the question of joining copper and aluminium. With respect to miniaturization laser micro welding is a very promising joining technique. Unfortunately, the metallurgical incompatibility of copper and aluminium easily results in the formation of brittle intermetallic phases and segregations during laser welding, thus generating an unacceptable quality of the joints. This paper presents investigations on enhancing the quality during laser micro welding of copper and aluminium for applications in electronics production. In order to eliminate the formation of brittle intermetallic phases, the addition of a filter material in form of a foil has been investigated. It can be shown that the addition of pure metals such as nickel and especially silver significantly reduces the occurrence of brittle phases in the joining area and therefore leads to an increase in welding quality. The proper control of the volume fractions of copper, aluminium and filler material in the melting zone helps to avoid materials segregation and reduces residual stress, consequently leading to a reduction of crack affinity and a stabilization of the mechanical and electrical properties.

  17. Ultrashort pulsed fiber laser welding and sealing of transparent materials.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-05-20

    In this paper, methods of welding and sealing optically transparent materials using an ultrashort pulsed (USP) fiber laser are demonstrated which overcome the limit of small area welding of optical materials. First, the interaction of USP fiber laser radiation inside glass was studied and single line welding results with different laser parameters were investigated. Then multiline scanning was used to obtain successful area bonding. Finally, complete four-edge sealing of fused silica substrates with a USP laser was demonstrated and the hermetic seal was confirmed by water immersion test. This laser microwelding technique can be extended to various applications in the semiconductor industry and precision optic manufacturing. PMID:22614601

  18. Synthesis of materials with infrared and ultraviolet lasers

    SciTech Connect

    Lyman, J.L.

    1988-01-01

    This paper discusses three divergent examples of synthesis of materials with lasers. The three techniques are: (1) infrared (CO/sub 2/) laser synthesis of silane (SiH/sub 4/) from disilane (Si/sub 2/H/sub 6/); (2) excimer (ArF) laser production of fine silicon powders from methyl- and chloro-substituted silanes; and, (3) excimer (KrF) laser production of fine metallic powders by laser ablation. The mechanism for each process is discussed along with some conclusions about the features of the laser radiation that enable each application. 19 refs., 12 figs., 2 tabs.

  19. Laser-induced damage in optical materials: sixteenth ASTM symposium.

    PubMed

    Bennett, H E; Guenther, A H; Milam, D; Newnam, B E

    1987-03-01

    The Sixteenth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, CO, 15-17 Oct. 1984. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific Research. Approximately 180 scientists attended the Symposium, including representatives from England, France, The Netherlands, Scotland, and West Germany. The Symposium was divided into sessions concerning Materials and Measurements, Mirrors and Surfaces, Thin Films, and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6,microm to the UV region. Highlights included surface characterization, thin-film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. Harold E. Bennett of the U.S. Naval Weapons Center, Arthur H. Guenther of the U.S. Air Force Weapons Laboratory, David Milam of the Lawrence Livermore National Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the Symposium. PMID:20454228

  20. Past, present and future of laser fusion research

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1996-05-01

    The concept of laser fusion was devised very shortly after the invention of laser. In 1972, the Institute of Laser Engineering, Osaka University was established by the author in accordance with the Edward Teller's special lecture on ``New Internal Combustion Engine'' for IQEC at Montreal which predicted the implosion fusion. In 1975 we invented the so called indirect drive fusion concept ``Cannonball Target'' which became later to be recognize as a same concept of ``Hohlraum Target'' from Livermore. As well known, ICF research in the US had been veiled for a long time due to the defense classification. While researchers from Japan, Germany and elsewhere have concentrated the efforts to investigate the inertial fusion energy which seems to be very interesting for a future civil energy. They were publishing their own works not only on the direct implosion scheme but also the indirect implosion experiment. These advanced results often frustrated the US researchers who were not allowed to talk about the details of their works. In 1988, international members of the ICF research society including the US scientists gathered together at ECLIM to discuss the necessity of freedom in the ICF research and concluded to make a statement ``Madrid Manifest'' which requested the declassification of the ICF research internationally. After 6 years of halt, the US DOE decided to declassify portions of the program as a part of secretary Hazel O'Leary's openness initiative. The first revealed presentation from the US was done at Seville 1994, which however were well known already. Classification impeded the progress by restricting the flow of information and did not allow the ICF work to compete by the open scientific security. The implosion experiments by GEKKO XII Osaka demonstrated a high temperature compression of DT fuel up to 10 keV, neutron yield 1013 and a high density compression of CDT hollow shell pellet to reach 1000 g/cm3 respectively. These results gave us a strong

  1. Progress Toward Roll Processing of Solar Reflective Material (Presentation)

    SciTech Connect

    Smilgys, R.; Wallace, S.; Kennedy, C.

    2001-04-01

    This presentation discusses the goal of this project which was to demonstrate that it is possible to cost-effectively produce high performance solar reflective material using vacuum deposition techniques.

  2. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  3. Perovskite Materials for Light-Emitting Diodes and Lasers.

    PubMed

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. PMID:27214091

  4. Laser materials for the 0.67-microns to 2.5-microns range

    NASA Technical Reports Server (NTRS)

    Toda, Minoru; Zamerowski, Thomas J.; Ladany, Ivan; Martinelli, Ramon U.

    1987-01-01

    Basic requirements for obtaining injection laser action in III-V semiconductors are discussed briefly. A detailed review is presented of materials suitable for lasers emitting at 0.67, 1.44, 1.93, and 2.5 microns. A general approach to the problem is presented, based on curves of materials properties published by Sasaki et al. It is also shown that these curves, although useful, may need correction in certain ranges. It is deduced that certain materials combinations, either proposed in the literature or actually tried, are not appropriate for double heterostructure lasers, because the refractive index of the cladding material is higher than the index of the active material, thus resulting in no waveguiding, and high threshold currents. Recommendations are made about the most promising approach to the achievement of laser action in the four wavelengths mentioned above.

  5. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  6. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    NASA Astrophysics Data System (ADS)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  7. Laser balancing system for high material removal rates

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Georgalas, G.; Ortiz, A. L.

    1984-01-01

    A laser technique to remove material in excess of 10 mg/sec from a spinning rotor is described. This material removal rate is 20 times greater than previously reported for a surface speed of 30 m/sec. Material removal enhancement was achieved by steering a focused laser beam with moving optics to increase the time of laser energy interaction with a particular location on the circumferential surface of a spinning rotor. A neodymium:yttrium aluminum garnet (Nd:YAG) pulse laser was used in this work to evaluate material removal for carbon steel, 347 stainless steel, Inconal 718, and titanium 6-4. This technique is applicable to dynamic laser balancing.

  8. Materials processing with a tightly focused femtosecond laser vortex pulse.

    PubMed

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness. PMID:20967085

  9. Effect of Moisture Content of Paper Material on Laser Cutting

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexander; Saukkonen, Esa; Piili, Heidi; Salminen, Antti

    Laser technology has been used in industrial processes for several decades. The most advanced development and implementation took place in laser welding and cutting of metals in automotive and ship building industries. However, there is high potential to apply laser processing to other materials in various industrial fields. One of these potential fields could be paper industry to fulfill the demand for high quality, fast and reliable cutting technology. Difficulties in industrial application of laser cutting for paper industry are associated to lack of basic information, awareness of technology and its application possibilities. Nowadays possibilities of using laser cutting for paper materials are widened and high automation level of equipment has made this technology more interesting for manufacturing processes. Promising area of laser cutting application at paper making machines is longitudinal cutting of paper web (edge trimming). There are few locations at a paper making machine where edge trimming is usually done: wet press section, calender or rewinder. Paper web is characterized with different moisture content at different points of the paper making machine. The objective of this study was to investigate the effect of moisture content of paper material on laser cutting parameters. Effect of moisture content on cellulose fibers, laser absorption and energy needed for cutting is described as well. Laser cutting tests were carried out using CO2 laser.

  10. Thin film resistive materials: past, present and future

    NASA Astrophysics Data System (ADS)

    Cherian Lukose, C.; Zoppi, G.; Birkett, M.

    2016-01-01

    This paper explores the key developments in thin film resistive materials for use in the fabrication of discrete precision resistors. Firstly an introduction to the preparation of thin films and their fundamental properties is given with respect to well established systems such as NiCr, TaN and CrSiO. The effect of doping these systems in both solid and gaseous forms to further refine their structural and electrical properties is then discussed before the performance of more recent materials systems such as CuAlMo and MmAgCuN are reviewed. In addition to performance of the materials themselves, the effect of varying processing parameters such as deposition pressure and temperature and subsequent annealing environment, as well as laser trimming energy and geometry are also studied. It is shown how these parameters can be systematically controlled to produce films of the required properties for varying applications such as high precision, long term stability and high power pulse performance.

  11. High Power Lasers And Their Application In Materials Processing

    NASA Astrophysics Data System (ADS)

    Bohn, W. L.

    1985-02-01

    The idea of using a laser for materials processing is more than 20 years old. Although the concept of a non-contact method for processing with a beam of light has been pursued with great interest and enthusiasm, the practical use of laser beam processing was slow to develop. The lasers available in the 1960's were fragile and of relatively low power. In the 1970's lasers in the multi-kilowatt range were developed but the problem of laser acceptance by the customer had to be overcome. Today, reliable Nd-Yag and CO2-lasers are available and laser processing is a fast growing market. An additional boost is expected with the development of the next generation of lasers and with increased knowledge of the physical phenomena that underlie laser material processing. This paper will review latest developments in laser technology and laser-workpiece interaction with special emphasis on the impact of high speed photography on the research work in these areas.

  12. Multiphoton tomography with tunable Ti:sapphire laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Li, Tuan; König, Karsten

    2016-03-01

    Femtosecond near infrared laser microscopes are widely used to perform high resolution 3D imaging of biological samples based on second harmonic generation (SHG) and non-resonant simultaneous absorption of two or more photons at GW/cm2 intensities. However, high contrast imaging of living specimens without any destructive effect is limited to certain laser and exposure parameters with respect to the optical properties of the target. We compared three different femtosecond lasers, including a novel ultra-compact ultrashort fiber laser, in the range of 15-180 fs and repetition rates of 50-300 MHz for optimal non-destructive two-photon autofluorescence imaging. In particular we determined the thresholds for the onset of photodamage effects such as impaired cell reproduction.

