Science.gov

Sample records for laser spark plug

  1. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  2. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines.

    PubMed

    Cundy, Michael; Schucht, Torsten; Thiele, Olaf; Sick, Volker

    2009-02-01

    Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices. PMID:19183588

  3. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  4. Experimental investigation of the vibrational and thermal response of a laser spark plug

    NASA Astrophysics Data System (ADS)

    Yoder, Gregory S.

    A study was conducted in order to evaluate the external thermal and vibrational effects on the operation of a laser ignition system for internal combustion (IC) engine applications. West Virginia University (WVU) in conjunction with the National Energy Technology Laboratory (NETL) have constructed a prototype laser spark plug which has been designed to mount directly onto the head of a natural gas engine for the purpose of igniting an air/fuel (A/F) mixture in the engine's combustion chamber. To be considered as a viable replacement for the conventional electrode-based ignition system, integrity, durability and reliability must be justified. Thermal and oscillatory perturbations induced upon the ignition system are major influences that affect laser spark plug (LSP) operation and, therefore, quantifying these effects is necessary to further the advancement and development of this technology. The passively q-switched Nd:YAG laser was mounted on Bruel & Kjaer (B&K) Vibration Exciter Type 4808 Shaker in conjunction with at B&K Power Amplifier Type 2719, which was oscillated in 10 Hz intervals from 0 to 60 Hz using a sine wave to mimic natural gas engine operation. The input signal simulated the rotational velocity of the engine operating from 0 to 3600 RPM with the laser mounted in three different axial orientations. The laser assembly was wrapped with medium-temperature heat tape, outfitted with thermocouples and heated from room temperature to 140 ºF to simulate the temperatures that the LSP may experience when installed on an engine. The acceleration of the payload was varied between 50% and 100% of the oscillator's maximum allowable acceleration in each mounting orientation resulting in a total of 294 total setpoints. For each setpoint, pulse width, pulse width variation, q-switch delay, jitter and output energy were measured and recorded. Each of these dependent variables plays a critical role in multi photon ionization and precise control is necessary to limit

  5. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    SciTech Connect

    McIntyre, D.L.

    2007-05-01

    hence the engine load, was varied between 0.8, 0.9, and 1.0. The test laser was constructed with a 30% output coupler, 32% Q-switch initial transmission, and a 0.5% Nd concentration rod all pumped by approximately 1000 Watts of optical power. The test laser single mode output pulse had an energy of approximately 23 mJ, with a pulsewidth of approximately 10 ns, and an M2 value of 6.55. This output produced focal intensity of approximately 270 GW/cm2 with the modified on-engine optical arrangement. The commercial laser had similar output parameters and both laser systems operated the engine with similar results. Due to the shortening of the focal length of the on-engine optical setup both laser systems produced a spark well within the optical transfer cavity of the laser optics to spark plug adaptor. This shrouded spark led to a very long ignition delay and retarded combustion timing for all three values of equivalence ratio. This was evidenced by the in-cylinder pressure traces and the HRR waveforms. The emissions data indicate that both lasers produced very similar combustion. The ignition delay caused by the shrouded spark cause most of the combustion to happen after TDC which lead to poor combustion that produced high levels of CO and THC. The novelty of this work lies in the combination of the laser parameters to create a single high peak power laser output pulse for use as a spark ignition source. Similar configurations have been investigated in the literature but for different applications such as multiple output pulse trains for various industrial and communications applications. Another point of novelty is the investigation of the laser medium concentration on the output characteristics of a passively Q-switched laser system. This work has shown that lowering the Neodymium concentration in the active media within a passively Q-switched laser produces higher output energy values. This is significant because an actively Q-switched laser shows the opposite affect

  6. The sparking voltage of spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B

    1925-01-01

    This report has been prepared in order to collect and correlate into convenient and useful form the available data on this subject. The importance of the subject lies in the fact that it forms the common meeting ground for studies of the performance of spark generators and spark plugs on the one hand and of the internal combustion engines on the other hand. While much of the data presented was obtained from various earlier publications, numerous places were found where necessary data were lacking, and these have been provided by experiments in gasoline engines at the Bureau of Standards.

  7. SI Engine with repetitive NS spark plug

    NASA Astrophysics Data System (ADS)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  8. Dual Spark Plugs For Stratified-Charge Rotary Engine

    NASA Technical Reports Server (NTRS)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  9. Properties and preparation of ceramic insulators for spark plugs

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Honaman, R K; Fonseca, E L; Bleininger, A V; Staley, H F

    1920-01-01

    Report describes in detail the preliminary experiments which were made on the conductivity of spark-plug insulators in order to develop a satisfactory comparative method for testing various spark-plug materials. Materials tested were cements, porcelain, feldspar, and quartz.

  10. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  11. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  12. Dual spark plug ignition system for motorcycle internal combustion engine

    SciTech Connect

    Hoeptner, H.W.

    1991-04-02

    This patent describes an ignition system for a motorcycle two cylinder internal combustion engine, the system including magnetically coupled primary and secondary coil means, two spark plugs at each of the cylinders, a source of electrical current, and a single set of contacts controlling electrical current flow to the primary coil means for producing high voltage outputs from the secondary coil means to be delivered to all four of the spark plugs, the secondary coil means including certain secondary coil means operatively connected via the primary coil means with both the of spark plugs at one cylinder, a single cam controlling only the contacts, and a single magnetic core between the primary coil means and both the secondary coil means, and wherein the spark plugs include: two plugs at one cylinder and connected with the certain secondary coil means, two plugs at the second cylinder and connected with the other secondary coil means, the primary coil means including certain primary coil means magnetically coupled to the certain secondary coil means, and other primary coil means magnetically coupled to the other secondary coil means, the certain and other primary coil means being connected in series, electrically, the two spark plugs at one cylinder being electrically connected to opposite ends of the certain secondary coil means, and the two spark plugs at the other cylinder are electrically connected to opposite ends of the other secondary coil means. It comprises the cam driven by the engine for controlling opening of the contacts, the cam rotatable about a first axis, carrier means carrying the contacts, and adjustably rotatable about the axis.

  13. Flame Arrival Measurement By Instrumented Spark Plug or Head Gasket

    Energy Science and Technology Software Center (ESTSC)

    1995-04-10

    PLUGBIN was developed to support Sandia technologies involving instrumented head gaskets and spark plugs for engine research and development. It acquires and processes measurements of flame arrival and pressure from a spark ignition. Flame arrival is determined from analog ionization-probe or visible-emission signals, and/or digitial signals from a dedicated flame arrival measurement processor. The pressure measurements are analyzed to determine the time of peak pressure and the time to burn 10 and 90 percent ofmore » the charge. Histograms are then calculated and displayed for each measurement.« less

  14. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  15. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGESBeta

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  16. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  17. Lifecycle of laser-produced air sparks

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    2015-06-01

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N2+. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.

  18. Lifecycle of laser-produced air sparks

    SciTech Connect

    Harilal, S. S. Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.

  19. Laser spark distribution and ignition system

    DOEpatents

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  20. The Advantages of Non-Thermal Plasma for Detonation Initiation Compared with Spark Plug

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-02-01

    In this paper, the characteristics of detonation combustion ignited by AC-driven non-thermal plasma and spark plug in air/acetylene mixture have been compared in a double-tube experiment system. The two tubes had the same structure, and their closed ends were installed with a plasma generator and a spark plug, respectively. The propagation characteristics of the flame were measured by pressure sensors and ion probes. The experiment results show that, compared with a spark plug, the non-thermal plasma obviously broadened the range of equivalence ratio when the detonation wave could develop successfully, it also heightened the pressure value of detonation wave. Meanwhile, the detonation wave development time and the entire flame propagation time were reduced by half. All of these advantages benefited from the larger ignition volume when a non-thermal plasma was applied. supported by National Natural Science Foundation of China (No. 51176001)

  1. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  2. Laser-induced spark ignition fundamental and applications

    SciTech Connect

    Tran, P.X.

    2006-05-01

    Laser ignition has become an active research topic in recent years because it has the potential to replace the conventional electric spark plugs in engines that are required to operate under much higher compression ratios, faster compression rates, and much leaner fuel-to-air ratios than gas engines today. It is anticipated that the igniter in these engines will face with pressures as high as 50MPa and temperatures as high as 4000 K. Using the conventional ignition system, the required voltage and energy must be greatly increased (voltages in excess of 40 kV) to reliably ignite the air and fuel mixture under these conditions. Increasing the voltage and energy does not always improve ignitability but it does create greater reliability problem. The objective of this paper is to review past work to identify some fundamental issues underlying the physics of the laser spark ignition process and research needs in order to bring the laser ignition concept into the realm of reality.

  3. Effect of the duty cycle on the spark-plug plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Seyhan, Mehmet; Erkan Akansu, Yahya; Karakaya, Fuat; Yesildag, Cihan; Akbıyık, Hürrem

    2016-03-01

    A promising novel actuator called Spark-Plug Plasma Synthetic Jet (SPSJ) has been developed in Atmospheric Plasma Research Laboratory at Niğde University. It generates electrothermally high synthetic jet velocity by using high voltage. SPSJ actuator can be utilized to be an active flow control device having some advantages such as no moving parts, low energy consumption and easy to integrate the system. This actuator consists of two main components: semi-surface spark plug (NGK BUHW) as an anode electrode and a cap having an orifice as a cathode electrode. The cap, having a jet exit orifice diameter of 2 mm, has diameter of 4.4 mm and height of 4.65 mm. This study presents the characteristics of SPSJ actuator by using the hot wire anemometer in order to approximately determine jet velocity in quiescent air. Peak velocity as high as 180 m/s was obtained for fe= 100 and duty cycle 50%. The flow visualization indicated that the actuator's jet velocity is enough to penetrate the developed boundary layer.

  4. Dual channel formation in a laser-triggered spark gap

    NASA Astrophysics Data System (ADS)

    Kushner, M. J.; Kimura, W. D.; Ford, D. H.; Byron, S. R.

    1985-12-01

    During self-break in spark-gap switches, multiple streamers can form in close proximity to one another. The rate of expansion of these streamers is sufficiently fast that they can interact during the current pulse. To help understand how these closely spaced, expanding spark columns interact, a laser-triggered spark gap has been studied in which two parallel columns (separation 1.3 mm) are simultaneously preionized, resulting in a pair of nearly identical, axisymmetric spark columns. The spark gap (electrode separation 1.2 cm) switches a 100 ns, 40-60 kV, 12-20 kA, 1.5 Ω waterline. Interferograms of the expanding arc channels are obtained with a laser interferometer having a time and spatial resolution of 5 ns and 10 μm, respectively. Voltage and current were measured with an internal capacitive-voltage divider and a current viewing resistor. The interferograms show that for initially identical axisymmetric columns, the individual channels do not merge into a single larger axisymmetric spark column. Instead, regions of high gas density remain inside the combined column long into the recovery period. The columns also do not remain axisymmetric as they grow, indicating a long-range interaction between the channels. The voltage drop and resistance of the dual channel spark gaps changes by less than 15% from that of a single spark channel. A scaling model is presented to explain the resistance measurements and to predict the change in resistance for multichannel spark gaps.

  5. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lyon, Elliott; Kuang, Zheng; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2014-11-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion - a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed.

  6. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs. PMID:26831972

  7. Effect of Fuel Composition, Engine Operating Variables, and Spark-Plug Type and Condition on Preignition-Limited Performance of an R-2800 Cylinder

    NASA Technical Reports Server (NTRS)

    Pfender, John F.

    1946-01-01

    The preignition characteristics of the R-2800 cylinder, as effected by fuel consumption, engine operating variables, and spark plug type and condition, were evaluated. The effects on preignition-limited performance of various percentages of aromatics (benzene, toluene, cumene, xylene) in a base fuel of triptane were investigated. Two paraffins (triptane and S + 6.0 ml TEL/gal) and two refinery blends (28-R and 33-R) were preignition rated. The effect of changes in the following engine operating variables on preignition limit was determined: inlet-air temperature, rear spark plug gasket temperature, engine speed, spark advance, tappet clearance, and oil consumption. Preignition limits of the R-2800 cylinder using Champion C34S and C35S and AC-LS86, LS87, and LS88 spark plugs were established and the effect of spark plug deterioration was investigated. No definite trends in preignition-limited indicated mean effective pressure were indicated for aromatics as a class when increased percentages of different aromatics were added to a base fuel of triptane. Three types of fuel (aromatics, paraffins, and refinery blends) showed a preignition range for this cylinder from 65 to 104 percent when based on the performance of S plus 6.0 ml TEL per gallon as 100 percent. The R-2800 cylinder is therefore relatively insensitive to fuel composition when compared to a CFR F-4 engine, which had a pre-ignition range from 72 to 100 percent for the same fuels. Six engine operating variables were investigated with the following results: preignition-limited indicated mean effective pressure decreased, with increases in engine speed, rear spark plug gasket temperature, inlet-air temperature, and spark advance beyond 20 F B.T.C. and was unaffected by rate of oil consumption or by tappet clearance. Spark plugs were rated over a range of preignition-limited indicated mean effective pressure from 200 to 390 pounds per square inch at a fuel-air ratio of 0.07 in the following order of increased

  8. Laser induced spark ignition of methane-oxygen mixtures

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.

    1991-01-01

    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.

  9. Appearance of toroidal structure in dissipating laser-generated sparks

    NASA Astrophysics Data System (ADS)

    Nassif, D.; Hüwel, L.

    2000-03-01

    We have investigated the temporal and spatial evolution of laser-induced plasmas in pure nitrogen. A 1064 nm, 20 ns pulse from a neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser with pulse energies ranging from 175 to 500 mJ is tightly focused to produce a spark at various, near-atmospheric pressures. Spatially resolved Rayleigh scattered light from a time-delayed, 355 nm Nd:YAG laser pulse traversing the spark at right angles is collected with an image intensifier gated, linear diode array. At a delay time of 30 μs, the laser plasma remnant appears as a nearly spherically symmetric region with a center temperature of about 4500 K. After around 100 μs, the hot gas starts to change into a toroidal shape expanding radially at an average speed of a few meters per second. The final torus size increases with decreasing pressure and increasing laser power. This general behavior of the plasma afterglow can be reconciled with a numerical model, where in the aftermath of the spark shock wave a pair of vortices is produced which in turn moves the residual hot gas into the observed toroidal geometry.

  10. Laser radiation attenuation by sparks of optical breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitskii, O. A.

    1989-06-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases. Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  11. Laser Radiation Attenuation By Sparks Of Optical Breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitsky, O. A.

    1990-01-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases, Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  12. Characteristics of microwave plasma induced by lasers and sparks.

    PubMed

    Ikeda, Yuji; Tsuruoka, Ryoji

    2012-03-01

    Characteristics of the plasma light source of microwave (MW) plus laser-induced breakdown spectroscopy (LIBS) or spark-induced breakdown spectroscopy (SIBS) were studied. The plasma was initially generated by laser- or spark-induced breakdown as a plasma seed. A plasma volume was then grown and sustained by MWs in air. This MW plasma had a long lifetime, large volume, strong emission intensity, and high stability with time. These characteristics are suitable for applications in the molecular analysis of gases such as OH or N(2). Because the plasma properties did not depend on laser or spark plasma seeds, the resulting plasma was easily controllable by the input power and duration of the MWs. Therefore, a significant improvement was achieved in the spectral intensity and signal-to-noise ratio. For example, the peak intensity of the Pb spectra of LIBS increased 15 times, and that of SIBS increased 880 times without increases in their background noise. A MW-enhanced plasma light source could be used to make the total system smaller and cheaper than a conventional LIBS system, which would be useful for real-time and in situ analysis of gas molecules in, for example, food processing, medical applications, chemical exposure, and gas turbine or automobile air-to-fuel ratio and exhaust gas measurement. PMID:22410918

  13. Microwave scattering from laser spark in air

    SciTech Connect

    Sawyer, Jordan; Zhang Zhili; Shneider, Mikhail N.

    2012-09-15

    In this paper, microwave Mie scattering from a laser-induced plasma in atmospheric air is computed. It shows that the scattered microwave transitions from coherent Rayleigh scattering to Mie scattering based on the relative transparency of the laser-induced plasma at the microwave frequency. The microwave penetration in the plasma alters from total transparency to partial shielding due to the sharp increase of the electron number density within the avalanche ionization phase. The transition from Rayleigh scattering to Mie scattering is verified by both the temporal evolution of the scattered microwave and the homogeneity of polar scattering plots.

  14. Cleaning laser spark spectroscopy for online cleaning quality control method development

    NASA Astrophysics Data System (ADS)

    Mutin, T. Y.; Smirnov, V. N.; Veiko, V. P.; Volkov, S. A.

    2010-07-01

    This work is dedicated to spectroscopic investigations of laser spark during the laser cleaning process. The goal is to proof its analytical possibilities for chemical composition determination for online cleaning quality control. Photographic recordings of laser spark were performed to estimate its parameters. Fiber spectrometer was used to analyze the emission of cleaning process established with fiber laser. Conclusions have been made about fiber laser radiation usability for spectroscopic purpose.

  15. Cleaning laser spark spectroscopy for online cleaning quality control method development

    NASA Astrophysics Data System (ADS)

    Mutin, T. Y.; Smirnov, V. N.; Veiko, V. P.; Volkov, S. A.

    2011-02-01

    This work is dedicated to spectroscopic investigations of laser spark during the laser cleaning process. The goal is to proof its analytical possibilities for chemical composition determination for online cleaning quality control. Photographic recordings of laser spark were performed to estimate its parameters. Fiber spectrometer was used to analyze the emission of cleaning process established with fiber laser. Conclusions have been made about fiber laser radiation usability for spectroscopic purpose.

  16. Chlorofluorocarbon (CFC) destruction by a CO2-laser spark production

    SciTech Connect

    Akhvlediani, Z.G.; Barkhudarov, E.M.; Gelashvili, G.V.

    1995-12-31

    It was proposed to use a gas discharge excited (in one way or another) in the atmosphere for its cleaning from contaminations destroying the ozone layer. A gas-discharge method based on the use of a high-power pulsed microwave radiation and intense neodim laser was modeled experimentally. In the present paper a study is made of the efficiency of destruction of CFC contaminations in air by a spark excited by a pulsed CO{sub 2} - laser radiation. The schematic of the experiment is shown. Here (1) is the TEA CO{sub 2} laser, (2) is the calorimeter, (3) is the working chamber (a cylinder made of a stainless steel 1 {congruent} 20cm long and d {congruent} 4cm in diameter); (4) is a NaCl focusing lens, (5) is a glass colb with NaCl windows, (6) is a colb aimed to analyze the gas content by a SPECORD-76 spectrophotometer (7), and (8) is a plate made of NaCl. CO, laser operates with a pulse (peak duration of 1{mu}s and low-intensity tail duration of 2.5 - 3.0{mu}s) radiation with energy of order E{approx}35 - 40 J. The working chamber in which a spark is excited was pumped out up to a pressure of p{sub 0} {approx} 10{sup -2} Torr and filled with an air - CFC-12 (CF{sub 2}Cl{sub 2}) mixture. Most of the experiments were carried out at a mixture pressure of p{sub CFC} {congruent} 30-100Torr.

  17. Benefits and applications of laser-induced sparks in real scale model measurements.

    PubMed

    Gómez-Bolaños, Javier; Delikaris-Manias, Symeon; Pulkki, Ville; Eskelinen, Joona; Hæggström, Edward; Jeong, Cheol-Ho

    2015-09-01

    The characteristics of using a laser-induced spark as a monopole source in scale model measurements were assessed by comparison with an electric spark and a miniature spherical loudspeaker. Room impulse responses of first order directivity sources were synthesized off-line using six spatially distributed sparks. The source steering direction was scanned across the horizontal and vertical plane to assess the origin of early reflections. The results confirm that the characteristics of the laser-induced spark outperform those of typical sources. Its monopole characteristics enable the authors to synthesize room responses of directional sources, e.g., to obtain directional information about reflections inside scale models. PMID:26428809

  18. The Role of TiO2 in Ceramic Bulk Interference Suppressing Resistor Integrated with Car Spark Plug

    NASA Astrophysics Data System (ADS)

    Klimiec, Ewa; Nowak, Stanisław; Zaraska, Wiesław; Stoch, Jerzy

    2007-07-01

    Spark plug resistors operate under extreme conditions (200°C, 4.2 MPa, peak-to-peak working voltage Up-p of 15 to 30 kV, and instantaneous power of 26 kW). The dissipated heat has to be distributed evenly in the entire structure. The deciding factor for the homogeneity of the structure of a resistive body, which also influences the resistance value of resistors, is titanium dioxide. Its influence on the phase transition of the glass binding the components of the resistive body has been investigated by means of differential thermal analysis (DTA). Homogeneity assessment of the structure has been carried out by means of a scanning electron microscope. Titanium undergoes partial reduction during thermal processing of the resistor. The oxidation number of titanium has been determined by means of electron spectroscopy for chemical analysis x-ray photoelectron spectroscopy (ESCA-XPS). Electrical stability of the resistors has been measured using a simulator device for the car ignition system. The resistors with no TiO2 content get damaged and those with TiO2 exhibit electrical stability.

  19. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    DOEpatents

    Cremers, David A.; Radziemski, Leon J.; Loree, Thomas R.

    1990-01-01

    A method and apparatus for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  20. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    DOEpatents

    Cremers, D.A.; Radziemski, L.J.; Loree, T.R.

    1984-05-01

    A method and apparatus are disclosed for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  1. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-01-01

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  2. Large laser sparks for laboratory simulation of high-energy-density events in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Babankova, Dagmar; Juha, Libor; Civias, Svatopluk; Bittner, Michal; Cihelka, Jaroslav; Bartnik, Andrzej; Fiedorowicz, Henryk; Mikolajczyk, Janusz; Ryc, Leszek; Pfeifer, Miroslav; Skala, Jiri; Ullschmied, Jiri

    2005-09-01

    Single ≤1 kJ pulses from a high-power laser are focused into molecular gases to create large laser sparks. This provides a unique way to mimic the chemical effects of high-energy-density events in planetary atmospheres (cometary impact, lightning) matching the natural energy-density, its spatio-temporal evolution and plasma-volume scaling of such events in a fully-controlled laboratory environment. Some chemical reactions initiated by laser-induced dielectric breakdown (LIDB) in both pure molecular gases and mixtures related to the chemical evolution of the Earth's early atmosphere were studied. Most of the experiments were carried out in a static gas cell. However, an initial series of experiments was also performed with a gas-puff target placed within a vacuum interaction chamber. Under these dynamic conditions the hot core of a laser spark can be directly investigated.

  3. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  4. Simultaneous Filtered and Unfiltered Light Scattering Measurements in Laser Generated Air Sparks

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher; Miles, Richard

    2013-09-01

    Elastic laser light scattering may be used to measure the thermofluidic properties of gases and plasmas, including but not limited to density, temperature and velocity. Most of this information is contained within the spectra of the scattered radiation. This may be measured directly through dispersion or indirectly, by passing the light through an atomic or molecular vapor filter with known absorption features. In this work, filtered and unfiltered laser light scattering is used to diagnose air sparks generated by a 1064 nm Q-switched laser. The probe laser consists of a second Q-switched Nd:YAG laser frequency doubled to 532 nm. Simultaneous unfiltered and filtered images of the scattering are captured by a Princeton Instruments ICCD camera by using a 50 mm diameter concave re-imaging mirror. The filter consists of a well-characterized molecular Iodine cell. In the shock wave formed by the laser spark, spatially resolved measurements of density, temperature and radial velocity are extracted and compared with theory and models. Measurements in the spark core probe the ion feature of the electron Thomson scattering, from which ne and T can be extracted with the assumption Te =Ti . Partial funding was provided by General Electric Global Research Center: Niskayuna, New York. The first author is also supported by a National Defense Science and Engineering Graduate Fellowship.

  5. Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases

    SciTech Connect

    Joshi, Sachin; Yalin, Azer P.; Galvanauskas, Almantas

    2007-07-01

    The fiber-optic delivery of sparks in gases is challenging as the output beam must be refocused to high intensity ({approx}200 GW/cm2 for nanosecond pulses). Analysis suggests the use of coated hollow core fibers, fiber lasers, and photonic crystal fibers (PCFs). We study the effects of launch conditions and bending for 2 m long coated hollow fibers and find an optimum launch f of {approx}55 allowing spark formation with {approx}98% reliability for bends up to a radius of curvature of 1.5 m in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is described, and delivery of 0.55 mJ pulses through PCFs is shown.

  6. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  7. Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Itina, T. E.; Voloshko, A.

    2013-12-01

    Recent promising methods of nanoparticle fabrication include laser ablation and spark discharge. Despite different experimental conditions, a striking similarity is often observed in the sizes of the obtained particles. To explain this result, we elucidate physical mechanisms involved in the formation of metallic nanoparticles. In particular, we compare supersaturation degree and sizes of critical nucleus obtained under laser ablation conditions with that obtained for spark discharge in air. For this, the dynamics of the expansion of either ablated or eroded products is described by using a three-dimensional blast wave model. Firstly, we consider nanosecond laser ablation in air. In the presence of a background gas, the plume expansion is limited by the gas pressure. Nanoparticles are mostly formed by nucleation and condensation taking place in the supersaturated vapor. Secondly, we investigate nanoparticles formation by spark discharge at atmospheric pressure. After efficient photoionization and streamer expansion, the cathode material suffers erosion and NPs appear. The calculation results allow us to examine the sizes of critical nuclei as function of the experimental parameters and to reveal the conditions favorable for the size reduction and for the increase in the nanoparticle yield.

  8. A comparative study of laser ignition and spark ignition with gasoline-air mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Cangsu; Fang, Donghua; Luo, Qiyuan; Ma, Jian; Xie, Yang

    2014-12-01

    The ignition probability and minimum ignition energy (MIE) of premixed gasoline-air mixture for different equivalence ratio was experimentally studied using a nanosecond pulse at 532 nm and 1064 nm from a Q-switched Nd:YAG laser in a constant-volume combustion chamber (CVCC) The result was compared with the spark ignition. The initial pressure and temperature of the mixture was 0.1 MP and 363 K, respectively. The research indicates that within the flammable range, the probability increases when the ignition energy increases and the distribution of MIE with the equivalence ratios is U-shape for both laser and spark ignition. For laser ignition with 532 nm, when the incident energy is higher than 110 mJ or the absorbed energy is high than 31 mJ, 100% of ignition could be obtained within equivalence ratios of 0.8-1.6. For 1064 nm it is 235 mJ and 30 mJ. To get the same ignition probability of mixture with identical equivalence ratio, the incident energy of 1064 nm is twice more than the incident energy of 532 nm, while the absorbed energy values are virtually the same. It indicates that significant wavelength dependence is expected for the initial free electrons but irrelevant for the process of absorbing energy. The initial free electrons are produced from impurities in gasoline-air mixture because the intensity in the focus (1012 W/cm2) is too low to ionize gas molecules via the multi-photon ionization process, which requires higher irradiance (≥1014 W/cm2). The MIE obtained with a laser-spark ignition is greater than that measured by electrical sparks. The MIE for laser ignition was obtained at equivalence ratio of 1.0 both of 532 nm and 1064 nm, and it was 13.5 mJ and 9.5 mJ, respectively. But for spark ignition, the MIE is 3.76 mJ with equivalence ratio of 1.6. What's more, laser ignition extends the lean flammability limit from 0.8 to 0.6.

  9. Wall-plug efficiency and beam dynamics in free-electron lasers using energy recovery linacs

    SciTech Connect

    Sprangle, P.; Ben-Zvi, I.; Penano, J.; Hafizi, B.

    2010-08-01

    In a high average power free-electron laser (FEL) the wall-plug efficiency is of critical importance in determining the size, complexity, and cost of the overall system. The wall-plug efficiency for the FEL oscillator and amplifier (uniform and tapered wiggler) is strongly dependent on the energy recovery process. A theoretical model for electron beam dynamics in the energy recovery linac is derived and applied to the acceleration and deceleration of nano-Coulomb electron bunches for a tapered FEL amplifier. For the tapered amplifier, the spent electron beam exiting the wiggler consists of trapped and untrapped electrons. Decelerating these two populations using different phases of the radio-frequency wave in the recovery process enhances wall-plug efficiency. For the parameters considered here, the wall-plug efficiency for the tapered amplifier can be {approx}10% using this approach.

  10. Performance properties of electro-spark deposited carbide-ceramic coatings modified by laser beam

    NASA Astrophysics Data System (ADS)

    Radek, Norbert; Bartkowiak, Konrad

    The work presented in this paper determines the influence of the laser treatment process on the properties of electrospark coatings. The properties after laser treatment were examined by microstructure analysis, microhardness, roughness and adhesion tests. The studies were conducted using WC-Co-Al2O3 electrodes produced by sintering nanostructural powders. The anti-wear coatings were first deposited by an EIL-8A apparatus on C45 carbon steel and then laser melted within various process parameters. In this case Nd:YAG laser (BLS 720 model) was applied. The electro-spark deposited coatings are very promising to improve abrasive wear resistance of tools and machine parts, which was indicated by tribological tests.

  11. Coupling of a spark source mass spectrograph and a ND-YAG Laser

    SciTech Connect

    Bonham, R.W.; Quattlebaum, J.C.

    1988-06-15

    Spark source mass spectrograph (SSMS) has been used for many years for routine semi-quantitative analysis of metals to the ppB level. GR Neutron Devices (GEND) has added a laser to their spark source instrument, and a variety of both standard and unknown metals and insulators were analyzed to demonstrate the applicability and validity of the technique. The modifications made to the standard instrument, the necessary changes made in the operating technique, and the advantages which resulted are discussed in this report. The ability to simultaneously analyze all elements, from lithium through uranium, from 100% to the ppB range in any insulating matrix does not affect the ability of the instrument to function in the spark mode. This modification should prove useful to those interested in the analysis of insulators down to the trace level without a solution step or pretreatment. Data are given for materials ranging from National Bureau of Standards (NBS) glass standards to samples in which both the matrix and the impurities are unknown. Gold, aluminum, copper, titanium, and erbium metal, as well as several different types of glasses, silica, alumina, boron nitride, and diamond, have been analyzed.

  12. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  13. Experimental Characterization of a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Brown, D. J.; Domonkos, M. T.; Ruden, E. L.; Schmitt-Sody, A.; Lucero, A. P.; Canright, J. P.; Miner, R. L.

    2015-11-01

    We have developed an experimental test bed to characterize the performance of a laser-triggered spark-gap switch as it transitions from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The test bed is designed to support a variety of working gases (e.g., Ar, N2, He, H2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. Data from our experiments will be used to determine the minimum conditions necessary to induce the breakdown and conduction of a gas-insulated electrode gap in the presence of laser-induced photoionization. The electromagnetic particle-in-cell code ICEPIC will be used to produce numerical simulations of the laser-initiated arc discharge, and the experimental data will be used to validate the calculations.

  14. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Astrophysics Data System (ADS)

    Scattergood, T. W.; McKay, C. P.; Borucki, W. J.; Giver, L. P.; van Ghyseghem, H.; Parris, J. E.; Miller, S. L.

    1989-10-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  15. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  16. Diagnosis of caries by spectral analysis of laser-induced plasma sparks

    NASA Astrophysics Data System (ADS)

    Niemz, Markolf H.

    1994-12-01

    A picosecond Nd:YLF laser system was used to remove sound and carious enamel by the mechanism of plasma-induced ablation. The plasma spark was optically imaged onto the entrance pupil of a spectrometer. The spectra were scanned between 400 - 700 nm with a typical resolution of 0.2 nm. Calcium in neutral and singly ionized states and the sodium doublet at 589 nm were observed. The second harmonic of the laser wavelength was generated in an external BBO crystal, thereby converting about 10 (mu) J of the pulse energy to radiation at 527 nm. The amplitude of the diffuse reflected second harmonic was used as a reference signal for normalization of the spectra. Several sound and artificial caries regions of different teeth were investigated. The spectra obtained from caries always showed a strong decrease in amplitude of all mineral lines, if compared to sound enamel. These results can be explained by the demineralization process of dental decay. Thus, caries infected teeth are easily distinguished from sound probes, enabling a computer controlled caries removal in the near future. The possible setup of such an automated system is discussed.

  17. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los

  18. 21.2% wall-plug efficiency green laser based on an electrically pumped VECSEL through intracavity second harmonic generation

    NASA Astrophysics Data System (ADS)

    Zhao, Pu; Xu, Bing; van Leeuwen, Robert; Chen, Tong; Watkins, Laurence; Zhou, Delai; Seurin, Jean-Francois; Gao, Peng; Xu, Guoyang; Wang, Qing; Ghosh, Chuni

    2015-03-01

    We have achieved a 21.2% wall-plug efficiency green laser at 532 nm based on an electrically pumped vertical externalcavity surface emitting laser (VECSEL) through intracavity second harmonic generation. The continuous-wave green output power was 3.34 W. The VECSEL gain device is cooled by using a thermoelectric cooler, which can greatly benefit packaging. Both power and efficiency can be further scaled up by optimizing external-cavity design and improving the performance of VECSEL gain device.

  19. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  20. Production of organic compounds in plasmas: a comparison among electric sparks, laser-induced plasmas, and UV light.