  13. Laser processing for manufacturing nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Van, Hai Hoang

    CNTs have been considered as the excellent candidate to revolutionize a broad range of applications. There have been many method developed to manipulate the chemistry and the structure of CNTs. Laser with non-contact treatment capability exhibits many processing advantages, including solid-state treatment, extremely fast processing rate, and high processing resolution. In addition, the outstanding monochromatic, coherent, and directional beam generates the powerful energy absorption and the resultant extreme processing conditions. In my research, a unique laser scanning method was developed to process CNTs, controlling the oxidation and the graphitization. The achieved controllability of this method was applied to address the important issues of the current CNT processing methods for three applications. The controllable oxidation of CNTs by laser scanning method was applied to cut CNT films to produce high-performance cathodes for FE devices. The production method includes two important self-developed techniques to produce the cold cathodes: the production of highly oriented and uniformly distributed CNT sheets and the precise laser trimming process. Laser cutting is the unique method to produce the cathodes with remarkable features, including ultrathin freestanding structure (~200 nm), greatly high aspect ratio, hybrid CNT-GNR emitter arrays, even emitter separation, and directional emitter alignment. This unique cathode structure was unachievable by other methods. The developed FE devices successfully solved the screening effect issue encounter by current FE devices. The laser-control oxidation method was further developed to sequentially remove graphitic walls of CNTs. The laser oxidation process was directed to occur along the CNT axes by the laser scanning direction. Additionally, the oxidation was further assisted by the curvature stress and the thermal expansion of the graphitic nanotubes, ultimately opening (namely unzipping) the tubular structure to

  14. Nonstoichiometric Laser Materials: Designer Wavelengths in Neodymium Doped Garnets

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.

    2008-01-01

    The tunable nature of lasers provides for a wide range of applications. Most applications rely on finding available laser wavelengths to meet the needs of the research. This article presents the concept of compositional tuning, whereby the laser wavelength is designed by exploiting nonstoichiometry. For research where precise wavelengths are required, such as remote sensing, this is highly advantageous. A theoretical basis for the concept is presented and experimental results in spectroscopic measurements support the theoretical basis. Laser operation nicely demonstrates the validity of the concept of designer lasers.

  15. Laser induced damage in optical materials: 8th ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1977-05-01

    The Eighth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was hosted by the National Bureau of Standards in Boulder, Colorado, from 13 to 15 July 1976. The Symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Energy Research and Development Administration, and the Office of Naval Research. About 160 scientists attended the Symposium, including representatives of the United Kingdom, France, Canada, and Brazil. The Symposium was divided into five half-day sessions concerning Bulk Material Properties and Thermal Behavior, Mirrors and Surfaces, Thin Film Properties, Thin Film Damage, and Scaling Laws and Fundamental Mechanisms. As in previous years, the emphasis of the papers presented at the Symposium was directed toward new frontiers and new developments. Particular emphasis was given to new materials for use at 10.6 microm in mirror substrates, windo s, and coatings. New techniques in film deposition and advances in diamond-turning of optics were described. The scaling of damage thresholds with pulse duration, focal area, and wavelength were discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons of the Symposium. The Ninth Annual Symposium is scheduled for 4-6 October 1977 at the National Bureau of Standards, Boulder, Colorado. PMID:20168679

  16. Effect of the lasers used in periodontal therapy on the surfaces of restorative materials.

    PubMed

    Hatipoğlu, Mükerrem; Barutcigil, Çağatay; Harorlı, Osman Tolga; Ulug, Bülent

    2016-05-01

    The present study aimed to reveal potential damage of the lasers, which are used as an alternative to manual instruments in periodontal therapy, might cause to the surface of restorative materials. Four different restorative materials were used: a glass-ionomer cement (GIC), a flowable composite (FC), a universal composite (UC) and an amalgam. Ten cylindrical samples (8 mm × 2 mm) were prepared for each restorative material. Two laser systems were used in subgingival curettage mode; an 940 nm diode laser (Epic Biolase, Irvine, CA) and an Er,Cr:YSGG laser (Waterlase iPlus, Biolase, Irvine, CA). After laser irradiation, roughness of the sample surfaces was measured using a profilometer. Additionally, atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses were performed to evaluate the morphology and surface deformations of the restorative materials and surfaces. The laser irradiation did not affect the surface roughness of any restorative materials relative to that of the control group (p > 0.05) except for the Er,Cr:YSGG treatment on GIC (p < 0.05). SEM and AFM images verified the results of the surface roughness tests. Within the limitations of the present study, it was demonstrated that Er,Cr:YSGG and diode lasers, aside from the Er;Cr:YSGG treatment on GIC, caused no harmful surface effects on adjacent restorative materials. SCANNING 38:227-233, 2016. © 2015 Wiley Periodicals, Inc. PMID:26340579

  17. Vitamin C for stabilising biological lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kar, Ajoy K.; Mackenzie, Mark D.; Cialowicz, Katarzyna I.; Saleeb, Rebecca S.; Duncan, Rory R.

    2016-04-01

    We report on efforts to improve the lifetime of biological lasers through the use of ascorbic acid (also commonly known as vitamin C). Fluorescent proteins and dyes, used in biological lasers, suffer from photobleaching due to the build-up of reactive oxygen species (ROS) which causes damage leading to a decrease in emission over time. This is an issue both for laser lifetime and cell health. It has previously been shown that ascorbic acid can be effective in reducing ROS levels in a variety of applications. For our experiments human embryonic kidney cells (HEK293), containing the fluorescent dye Calcein AM, were placed between two dielectric plane mirrors to form a laser cavity. The cells were pumped using the output of a Ti:Sapphire femtosecond OPO system, frequency doubled twice in BBO crystals, giving an output of 474 nm. Initial results have shown an increase in laser lifetime when ascorbic acid is added to cells indicating a reduction in the build-up of ROS.

  18. Reaction bonded silicon carbide material characteristics as related to its use in high power laser systems

    NASA Astrophysics Data System (ADS)

    Pitschman, Matthew; Miller, Travis; Hedges, Alan R.; Rummel, Steve

    2014-09-01

    Reaction bonded silicon carbide (RB SiC) is a durable material that is well-suited for use as a high power laser mirror substrate. The reaction bonded material has a low mass density, a high Young's Modulus, good thermal conductivity, and a very low coefficient of thermal expansion. All of these properties are beneficial in mirror substrates used in multikilowatt lasers. In conjunction with the development of RB SiC, special polishing processes, fabrication processes, and coatings have also been developed. In this paper we will present a comparison of the material properties of RB SiC and other mirror materials currently used in high power lasers. A brief overview of the critical fabrication and coating processes will also be reviewed. Finally, we will present thermal heat load test data showing the surface deformation of various high power mirrors used under heat loads typically found in laser systems operating at average powers greater than 10 kilowatts.

  19. Latest developments of ultrafast fiber laser and its material applications

    NASA Astrophysics Data System (ADS)

    Cho, G. C.; Liu, B.; Shah, L.; Liu, Z.; Che, Y.; Xu, J.

    2009-02-01

    We address recent fiber-based femtosecond laser technology. Specifically, fiber-chirped pulse amplifier is discussed for the enabling the concept of real-world applications. We review recent selected material applications demonstrating advantages of ultrafast dynamics of highly repetitive pulse train in nanoparticle generation in pulsed-laser deposition and reliable Si wafer singulation.

  20. Laser induced damage in optical materials: eleventh ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1980-07-15

    The eleventh Symposium on Optical Materials for High-Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30-31 October 1979. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, and the Office of Naval Research. About 150 scientists attended the symposium, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and Denmark. The symposium was divided into sessions concerning transparent optical materials and the measurement of their properties, mirrors and surfaces, thin film characteristics, thin film damage, considerations for high-power systems, and finally theory and breakdown. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high-power apparatus. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos Scientific Laboratory were cochairpersons. The twelfth annual symposium is scheduled for 30 September-1 October 1980 at the National Bureau of Standards, Boulder, Colorado. PMID:20234423

  1. Laser induced damage in optical materials: twelfth ASTM symposium.

    PubMed

    Bennett, H E; Glass, A J; Guenther, A H; Newnam, B

    1981-09-01

    The twelfth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 30 Sept.-l Oct., 1980. The symposium was held under the auspices of ASTM Committee F-l, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Projects Agency, the Department of Energy, the Office of Naval Research, and the Air Force Office of Scientific research. Over 150 scientists attended the symposium, including representatives of the United Kingdom, France, Japan, and West Germany. The symposium was divided into sessions concerning materials and measurements, mirrors and surfaces, thin films, and finally fundamental mechanisms. As in previous years, the emphasis of the papers presented at the symposium was directed toward new frontiers and new developments. Particular emphasis was given to materials for high power systems. The wavelength range of prime interest was from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was discussed in detail. Harold E. Bennett of the Naval Weapons Center, Alexander J. Glass of the Lawrence Livermore National Laboratory, Arthur H. Guenther of the Air Force Weapons Laboratory, and Brian E. Newnam of the Los Alamos National Laboratory were cochairmen of the symposium. The thirteenth annual symposium is scheduled for 17-18 Nov. 1981 at the National Bureau of Standards, Boulder, Colorado. PMID:20333088

  2. Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts.

    PubMed

    Santos, Vanessa G; Fasciotti, Maíra; Pudenzi, Marcos A; Klitzke, Clécio F; Nascimento, Heliara L; Pereira, Rosana C L; Bastos, Wagner L; Eberlin, Marcos N

    2016-04-25

    The presence of fullerenes as natural constituents of carbonaceous materials or their formation as laser artifacts during laser desorption ionization (LDI) mass spectrometry (MS) analysis is reinvestigated and reviewed. The results using asphaltene samples with varying composition as well as standard polycyclic aromatic hydrocarbons (PAH) and fullerene samples as models have demonstrated that indeed Cn ring fullerenes are not natural constituents but they are formed as common and often as predominant artifacts upon laser radiation, and a series of incorrect assignments based on LDI-MS data of several carbonaceous materials seems unfortunately to have been made. When the present results are evaluated also in the light of the vast literature on LDI-MS of carbonaceous materials, the formation of fullerene artifacts seems particularly common for LDI-MS analysis of asphaltenes and other carbonaceous samples with considerably high levels of PAH and varies according to the type of laser used, and the intensity of the laser beam. PMID:26805430

  3. Research of metallic materials irradiation with high energy pulsed laser impact

    NASA Astrophysics Data System (ADS)

    Blesman, A. I.; Postnikov, D. V.; Seropyan, G. M.; Tkachenko, E. A.; Teplouhov, A. A.; Polonyankin, D. A.

    2016-02-01

    In the process of metallic materials treatment by pulsed laser beams with nanosecond duration occurs extremely rapid and intensive heating of their surface. In this case a thin surface layer of material is heated to the boiling point and rapidly evaporates. This leads to arising substantial forces of reactive nature which significantly influence on the shape of the solidified melt and in some cases may cause deformation of the underlying layers. The considered question is relevant in the research of precision treatment of miniature products by laser beams. A metallic powder with microfine material structure was selected as the object of research and was exposed to laser irradiation with nanosecond duration. At the core of reactive forces calculation used the approach similar for laser rocket engines. The paper also presents the model and the results of the forces and the reactive recoil impulse calculation occurring during laser impact to the microfine metallic powder.

  4. Review of laser filter materials. Final report, October 1987-September 1988

    SciTech Connect

    Welch, J.A.

    1989-09-26

    This report presents a discussion of laser eye-protection filtering materials. Four classes of filters are evaluated for immediate and future filtering capabilities. Salient features required for near-term multi-wavelength filtering are discussed in general, and the effectiveness of several filter materials as laser protection is assessed. Spectral illuminances for the most promising eye-protection filters are computed for representative day- and night-lighting conditions to approximate visual acuity.

  5. Joining of materials using laser heating

    DOEpatents

    Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.

    2003-07-01

    A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.

  6. Damage testing of sapphire and Ti: sapphire laser materials

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Diffusion bonded sapphire and Ti (Titanium). Sapphire laser materials that will be damage tested to determine if there is an increase in damage threshold. Photographed in building 1145, photographic studio.

  7. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays.

    PubMed

    Pan, Yunxiang; Lv, Xueming; Zhang, Hongchao; Chen, Jun; Han, Bing; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2016-06-15

    A millisecond laser combined with a nanosecond laser was applied to machining transparent materials. The influences of delay between the two laser pulses on processing efficiencies and modified sizes were studied. In addition, a laser-supported combustion wave (LSCW) was captured during laser irradiation. An optimal delay corresponding to the highest processing efficiency was found for cone-shaped cavities. The modified size as well as the lifetime and intensity of the LSCW increased with the delay decreasing. Thermal cooperation effects of defects, overlapping effects of small modified sites, and thermal radiation from LSCW result in all the phenomena. PMID:27304294

  8. Laser-Material Interaction Studies Utilizing the Solid-State Heat Capacity Laser

    SciTech Connect

    Yamamoto, R; Parker, J; Boley, C; Cutter, K; Fochs, S; Rubenchik, A

    2007-04-19

    A variety of laser-material interaction experiments have been conducted at Lawrence Livermore National Laboratory (LLNL) utilizing the solid-state heat capacity laser (SSHCL). For these series of experiments, laser output power is 25kW, on-target laser spot sizes of up to 16 cm by 16 cm square, with air speeds of approximately 100 meters per second flowing across the laser-target interaction surface as shown in Figure 1. The empirical results obtained are used to validate our simulation models.

  9. Study of underwater laser propulsion using different target materials.

    PubMed

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets. PMID:25090568

  10. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, William F.; Payne, Stephen A.; Chase, Lloyd L.; Smith, Larry K.

    1994-01-01

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises Ytterbium doped apatite (Yb:Ca.sub.5 (PO.sub.4).sub.3 F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode.

  11. Solid material evaporation into an ECR source by laser ablation

    SciTech Connect

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-09-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10{sup 7} W/cm{sup 2} has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source.

  12. Characterization of polymer materials and powders for selective laser melting

    NASA Astrophysics Data System (ADS)

    Wudy, K.; Drummer, D.; Drexler, M.

    2014-05-01

    Concerning individualization, the requirements to products have increased. The trend towards individualized serial products faces manufacturing techniques with demands of increasing flexibility. Additive manufacturing techniques generate components directly out of a CAD data set while requiring no specific tool or form. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. With a variety of available additive manufacturing techniques, some of them have a high potential to generate series products with reproducible properties. Selective laser melting (SLM) of powder materials shows the highest potential for this application. If components made by SLM are desired to be applied in technical series products, their achievable properties play a major part. These properties are mainly determined by the processed materials. The range of present commercially available materials for SLM of polymer powders is limited. This paper shows interrelations of various material properties to create a basic understanding of sintering processes and additional qualifying new materials. Main properties of polymer materials, with regard to their consolidation are viscosity and surface energy. On the one hand the difference of the surface energy between powder and melt influences, the wetting behavior, and thus the penetration depth. On the other hand, a high surface tension is fundamental for good coalescence of bordering particles. To fulfill these requirements limits of the surface tension will be determined on the basis of a reference material. For these reason methods for determining surface tension of solids, powders and melts are analyzed, to carry out a possible process-related material characterization. Not only an insight into observed SLM phenomena is provided but also hints concerning suitable material selection.

  13. Development of improved amorphous materials for laser systems

    NASA Technical Reports Server (NTRS)

    Neilson, G. F.; Weinberg, M. C.

    1974-01-01

    Crystallization calculations were performed in order to determine the possibility of forming a particular type of laser glass with the avoidance of devitrification in an outer space laboratory. It was demonstrated that under the homogenuous nucleating conditions obtainable in a zero gravity laboratory this laser glass may be easily quenched to a virtually crystal-free product. Experimental evidence is provided that use of this material as a host in a neodymium glass laser would result in more than a 10 percent increase in efficiency when compared to laser glass rods of a similar composition currently commercially available. Differential thermal analysis, thermal gradient oven, X-ray diffraction, and liquidus determination experiments were carried out to determine the basics of the crystallization behavior of the glass, and small-angle X-ray scattering and splat-cooling experiments were performed in order to provide additional evidence for the feasibility of producing this laser glass material, crystal free, in an outer space environment.

  14. Cr/sup 3+/-doped colquiriite solid state laser material

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1989-03-07

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3+/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3+/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high-slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3+/ or Tm/sup 3+/ for use in a multimegajoule single shot fusion research facility.

  15. Cr/sup 3 +/-doped colquiriite solid state laser material

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Krupke, W.F.

    1988-03-31

    Chromium doped colquiriite, LiCaAlF/sub 6/:Cr/sup 3 +/, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr/sup 3 +/ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slope efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd/sup 3 +/ or Tm/sup 3 +/ for use in a multimegajoule single shot fusion research facility. 4 figs.

  16. Cr.sup.3+ -doped colquiriite solid state laser material

    SciTech Connect

    Payne, Stephen A.; Chase, Lloyd L.; Newkirk, Herbert W.; Krupke, William F.

    1989-01-01

    Chromium doped colquiriite, LiCaAlF.sub.6 :Cr.sup.3+, is useful as a tunable laser crystal that has a high intrinsic slope efficiency, comparable to or exceeding that of alexandrite, the current leading performer of vibronic sideband Cr.sup.3+ lasers. The laser output is tunable from at least 720 nm to 840 nm with a measured slop efficiency of about 60% in a Kr laser pumped laser configuration. The intrinsic slope efficiency (in the limit of large output coupling) may approach the quantum defect limited value of 83%. The high slope efficiency implies that excited state absorption (ESA) is negligible. The potential for efficiency and the tuning range of this material satisfy the requirements for a pump laser for a high density storage medium incorporating Nd.sup.3+ or Tm.sup.3+ for use in a multimegajoule single shot fusion research facility.

  17. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-04-01

    Presented at the 7th International Conference on Concentrating Photovoltaic Systems (CPV-7), 4-6 April 2011, Las Vegas, Nevada. Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple an optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interfaces(s) while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials.

  18. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Bolme, Cynthia A; Mc Grane, Shawn D; Dang, Nhan C; Whitley, Von H; Moore, David S.

    2011-01-20

    Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

  19. Technology Assessment of Laser-Assisted Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  20. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    SciTech Connect

    Stuart, B C; Wynne, A

    2000-12-16

    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  1. Fundamentals of femtosecond laser ablation of dielectric materials

    SciTech Connect

    Byskov-Nielsen, J.; Le, D. Q. S.; Christensen, M. N.; Balling, P.; Christensen, B. H.

    2010-10-08

    The modeling of laser-excited dielectric materials requires a detailed description of the electronic excitation. Dielectric materials do not absorb visible light by traditional linear absorption, so the dynamical generation of conduction-band electrons strongly couples to the absorption. The generation of free electrons is initiated by strong-field excitation and followed by multiplication through impact ionization by energetic electrons heated by the laser. The present paper describes an approach to solving the coupled problem of electron excitation and one-dimensional light propagation. The electronic excitation is described in the so-called multiple-rate-equation model, and the light is absorbed by a combination of strong-field excitation and linear absorption by the excited electrons, which are assumed to behave as a free-electron gas described by a Drude model. The model is generic and based on a few key parameters: the wavelength and the pulse duration of the light, and the band gap of the dielectric medium. This allows parametric investigations of ablation phenomena.

  2. Terminal-level relaxation in ND-doped laser materials

    SciTech Connect

    Bibeau, C.; Payne, S.A.

    1996-06-01

    During the energy extraction of a 1-{mu}m pulse in a Nd-doped laser material, the Nd-ion population is transferred from the metastable {sup 4}F{sub 3/2} level into the terminal {sup 4}I{sub 11/2} level. The terminal-level lifetime, {tau}{sub 11/2}, is defined in this case as the time it takes the Nd-ion population to decay from the {sup 4}I{sub 11/2} level into the {sup 4}I{sub 9/2} ground state. Several experimental and theoretical approaches over the last three decades have been made to measure the terminal-level lifetime. However, an agreement in the results among the different approaches for a large sampling of laser materials has never been demonstrated. This article presents three independent methods (pump-probe, emission, and energy extraction) for measuring the terminal-level lifetime in Nd:phosphate glass LG-750. The authors find remarkable agreement among the data and determine the {tau}{sub 11/2} lifetime to be 253{+-}50 ps. They extend their studies to show that the results of the pump-probe and emission methods agree to within a factor of two for additional Nd-doped glases and crystals investigated, thus offering validation for the emission method, which is a simpler, indirect approach.

  3. The materiality of mathematics: presenting mathematics at the blackboard.

    PubMed

    Greiffenhagen, Christian

    2014-09-01

    Sociology has been accused of neglecting the importance of material things in human life and the material aspects of social practices. Efforts to correct this have recently been made, with a growing concern to demonstrate the materiality of social organization, not least through attention to objects and the body. As a result, there have been a plethora of studies reporting the social construction and effects of a variety of material objects as well as studies that have explored the material dimensions of a diversity of practices. In different ways these studies have questioned the Cartesian dualism of a strict separation of 'mind' and 'body'. However, it could be argued that the idea of the mind as immaterial has not been entirely banished and lingers when it comes to discussing abstract thinking and reasoning. The aim of this article is to extend the material turn to abstract thought, using mathematics as a paradigmatic example. This paper explores how writing mathematics (on paper, blackboards, or even in the air) is indispensable for doing and thinking mathematics. The paper is based on video recordings of lectures in formal logic and investigates how mathematics is presented at the blackboard. The paper discusses the iconic character of blackboards in mathematics and describes in detail a number of inscription practices of presenting mathematics at the blackboard (such as the use of lines and boxes, the designation of particular regions for specific mathematical purposes, as well as creating an 'architecture' visualizing the overall structure of the proof). The paper argues that doing mathematics really is 'thinking with eyes and hands' (Latour 1986). Thinking in mathematics is inextricably interwoven with writing mathematics. PMID:24620862

  4. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  5. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  6. Femtosecond laser pulse train interaction with dielectric materials

    NASA Astrophysics Data System (ADS)

    Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; Duchateau, G.

    2015-11-01

    The interaction of trains of femtosecond microjoule laser pulses with dielectric materials by means of a multi-scale model is investigated. Theoretical predictions are directly confronted with experimental observations in soda-lime glass. It is shown that due to the low heat conductivity, a significant fraction of the laser energy can be accumulated in the absorption region. Depending on the pulse repetition rate, the material can be heated to high temperatures even though the single pulse energy is too low to induce a significant material modification. Regions heated above the glass transition temperature in the simulations correspond very well to zones of permanent material modifications observed in the experiments. It turns out that pulse-to-pulse variations of the laser absorption are negligible and of minor influence to permanent material modifications.