    PubMed

    Scattergood, T W; McKay, C P; Borucki, W J; Giver, L P; Van Ghyseghem, H; Parris, J E; Miller, S L

    1989-01-01

    The chemistry in planetary atmospheres that is induced by processes associated with high-temperature plasmas is of broad interest because such processes may explain many of the chemical species observed. There are at least two important phenomena that are known to generate plasmas (and shocks) in planetary atmospheres: lightning and meteor impacts. For both phenomena, rapid heating of atmospheric gases leads to formation of a high-temperature plasma which emits radiation and produces shock waves that propagate through the surrounding atmosphere. These processes initiate chemical reactions that can transform simple gases into more complex compounds. In order to study the production of organic compounds in plasmas (shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP), an ultraviolet radiation. The yields of HCN and several simple hydrocarbons were measured by gas chromatography and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the agreement for C2H6 and the other hydrocarbons was poor, indicating that a more comprehensive theory is needed. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light but not to the shock waves emitted by the sparks. Hence, the results of these experiments demonstrate that the thermodynamic equilibrium theory does not adequately model lightning and meteor impacts and that photolysis must be included. Finally, the similarity in yields between the spark and the LIP experiments suggest that LIP provide valid and clean simulations of lightning and meteor impacts and that photolysis must be included. Finally, the similarity in yields between the spark and the LIP experiments suggests that LIP provide valid

  1. Modeling the mechanical behavior of ceramic and heterophase structures manufactured using selective laser sintering and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.

    A model for predicting mechanical properties of ultra-high temperature ceramics and composites manufactured by selective laser sintering (SLS) and spark plasma sintering (SPS) under shock loading is presented. The model takes into account the porous structure, the specific volume and average sizes of phases, and the temperature of sintering. Residual stresses in ceramic composites reinforced with particles of refractory borides, carbides and nitrides after SLS or SPS were calculated. It is shown that the spall strength of diboride-zirconium matrix composites can be increased by the decreasing of porosity and the introduction of inclusions of specially selected refractory strengthening phases.

  2. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  3. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  4. Crevice flow and combustion visualization in a direct-injection spark-ignition engine using laser imaging techniques

    SciTech Connect

    Drake, M.C.; Fansler, T.D.; French, D.T.

    1995-12-31

    Crevice flows of hydrocarbon fuel (both liquid and vapor) have been observed directly from fuel-injector mounting and nozzle-exit crevices in an optically-accessible single-cylinder direct-injection two-stroke engine burning commercial gasoline. Fuel trapped in crevices escapes combustion during the high-pressure portions of the engine cycle, exits the crevice as the cylinder pressure decreases, partially reacts when mixed with hot combustion gases in the cylinder, and contributes to unburned hydrocarbon emissions. High-speed laser Mie-scattering imaging reveals substantial liquid crevice flow in a cold engine at light load, decreasing as the engine warms up and as load is increased. Single-shot laser induced fluorescence imaging of fuel (both vapor and liquid) shows that substantial fuel vapor emanates from fuel injector crevices during every engine cycle and for all operating conditions. Early in the crevice-flow process, some of the emerging fuel vapor (imaged by laser-induced fluorescence) burns as a rich diffusion flame (imaged by flame luminosity), but most of the crevice flow fails to burn as the cylinder pressure and temperature fall. Crevice HC`s are a significant (but not the predominant) source of hydrocarbon emissions in this two-stroke engine, since most of the crevice flow hydrocarbons are retained as residual fuel in the combustion chamber. Similar laser-imaging techniques are applicable to four-stroke spark-ignition engines, where crevice flows are believed to be the dominant hydrocarbon-emissions source.

  5. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  6. Characteristics of a laser triggered spark gap using air, Ar, CH4, H2, He, N2, SF6, and Xe

    NASA Astrophysics Data System (ADS)

    Kimura, W. D.; Kushner, M. J.; Seamans, J. F.

    1988-03-01

    A KrF discharge laser (248 nm) has been used to laser trigger, by volume preionization, a spark gap switch (38-65 kV, >10 kA, 100 ns pulse duration) filled with 20 different gas mixtures using various combinations of air, Ar, CH4, H2, He, N2 SF6, and Xe. A pulsed laser interferometer is used to probe the spark column. Characteristics studied include the internal structure of the column, the arc expansion rate, and evidence of any photoionization precursor effect. Our results show that the rate of arc expansion varies depending on the average molecular weight of the mixtures. In this experiment, pure H2 has the highest rate (≊9.5×105 cm/s) and air has one of the lowest (≊7×105 cm/s) for the same hold-off voltage. A computer model of the spark column formation is able to predict most of the structure observed in the arcs, including the effect of mixing gases with widely different molecular weights. The work suggests that, under proper circumstances, the spark gap switch performance may be improved by using gases lighter than conventional switch gases such as SF6.

  7. Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma

    SciTech Connect

    Watanabe, Masato; Yamada, Junzaburo; Zhu Qiushi; Hotta, Eiki

    2009-01-21

    A laser triggerd discharge produced Sn plasma light source has been developed. Experimental parameters such as electrode separation and laser irradiation power are varied to optimize EUV emission power. It is clear that the maximum EUV radiation was occurred in the position where the pinch was observed.

  8. EXPERIMENTS WITH UV LASER TRIGGERED SPARK GAPS IN A STACKED BLUMLEIN SYSTEM

    SciTech Connect

    Nunnally, W; Lewis, R; Allen, F; Hawkins, S; Holmes, C; Sampayan, S; Caporaso, G

    2005-05-26

    This paper discusses switch requirements from basic circuit analysis and the experimental setup, parameters, and results of an experiment to investigate the feasibility of UV laser triggering of up to 40 Blumlein lines in a very compact Stacked Blumlein Line System. In addition, the method of fabricating a very compact SBL transmission lines is presented. Then the behavior of the switch parameters in the stack when closure is initiated with a UV laser pulse is presented. Specifically, the time varying inductance and resistance of the laser initiated gas discharge channel is presented and compared with a circuit model to elucidate the switch performance.

  9. Low current extended duration spark ignition system

    DOEpatents

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  10. Plugging meter

    DOEpatents

    Nagai, Akinori

    1979-01-01

    A plugging meter for automatically measuring the impurity concentration in a liquid metal is designed to have parallel passages including a cooling passage provided with a plugging orifice and with a flow meter, and a by-pass passage connected in series to a main passage having another flow meter, so that the plugging points may be obtained from the outputs of both flow meters. The plugging meter has a program signal generator, a flow-rate ratio setter and a comparator, and is adapted to change the temperature of the plugging orifice in accordance with a predetermined pattern or gradient, by means of a signal representative of the temperature of plugging orifice and a flow-rate ratio signal obtained from the outputs of both flow meters. This plugging meter affords an automatic and accurate measurement of a multi-plugging phenomenon taking place at the plugging orifice.

  11. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  12. Highly-reliable operation of 638-nm broad stripe laser diode with high wall-plug efficiency for display applications

    NASA Astrophysics Data System (ADS)

    Yagi, Tetsuya; Shimada, Naoyuki; Nishida, Takehiro; Mitsuyama, Hiroshi; Miyashita, Motoharu

    2013-03-01

    Laser based displays, as pico to cinema laser projectors have gathered much attention because of wide gamut, low power consumption, and so on. Laser light sources for the displays are operated mainly in CW, and heat management is one of the big issues. Therefore, highly efficient operation is necessitated. Also the light sources for the displays are requested to be highly reliable. 638 nm broad stripe laser diode (LD) was newly developed for high efficiency and highly reliable operation. An AlGaInP/GaAs red LD suffers from low wall plug efficiency (WPE) due to electron overflow from an active layer to a p-cladding layer. Large optical confinement factor (Γ) design with AlInP cladding layers is adopted to improve the WPE. The design has a disadvantage for reliable operation because the large Γ causes high optical density and brings a catastrophic optical degradation (COD) at a front facet. To overcome the disadvantage, a window-mirror structure is also adopted in the LD. The LD shows WPE of 35% at 25°C, highest record in the world, and highly stable operation at 35°C, 550 mW up to 8,000 hours without any catastrophic optical degradation.

  13. Plug valve

    DOEpatents

    Wordin, John J.

    1989-01-01

    An improved plug valve wherein a novel shape for the valve plug and valve chamber provide mating surfaces for improved wear characteristics. The novel shape of the valve plug is a frustum of a body of revolution of a curved known as a tractrix, a solid shape otherwise known as a peudosphere.

  14. Investigating the dynamics of laser induced sparks in atmospheric helium using Rayleigh and Thomson scattering

    SciTech Connect

    Nedanovska, E.; Nersisyan, G.; Lewis, C. L. S.; Riley, D.; Graham, W. G.; Morgan, T. J.; Hüwel, L.; Murakami, T.

    2015-01-07

    We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 10{sup 17 }cm{sup −3} to 9 × 10{sup 13 }cm{sup −3}, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t{sup 0.4} consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He{sub 2}{sup +} molecular ion play an important role.

  15. Investigating the dynamics of laser induced sparks in atmospheric helium using Rayleigh and Thomson scattering

    NASA Astrophysics Data System (ADS)

    Nedanovska, E.; Nersisyan, G.; Morgan, T. J.; Hüwel, L.; Murakami, T.; Lewis, C. L. S.; Riley, D.; Graham, W. G.

    2015-01-01

    We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm-3 to 9 × 1013 cm-3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ˜ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2+ molecular ion play an important role.

  16. Wavefront sensor testing in hypersonic flows using a laser-spark guide star

    NASA Astrophysics Data System (ADS)

    Neal, Daniel R.; Armstrong, Darrell J.; Hedlund, Eric; Lederer, Melissa; Collier, Arnold S.; Spring, Charles; Gruetzner, James K.; Hebner, Gregory A.; Mansell, Justin D.

    1997-11-01

    The flight environment of next-generation theater missile defense interceptors involves hypersonic speeds that place severe aero-thermodynamic loads on missile components including the windows used for optical seekers. These heating effects can lead to significant boresight error and aberration. Ground-based tests are required to characterize these effects. We have developed methods to measure aberrations in seeker windows using a Shack-Hartmann wavefront sensor. Light from a laser or other source with a well known wavefront is passed through the window and falls on the sensor. The sensor uses an array of micro-lenses to generate a grid of focal spots on a CCD detector. The positions of the focal spots provide a measure of the wavefront slope over each micro-lens. The wavefront is reconstructed by integrating the slopes, and analyzed to characterize aberrations. During flight, optical seekers look upstream through a window at 'look angles' angles near 0 degrees relative to the free stream flow. A 0 degree angle corresponds to large angles approaching 90 degrees when measured relative to the normal of the window, and is difficult to simulate using conventional techniques to illuminate the wavefront sensor during wind tunnel tests. For this reason, we developed a technique using laser- induced optical breakdown that allows arbitrary look angles down to 0 degrees.

  17. Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering.

    PubMed

    Xu, Changwen; Yang, Chengdong; Zhang, Han; Duan, Yanmin; Zhu, Haiyong; Tang, Dingyuan; Huang, Huihui; Zhang, Jian

    2016-09-01

    Efficient laser operation of Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering (SPS) was demonstrated. Transparent Nd:Lu2O3 ceramic was successfully fabricated by Spark Plasma Sintering and its laser experiment was done. On the 4F3/2 to 4I11/2 transition, the obtained maximum output is 1.25W at the absorbed pump power of 4.15W with a slope efficiency of 38% and two spectral lines at 1076.7nm and 1080.8nm oscillated simultaneously. The slope efficiency of 38% is near two times higher than the previously demonstrated SPSed Nd:Lu2O3 ceramic lasers. On the 4F3/2 to 4I13/2 transition, the laser operated at the wavelength of 1359.7nm and the maximum output of 200mW was obtained at the absorbed pump power of 2.7W. PMID:27607660

  18. Sparking fusion: A step toward laser-initiated nuclear fusion reactions

    SciTech Connect

    Peterson, I.

    1996-10-19

    The fusion furnace at the sun`s core burns hydrogen to make helium. Each time two hydrogen nuclei, or protons, merge to create a deuterium nucleus, the process releases energy. A chain of additional energy-producing nuclear reactions then converts deuterium into helium. Because protons, with their like electric charges, naturally repel each other, high temperatures and tremendous pressures are needed to force them together closely enough to initiate and sustain the reactions. These mergers cost energy initially, but the return on that investment proves prodigious. On Earth, such an energy payoff has been achieved only in the uncontrolled fury of a detonated hydrogen bomb. The vision of harnessing and controlling nuclear fusion as a terrestrial energy source has yet to be fulfilled. The proposed National Ignition Facility (NIF) represents an ambitious effort to use powerful lasers to deposit sufficient energy in a small capsule of nuclear fuel to trigger fusion. The main justification for the project is to ensure that a core group of physicists and engineers maintains its expertise in the physics of nuclear weapons. This article presents both the scientific and political sides of the NIF facility.

  19. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser.

    PubMed

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW. PMID:27131693

  20. Developing a pulse trigger generator for a three-electrode spark-gap switch in a transversely excited atmospheric CO2 laser

    NASA Astrophysics Data System (ADS)

    Wang, Jingyuan; Guo, Lihong; Zhang, Xingliang

    2016-04-01

    To improve the probability and stability of breakdown discharge in a three-electrode spark-gap switch for a high-power transversely excited atmospheric CO2 laser and to improve the efficiency of its trigger system, we developed a high-voltage pulse trigger generator based on a two-transistor forward converter topology and a multiple-narrow-pulse trigger method. Our design uses a narrow high-voltage pulse (10 μs) to break down the hyperbaric gas between electrodes of the spark-gap switch; a dry high-voltage transformer is used as a booster; and a sampling and feedback control circuit (mainly consisting of a SG3525 and a CD4098) is designed to monitor the spark-gap switch and control the frequency and the number of output pulses. Our experimental results show that this pulse trigger generator could output high-voltage pulses (number is adjusted) with an amplitude of >38 kV and a width of 10 μs. Compared to a conventional trigger system, our design had a breakdown probability increased by 2.7%, an input power reduced by 1.5 kW, an efficiency increased by 0.12, and a loss reduced by 1.512 kW.

  1. Predictive spark timing method

    SciTech Connect

    Tang, D.L.; Chang, M.F.; Sultan, M.C.

    1990-01-09

    This patent describes a method of determining spark time in a spark timing system of an internal combustion engine having a plurality of cylinders and a spark period for each cylinder in which a spark occurs. It comprises: generating at least one crankshaft position reference pulse for each spark firing event, the reference pulse nearest the next spark being set to occur within a same cylinder event as the next spark; measuring at least two reference periods between recent reference pulses; calculating the spark timing synchronously with crankshaft position by performing the calculation upon receipt of the reference pulse nearest the next spark; predicting the engine speed for the next spark period from at least two reference periods including the most recent reference period; and based on the predicted speed, calculating a spark time measured from the the reference pulse nearest the next spark.

  2. Uncooled laser sources for plug and play transceivers for datacom and telecom applications

    NASA Astrophysics Data System (ADS)

    Meliga, Marina; Paoletti, Roberto; Coriasso, Claudio

    2005-11-01

    Optical communication systems operating at 10Gbit/s require transceivers of low cost, size and power consumption, driving a "hot" source solution. This paper describes the current status of these "hot" devices for different applications. 10 Gb uncooled FP (Fabry Perot) to be used in conjunction with an EDC (Electronic Dispersion Compensation) receiver for LRM transceivers and CWDM (Course Wavelength Division Multiplexing) 3.125 Gb DFB for LX4 transceivers are the devices chosen for enterprise network (link up to 300m), which can address the need to transmit data at 10 Gb on the legacy multimode fibers. 10 Gb uncooled 1300 nm DFB (Distributed FeedBack) and 10 Gb 1300nm uncooled EML (Electro-absorption Modulator Laser) for LR transceivers are the devices chosen for LAN (Local Area Network) applications (link up to 10 km). Finally 10 Gb 1550 nm EML are the devices chosen for Metro applications (links up to 40 Km and potentially 80 km), for single wavelength and DWDM (Dense Wavelength Division Multiplexing) applications, so for those applications in which a directly modulated laser can not be used, due to the chromatic dispersion. All these laser sources can be used for different transceiver form factors: XENPAK, X2 and XFP.

  3. On the study of threshold intensity dependence on the gain and loss processes in laser induced spark ignition of molecular hydrogen

    SciTech Connect

    Omar, M. M. Aboulfotouh, A. M.; Gamal, Y. E. E.

    2015-03-30

    In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser spark ignition and plasma formation of H{sub 2}. The analysis considered H{sub 2} over pressure range 150 -3000 torr irradiated by a Nd:YAG laser radiation at wavelengths 1064 and 532 nm with pulse length 5.5 ns. The study based on a modified electron cascade model by one of the authors which solves numerically the time dependent Boltzmann equation as well as a set of rate equations that describe the rate of change of the excited states population. The model includes most of the physical processes that might take place during the interaction. Computations of The threshold intensity are performed for the combined and separate contribution of each of the gain and loss processes. Reasonable agreement with the measured values over the tested pressure range is obtained only for the case of the combined contribution. Basing on the calculation of the electron energy distribution function, the determined relations of the time evolution of the electrons density for selected values of the tested gas pressure region revealed that photo-ionization of the excited states could determine the time of electron generation and hence spark ignition. Collisional ionization contributes to this phenomenon only at the high pressure regime. Loss processes due to electron diffusion, vibrational excitation are found to have significant effect over examined pressure values for the two applied laser wavelengths.

  4. Efficiency of SparkJet

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.

    2013-01-01

    The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results

  5. AlGaAs ridge laser with 33% wall-plug efficiency at 100 °C based on a design of experiments approach

    NASA Astrophysics Data System (ADS)

    Fecioru, Alin; Boohan, Niall; Justice, John; Gocalinska, Agnieszka; Pelucchi, Emanuele; Gubbins, Mark A.; Mooney, Marcus B.; Corbett, Brian

    2016-04-01

    Upcoming applications for semiconductor lasers present limited thermal dissipation routes demanding the highest efficiency devices at high operating temperatures. This paper reports on a comprehensive design of experiment optimisation for the epitaxial layer structure of AlGaAs based 840 nm lasers for operation at high temperature (100 °C) using Technology Computer-Aided Design software. The waveguide thickness, Al content, doping level, and quantum well thickness were optimised. The resultant design was grown and the fabricated ridge waveguides were optimised for carrier injection and, at 100 °C, the lasers achieve a total power output of 28 mW at a current of 50 mA, a total slope efficiency 0.82 W A-1 with a corresponding wall-plug efficiency of 33%.

  6. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines.

    PubMed

    Joshi, Sachin; Olsen, Daniel B; Dumitrescu, Cosmin; Puzinauskas, Paulius V; Yalin, Azer P

    2009-05-01

    In this contribution we present the first demonstration of simultaneous use of laser sparks for engine ignition and laser-induced breakdown spectroscopy (LIBS) measurements of in-cylinder equivalence ratios. A 1064 nm neodynium yttrium aluminum garnet (Nd:YAG) laser beam is used with an optical spark plug to ignite a single cylinder natural gas engine. The optical emission from the combustion initiating laser spark is collected through the optical spark plug and cycle-by-cycle spectra are analyzed for H(alpha)(656 nm), O(777 nm), and N(742 nm, 744 nm, and 746 nm) neutral atomic lines. The line area ratios of H(alpha)/O(777), H(alpha)/N(746), and H(alpha)/N(tot) (where N(tot) is the sum of areas of the aforementioned N lines) are correlated with equivalence ratios measured by a wide band universal exhaust gas oxygen (UEGO) sensor. Experiments are performed for input laser energy levels of 21 mJ and 26 mJ, compression ratios of 9 and 11, and equivalence ratios between 0.6 and 0.95. The results show a linear correlation (R(2) > 0.99) of line intensity ratio with equivalence ratio, thereby suggesting an engine diagnostic method for cylinder resolved equivalence ratio measurements. PMID:19470212

  7. Spark ultrasonic transducer

    NASA Technical Reports Server (NTRS)

    Hoop, J. M.

    1972-01-01

    Nondestructive testing by spark transducer induces ultrasonic pulses in materials without physical contact. High power pulse generator connected to step up transformer produces sparking between two tungsten rods and ultrasonic energy pulses in test samples placed between rods.

  8. Direct solid analysis of powdered tungsten carbide hardmetal precursors by laser-induced argon spark ablation with inductively coupled plasma atomic emission spectrometry.

    PubMed

    Holá, Markéta; Kanický, Viktor; Mermet, Jean-Michel; Otruba, Vítezslav

    2003-12-01

    The potential of the laser-induced argon spark atomizer (LINA-Spark atomizer) coupled with ICP-AES as a convenient device for direct analysis of WC/Co powdered precursors of sintered hardmetals was studied. The samples were presented for the ablation as pressed pellets prepared by mixing with powdered silver binder containing GeO2 as internal standard. The pellets were ablated with the aid of a Q-switched Nd:YAG laser (1064 nm) focused 16 mm behind the target surface with a resulting estimated power density of 5 GW cm(-2). Laser ablation ICP-AES signals were studied as a function of ablation time, and the duration of time prior to measurement (pre-ablation time) which was necessary to obtain reliable results was about 40 s. Linear calibration plots were obtained up to 10% (m/m) Ti, 9% Ta and 3.5% Nb both without internal standardization and by using germanium as an added internal standard or tungsten as a contained internal standard. The relative uncertainty at the centroid of the calibration line was in the range from +/- 6% to +/- 11% for Nb, Ta and Ti both with and without internal standardisation by Ge. A higher spread of points about the regression was observed for cobalt for which the relative uncertainty at the centroid was in the range from +/- 9% to +/- 14%. Repeatability of results was improved by the use of both Ge and W internal standards. The lowest determinable quantities calculated for calibration plots were 0.060% Co, 0.010% Nb, 0.16% Ta and 0.030% Ti with internal standardization by Ge. The LA-ICP-AES analyses of real samples led to good agreement with the results obtained by solution-based ICP determination with a relative bias not exceeding 10%. The elimination of the dissolution procedure of powdered tungsten (Nb, Ta, Ti) carbide is the principal advantage of the developed LA-ICP-AES method. PMID:14564441

  9. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) For Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Initial hot-fire tests in a small-scale rocket chamber at MSFC have demonstrated the DPLIS concept having two main advantages over existing laser ignition concepts. First, the DPLIS can be potentially optimized its laser pulse format to maximize the initial plasma volume, the plasma lifetime, as well as the flame kernel growth rate. Characterization studies of the laser pulse format are now underway with experiments of igniting gaseous hydrogen/air in a Hencken burner. Once ignition is achieved, the flame is open to the atmosphere. This open environment allows easy access for diagnostics of the ignition phenomenon. The quick turn-around time of conducting experiments on this burner make it more amenable for conducting a large number of experiments for statistical analysis of the sensitivity of the test parameters. The results from these experiments will help optimize the laser format for future testing in an H2/O2 subscale rocket chamber.

  10. Plug and drill template

    NASA Technical Reports Server (NTRS)

    Orella, S.

    1979-01-01

    Device installs plugs and then drills them after sandwich face sheets are in place. Template guides drill bit into center of each concealed plug thereby saving considerable time and fostering weight reduction with usage of smaller plugs.

  11. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  12. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  13. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  14. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  15. Fostering the Curiosity Spark

    ERIC Educational Resources Information Center

    Crow, Sherry R.

    2010-01-01

    Many of the children in the early grades who marveled at the plethora of beautiful resources just did not seem that interested by the time they reached upper elementary school. While some children sustained their spark of curiosity, others did not. The force that keeps children (or people of any age) excited about anything is called "intrinsic…

  16. Unraveling the Image of Commutation Spark Generated in Universal Motors

    NASA Astrophysics Data System (ADS)

    Hanazawa, Tamio; Almazroui, Ali; Egashira, Torao

    A universal motor, which is mainly used in vacuum cleaners, generates commutation sparks at the moment when the brush and the commutator segment are separated from each other during rotation. This study investigates the mechanism of commutation spark generation by analyzing high-speed camera images and its electrical aspect. We invented a new external trigger method that used laser light as the trigger signal for the shuttering a high-speed camera. This method enabled us to photograph sparks on any desired commutator segments during high-speed rotation, and that made the analysis after photographing easier. This paper shows that commutation sparks in universal motors are generated on every other commutator segment and at the peak of pulses in the voltage between the brush and commutator segment. Other aspects are also clarified, such as the generation of the singular and plural number of sparks on one commutator segment at a time, the time from the moment of spark generation to extinction, and spark generation during a single rotation.

  17. Digital optical spark chambers

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Tuska, Evelyn

    1989-01-01

    The authors constructed and tested a prototype digital readout system for optical spark chambers using a linear, solid-state charge-coupled-device detector array. Position resolution of 0.013 mm (sigma) over a 25-cm field of view has been demonstrated. It is concluded that this technique should permit the construction of economical, lightweight and low-power trajectory hodoscopes for use in cosmic-ray instrumentation on balloons and in spacecraft.

  18. Direct spark ignition system

    SciTech Connect

    Gann, R.A.

    1986-12-02

    This patent describes a direct spark ignition system having a gas burner, an electrically operable valve connected to the burner to admit fuel thereto, a gated oscillator having a timing circuit for timing a trial ignition, a spark generator responsive to the oscillator for igniting fuel emanating from the burner, and a flame sensor for sustaining oscillations of the oscillator while a flame exists at the burner. The spark generator has an inverter connected to a low voltage dc source and responsive to the oscillator for converting the dc voltage to a high ac voltage, a means for rectifying the high ac voltage, a capacitor connected to the rectifying means for storing the rectified high voltage, an ignition coil in series between the storage capacitor and a switch, and a means for periodically turning on the switch to produce ignition pulses through the coil. The ignition system is powered from the dc source but controlled by the oscillator. An improvement described here is wherein the inverter is comprised of a step-up transformer having its primary winding connected in series with the dc source and a common emitter transistor having its collector connected to the primary winding. The transistor has its base connected to be controlled by the oscillator to chop the dc into ac in the primary winding, and a diode connected between the storage capacitor and the collector of the transistor, the diode being poled to couple into the capacitor back EMF energy when the transistor is turned off.

  19. Flame Speed and Spark Intensity

    NASA Technical Reports Server (NTRS)

    Randolph, D W; Silsbee, F B

    1925-01-01

    This report describes a series of experiments undertaken to determine whether or not the electrical characteristics of the igniting spark have any effect on the rapidity of flame spread in the explosive gas mixtures which it ignites. The results show very clearly that no such effect exists. The flame velocity in carbon-monoxide oxygen, acetylene oxygen, and gasoline-air mixtures was found to be unaffected by changes in spark intensity from sparks which were barely able to ignite the mixture up to intense condenser discharge sparks having fifty time this energy. (author)

  20. Low-inductance capacitive probe for spark gap voltage measurements

    NASA Astrophysics Data System (ADS)

    Barrett, David M.; Byron, Stanley R.; Crawford, Edward A.; Ford, Dennis H.; Kimura, Wayne D.; Kushner, Mark J.

    1985-11-01

    A novel high-voltage (>50 kV) capacitive probe has been developed to measure the voltage drop across a laser-triggered spark gap. The capacitors which comprise the voltage probe consist of three flat, annular rings that are housed within the spark gap chamber. The rings are oriented perpendicular to the spark column axis such that the column is formed in the open center of the rings. Polyethylene and Kapton foil are employed as dielectrics. The resistive portion of the divider is housed in a shielded enclosure external to the switch chamber. The inherent simplicity of the probe design ensures low inductance while minimizing stray capacitance; thus, the probe has excellent response characteristics (≊1-ns theoretical rise time), and does not interfere with the performance of the switch. The probe has also been designed to permit access for laser triggering and interferometric measurements of the spark column formation. The voltage, current, and resistance characteristics of a laser-triggered spark gap for various gas mixtures are also discussed.

  1. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2005-01-01

    The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.

  2. Bellows sealed plug valve

    DOEpatents

    Dukas, Jr., Stephen J.

    1990-01-01

    A bellows sealed plug valve includes a valve body having an inlet passage and an outlet passage, a valve chamber between the inlet and outlet passages. A valve plug has substantially the same shape as the valve chamber and is rotatably disposed therein. A shaft is movable linearly in response to a signal from a valve actuator. A bellows is sealingly disposed between the valve chamber and the valve actuator and means are located between the bellows and the valve plug for converting linear movement of the shaft connected to the valve actuator to rotational movement of the plug. Various means are disclosed including helical thread mechanism, clevis mechanism and rack and pinion mechanism, all for converting linear motion to rotational motion.

  3. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  4. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  5. Tool grinding and spark testing

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  6. Clearance of a Mucus Plug

    NASA Astrophysics Data System (ADS)

    Bian, Shiyao; Zheng, Ying; Grotberg, James B.

    2008-11-01

    Mucus plugging may occur in pulmonary airways in asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. How to clear the mucus plug is essential and of fundamental importance. Mucus is known to have a yield stress and a mucus plug behaves like a solid plug when the applied stresses are below its yield stress τy. When the local stresses reaches τy, the plug starts to move and can be cleared out of the lung. It is then of great importance to examine how the mucus plug deforms and what is the minimum pressure required to initiate its movement. The present study used the finite element method (FEM) to study the stress distribution and deformation of a solid mucus plug under different pressure loads using ANSYS software. The maximum shear stress is found to occur near the rear transition region of the plug, which can lead to local yielding and flow. The critical pressure increases linearly with the plug length and asymptotes when the plug length is larger than the half channel width. Experimentally a mucus simulant is used to study the process of plug deformation and critical pressure difference required for the plug to propagate. Consistently, the fracture is observed to start at the rear transition region where the plug core connects the films. However, the critical pressure is observed to be dependent on not only the plug length but also the interfacial shape.

  7. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.

  8. Spark ignition of flowing gases

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1956-01-01

    Research conducted at the NACA Lewis Laboratory on ignition of flowing gases by means of long-duration discharges is summarized and analyzed. Data showing the effect of a flowing combustible mixture on the physical and electrical characteristics of spark discharges and data showing the effects of variables on the spark energy required for ignition that has been developed to predict the effect of many of the gas-stream and spark variables is described and applied to a limited amount of experimental data.

  9. Plug Flow Reactor Simulator

    SciTech Connect

    Larson, Richard S.

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position, and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.

  10. Plug Flow Reactor Simulator

    Energy Science and Technology Software Center (ESTSC)

    1996-07-30

    PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less

  11. Playing with Plug-ins

    ERIC Educational Resources Information Center

    Thompson, Douglas E.

    2013-01-01

    In today's complex music software packages, many features can remain unexplored and unused. Software plug-ins--available in most every music software package, yet easily overlooked in the software's basic operations--are one such feature. In this article, I introduce readers to plug-ins and offer tips for purchasing plug-ins I have…

  12. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    PubMed

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. PMID:26304581

  13. Jet noise suppression by porous plug nozzles

    NASA Technical Reports Server (NTRS)

    Bauer, A. B.; Kibens, V.; Wlezien, R. W.

    1982-01-01

    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency.

  14. A comparison between direct spark ignition and prechamber ignition in an internal combustion engine

    SciTech Connect

    Cloutman, L.D.

    1993-12-03

    We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

  15. Imaging strategies for the study of gas turbine spark ignition

    NASA Astrophysics Data System (ADS)

    Gord, James R.; Tyler, Charles; Grinstead, Keith D., Jr.; Fiechtner, Gregory J.; Cochran, Michael J.; Frus, John R.

    1999-10-01

    Spark-ignition systems play a critical role in the performance of essentially all gas turbine engines. These devices are responsible for initiating the combustion process that sustains engine operation. Demanding applications such as cold start and high-altitude relight require continued enhancement of ignition systems. To characterize advanced ignition systems, we have developed a number of laser-based diagnostic techniques configured for ultrafast imaging of spark parameters including emission, density, temperature, and species concentration. These diagnostics have been designed to exploit an ultrafast- framing charge-coupled-device (CCD) camera and high- repetition-rate laser sources including mode-locked Ti:sapphire oscillators and regenerative amplifiers. Spontaneous-emission and laser-shlieren measurements have been accomplished with this instrumentation and the result applied to the study of a novel Unison Industries spark igniter that shows great promise for improved cold-start and high-altitude-relight capability as compared to that of igniters currently in use throughout military and commercial fleets. Phase-locked and ultrafast real-time imaging strategies are explored, and details of the imaging instrumentation, particularly the CCD camera and laser sources, are discussed.

  16. Are Crab nanoshots Schwinger sparks?

    SciTech Connect

    Stebbins, Albert; Yoo, Hojin

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  17. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  18. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  19. Bright Sparks of Our Future!

    NASA Astrophysics Data System (ADS)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  20. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  1. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  2. Modeling of the Inductance of a Blumlein Circuit Spark Gap

    NASA Astrophysics Data System (ADS)

    Aboites, V.; Rendón, L.; Hernández, A. I.; Valdés, E.

    2015-01-01

    In this paper we present an analysis of the time-varying inductance in the spark gap of a Blumlein circuit. We assume several mathematical expressions to describe the inductance and compare theoretical and computational calculations with experimental results. The time-varying inductance is approximated by a constant, a straight line and two parables which differ in their concavity. This is the first time to our knowledge, in which the time-varying ignition inductance of a nitrogen laser is modeled.

  3. Near-infrared spark source excitation for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Birch, D. J. S.; Hungerford, G.; Imhof, R. E.

    1991-10-01

    We have extended the range of excitation wavelengths from spark sources used in single photon timing fluorometry into the near infrared by means of the all-metal coaxial flashlamp filled with an argon-hydrogen gas mixture. At 750 nm this mixture gives ˜15 times the intensity available from pure hydrogen for a comparable pulse duration. Measurements are demonstrated by using the laser dye IR-140 in acetone, for which a fluorescence lifetime of 1.20 ns is recorded.

  4. Plug Loads Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings tomore » investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  5. Plug Loads Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple plug loads inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: Vending Machine Misers, Delamp Vending Machine, Desktop to Laptop retrofit, CRT to LCD monitors retrofit, Computer Power Management Settings, and Energy Star Refrigerator retrofit. This tool calculates energy savings, demand reduction, cost savings, building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  6. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors

    NASA Astrophysics Data System (ADS)

    Harinath, Y. V.; Gopal, K. A.; Murugan, S.; Albert, S. K.

    2013-04-01

    A procedure for Pulsed Laser Beam Welding (PLBW) has been developed for fabrication of fuel pins made of modified 9Cr-1Mo steel for metallic fuel proposed to be used in future in India's Fast Breeder Reactor (FBR) programme. Initial welding trials of the samples were carried out with different average power using Nd-YAG based PLBW process. After analyzing the welds, average power for the weld was optimized for the required depth of penetration and weld quality. Subsequently, keeping the average power constant, the effect of various other welding parameters like laser peak power, pulse frequency, pulse duration and energy per pulse on weld joint integrity were studied and a procedure that would ensure welds of acceptable quality with required depth of penetration, minimum size of fusion zone and Heat Affected Zone (HAZ) were finalized. This procedure is also found to reduce the volume fraction delta-ferrite in the fusion zone.

  7. Polysaccharides and bacterial plugging

    SciTech Connect

    Fogler, H.S.

    1991-11-01

    Before any successful application of Microbial Enhanced Oil Recovery process can be realized, an understanding of the cells' transport and retentive mechanisms in porous media is needed. Cell transport differs from particle transport in their ability to produce polysaccharides, which are used by cells to adhere to surfaces. Cell injection experiments have been conducted using Leuconostoc cells to illustrate the importance of cellular polysaccharide production as a transport mechanism that hinders cell movement and plugs porous media. Kinetic studies of the Leuconostoc cells, carried out to further understand the plugging rates of porous media, have shown that the cells' growth rates are approximately equal when provided with monosaccharide (glucose and fructose) or sucrose. The only difference in cell metabolism is the production of dextran when sucrose is supplied as a carbon source. Experimentally it has also been shown that the cells' growth rate is weakly dependent upon the sucrose concentration in the media, and strongly dependent upon the concentration of yeast extract. The synthesis of cellular dextran has been found to lag behind cell generation, thus indicating that the cells need to reach maturity before they are capable of expressing the detransucrase enzyme and synthesizing insoluble dextran. Dextran yields were found to be dependent upon the sucrose concentration in the media. 10 refs., 9 figs., 9 tabs.

  8. Infrared radiation from explosions in a spark-ignition engine

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Caldwell, Frank R; Steele, Sydney

    1935-01-01

    This report presents the results of an investigation to determine the variations in intensity and spectral distribution of the radiant energy emitted by the flames during normal and knocking explosions in an engine. Radiation extending into the infrared was transmitted by a window of fluorite, placed either near the spark plug or over the detonation zone at opposite ends of the combustion chamber. Concave, surface-silvered mirrors focused the beam, first at the slit of a stroboscope which opened for about 2 degrees of crank angle at any desired point in the engine cycle, and then upon the target of a sensitive thermocouple for measuring radiation intensity. Spectral distribution of the radiant energy was determined by placing over the window, one at a time, a series of five filters selected with a view to identifying, as far as possible without the use of a spectrograph, the characteristic emissions of water vapor, carbon dioxide, and incandescent carbon.

  9. Plug Would Collimate X Rays

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.; Adams, James F.

    1989-01-01

    Device creates narrow, well-defined beam for radiographic measurements of thickness. Cylindrical plug collimates and aligns X rays with respect to through holes in parts. Helps in determination of wall thickness by radiography. Lead absorbs X rays that do not pass axially through central hole. Lead/vinyl seals prevent off-axis rays from passing along periphery of plug.

  10. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  11. Mechanics Model of Plug Welding

    NASA Technical Reports Server (NTRS)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  12. Glovebox plug for glove changing

    DOEpatents

    Carlson, David O.; Shalkowski, Jr., Edward

    1992-01-01

    A plug for use in plugging a glove opening of a glovebox when the glove is eplaced. An inflated inner tube which is retained between flat plates mounted on a threaded rod is compressed in order to expand its diameter to equal that of the inside of the glove opening.

  13. Glovebox plug for glove changing

    SciTech Connect

    Carlson, D.O.; Shalkowski, E. Jr.

    1991-04-05

    This invention is comprised of a plug for use in plugging a glove opening of a glovebox when the glove is replaced. An inflated inner tube which is retained between flat plates mounted on a 05 threaded rod is compressed in order to expand its diameter to equal that of the inside of the glove opening.

  14. Static Gas-Charging Plug

    NASA Technical Reports Server (NTRS)

    Indoe, William

    2012-01-01

    A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.

  15. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  16. Spark ignited turbulent flame kernel growth. Annual report, January--December 1991

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    An experimental study of the effect of spark power on the growth rate of spark-ignited flame kernels was conducted in a turbulent flow system at 1 atm, 300 K conditions. All measurements were made with premixed, propane-air at a fuel/air equivalence ratio of 0.93, with 0%, 8% or 14% dilution. Two flow conditions were studied: a low turbulence intensity case with a mean velocity of 1.25 m/sec and a turbulence intensity of 0.33 m/sec, and a high turbulence intensity case with a mean velocity of 1.04 m/sec and a turbulence intensity of 0.88 m/sec. The growth of the spark-ignited flame kernel was recorded over a time interval from 83 {mu}sec to 20 msec following the start of ignition using high speed laser shadowgraphy. In order to evaluate the effect of ignition spark power, tests were conducted with a long duration (ca 4 msec) inductive discharge ignition system with an average spark power of ca 14 watts and two short duration (ca 100 nsec) breakdown ignition systems with average spark powers of ca 6 {times} 10{sup 4} and ca 6 {times} 10{sup 5} watts. The results showed that increased spark power resulted in an increased growth rate, where the effect of short duration breakdown sparks was found to persist for times of the order of milliseconds. The effectiveness of increased spark power was found to be less at high turbulence and high dilution conditions. Increased spark power had a greater effect on the 0--5 mm burn time than on the 5--13 mm burn time, in part because of the effect of breakdown energy on the initial size of the flame kernel. And finally, when spark power was increased by shortening the spark duration while keeping the effective energy the same there was a significant increase in the misfire rate, however when the spark power was further increased by increasing the breakdown energy the misfire rate dropped to zero.

  17. Plug cluster module demonstration

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.

    1978-01-01

    The low pressure, film cooled rocket engine design concept developed during two previous ALRC programs was re-evaluated for application as a module for a plug cluster engine capable of performing space shuttle OTV missions. The nominal engine mixture ratio was 5.5 and the engine life requirements were 1200 thermal cycles and 10 hours total operating life. The program consisted of pretest analysis; engine tests, performed using residual components; and posttest analysis. The pretest analysis indicated that operation of the operation of the film cooled engine at O/F = 5.5 was feasible. During the engine tests, steady state wall temperature and performance measurement were obtained over a range of film cooling flow rates, and the durability of the engine was demonstrated by firing the test engine 1220 times at a nominal performance ranging from 430 - 432 seconds. The performance of the test engine was limited by film coolant sleeve damage which had occurred during previous testing. The post-test analyses indicated that the nominal performance level can be increased to 436 seconds.

  18. Guidable pipe plug

    DOEpatents

    Glassell, Richard L.; Babcock, Scott M.; Lewis, Benjamin E.

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  19. Storytelling through animation: Oxford Sparks

    NASA Astrophysics Data System (ADS)

    Pyle, D. M.; Cook, A.

    2013-12-01

    Oxford Sparks is a portal that launched in 2012, with the aim of bringing together resources that have been created across the University of Oxford and elsewhere for the purpose of wider engagement with science. To bring attention to this site, Oxford Sparks developed a set of high-quality short animations, each designed to tell a story relating to a current area of science. These animations have been launched on YouTube, and will shortly be available on iTunesU, and have covered broad areas of science from subduction zones (';Underwater Volcano Disaster'), through the early history of the solar system (';Rogue Planet') to the workings of the Large Hadron Collider (';A quick look around the LHC'). The animations have each been developed in close collaboration with researchers, created by a team with experience of education, engagement and outreach. The two minute scripts are intended to be both widely accessible and viewable as ';stand alone' stories. To this end, the scripts are humorous; while the animations are delightfully quirky, and created by professional animator with a degree-level science background. The animations are also intended to be used as ';lesson starters' in school, and educational activities graded for different age groups are being developed in parallel with the animations. They have been used, successfully, on pre-university summer schools, and in university classes. We are gathering both quantitative (analytics) and qualitative (school teacher and student focus group) feedback to monitor the success of the project, and to understand the strengths and weaknesses of the approach. In the first year since launch, Oxford Sparks animations were viewed over 80,000 times on YouTube, in part due to the surge of interest in the Large Hadron Collider animation after the discovery of the Higgs Boson.

  20. Susceptibility-matched plugs for microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel

    2010-07-01

    For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.

  1. Susceptibility-matched plugs for microcoil NMR probes.

    PubMed

    Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2010-07-01

    For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638

  2. Susceptibility-matched plugs for microcoil NMR probes

    PubMed Central

    Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel

    2010-01-01

    For mass limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5 to 2 μL) and larger volume (15 to 20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6 to 12 fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638

  3. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  4. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  5. Power Measurements of Spark Discharge Experiments

    NASA Astrophysics Data System (ADS)

    Navarro-González, Rafael; Romero, Alfredo; Honda, Yasuhiro

    1998-04-01

    An accurate and precise knowledge of the amount of energy introduced into prebiotic discharge experiments is important to understand the relative roles of different energy sources in the synthesis of organic compounds in the primitive Earth's atmosphere and other planetary atmospheres. Two methods widely used to determine the power of spark discharges were evaluated, namely calorimetric and oscilloscopic, using a chemically inert gas. The power dissipated by the spark in argon at 500 Torr was determined to be 2.4 (^+12%/_-17%) J s^-1 by calorimetry and 5.3 +/- 15%) J s^-1 by the oscilloscope. The difference between the two methods was attributed to (1) an incomplete conversion of the electric energy into heat, and (2) heat loss from the spark channel to the connecting cables through the electrodes. The latter contribution leads to an unwanted effect in the spark channel by lowering the spark product yields as the spark channel cools by mixing with surrounding air and by losing heat to the electrodes. Once the concentrations of the spark products have frozen at the freeze-out temperature, any additional loss of heat from the spark channel to the electrodes has no consequence in product yields. Therefore, neither methods accurately determines the net energy transferred to the system. With a lack of a quantitative knowledge of the amount of heat loss from the spark channel during the interval from ignition of the spark to when the freeze-out temperature is reached, it is recommended to derive the energy yields of the spark products from the mean value of the two methods with the uncertainty being their standard deviation. For the case of argon at 500 Torr, this would be 3.8 (+/-50%) J s^-1.

  6. Sparks.

    ERIC Educational Resources Information Center

    Education Unlimited, 1979

    1979-01-01

    Described are: a banking token economy to increase math skills of learning-disabled and emotionally disturbed boys (11 to 14 years old); task analysis approach to individualizing instruction for mainstreamed learning-disabled students; language and reading instruction for mainstreamed deaf and hearing-impaired students; and a music program for…

  7. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  8. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  9. Sparking Interest in Nature--Family Style

    ERIC Educational Resources Information Center

    Satterlee, Donna J.; Cormons, Grace D.

    2008-01-01

    This article describes SPARK (Shore People Advancing Readiness for Knowledge), a nature-based program designed to advance literacy and environmental knowledge in a rural Virginia county that has long been combating generational poverty and low literacy. SPARK engages children between the ages of 3 and 7 and their families in nature learning. The…

  10. Trisphere spark gap actuates overvoltage relay

    NASA Technical Reports Server (NTRS)

    Camacho, S. L.

    1966-01-01

    Trisphere spark gap and high voltage relay provides a positive, fast response, high current capacity device that will sense an overvoltage condition and remove power from the circuit before insulation breakdown. When an overvoltage occurs, the spark gap breaks down and conducts an actuating current to the relay which removes power from the circuit.

  11. Improved plug valve computer-aided design of plug element

    SciTech Connect

    Wordin, J.J.

    1990-02-01

    The purpose of this document is to present derivations of equations for the design of a plug valve and to present a computer program which performs the design calculations based on the derivations. The valve is based on a plug formed from a tractrix of revolution called a pseudosphere. It is of interest to be able to calculate various parameters for the plug for design purposes. For example, the surface area, volume, and center of gravity are important to determine friction and wear of the valve. A computer program in BASIC has been written to perform the design calculations. The appendix contains a computer program listing and verifications of results using approximation methods. A sample run is included along with necessary computer commands to run the program. 1 fig.

  12. Sparking rates measured on the CRITS RFQ

    SciTech Connect

    Balleyguier, P.

    1998-05-28

    During the test of the LEDA injector on the CRITS RFQ, an automatic data acquisition system has been implemented. The purpose was to measure the sparking rate of this CW RFQ. The RF level has some influences on vacuum, but there is no evidence of any reciprocal effect. The raw sparking rate is very difficult to interpret, since burst of sparks bias the statistics. A more convenient and useful interpretation is the number of sparking seconds. At the nominal field level (1.75 Kilp), the sparking-second rate is 0.5 per minute without beam. It strongly depends on the field, with a logarithmic law: 4.5 decade/Kilp. With beam, the sparking rate jumps to 3.0 per minute. As far as tested, it depends neither on the beam current (20 to 80 mA) nor on the field (1.5 to 1.7 Kilp tested). With sparking rates as measured here, one could not hope to build an RFQ that would be free of sparks over a several months continuous operation. Such a requirement, based on an extrapolation of the curves presented here, would lead to a maximal electric field much lower than the Kilpatrick value, an unreasonable requirement for a functional RFQ. A conclusion is that a sparkless RFQ is hopeless, even with a very carefully conditioned cavity. It will probably be necessary to deal with a few sparks per day, and the linac must be able to restart automatically after a short beam interruption.

  13. Spark ignition systems for internal combustion engines

    SciTech Connect

    Gol, G.; Hill, W.F.

    1980-08-26

    An internal combustion engine spark ignition system is provided which ensures that sparks are inhibited if the engine temperature exceeds a maximum safe level. The ignition circuit includes an input transistor which is switched on and off by an engine shaft transducer. The input transistor controls charging and discharging of a capacitor the voltage on which determines whether switching of the input transistor causes a spark to be produced via an output amplifier and ignition coil. A temperature sensing element determines both the rate at which the capacitor can charge and the final voltage to which it can be charged.

  14. Vibrator improves spark erosion cutting process

    NASA Technical Reports Server (NTRS)

    Thrall, L. R.

    1966-01-01

    Variable frequency mechanical vibrator improves spark erosion cutting process. The vibration of the cutting tip permits continual flushing away of residue around the cut area with nondestructive electric transformer oil during the cutting process.

  15. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  16. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  17. Titian: Data Provenance Support in Spark

    PubMed Central

    Interlandi, Matteo; Shah, Kshitij; Tetali, Sai Deep; Gulzar, Muhammad Ali; Yoo, Seunghyun; Kim, Miryung; Millstein, Todd; Condie, Tyson

    2015-01-01

    Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and time consuming effort. Today’s DISC systems offer very little tooling for debugging programs, and as a result programmers spend countless hours collecting evidence (e.g., from log files) and performing trial and error debugging. To aid this effort, we built Titian, a library that enables data provenance—tracking data through transformations—in Apache Spark. Data scientists using the Titian Spark extension will be able to quickly identify the input data at the root cause of a potential bug or outlier result. Titian is built directly into the Spark platform and offers data provenance support at interactive speeds—orders-of-magnitude faster than alternative solutions—while minimally impacting Spark job performance; observed overheads for capturing data lineage rarely exceed 30% above the baseline job execution time. PMID:26726305

  18. Laser induced ignition

    NASA Astrophysics Data System (ADS)

    Liedl, G.; Schuöcker, D.; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2007-05-01

    Nowadays, combustion engines and other combustion processes play an overwhelming and important role in everyday life. As a result, ignition of combustion processes is of great importance, too. Usually, ignition of a combustible material is defined in such a way that an ignition initiates a self-sustained reaction which propagates through the inflammable material even in the case that the ignition source has been removed. In most cases, a well defined ignition location and ignition time is of crucial importance. Spark plugs are well suited for such tasks but suffer from some disadvantages, like erosion of electrodes or restricted positioning possibilities. In some cases, ignition of combustible materials by means of high power laser pulses could be beneficial. High power lasers offer several different possibilities to ignite combustible materials, like thermal ignition, resonant ignition or optical breakdown ignition. Since thermal and resonant ignitions are not well suited on the requirements mentioned previously, only optical breakdown ignition will be discussed further. Optical breakdown of a gas within the focal spot of a high power laser allows a very distinct localization of the ignition spot in a combustible material. Since pulse duration is usually in the range of several nanoseconds, requirements on the ignition time are fulfilled easily, too. Laser peak intensities required for such an optical breakdown are in the range of 10 11 W/cm2. The hot plasma which forms during this breakdown initiates the following self-propagating combustion process. It has been shown previously that laser ignition of direct injection engines improves the fuel consumption as well as the exhaust emissions of such engines significantly. The work presented here gives a brief overview on the basics of laser induced ignition. Flame propagation which follows a successful ignition event can be distinguished into two diffrent regimes. Combustion processes within an engine are usually

  19. Development of microwave-enhanced spark-induced breakdown spectroscopy

    SciTech Connect

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-05-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  20. Reactive oxygen species induce a Ca(2+)-spark increase in sensitized murine airway smooth muscle cells.

    PubMed

    Tuo, Qing-Rong; Ma, Yun-Fei; Chen, Weiwei; Luo, Xiao-Jing; Shen, Jinhua; Guo, Donglin; Zheng, Yun-Min; Wang, Yong-Xiao; Ji, Guangju; Liu, Qing-Hua

    2013-05-10

    The level of reactive oxygen species (ROS) and the activity of spontaneous, transient, localized Ca(2+) increases (known as Ca(2+) sparks) in tracheal smooth muscle cells (TSMCs) in an experimental allergic asthma mouse model has not yet been investigated. We used laser confocal microscopy and fluorescent dyes to measure ROS levels and Ca(2+) sparks, and we found that both events were significantly increased in TSMCs obtained from ovalbumin (OVA)-sensitized/-challenged mice compared with control mice. ROS levels began to increase in TSMCs after the first OVA challenge, and this increase was sustained. However, this elevation and Ca(2+)-spark increase was abolished after the administration of the ROS scavenger N-acetylcysteine amide (NACA) for 5days. Furthermore, a similar inhibition was also observed following the direct perfusion of NACA into cells isolated from the (OVA)-sensitized mice that were not treated with NACA. Moreover, we used 0.1-mM caffeine treatment to increase the Ca(2+) sparks in single TSMCs and observed cell shortening. In addition, we did not find increases in the mRNA levels of ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors in the tracheal smooth muscle cells of (OVA)-sensitized mice compared with controls. We concluded that ROS and Ca(2+) sparks increased in (OVA)-sensitized TSMCs. We found that ROS induces Ca(2+) sparks, and increased Ca(2+) sparks resulted in the contraction of (OVA)-sensitized TSMCs, resulting in the generation of airway hyperresponsiveness (AHR). This effect may represent a novel mechanism for AHR pathogenesis and might provide insight into new methods for the clinical prevention and treatment of asthma and asthmatic AHR. PMID:23583396

  1. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  2. Resistance of a water spark.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  3. Electro-spark deposition technology

    SciTech Connect

    Johnson, R.N.

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  4. Hot cell shield plug extraction apparatus

    DOEpatents

    Knapp, Philip A.; Manhart, Larry K.

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  5. Photography of the commutation spark using a high-speed camera

    NASA Astrophysics Data System (ADS)

    Hanazawa, Tamio; Egashira, Torao; Tanaka, Yasuhiro; Egoshi, Jun

    1997-12-01

    In the single-phase AC commutator motor (known as a universal motor), which is widely used in cleaners, electrical machines, etc., some problems generated by commutation sparks are wear on the brush and noise impediments. We have therefore attempted to use a high-speed camera to elucidate the commutation spark mechanism visually. The high-speed camera that we used is capable of photographing at 5,000 - 20,000,000 frames/s. Selection of a trigger module can be obtained from the operation unit and the exterior triggering signal. In this paper, we proposed an exterior trigger method that involved opening a hole of several millimeters across in the motor and using argon laser light, so that commutator segments may be photographed in position; we then conducted the experiment. This method enabled us to photograph the motor's commutator segment from any position, and we were able to confirm spark generation at every other commutator segment. Furthermore, after confirming the spark generation position of the commutator segment, we next attempted to accelerate the photographing speed to obtain more detailed photography of the moment of spark generation; we then prepared our report.

  6. SAMI Automated Plug Plate Configuration

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.; Farrell, T.; Goodwin, M.

    2013-10-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13×61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  7. Halliburton Composite Bridge Plug Assembly

    SciTech Connect

    Starbuck, J.M.; Luttrell, C.R.; Aramayo, G.

    2005-01-15

    The overall objectives of this CRADA were to assist Halliburton in analyzing a composite bridge plug and to determine why their original design was failing in the field. In Phase 1, finite element analyses were done on the original composite slip design and several alternative designs. The composite slip was the component in the bridge plug that was failing. The finite element code ABAQUS was used for these calculations and I-DEAS was used as the pre- and post-processor in the analyses. Several different designs and materials were analyzed and recommendations were made towards improving the design. In Phase 2, the objective was to develop finite element models that would accurately represent the deformations in the entire all-composite 4-1/2' diameter bridge plug assembly. The finite element code LS-DYNA was used and the results from this effort were intended to expand Halliburton's composite design and analysis capabilities with regard to developing future composite components for downhole tools. In addition to the finite element modeling, this effort involved the utilization of micromechanics to determine the necessary composite material properties that were needed as input for finite element codes.

  8. Shock wave generated by high-energy electric spark discharge

    NASA Astrophysics Data System (ADS)

    Liu, Qingming; Zhang, Yunming

    2014-10-01

    Shock wave generated by electric spark discharge was studied experimentally and the shock wave energy was evaluated in this paper. A pressure measurement system was established to study the pressure field of the electric spark discharge process. A series of electric spark discharge experiments were carried out and the energy of the electric spark used in present study was in the range of 10 J, 100 J, and 1000 J, respectively. The shock wave energy released from the electric spark discharge process was calculated by using the overpressure values at different measurement points near the electric spark discharge center. The good consistency of shock wave energies calculated by pressure histories at different measuring points in the same electric spark discharge experiment illustrates the applicability of the weak shock wave theory in calculating the energy of shock wave induced by electric spark discharge process. The result showed that shock wave formed at the initial stage of electric spark discharge process, and the shock wave energy is only a little part of electric spark energy. From the analysis of the shock wave energy and electric spark energy, a good linear relationship between shock wave energy and electric spark energy was established, which make it possible to calculate shock wave energy by measuring characteristic parameters of electric spark discharge process instead of shock wave. So, the initiation energy of direct initiation of detonation can be determined easily by measuring the parameters of electric spark discharge process.

  9. Electro-spark deposition technology

    SciTech Connect

    Johnson, R.N.

    1996-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated as one of the enabling technologies for advanced energy systems. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that promises an order of magnitude increase in deposition rates and achievable coating thicknesses. Since this regime borders on and exceeds the normal operating limits of existing ESD electronic equipment, development is in progress to produce equipment that can consistently and reliably achieve these conditions for a broad range of materials. Progress so far has resulted in a consistent 500% increase in deposition rates, and greater rates still are anticipated. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, the incorporation of the process into the operations of a major gas turbine manufacturer, major new applications in gas turbine blade and steam turbine blade protection and repair, and in military, medical, metal-working, and recreational equipment applications.

  10. Ultraviolet photoionization in CO2 TEA lasers

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Smith, A. L. S.

    1988-07-01

    The effects of gas composition and spark parameters on the UV emission in CO2 TEA laser gas mixtures were investigated together with the nature of photoionization process and the photoelectron-loss mechanism. A linear relationship was found between N2 concentration and photoionization (with no such dependence on C concentration, from CO and CO2), but the increases in photoionization that could be effected by optimizing the spark discharge circuit parameters were much higher than those produced by changes in gas composition. UV emission was directly proportional to the amount of stored electrical energy in the spark-discharge circuit and to the cube of the peak current produced in the spark by the discharge of this energy. Photoionization was also found to be proportional to the spark electrode gap. It was found that free-space sparks gave a considerably broader emission pattern than a surface-guided notched spark.

  11. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  12. Using SPARK as a Solver for Modelica

    SciTech Connect

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  13. Plug Load Behavioral Change Demonstration Project

    SciTech Connect

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  14. Heat energy of various ignition sparks

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Fonseca, E L

    1920-01-01

    This report describes a method developed at the Bureau of Standards for measuring the total energy liberated as heat in a spark gap by an ignition system. Since this heat energy is obtained from the electromagnetic energy stored in the windings of the magneto or coil, it is a measure of the effectiveness of the device as an electric generator. Part 2 gives the results of measurements in absolute units of the total heat supplied to a spark gap by ignition systems of different types operating at various speeds, under conditions substantially equivalent to those in the cylinder of a high-compression aviation engine.

  15. Non-plugging injection valve

    DOEpatents

    Carey, Jr., Henry S.

    1985-01-01

    A valve for injecting fluid into a conduit carrying a slurry subject to separation to form deposits capable of plugging openings into the conduit. The valve comprises a valve body that is sealed to the conduit about an aperture formed through the wall of the conduit to receive the fluid to be injected and the valve member of the valve includes a punch portion that extends through the injection aperture to the flow passage, when the valve is closed, to provide a clear channel into the conduit, when the valve is opened, through deposits which might have formed on portions of the valve adjacent the conduit.

  16. Initial Study of Friction Pull Plug Welding

    NASA Technical Reports Server (NTRS)

    Rich, Brian S.

    1999-01-01

    Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.

  17. Talent Development in STEM Disciplines: Sparking Innovators

    ERIC Educational Resources Information Center

    Roberts, Julia Link

    2010-01-01

    What role can specialized schools with focus on mathematics, science, and technology have in sparking innovation? Such specialized schools can be and in some cases currently are leaders in promoting high-level content knowledge, creative and critical thinking, and problem solving--the basic ingredients of innovation. In this article, the author…

  18. Spark gap device for precise switching

    DOEpatents

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  19. Spark gap device for precise switching

    DOEpatents

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  20. Spark decomposition studies of dielectric gas mixtures

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Christophorou, L. G.

    The ultimate usefulness of a high voltage insulating gas depends not only on the ability of the gas to withstand high voltages, but also on the degradation of the gas resulting from spark discharges, corona or prolonged electrical stress and the effect(s) of the by-products on the equipment and, possibly, the environment. In view of these considerations, the study of long-range spark decomposition was undertaken in an effort to improve the decomposition characteristics of dielectric gases through proper tailoring of gas mixtures while maintaining high breakdown strengths. The data reported are on the analyses of gases sparked by capactive (0.1 micro F) discharge into a 0.5-mm gap, resulting in an energy input of approximately 5 J per spark. The nature of the decomposition products of SF6 formed by high voltage discharges observed is found to be critically dependent on impurities (particularly H2O), electrode material and insulating materials present in the system.

  1. Vascular plugs – A key companion to Interventionists – ‘Just Plug it’

    PubMed Central

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. PMID:26304581

  2. Plug-In Tutor Agents: Still Pluggin'

    ERIC Educational Resources Information Center

    Ritter, Steven

    2016-01-01

    "An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…

  3. 21 CFR 886.4155 - Scleral plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... stainless steel with or without a gold, silver, or titanium coating. The special controls for the surgical grade stainless steel scleral plug (with or without a gold, silver, or titanium coating) are: (i) The... titanium coating). The special controls for scleral plugs made of other materials are: (i) The device...

  4. Separator plugs for liquid helium

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1984-01-01

    Work performed during Summer 1984 (from June to Sept. 30) in the area of porous media for use in low temperature applications is discussed. Recent applications are in the area of vapor - liquid phase separation, pumping based on the fountain effect and related subsystems. Areas of potential applications of the latter are outlined in supplementary work. Experimental data have been developed. The linear equations of the two-fluid model are inspected critically in the light of forced convection evidence reported recently. It is emphasized that the Darcy permeability is a unique throughput quantity in the porous media application areas whose use will permit meaningful comparisons of data not only in one lab but also within a group of labs doing porous plug studies.

  5. Plug-in Hybrid Initiative

    SciTech Connect

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  6. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  7. Friction pull plug welding: dual chamfered plate hole

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.

  8. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  9. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  10. Suprathermal electrons in a vacuum spark discharge

    NASA Astrophysics Data System (ADS)

    Bashutin, O. A.; Savjolov, A. S.

    2016-04-01

    Results of experiments on the detection of suprathermal electron beams in the plasma of a highcurrent low-inductance vacuum spark by means of space-resolved spectral X-ray polarimetry are presented. It is shown that the observed polarization of bremsstrahlung may be caused by an ~100-keV electron beam propagating along the discharge axis from the pinching region toward the anode. The influence of the discharge initiation conditions on the parameters of the generated electron beams is analyzed.

  11. SPARK Version 1. 1 user manual

    SciTech Connect

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs.

  12. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  13. Spark gap switch with spiral gas flow

    DOEpatents

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  14. High voltage spark carbon fiber detection system

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1980-01-01

    The pulse discharge technique was used to determine the length and density of carbon fibers released from fiber composite materials during a fire or aircraft accident. Specifications are given for the system which uses the ability of a carbon fiber to initiate spark discharge across a high voltage biased grid to achieve accurate counting and sizing of fibers. The design of the system was optimized, and prototype hardware proved satisfactory in laboratory and field tests.

  15. Mesh plug repair and groin hernia surgery.

    PubMed

    Robbins, A W; Rutkow, I M

    1998-12-01

    Since the mid-1980s, dramatic progress has been made in the evolution of hernia surgery, highlighted by the increasing use of prosthetic mesh. Among the mesh-based "tension-free" hernioplasties, the use of mesh plugs has garnered a large number of spirited enthusiasts, and plug herniorrhaphy has become the fastest growing hernia repair currently employed by the American surgeon. To demonstrate the simplicity and effectiveness of mesh plugs, a 9-year experience with almost 3300 patients is reported. Technical details are discussed and presentation of a literature search serves to further emphasize the utilitarian nature of this elegantly unsophisticated surgical operation. PMID:9927981

  16. Chemical kinetic simulation of hydrocarbon oxidation through the exhaust port of a spark ignition engine

    SciTech Connect

    Wu, K.C.; Hochgreb, S.

    1996-12-01

    The oxidation of unburned hydrocarbons, remaining in the cylinder of a spark-ignited engine after the main combustion event, takes place both in-cylinder and in the exhaust port. Hydrocarbons emerging from engine tailpipes consist of unburned fuel as well as products of incomplete combustion. This paper addresses the extent of oxidation and the production of nonfuel species in the exhaust port of a single-cylinder spark-ignition engine. Simulations of the unsteady thermal and composition state of the gases emerging from the cylinder were coupled to detailed chemistry models of the oxidation of hydrocarbons (propane, isooctane, methane, and ethane) to determine the change in the average composition of the gas as it passes through the exhaust port. The results are compared to previously measured speciated compositions of the exhaust gases at the exhaust port inlet and outlet. A stratification parameter to represent the growth of the thermal boundary layer due to heat transfer is added to the simplified unsteady plug flow simulation. Comparisons between model and experiment show that the concentration of products of incomplete combustion can only be adequately reproduced if stratification effects are taken into account.

  17. Relationship between Exploding Bridgewire & Spark Initiation of Low Density PETN

    NASA Astrophysics Data System (ADS)

    Lee, Elizabeth; Drake, Rod

    2015-06-01

    Recent work has shown that the energy delivered after bridgewire burst affects the function time of an EBW detonator. The spark which is formed post bridgewire burst is the means by which the remaining fireset energy is delivered into the detonator. Therefore, by studying the characteristics of spark-gap detonators insight into the contribution of spark initiation to the functioning of EBW detonators may be achieved. Spark initiation of low density explosives consists of; (i) spark formation, (ii) spark interaction with the bed, and (iii) ignition and growth of reaction. Experiments were performed in which beds of an inert simulant were used to study the formation and propagation of sparks. The effect of the spark on inert porous beds was studied over a limited delivered energy range. The disruption of the bed was found to be dependent on the particle size / pore structure of the bed. The effect of spark initiation on a low density PETN bed was then examined, the relationship between delivered energy and function time was found to be the same as for EBW detonators. This necessitated the development of electrical diagnostic techniques to measure the energy delivered to the spark.

  18. The Early Phase of Spark Ignition

    NASA Astrophysics Data System (ADS)

    Pitt, Philip Lawrence

    In this dissertation, some practical ignition techniques are presented that show how some problems of lean-burn combustion can be overcome. Then, to shed light on the effects of the ignition techniques described, the focus shifts to the more specific problem of the early phase of spark ignition. Thermal models of ignition are reviewed. These models treat the energy provided by the electrical discharge as a point source, delivered infinitely fast and creating a spherically symmetric ignition kernel. The thesis challenges the basis of these thermal models by reviewing the work of many investigators who have clearly shown that the temporal characteristics of the discharge have a profound effect upon ignition. Photographic evidence of the early phase of ignition, as well as other evidence from the literature, is also presented. The evidence clearly demonstrates that the morphology of spark kernels in the early phase of development is toroidal, not spherical as suggested by thermal models. A new perspective for ignition, a fluid dynamic point of view, is described. The common ignition devices are then classified according to fluid dynamics. A model describing the behaviour of spark kernels is presented, which extends a previously established mixing model for plasma jets, to the realm of conventional axial discharges. Comparison of the model behaviour to some limited data is made. The model is modified by including the effect of heat addition from combustion, and ignition criteria are discussed.