  7. Composite multiple wavelength laser material and multiple wavelength laser for use therewith

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor)

    1997-01-01

    A composite multiple wavelength laser material is provided and is typically constructed with a common axis of construction in the form of a rod of uniform cross-section. The rod comprises a plurality of segments of laser material bonded, e.g., diffusion bonded, to one another along the common axis. Each segment lases at a unique wavelength when excited to produce a laser emission. The segments can be made from a birefringent material doped with laser active ions. If the same birefringent host material is used for all segments, ground-state absorption losses can be reduced by terminating either end of the rod with end segments made from undoped pieces of the birefringent material.

  8. Novel materials for stable perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Abate, Antonio

    2015-09-01

    Organic-inorganic perovskites are quickly overrunning research activities in new materials for cost-effective and high-efficiency photovoltaic technologies. Since the first demonstration from Kojima and co-workers in 2009, several perovskite-based solar cells have been reported and certified with rapidly improving power conversion efficiency. Recent reports demonstrate that perovskites can compete with the most efficient inorganic materials, while they still allow processing from solution as potential advantage to deliver a cost-effective solar technology. Compare to the impressive progress in power conversion efficiency, stability studies are rather poor and often controversial. An intrinsic complication comes from the fact that the stability of perovskite solar cells is strongly affected by any small difference in the device architecture, preparation procedure, materials composition and testing procedure. In the present talk we will focus on the stability of perovskite solar cells in working condition. We will discuss a measuring protocol to extract reliable and reproducible ageing data. We will present new materials and preparation procedures which improve the device lifetime without giving up on high power conversion efficiency.

  9. Two-dimensional material electronics and photonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    2015-09-01

    Two-dimensional (2D) materials has attracted intense interest in research in recent years. As compared to their bulk counterparts, these 2D materials have many unique properties due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the materials also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and interaction with light. These unique properties of 2D materials open up broad territories of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on graphene and transition metal dichalcogenides.

  10. properties of low-index laser materials

    SciTech Connect

    Weber, M.J.

    1980-05-09

    Measurements of n/sub 2/ for a large class of oxide and fluoride crystals and glasses have been made using 100-ps, 1.06-..mu..m laser pulses and time-resolved interferometry. Values of n/sub 2/ for various glasses are summarized.

  11. Holographic femtosecond laser manipulation for advanced material processing

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Hayasaki, Yoshio

    2016-02-01

    Parallel femtosecond laser processing using a computer-generated hologram displayed on a spatial light modulator, known as holographic femtosecond laser processing, provides the advantages of high throughput and high-energy use efficiency. Therefore, it has been widely used in many applications, including laser material processing, two-photon polymerization, two-photon microscopy, and optical manipulation of biological cells. In this paper, we review the development of holographic femtosecond laser processing over the past few years from the perspective of wavefront and polarization modulation. In particular, line-shaped and vector-wave femtosecond laser processing are addressed. These beam-shaping techniques are useful for performing large-area machining in laser cutting, peeling, and grooving of materials and for high-speed fabrication of the complex nanostructures that are applied to material-surface texturing to control tribological properties, wettability, reflectance, and retardance. Furthermore, issues related to the nonuniformity of diffraction light intensity in optical reconstruction and wavelength dispersion from a computer-generated hologram are addressed. As a result, large-scale holographic femtosecond laser processing over 1000 diffraction spots was successfully demonstrated on a glass sample.

  12. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  13. The determination of energy transfer rates in the Ho:Tm:Cr:YAG laser material

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1988-01-01

    Energy transfer processes occurring between atomic, ionic, or molecular systems are very widespread in nature. The applications of such processes range form radiation physics and chemistry to biology. In the field of laser physics, energy transfer processes have been used to extend the lasing range, increase the output efficiency, and influence the spectral and temporal characteristics of the output pulses of energy transfer dye lasers or solid-state laser materials. Thus in the development of solid state lasers, it is important to investigate the basic energy transfer (ET) mechanisms and processes in order to gain detailed knowledge so that successful technical utilization can be achieved. The aim of the present research is to measure the ET rate from a given manifold associated with the chromium sensitizer atom to a given manifold in the holmium activator atom via the thulium transfer atom, in the Ho:Cr:YAG laser material.

  14. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2012-03-01

    Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple and optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interface(s), while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials. An existing CPV module (with no PV cells present) was modified to accommodate encapsulation specimens. The module (where nominal concentration of solar flux is 500x for the domed-Fresnel design) has been mounted on a tracker in Golden, CO (elevation 1.79 km). Initial results are reported here for 18 months cumulative exposure, including the hottest and coldest months of the past year. Characteristics observed at intervals during that time include: visual appearance, direct and hemispherical transmittance, and mass. Degradation may be assessed from subsequent analysis (including yellowness index and cut-on frequency) relative to the ambient conditions present during field exposure. The fluorescence signature observed of all the silicone specimens is examined here, including possible factors of causation -- the platinum catalyst used in the addition cured materials as well as the primer used to promote adhesion to the quartz substrate and superstrate.

  15. Laser diagnostics of materials and chemistry

    SciTech Connect

    Hartford, A. Jr.

    1984-01-01

    Several examples are given of the ability of laser-based diagnostic techniques to make noninvasive measurements in hostile environments. Using coherent anti-Stokes Raman scattering both majority and minority species concentrations, as well as temperature, have been measured in the hot, high-pressure, particle-laden stream of a coal gasifier. In addition, numerous toxic and corrosive elements in the gasifier stream have been identified, but not yet quantified. In addition to providing the capability for making analytical determinations, laser techniques have been extensively employed to measure the rates of elementary chemical reactions. Recently, the temperature regime over which such meaurements are possible has been expanded. Although much of the laser diagnostic activity to date has involved investigations of the gas phase, significant information concerning heterogeneous phenomena can still be inferred. For instance, gas-solid reactions can manifest themselves as changes in vapor phase composition. Furthermore, in the future we expect expanded studies involving reactions of refractory metals (both atoms and clusters) and additional investigations of processes occurring at interfaces and on surfaces.

  16. Spectroscopic studies of laser ablation plumes of artwork materials

    NASA Astrophysics Data System (ADS)

    Oujja, M.; Rebollar, E.; Castillejo, M.

    2003-04-01

    Studies on the plasma plume created during KrF laser (248 nm) ablation of dosimeter tempera samples in vacuum have been carried out to investigate the basic interactions of the laser with paint materials. Time resolved optical emission spectroscopy (OES) was used to measure the translational velocity of electronically excited transients in the plasma plume. Laser-induced fluorescence (LIF) studies using a probe dye laser, allowed to determine the velocities of non-emitting species. The propagation velocities of C 2 in the a 3π u and d 3π g electronic states and of excited atomic species are indicative of a high translational temperature. Differences between the velocities of organic and inorganic species and between emissions from the tempera systems and from the pigments as pellets allow to discuss the participation of photochemical mechanisms in the laser irradiation of the paint systems.

  17. Genotype-inspired laser material processing: a new experimental approach and potential applications to protean materials

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Steffeney, L. F.; Helvajian, H.

    2008-10-01

    We have developed a new direct-write experimental technique that enables the delivery of preprogrammed laser pulse scripts to a substrate with high fidelity during patterning and motion sequences. The laser technique can be readily applied to fundamental investigations of complex laser-material interaction phenomena, and easily integrated into laser-material processing schemes for commercial and industrial applications. The laser direct-write technique has been crafted by association with the genome and genotype concepts, where predetermined and prescribed laser pulse scripts are synchronously linked with the tool path geometry, and each concatenated pulse sequence is intended to express a specific material attribute. This laser processing method is particularly well suited for protean or mutable materials that can be altered with extreme sensitivity by the application of high precision photon exposures. We envision that multifunctional materials can be altered on a localized scale to create integrated “devices” on a common substrate. The synchronized laser pulse amplitude modulation scheme and application to a candidate photosensitive glass ceramic are the focus of this paper.

  18. Material Property Measurement in Hostile Environments using Laser Acoustics

    SciTech Connect

    Ken L. Telschow

    2004-08-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods—it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100’s of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for

  19. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  20. Imaging laser analysis of building materials - practical examples

    SciTech Connect

    Wilsch, G.; Schaurich, D.; Wiggenhauser, H.

    2011-06-23

    The Laser induced Breakdown Spectroscopy (LIBS) is supplement and extension of standard chemical methods and SEM- or Micro-RFA-applications for the evaluation of building materials. As a laboratory method LIBS is used to gain color coded images representing composition, distribution of characteristic ions and/or ingress characteristic of damaging substances. To create a depth profile of element concentration a core has to be taken and split along the core axis. LIBS was proven to be able to detect all important elements in concrete, e. g. Chlorine, Sodium or Sulfur, which are responsible for certain degradation mechanisms and also light elements like lithium or hydrogen. Practical examples are given and a mobile system for on-site measurements is presented.

  1. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  2. Spectral selective radio frequency emissions from laser induced breakdown of target materials

    SciTech Connect

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2014-08-11

    The radio frequency emissions scanned over broad spectral range (30 MHz–1 GHz) from single shot nanosecond (7 ns) and picosecond (30 ps) laser induced breakdown (LIB) of different target materials (atmospheric air, aluminum, and copper) are presented. The dominant emissions from ns-LIB, compared to those from the ps-LIB, indicate the presence and importance of atomic and molecular clusters in the plasma. The dynamics of laser pulse-matter interaction and the properties of the target materials were found to play an important role in determining the plasma parameters which subsequently determine the emissions. Thus, with a particular laser and target material, the emissions were observed to be spectral selective. The radiation detection capability was observed to be relatively higher, when the polarization of the input laser and the antenna is same.

  3. Method of defining features on materials with a femtosecond laser

    DOEpatents

    Roos, Edward Victor; Roeske, Franklin; Lee, Ronald S.; Benterou, Jerry J.

    2006-05-23

    The invention relates to a pulsed laser ablation method of metals and/or dielectric films from the surface of a wafer, printed circuit board or a hybrid substrate. By utilizing a high-energy ultra-short pulses of laser light, such a method can be used to manufacture electronic circuits and/or electro-mechanical assemblies without affecting the material adjacent to the ablation zone.