  19. Life and death of a cardiac calcium spark

    PubMed Central

    Ríos, Eduardo; Maltsev, Victor A.

    2013-01-01

    Calcium sparks in cardiac myocytes are brief, localized calcium releases from the sarcoplasmic reticulum (SR) believed to be caused by locally regenerative calcium-induced calcium release (CICR) via couplons, clusters of ryanodine receptors (RyRs). How such regeneration is terminated is uncertain. We performed numerical simulations of an idealized stochastic model of spark production, assuming a RyR gating scheme with only two states (open and closed). Local depletion of calcium in the SR was inevitable during a spark, and this could terminate sparks by interrupting CICR, with or without assumed modulation of RyR gating by SR lumenal calcium. Spark termination by local SR depletion was not robust: under some conditions, sparks could be greatly and variably prolonged, terminating by stochastic attrition–a phenomenon we dub “spark metastability.” Spark fluorescence rise time was not a good surrogate for the duration of calcium release. Using a highly simplified, deterministic model of the dynamics of a couplon, we show that spark metastability depends on the kinetic relationship of RyR gating and junctional SR refilling rates. The conditions for spark metastability resemble those produced by known mutations of RyR2 and CASQ2 that cause life-threatening triggered arrhythmias, and spark metastability may be mitigated by altering the kinetics of the RyR in a manner similar to the effects of drugs known to prevent those arrhythmias. The model was unable to explain the distributions of spark amplitudes and rise times seen in chemically skinned cat atrial myocytes, suggesting that such sparks may be more complex events involving heterogeneity of couplons or local propagation among sub-clusters of RyRs. PMID:23980195

  20. LLNL small-scale static spark machine: static spark sensitivity test

    SciTech Connect

    Foltz, M F; Simpson, L R

    1999-08-23

    Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal in New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.

  1. Porous plug for Gravity Probe B

    NASA Astrophysics Data System (ADS)

    Wang, Suwen; Everitt, C. W. Francis; Frank, David J.; Lipa, John A.; Muhlfelder, Barry F.

    2015-11-01

    The confinement of superfluid helium for a Dewar in space poses a unique challenge due to its propensity to minimize thermal gradients by essentially viscous-free counterflow. This poses the risk of losing liquid through a vent pipe, reducing the efficiency of the cooling process. To confine the liquid helium in the Gravity Probe B (GP-B) flight Dewar, a porous plug technique was invented at Stanford University. Here, we review the history of the porous plug and its development, and describe the physics underlying its operation. We summarize a few missions that employed porous plugs, some of which preceded the launch of GP-B. The design, manufacture and flight performance of the GP-B plug are described, and its use resulted in the successful operation of the 2441 l flight Dewar on-orbit for 17.3 months.

  2. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  3. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  4. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  5. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure, and perform a final external mechanical integrity test. (b) Well plugging plan. The owner or... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner...

  6. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  7. Elastocapillary powered manipulation of liquid plug in microchannels

    NASA Astrophysics Data System (ADS)

    George, D.; Anoop, R.; Sen, A. K.

    2015-12-01

    We report the manipulation of a liquid plug inside a rectangular microchannel, when one of the channel walls is a deformable membrane, which adjoins another parallel microchannel. Elastocapillary flow of a driving liquid (DL) through the adjoining microchannel, when approaches the plug, tries to pull the membrane near the plug, which is initially deflected into the plug, towards the DL. The plug is transported due to a differential pressure that develops across the plug owing to the increase in the radius of curvature of the trailing meniscus of the plug. A theoretical model is proposed to predict the plug velocity, which depends on a parameter J and plug length L ˜ . The predictions of the theoretical model show good agreement with experimental data. The dynamic behaviour of the plug and DL is presented and discussed.

  8. Two-colour micro-PIV and high speed shadowgraphy measurements for liquid-liquid plug flows

    NASA Astrophysics Data System (ADS)

    Chinaud, Maxime; Tsaoulidis, Dimitrios; Angeli, Panagiota Angeli; University College London Team; Memphis Collaboration

    2014-11-01

    Two-colour micro-Particle Image Velocimetry (micro-PIV) is a relatively new technique that provides velocity fields simultaneously in both phases of a two-phase flow system. In this work, a laser emitting at two different wavelengths was used to excite two different types of particles, each added in one of the liquid phases of a two-phase, oil-water, system. The two types of particles emitted signals at separate wavelengths that were captured simultaneously by two different cameras. Instantaneous velocity fields could thus be obtained in both phases at the same time. This technique was used to study liquid-liquid plug flows in microchannels. Both plug propagation in the main channel and plug formation in the T-shaped inlet junction have been investigated. During plug propagation analysis of the velocity fields reveals recirculation patterns inside the dispersed plug and the continuous slug. These will be related to dimensionless numbers. The results on plug formation will be discussed against current models on plug size. This work is undertaken as part of the UK Engineering and Physical Sciences Research Council Programme Grant MEMPHIS.

  9. Mechanical design of CDF end plug optical system

    SciTech Connect

    Bossert, R.; Dixon, R.; Ewald, K.

    1995-08-01

    The CDF End Plug at Fermilab is being upgraded to optical fiber technology. Fibers must extend from individual EM, Hadron and Shower Max pans within the plug to photomultiplier tubes mounted on the plug face. The entire system involves the organized splicing, coupling and routing of over 24000 optical fibers and 2000 source tubes per plug. Routing paths, methods of coupling and attachments of the fibers to the pans and plug are shown.

  10. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.

    1984-01-01

    The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.

  11. Spark assisted chemical engraving (SACE) in microfactory

    NASA Astrophysics Data System (ADS)

    Wüthrich, R.; Fujisaki, K.; Couthy, Ph; Hof, L. A.; Bleuler, H.

    2005-10-01

    Spark assisted chemical engraving (SACE) is a method for 3D microstructuring of glass or other non-conductive materials with high aspect ratio and smooth surface quality. It is applicable for rapid prototyping of microfluidic devices, for MEMS interfacing and similar applications. Typical feature size is in the hundreds of micrometres, down to a few tens of micrometres. It is a table-top technology requiring no clean rooms and no masks and with very modest space usage. It is thus well suited for microfactories. This paper gives a basic introduction to SACE and some machining examples.

  12. Anticipating change, sparking innovation: framing the future.

    PubMed

    Petersen, Donna J; Finnegan, John R; Spencer, Harrison C

    2015-03-01

    As the 100th anniversary of the 1915 Welch-Rose report approaches, the Association of Schools and Programs of Public Health (ASPPH) has been pursuing two initiatives to spark innovation in academic partnerships for enhancing population health: (1) Framing the Future: The Second 100 Years of Education for Public Health and (2) Reconnecting Public Health and Care Delivery to Improve the Health of Populations. We describe how ASPPH-member schools and programs accredited by the Council on Education for Public Health, along with their extraordinarily diverse array of partners, are working to improve education that better prepares health professionals to meet 21st-century population health needs. PMID:25706017

  13. The Miller volcanic spark discharge experiment.

    PubMed

    Johnson, Adam P; Cleaves, H James; Dworkin, Jason P; Glavin, Daniel P; Lazcano, Antonio; Bada, Jeffrey L

    2008-10-17

    Miller's 1950s experiments used, besides the apparatus known in textbooks, one that generated a hot water mist in the spark flask, simulating a water vapor-rich volcanic eruption. We found the original extracts of this experiment in Miller's material and reanalyzed them. The volcanic apparatus produced a wider variety of amino acids than the classic one. Release of reduced gases in volcanic eruptions accompanied by lightning could have been common on the early Earth. Prebiotic compounds synthesized in these environments could have locally accumulated, where they could have undergone further processing. PMID:18927386

  14. Laser controlled flame stabilization

    DOEpatents

    Early, James W.; Thomas, Matthew E.

    2001-01-01

    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  15. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  16. Aeroacoustics of a porous plug jet noise suppressor

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.

    1981-01-01

    The aeroacoustics of a porous plug jet noise suppressor was investigated. The predicted flow features of isentropic plug nozzles for different pressure ratios or exit flow Mach numbers, throat areas, ratios of the plug to annular nozzle radii, mass flow rates and the available run times possible with the existing compressed air supply system, are compiled. The dimensions and the coordinates of the contour of typical isentropic external expansion plugs with different exit flow Mach numbers are listed. Design details of the experimental facility and the plug nozzle selected for experimental aeroacoustic studies are reported. The analytical flow prediction by method of characteristics of a conical porous plug nozzles is initiated. The role of the shape, size, and porosity of the plug surface in achieving over a perforated conical plug a nearly isentropic shockfree supersonic flow field which is closely similar to the flow field of a contoured isentropic plug nozzle is examined.

  17. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, L.; Wepfer, R.M.

    1992-12-15

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator is disclosed. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket. 16 figs.

  18. Nozzle dam having a unitary plug

    DOEpatents

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  19. Relativistic electrons from sparks in the laboratory

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Carlson, B. E.; Nisi, R. S.; Gjesteland, T.; Grøndahl, Ø.; Skeltved, A.; Lehtinen, N. G.; Mezentsev, A.; Marisaldi, M.; Kochkin, P.

    2016-03-01

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ˜300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (˜10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  20. A generalized chemistry version of SPARK

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.

    1988-01-01

    An extension of the reacting H2-air computer code SPARK is presented, which enables the code to be used on any reacting flow problem. Routines are developed calculating in a general fashion, the reaction rates, and chemical Jacobians of any reacting system. In addition, an equilibrium routine is added so that the code will have frozen, finite rate, and equilibrium capabilities. The reaction rate for the species is determined from the law of mass action using Arrhenius expressions for the rate constants. The Jacobian routines are determined by numerically or analytically differentiating the law of mass action for each species. The equilibrium routine is based on a Gibbs free energy minimization routine. The routines are written in FORTRAN 77, with special consideration given to vectorization. Run times for the generalized routines are generally 20 percent slower than reaction specific routines. The numerical efficiency of the generalized analytical Jacobian, however, is nearly 300 percent better than the reaction specific numerical Jacobian used in SPARK.

  1. SPARK Peer Helper Program, 1993-94. OER Report.

    ERIC Educational Resources Information Center

    Goldberg, Phyllis

    The Peer Helper Program was administered by Substance Prevention, Abuse Rehabilitation, and Knowledge (SPARK). Since its beginning in 1971, SPARK has addressed issues such as drug use, teenage pregnancy, HIV/AIDS, sexual abuse and other forms of violence. The Peer Helper Program was designed to train students in the skills required to assist peers…

  2. A cosmic dust composition analyzed with a spark ion source

    NASA Technical Reports Server (NTRS)

    Auer, S.

    1974-01-01

    Simulated iron micrometeoroids were fired unto a capacitor-type micrometeoroid detector which responded to an impact with a spark. Large ion currents were extracted from the spark and analyzed in a crude ion time-of-flight mass spectrometer. The mass spectra show the elements of both detector and particle materials.

  3. Development of a SPARK Training Dataset

    SciTech Connect

    Sayre, Amanda M.; Olson, Jarrod R.

    2015-03-01

    In its first five years, the National Nuclear Security Administration’s (NNSA) Next Generation Safeguards Initiative (NGSI) sponsored more than 400 undergraduate, graduate, and post-doctoral students in internships and research positions (Wyse 2012). In the past seven years, the NGSI program has, and continues to produce a large body of scientific, technical, and policy work in targeted core safeguards capabilities and human capital development activities. Not only does the NGSI program carry out activities across multiple disciplines, but also across all U.S. Department of Energy (DOE)/NNSA locations in the United States. However, products are not readily shared among disciplines and across locations, nor are they archived in a comprehensive library. Rather, knowledge of NGSI-produced literature is localized to the researchers, clients, and internal laboratory/facility publication systems such as the Electronic Records and Information Capture Architecture (ERICA) at the Pacific Northwest National Laboratory (PNNL). There is also no incorporated way of analyzing existing NGSI literature to determine whether the larger NGSI program is achieving its core safeguards capabilities and activities. A complete library of NGSI literature could prove beneficial to a cohesive, sustainable, and more economical NGSI program. The Safeguards Platform for Automated Retrieval of Knowledge (SPARK) has been developed to be a knowledge storage, retrieval, and analysis capability to capture safeguards knowledge to exist beyond the lifespan of NGSI. During the development process, it was necessary to build a SPARK training dataset (a corpus of documents) for initial entry into the system and for demonstration purposes. We manipulated these data to gain new information about the breadth of NGSI publications, and they evaluated the science-policy interface at PNNL as a practical demonstration of SPARK’s intended analysis capability. The analysis demonstration sought to answer the

  4. A molecular plug-socket connector.

    PubMed

    Rogez, Guillaume; Ribera, Belén Ferrer; Credi, Alberto; Ballardini, Roberto; Gandolfi, Maria Teresa; Balzani, Vincenzo; Liu, Yi; Northrop, Brian H; Stoddart, J Fraser

    2007-04-18

    A monocationic plug-socket connector that is composed, at the molecular level, of three components, (1) a secondary dialkylammonium center (CH2NH2+CH2), which can play the role of a plug toward dibenzo[24]crown-8 (DB24C8), (2) a rigid and conducting biphenyl spacer, and (3) 1,4-benzo-1,5-naphtho[36]crown-10 (BN36C10), capable of playing the role of a socket toward a 4,4'-bipyridinium dicationic plug, was synthesized and displays the ability to act as a plug-socket connector. The fluorescent signal changes associated with the 1,5-dioxynaphthalene unit of its BN36C10 portion were monitored to investigate the association of this plug-socket connector with the complementary socket and plug compounds. The results indicate that (1) the CH2NH2+CH2 part of the molecular connector can thread DB24C8 in a trivial manner and (2) the BN36C10 ring of the connector can be threaded by a 1,1'-dioctyl-4,4'-bipyridinium ion only after the CH2NH2+CH2 site is occupied by a DB24C8 ring. The two connections of the three-component assembly are shown to be controlled reversibly by acid/base and red/ox external inputs, respectively. The results obtained represent a key step for the design and construction of a self-assembling supramolecular system in which the molecular electron source can be connected to the molecular electron drain by a molecular elongation cable. PMID:17388589

  5. Collagen plug occlusion of Molteno tube shunts.

    PubMed

    Stewart, W; Feldman, R M; Gross, R L

    1993-01-01

    We report five patients in whom collagen lacrimal plugs were used to temporarily occlude the lumen of Molteno shunts to prevent early postoperative hypotony. Only one eye, with a double plate, developed hypotony and a flat anterior chamber that required reformation. However, in three patients, the collagen plugs did not dissolve and had to be removed surgically to lower the intraocular pressure. Although the semipermeability of collagen is desirable, its unpredictable degradation renders it unsuitable for temporary occlusion of tube shunts. Other biodegradable materials may be more appropriate for this purpose. PMID:8446334

  6. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  7. Spark bubble interaction with a suspended particle

    NASA Astrophysics Data System (ADS)

    Ohl, Siew-Wan; Wu, Di Wei; Klaseboer, Evert; Cheong Khoo, Boo

    2015-12-01

    Cavitation bubble collapse is influenced by nearby surfaces or objects. A bubble near a rigid surface will move towards the surface and collapse with a high speed jet. When a hard particle is suspended near a bubble generated by electric spark, the bubble expands and collapses moving the particle. We found that within a limit of stand-off distance, the particle is propelled away from the bubble as it collapses. At a slightly larger stand-off distance, the bubble collapse causes the particle to move towards the bubble initially before moving away. The bubble does not move the particle if it is placed far away. This conclusion is important for applications such as drug delivery in which the particle is to be propelled away from the collapsing bubble.

  8. Pump down wipe plug and cementing/drilling process

    SciTech Connect

    Davis, C.A.

    1980-02-26

    An improved pump down wipe plug has at least one tooth protruding from its bottom surface capable of engaging, denting and penetrating the surface on which the plug comes in contact within the well. An improved process of cementing and drilling through a plug comprises inserting a pump down wipe plug having at least one tooth protruding from its bottom surface at the interface of wet cement and another fluid within the well, pumping the wet cement and the plug into position so that the tooth engages, dents and penetrates the surface below it, then when the cement has set, lowering a drill bit onto the plug and drilling the plug, the tooth or teeth retarding the tendency of the plug to rotate over the surface with which it is in contact thereby enhancing the drilling action of the drilling bit.

  9. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  10. Manipulating liquid plugs in microchannel with controllable air vents

    PubMed Central

    Liu, Hao-Bing; Ting, Eng Kiat; Gong, Hai-Qing

    2012-01-01

    An air venting element on microchannel, which can be controlled externally and automatically, was demonstrated for manipulating liquid plugs in microfluidic systems. The element’s open and closed statuses correspond to the positioning and movement of a liquid plug in the microchannel. Positioning of multiple liquid plugs at an air venting element enabled the merging and mixing of the plugs. Besides these basic functions, other modes of liquid plug manipulations including plug partitioning, multiple plug mixing, and spacing adjustment between liquid plugs, were realized using combination of multiple elements. The structure, operation, and some functions of the element were demonstrated with a microfluidic chip application. The performances of the element including its failure modes, threshold flow rate, and structural optimization were also discussed. PMID:22662082

  11. Polarizing keys prevent mismatch of connector plugs and receptacles

    NASA Technical Reports Server (NTRS)

    Chiapuzio, A.

    1966-01-01

    Keying prevents mismatching of plugs and receptacles in connector patching of instrumentation involving several thousand leads. Each receptacle and plug contains three polarizing keys that must mate in a complementary mode before the connector pins and sockets will engage.

  12. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles. Comprehensive data report, volume 2

    NASA Technical Reports Server (NTRS)

    Vogt, P. G.; Bhutiani, P. K.; Knott, P. R.

    1981-01-01

    Laser velocimeter data, collected as part of an acoustic investigation of coannular plug nozzles, is provided. The type of traverse, position, and histogram number is given along with the mean and turbulent velocity data. The velocites are normalized with respect to the outer flow velocity and the 'mixed' velocity.

  13. FY-1979 progress report. Hydrotransport plugging study.

    SciTech Connect

    Eyler, L.L.; Lombardo, N.J.

    1980-01-01

    The objective of the Hydrotransport Plugging Study is to investigate phenomena associated with predicting the onset and occurrence of plugging in pipeline transport of coal. This study addresses large particle transport plugging phenomena that may be encountered in run-of-mine operations. The project is being conducted in four tasks: review and analysis of current capabilities and available data, analytical modeling, experimental investigations, and unplugging and static start-up. This report documents work completed in FY-1979 as well as work currently in progress. A review of currently available prediction methods was completed. Applicability of the methods to large particle hydrotransport and the prediction of plugging was evaluated. It was determined that available models were inadequate, either because they are empirical and tuned to a given solid or because they are simplified analytical models incapable of accounting for a wide range of parameters. Complicated regression curve fit models lacking a physical basis cannot be extrapolated with confidence. Several specific conclusions were reached: Recent developments in mechanistic modeling, describing flow conditions at the limit of stationary deposition, provide the best basis for prediction and extrapolation of large particle flow. Certain modeled phenomena require further analytical and experimental investigation to improve confidence levels. Experimental work needs to be performed to support modeling and to provide an adequate data base for comparison purposes. No available model permits treatment of solids mixtures such as coal and rock.

  14. Aeroacoustics of a porous plug supersonic jet noise suppressor

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Matambo, T. J.; Das, I. S.

    1983-01-01

    The aeroacoustics of a porous plug supersonic jet noise suppressor was investigated. The needed modifications of the existing multistream coaxial jet rig; the compressed air facility and pressure controls; the design, the fabrication, and the installation of the plenum chamber for the plug nozzle, and the design and the machining of the first contoured plug nozzle were completed. The optical and the aeroacoustic data of the contoured plug nozzles and of the conical convergent nozzle alone were discussed.

  15. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  16. Pulsed gas laser

    DOEpatents

    Anderson, Louis W.; Fitzsimmons, William A.

    1978-01-01

    A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.

  17. 21 CFR 878.4755 - Absorbable lung biopsy plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Absorbable lung biopsy plug. 878.4755 Section 878...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4755 Absorbable lung biopsy plug. (a) Identification. A preformed (polymerized) absorbable lung biopsy plug is intended to...

  18. Spark and Deligne-Beilinson cohomology on orbifolds

    NASA Astrophysics Data System (ADS)

    Du, Cheng-Yong; Zhao, Xiaojuan

    2016-06-01

    A homological spark complex (FU∗, EU∗, IU∗) is constructed for any good atlas U of an effective orbifold X =(X , [ U ]) . It is proved that all these homological spark complexes are quasi-isomorphic for X. Furthermore, smooth Deligne-Beilinson cohomology HDp (X , Z(q)) of X is investigated and it is shown that the ring Hˆ∗(X) of spark classes of X is isomorphic to the subring HD∗ (X , Z(∗)) of the orbifold Deligne-Beilinson cohomology ring of X.

  19. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63...-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a... sparks in exhaust pipes from internal combustion engines....

  20. NASA Space Laser Technology

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  1. Sintering of zirconia ceramics using microwave and spark heating techniques

    NASA Astrophysics Data System (ADS)

    Ivashutenko, A. S.; Frangulyan, T. S.; Ghyngazov, S. A.; Petrova, A. B.

    2016-02-01

    The paper presents the results of an complex study of structural and mechanical properties of zirconia ceramics sintered using different techniques. The samples were sintered via the conventional method of heating, in the field of microwave radiation and spark plasma. The experimental data indicates that a microwave field and spark plasma have a stimulating effect on zirconia ceramics sintering. In contrast to the microwave sintering, spark plasma sintering provides ceramics with improved properties at similar time-temperature annealing modes. Moreover, the properties of the ceramics under spark plasma sintering at T=1300 °C are similar to the properties of the ceramics sintered in a microwave field at T=1400 °C.

  2. Spark discharge method of liquid rare-gas purification

    NASA Astrophysics Data System (ADS)

    Pokachalov, S. G.; Kirsanov, M. A.; Kruglov, A. A.; Obodovski, I. M.

    1993-03-01

    The spark disharge method of liquid rare-gas purification is describe. The method is sufficiently more simple than those widely used. Physical aspects of the method are discussed, and examples of its application are presented.

  3. A direct search for energetic electrons produced by laboratory sparks

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Kochkin, P.; van Deursen, A. P. J.; Hansen, R.; Gjesteland, T.; Ostgaard, N.

    2012-04-01

    High-voltage sparks in the lab unexpectedly emit x-rays with energies up to several hundred keV. These x-rays have been observed repeatedly and can only be produced by bremsstrahlung, impling the presence of a population of energetic electrons. Such energetic electron and x-ray production may be important for the physics of streamers, spark discharges, and lightning, and has been suggested as directly related to the production of terrestrial gamma-ray flashes. We present the results of the first direct search for energetic electrons produced by a lab spark. Small electrically-isolated scintillators are placed at various locations near the spark gap of a 2 MV Marx generator and the resulting signals are recorded. We present results on the spatial, temporal, and statistical variability of signals produced by energetic electrons and compare our results to predictions of energetic electron production from the literature.

  4. Exploring the Performance of Spark for a Scientific Use Case

    SciTech Connect

    Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc

    2016-01-01

    We present an evaluation of the performance of a Spark implementation of a classification algorithm in the domain of High Energy Physics (HEP). Spark is a general engine for in-memory, large-scale data processing, and is designed for applications where similar repeated analysis is performed on the same large data sets. Classification problems are one of the most common and critical data processing tasks across many domains. Many of these data processing tasks are both computation- and data-intensive, involving complex numerical computations employing extremely large data sets. We evaluated the performance of the Spark implementation on Cori, a NERSC resource, and compared the results to an untuned MPI implementation of the same algorithm. While the Spark implementation scaled well, it is not competitive in speed to our MPI implementation, even when using significantly greater computational resources.

  5. Non-rotating cementing plug with molded inserts

    SciTech Connect

    Watson, B.W.

    1992-03-17

    This patent describes an anti-rotation plug set for use with cementing equipment having an insert seat therein, the anti-rotation plug set and the cementing equipment for use in cementing a string of casing into a well bore. It comprises an upper plug including: a non-metallic body member having a plurality of teeth integrally formed on the lower end thereof and an elastomeric covering thereon having, in turn, wipers which engage the interior of the string of casing; and a lower plug including: a non-metallic body member having a bore therethrough, having teeth integrally formed on the upper end thereof which mate with the teeth integrally formed on the lower end of the nonmetallic body member of the upper plug when the upper plug engages the lower plugs, having teeth integrally formed on the lower end thereof, having an insert member in a portion of the bore through the non-metallic body member, and the cementing equipment comprising: an insert seat having teeth thereon which mate with the integrally formed teeth on the lower end of the non-metallic body member of the lower plug of the anti-rotation plug set when the lower plug of the anti-rotation plug set engages the cementing equipment during the cementing of the string of casing into a well bore.

  6. Spark-integrated propellant injector head with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory Stuart (Inventor); Fisher, David James (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    High performance propellants flow through specialized mechanical hardware that allows for effective and safe thermal decomposition and/or combustion of the propellants. By integrating a sintered metal component between a propellant feed source and the combustion chamber, an effective and reliable fuel injector head may be implemented. Additionally the fuel injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  7. CDF End Plug calorimeter Upgrade Project

    SciTech Connect

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R&D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R&D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, {gamma} and {pi}{sup 0} has been designed. Its performance requirements, R&D results and mechanical design are discussed.

  8. Industry perspectives on Plug-& -Play Spacecraft Avionics

    NASA Astrophysics Data System (ADS)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  9. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  10. NEWS: Don't forget Sparks!

    NASA Astrophysics Data System (ADS)

    2000-07-01

    Following our early notification of the `creating SPARKS' festival in London (see Phys. Educ. January 2000 p 7) more details of the programme have now been made available. The event takes place on 6-30 September in South Kensington and the lengthy programme of talks and sessions covers such items as: Science writing; A sustainable world - the issues; Hands-on particle physics; Powering into the new millennium - innovative transport and energy solutions; The enigma of time; Scientific futures in contemporary science fiction; The cases for and against nuclear energy; The microscopic world of superconductors; Michael Faraday; Quantum information - parallelism, secrecy and teleportation; and The origin of the solar system. Among the speakers are Sir Eric Ash, Nigel Henbest, Professors Cyril Hilsum, Peter Landsberg and Richard Palmer. The Science Museum's new Wellcome Wing devoted to contemporary science and technology will be open for viewing, children will attend science and arts hands-on workshops at the Royal Albert Hall on Friday 15 September, and leading scientists will be discussing the scientific developments of the future at Imperial College. In addition the Victoria and Albert Museum will demonstrate how science is involved in the creation, appreciation and conservation of the Musuem's collections. Full programmes for the festival will be available this month from the South Kensington institutions, the festival website (www.creatingsparks.co.uk) or by calling 0906 402 0022.

  11. Spark plasma sintering of aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  12. Electronic spark advance-type ignition system

    SciTech Connect

    Koike, H.

    1986-12-09

    An electronic spark advance-type ignition system is described for an internal combustion engine comprising: an ignition coil; a magnetic pickup for generating a pair of pulse signals with a time interval therebetween substantially corresponding to a maximum advance angle in terms of crankshaft rotation degrees for each rotation of a crankshaft of the engine; signal generating means responsive to the pair of pulse signals for the pickup for generating a pair of comparison signals of different levels within each of the crankshaft rotation degrees of the maximum advance angle and the other crankshaft rotation degrees; and control means for comparing the signal levels of each of the pairs of comparison signals to generate an energization starting position signal and an ignition timing determining ignition position signal for the ignition coil, the signal generating means including means for controlling the waveform of one of the pair of comparison signals so that the ignition position signal is advanced in angle with respect to the energization starting position signal. The energization starting position signal is generated under all conditions prior to the timing of generation of the earlier one of the next pair of pulse signals generated from the pickup. The ignition position signal is generated within the maximum advance angle at a point in time following generation of the earlier one of the next pair of pulse signals by at least a predetermined amount.

  13. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  14. Plug into a Great Outlet for Creativity

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2009-01-01

    Is there beauty in the wall socket that people plug their appliances into daily? Can one find beauty in the grate covering the heat vent in his classroom? The author posed these very questions to her third-grade students. She had the students take a good look at the outlet cover (or plate) on the wall. After thinking and discussing the outlets,…

  15. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  16. Insertion assembly for a pipe completion plug

    SciTech Connect

    Jiles, S.L.

    1991-08-13

    This patent describes an insertion assembly for installing a completion plug in a branching saddle having an internally-threaded pipe stub and a peripheral beveled seating surface in the pipe stub. It comprises a tube; a shaft extending through the tube; a spring-loaded socket extending partially into one end of the tube, resiliently biased against further movement into the tube and mounted on one end of the shaft so as to turn with it; a completion plug having an elastomeric disk with a beveled peripheral edge and a circular metal plate attached to the disk; a camming groove at the end of the tube and a camming pin extending from the hub to releasably retain the plate at the end of the tube, the groove having a radially-extending portion terminating in a pair of axially-extending recesses for receiving the pin and an axially-extending inlet slot between the recesses, whereby the completion plug may be lowered into place in the branching saddle by means of the tube and engaged so that its beveled edge seats against the beveled seating surface of the pipe stub by screwing the plate into the threaded pipe stub as the shaft is turned within the tube while the pin is seated in one of the recesses and may be left in place in the pipe stub by releasing the camming pin from the camming groove through the inlet slot.

  17. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  18. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  19. Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

  20. Fabrication and Characterization of Surrogate Fuel Particles Using the Spark Erosion Method

    NASA Astrophysics Data System (ADS)

    Metzger, Kathryn E.

    In light of the disaster at the Fukushima Daiichi Nuclear Plant, the Department of Energy's Advanced Fuels Program has shifted its interest from enhanced performance fuels to enhanced accident tolerance fuels. Dispersion fuels possess higher thermal conductivities than traditional light water reactor fuel and as a result, offer improved safety margins. The benefits of a dispersion fuel are due to the presence of the secondary non-fissile phase (matrix), which serves as a barrier to fission products and improves the overall thermal performance of the fuel. However, the presence of a matrix material reduces the fuel volume, which lowers the fissile content of dispersion. This issue can be remedied through the development of higher density fuel phases or through an optimization of fuel particle size and volume loading. The latter requirement necessitates the development of fabrication methods to produce small, micron-order fuel particles. This research examines the capabilities of the spark erosion process to fabricate particles on the order of 10 μm. A custom-built spark erosion device by CT Electromechanica was used to produce stainless steel surrogate fuel particles in a deionized water dielectric. Three arc intensities were evaluated to determine the effect on particle size. Particles were filtered from the dielectric using a polycarbonate membrane filter and vacuum filtration system. Fabricated particles were characterized via field emission scanning electron microscopy (FESEM), laser light particle size analysis, energy-dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), and gas pycnometry. FESEM images reveal that the spark erosion process produces highly spherical particles on the order of 10 microns. These findings are substantiated by the results of particle size analysis. Additionally, EDS and XRD results indicate the presence of oxide phases, which suggests the dielectric reacted with the molten debris during particle formation.

  1. Results from the Bell Canyon borehole plugging test

    SciTech Connect

    Christensen, C. L.

    1980-01-01

    The BHP is an integrated program involving consequence assessment and plug performance calculations, materials evaluation, instrumentation development and field testing, and interfaces directly with other WIPP-related activities. This paper describes an in situ test conducted under the BHP Field Test Task. The Bell Canyon Test was conducted to evaluate candidate grout plugging mixes and plug emplacement techniques, and to assess plug performance under in-situ cure conditions. Laboratory testing of the brine-grout/rock combination revealed an adverse reaction between the brine-grout and the anhydrite. This discovery permitted a timely change to an additional laboratory compatibility testing program with an alternate fresh-water mix to permit maintenance of the test schedule with little delay. While cement emplacement technology is generally adequate to satisfy repository plugging requirements, plug compatibility with the host rock must be carefully assessed for each repository site. Generally accepted laboratory cement-testing techniques need to include flow characteristics and geochemical stability.

  2. Sparking protection for MFTF-B neutral beam power supplies

    SciTech Connect

    Cummings, D.B.

    1983-11-30

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel dc current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output.

  3. Ryanodol action on calcium sparks in ventricular myocytes

    PubMed Central

    Ramos-Franco, Josefina; Gomez, Ana M.; Nani, Alma; Liu, Yiwei; Copello, Julio A.; Fill, Michael

    2012-01-01

    The action of ryanodol on single cardiac ryanodine receptor (RyR2) channels in bilayers and local RyR2-mediated Ca2+ release events (Ca2+ sparks) in ventricular myocytes was defined. At the single channel level, ryanodol intermittently modified single channels into a long lived sub-conductance state with an average duration of 3.8±0.2 s. Unlike ryanodine, ryanodol did not change the open probability (Po) of unmodified channels and high concentrations did not promote full channel closure. Ryanodol action was Po dependent with the KD varying roughly from 20 to 80 μM as Po changed from ~0.2 to 1, respectively. Ryanodol preferentially bound during long channel openings. In intact and permeabilized rat myocytes, ryanodol evoked trains of sparks at active release sites resulting in a significant increase in overall spark frequency. Ryanodol did not increase the number of active release sites. Long lived Ca2+ release events were observed but infrequently and ryanodol action was readily reversed upon drug washout. We propose that ryanodol modifies a few channels during a Ca2+ spark. These modified channels mediate a sustained low intensity Ca2+ release that repeatedly triggers sparks at the same release site. We conclude that ryanodol is an easily generated reversible probe that can be effectively used to explore RyR2-mediated Ca2+ release in cells. PMID:20419313

  4. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  5. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Koelle, D. E.; Parsley, R. C.

    1992-08-01

    Several feasible design options are presented for plug engine systems designed for future launch vehicle applications, including a plug nozzle engine with an annular combustion chamber, a segmented modular design, and an integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications, which include single-stage-to-orbit vehicles and upper stage vehicles such as the second stage of the Saenger HTOL launch vehicle concept.

  6. Plugging of cooling holes in film-cooled turbine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The plugging of vane cooling holes by impurities in a marine gas turbine was closely simulated in burner rig tests where dopants were added to the combustion products of a clean fuel (Jet-A). Hole plugging occurred when liquid phases, resulting from the dopants, were present in the combustion products. Increasing flame temperature and dopant concentration resulted in an increased rate of deposition and hole plugging.

  7. SpaceWire Plug and Play

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; McGuirk, Patrick; Kimmery, Clifford; Jaffe, Paul

    2006-01-01

    The ability to rapidly deploy inexpensive satellites to meet tactical goals has become an important goal for military space systems. In fact, Operationally Responsive Space (ORS) has been in the spotlight at the highest levels. The Office of the Secretary of Defense (OSD) has identified that the critical next step is developing the bus standards and modular interfaces. Historically, satellite components have been constructed based on bus standards and standardized interfaces. However, this has not been done to a degree, which would allow the rapid deployment of a satellite. Advancements in plug-and-play (PnP) technologies for terrestrial applications can serve as a baseline model for a PnP approach for satellite applications. Since SpaceWire (SpW) has become a de facto standard for satellite high-speed (greater than 200Mbp) on-board communications, it has become important for SpW to adapt to this Plug and Play (PnP) environment. Because SpW is simply a bulk transport protocol and lacks built-in PnP features, several changes are required to facilitate PnP with SpW. The first is for Host(s) to figure out what the network looks like, i.e., how pieces of the network, routers and nodes, are connected together; network mapping, and to receive notice of changes to the network. The second is for the components connected to the network to be understood so that they can communicate. The first element, network topology mapping & change of status indication, is being defined (topic of this paper). The second element describing how components are to communicate has been defined by ARFL with the electronic data sheets known as XTEDS. The first element, network mapping, is recent activities performed by Air Force Research Lab (ARFL), Naval Research Lab (NRL), NASA and US industry (Honeywell, Clearwater, FL, and others). This work has resulted in the development of a protocol that will perform the lower level functions of network mapping and Change Of Status (COS) indication

  8. Testing and plugging power plant heat exchangers

    SciTech Connect

    Sutor, F.

    1994-12-31

    Heat Exchanger tubes fail for any number of reasons including but certainly not limited to the cumulative effects of corrosion, erosion, thermal stress and fatigue. This presentation will attempt to identify the most common techniques for determining which tubes are leaking and then introduce the products in use to plug the leaking tubes. For the sake of time I will limit the scope of this presentation to include feedwater heaters and secondary system heat exchangers such as Hydrogen Coolers, Lube Oil Coolers, and nuclear Component Cooling Water, Emergency Cooling Water, Regenerative Heat Recovery heat exchangers.

  9. Experimental study of moving throat plug in a shock tunnel

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Park, C.; Kwon, O. J.

    2015-07-01

    An experimental study has been carried out to investigate the flow in the KAIST shock tunnel with two moving throat plugs at a primary shock velocity of 1.19 km/s. The nozzle reservoir pressure and the Pitot pressure at the exit of the nozzle were measured to examine the influence of the moving throat plugs on the shock tunnel flow. To assess the present experimental results, comparisons with previous work using a stationary throat plug were made. The mechanism for closing the moving throat plug was developed and verified. The source of the force to move the plug was the pressure generated when the primary shock was reflected at the bottom of the plug. It was observed that the two plugs terminated the shock tunnel flow after the steady flow. .The time for the plugs to terminate the flow showed good agreement with the calculation of the proposed simple analytic solution. There was a negligible difference in flow values such as the reflected pressure and the Pitot pressure between the moving and the stationary plugs.

  10. New subsea wiper plugs hold down deepwater cementing costs

    SciTech Connect

    Stringer, R.; Sonnefeld, A.; Minge, J.

    1997-02-01

    British Petroleum Exploration (BPX) achieved top-quality cementing performance at significantly lower costs in a deepwater area 45 miles offshore Louisiana by using a new method of launching subsea wiper plugs. The method is based on a newly designed subsea casing wiper plug release system, which uses up to three solid wiper plugs loaded in a basket and released by individual darts launched from a surface tool. This design has eliminated the problems sometimes associated with the latching, unlatching and sealing of conventional subsea casing wiper plugs.

  11. Plug Your Users into Library Resources with OpenSearch Plug-Ins

    ERIC Educational Resources Information Center

    Baker, Nicholas C.

    2007-01-01

    To bring the library catalog and other online resources right into users' workspace quickly and easily without needing much more than a short XML file, the author, a reference and Web services librarian at Williams College, learned to build and use OpenSearch plug-ins. OpenSearch is a set of simple technologies and standards that allows the…

  12. The AMPLATZER Vascular Plug 4: Preliminary Experience

    SciTech Connect

    Ferro, Carlo; Rossi, Umberto G. Bovio, Giulio; Petrocelli, Francesco; Seitun, Sara

    2010-08-15

    The purpose of this communication is to describe our preliminary experience with the AMPLATZER Vascular Plug 4 (AVP 4) in peripheral vascular embolization. The AVP 4 was used for peripheral vascular embolization in five patients with renal pseudoaneurysm (n = 2), postsurgical peritoneal bleeding (n = 1), posttraumatic gluteal hemorrhage (n = 1), and intercostal pseudoaneurysm (n = 1). Occlusion time was recorded. Patients were followed up clinically and by imaging for 1 month after the procedure. All treated vessels or vascular abnormalities were successfully occluded within 3 min for low-flow circulation and over 8 min for high-flow circulation. At 1-month follow-up, all patients were symptom-free. All deployed devices remained in the original locations and desirable configurations. In conclusion, the AVP 4 seems to be safe and effective for occluding peripheral vessels and vascular abnormalities. Because of its compatibility with 0.038-in. catheters, it can be deployed through a diagnostic catheter following angiography without exchanging a sheath or guiding catheter. Compared with the previous generation of vascular plugs, the AVP 4 allows for faster procedure times and decreased exposure to radiation.

  13. Deep Space Habitat Wireless Smart Plug

    NASA Technical Reports Server (NTRS)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  14. Composition analyzer for microparticles using a spark ion source

    NASA Technical Reports Server (NTRS)

    Auer, S.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the elements of both detector and particle materials. The total extracted ion current was typically 10 A within a period of 100 nsec, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes or by nuclear bomb explosions.

  15. Spark: A navigational paradigm for genomic data exploration

    PubMed Central

    Nielsen, Cydney B.; Younesy, Hamid; O'Geen, Henriette; Xu, Xiaoqin; Jackson, Andrew R.; Milosavljevic, Aleksandar; Wang, Ting; Costello, Joseph F.; Hirst, Martin; Farnham, Peggy J.; Jones, Steven J.M.

    2012-01-01

    Biologists possess the detailed knowledge critical for extracting biological insight from genome-wide data resources, and yet they are increasingly faced with nontrivial computational analysis challenges posed by genome-scale methodologies. To lower this computational barrier, particularly in the early data exploration phases, we have developed an interactive pattern discovery and visualization approach, Spark, designed with epigenomic data in mind. Here we demonstrate Spark's ability to reveal both known and novel epigenetic signatures, including a previously unappreciated binding association between the YY1 transcription factor and the corepressor CTBP2 in human embryonic stem cells. PMID:22960372

  16. Spark, an application based on Serendipitous Knowledge Discovery.

    PubMed

    Workman, T Elizabeth; Fiszman, Marcelo; Cairelli, Michael J; Nahl, Diane; Rindflesch, Thomas C

    2016-04-01

    Findings from information-seeking behavior research can inform application development. In this report we provide a system description of Spark, an application based on findings from Serendipitous Knowledge Discovery studies and data structures known as semantic predications. Background information and the previously published IF-SKD model (outlining Serendipitous Knowledge Discovery in online environments) illustrate the potential use of information-seeking behavior in application design. A detailed overview of the Spark system illustrates how methodologies in design and retrieval functionality enable production of semantic predication graphs tailored to evoke Serendipitous Knowledge Discovery in users. PMID:26732995

  17. Large area spark counter with fine time and position resolution

    SciTech Connect

    Ogawa, A.; Fujiwara, N.; Pestov, Yu.N.; Sugahara, R.

    1984-03-01

    The key properties of spark counters include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. Some details of its construction and its properties as a particle detector are reported. 14 references. (WHK)

  18. Quantitative infrared spectroscopic analysis of SF 6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations

    NASA Astrophysics Data System (ADS)

    Kurte, R.; Heise, H. M.; Klockow, D.

    2001-05-01

    Infrared spectroscopy is a powerful tool for the analysis of gaseous by-products in sulfur hexafluoride gas used as an insulator in high-voltage equipment. Sparks and electrical partial discharges were generated between different point-plane configurations within a custom-made discharge chamber constructed from stainless steel and Teflon ®. Various electrode materials were used such as stainless steel, copper, aluminium, silver, tungsten and tungsten/copper alloy. Owing to the different electrical conditions, a wide concentration range of the decomposition products existed. The main-products found were the sulfuroxyfluorides SOF 4 and SOF 2, as well as HF following experiments with partial discharges and sparking with energies around 1.0 J/spark. All infrared spectra were recorded using an FTIR-spectrometer equipped with a 10 cm gas cell. Quantification was carried out using classical least-squares and partial least-squares (PLS) with multivariate spectral data from selected intervals. PLS calibration models were also optimised under the constraint of a minimum number of spectral variables with a view to developing simple photometers based on a restricted number of laser wavelengths. Standard errors of prediction obtained by cross-validation of different PLS calibration models are reported for the compounds mentioned, as well as for SF 4, SO 2F 2 and SiF 4.

  19. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a mechanical, centrifugal, cooling, or other type and of a size suitable for the retention or quenching...

  20. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a mechanical, centrifugal, cooling, or other type and of a size suitable for the retention or quenching...

  1. Free-jet investigation of mechanically suppressed, high radius ratio coannular plug model nozzles

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Majjigi, R. K.; Brausch, J. F.; Knott, P. R.

    1985-01-01

    The experimental and analytical acoustic results of a scale-model investigation or unsuppressed and mechanically suppressed high-radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Nine coannular nozzle configurations along with a reference conical nozzle were evaluated in the Anechoic Free-Jet Facility for a total of 212 acoustic test points. Most of the tests were conducted at variable cycle engine conditions applicable to advanced high speed aircraft. The tested nozzles included coannular plug nozzles with both convergent and convergent-divergent (C-D) terminations in order to evaluate C-D effectiveness in the reduction of shock-cell noise and 20 and 40 shallow-chute mechanical suppressors in the outer stream in order to evaluate their effectiveness in the reduction of jet noise. In addition to the acoustic tests, mean and turbulent velocity measurements were made on selected plumes of the 20 shallow-chute configuration using a laser velocimeter. At a mixed jet velocity of 700 m/sec, the 20 shallow-chute suppressor configuration yielded peak aft quadrant suppression of 11.5 and 9 PNdB and forward quadrant suppression of 7 and 6 PNdB relative to a baseline conical nozzles during static and simulated flight, respectively. The C-D terminations were observed to reduce shock-cell noise. An engineering spectral prediction method was formulated for mechanically suppressed coannular plug nozzles.

  2. The Losing Battle against Plug-and-Chug

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd

    2016-01-01

    I think most physics teachers would agree that two important components of a proper solution to a numerical physics problem are to first figure out a final symbolic solution and to only plug in numbers in the end. However, in spite of our best efforts, this is not what the majority of students is actually doing. Instead, they tend to plug numbers…

  3. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  4. 662-E solid waste silo-plug lifting analysis

    SciTech Connect

    Mertz, G.E.

    1993-03-01

    The Intermediate Level Tritium Vault No. 1, 662-E, Cell No. 1 contains 140 waste silos. Each silo is approximately 25 feet deep, 30 inches in diameter at the top and covered by a reinforced concrete plug. Two No. 4 reinforcing bars project from the top of each plug for lifting. During lifting operations, the 1.5 inch concrete cover over the lifting bars spelled off 16% of the silo plugs. The No. 4 reinforcing bars were also distorted on many of the silo plugs. Thirteen of the plugs have been repaired to date. The existing silo plug lifting bars have a safe working load of 480 pounds per plug, which is less than 1/3 of the dead weight of the silo plug. The safe working load was calculated using the minimum design factor of 3 based on the yield strength or 5 based on the ultimate strength of the material, as per the Savannah River Site Hoisting and Rigging Manual. The existing design calculations were reviewed, and the following items are noted: (1) Adequate concrete cover was not provided over the horizontal portion of the lifting bars. (2) The lifting bars were allowed to yield in bending, which violates the requirements of the Savannah River Site Hoisting and Rigging Manual. (3) The ultimate strain of the lifting bars would be exceeded before the calculated ultimate strength was achieved. Alternative lifting devices are also identified.

  5. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  6. Electrically heated particulate matter filter with recessed inlet end plugs

    DOEpatents

    Gonze, Eugene V.; Ament, Frank

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  7. "Plug-In" for More Active Online Learning.

    ERIC Educational Resources Information Center

    Tuttle, Harry G.

    1997-01-01

    Discusses plug-ins, software programs that connect to an World Wide Web browser and enhance its functionality. Highlights finding the software; downloading and using plug-ins; and educational applications, including the document viewer, real-time chat, multimedia, map viewer, spelling checker, news network, sound and video, and real-time…

  8. Expandable rubber plug seals openings for pressure testing

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Plug assembly seals openings in piping systems, vessels, and chambers for low pressure leak testing. The assembly, which consists of a rubber sealing plug and the mechanism for expanding it into a pressure-tight configuration, adequately seals irregular diameters without damage to mating surfaces.

  9. A Case of Randall's Plugs Associated to Calcium Oxalate Dihydrate Calculi.

    PubMed

    Grases, Felix; Söhnel, Otakar; Costa-Bauza, Antonia; Servera, Antonio; Benejam, Juan

    2016-07-01

    A case of a patient who developed multiple calcium oxalate dihydrate calculi, some of them connected to intratubular calcifications (Randall's plugs), is presented. Randall's plugs were isolated and studied. The mechanism of Randall's plug development is also suggested. PMID:27335788

  10. Marine propulsion device with spark timing and fuel supply control mechanism

    SciTech Connect

    Baltz, G.F.; Zgorzelski, G.S.

    1988-05-31

    An engine is described comprising an engine block, a spark timing mechanism operable between a minimum spark advance setting and a maximum spark advance setting, a fuel supply mechanism operable between an idle setting and a full speed setting, a control lever supported by the engine block for movement between an idle position, a full speed position, a first intermediate position between the idle position and the full speed position, and a second intermediate position between the first intermediate position and the full speed position, means for displacing the fuel supply mechanism from the idle setting to the full speed setting in response to movement of the control lever from the idle position to the full speed position, and spark timing control means for permitting movement of the control lever from the idle position to the first intermediate position without displacing the spark timing mechanism from the minimum spark advance setting, for displacing the spark timing mechanism from the minimum spark advance setting to the maximum spark advance setting in response to movement of the control lever from the first intermediate position to the second intermediate position, and for displacing the spark timing mechanism from the maximum spark advance setting toward the minimum spark advance setting in response to movement of the control lever fro the second intermediate position to the full speed position.

  11. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of...

  12. Testing of the J-2X Augmented Spark Igniter (ASI) and Its Electronics

    NASA Technical Reports Server (NTRS)

    Osborne, Robin

    2015-01-01

    Reliable operation of the spark ignition system electronics in the J-2X Augmented Spark Igniter (ASI) is imperative in assuring ASI ignition and subsequent Main Combustion Chamber (MCC) ignition events are reliable in the J-2X Engine. Similar to the man-rated J-2 and RS-25 engines, the J-2X ignition system electronics are equipped with spark monitor outputs intended to indicate that the spark igniters are properly energized and sparking. To better understand anomalous spark monitor data collected on the J-2X development engines at NASA Stennis Space Center (SSC), a comprehensive subsystem study of the engine's low- and high-tension spark ignition system electronics was conducted at NASA Marshall Space Flight Center (MSFC). Spark monitor output data were compared to more detailed spark diagnostics to determine if the spark monitor was an accurate indication of actual sparking events. In addition, ignition system electronics data were closely scrutinized for any indication of an electrical discharge in some location other than the firing tip of the spark igniter - a problem not uncommon in the development of high voltage ignition systems.

  13. Unbalanced-flow, fluid-mixing plug with metering capabilities

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)

    2009-01-01

    A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.

  14. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wnag, Ten-See (Technical Monitor)

    2001-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid., pressure-based computational aerothermodynamics, platform, several sub-nio"'dels describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (113) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  15. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  16. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  17. Analysis of radioactive metals by spark source mass spectrometry.

    PubMed

    Johnson, A J; Kozy, A; Morris, R N

    1969-04-01

    A spark source mass spectrograph with photographic plate recording has been adapted for the analysis of plutonium and americium metals. Over seventy elements can be determined simultaneously in these metals. A comparison has been made between results obtained by mass spectrography and by conventional methods for impurity elements. The operations involved in handling radioactive materials in the mass spectrograph are also discussed. PMID:18960537

  18. Spark RttT: Year One Fidelity and Implementation

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly

    2014-01-01

    Developed in 2003 by the Sisters of Charity Foundation of Canton with a grant from the Kellogg Foundation, "Supporting Partnerships to Assure Ready Kids" ("SPARK Ohio") is a family-centered kindergarten readiness program that works with families, schools, and the community. From its initial sites in Stark County, "SPARK…

  19. Sparking Innovation in U.S. Communities and School Districts

    ERIC Educational Resources Information Center

    Berkley, Tony

    2010-01-01

    In 2001, the W.K. Kellogg Foundation launched the SPARK initiative to improve early learning and transitions into elementary school for vulnerable children. Eight programs were funded, each of which anchored their work in their local communities by forming partnerships with parents, schools and a variety of local organizations. Seven of the eight…

  20. Use of SPARK to Promote After-School Physical Activity

    ERIC Educational Resources Information Center

    Herrick, Heidi; Thompson, Hannah; Kinder, Jennifer; Madsen, Kristine A.

    2012-01-01

    Background: The after-school period is potentially an important venue for increasing physical activity for youth. We sought to assess the effectiveness of the Sports, Play, and Recreation for Youth (SPARK) program to increase physical activity and improve cardiorespiratory fitness and weight status among elementary students after school. Methods:…

  1. Adolescent Thriving: The Role of Sparks, Relationships, and Empowerment

    ERIC Educational Resources Information Center

    Scales, Peter C.; Benson, Peter L.; Roehlkepartain, Eugene C.

    2011-01-01

    Although most social science research on adolescence emphasizes risks and challenges, an emergent field of study focuses on adolescent thriving. The current study extends this line of inquiry by examining the additive power of identifying and nurturing young people's "sparks," giving them "voice," and providing the relationships and opportunities…

  2. Possible Influences of Spark Discharges on Cardiac Pacemakers.

    PubMed

    Korpinen, Leena; Kuisti, Harri; Tarao, Hiroo; Virtanen, Vesa; Pääkkönen, Rauno; Dovan, Thanh; Kavet, Robert

    2016-01-01

    Exposure to spark discharges may occur beneath high voltage transmission lines when contact is initiated with a conductive object (such as a motor vehicle) with the spark discharge mediated by the ambient electric field from the line. The objective of this study was to assess whether such exposures could interfere with the normal functioning of implanted cardiac pacemakers (PMs). The experiment consisted of PMs implanted in a human-sized phantom and then exposed to spark discharge through an upper extremity. A circuit was designed that produced spark discharges between two spherical electrodes fed to the phantom's left hand. The circuit was set to deliver a single discharge per half cycle (every 10 ms) about 10 μs in duration with a peak current of 1.2-1.3 A, thus simulating conditions under a 400-kV power line operating at 50 Hz. Of 29 PMs acquired, all were tested in unipolar configuration and 20 in bipolar configuration with exposure consisting of 2 min of continuous exposure (one unit was exposed for 1 min). No interference was observed in bipolar configuration. One unit in unipolar configuration incorrectly identified ventricular extra systoles (more than 400 beats min(-1)) for 2 s. The use of unipolar configuration in new implants is extremely rare, thus further minimizing the risk of interference with the passage of time. Replication of this study and, if safety for human subjects can be assured, future testing of human subjects is also advisable. PMID:26606060

  3. MODELING CYCLIC VARIABILITY IN SPARK-ASSISTED HCCI

    SciTech Connect

    Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Green Jr, Johney Boyd

    2008-01-01

    Spark assist appears to offer considerable potential for increasing the speed and load range over which homogeneous charge compression ignition (HCCI) is possible in gasoline engines. Numerous experimental studies of the transition between conventional spark-ignited (SI) propagating-flame combustion and HCCI combustion in gasoline engines with spark assist have demonstrated a high degree of deterministic coupling between successive combustion events. Analysis of this coupling suggests that the transition between SI and HCCI can be described as a sequence of bifurcations in a low-dimensional dynamic map. In this paper we describe methods for utilizing the deterministic relationship between cycles to extract global kinetic rate parameters that can be used to discriminate multiple distinct combustion states and develop a more quantitative understanding of the SI-HCCI transition. We demonstrate the application of these methods for indolene-containing fuels and point out an apparent HCCI mode switching not previously reported. Our results have specific implications for developing dynamic combustion models and feedback control strategies that utilize spark-assist to expand the operating range of HCCI combustion.

  4. Adolescent thriving: the role of sparks, relationships, and empowerment.

    PubMed

    Scales, Peter C; Benson, Peter L; Roehlkepartain, Eugene C

    2011-03-01

    Although most social science research on adolescence emphasizes risks and challenges, an emergent field of study focuses on adolescent thriving. The current study extends this line of inquiry by examining the additive power of identifying and nurturing young people's "sparks," giving them "voice," and providing the relationships and opportunities that reinforce and nourish thriving. A national sample of 1,817 adolescents, all age 15 (49% female), and including 56% white, 17% Hispanic/Latino, and 17% African-American adolescents, completed an online survey that investigated their deep passions or interests (their "sparks"), the opportunities and relationships they have to support pursuing those sparks, and how empowered they feel to make civic contributions (their "voice"). Results consistently supported the hypothesis that linking one's spark with a sense of voice and supportive opportunities and relationships strengthens concurrent outcomes, particularly those reflecting prosociality, during a key developmental transition period. The three developmental strengths also predicted most outcomes to a greater degree than did demographics. However, less than 10 percent of 15-year-olds reported experiencing high levels of all three strengths. The results demonstrate the value of focusing on thriving in adolescence, both to reframe our understanding of this age group and to highlight the urgency of providing adolescents the opportunities and relationships they need to thrive. PMID:20680424

  5. Controversial Higher-Education Reforms Spark Riots in Athens

    ERIC Educational Resources Information Center

    Labi, Aisha

    2007-01-01

    This article discusses the Greek Parliament's controversial education bill passed recently that sparked riots and unrest in Athens. The government's controversial education package includes measures that would limit the number of years students can take to complete a university degree and would curtail university asylum laws. A separate proposal…

  6. Liquid plug propagation in flexible microchannels: A small airway model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Bian, S.; Torisawa, Y.; Huh, D.; Takayama, S.; Grotberg, J. B.

    2009-07-01

    In the present study, we investigate the effect of wall flexibility on the plug propagation and the resulting wall stresses in small airway models with experimental measurements and numerical simulations. Experimentally, a flexible microchannel was fabricated to mimic the flexible small airways using soft lithography. Liquid plugs were generated and propagated through the microchannels. The local wall deformation is observed instantaneously during plug propagation with the maximum increasing with plug speed. The pressure drop across the plug is measured and observed to increase with plug speed, and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with experiments on wall shapes and pressure drops and the discrepancies bring up interesting questions on current field of modeling. The flexible wall deforms inward near the plug core region, the deformation and pressure drop across the plug increase with the plug speed. The wall deformation and resulting stresses vary with different longitudinal tensions, i.e., for large wall longitudinal tension, the wall deforms slightly, which causes decreased fluid stress and stress gradients on the flexible wall comparing to that on rigid walls; however, the wall stress gradients are found to be much larger on highly deformable walls with small longitudinal tensions. Therefore, in diseases such as emphysema, with more deformable airways, there is a high possibility of induced injuries on lining cells along the airways because of larger wall stresses and stress gradients.

  7. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  8. Stability of the porous plug burner flame

    SciTech Connect

    Buckmaster, J.

    1983-12-01

    The linear stability of a premixed flame attached to a porous plug burner, using activaton energy asymptotics, is examined. Limit function-expansions are not an appropriate mathematical framework for this problem, and are avoided. A dispersion relation is obtained which defines the stability boundaries in the wave-, Lewis-number plane, and the movement of these boundaries is followed as the mass flux is reduced below the adiabatic value and the flame moves towards the burner from infinity. Cellular instability is suppressed by the burner, but the pulsating instability usually associated with Lewis numbers greater than 1 is, at first, enhanced. For some parameter values the flame is never stable for all wavenumbers the Lewis number stability band that exists for the unbounded flame disappears. For sufficiently small values of the stand-off distance the pulsating instability is suppressed. 9 references.

  9. Mitigation of Syngas Cooler Plugging and Fouling

    SciTech Connect

    Bockelie, Michael J.

    2015-06-29

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling of the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  10. Experimental plug and play quantum coin flipping.

    PubMed

    Pappa, Anna; Jouguet, Paul; Lawson, Thomas; Chailloux, André; Legré, Matthieu; Trinkler, Patrick; Kerenidis, Iordanis; Diamanti, Eleni

    2014-01-01

    Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications. PMID:24758868

  11. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  12. Energy transmission by laser

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2015-02-01

    Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF) and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of superlong ionised channels with a characteristic diameter of ~ 100 mkm in atmosphere along the beam propagation direction. At estimated electron densities below 1016 cm-3 in these filaments and laser wavelengths in the range of 0.5 - 1.0 mm, the plasma barely absorbs laser radiation. In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~ 100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m). Not so long ago scientific group from P.N. Lebedev has improved that result, the discharge gap -1m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result - 16 m long conducting channel controlled by a laser spark at the voltage - 3 MV - was obtained more than 20years ago in Russia and Japan by using pulsed CO2 laser with energy - 0.5 kJ. An average electric field strength was < 190 kV/m. It is still too much for efficient applications.

  13. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    SciTech Connect

    Torcellini, Paul; Bonnema, Eric; Sheppy, Michael; Pless, Shanti

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  14. The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Dan; Zeng, Xinwu; Wang, Yibo

    2014-12-01

    In this paper, two types of underwater discharges, spark discharge and corona discharge, are investigated by optical diagnosis using a high speed framing camera (HSFC) with the framing time within nanoseconds under the same experimental conditions. In order to capture the photographs of streamer propagation, the influence of the randomicity of the pre-breakdown duration is taken into consideration. By increasing the conductivity of water, the randomicity reduces effectively. Experimental results show that, for a spark discharge, the process can be separated into three stages: the generation and propagation of a streamer, the generation and expansion of the discharge channel, and the development and annihilation of the plasma. The streamers do not directly move to the opposite electrode, but form a bush-like figure. With the increase of the number of branches, the velocity of streamer propagation slows down. The trajectory of the initial channel between electrodes is not straight. However, with the channel expanding, its shape transforms into a straight column. For a corona discharge, there are two stages: the generation and propagation of a streamer, and the stagnation and annihilation of the streamer. The initial streamer in a corona discharge is generated later than in a spark discharge. The forms of streamers for both kinds of discharge are similar; however, streamers generated by a corona discharge propagate with a slower velocity and the number of branches is less compared with a spark discharge. When the energy injection stops, the luminescence of plasma inside the discharge channel (spark discharge) or streamers (corona discharge) becomes weaker and weaker, and finally disappears.

  15. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  16. Steady propagation of Bingham plugs in 2D channels

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Takayama, Shuichi; Grotberg, James

    2009-11-01

    The displacement of the yield-stress liquid plugs in channels and tubes occur in many biological systems and industrial processes. Among them is the propagation of mucus plugs in the respiratory tracts as may occur in asthma, cystic fibrosis, or emphysema. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a pure Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for a pure Bingham fluid is modeled by a regularization method. Fluid inertia is neglected, so the controlling parameters in a steady displacement are; the capillary number, Ca, Bingham number ,Bn, and the plug length. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries. This work is supported through the grant NIH HL84370.

  17. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles. Comprehensive data report, volume 1

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.

    1981-01-01

    Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.

  18. Field-free particle focusing in microfluidic plugs

    PubMed Central

    Kurup, G. K.; Basu, Amar S.

    2012-01-01

    Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidics. Existing approaches generally require external electric or magnetic fields together with charged or magnetized particles. This paper reports a passive technique for particle concentration in water-in-oil plugs which relies on the interaction between particle sedimentation and the recirculating vortices inherent to plug flow in a cylindrical capillary. This interaction can be quantified using the Shields parameter (θ), a dimensionless ratio of a particle’s drag force to its gravitational force, which scales with plug velocity. Three regimes of particle behavior are identified. When θ is less than the movement threshold (region I), particles sediment to the bottom of the plug where the internal vortices subsequently concentrate the particles at the rear of the plug. We demonstrate highly efficient concentration (∼100%) of 38 μm glass beads in 500 μm diameter plugs traveling at velocities up to 5 mm/s. As θ is increased beyond the movement threshold (region II), particles are suspended in well-defined circulation zones which begin at the rear of the plug. The length of the zone scales linearly with plug velocity, and at sufficiently large θ, it spans the length of the plug (region III). A second effect, attributed to the co-rotating vortices at the rear cap, causes particle aggregation in the cap, regardless of flow velocity. Region I is useful for concentrating/collecting particles, while the latter two are useful for mixing the beads with the solution. Therefore, the two key steps of a bead-based assay, concentration and resuspension, can be achieved simply by changing the plug velocity. By exploiting an interaction of sedimentation and recirculation unique to multiphase flow, this simple technique achieves particle

  19. Drum plug piercing and sampling device and method

    DOEpatents

    Counts, Kevin T.

    2011-04-26

    An apparatus and method for piercing a drum plug of a drum in order to sample and/or vent gases that may accumulate in a space of the drum is provided. The drum is not damaged and can be reused since the pierced drum plug can be subsequently replaced. The apparatus includes a frame that is configured for engagement with the drum. A cylinder actuated by a fluid is mounted to the frame. A piercer is placed into communication with the cylinder so that actuation of the cylinder causes the piercer to move in a linear direction so that the piercer may puncture the drum plug of the drum.

  20. Hard-facing with electro-spark deposition. Final report

    SciTech Connect

    Kees, K.P.

    1983-01-01

    A common method to improve wear resistance of metals in rubbing contact is to increase their surface hardness. Electro-Spark Deposition is a process which uses capacitive discharge pulses of high current passing through a hard carbide electrode in contact with and scanning the metal surface to be hardened. The result is a thin, hard, adherent coating of carbide deposited with a minimum of heat influence on the substrate and a significant increase in wear life of the coated metal. Electro-Spark Deposition is similar to a micro-welding process. It is a simple, portable and inexpensive coating method, which has great potential for commercial utilization. This thesis is an in depth study of the parameters associated with the ESD process and the wear resistance of the coatings.

  1. Inorganic spark chamber frame and method of making the same

    NASA Technical Reports Server (NTRS)

    Heslin, T. M. (Inventor)

    1982-01-01

    A spark chamber frame, manufactured using only inorganic materials is described. The spark chamber frame includes a plurality of beams formed from inorganic material, such as ceramic or glass, and are connected together at ends with inorganic bonding material having substantially the same thermal expansion as the beam material. A plurality of wires formed from an inorganic composition are positioned between opposed beams so that the wires are uniformly spaced and form a grid. A plurality of hold down straps are formed of inorganic material such as ceramic or glass having substantially the same chemical and thermal properties as the beam material. Hold down straps overlie wires extending over the beams and are bonded thereto with inorganic bonding material.

  2. Spark gap switch system with condensable dielectric gas

    DOEpatents

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  3. Focused shock spark discharge drill using multiple electrodes

    DOEpatents

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  4. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling?

    PubMed

    Zhou, Jingsong; Launikonis, Bradley S; Ríos, Eduardo; Brum, Gustavo

    2004-10-01

    Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which

  5. Amber Plug-In for Protein Shop

    Energy Science and Technology Software Center (ESTSC)

    2004-05-10

    The Amber Plug-in for ProteinShop has two main components: an AmberEngine library to compute the protein energy models, and a module to solve the energy minimization problem using an optimization algorithm in the OPTI-+ library. Together, these components allow the visualization of the protein folding process in ProteinShop. AmberEngine is a object-oriented library to compute molecular energies based on the Amber model. The main class is called ProteinEnergy. Its main interface methods are (1) "init"more » to initialize internal variables needed to compute the energy. (2) "eval" to evaluate the total energy given a vector of coordinates. Additional methods allow the user to evaluate the individual components of the energy model (bond, angle, dihedral, non-bonded-1-4, and non-bonded energies) and to obtain the energy of each individual atom. The Amber Engine library source code includes examples and test routines that illustrate the use of the library in stand alone programs. The energy minimization module uses the AmberEngine library and the nonlinear optimization library OPT++. OPT++ is open source software available under the GNU Lesser General Public License. The minimization module currently makes use of the LBFGS optimization algorithm in OPT++ to perform the energy minimization. Future releases may give the user a choice of other algorithms available in OPT++.« less

  6. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Parsley, R. C.