  4. Laser processes and analytics for high power 3D battery materials

    NASA Astrophysics Data System (ADS)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  5. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  6. Laser induced damage in optical materials: ninth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1978-08-01

    The Ninth Annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 4-6 October 1977. The symposium was under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy (formerly ERDA), and the Office of Naval Research. About 185 scientists attended, including representatives of the United Kingdom, France, Canada, Australia, Union of South Africa, and the Soviet Union. The Symposium was divided into sessions concerning Laser Windows and Materials, Mirrors and Surfaces, Thin Films, Laser Glass and Glass Lasers, and Fundamental Mechanisms. As in previous years, the emphasis of the papers was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the uv region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength were also discussed. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The Tenth Annual Symposium is scheduled for 12-14 September 1978 at the National Bureau of Standards, Boulder, Colorado. PMID:20203792

  7. On-machine laser triangulation sensor for precise surface displacement measurement of various material types

    NASA Astrophysics Data System (ADS)

    Žbontar, Klemen; Podobnik, Boštjan; Povše, Franc; Mihelj, Matjaž

    2013-09-01

    The paper presents a custom-designed laser triangulation based metrology system, which enables high precision surface displacement measurement of various material types with a single sensor configuration. Laser structuring applications require material surface alignment relative to the laser focus position where fabrication conditions are optimal. The measurement system utilizes a high-quality UV wavelength laser beam (primarily used for structuring purposes) with automatic control of its intensity. The laser source operates in a continuous wave (CW) mode during the measurement process, whereas the UV wavelength enables measurement of transparent materials. Robust displacement measurement of various material types was solved by introducing a new approach of structured light projection and its centroid detection. A high resolution 2D galvanometric scanning system is used for dynamic symmetrical pattern projection, which is proven to reduce the effects of material surface related errors and speckle noise. Furthermore, a "double curve fitting" (DCF) centroid detection algorithm, where Gaussian curves are fitted to radial cross sections of the acquired pattern, and an ellipse is fitted to their peak positions, was introduced. The method includes subsurface scattering compensation, which proves crucial for translucent material measurement, where incident light penetrates into the material surface and causes uneven light intensity distribution of the acquired pattern. Experimental results have shown that the metrology system is robust to laser intensity variation and material type, with measurement bias lower than 50 μm and standard deviation lower than +/-6.3 μm for all materials. The developed probe has been integrated into commercial LPKF laser structuring systems.

  8. Picosecond laser welding of similar and dissimilar materials.

    PubMed

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P

    2014-07-01

    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld. PMID:25089985

  9. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    NASA Astrophysics Data System (ADS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-10-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells.

  10. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    SciTech Connect

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-10-22

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells.

  11. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  12. Modeling of plume dynamics in laser ablation processes for thin film deposition of materials

    SciTech Connect

    Leboeuf, J.N.; Chen, K.R.; Donato, J.M.; Geohegan, D.B.; Liu, C.L.; Puretzky, A.A.; Wood, R.F.

    1995-12-31

    The transport dynamics of laser-ablated neutral/plasma plumes are of significant interest for film growth by pulsed-laser deposition of materials since the magnitude and kinetic energy of the species arriving at the deposition substrate are key processing parameters. Dynamical calculations of plume propagation in vacuum and in background gas have been performed using particle-in-cell hydrodynamics, continuum gas dynamics, and scattering models. Results from these calculations are presented and compared with experimental observations.

  13. Laser-induced breakdown spectroscopy analysis of energetic materials

    NASA Astrophysics Data System (ADS)

    de Lucia, Frank C.; Harmon, Russell S.; McNesby, Kevin L.; Winkel, Raymond J.; Miziolek, Andrzej W.

    2003-10-01

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials.

  14. Laser-induced breakdown spectroscopy analysis of energetic materials.

    PubMed

    De Lucia, Frank C; Harmon, Russell S; McNesby, Kevin L; Winkel, Raymond J; Miziolek, Andrzej W

    2003-10-20

    A number of energetic materials and explosives have been studied by laser-induced breakdown spectroscopy (LIBS). They include black powder, neat explosives such as TNT, PETN, HMX, and RDX (in various forms), propellants such as M43 and JA2, and military explosives such as C4 and LX-14. Each of these materials gives a unique spectrum, and generally the spectra are reproducible shot to shot. We observed that the laser-produced microplasma did not initiate any of the energetic materials studied. Extensive studies of black powder and its ingredients by use of a reference spectral library have demonstrated excellent accuracy for unknown identification. Finally, we observed that these nitrogen- and oxygen-rich materials yield LIBS spectra in air that have correspondingly different O:N peak ratios compared with air. This difference can help in the detection and identification of such energetic materials. PMID:14594077

  15. Transient radiation-induced absorption in laser materials

    NASA Astrophysics Data System (ADS)

    Brannon, Paul J.

    1994-06-01

    Transient radiation-induced absorption losses in laser materials have been measured using a pulsed nuclear reactor. Reactor pulse widths of 70 to 90 microsecond(s) and absorbed doses of 1 to 7.5 krad have been used. Transmission recovery times and peak absorption coefficients are given. Materials tested include LiNbO3, GSGG, silica substrates, and filter glasses used in the laser cavity. The filter glasses are tested at discrete wavelengths in the range 440 - 750 nm. Lithium niobate, MgO-doped LiNbO3, GSGG, and the silica substrates are tested at 1061 nm.

  16. Analysis of fabric materials cut using ultraviolet laser ablation

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.

    2016-04-01

    Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.

  17. [Present status of transurethral laser technique in the treatment of urethral strictures (author's transl)].

    PubMed

    Bülow, H; Bülow, U; Levine, S; Wurster, H; Frohmüller, H

    1981-09-01

    The main difference between the conventional methods of urethrotomy and the laser method is that the scar tissue of the urethral stricture is not cut but removed by evaporisation. At present only neodymium: YAG and argon ion lasers are available for clinical endoscopic use. For the purpose of removing tissue neodymium: YAG lasers need irrigation with a gas in contrast to argon ion lasers that can be utilized with the well known water irrigation. Certain considerations and experiences suggest the carbon dioxide lasers to be the best ones for evaporating stricture tissue since they cause very limited zones of necrosis with immediate sealing of the wound edges. Transurethral carbon dioxide laser application, however, is still at an experimental stage, since convenient light transmission systems are not available for clinical use at the present time. PMID:6795783

  18. Acoustic damage detection in laser-cut CFRP composite materials

    NASA Astrophysics Data System (ADS)

    Nishino, Michiteru; Harada, Yoshihisa; Suzuki, Takayuki; Niino, Hiroyuki

    2012-03-01

    Carbon fiber reinforced plastics (CFRP) composite material, which is expected to reduce the weight of automotive, airplane and etc., was cut by laser irradiation with a pulsed-CO2 laser (TRUMPF TFL5000; P=800W, 20kHz, τ=8μs, λ=10.6μm, V=1m/min) and single-mode fiber lasers (IPG YLR-300-SM; P=300W, λ=1.07μm, V=1m/min)(IPG YLR- 2000-SM; P=2kW, λ=1.07μm, V=7m/min). To detect thermal damage at the laser cutting of CFRP materials consisting of thermoset resin matrix and PAN or PITCH-based carbon fiber, the cut quality was observed by X-ray CT. The effect of laser cutting process on the mechanical strength for CFRP tested at the tensile test. Acoustic emission (AE) monitoring, high-speed camera and scanning electron microscopy were used for the failure process analysis. AE signals and fractographic features characteristic of each laser-cut CFRP were identified.

  19. Solid state dye lasers: rhodamines in silica-zirconia materials.

    PubMed

    Schultheiss, Silke; Yariv, Eli; Reisfeld, Renata; Breuer, Hans Dieter

    2002-05-01

    Silica-zirconia materials as well as silica-zirconia ormosils prepared by the sol-gel technique were doped with the laser dyes Rhodamine B and Rhodamine 6G and used as solid state dye lasers. The photostability and efficiency of the solid state laser samples were measured in a transverse pumping configuration by either a nitrogen laser or the second harmonic of a Nd-YAG laser. Under the excitation of a nitrogen laser the photostability of Rhodamine B in silica-zirconia materials was low and decreased with a growing amount of zirconia. The photophysical properties of the incorporated dyes were studied by time-resolved fluorescence spectroscopy. The fluorescence lifetimes of both dyes increased when the matrix was modified by organic compounds Furthermore, the threshold energy of Rhodamine 6G in two ormosils containing 3 and 50% methylsilica was measured. The results revealed that the threshold energy was lower for the matrix with a higher amount of ormosil while the slope efficiency was higher in the matrix containing 30% ormosil. PMID:12653469

  20. Laser illuminated high speed photography of energetic materials

    SciTech Connect

    Dosser, L.R.; Reed, J.W.; Stark, M.A.

    1988-01-01

    The evaluation of the properties of energetic materials, such as burn rate and ignition, is of primary importance in understanding their reactions and how devices containing them perform their function. We have recently applied high speed photography at rates of up to 20,000 images per second to this problem. When a copper vapor laser is synchronized to the high speed camera, laser illuminated images can be recorded that detail the performance of a component in a manner never before possible. The copper vapor laser used for these experiments had an average power of 30 watts, and produced pulses at a rate of up to 10 kHz. The 30 nanosecond pulsewidth of the laser essentially freezes all motion in the functioning componment, thus providing stop-action pictures at a rate of up to 10,000 per second. Each laser pulse has a peak power of approximately 170,000 watts which provides ample illumination for the high speed photography. Several energetic materials and components studied include the pyrotechnic Ti/2B, a pyrotechnic torch, laser ignition of high explosives, and a functioning igniter.

  1. Non-radiative decay of holmium-doped laser materials

    NASA Astrophysics Data System (ADS)

    Bowman, Steven R.; O'Connor, Shawn; Condon, Nicholas J.; Friebele, E. Joseph; Kim, Woohong; Shaw, B.; Quimby, R. S.

    2013-03-01

    Anti-Stokes fluorescence cooling has been demonstrated in a number rare earth doped materials. Ytterbium doped oxides and fluorides, such as ZBLAN, YLF, and YAG, were the first materials to exhibit cooling.1,2,3 These materials were originally developed as laser gain media and fluorescence cooling was eventually incorporated into the 1μm lasers to reduce detrimental thermal loading.4 Anti-Stokes cooling can offset quantum defect heating allowing laser power to be scaled to very high average powers. Since the early work in ytterbium, fluorescence cooling has been demonstrated in both erbium and thulium doped materials.5,6 These materials were also initially developed as lasing media and their fluorescence cooling could be used to increase laser powers at 1.5μm and 2.0μm. In this study we examine the radiative efficiency of holmium and ask the question, "Can anti-Stokes fluorescence cooling be extended beyond 2μm?"

  2. Direct laser writing of microoptical structures using a Ge-containing hybrid material

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Gaidukevičiūtė, Arūnė; Purlys, Vytautas; Žukauskas, Albertas; Sakellari, Ioanna; Kabouraki, Elmina; Candiani, Alessandro; Gray, David; Pissadakis, Stavros; Gadonas, Roaldas; Piskarskas, Algis; Fotakis, Costas; Vamvakaki, Maria; Farsari, Maria

    2011-06-01

    We present our investigations into the direct laser writing of a novel germanium-containing hybrid sol-gel photosensitive material for optical applications at micro scale. We employ this material in the fabrication of photonic micro-structures, such as aspheric lenses and prisms; these are well-shaped and provided good optical performance. The material exhibits good transparency and structurability, and three-dimensional structures with sub-100 nm resolution are achieved. We demonstrate the suitability of the direct laser writing method for the rapid production of custom shaped microoptical components. Since germanium glasses are widely used in fiber optics, the combination of direct laser writing with this specially designed, functional material opens an interesting way in fabricating structures for controlling light flow.