    1993-06-01

    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  7. 2195 Aluminum-Copper-Lithium Friction Plug Welding Development

    NASA Technical Reports Server (NTRS)

    Takeshita, Rike P.; Hartley, Paula J.; Baker, Kent S.

    1997-01-01

    Technology developments and applications of friction plug welding is presented. This friction repair welding technology is being studied for implementation on the Space Transportation System's Super Light Weight External Tank. Single plug repairs will be used on a vast majority of weld defects, however, linear defects of up to several inches can be repaired by overlapping plug welds. Methods and results of tensile, bend, simulated service, surface crack tension and other tests at room and cryogenic temperatures is discussed. Attempts to implement Friction Plug Welding has led to both tool and process changes in an attempt to minimize expansive tooling and lengthy implementation times. Process control equipment and data storage methods intended for large scale production will also be addressed. Benefits include increased strength and toughness, decreased weld repair time, automated and highly reliable process, and a lower probability of having to re-repair defect locations.

  8. Astronaut Hoffman replaces fuse plugs on Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jeffrey A. Hoffman sees to the replacement of fuse plugs on the Hubble Space Telescope (HST) during the first of five space walks. Thunderclouds are all that is visible on the dark earth in the background.

  9. Aeroacoustics of contoured plug-nozzle supersonic jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Das, I. S.

    1986-01-01

    Experimental investigations of the acoustic far-field, the shock associated noise, and the characteristics of the repetitive shock structure of supersonic jet flows issuing from a plug-nozzle having an externally expanded contoured plug with a pointed termination, operated at a range of supercritical pressure ratios of 2.0 to 4.5 are reported. The supersonic jet flow from the contoured plug is shown to be shock-free and virtually wakeless at a pressure ratio of 3.60 (flow Mach number, 1.49). By comparison with the noise characteristics of underexpanded jet flows from an equivalent convergent nozzle, substantial reductions in the total (mixing and the shock associated) noise levels are obtained when the contoured plug nozzle is operated either in the fully-expanded (shock-free) mode or in the over- and the underexpanded modes.

  10. The Losing Battle Against Plug-and-Chug

    NASA Astrophysics Data System (ADS)

    Kortemeyer, Gerd

    2016-01-01

    I think most physics teachers would agree that two important components of a proper solution to a numerical physics problem are to first figure out a final symbolic solution and to only plug in numbers in the end. However, in spite of our best efforts, this is not what the majority of students is actually doing. Instead, they tend to plug numbers into formulas without considering the physical meaning of the equations, then frequently take the result and plug it into the next formula—a strategy known as "plug-and-chug." In this chain of calculations, frequently physical insights are lost. If teaching problem solving is proving ineffective, maybe it is possible to steer students onto the right path by posing the problems in different ways?

  11. 40 CFR 147.2905 - Plugging and abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regional Administrator. (e)(1) If surface casing is adequately set and cemented through all freshwater zones (set to at least 50 feet below the base of freshwater), a plug shall be set at least 50 feet...

  12. 40 CFR 147.2905 - Plugging and abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regional Administrator. (e)(1) If surface casing is adequately set and cemented through all freshwater zones (set to at least 50 feet below the base of freshwater), a plug shall be set at least 50 feet...

  13. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow

    NASA Astrophysics Data System (ADS)

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

  14. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow.

    PubMed

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime. PMID:27447527

  15. Seismic signature of serpentine plugs in the Maverick basin

    SciTech Connect

    Lewis, J.O.

    1989-09-01

    Basalt necks occur on the surface in Uvalde and Kinney Counties in southwest Texas. These basalt necks are the serpentine plugs that produce from the Upper Cretaceous Taylor section in the subsurface of Zavala County. Many plugs exist in both the surface and subsurface. Geology of the serpentine plugs indicates that most of the volcanic activity occurred as Upper Cretaceous post-Austin subaqueous extrusions. Formations below the volcanic material show no structural deformation. Formations above the Cretaceous seldom show evidence of the pile of volcanic material. The most significant evidence of structure and faulting is within the Taylor section. The application of two dimensional forward lithological modeling using inverse velocity calculations is successful in producing a velocity model to display stratigraphic development. The use of an interactive computer system is an important step in the interpretive process. Seismic techniques used to evaluate the stratigraphy of the serpentine plugs is readily adapted to solving other exploration problems with stratigraphic implications.

  16. Dry ice plug for hydraulic and pneumatic pipe flushing

    NASA Technical Reports Server (NTRS)

    Francino, L.; Rauch, S.

    1972-01-01

    Development of technique to clear blockages in hydraulic and pneumatic pipes is discussed. Technique consists of using dry ice plug to separate sensitive components from flushing fluid. Diagram of equipment and principles of operation are presented.

  17. Photographic characterization of spark-ignition engine fuel injectors

    NASA Technical Reports Server (NTRS)

    Evanich, P. L.

    1978-01-01

    Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air.

  18. Spark alloying of an AL9 alloy by hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.

    2015-08-01

    The phase compositions of spark coatings of Kh12M steel with a VT1-0 (titanium) alloy and T15K6 and T30K4 hard alloys are studied. It is shown that the TiC titanium carbide forms in all cases and tungsten carbide decomposes with the formation of tungsten in a coating. These processes are intensified by increasing time, capacitance, and frequency. The surface hardness, the sample weight, and the white layer thickness increase monotonically.

  19. Particular bi-fuel application of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  20. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  1. Modification of smooth muscle Ca2+-sparks by tetracaine: evidence for sequential RyR activation.

    PubMed

    Curtis, Tim M; Tumelty, James; Stewart, Michael T; Arora, A Rakha; Lai, F Anthony; McGahon, Mary K; Scholfield, C Norman; McGeown, J Graham

    2008-02-01

    Spontaneous Ca(2+)-sparks were imaged using confocal line scans of fluo-4 loaded myocytes in retinal arterioles. Tetracaine produced concentration-dependent decreases in spark frequency, and modified the spatiotemporal characteristics of residual sparks. Tetracaine (10 microM) reduced the rate of rise but prolonged the average rise time so that average spark amplitude was unaltered. The mean half-time of spark decay was also unaffected, suggesting that spark termination, although delayed, remained well synchronized. Sparks spread transversely across the myocytes in these vessels, and the speed of spread within individual sparks was slowed by approximately 60% in 10 microM tetracaine, as expected if the spark was propagated across the cell but the average P(o) for RyRs was reduced. Staining of isolated vessels with BODIPY-ryanodine and di-4-ANEPPS showed that RyRs were located both peripherally, adjacent to the plasma membrane, and in transverse extensions of the SR from one side of the cell to the other. Immuno-labelling of retinal flat mounts demonstrated the presence RyR(2) in arteriole smooth muscle but not RyR(1). We conclude that Ca(2+)-sparks in smooth muscle can result from sequential activation of RyRs distributed over an area of several microm(2), rather than from tightly clustered channels as in striated muscle. PMID:17574671

  2. High power microwave switching utilizing a waveguide spark gap.

    PubMed

    Foster, J; Edmiston, G; Thomas, M; Neuber, A

    2008-11-01

    A reduction in the rise time of a 2.85 GHz high power microwave (HPM) pulse is achieved by implementing an overvoltaged spark gap inside a waveguide structure. The spark gap is oriented such that when triggered, the major electric field component of the dominant TE(10) mode is shorted. The transition from a transmissive to a highly reflective microwave structure in a relatively short period of time (tens of nanoseconds) creates a means to switch multimegawatt power levels on a much faster timescale than mechanical switches. An experimental arrangement composed of the waveguide spark gap and a high power circulator is used to reduce the effective rise time of a HPM pulse from a U.S. Air Force AW/PFS-6 radar set from 600 ns down to 50 ns. The resulting HPM pulse exhibits a much more desirable excitation profile when investigating microwave induced dielectric window flashover. Since most theoretical discussions on microwave breakdown assume an ideal step excitation, achieving a "squarelike" pulse is needed if substantial comparison between experiment and theory is sought. An overview of the experimental setup is given along with relevant performance data and comparison with computer modeling of the structure. PMID:19045904

  3. MTR MAIN FLOOR. MEN DEMONSTRATE INSERTION OF DUMMY PLUG INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR MAIN FLOOR. MEN DEMONSTRATE INSERTION OF DUMMY PLUG INTO AN MTR BEAM HOLE. ONE MAN CHECKS RADIATION LEVEL AT THE END OF THE UNIVERSAL COFFIN, WHILE ANOTHER USES TOOL TO INSERT PLUG INTO HOLE THROUGH COFFIN. MEN WEAR "ANTI-C" (ANTI-CONTAMINATION) CLOTHING. INL NEGATIVE NO. 6198. R.G. Larsen, Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Effect of Maximum Cruise-power Operation at Ultra-lean Mixture and Increased Spark Advance on the Mechanical Condition of Cylinder Components

    NASA Technical Reports Server (NTRS)

    Harris, Herbert B.; Duffy, Robert T.; Erwin, Robert D., Jr.

    1945-01-01

    A continuous 50-hour test was conducted to determine the effect of maximum cruise-power operation at ultra-lean fuel-air mixture and increased spark advance on the mechanical conditions of cylinder components. The test was conducted on a nine-cylinder air-cooled radial engine at the following conditions:brake horsepower, 750; engine speed, 1900 rpm; brake mean effective pressure, 172 pounds per square inch; fuel-air ratio, 0.052; spark advance, 30 deg B.T.C.; and maximum rear-spark-plug-bushing temperature, 400 F. In addition to the data on corrosion and wear, data are presented and briefly discussed on the effect of engine operation at the conditions of this test on economy, knock, preignition, and mixture distribution. Cylinder, piston, and piston-ring wear was small and all cylinder component were in good condition at the conclusion of the 50-hour test except that all exhaust-valve guides were bellmouthed beyond the Army's specified limit and one exhaust-valve face was lightly burned. It is improbable that the light burning in one spot of the valve face would have progressed further because the burn was filled with a hard deposit so that the valve face formed an unbroken seal and the mating seat showed no evidence of burning. The bellmouthing of the exhaust-valve guides is believed to have been a result of the heavy carbon and lead-oxide deposits, which were present on the head end of the guided length of the exhaust-valve stem. Engine operational the conditions of this test was shown to result In a fuel saving of 16.8 percent on a cooled-power basis as compared with operation at the conditions recommended for this engine by the Army Air Forces for the same power.

  5. Gravity effects of liquid plug transport in airway models

    NASA Astrophysics Data System (ADS)

    Suresh, V.; Grotberg, James B.

    2002-11-01

    Surfactant replacement therapy (SRT), which is commonly used to treat pulmonary surfactant deficiency in infants, and liquid ventilation both involve the instillation of a liquid bolus into the trachea. When the bolus forms an air-blown plug, optimal delivery of the surfactant or perfluorocarbon to various regions of the lung can depend on uniform dispersion through bifurcating airways. In higher generation airways gravitational and surface tension effects can influence plug rupture and plug shape, which in turn affects the mass split ratio at successive bifurcations. These effects are studied using a simplified theoretical model involving the quasi-steady motion of a liquid plug through a liquid-lined rigid cylindrical tube. A matched asymptotic expansion is used in the limit of small capillary numbers to determine the thickness of the trailing liquid film, shape of the plug and the pressure drop across it. It is found that rupture occurs when the pressure drop across the plug exceeds a critical value that depends on the Bond and capillary numbers. It is also found that gravitational effects can lead to unequal mass split ratios at bifurcations. The theoretical predictions are compared with bench-top experiments.

  6. Amplatzer vascular plugs in congenital cardiovascular malformations

    PubMed Central

    Barwad, Parag; Ramakrishnan, Sivasubramanian; Kothari, Shyam S; Saxena, Anita; Gupta, Saurabh K; Juneja, Rajnish; Gulati, Gurpreet Singh; Jagia, Priya; Sharma, Sanjiv

    2013-01-01

    Background: Amplatzer vascular plugs (AVPs) are devices ideally suited to close medium-to-large vascular communications. There is limited published literature regarding the utility of AVPs in congenital cardiovascular malformations (CCVMs). Aims: To describe the use of AVPs in different CCVMs and to evaluate their safety and efficacy. Materials and Methods: All patients who required an AVP for the closure of CCVM were included in this retrospective review of our catheterization laboratory data. The efficacy and safety of AVPs are reported. Results: A total of 39 AVPs were implanted in 31 patients. Thirteen (33%) were AVP type I and 23 (59%) were AVP type II. AVP type III were implanted in two patients and type IV in one patient. The major indications for their use included closure of pulmonary arteriovenous malformation (AVM) (n = 7), aortopulmonary collaterals (n = 7), closure of a patent Blalock-Taussig shunt (n = 5), systemic AVM (n = 5), coronary AVM (n = 4), patent ductus arteriosus (PDA) (n = 3), pulmonary artery aneurysms (n = 3), and venovenous collaterals (n = 2). Deployment of the AVP was done predominantly via the 5 – 7F Judkin's right coronary guide catheter. Overall 92% of the AVPs could be successfully deployed and resulted in occlusion of the target vessel in all cases, within 10 minutes. No procedure-related or access site complication occurred. Conclusions: AVPs are versatile, easy to use, and effective devices to occlude the vascular communications in a variety of settings. AVP II is especially useful in the closure of tubular structures with a high flow. PMID:24688229

  7. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    NASA Technical Reports Server (NTRS)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  8. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  9. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spark producing devices-TB/ALL. 35.30-35 Section 35.30... § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are involved, power driven or manually operated spark producing devices shall not be used in bulk cargo tanks,...

  10. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  11. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  12. Mechanism of wire breaking due to sparks in proportional or drift chambers

    NASA Astrophysics Data System (ADS)

    Roderburg, E.; Walsh, S.

    1993-09-01

    The mechanism of wire breaking due to sparks is examined by a setup allowing for a fast change of mechanical wire tension and for optical and electronical registration of sparks. It is shown, that it is possible to choose a wire tension dependant on the capacitance (between the high voltage and ground) so that the wire will not be damaged by sparks. The effect of sparks to wires are compared between tungsten and steel wires and between two chamber gases (argon-methane and pure isobutane).

  13. Long-Lasting Sparks: Multi-Metastability and Release Competition in the Calcium Release Unit Network

    PubMed Central

    Song, Zhen; Karma, Alain; Weiss, James N.; Qu, Zhilin

    2016-01-01

    Calcium (Ca) sparks are elementary events of biological Ca signaling. A normal Ca spark has a brief duration in the range of 10 to 100 ms, but long-lasting sparks with durations of several hundred milliseconds to seconds are also widely observed. Experiments have shown that the transition from normal to long-lasting sparks can occur when ryanodine receptor (RyR) open probability is either increased or decreased. Here, we demonstrate theoretically and computationally that long-lasting sparks emerge as a collective dynamical behavior of the network of diffusively coupled Ca release units (CRUs). We show that normal sparks occur when the CRU network is monostable and excitable, while long-lasting sparks occur when the network dynamics possesses multiple metastable attractors, each attractor corresponding to a different spatial firing pattern of sparks. We further highlight the mechanisms and conditions that produce long-lasting sparks, demonstrating the existence of an optimal range of RyR open probability favoring long-lasting sparks. We find that when CRU firings are sparse and sarcoplasmic reticulum (SR) Ca load is high, increasing RyR open probability promotes long-lasting sparks by potentiating Ca-induced Ca release (CICR). In contrast, when CICR is already strong enough to produce frequent firings, decreasing RyR open probability counter-intuitively promotes long-lasting sparks by decreasing spark frequency. The decrease in spark frequency promotes intra-SR Ca diffusion from neighboring non-firing CRUs to the firing CRUs, which helps to maintain the local SR Ca concentration of the firing CRUs above a critical level to sustain firing. In this setting, decreasing RyR open probability further suppresses long-lasting sparks by weakening CICR. Since a long-lasting spark terminates via the Kramers’ escape process over a potential barrier, its duration exhibits an exponential distribution determined by the barrier height and noise strength, which is modulated

  14. Effect of spark-timing regularity on the knock of engine performance

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E

    1938-01-01

    Tests on a high-speed single-cylinder engine are described. The regularity of the spark timing was varied by driving the timer from different engine shafts. A simple and reasonably accurate method of determining the spark timing is described. The results show that irregular spark timing may cause large errors in tests of the knocking properties of fuels. For the engine tested, it was found that a change of one crankshaft degree in spark restart was equivalent to an 0.85 inch Hg change in allowable inlet pressure.

  15. The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Machala, Zdenko; Niklová, Adriana; Martišovitš, Viktor

    2012-08-01

    We present a study of the streamer-to-spark transition in a self-pulsing dc-driven discharge called a transient spark (TS). The TS is a streamer-to-spark transition discharge with short spark duration (˜10-100 ns), based on charging and discharging of the internal capacity of the electric circuit with repetition frequency 1-10 kHz. The TS can be maintained under relatively low energy conditions (0.1-1 mJ pulse-1). It generates a very reactive non-equilibrium air plasma applicable for flue gas cleaning or bio-decontamination. Thanks to the short spark current pulse duration, the steady-state gas temperature, measured at the beginning of the streamers initiating the TS, increases from an initial value of ˜300 K only up to ˜550 K at 10 kHz. The streamer-to-spark transition is governed by the subsequent increase in the gas temperature in the plasma channel up to ˜1000 K. This breakdown temperature does not change with increasing repetition frequency f. The heating after the streamer accelerates with increasing f, leading to a decrease in the average streamer-to-spark transition time from a few µs to less than 100 ns.

  16. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    NASA Technical Reports Server (NTRS)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  17. Preliminary Study of a Pull Plug Friction Weld

    NASA Technical Reports Server (NTRS)

    Buchanan, George R.

    1999-01-01

    A pull plug friction weld, simply defined, comprises inserting a rotating cone-shaped cylinder into a somewhat cone-shaped hole in a plate. The rotating plug makes contact with the edge of the plate and the resulting friction generates heat. The temperature of the plate material eventually reaches a magnitude that will cause the plate material at the edge of the hole to flow. This can be termed a temperature dependent plastic flow. The rotation of the plug is terminated, additional pressure is applied and the metal at the interface of the two materials cools and welding occurs. This preliminary study addresses only three aspects of a complete analysis that is multi-faceted. The transient temperature distribution for different pull plug configurations has been studied in some detail even though the initial conditions and boundary conditions may still be deemed tentative. The stress distribution within the pull plug caused by the heating pressure was studied along with a preliminary analysis of the thermoelastic stress distribution caused by friction heating. There are no definitive results for the stress analysis. Additional study will be required.

  18. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  19. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    SciTech Connect

    Yang Zhong; Robert C. O'Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  20. Spark Plasma Sintering of W-UO2 Cermets

    SciTech Connect

    R. C. O'Brien; N. D. Jerred

    2013-02-01

    About 50 vol.% 3 um depleted uranium dioxide (UO2) powder was encapsulated within a tungsten super alloy matrix produced from sub-micron tungsten powders using the Spark Plasma Sintering (SPS) process. An additive of 25 atom-percent (at.%) rhenium was included within the tungsten matrix to improve the ductility and fracture toughness of the ceramic–metallic (cermet) matrix. Cermet fabrication to 97.9% of the theoretical cermet density was achieved by sintering at 1500 degrees C with 40 MPa of applied pressure for 20 min. The results presented are from the first known trials of W–UO2 and nuclear cermet production via SPS.

  1. Mechanical Behavior of Cryomilled Ni Superalloy by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Han, B. Q.; Huang, J. Y.; Han, Y. H.; Zhou, Y.; Kakegawa, K.; Lavernia, E. J.

    2009-09-01

    The mechanical behavior of ultra-fine-grained (UFG) INCONEL 625 superalloy prepared via cryomilling and spark plasma sintering (SPS) was studied. The work-hardening response of the ultra-fine-grained (600 to 700 nm) INCONEL 625 was compared to that of the material with a 1- μm grain size and the results showed normal work hardening for the latter material but not for the former. Moreover, the results suggest that a combination of high strength and good ductility can be simultaneously obtained in the UFG INCONEL 625 alloy.

  2. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  3. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  4. Spark Plasma Sintering of W-UO2 cermets

    NASA Astrophysics Data System (ADS)

    O'Brien, R. C.; Jerred, N. D.

    2013-02-01

    About 50 vol.% 3 μm depleted uranium dioxide (UO2) powder was encapsulated within a tungsten super alloy matrix produced from sub-micron tungsten powders using the Spark Plasma Sintering (SPS) process. An additive of 25 atom-percent (at.%) rhenium was included within the tungsten matrix to improve the ductility and fracture toughness of the ceramic-metallic (cermet) matrix. Cermet fabrication to 97.9% of the theoretical cermet density was achieved by sintering at 1500 °C with 40 MPa of applied pressure for 20 min. The results presented are from the first known trials of W-UO2 and nuclear cermet production via SPS.

  5. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    NASA Astrophysics Data System (ADS)

    Ragheb, Magdi M. H.; Maynard, Charles W.

    1981-10-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.

  6. Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle.

    PubMed Central

    Shirokova, N; Ríos, E

    1997-01-01

    1. Fluo-3 fluorescence associated with Ca2+ release was recorded with confocal microscopy in single muscle fibres. Clamp depolarization to -65 or -60 mV elicited Ca2+ sparks with amplitudes and spatial widths distributed approximately normally, with mean values of 0.79 of resting fluorescence and 0.8 micron (S.D., 0.17 and 0.2 micron; n = 193), respectively. Given these distributions, events of amplitude less than 0.45 or width less than 0.4 micron are unlikely to be sparks. 2. Low voltage depolarization (-72 mV) elicited only one spark per triad every 6 s, but generated a relative increase in fluorescence at triads of 0.05. This increase must therefore have been due to events smaller than sparks. 3. The variance/mean ratio of triadic fluorescence gradients averaged 0.11 at low voltages and increased severalfold at the higher voltages at which sparks appeared, indicating the existence of at least two event amplitudes. 4. Tetracaine (200 microM) reversibly abolished sparks and the early peak of Ca2+ release at all voltages. In its presence, discrete events were smaller than the spark criterion, and triadic gradients had a variance/mean ratio of 0.11. 5. The phenylalkylamine D600 (2 microM) reduced release at all voltages, abolishing sparks and the peak of Ca2+ release at low but not at high voltages. 6. The parallel abolition of all sparks and the peak of Ca2+ release indicates that both phenomena are activated by Ca2+. The restoration of sparks by voltage in D600 suggests that release in small events provides the trigger Ca2+ for activation of sparks. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9234193

  7. High voltage switch triggered by a laser-photocathode subsystem

    DOEpatents

    Chen, Ping; Lundquist, Martin L.; Yu, David U. L.

    2013-01-08

    A spark gap switch for controlling the output of a high voltage pulse from a high voltage source, for example, a capacitor bank or a pulse forming network, to an external load such as a high gradient electron gun, laser, pulsed power accelerator or wide band radar. The combination of a UV laser and a high vacuum quartz cell, in which a photocathode and an anode are installed, is utilized as triggering devices to switch the spark gap from a non-conducting state to a conducting state with low delay and low jitter.

  8. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.

  9. Studies on powder plug formation using a simulated capsule filling machine.

    PubMed

    Britten, J R; Barnett, M I; Armstrong, N A

    1996-03-01

    Using an apparatus which simulates the action of a Macofar 13-2 dosating-type capsule-filling machine, the variation in plug weight and density with changing machine parameters has been studied. The piston ejection speed has no effect on plug properties. However increase in compression speed leads to a less consolidated powder plug and hence reduced plug weight. Application of higher pressures reduces plug weight changes, but would be expected to affect release characteristics. Comparison of axial and radial pressures generated by plugs of Starch 1500 and lubricated lactose show significant differences which can be explained by the different consolidation and elastic properties of the two solids. PMID:8737048

  10. Outlet plug for recirculation loop of nuclear reactor

    SciTech Connect

    Dalke, C. A.; Stoll, B. G.

    1985-10-22

    A stopper apparatus for use in blocking the unvalved nozzle of a cooling fluid filled nuclear reactor pressure vessel includes a plug, typically in the shape of a frustoconical member having inflatable gaskets for sealing against a seat of generally unknown surface characteristics and means for positioning and urging the plug into position to seal the nozzle. The plug is typically positioned by suspension cables whereby the apparatus can be temporarily inserted and removed from the pressure vessel. The urging means is generally a two-way hydraulically driven jack controlled by remotely-actuated hydraulic lines. The apparatus is a tool which permits temporary sealing of a submerged outlet in a reactor vessel to permit maintenance on a fluid recirculation loop.

  11. Plug nozzles: The ultimate customer driven propulsion system

    NASA Technical Reports Server (NTRS)

    Aukerman, Carl A.

    1991-01-01

    This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.

  12. Flexible Plug Repair for Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; Lester, Dean

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  13. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  14. Method for plugging high permeability zones in subterranean reservoirs

    SciTech Connect

    Christopher, C.; Clauset, A.

    1980-07-01

    A description is given of a method for plugging high permeability areas within a subterranean reservoir penetrated by at least one injection well and at least one production well, said wells being in fluid communication with each other, comprising infecting through at least one of said wells an effective amount of an aqueous solution comprising fresh wter and a pectic substance selected from the group consisting pectins, pectates, polygalacturonic acids and mixtures thereof into said high permeability areas wherein the aqueous solution contacts a brine which causes the pectic substance to form a gel thereby effectively plugging the high permeability areas within the reservoir.

  15. Method for preventing plugging in the pyrolysis of agglomerative coals

    DOEpatents

    Green, Norman W.

    1979-01-23

    To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

  16. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  17. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  18. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  19. Measurement of the electron density in Transient Spark discharge

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Martišovitš, Viktor; Hensel, Karol; Dvonč, Lukáš; Machala, Zdenko

    2014-12-01

    This paper presents our measurements of the electron density in a streamer-to-spark transition discharge, which is named transient spark (TS), in atmospheric pressure air. Despite the dc applied voltage, TS has a pulsed character with short (˜10-100 ns) high current (>1 A) pulses, with a repetition frequency on the order of kHz. The electron density ne ˜ 1017 cm-3 at maximum is reached in TS with repetition frequencies below ˜3 kHz, using relatively low power delivered to the plasma (0.2-3 W). The temporal evolution of ne was estimated from the resistance of the plasma discharge, which was obtained by a detailed analysis of the electric circuit representing the TS and the discharge diameter measurements using a fast intensified charge-coupled device (iCCD) camera. This estimate was compared with ne calculated from the measured Stark broadening of several atomic lines: Hα, N at 746 nm, and O triplet at 777 nm. Good agreement was obtained, although the method based on the plasma resistance is sensitive to an accurate determination of the discharge diameter. We have found that this method is also limited for strongly ionized plasmas. On the other hand, a lower ne detection limit can be obtained by this method than from the Stark broadening of atomic lines.

  20. Combustion of CNG in Charged Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, Wladyslaw

    2009-12-01

    The paper describes mixing of injected CNG with air and combustion process in spark ignition internal combustion engine. Because of higher ignition temperature of CNG the SI engines have more effective ignition system than conventional engines. The gas motion, turbulence, charge temperature and obviously electrical energy of the ignition coil have a big influence on the ignition and burning process in the combustion chamber. The paper includes theoretical and experimental investigations of ignition process in the high charged SI engines with direct CNG injection by using LES technique in KIVA program. Simulation of CNG combustion in the caloric chamber was carried in the environment of OpenFOAM program with LES model and also the experimental test was carried out for comparison of results in the chamber with the same geometry. The influence of the "tumble" and "swirl" on the sparking is shown by modelling of this process in premixed charge by using LES technique. The charge motion and also considerably turbulence effect influence strongly on the ignition process.

  1. Parallel processing demonstrator with plug-on-top free-space interconnect optics

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Wang, Xiaoqing; Ekman, Jeremy T.; Marchand, Philippe J.; Spaanenburg, Henk; Wang, Mark M.; Kiamilev, Fouad E.; Esener, Sadik C.

    2001-05-01

    We demonstrate a setup with 10 optically interconnected chips,k which can perform a distributed radix-2-butterfly calculation for fast Fourier transformation. The setup consists of a motherboard, five multi-chip-modules (MCMs, with processor/transceiver chips and laser/detector chips), four plug-on-top optics modules that provide the bi- directional optical links between the MCMs, and external control electronics. The design of the optics and optomechanics satisfies numerous real-world constraints, such as compact size (< 1 inch thick), suitability for mass-production, suitability for large arrays (up to 103 parallel channels), compatibility with standard electronics fabrication and packaging technology, and potential for active misalignment compensation by integrating MEMS technology.

  2. 30 CFR 18.50 - Protection against external arcs and sparks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against external arcs and sparks. 18.50 Section 18.50 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING... and Design Requirements § 18.50 Protection against external arcs and sparks. Provision shall be...

  3. Evaluating the Sustainability of SPARK Physical Education: A Case Study of Translating Research into Practice

    ERIC Educational Resources Information Center

    Dowda, Marsha; Sallis, James F.; McKenzie, Thomas L.; Rosengard, Paul; Kohl, Harold W., III

    2005-01-01

    Dissemination and sustainability of evidence-based physical education programs (PE) has been studied rarely. The sustainability of a health-related PE program (SPARK) was independently evaluated in 111 elementary schools in 7 states. Surveys were mailed to schools that had received SPARK curriculum books, training, and follow-up (response rate =…

  4. Small-size controlled vacuum spark-gap in an external magnetic field

    SciTech Connect

    Asyunin, V. I. Davydov, S. G.; Dolgov, A. N. Pshenichnyi, A. A.; Yakubov, R. Kh.

    2015-02-15

    It is demonstrated that the operation of a small-size controlled spark-gap can be controlled by applying a uniform external magnetic field. It is shown that the magnetic field of such a simple configuration efficiently suppresses the effect of localization of the discharge current after multiple actuations of the spark-gap.

  5. Comparative complexity of emission spectra from ICP, dc, Arc, and spark excitation sources

    SciTech Connect

    Winge, R.K.; DeKalb, E.L.; Fassel, V.A.

    1985-07-01

    A comparison of atomic emission spectra excited in high voltage spark and dc are discharges and in an inductively coupled plasma revealed that the most complex spectra were emitted by the high voltage spark. The dc arc and the inductively coupled plasma yielded spectra of approximately equivalent complexity. These observations are not in accord with the impressions conveyed in the literature.

  6. Spark alloying of VK8 and T15K6 hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  7. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... rulemaking published in the Federal Register on June 8, 2010 (75 FR 32612). That notice proposed revisions to... Compression Ignition and Spark Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency... the standards of performance for stationary compression ignition and spark ignition...

  8. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spark producing devices-TB/ALL. 35.30-35 Section 35.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are...

  9. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Spark producing devices-TB/ALL. 35.30-35 Section 35.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are...

  10. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Spark producing devices-TB/ALL. 35.30-35 Section 35.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are...

  11. 46 CFR 35.30-35 - Spark producing devices-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Spark producing devices-TB/ALL. 35.30-35 Section 35.30-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-35 Spark producing devices—TB/ALL. (a) Where Grades A, B, C, and D liquid cargoes are...

  12. The function of copulatory plugs in Caenorhabditis remanei: hints for female benefits

    PubMed Central

    2010-01-01

    Background Mating plugs that males place onto the female genital tract are generally assumed to prevent remating with other males. Mating plugs are usually explained as a consequence of male-male competition in multiply mating species. Here, we investigated whether mating plugs also have collateral effects on female fitness. These effects are negative when plugging reduces female mating rate below an optimum. However, plugging may also be positive when plugging prevents excessive forced mating and keeps mating rate closer to a females' optimum. Here, we studied these consequences in the gonochoristic nematode Caenorhabditis remanei. We employed a new CO2-sedation technique to interrupt matings before or after the production of a plug. We then measured mating rate, attractiveness and offspring number. Results The presence of a mating plug did not affect mating rate or attractiveness to roving males. Instead, females with mating plugs produced more offspring than females without copulatory plugs. Conclusions Our experiment suggests that plugging might have evolved under male-male competition but represents a poor protection against competing males in our experiment. Even if plugging does not reduce mating rate, our results indicate that females may benefit from being plugged in a different sense than remating prevention. PMID:21044286

  13. Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Li, Chun-Yan; Liang, Lin-Mei

    2012-09-01

    Any imperfections in a practical quantum key distribution (QKD) system may be exploited by an eavesdropper (Eve) to collect information about the key without being discovered. For example, without the decoy-state method, Eve can perform the photon-number-splitting (PNS) attack and get full information without introducing any perturbation, since weak laser pulses are widely used in practical systems instead of single-photon sources. However, the decoy-state method against PNS attack itself may introduce another loophole while closing the loophole of multiphoton pulses. In this paper, a fatal loophole of practical decoy-state plug-and-play QKD systems has been exploited and a wavelength-selected photon-number-splitting (WSPNS) attack scheme against plug-and-play QKD systems with the decoy-state method is proposed. Theoretical analysis shows that the eavesdropper can get full information about the key generated between the legitimate parties just like the PNS attack was performed in plug-and-play QKD systems without the decoy-state method.

  14. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    SciTech Connect

    Nataf, J.M.; Winkelmann, F.

    1992-09-01

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of these methods to solving the partial differential equations for two-dimensional heat flow is illustrated.

  15. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    NASA Astrophysics Data System (ADS)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  16. Application of pulsed spark discharge for calcium carbonate precipitation in hard water.

    PubMed

    Yang, Yong; Kim, Hyoungsup; Starikovskiy, Andrey; Fridman, Alexander; Cho, Young I

    2010-06-01

    The effect of underwater pulsed spark discharge on the precipitation of dissolved calcium ions was investigated in the present study. Water samples with different calcium hardness were prepared by continuous evaporation of tap water using a laboratory cooling tower. It was shown that the concentration of calcium ions dropped by 20-26% after 10-min plasma treatment, comparing with no drop for untreated cases. A laser particle counting method demonstrated that the total number of solid particles suspended in water increased by over 100% after the plasma treatment. The morphology and the crystal form of the particles were identified by both scanning electron microscopy and X-ray diffraction. Calcite with rhombohedron morphology was observed for plasma treated cases, comparing with the round structure observed for no-treatment cases. It was hypothesized that the main mechanisms for the plasma-assisted calcium carbonate precipitation might include electrolysis, local heating in the vicinity of plasma channel and a high electric field at the tip of plasma streamers, inducing structural changes in the electric double layer of hydrated ions. PMID:20494397

  17. Plasma ignition for laser propulsion

    NASA Technical Reports Server (NTRS)

    Askew, R. F.

    1982-01-01

    For a specific optical system a pulsed carbon dioxide laser having an energy output of up to 15 joules was used to initiate a plasma in air at one atmosphere pressure. The spatial and temporal development of the plasma were measured using a multiframe image converter camera. In addition the time dependent velocity of the laser supported plasma front which moves opposite to the direction of the laser pulse was measured in order to characterize the type of wavefront developed. Reliable and reproducible spark initiation was achieved. The lifetime of the highly dense plasma at the initial focal spot was determined to be less than 100 nanoseconds. The plasma front propagates toward the laser at a variable speed ranging from zero to 1.6 x 1,000,000 m/sec. The plasma front propagates for a total distance of approximately five centimeters for the energy and laser pulse shape employed.

  18. The Interest-Driven Pursuits of 15 Year Olds: "Sparks" and Their Association with Caring Relationships and Developmental Outcomes

    ERIC Educational Resources Information Center

    Ben-Eliyahu, Adar; Rhodes, Jean E.; Scales, Peter

    2014-01-01

    In this study, we examined the characteristics of adolescents' deep interests or "sparks," the role of relationships in supporting the development of sparks, and whether having a spark was associated with positive developmental outcomes. Participants included 1,860 15 years olds from across the United States who participated in the…

  19. Axicell design for the end plugs of MFTF-B

    SciTech Connect

    Thomassen, K.I.; Karpenko, V.N.

    1982-04-23

    Certain changes in the end-plug design in the Mirror Fusion Test Facility (MFTF-B) are described. The Laboratory (LLNL) proposes to implement these changes as soon as possible in order to construct the machine in an axicell configuration. The present physics and technology goals as well as the project cost and schedule will not be affected by these changes.

  20. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  1. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  2. Plug-in Sensors for Air Pollution Monitoring.

    ERIC Educational Resources Information Center

    Shaw, Manny

    Faristors, a type of plug-in sensors used in analyzing equipment, are described in this technical report presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Their principles of operation, interchangeability, and versatility for measuring air pollution at…

  3. Analysis of supersonic plug nozzle flowfield and heat transfer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Sheu, W. H.

    1988-01-01

    A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

  4. Inert plug formation in the DDT of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.

    1996-05-01

    A mechanism is proposed to explain the {open_quotes}plugs{close_quotes} that have been observed in deflagration-to-detonation transition (DDT) of granular explosives. Numerical simulations are performed that demonstrate the proposed mechanism. Observed trends are reproduced. {copyright} {ital 1996 American Institute of Physics.}

  5. Modeling of Biomass Plug Development and Propagation in Porous Media

    SciTech Connect

    Stewart, Terri L.; Kim, Dong-Shik

    2004-02-01

    Biomass accumulation and evolution in porous media were simulated using a combination of biofilm evolution model and a biofilm removal model. Theses models describe biomass plug development, removal, and propagation in biological applications such as microbial enhanced oil recovery, in situ bioremediation, and bio-barrier techniques. The biofilm evolution model includes the cell growth rate and exopolymer production kinetics. The biofilm removal model was used for describing the biomass plug propagation and channel breakthrough using Bingham yield stress of biofilm, which represents the stability of biofilm against shear stress. Network model was used to describe a porous medium. The network model consists of pore body and pore bond of which the sizes were determined based on the pore size distribution of ceramic cores. The pressure drop across the network is assumed to be generated from pore bonds only, and the cell growth and biomass accumulation took place in pore bonds. The simulation results showed that the biofilm models based on Bingham yield stress predicted the biomass accumulation and channel breakthrough well. The pressure oscillation (or, permeability oscillation) was also demonstrated well indicating the process of biomass accumulation and breakthrough channel formation. In addition, the effects of cell and biofilm sucrose concentration were significant on the biomass plug development and permeability reduction rates. The modeling elucidated some deficiencies in our knowledge of the biomass yield stress that enables us to predict the stability of biomass plug against shear stress.

  6. Seating tool for preparing molded-plug terminations on FCC

    NASA Technical Reports Server (NTRS)

    Chambers, C. M.; Corum, C. C.

    1971-01-01

    Hand-operated tool positions and seats window piece and conductor spacer onto conductors of two stripped cables during process of terminating cables with molded plug. Tool accommodates cables up to 3 in. wide and is used in conjunction with folding tools.

  7. Plug replaces weld filler as seal in complex casting

    NASA Technical Reports Server (NTRS)

    Goundrey, R. L.; Harris, C. L.

    1966-01-01

    Expandable metal plug is inserted to provide a seal to support the mold core with small blocks, referred to as chaplets, during the casting of a complex volute. Weld-warpage and multiple X ray inspection are eliminated by use of this technique.

  8. Bedding Plant Plugs suffering from “Stubby Plant Syndrome”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pansy, gerbera, and petunia plugs with distorted terminal growth has been a production problem and is thought to be a deficiency of either boron (B) or calcium (Ca). Plants with B or Ca deficiencies both produce symptoms on the newly developing tissue which can cause confusion. Plants were grown h...

  9. 6. Front of northern kiln group, looking west. Vents, plugged ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Front of northern kiln group, looking west. Vents, plugged with loose bricks and clay, are distinguishable in the nearest and farthest kilns, slightly above current grade. - Warren King Charcoal Kilns, 5 miles west of Idaho Highway 28, Targhee National Forest, Leadore, Lemhi County, ID

  10. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    NASA Technical Reports Server (NTRS)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  11. Transient motion of mucus plugs in respiratory airways

    NASA Astrophysics Data System (ADS)

    Zamankhan, Parsa; Hu, Yingying; Helenbrook, Brian; Takayama, Shuichi; Grotberg, James B.

    2011-11-01

    Airway closure occurs in lung diseases such as asthma, cystic fibrosis, or emphysema which have an excess of mucus that forms plugs. The reopening process involves displacement of mucus plugs in the airways by the airflow of respiration. Mucus is a non-Newtonian fluid with a yield stress; therefore its behavior can be approximated by a Bingham fluid constitutive equation. In this work the reopening process is approximated by simulation of a transient Bingham fluid plug in a 2D channel. The governing equations are solved by an Arbitrary Lagrangian Eulerian (ALE) finite element method through an in-house code. The constitutive equation for the Bingham fluid is implemented through a regularization method. The effects of the yield stress on the flow features and wall stresses are discussed with applications to potential injuries to the airway epithelial cells which form the wall. The minimum driving pressure for the initiation of the motion is computed and its value is related to the mucus properties and the plug shape. Supported by HL84370 and HL85156.

  12. Fiscal Year 1993 Well Plugging and Abandonment Program Summary Report Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from October 1993 through August 1994. A total of 57 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee.

  13. Aeroacoustics of contoured and solid/porous conical plug-nozzle supersonic jet flows

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Das, I. S.

    1985-01-01

    The acoustic far field, the shock-associated noise and characteristics of the repetitive shock structure of supersonic jet flows issuing from a contoured plug-nozzle and uncontoured plug-nozzle having a short conical plug of either a solid or a combination of solid/porous surface with pointed termination operated at a range of supercritical pressure are reported. The contoured and the uncontoured plug-nozzles had the same throat area and the same annular-radius ratio.

  14. Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

  15. High-speed photography of the motion of a closure plug

    NASA Astrophysics Data System (ADS)

    Ahn, Jae W.; Choi, Jin S.; Oh, Kyoung H.; Song, So Y.

    1995-05-01

    To investigate the motion of the closure plug which installed near the exit of storage chamber in the underground ammunition storage facility, a series of tests have been conducted in a small scale chamber. High speed radiography was used to observe the motion of the closure plug. Also the motion of the closure plug was predicted with some empirical results and simple equations. It is found that predicted velocity of the closure plug shows in good agreement with the measured one.

  16. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-05-01

    Laser pulses of few a nanoseconds' duration are focused by an appropriate converging lens system, leading to breakdown of the medium (combustible gases), resulting in the formation of intense plasma. Plasma thus induced can be used to initiate the combustion of combustible air-fuel mixtures in a spark ignition engine provided the energy of the plasma spark is high enough. Laser ignition has several advantages over the conventional spark ignition system, especially in case of lean air-fuel mixture. In this study, laser ignition of compressed natural gas was investigated in a constant volume combustion chamber (CVCC) as well as in a single-cylinder engine. Flame kernel visualizations for different pulse energy of natural gas-air mixtures were carried out in the CVCC. The images of the development of early flame kernel stages and its growth with time were recorded by shadowgraphy technique. The effect of laser pulse energy on the engine combustion, performance, and emissions was investigated using different air-fuel mixtures. Increased peak cylinder pressure, higher rate of heat release, faster combustion, and increased combustion stability were observed for higher laser pulse energies. The effect of laser pulse energy on the engine-out emissions was also investigated in this study.

  17. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  18. Statistical data of X-ray emission from laboratory sparks

    NASA Astrophysics Data System (ADS)

    Kochkin, P.; Deursen, D. V.

    2011-12-01

    In this study we present a summary of the data of 1331 long laboratory sparks in atmospheric pressure intended for a statistical analysis. A 2 MV, 17kJ Marx generator were used to generate 1.2/52μs shape pulses positive and negative polarity. The generator was connected to a spark gap with cone-shaped electrodes. The distance between high-voltage and grounded electrodes was 1.08 meters. Breakdown voltage between electrodes was about 1MV. X-rays have been detected during the development of the discharge channel. The currents through the grounded electrode and through the high-voltage electrode were recorded separately and simultaneously with the voltage and the X-ray signal. X-rays were registered by two LaBr3(Ce+) scintillation detectors in different positions with respect to the forming discharge channel. Detector D1 was placed immediately under the grounded electrode at 15cm distance. Detector D2 was placed at horizontal distances of 143cm and 210cm, at mid-gap height. We also used lead shields of 1.5, 3, and 4 mm thickness for radiation attenuation measurements. For detector collimation we used shields up to 2 cm thickness. Also no metallic objects with pointed surfaces were present within 2 m from the spark gap. Typical plot of positive discharge presented in Figure 1a. Table 1 shows the summary of the X-ray registrations. Signal detection occurred significantly more for positive polarity discharges than for negative. This dependence was observed for both detectors. For detector D2 the probability of X-ray registration decreased proportional to 1/d2 with increasing the distance d to the breakdown gap from 1m43 to 2m10. Detailed energy spectra and time distribution of X-ray emission were obtained; see for example Fig. 1b. For both polarities of the high voltage, the X-rays only occurred when there was a current at the cathode.

  19. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.

    PubMed

    Isaeva, Elena V; Shkryl, Vyacheslav M; Shirokova, Natalia

    2005-06-15

    Intact skeletal muscle fibres from adult mammals exhibit neither spontaneous nor stimulated Ca(2+) sparks. Mechanical or chemical skinning procedures have been reported to unmask sparks. The present study investigates the mechanisms that determine the development of Ca(2+) spark activity in permeabilized fibres dissected from muscles with different metabolic capacity. Spontaneous Ca(2+) sparks were detected with fluo-3 and single photon confocal microscopy; mitochondrial redox potential was evaluated from mitochondrial NADH signals recorded with two-photon confocal microscopy, and Ca(2+) load of the sarcoplasmic reticulum (SR) was estimated from the amplitude of caffeine-induced Ca(2+) transients recorded with fura-2 and digital photometry. In three fibre types studied, there was a time lag between permeabilization and spark development. Under all experimental conditions, the delay was the longest in slow-twitch oxidative fibres, intermediate in fast-twitch glycolytic-oxidative fibres, and the shortest in fast-twitch glycolytic cells. The temporal evolution of Ca(2+) spark frequencies was bell-shaped, and the maximal spark frequency was reached slowly in mitochondria-rich oxidative cells but quickly in mitochondria-poor glycolytic fibres. The development of spontaneous Ca(2+) sparks did not correlate with the SR Ca(2+) content of the fibre, but did correlate with the redox potential of their mitochondria. Treatment of fibres with scavengers of reactive oxygen species (ROS), such as superoxide dismutase (SOD) and catalase, dramatically and reversibly reduced the spark frequency and also delayed their appearance. In contrast, incubation of fibres with 50 microm H(2)O(2) sped up the development of Ca(2+) sparks and increased their frequency. These results indicate that the appearance of Ca(2+) sparks in permeabilized skeletal muscle cells depends on the fibre's oxidative strength and that misbalance between mitochondrial ROS production and the fibre's ability to fight

  20. 30 CFR 250.1711 - When will MMS order me to permanently plug a well?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... well? 250.1711 Section 250.1711 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Activities Permanently Plugging Wells § 250.1711 When will MMS order me to permanently plug a well? MMS will order you to permanently plug a well if that well: (a) Poses a hazard to safety or the environment;...

  1. 40 CFR 144.63 - Financial assurance for plugging and abandonment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... days after a change in the amount of the current plugging and abandonment cost estimate covered by the... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... formula: EC15NO91.138 where PE is the current plugging and abandonment cost estimate, CV is the...

  2. 40 CFR 144.63 - Financial assurance for plugging and abandonment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... days after a change in the amount of the current plugging and abandonment cost estimate covered by the... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... formula: EC15NO91.138 where PE is the current plugging and abandonment cost estimate, CV is the...

  3. 40 CFR 144.63 - Financial assurance for plugging and abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... days after a change in the amount of the current plugging and abandonment cost estimate covered by the... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... formula: EC15NO91.138 where PE is the current plugging and abandonment cost estimate, CV is the...

  4. 40 CFR 144.63 - Financial assurance for plugging and abandonment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... days after a change in the amount of the current plugging and abandonment cost estimate covered by the... current plugging and abandonment cost estimate, except as provided in § 144.70(g), divided by the number... formula: EC15NO91.138 where PE is the current plugging and abandonment cost estimate, CV is the...

  5. PLUG STORAGE BUILDING, TRA611, AWAITS SHIELDING SOIL TO BE PLACED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLUG STORAGE BUILDING, TRA-611, AWAITS SHIELDING SOIL TO BE PLACED OVER PLUG STORAGE TUBES. WING WALLS WILL SUPPORT EARTH FILL. MTR, PROCESS WATER BUILDING, AND WORKING RESERVOIR IN VIEW BEYOND PLUG STORAGE. CAMERA FACES NORTHEAST. INL NEGATIVE NO. 2949. Unknown Photographer, 7/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. 40 CFR 144.62 - Cost estimate for plugging and abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Cost estimate for plugging and... Waste Injection Wells § 144.62 Cost estimate for plugging and abandonment. (a) The owner or operator must prepare a written estimate, in current dollars, of the cost of plugging the injection well...

  7. Liquid plug flow in a vertical two-dimensional channel

    NASA Astrophysics Data System (ADS)

    Bull, Joseph; Halpern, David; Grotberg, James

    2001-11-01

    Gravity and pressure driven liquid plug flow in a two-dimensional vertical channel is investigated as a model of instilled liquid transport in the lungs. There are a number of clinical situations in which liquids are instilled into the lungs. Of particular interest is liquid ventilation where perfluorocarbon liquids are delivered to the lung and subsequently used for ventilation in place of gas. Additionally the perfuorocarbon can be used as a carrier for drugs or genetic material. Some other examples of liquid instillation into the lungs include surfactant replacement therapy, lung lavage, and cardio-pulmonary resuscitation. The desired distribution of liquid depends on the application. Our model is developed using the Stokes equation subject to interfacial and wall boundary conditions, and is solved using the boundary element method. We obtain steady-state and time-dependent solutions. As the plug propagates along the thin-film-lined channel, it takes up liquid from the leading film and deposit liquid in the trailing film. The trailing film thickness, interface shapes and plug speed are determined as functions of the parameters of the problem, Bond number, driving pressure, and leading film thickness and initial plug length for the time-dependent problem. These results are important clinically since the trailing film thickness determines when the plug ruptures affecting the ultimate liquid distribution, and thicker films can result in airway closure. This research was supported by NIH grants HL41126, HL64373, and HL54224-04S1. J.L. Bull is a Parker B. Francis Fellow in Pulmonary Research.

  8. Alternate tube plugging criteria for steam generator tubes

    SciTech Connect

    Cueto-Felgueroso, C.; Aparicio, C.B.

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  9. Viscous plugging can enhance and modulate explosivity of strombolian eruptions

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Lane, S. J.; James, M. R.; Llewellin, E. W.; Taddeucci, J.; Scarlato, P.; Capponi, A.

    2015-08-01

    Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a 'viscous plug', which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.

  10. Polysaccharides and bacterial plugging. Final report, 1992--1993

    SciTech Connect

    Fogler, H.S.

    1995-02-01

    In situ core plugging experiments and transport experiments, using the model bacteria Leuconostoc m., have been conducted. Results demonstrated that cellular polysaccharide production increases cell distribution in porous media and caused an overall decrease in media permeability. Further, a parallel core plugging experiment was conducted and showed the feasibility of this system to divert injection fluid from high permeability zones into low permeability zones within porous media as is needed for profile modification. To implement this type of application, however, controlled placement of cells and rates of polymer production are needed. Therefore, kinetic studies were performed. A kinetic model was subsequently developed for Leuconostoc m. bacteria. This model is based on data generated from batch growth experiments and allows for the prediction of saccharide utilization, cell generation, and dextran production. These predictions can be used to develop injection strategies for field implementation. Transport and in situ growth micromodel experiments have shown how dextran allow cells to remain as clusters after cell division which enhanced cell capture and retention in porous media. Additional Damkohler experiments have been performed to determine the effects of the nutrient injection rate and nutrient concentration on the rate of porous media plugging. As shown experimentally and as predicted by a model for in situ growth, an increase in nutrient concentration and/or its injection rate will result in a faster rate of porous media plugging. Through continuum model simulations, it has been shown that the initial cell profiles play a key role on the core plugging rate. Controlling the location of the inoculating cells is thus another key factor in using bacteria for profile modification.

  11. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  12. Production of Graphite Chloride and Bromide Using Microwave Sparks

    PubMed Central

    Zheng, Jian; Liu, Hong-Tao; Wu, Bin; Di, Chong-An; Guo, Yun-Long; Wu, Ti; Yu, Gui; Liu, Yun-Qi; Zhu, Dao-Ben

    2012-01-01

    Chemically modified graphite is an economical material with promising applications in its own right or as an intermediate in the synthesis of graphene. However, because of its extreme chemical inertness, to date only two methods—oxidation and fluorination—have been found which can modify graphite with high yield and large throughput. Herein, we describe a third chemical approach for the synthesis of large quantities of highly modified graphite which uses a microwave-sparks-assisted halogenation reaction. The resulting graphite halide can easily be exfoliated into monolayer graphene in organic solvents. The structure and electronic properties of the original graphene can be recovered after thermal annealing of the graphene halide. Furthermore, the graphene halide can be further modified by a variety of organic functional groups. Solution-processed field-effect transistors based on the graphene halides resulted in device performances were comparable to, or even better than, that of graphene oxide. PMID:22993688

  13. The Absence of Plasma in"Spark Plasma Sintering"

    SciTech Connect

    Hulbert, Dustin M.; Anders, Andre; Dudina, Dina V.; Andersson, Joakim; Jiang, Dongtao; Unuvar, Cosan; Anselmi-Tamburini, Umberto; Lavernia, Enrique J.; Mukherjee, Amiya K.

    2008-04-10

    Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. The process typically uses moderate uni-axial pressures (<100 MPa) in conjunction with a pulsing on-off DC current during operation. There are a number of mechanisms proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, the one most commonly put forth and the one that draws the most controversy involves the presence of momentary plasma generated between particles. This study employees three separate experimental methods in an attempt to determine the presence or absence of plasma during SPS. The methods employed include: in-situ atomic emission spectroscopy, direct visual observation and ultra-fast in-situ voltage measurements. It was found using these experimental techniques that no plasma is present during the SPS process. This result was confirmed using several different powders across a wide spectrum of SPS conditions.

  14. Spark Plasma Sintering of MgO-Strengthened Aluminum

    NASA Astrophysics Data System (ADS)

    Ben-Haroush, M.; Dikovsky, G.; Kalabukhov, S.; Aizenshtein, M.; Hayun, S.

    2016-02-01

    The effects of MgO as a sintering additive, sintering duration, and post-heat treatment on mechanical properties and microstructure of spark plasma-sintered aluminum powders were investigated. The sinterability of aluminum with or without MgO was found to be sensitive to the aluminum average particle size, meaning the amount of native oxide within the raw aluminum powders. The fracture mode changes gradually from a brittle mode (after short SPS), through a mixed brittle-ductile fracture mode (after long SPS), ending with the pure ductile form (short SPS followed by heat treatment). Maxima flexural strength and elongation were found in samples with particles size of about 44 μm and the addition of 2 wt.% MgO after short SPS process followed by an additional heat treatment. The addition of MgO may contribute to perforation of the aluminum native oxide and enhance aluminum diffusion during the heat treatment.

  15. What sparks interest in science? A naturalistic inquiry

    NASA Astrophysics Data System (ADS)

    Jackson, Julie Kay Cropper

    This study examined how career scientists became interested in science. Eight practicing scientists were asked a focus question, "What sparked your interest in science?" Their responses recorded during personal interviews and reported in correspondence frame this qualitative study. Analysis of the data revealed a variety of influences. The influences were coded, arranged into lists, and grouped by theme. A total of 18 themes emerged from the data. Five of the emerging themes were common across all of the participants. They were the influence of a family member, the influence of a teacher, being naturally curious, being interested in science, and reading books, magazines, and/or encyclopedias. Five themes were common among 5 to 7 participants. These themes included visiting museums, having broad exposure, enjoyment of mathematics, enjoying being outside, and freedom to play and explore. Eight themes were common among 2 to 4 of the participants. They were financial incentive, influence of religion, participation in science fairs, influence of the manned space program, having a scientist in the family, having the opportunity to teach others, not seeing self as a scientist, and first generation college graduate. The emerging themes were compared and contrasted with historical and contemporary literature. Vocational psychology's leading career choice and development literature was also aligned with the emerging themes. Data from this study supports tenets of Trait and Factor Theory, Developmental Theory, and Social Learning Theory. Reported data also supports the proposed movement toward a unified theory of career choice and development. A combination of personality traits, developmental stages, self-efficacy, and learning experiences influenced the vocational decisions of the scientists who participated in this study. The study concludes with suggestions for sparking and sustaining interest in science that people responsible for preparing future scientists may find

  16. FTIR Analysis of Flowing Afterglow from a High-Frequency Spark Discharge

    NASA Astrophysics Data System (ADS)

    White, Allen; Hieftje, Gary M.; Ray, Steve; Pfeuffer, Kevin

    2014-06-01

    Plasmas are often used as ionization sources for ambient mass spectrometry (AMS). Here, the flowing afterglow of a novel high-energy spark discharge system, operated in nitrogen at high repetition rates, is investigated as a source for AMS. The spark discharge here is the same as that of an automobile ignition circuit.Combustion in automobile engines is initiated by a spark ignition system that is designed to deliver short-duration,high-voltage sparks to multiple engine cylinders. The arrangement utilized in this study is a modified discharge configuration designed to produce similarly short-duration, high-voltage discharges. It consists of an automotive ignition coil that is activated by a spark initiation circuit that discharges in turn into a cell with neutral gas input flow and ultimately into the collection orifice of a mass spectrometer. The discharge voltage is approximately 40kV at 800 Hz. High-frequency spark discharges in a nitrogen flow produce reagent ions such as NO+. In order to better evaluate the effectiveness of the discharge in producing reagent ions, an FTIR is utilized to measure IR active species such as nitric oxide, hydroxide, ozone, and water in the afterglow of the spark discharge during variation of discharge parameters. Time-resolved IR emission spectra provide additional insight into the reagent ion production mechanisms.

  17. High-resolution X-ray computed tomography scanning of primate copulatory plugs.

    PubMed

    Parga, Joyce A; Maga, Murat; Overdorff, Deborah J

    2006-04-01

    In this study, high-resolution computed tomography X-ray scanning was used to scan ring-tailed lemur (Lemur catta) copulatory plugs. This method produced accurate measures of plug volume and surface area, but was not useful for visualizing plug internal structure. Copulatory plug size was of interest because it may relate to male fertilization success. Copulatory plugs form from coagulated ejaculate, and are routinely displaced in this species by the penis of a subsequent mate during copulation (Parga [2003] Int. J. Primatol. 24:889-899). Because one potential function of these plugs may be to preclude or delay other males' successful insemination of females, we tested the hypothesis that larger plugs are more difficult for subsequent males to displace. Plugs were collected opportunistically upon displacement during data collection on L. catta mating behavior on St. Catherines Island, Georgia (USA) during two subsequent breeding seasons. Copulatory plugs exhibited a wide range of volumes: 1,758-5,013.6 mm3 (n = 9). Intraindividual differences in plug volume were sometimes greater than interindividual differences. Contrary to predictions, larger plugs were not more time-consuming for males to displace via penile intromission during copulation. Nor were plugs with longer vaginal residence times notably smaller than plugs with shorter residence times, as might be expected if plugs disintegrate while releasing sperm (Asdell [1946] Patterns of Mammalian Reproduction; Ithaca: Comstock). We found a significant inverse correlation between number of copulatory mounts leading to ejaculation and copulatory plug volume. This may indicate that if males are sufficiently sexually aroused to reach ejaculation in fewer mounts, they tend to produce ejaculates of greater volume. PMID:16345065

  18. Detection of S2F10 produced by a single-spark discharge in SF6

    NASA Astrophysics Data System (ADS)

    Sauers, I.; Mahajan, S. M.

    1993-08-01

    Improvement in detection sensitivity of S2F10 in SF6 down to concentrations below 10 parts per billion, using a cryogenic enrichment-gas chromatography technique, has permitted the detection of S2F10 produced by a single-spark discharge in SF6. The spark yield of S2F10 was found to fall in the range of yields found in earlier work on more highly decomposed SF6. Based on preliminary data the spark discharge may provide a suitable and reproducible reference source of S2F10.

  19. A focused electric spark source for non-contact stress wave excitation in solids.

    PubMed

    Dai, Xiaowei; Zhu, Jinying; Haberman, Michael R

    2013-12-01

    A focused electric spark is used as a non-contact acoustic source to excite stress waves in solids. The source consists of an electric spark source located at the near focus of an ellipsoidal reflector that focuses the acoustic disturbance generated by the spark source to the far focal point. Experimental studies using both contact and non-contact sensors indicate that the source has the capability to excite the Rayleigh surface wave and impact-echo mode (S1-zero-group-velocity Lamb mode) in a 250 mm thick concrete slab and to enable fully air-coupled testing of concrete specimens. PMID:25669297

  20. Development of a local continuous sampling probe for the equivalence air-fuel ratio measurement. Application to spark ignition engine

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Dicocco, E.

    This paper is a contribution to the development of an original technique for measuring the in-cylinder equivalence air-fuel ratio. The main objective was to construct an instrument able to furnish instantaneous values of hydrocarbon concentration for many consecutive cycles at a definite location, especially at the spark plug location. The probe is based on a hot-wire-like apparatus, but involves catalytic oxidation on the wire surface in order to be sensitive to the hydrocarbon concentration. In this paper, we present the different steps needed to develop and validate the probe. The first step focuses on the geometric configuration to simplify as much as possible the mass transfer phenomena on the wire. The second step is a parametric study to evaluate the sensitivity, confidence and lifetime of the wire. By physical analysis, we propose a relationship between the electrical signal and the air-fuel equivalence ratio of the sampled gases. The third step is the application of the probe to in-cylinder motored engine measurements, which confirms the ability of the technique to characterise, quantitatively, the homogeneity of the air-fuel mixture, especially during the compression stroke. This work points out that the global sensitivity is estimated at 4V per unit of equivalence air-fuel ratio and the response time is estimated at about 400μs. The equivalence air-fuel ratio range is from pure air to 1.2. Experiments show that it is necessary to calibrate the system before use because of the existence of multiple catalysis states. The probe presents advantages associated with its simplicity, its low cost and its direct engine application without any modifications.

  1. Tunable optofluidic microring laser based on a tapered hollow core microstructured optical fiber.

    PubMed

    Li, Zhi-Li; Zhou, Wen-Yuan; Luo, Ming-Ming; Liu, Yan-Ge; Tian, Jian-Guo

    2015-04-20

    A tunable optofluidic microring dye laser within a tapered hollow core microstructured optical fiber was demonstrated. The fiber core was filled with a microfluidic gain medium plug and axially pumped by a nanosecond pulse laser at 532 nm. Strong radial emission and low-threshold lasing (16 nJ/pulse) were achieved. Lasing was achieved around the surface of the microfluidic plug. Laser emission was tuned by changing the liquid surface location along the tapered fiber. The possibility of developing a tunable laser within the tapered simplified hollow core microstructured optical fiber presents opportunities for developing liquid surface position sensors and biomedical analysis. PMID:25969082

  2. Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.

    PubMed

    Scaffidi, Jon; Pearman, William; Lawrence, Marion; Carter, J Chance; Colston, Bill W; Angel, S Michael

    2004-09-20

    A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS. PMID:15473246

  3. Spatial and Temporal Dependence of Interspark Interactions in Femtosecond-Nanosecond Dual-Pulse Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scaffidi, Jon; Pearman, William; Lawrence, Marion; Chance Carter, J.; Colston, Bill W., Jr.; Angel, S. Michael

    2004-09-01

    A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

  4. A Programmable Plug & Play Sensor Interface for WSN Applications

    PubMed Central

    Vera, Sergio D.; Bayo, Alberto; Medrano, Nicolás; Calvo, Belén; Celma, Santiago

    2011-01-01

    Cost reduction in wireless sensor networks (WSN) becomes a priority when extending their application to fields where a great number of sensors is needed, such as habitat monitoring, precision agriculture or diffuse greenhouse emission measurement. In these cases, the use of smart sensors is expensive, consequently requiring the use of low-cost sensors. The solution to convert such generic low-cost sensors into intelligent ones leads to the implementation of a versatile system with enhanced processing and storage capabilities to attain a plug and play electronic interface able to adapt to all the sensors used. This paper focuses on this issue and presents a low-voltage plug & play reprogrammable interface capable of adapting to different sensor types and achieving an optimum reading performance for every sensor. The proposed interface, which includes both electronic and software elements so that it can be easily integrated in WSN nodes, is described and experimental test results to validate its performance are given. PMID:22164118

  5. Borehole-plugging-materials development program report 3

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A.; Buck, A.D.

    1982-03-01

    This report gives data for up to 4 yr of durability studies of grout mixtures developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP). Samples from field plugging oprations for the Bell Canyon Test and ERDA-10 drill hole are included in the durability studies. Specimens of all mixtures had phase compositions and microstructures that were considered normal for these mixtures at these ages. All of the specimens of the various grout mixtures (including fresh and salt water) have maintained acceptable physical properties as measured by compressive strength, compressional wave velocity, dynamic modulus of elasticity, and permeability to water. Porosity and expansion data under differing exposure conditions have been collected for continuing study evaluation. The work was performed and is continuing at the Structures Laboratory of the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi.

  6. Standard metrics for a plug-and-play tracker

    NASA Astrophysics Data System (ADS)

    Antonisse, Jim; Young, Darrell

    2012-06-01

    The Motion Imagery Standards Board (MISB) has previously established a metadata "micro-architecture" for standards-based tracking. The intent of this work is to facilitate both the collaborative development of competent tracking systems, and the potentially distributed and dispersed execution of tracker system components in real-world execution environments. The approach standardizes a set of five quasi-sequential modules in image-based tracking. However, in order to make the plug-and-play architecture truly useful we need metrics associated with each module (so that, for instance, a researcher who "plugs in" a new component can ascertain whether he/she did better or worse with the component). This paper proposes the choice of a new, unifying set of metrics based on an informationtheoretic approach to tracking, which the MISB is nominating as DoD/IC/NATO standards.

  7. Strength and stability of microbial plugs in porous media

    SciTech Connect

    Sarkar, A.K.

    1995-12-31

    Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.

  8. Polymer grouts for plugging lost circulation in geothermal wells.

    SciTech Connect

    Galbreath, D. (Green Mountain International, Waynesvile, NC); Mansure, Arthur James; Bauer, Stephen J.