  3. Advances in optical materials for large aperture lasers

    SciTech Connect

    Stokowski, S.E.; Lowdermilk, W.H.; Marchi, F.T.; Swain, J.E.; Wallerstein, E.P.; Wirtenson, G.R.

    1981-12-15

    Lawrence Livermore National Laboratory (LLNL) is using large aperture Nd: glass lasers to investigate the feasibility of inertial confinement fusion. In our experiments high power laser light is focussed onto a small (100 to 500 micron) target containing a deuterium-tritium fuel mixture. During the short (1 to 5 ns) laser pulse the fuel is compressed and heated, resulting in fusion reactions. The generation and control of the powerful laser pulses for these experiments is a challenging scientific and engineering task, which requires the development of new optical materials, fabrication techniques, and coatings. LLNL with the considerable cooperation and support from the optical industry, where most of the research and development and almost all the manufacturing is done, has successfully applied several new developments in these areas.

  4. CW laser generated ultrasound techniques for microstructure material properties evaluation

    NASA Astrophysics Data System (ADS)

    Thursby, Graham; Culshaw, Brian; Pierce, Gareth; Cleary, Alison; McKee, Campbell; Veres, Istvan

    2009-03-01

    Mechanical properties of materials may be obtained from the inversion of ultrasonic Lamb wave dispersion curves. In order to do this broadband excitation and detection of ultrasound is required. As sample size and, in particular, thickness, are reduced to those of microstructures, ultrasound frequencies in the range of the gigahertz region will be required. We look at two possible cw laser excitation techniques which, having far lower peak powers than the more frequently used Q-switched lasers, therefore give a negligible risk of damaging the sample through ablation. In the first method the modulation frequency of a sinusoidally modulated laser is swept over the required range. In the second, the laser is modulated with a series of square pulses whose timing is given by a PRBS (pseudo random binary sequence) in the form of a modified m-sequence.

  5. Fast spatial-resolved beam diagnostics for material processing by industrial CO2 lasers

    NASA Astrophysics Data System (ADS)

    Martinen, Dirk; Decker, Ingo; Wohlfahrt, Helmut

    1996-09-01

    Due to the increasing range of high-speed and high-accuracy applications in material processing, especially in laser beam welding and cutting, the temporal stability of the laser beam parameters becomes more and more important. In this paper a laser beam diagnostic device is presented, that allows the determination of the intensity-profiles of high- power CO2 lasers with high time-resolution. The detector of this device consists of two linear arrays of room- temperature HgCdTe-detectors, arranged perpendicularly to each other across the center of the beam. The data of the 70 detector elements is acquired simultaneously at rates up to 15 kS/sec for single shot events and several 100 kS/sec for repetitive laser pulses. Due to the use of a digital signal processor (DSP) and an especially adapted software, it is possible to analyze the fluctuations of the intensity distribution on-line. By help of a partially transmitting mirror in the beam delivery system, measurements can be performed during material processing. Therefore, the interaction of the laser beam source itself with the material processing due to beam reflection as well as influences of the industrial environment to the laser can be detected. The calculation of the local variance and mean values enables the dependence of the laser's short- and long-term stability to be investigated due to changes in the resonator alignment, the stability of the power supply, the gas composition etc., as well as to the influence of the processing. For the pulse-mode of a laser, its transient behavior like changes of the intensity distribution can be determined with high time-resolution. For the improvement of drilling processes, the calculation of further statistical functions by the DSP makes it possible to estimate the uniformity of the laser pulses on-line as well.

  6. A novel laser-based method for controlled crystallization in dental prosthesis materials

    NASA Astrophysics Data System (ADS)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  7. Laser dicing of silicon and composite semiconductor materials

    NASA Astrophysics Data System (ADS)

    Sibailly, Ochelio; Richerzhagen, Bernold

    2004-07-01

    Dicing of semiconductor wafers is an example of an application requiring a processing quality superior to what can be achieved using classical laser techniques. For this reason, sawing the wafers with a diamond-edged blade has been developed into a high-tech process, that guarantees good and reliable cuts for Silicon wafers of more than 300 microns thickness. Today, wafer thickness is getting thinner; down to 50 microns and also more brittle III-V compound semiconductors are used more frequently. On these thin wafers; the laser begins again to compete with the diamond saw, because of laser cutting-quality and cutting-speed, are increasing with decreasing wafer thickness. Conventional laser cutting however has the disadvantages of debris deposition on the wafer surface, weak chip fracture strength because of heat induced micro cracks. An elegant way to overcome these problems is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a 'hair-thin' stable water-jet, comparable to an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat affected zone near the cut, but in fact the absence of beam divergence and the efficient melt xpulsion are also important advantages. In this presentation we will give an overview on today"s state of the art in dicing thin wafers, especially compound semiconductor wafers, using the water-jet guided laser technology.

  8. Femtosecond laser processing of photovoltaic and transparent materials

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  9. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets.

    PubMed

    Okada, Hajime; Tanaka, Momoko; Kiriyama, Hiromitsu; Nakai, Yoshiki; Ochi, Yoshihiro; Sugiyama, Akira; Daido, Hiroyuki; Kimura, Toyoaki; Yanagitani, Takagimi; Yagi, Hideki; Meichin, Noriyuki

    2010-09-15

    We have successfully developed and demonstrated broadband emission Nd-doped mixed scandium garnets based on laser ceramic technology. The inhomogeneous broadening of Nd(3+) fluorescence lines results in a bandwidth above 5 nm that is significantly broader than that for Nd:YAG and enables subpicosecond mode-locked pulse durations. We have also found the emission cross section of 7.8 × 10(-20) cm(2) to be adequate for efficient energy extraction and thermal conductivity of 4.7 W/mK from these new Nd-doped laser ceramics. The new laser ceramics are good candidates for laser host material in a diode-pumped subpicosecond laser system with high efficiency and high repetition rate. PMID:20847774

  10. Optical coherence tomography in material deformation by using short pulse laser irradiation

    NASA Astrophysics Data System (ADS)

    Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Kim, Youngseop; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping; Jeong, Eun Joo; Kim, Chang-Seok

    2008-02-01

    We demonstrate the feasibility of OCT imaging for the investigation of samples, which are processed by the short pulse laser. The use of short pulse lasers in various material processing have provided the advantages such as a high peak power and a small heat affected zone over conventional methods based on mechanical treatment. However, due to the improper application of the lasers, the unwanted surface or structural deformation of materials and the thermal damages around an irradiation spot can be caused. Thus, the real-time monitoring/evaluation of laser processing performance in-situ is needed to prevent the excessive deformation of the material and to determine optimal processing conditions. As a standard method to investigation of the material processing by using the lasers, the scanning electron microscopy (SEM) or the transmission electron microscopy (TEM) observation of a physically cleaved surface is used although sample damages are given during the cleaving and polishing process. In this paper, we utilized the OCT advantages such as high resolution and non-invasive investigation to evaluate the laser processing performance. OCT images for the deformation monitoring of the ABS plastic present correlation with images obtained from conventional investigation methods. OCT images of the maxillary bone clearly show the difference in the pit formation of the biological sample at different irradiation conditions. We prove the potential of OCT for the evaluation of laser-processed various samples. Integrating OCT system into a laser processing system, we can visualize the effect of laser-based treatments in clinical and industrial fields.

  11. Yb:FAP and related materials, laser gain medium comprising same, and laser systems using same

    DOEpatents

    Krupke, W.F.; Payne, S.A.; Chase, L.L.; Smith, L.K.

    1994-01-18

    An ytterbium doped laser material remarkably superior to all others, including Yb:YAG, comprises ytterbium doped apatite (Yb:Ca[sub 5](PO[sub 4])[sub 3]F) or Yb:FAP, or ytterbium doped crystals that are structurally related to FAP. The new laser material is used in laser systems pumped by diode pump sources having an output near 0.905 microns or 0.98 microns, such as InGaAs and AlInGaAs, or other narrowband pump sources near 0.905 microns or 0.98 microns. The laser systems are operated in either the conventional or ground state depletion mode. 9 figures.

  12. Laser-assisted pre-finishing of optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Rozzi, Jay C.; Clavier, Odile H.; Barton, Michael D.

    2007-04-01

    At Creare, we are developing a laser-assisted, pre-finishing system that enables the single-point diamond turning of super-hard ceramics into hemispheres, ogives, and other shapes that are ready for final optical finishing. Currently, super-hard ceramic materials cannot be affordably processed due to the low material removal rates and the high amount of sub-surface damage associated with current processes. Our innovation uses a low-power, far-infrared laser to heat, but not ablate, a thin layer of material prior to its removal. By heating the ceramic material, plastic-like deformation at the cutting edge is fostered by high-temperature dislocation motion. In doing so, the cutting forces are reduced which enables attendant reductions in tool wear, surface and sub-surface damage, and processing time. Our paper will summarize the development of our innovation, describe the process, discuss the machine tool, and review the latest results.

  13. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  14. PULSED LASER DEPOSITION OF MAGNETIC MULTILAYERS FOR THE GRANT ENTITLED LASER PROCESSING OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect

    Monica Sorescu

    2003-10-11

    Nanostructured magnetite/T multilayers, with T = Ni, Co, Cr, have been prepared by pulsed laser deposition. The thickness of individual magnetite and metal layers takes values in the range of 5-40 nm with a total multilayer thickness of 100-120 nm. X-ray diffraction has been used to study the phase characteristics as a function of thermal treatment up to 550 C. Small amounts of maghemite and hematite were identified together with prevailing magnetite phase after treatments at different temperatures. The mean grain size of magnetite phase increases with temperature from 12 nm at room temperature to 54 nm at 550 C. The thermal behavior of magnetite in multilayers in comparison with powder magnetite is discussed. These findings were published in peer-reviewed conference proceedings after presentation at an international materials conference.

  15. Fiber laser microjoining for novel dissimilar material combinations

    NASA Astrophysics Data System (ADS)

    Patwa, R.; Herfurth, H.; Heinemann, S.; Ehrenmann, S.; Newaz, G.; Baird, R. J.

    2009-02-01

    Today's complexity in packaging of MEMS and BioMEMS requires advanced joining techniques that take the specific package integration for each device into account. Current focus on reducing investment and operating costs for device packaging require a flexible and reliable joining approach for similar and dissimilar materials such as metals, polymers, glass and silicon to manage increasing system complexity. Depending on the application, packaged devices must fulfill tough requirements regarding strength, thermal stress, fatigue and hermeticity and long-term stability. This research is focused on laser microjoining of polyimide and PEEK polymers to metals such as nitinol, chromium and titanium using fiber laser. Our earlier investigations have demonstrated the potential of this unique joining technique, which successfully addresses the existing microjoining challenges including high precision, localized processing capability and biocompatibility. Our current study further defines the key processing parameters for joining novel dissimilar material combinations based on the characterization of such laser joints by means of mechanical failure tests and the bond area analysis using optical microscope, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results compare operating windows for generating quality bonds for different material joining configurations. They also provide an initial approach to characterize laser-fabricated microjoints that can be potentially used for the optimization of the design process of devices utilizing these materials. Potential packaging applications include microsystems used for chemical or biological assays (lab-on-a-chip), implantable devices used for pressure or temperature sensing, neural stimulation and drug delivery.