    2004-12-01

    We have concluded a laboratory study to evaluate the survival potential of polymeric materials used for lost circulation plugs in geothermal wells. We learned early in the study that these materials were susceptible to hydrolysis. Through a systematic program in which many potential chemical combinations were evaluated, polymers were developed which tolerated hydrolysis for eight weeks at 500 F. The polymers also met material, handling, cost, and emplacement criteria. This screening process identified the most promising materials. A benefit of this work is that the components of the polymers developed can be mixed at the surface and pumped downhole through a single hose. Further strength testing is required to determine precisely the maximum temperature at which extrusion through fractures or voids causes failure of the lost circulation plug.

  9. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  10. Test beam performance of the CDF plug upgrade hadron calorimeter

    SciTech Connect

    de Barbaro, P.; CDF Plug Upgrade Group

    1998-01-13

    We report on the performance of the CDF End Plug Hadron Calorimeter in a test beam. The sampling calorimeter is constructed using 2 inch iron absorber plates and scintillator planes with wavelength shifting fibers for readout. The linearity and energy resolution of the calorimeter response to pions, and the transverse uniformity of the response to muons and pions are presented. The parameter e/h, representing the ratio of the electromagnetic to hadronic response, is extracted from the data.

  11. Modification of the Cervico-ocular Reflex by Canal Plugging

    PubMed Central

    Yakushin, Sergei B.; Tarasenko, Yelena; Raphan, Theodore; Suzuki, Jun-Ichi; Della Santina, Charles C.; Minor, Lloyd B.; Cohen, Bernard

    2016-01-01

    The cervico-ocular reflex (COR) has a low gain in normal animals. In this study, we determined whether COR gain increases were specific to the low/midband frequency range, which is the range over which the angular vestibulo-ocular reflex (aVOR) is compromised by plugging. The gain and phase of the yaw and pitch COR and aVOR were compared in normal monkeys and those with all six semicircular canals or only the lateral canal plugged. During experiments animals sat with the body fixed to a chair and the head fixed in space. The body was oscillated about body-yaw and body-pitch axes over a frequency range of 0.05–6 Hz, with amplitude <10°. For normal animals, both yaw and pitch eye velocities were compensatory to the relative velocity of the head with respect to the body. The gains were 0.1–0.2 at frequencies below 1 Hz and decreased to zero as stimulus frequency increased above 1 Hz. Canal-plugged animals had COR gains close to 1.0 at low frequencies, decreasing to ≈0.6 at 0.5 Hz and to 0.2 for stimulus frequencies above 3 Hz. The phase of eye velocity was 180° relative to head-re-body velocity at frequencies below 0.5 Hz and shifted toward 270° as frequencies were increased to 4 Hz. This study demonstrates that adaptation of COR gain is tuned to a frequency range at which the aVOR is compromised by the canal plugging. PMID:19645881

  12. Method for plugging high permeability zones in subterranean reservoirs

    SciTech Connect

    Clauset, A.O. Jr.; Christopher, C.A. Jr.

    1980-07-01

    An aqueous solution comprising fresh water and a pectic substance selected from the group consisting of pectins, pectates, polygalacturonic acids, and mixtures thereof is injected into a subterranean petroleum reservoir containing high permeability areas within the reservoirs. Upon entering these high permeability areas the injected aqueous solution contacts a brine which causes the pectate substance to form a gel, thereby effectively plugging the high permeability areas within the reservoir. 13 claims.

  13. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  14. Frozen-Plug Technique for Liquid-Oxygen Plumbing

    NASA Technical Reports Server (NTRS)

    McCaskey, C. E. " Mac" ; Lobmeyer, Dennis; Nagy, Zoltan; Peltzer, Rich

    2005-01-01

    A frozen-plug technique has been conceived as a means of temporarily blocking the flow of liquid oxygen or its vapor through a tube or pipe. The technique makes it possible to perform maintenance, repair, or other work on downstream parts of the cryogenic system in which the oxygen is used, without having to empty an upstream liquid-oxygen reservoir and, hence, without wasting the stored liquid oxygen and without subjecting the reservoir to the stresses of thermal cycling.

  15. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    NASA Astrophysics Data System (ADS)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  16. 30 CFR 250.1712 - What information must I submit before I permanently plug a well or zone?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permanently plug a well or zone? 250.1712 Section 250.1712 Mineral Resources MINERALS MANAGEMENT SERVICE... permanently plug a well or zone? Before you permanently plug a well or zone, you must submit form MMS-124... approval must contain the following information: (a) The reason you are plugging the well (or zone),...

  17. Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers

    SciTech Connect

    Nataf, J.M.; Winkelmann, F.

    1992-09-01

    We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of these methods to solving the partial differential equations for two-dimensional heat flow is illustrated.

  18. Automatic control of the ion-illumination angle in a spark-source mass spectrometer.

    PubMed

    Conzemius, R J; Svec, H J

    1973-05-01

    Automatic adjustment of only the spark-gap width in a spark-source mass spectrometer does not ensure that optimum conditions of electrode geometry are maintained with respect to the ion-optics system. A device has been developed which simultaneously maintains a constant gap width and also a more constant z-axis ion-illumination angle. This is the first development to utilize ion-optics parameters to adjust the sparking electrodes automatically. The system maintains the electrodes in an optimum configuration such that higher and more constant instrument sensitivity is maintained automatically. In addition, a significant improvement in the precision of instrumental response is demonstrated. It appears that relative isotopic abundances can be determined directly by the spark-source method which are comparable to those obtained in some cases by surface ionization or by electron bombardment. Results are given that support this contention. PMID:18961307

  19. Method and results of interpreting graduated measurements of wide gap spark chambers

    NASA Technical Reports Server (NTRS)

    Akimov, V. V.; Veselova, G. V.; Kozlov, V. D.

    1980-01-01

    Measurement of gamma ray telescope plates is discussed. The graduated measurements of the angular resolution of wide gap spark chambers using photographic, video and vidicon information gathering schemes are presented.

  20. Technology of fast spark gaps. Final report, October 1987-July 1988

    SciTech Connect

    Standler, R.B.

    1989-09-01

    To protect electronic systems from the effects of electromagnetic pulses (EMP) from nuclear weapons and high-power microwave (HPM) weapons, it is desirable to have fast-responding protection components. The gas-filled spark gap appears to be an attractive protection component, except that it can be slow to conduct under certain conditions. This report reviews the literature and presents ideas for construction of a spark gap that will conduct in less than one nanosecond. The key concept to making a fast-responding spark gap is to produce a large number of free electrons quickly. Seven different mechanisms for production of free electrons are reviewed, and several that are relevant to miniature spark gaps for protective applications are discussed in detail. These mechanisms include: inclusion of radioactive materials, photoelectric effect, secondary electrode emission from the anode, and field emission from the cathode.

  1. Natural Variation and Copulatory Plug Formation in Caenorhabditis Elegans

    PubMed Central

    Hodgkin, J.; Doniach, T.

    1997-01-01

    Most of the available natural isolates of the nematode Caenorhabditis elegans have been examined and compared with the standard laboratory wild type (Bristol N2). Molecular markers, in particular transposon restriction fragment length polymorphisms, were used to assign these isolates to 22 different races, for which brood size and spontaneous male frequency were determined. Several distinctive traits were observed in some of these races. One example is mab-23, in a race from Vancouver, which leads to severe distortion of male genitalia and prevents male mating. Another is gro-1, segregating in a Californian race, which is associated with slow growth, heat resistance and longevity. Many races differ from N2 in carrying a dominant allele at the plg-1 locus, causing copulatory plug formation by males. Properties and possible advantages of the plugging trait have been investigated. The dominant plg-1 allele does not lead to increased male mating efficiency, but males from a Stanford race (CB4855), in which the plugging trait was first observed, are much more virile than N2 males. Crosses between N2 and CB4855 indicate that the higher virility is due to multiple factors. Size differences between N2 and CB4855 are associated with factors mapping to LGV and LGX. PMID:9136008

  2. Plug cluster engine concept for in-space missions

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Aukerman, C. A.

    1979-01-01

    The development of a suitable orbital transfer vehicle (OTV) engine is discussed. The OTV's dimensions are limited by those of the Space Shuttle payload bay on which it will be carried. An approach to utilize the available diameter to achieve high area ratio and thus high engine performance, is presented. Unconventional nozzles, such as clusters of small thrusters around a large diameter contoured plug, are investigated to arrive at engine designs which feature lower chamber pressures, with attendant lower heat flux, lower wall temperature, longer fatigue life, and less critical turbomachinery. Attention is also given to plug nozzle technology, high area ratio module- and scarfed bell- Plug Cluster Engine (PCE) concepts, as well as PCE performance, weight, and assessment. A conceptual design of a PCE formed from a cluster of high area ratio, scarfed, bell nozzles proved to be competitive with bell and spike nozzle engines. PCE advantages cited include increased payload length due to shorter engine length, ability to increase or decrease the number of modules and thereby the thrust, and low cost due to utilization of off-the-shelf technology.

  3. Plug and Play Integration through Space Object Standardization

    NASA Technical Reports Server (NTRS)

    Boyce, Leslye; Meyers, Gary; Rigsbee, Emmett; Branch, William; Shaw, Jeffrey; Poole, David

    1999-01-01

    Plug and play is an industry standard promoted by Intel and Microsoft, and others that allows users to add and remove various input and output devices without making specific customizations to their systems. The idea behind concept is that using standard products eases integration of components and promotes capabilities of conforming products. The concept works because vendors comply with a standard specification. This paper reports the development of a reference architecture for the mission control domain, which is leveraging off this revolutionary concept. Standards are being developed at the application layer, which enable "plug and play" of mission software products. A Mission Control, reference architecture has been defined. For each sub-domain, the interfaces are modeled in Interface Definition Language (IDL). A subset of the IDL has been developed within both commercial off-the-shelf (COTS) and government (GOTS) products. Selected vendors have agreed to modify their products to be compatible with the defined IDL. The plug and play integration of these different products has been validated in a demonstration testbed.

  4. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    SciTech Connect

    Gupta, N.K.; Gong, Chung

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B&PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels.

  5. Selecting a Control Strategy for Plug and Process Loads

    SciTech Connect

    Lobato, C.; Sheppy, M.; Brackney, L.; Pless, S.; Torcellini, P.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.

  6. Laser ignition in internal-combustion engines: Sparkless initiation

    NASA Astrophysics Data System (ADS)

    Andronov, A. A.; Gurin, V. A.; Marugin, A. V.; Savikin, A. P.; Svyatoshenko, D. E.; Tukhomirov, A. N.; Utkin, Yu. S.; Khimich, V. L.

    2014-08-01

    Laser ignition has been implemented in a single-cylinder internal combustion engine fueled by gasoline. Indicator diagrams (cylinder pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pulses was below critical for spark initiation, while the radiation wavelength was outside the spectral range of optical absorption by hydrocarbon fuels. Apparently, the ignition starts due to radiation absorption by the oil residues or carbon deposit in the combustion chamber, so that the ability of engine to operate is retained. This initiation of spark-free ignition shows the possibility of using compact semiconductor quantum-cascade lasers operating at wavelengths of about 3.4 μm (for which the optical absorption by fuel mixtures is high) in ignition systems of internal combustion engines.

  7. Preparation and Characterization of Chemical Plugs Based on Selected Hanford Waste Simulants

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Parker, Kent E.; Cordova, Elsa A.; Gunderson, Katie M.; Baum, Steven R.; Crum, Jarrod V.; Poloski, Adam P.

    2008-09-15

    This report presents the results of preparation and characterization of chemical plugs based on selected Hanford Site waste simulants. Included are the results of chemical plug bench testing conducted in support of the M1/M6 Flow Loop Chemical Plugging/Unplugging Test (TP-RPP-WTP-495 Rev A). These results support the proposed plug simulants for the chemical plugging/ unplugging tests. Based on the available simulant data, a set of simulants was identified that would likely result in chemical plugs. The three types of chemical plugs that were generated and tested in this task consisted of: 1. Aluminum hydroxide (NAH), 2. Sodium aluminosilicate (NAS), and 3. Sodium aluminum phosphate (NAP). While both solvents, namely 2 molar (2 M) nitric acid (HNO3) and 2 M sodium hydroxide (NaOH) at 60°C, used in these tests were effective in dissolving the chemical plugs, the 2 M nitric acid was significantly more effective in dissolving the NAH and NAS plugs. The caustic was only slightly more effecting at dissolving the NAP plug. In the bench-scale dissolution tests, hot (60°C) 2 M nitric acid was the most effective solvent in that it completely dissolved both NAH and NAS chemical plugs much faster (1.5 – 2 x) than 2 M sodium hydroxide. So unless there are operational benefits for the use of caustic verses nitric acid, 2 M nitric acid heated to 60°C C should be the solvent of choice for dissolving these chemical plugs. Flow-loop testing was planned to identify a combination of parameters such as pressure, flush solution, composition, and temperature that would effectively dissolve and flush each type of chemical plug from preformed chemical plugs in 3-inch-diameter and 4-feet-long pipe sections. However, based on a review of the results of the bench-top tests and technical discussions, the Waste Treatment Plant (WTP) Research and Technology (R&T), Engineering and Mechanical Systems (EMS), and Operations concluded that flow-loop testing of the chemically plugged pipe

  8. SPARK: A Framework for Multi-Scale Agent-Based Biomedical Modeling

    PubMed Central

    Solovyev, Alexey; Mikheev, Maxim; Zhou, Leming; Dutta-Moscato, Joyeeta; Ziraldo, Cordelia; An, Gary; Vodovotz, Yoram; Mi, Qi

    2013-01-01

    Multi-scale modeling of complex biological systems remains a central challenge in the systems biology community. A method of dynamic knowledge representation known as agent-based modeling enables the study of higher level behavior emerging from discrete events performed by individual components. With the advancement of computer technology, agent-based modeling has emerged as an innovative technique to model the complexities of systems biology. In this work, the authors describe SPARK (Simple Platform for Agent-based Representation of Knowledge), a framework for agent-based modeling specifically designed for systems-level biomedical model development. SPARK is a stand-alone application written in Java. It provides a user-friendly interface, and a simple programming language for developing Agent-Based Models (ABMs). SPARK has the following features specialized for modeling biomedical systems: 1) continuous space that can simulate real physical space; 2) flexible agent size and shape that can represent the relative proportions of various cell types; 3) multiple spaces that can concurrently simulate and visualize multiple scales in biomedical models; 4) a convenient graphical user interface. Existing ABMs of diabetic foot ulcers and acute inflammation were implemented in SPARK. Models of identical complexity were run in both NetLogo and SPARK; the SPARK-based models ran two to three times faster. PMID:24163721

  9. Observation of Shell Structure, Electronic Screening, and Energetic Limiting in Sparks.

    PubMed

    Bataller, A; Putterman, S; Pree, S; Koulakis, J

    2016-08-19

    We study the formation of micron-sized spark discharges in high-pressure xenon on the nanosecond time scale. The spark's energy per length is measured through the expansion dynamics of the generated shock wave, and is observed to scale linearly with the spark radius. At the same time, the surface temperature of the spark channel remains constant. Together, these observations allow us to conclude that the spark channel, up to 40  μm in overall radius, is actually an energetically hollow shell about 20  μm thick. Further, the energy per nucleus in the shell is about 15 eV, independent of size and density. To reconcile these findings with the opacity to visible light, we appeal to collective screening processes that dramatically lower the effective ionization potential, allowing a much higher electron density than is otherwise expected. Thus, nanosecond measurements of sparks provide access to the thermodynamics and kinetics of strongly correlated plasmas. PMID:27588861

  10. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    SciTech Connect

    Tribioli, L. Cozzolino, R.; Barbieri, M.

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  11. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  12. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile Electricity" technologies and opportunities

    NASA Astrophysics Data System (ADS)

    Williams, Brett D.; Kurani, Kenneth S.

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H 2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" is characterized. Mobile Electricity (Me-) redefines H 2FCVs as innovative products able to import and export electricity across the traditional vehicle boundary. Such vehicles could provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. This study integrates and extends previous analyses of H 2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. Further, it uses a new electric-drive-vehicle and vehicular-distributed-generation model to estimate zero-emission-power versus zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. By framing market development in terms of new consumer value flowing from Me-, this study suggests a way to move beyond the battery versus fuel-cell zero-sum game and towards the development of integrated plug-in/plug-out hybrid platforms. As one possible extension of this Me- product platform, H 2FCVs might supply clean, high-power, and profitable Me- services as the technologies and markets mature.

  13. Liquid Plug Propagation in a Flexible Microchannel: Experimental and Numerical Studies

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Bian, Shiyao; Fujioka, Hideki; Torisawa, Yusuke; Huh, Dongeun; Takayama, Shuichi; Grotberg, James B.

    2008-11-01

    The lung's small airways can close due to the formation of a liquid plug bridge, or airway wall collapse or a combination of both in diseases such as chronic obstructive pulmonary disease (COPD) and respiratory distress syndrome (RDS), and in the external instillation of therapeutical drugs or surfactants. The propagation of a formed plug can produce high pressure, high shear stress, and large gradients of each, which may damage the cells lining the airway walls. This study is motivated by an interest in the effect of wall flexibility on the plug propagation and its resulting wall stresses in small airways. We fabricated a flexible microchannel to mimic the flexible small airways using soft lithography. As the plug propagates along the flexible microchannels, the local wall deformation is observed in the plug core region, which increases with plug speed but slightly increases with plug length. The pressure drop across the plug is measured and observed to increase with plug speed and is slightly smaller in a flexible channel compared to that in a rigid channel. A computational model is then presented to model the steady plug propagation through a flexible channel corresponding to the middle plane in the experimental device. The results show qualitative agreements with the experimental measurement.

  14. Low elastic modulus contributes to the osteointegration of titanium alloy plug.

    PubMed

    Zhang, Yongquan; Wang, Junlin; Wang, Pan; Fan, Xiangli; Li, Xiaokang; Fu, Jun; Li, Shujun; Fan, Hongbin; Guo, Zheng

    2013-05-01

    Resurfacing of cartilage defect with mini titanium plug is considered a promising alternative for the treatment of focal chondral defects. Elastic modulus of the metal implant plays a significant role in force transmission which influences the stability of plug. This study assessed the effects of two kinds of titanium alloy plug with different elastic modulus, that is, titanium 2448 (Ti2448) plug and titanium-6 aluminum-4 vanadium (TAV) plug on osteointegration. The full-thickness chondral defects were created in bilateral knees of dogs and then TAV and Ti2448 plugs were implanted, respectively. After 12 weeks, radiographic evaluation did not reveal any signs of disassembly, subsidence, or periprosthetic radiolucency in both groups. Microcomputed tomography analysis revealed that bone histomorphometric parameters in Ti2448 group were all significantly better than those of TAV group. Furthermore, the value of pullout force in Ti2448 group was also significantly higher. Histology showed that the screw threads of Ti2448 plug were well integrated into the newly formed bone. In contrast, the trabecular bone was sparsely distributed around TAV plug. In conclusion, Ti2448 plug with low elastic modulus showed more favorable characteristics in osteointegration. Ti2448 may be a promising biomaterial for fabricating mini plug applied for cartilage resurfacing. PMID:23255397

  15. Aeroacoustics of supersonic jet flows from contoured and solid/porous conical plug-nozzles

    NASA Technical Reports Server (NTRS)

    Dosanjh, Darshan S.; Das, Indu S.

    1987-01-01

    The results of an experimental study of the acoustic far-field, the shock associated noise, and the nature of the repetitive shock structure of supersonic jet flows issuing from plug-nozzles having externally-expanded plugs with pointed termination operated at a range of supercritical pressure ratios Xi approaching 2 to 4.5 are reported. The plug of one of these plug-nozzles was contoured. The other plug-nozzles had short conical plugs with either a solid surface or a combination of solid/porous surface of different porosities. The contoured and the uncontoured plug-nozzles had the same throat area and the same annulus-radius ratio K = R sub p/R sub N = 0.43. As the result of modifications of the shock structure, the acoustic performance of improperly expanded jet flows of an externally-expanded short uncontoured plug of an appropriate geometry with suitably perforated plug and a pointed termination, is shown to approach the acoustic performance of a shock-free supersonic jet issuing from an equivalent externally-expanded contoured plug-nozzle.

  16. Full Densification of Molybdenum Powders Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mouawad, B.; Soueidan, M.; Fabrègue, D.; Buttay, C.; Bley, V.; Allard, B.; Morel, H.

    2012-09-01

    Pure molybdenum powder was sintered using spark plasma sintering (SPS) under various temperatures and holding times, under a pressure of 77 MPa and a heating rate at 700 K/min (700 °C/min). After sintering, a carbide layer was observed at the surface. The carbide layer thickness, the relative density of the sample as well as the microhardness, and the grain size of Mo were measured. The carbide thickness depends on time and temperature, and it was found that the carbide layer grows in a parabolic manner, with the activation energy of carbon diffusion in Mo being equal to 34 Kcal/mol. The densification of Mo is controlled mainly by the sintering temperature and the holding time. The molybdenum powder was successfully consolidated by SPS in short times. A relative density of 100 pct is achieved at a sintering temperature of 2123.15 K (1850 °C) and a holding time of 30 minutes. It was shown that the hardness decreases slightly with temperature and time. It should be related to the increase in grain size with the sintering temperature and time.

  17. Full Densification of Molybdenum Powders Using Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Mouawad, B.; Soueidan, M.; Fabrègue, D.; Buttay, C.; Bley, V.; Allard, B.; Morel, H.

    2012-05-01

    Pure molybdenum powder was sintered using spark plasma sintering (SPS) under various temperatures and holding times, under a pressure of 77 MPa and a heating rate at 700 K/min (700 °C/min). After sintering, a carbide layer was observed at the surface. The carbide layer thickness, the relative density of the sample as well as the microhardness, and the grain size of Mo were measured. The carbide thickness depends on time and temperature, and it was found that the carbide layer grows in a parabolic manner, with the activation energy of carbon diffusion in Mo being equal to 34 Kcal/mol. The densification of Mo is controlled mainly by the sintering temperature and the holding time. The molybdenum powder was successfully consolidated by SPS in short times. A relative density of 100 pct is achieved at a sintering temperature of 2123.15 K (1850 °C) and a holding time of 30 minutes. It was shown that the hardness decreases slightly with temperature and time. It should be related to the increase in grain size with the sintering temperature and time.

  18. Social Interactions Sparked by Pictorial Warnings on Cigarette Packs

    PubMed Central

    Hall, Marissa G.; Peebles, Kathryn; Bach, Laura E.; Noar, Seth M.; Ribisl, Kurt M.; Brewer, Noel T.

    2015-01-01

    The Message Impact Framework suggests that social interactions may offer smokers the opportunity to process pictorial warnings on cigarette packs more deeply. We aimed to describe adult smokers’ social interactions about pictorial cigarette pack warnings in two longitudinal pilot studies. In Pilot Study 1, 30 smokers used cigarette packs with one of nine pictorial warnings for two weeks. In Pilot Study 2, 46 smokers used cigarette packs with one of five pictorial warnings for four weeks. Nearly all smokers (97%/96% in Pilot Study 1/2) talked about the warnings with other people, with the most common people being friends (67%/87%) and spouses/significant others (34%/42%). Pilot Study 2 found that 26% of smokers talked about the warnings with strangers. Discussions about the health effects of smoking and quitting smoking were more frequent during the first week of exposure to pictorial warnings than in the week prior to beginning the study (both p < 0.05). Pictorial warnings sparked social interactions about the warnings, the health effects of smoking, and quitting smoking, indicating that pictorial warnings may act as a social intervention reaching beyond the individual. Future research should examine social interactions as a potential mediator of the impact of pictorial warnings on smoking behavior. PMID:26506363

  19. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOEpatents

    Lawson, Robert N.; O'Malley, Martin W.; Rohwein, Gerald J.

    1986-01-01

    A high voltage spark gap switch including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  20. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOEpatents

    Lawson, R.N.; O'Malley, M.W.; Rohwein, G.J.

    A high voltage spark gap switch is disclosed including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  1. Interactions of multiple spark-generated bubbles with phase differences

    NASA Astrophysics Data System (ADS)

    Fong, Siew Wan; Adhikari, Deepak; Klaseboer, Evert; Khoo, Boo Cheong

    2009-04-01

    This paper aims to study the complex interaction between multiple bubbles, and to provide a summary and physical explanation of the phenomena observed during the interaction of two bubbles. High-speed photography is utilized to observe the experiments involving multiple spark-generated bubbles. Numerical simulations corresponding to the experiments are performed using the Boundary Element Method (BEM). The bubbles are typically between 3 and 5 mm in radius and are generated either in-phase (at the same time) or with phase differences. Complex phenomena are observed such as bubble splitting, and high-speed jetting inside a bubble caused by another collapsing bubble nearby (termed the ‘catapult’ effect). The two-bubble interactions are broadly classified in a graph according to two parameters: the relative inter-bubble distance and the phase difference (a new parameter introduced). The BEM simulations provide insight into the physics, such as bubble shape changes in detail, and jet velocities. Also presented in this paper are the experimental results of three bubble interactions. The interesting and complex observations of multiple bubble interaction are important for a better understanding of real life applications in medical ultrasonic treatment and ultrasonic cleaning. Many of the three bubble interactions can be explained by isolating bubble pairs and classifying their interaction according to the graph for the two bubble case. This graph can be a useful tool to predict the behavior of multiple bubble interactions.

  2. Social Interactions Sparked by Pictorial Warnings on Cigarette Packs.

    PubMed

    Hall, Marissa G; Peebles, Kathryn; Bach, Laura E; Noar, Seth M; Ribisl, Kurt M; Brewer, Noel T

    2015-10-01

    The Message Impact Framework suggests that social interactions may offer smokers the opportunity to process pictorial warnings on cigarette packs more deeply. We aimed to describe adult smokers' social interactions about pictorial cigarette pack warnings in two longitudinal pilot studies. In Pilot Study 1, 30 smokers used cigarette packs with one of nine pictorial warnings for two weeks. In Pilot Study 2, 46 smokers used cigarette packs with one of five pictorial warnings for four weeks. Nearly all smokers (97%/96% in Pilot Study 1/2) talked about the warnings with other people, with the most common people being friends (67%/87%) and spouses/significant others (34%/42%). Pilot Study 2 found that 26% of smokers talked about the warnings with strangers. Discussions about the health effects of smoking and quitting smoking were more frequent during the first week of exposure to pictorial warnings than in the week prior to beginning the study (both p < 0.05). Pictorial warnings sparked social interactions about the warnings, the health effects of smoking, and quitting smoking, indicating that pictorial warnings may act as a social intervention reaching beyond the individual. Future research should examine social interactions as a potential mediator of the impact of pictorial warnings on smoking behavior. PMID:26506363

  3. Turbulent flame propagation and combustion in spark ignition engines

    NASA Technical Reports Server (NTRS)

    Beretta, G. P.; Rashidi, M.; Keck, J. C.

    1983-01-01

    Pressure measurements synchronized with high-speed motion-picture records of flame propagation have been made in a transparent-piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model-independent way to obtain a set of empirical equations for calculating mass burning rates in spark-ignition engines. The burning equations contain three parameters: the laminar burning speed, a characteristic speed (uT), and a characteristic length (lT). The laminar burning speed is known from laboratory measurements. Tentative correlations relating uT and lT to engine geometry and operating variables have been derived from the engine data.

  4. Saffman-Taylor streamers: mutual finger interaction in spark formation.

    PubMed

    Luque, Alejandro; Brau, Fabian; Ebert, Ute

    2008-07-01

    Bunches of streamers form the early stages of sparks and lightning but theory presently concentrates on single streamers or on coarse approximations of whole breakdown trees. Here a periodic array of interacting streamer discharges in a strong homogeneous electric field is studied in density or fluid approximation in two dimensions. If the period of the streamer array is small enough, the streamers do not branch, but approach uniform translation. When the streamers are close to the branching regime, the enhanced field at the tip of the streamer is close to 2Einfinity, where Einfinity is the homogeneous field applied between the electrodes. We discuss a moving boundary approximation to the density model. This moving boundary model turns out to be essentially the same as the one for two-fluid Hele-Shaw flows. In two dimensions, this model possesses a known analytical solution. The shape of the two-dimensional interacting streamers in uniform motion obtained from the PDE simulations is actually well fitted by the analytically known "selected Saffman-Taylor finger." This finding helps to understand streamer interactions and raises new questions on the general theory of finger selection in moving boundary problems. PMID:18764034

  5. Nanostructured CoSi Obtained by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Longhin, Marco; Viennois, Romain; Ravot, Didier; Robin, Jean-Jacques; Villeroy, Benjamin; Vaney, Jean-Baptiste; Candolfi, Christophe; Lenoir, Bertrand; Papet, Philippe

    2015-06-01

    Cobalt monosilicide is a cheap, environmentally friendly thermoelectric material for medium temperatures (200-700°C). While its power factor is similar to the state-of-the-art thermoelectric materials, its thermal conductivity is too large to reach high ZT values. Nanostructuring might be an interesting strategy to reduce the phonon mean free path thereby improving the thermoelectric performance. In this paper, we report on a 35% reduction of the thermal conductivity of n-type CoSi by a nanostructuring approach. CoSi nanostructured powders were synthesized by arc melting, followed by 4° h mechanical milling. By optimizing the spark plasma sintering thermal and pressure cycle, pellets with 5â€"10% porosity were obtained. During sintering, a small amount of Co2Si extra phase appeared and grains coarsened. After sintering, the pellets remained nanostructured, with an averaged grain size of 70 nm. The reduction of thermal conductivity is ascribed to a decrease in both the electronic and lattice contributions. The former is directly related to a decrease in the electrical conductivity, which appears to be the limiting factor preventing nanostructured CoSi from reaching enhanced thermoelectric performances.

  6. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.; Alsagabi, Sultan F.

    2016-03-01

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr-Ti-La-O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 1024 m-3. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  7. Electro-spark deposited coatings for protection of materials

    SciTech Connect

    Johnson, R.N.

    1995-08-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The coating is fused (metallurgically bonded) to the substrate with such a low total heat input that the bulk substrate material remains at or near ambient temperature. Rapid solidification of the deposit typically results in an extremely fine-grained deposit that may be amorphous for some materials. Nearly any electrically conductive metal, alloy or cermet can be applied to metallic substrates. The ESD process allows multi-layer coatings to be built-up using different materials to create graded structures or surface compositions that would be difficult to achieve by other means. A series of iron-aluminide coatings based on Fe{sub 3}Al and FeAl in combination with refractory metal diffusion-barrier coatings and supplementary additions of other elements are in corrosion testing at ANL. The most recent FeAl coatings are showing a factor of three better corrosion performance than the best previous coatings. Technology transfer activities are a significant portion of the ESD program effort. Notable successes now include the start-up of a new business to commercialize the ESD technology, major new applications in gas turbine engines and steam turbine blade coatings, and in military, medical, metal-working, and recreational equipment applications.

  8. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  9. Analysis of hydrocarbon emissions from conventional spark-ignition engines

    SciTech Connect

    Shyy, W.

    1982-01-01

    The quench layer on the cylinder wall of a spark-ignition engine is modeled for the case where a tangential or swirl velocity exists. Both asymptotic and numerical methods of solution are used. The usual two layer structure is employed for the turbulent boundary layer and Crocco's integral is used to relate the temperature and velocity fields. The quench layer is defined as the region in which the temperature is less than an ignition temperature. In the first analysis only quenching is considered, and it is shown that the resulting concentration of hydrocarbons is much too high compared ot experimental results. Next, the model is extended to allow diffusion, and it is shown that in one stroke time the majority of the mass of unburned mixture in the original quench layer has diffused out and burned. Finally, tow means of replenishing the unburned mixture in the quench layer, consisting of the desorbing of fuel from the oil film and outgassing from the first ring crevice, are included in the model. Calculations are carried out using parameters associated with a typical production engine. Variations of unburned HC in the exhaust with several important engine parameters are presented. In eahc case, the trends of the calculated data agree with those found experimentally.

  10. Retention rates and benefits of Painless Punctal Plug F(TM) in dry eye patients.

    PubMed

    Javate, Reynaldo M; Dy, Ian Ethelbert C; Buyucan, Kathleen Faye N; Ma Guerrero, Elise Estelle T

    2016-06-01

    In this article, the authors attempt to determine the retention rate and benefits of Painless Punctal Plug F(TM) placed in patients diagnosed with dry eye. This is a prospective, observational cohort study. Forty patients diagnosed with dry eye underwent Painless Punctal Plug F placement in the inferior puncta (80 puncta) in a private clinic from January 2010 to July 2012. Patients were then followed up monthly for seven months taking note of plug retention, spontaneous plug loss, and complications. Retention rates of patients with mean age of 58.6 years were 100% after one month, 98.75% after two months, 96.25% after three months, 95% after four months, 93.75% after five months, and 92.5% after seven months. In the 80 plugs, three plugs underwent spontaneous punctal plug loss and three plugs were removed due to local discomfort. In total, 74 out of 80 plugs remained intact after seven months of follow-up. Kaplan-Meier analysis showed that there was propensity for spontaneous punctal plug loss or plug removal in the Sjogren group as compared to the non-Sjogren group. No complications were noted such as epiphora, local inflammatory reaction, nor canalicular pyogenic granuloma except for local discomfort. This study showed that Painless Punctal Plug F has a high retention rate with the following benefits, it has one-size, fitted for small to medium puncta; extended round end which made prior dilation unnecessary and once inserted, the soft round bulb fits snugly inside the punctum preventing plug loss. PMID:27163906

  11. Dialysis grafts arterial plug: Retrieval using the tulip sheath device in vitro

    SciTech Connect

    Sharafuddin