  16. AIR EMISSIONS FROM LASER DRILLING OF PRINTED WIRING BOARD MATERIALS

    EPA Science Inventory

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. Typically found in the missions stream were trace amounts of carbo...

  17. Probabilistic uncertainty analysis of laser/material thermal interactions

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis George

    Performance of a system during heat-flux (laser-type) irradiation is of increasing importance to a variety of defense and commercial applications. For laser irradiation of spacecraft components, such as a laser power or propulsion system receiver, predicting with accuracy the moment (time) and type of failure of it is difficult. These difficulties arise from the inherent nonlinear nature of the problem, because surface reradiation heat transport mechanisms come into play as the system is heated. Additionally, there are uncertainties associated with the irradiation source intensity, interaction cross-section and view angle; the property state of the material(s) that are being heated; and the effective emissivity/absorptivity and surface radiation view factor(s). The physical properties of the materials on a spacecraft may also change greatly over time due to exposure to the space environment. To better understand the uncertainties associated with these issues, a study was performed at the University of New Mexico's Institute for Space and Nuclear Power Studies, under U. S. Air Force Phillips Laboratory sponsorship, to develop and apply uncertainty computer model for generic laser heating problems that incorporate probabilistic design (Monte Carlo sampling based) assessment methods. This work discusses in detail: the background associated with the laser irradiation/material thermal interaction process; past work in related technical areas; the research objectives of the study; the technical approach employed; as well as the development and application of the generic one- and two-dimensional laser/material heating uncertainty interaction analysis models. This study successfully demonstrated an efficient uncertainty assessment methodology to assess simple laser irradiation/material thermal heating process problems. Key parameter uncertainties were characterized and ranked for numerous example problem applications, and the influence of various Monte Carlo sampling

  18. Analysis and studies on the threats to the composite material from laser

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Yao, Weixing; Wang, Liwei; Wang, Guoliang; Xie, Fang

    2015-10-01

    It is always an attracting research field for the interaction between laser and matters. The interaction between laser and matters is used not only in the natural science, but also in practical application, for example, laser machine, laser weapon, laser ablations and so on. In this paper, we will give the model for the damage effect of the composite materials caused by the superpower laser weapons. Mechanism of the laser damage on the composite materials have been researched and modeled by the numerical analysis methods. Through the designed model, we analyzed the temperature and the stress fields of the composite material after the superpower lasers attacks with different power densities. By analyzing these modeling results, we achieved some conclusions on the threats to the composite materials from the superpower lasers. From the results, we have obtained the Irradiated threshold from the Laser. This paper will provide the theoretical foundations for the anti-laser design of the composite materials.

  19. Optimization of laser ablation and signal enhancement for nuclear material detection

    NASA Astrophysics Data System (ADS)

    LaHaye, Nicole L.

    The purpose of the study was to investigate the role of different laser parameters on laser ablation properties, specifically in terms of performance in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Many laser parameters affect laser ablation performance, including laser wavelength and pulse duration, as presented here. It was previously thought that wavelength plays no role in ultrafast laser ablation; however, it was found that shorter wavelength yields lower detection limits and ablation threshold. Our results also demonstrate that in the laser pulse duration range of 40 fs to 1 ps, negligible differences occur in signal intensity, elemental ratios, and detection limits. U/Pb and U/Th ratios, which were examined to ensure limited fractionation, give comparable results at all pulse widths investigated. A parametric study of plasma hydrodynamics will also be presented. An elemental detection method combining laser induced breakdown spectroscopy (LIBS) and LA-ICP-MS is developed, with plasma density and temperature actively monitored to investigate how plasma conditions affect ICP-MS results. The combination of these two methods will help to mitigate the disadvantages of using each technique individually. Depth and spatial analysis of thin films was performed using femtosecond LA-ICP-MS to study the stoichiometric distribution of the films. The thin film-substrate interface was probed, revealing intermixing between the two layers. Lastly, the persistence of uranium emission in laser-produced plasmas (LPP) was investigated under various Ar ambient environments. Plasma collisional effects and confinement play a very important role in emission intensity and persistence, yielding important results for future LIBS and laser absorption spectroscopy (LAS) research. Lastly, suggestions for future work are made, which include extension of the LIBS and LA-ICP-MS systems to other samples like oxide thin films and spatial and depth profiling of known

  20. X-Lase CoreScriber, Picosecond Fiber Laser Tool for High-Precision Scribing and Cutting of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Kivistö, S.; Amberla, T.; Konnunaho, T.; Kangastupa, J.; Sillanpää, J.

    We have developed various industrial transparent material scribing processes and a laser tool, picosecond MHz-range all- fiber laser X-Lase CoreScriber. The remarkably high peak power, exceptionally good beam quality, and integrability of the X-Lase CoreScriber combined with high achievable material processing speeds provide tempting solutions for high- precision glass processing. Here presented sapphire and Gorilla glass dicing processes are based on transparent material internal modification with short and intense high repetition rate ps-laser pulses. Increased processing speeds and cutting qualities in comparison to other conventional processing methods are presented.

  1. Pulsed laser processing of electronic materials in micro/nanoscale

    NASA Astrophysics Data System (ADS)

    Hwang, David Jen

    2005-08-01

    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  2. New Devices For Controlling The Interaction Of High-Power Laser Light With Anorganic And Organic Materials

    NASA Astrophysics Data System (ADS)

    Greguss, Pal

    1989-01-01

    Two unconventional methods, which may be used in some cases to control heat conduction conditions responsible for secondary effects both in laser surgery and in laser material transformation, are presented. The tools developed for this purpose are based either on thermoelectrically controlled (TEC) or on thermodynamically controlled (TDC) temperature pattern generation around the acting laser beam. Using TEC laser scalpel secondary tissue damages may be avoided, while transformation hardening by laser radiation may be controlled through the thermodynamic effect known as Ranque-effect.

  3. Pre-ignition laser ablation of nanocomposite energetic materials

    NASA Astrophysics Data System (ADS)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-01

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 × 104 to 1.7 × 107 K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO2 lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO3) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO3 at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  4. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L.

    2013-06-07

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  5. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  6. Cr.sup.4+-doped mixed alloy laser materials and lasers and methods using the materials

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)

    2008-01-01

    A laser medium includes a single crystal of Cr.sup.4+:Mg.sub.2-xM.sub.xSi.sub.1-yA.sub.yO.sub.4, where, where M is a bivalent ion having an ionic radius larger than Mg.sup.2+, and A is a tetravalent ion having an ionic radius larger than Si.sup.4+. In addition, either a) 0.ltoreq.x<2 and 0laser medium can be used in a laser device, such as a tunable near infrared (NIR) laser.

  7. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials

    NASA Astrophysics Data System (ADS)

    Kautek, Wolfgang; Krueger, Joerg

    1994-09-01

    Production of holes and grooves of < 30 micrometers diameter with high aspect ratio value is a delicate task either for mechanical tools, or for conventional nanosecond pulse lasers like e.g. pulsed Nd:YAG or excimer lasers. They later tend to cause microcracks extending from an annular melting zone, or substantial disruption, respectively. Experimental results are presented which demonstrate that the development of intense ultrashort pulse laser systems (>> 1012 W cm-2, (tau) < 1 ps) opens up possibilities for materials processing by cold plasma generation and ablation of metals, semiconductors, ceramics, composites, and biological materials. A femtosecond and a nanosecond dye laser with pulse durations of 300 fs (< 200 (mu) J) and 7 ns (< 10 mJ), and center wavelengths at 612 and 600 nm, respectively, both focused on an area of the order of 10-5 cm2, have been applied either to absorbing substrates, like polycrystalline gold, silicon (111), aluminum nitride ceramics, or transparent materials, like synthetic and human dental hydroxyapatite composites, bone material, and human cornea transplants. The fs-laser generates its own absorption in transparent materials by a multiphoton absorption process, and thus forces the absorption of visible radiation. Because the time is too short (< ps) for significant transport of mass and energy, the beam interaction generally results in the formation of a thin plasma layer of approximately solid state density. Only after the end of the subpicosecond laser pulse, it expands rapidly away from the surface without any light absorption and further plasma heating. Therefore, energy transfer (heat and impulse) to the target material, and thermal and mechanical disruption are minimized. In contrast to heat- affected zones (HAZ's) generated by conventional nanosecond pulse lasers of the order of 1 - 10 micrometers , HAZ's of less than 0.02 micrometers were observed.

  8. Present status and new perspectives in laser welding of vascular tissues.

    PubMed

    Esposito, G; Rossi, F; Matteini, P; Puca, A; Albanese, A; Sabatino, G; Maira, G; Pini, R

    2011-01-01

    The laser welding of biological tissues is a particular use of lasers in surgery. The technique has been proposed since the 1970s for surgical applications, such as repairing blood vessels, nerves, tendons, bronchial fistulae, skin and ocular tissues. In vascular surgery, two procedures have been tested and optimized in animal models, both ex vivo and in vivo, in order to design different approaches for blood vessels anastomoses and for the repair of vascular lesions: the laser-assisted vascular anastomosis (LAVA) and the laser-assisted vessel repair (LAVR). Sealing tissues by laser may overcome the problems related to the use of conventional closuring methods that are generally associated with various degrees of vascular wall damage that can ultimately predispose to vessel thrombosis and occlusion. In fact, the use of a laser welding technique provides several advantages such as simplification of the surgical procedure, reduction of the operative time, suppression of bleeding, and may guarantee an optimal healing process of vascular structures, very similar to restitutio ad integrum. Despite the numerous preclinical studies performed by several research groups, the clinical applications of laser-assisted anastomosis or vessel repair are still far off. Substantial breakthrough in the laser welding of biological tissues may come from the advent of nanotechnologies. Herein we describe the present status and the future perspectives in laser welding of vascular structures. PMID:21880202

  9. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  10. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2011-11-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  11. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  12. Photorefractive Laser Ultrasound Spectroscopy for Materials Characterization

    SciTech Connect

    Telschow, K.L.; Deason, V.A.; Ricks, K.L.; Schley, R.S.

    1997-12-31

    Ultrasonic elastic wave motion is often used to measure or characterize material properties. Through the years, many optical techniques have been developed for applications requiring noncontacting ultrasonic measurement. Most of these methods have similar sensitivities and are based on time domain processing using interferometry. Wide bandwidth is typically employed to obtain real- time surface motion under transient conditions. However, some applications, such as structural analysis, are well served by measurements in the frequency domain that record the randomly or continuously excited vibrational resonant spectrum. A significant signal-to-noise ratio improvement is achieved by the reduced bandwidth of the measurement at the expense of measurement speed compared to the time domain methods. Complications often arise due to diffuse surfaces producing speckle that introduces an arbitrary phase component onto the optical wavefront to be recorded. Methods that correct for this effect are actively being investigated today.

  13. Process Control in Laser Material Processing for the Micro and Nanometer Scale Domains

    NASA Astrophysics Data System (ADS)

    Helvajian, Henry

    An array of laser material processing techniques is presented for fabricating structures in the micro and nanometer scale length domains. For the past 20 years, processes have been demonstrated where the use of the inherent properties of lasers has led to increased fidelity in the processing of materials. These demonstrated processes often use inventive approaches that rely on derivative aspects of established primary principles that govern laser/material interaction phenomena. The intent of this overview is to explore the next generation of processes and techniques that could be applied in industry because of the need for better precision, higher resolution, smaller feature size, true 3D fabrication, and higher piece-part fabrication throughput.

  14. Microstructural and mechanical characterization of laser deposited advanced materials

    NASA Astrophysics Data System (ADS)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  15. Laser Transmission Welding of CFRTP Using Filler Material

    NASA Astrophysics Data System (ADS)

    Berger, Stefan; Schmidt, Michael

    In the automotive industry the increasing environmental awareness is reflected through consistent lightweight construction. Especially the use of carbon fiber reinforced thermoplastics (CFRTP) plays an increasingly important role. Accordingto the material substitution, the demand for adequate joining technologies is growing. Therefore, laser transmission welding with filler material provides a way to combine two opaque joining partners by using process specific advantages of the laser transmission welding process. After introducing the new processing variant and the used experimental setup, this paper investigates the process itselfand conditions for a stable process. The influence of the used process parameters on weld quality and process stability is characterized by tensile shear tests. The successfully performed joining of PA 6 CF 42 organic sheets using natural PA 6 as filler material underlines the potential of the described joining method for lightweight design and other industrial applications.

  16. Optics and materials considerations for a laser-propelled lightsail

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    The principles of a laser-propelled lightsail for an interstellar probe are discussed. The feasibility of a laser-propelled-lightsail round-trip interstellar mission proposed by Forward (1984) is examined, with special attention given to the issues of optics and materials. It is shown that the large lens and a high lens/target distance required by such a mission result in optical difficulties, requiring positioning tolerance for the 1000-km-diam lens of only 3 m, which is unlikely to be achievable. Techniques and sail materials that would reduce this problem are suggested, including the use of LiF and CaF2 quarter-wave dielectric films and the use of many intermediate lenses spaced between the probe and the source. It is pointed out that, as sail materials, the quarter-wavelength dielectric films have significant advantages over metals.

  17. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  18. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  19. An amplified femtosecond laser system for material micro-/nanostructuring with an integrated Raman microscope

    NASA Astrophysics Data System (ADS)

    Zalloum, Othman H. Y.; Parrish, Matthew; Terekhov, Alexander; Hofmeister, William

    2010-05-01

    In order to obtain new insights into laser-induced chemical material modifications, we introduce a novel combined approach of femtosecond pulsed laser-direct writing and in situ Raman microscopy within a single experimental apparatus. A newly developed scanning microscope, the first of its kind, provides a powerful tool for micro-/nanomachining and characterization of material properties and allows us to relate materials' functionality with composition. We address the issues of light delivery to the photomodification site and show the versatility of the system using tight focusing. Amplified femtosecond pulses are generated by a Ti:sapphire laser oscillator and a chirped-pulse regenerative amplifier, both pumped by a diode-pumped frequency doubled neodymium-doped yttrium orthovanadate (Nd:YVO4) laser operating at 532 nm. Results of Raman spectroscopy and scanning electron microscopy images of femtosecond laser micro-/nanomachining on the surface and in the bulk of single-crystal diamond obtained from first trials of this instrument are also presented. This effective combination could help to shed light on the influence of the local structure fluctuations on controllability of the laser processing and the role of the irradiation in the ablation processes ruling out possible imprecisions coming from the use of the two independent techniques.

  20. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    NASA Astrophysics Data System (ADS)

    Abd El-Hameed, Afaf M.

    2015-12-01

    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  1. Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Oral Presentation

    SciTech Connect

    Barry, Matthew

    2015-08-19

    This presentation covers data collected on two commercial laser stabilization systems, Guidestar-II and MRC, and two optical imaging systems. Additionally, general information about LCLS-II and how to go about continuing-testing is covered.

  2. Investigation of the irradiation effects on laser-removal and surface morphology of mixed material sample

    NASA Astrophysics Data System (ADS)

    Kubkowska, M.; Gąsior, P.; Kowalska-Strzęciwilk, E.; Fortuna-Zalesna, E.; Grzonka, J.; Ciupinski, L.

    2013-07-01

    Paper presents experimental results of laser-removal of deposits from mixed materials sample (mixes of C, W and Al on aluminum substrate) and investigation of the effects on morphology and microstructure of deposits and substrates. Two kinds of laser were applied - high power density Nd:YAG laser and high average power, but lower power density Yb:fiber laser. A constant repetition rate of 100 kHz fiber laser was used with variable pulse energy (0.5-1 mJ) to examine the phenomena in dependence of power density. To verify differences in the removal process, pulses of energy of 500 mJ in 3.5 ns of the Nd:YAG laser were used. The surface of examined sample was characterized by SEM (Scanning Electron Microscopy) in order to monitor substrate/deposit morphology changes introduced by both lasers. In contrary to the Nd:YAG, the Yb:fiber laser does not cause substrate damages unless it operates at the power density above 106 W/cm2 and does not produce macroscopic dust.

  3. Treatment of mucocele of the lower lip with diode laser in pediatric patients: presentation of 2 clinical cases.

    PubMed

    Pedron, Irineu Gregnanin; Galletta, Vivian Cunha; Azevedo, Luciane Hiramatsu; Corrêa, Luciana

    2010-01-01

    Mucoceles are common benign lesions of the oral cavity that develop following extravasation or retention of mucous material from salivary glands in the subepithelial tissue. Most dental literature reports a higher incidence of mucocele in young patients, with trauma being a leading cause. Treatment may be performed by conventional surgery, cryotherapy, and, more recently, laser surgery and loser vaporization. The purpose of this report was to describe 2 clinical cases of lower-lip mucoceles treated by excision with a high-intensity diode laser in pediatric patients. Diode laser surgery was rapid, bloodless, and well accepted by patients. Postoperative problems, discomfort, and scarring were minimal. Treatment of mucoceles with high-intensity diode loser provided satisfactory results in the cases presented and allowed for a histopathological examination of the excised tissue. PMID:21462769

  4. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  5. Predicting the Performance of Edge Seal Materials for PV (Presentation)

    SciTech Connect

    Kempe, M.; Panchagade, D.; Dameron, A.; Reese, M.

    2012-03-01

    Edge seal materials were evaluated using a 100-nm film of Ca deposited on glass and laminated to another glass substrate. As moisture penetrates the package it converts the Ca metal to transparent CaOH2 giving a clear indication of the depth to which moisture has entered. Using this method, we have exposed test samples to a variety of temperature and humidity conditions ranging from 45C and 10% RH up to 85C and 85% RH, to ultraviolet radiation and to mechanical stress. We are able to show that edge seal materials are capable of keeping moisture away from sensitive cell materials for the life of a module.

  6. Study of transport of laser-driven relativistic electrons in solid materials

    NASA Astrophysics Data System (ADS)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  7. Heat transfer model for cw laser material processing

    SciTech Connect

    Mazumder, J.; Steen, W.M.

    1980-02-01

    A three-dimensional heat transfer model for laser material processing with a moving Gaussian heat source is developed using finite difference numerical techniques. In order to develop the model, the process is physically defined as follows: A laser beam, having a defined power distribution, strikes the surface of an opaque substrate of infinite length but finite width and depth moving with a uniform velocity in the positive x direction (along the length). The incident radiation is partly reflected and partly absorbed according to the value of the reflectivity. The reflectivity is considered to be zero at any surface point where the temperature exceeds the boiling point. This is because a ''keyhole'' is considered to have formed which will act as a black body. Some of the absorbed energy is lost by reradiation and convection from both the upper and lower surfaces while the rest is conducted into the substrate. That part of the incident radiant power which falls on a keyhole is considered to pass into the keyhole losing some power by absorption and reflection from the plasma within the keyhole as described by a Beer Lambert absorption coefficient. Matrix points within the keyhole are considered as part of the solid conduction network, but operating at fictitiously high temperatures. The convective heat transfer coefficient is enhanced to allow for a concentric gas jet on the upper surface as used for shielding in welding and surface treatment, but not cutting. The system is considered to be in a quasi-steady-state condition in that the thermal profile is considered steady relative to the position of the laser beam. The advantages of this method of calculation over others are discussed together with comparisons between the model predictions and experiments in laser welding, laser arc augmented welding, laser surface treatment, and laser glazing.

  8. Laser induced deflection (LID) method for absolute absorption measurements of optical materials and thin films

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon; Paa, Wolfgang

    2011-05-01

    We use optimized concepts to measure directly low absorption in optical materials and thin films at various laser wavelengths by the laser induced deflection (LID) technique. An independent absolute calibration, using electrical heaters, is applied to obtain absolute absorption data without the actual knowledge of the photo-thermal material properties. Verification of the absolute calibration is obtained by measuring different silicon samples at 633 nm where all laser light, apart from the measured reflection/scattering, is absorbed. Various experimental results for bulk materials and thin films are presented including measurements of fused silica and CaF2 at 193 nm, nonlinear crystals (LBO) for frequency conversion and AR coated fused silica for high power material processing at 1030 nm and Yb-doped silica raw materials for high power fiber lasers at 1550 nm. In particular for LBO the need of an independent calibration is demonstrated since thermal lens generation is dominated by stress-induced refractive index change which is in contrast to most of the common optical materials. The measured results are proven by numerical simulations and their influence on the measurement strategy and the obtained accuracy are shown.

  9. New materials strategies for creating hybrid electronic circuitry (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Marks, Tobin J.

    2013-09-01

    This lecture focuses on the challenging design and realization of new materials for creating unconventional electronic circuitry. Fabrication methodologies to achieve these goals include high-throughput, large-area printing techniques. Materials design topics to be discussed include: 1. Rationally designed high-mobility p- and n-type organic semiconductors for printed organic CMOS, 2. Polycrystalline and amorphous oxide semiconductors for transparent and mechanically flexible electronics, 3) Self-assembled and printable high-k nanodielectrics enabling ultra-large capacitance, low leakage, high breakdown fields, minimal trapped interfacial charge, and device radiation hardness. 4) Combining these materials sets to fabricate a variety of high-performance thin-film transistor-based devices.

  10. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    NASA Astrophysics Data System (ADS)

    Santos, Dário, Jr.; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Gomes, Marcos da Silva; de Souza, Paulino Florêncio; Leme, Flavio de Oliveira; dos Santos, Luis Gustavo Cofani; Krug, Francisco José

    2012-05-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited.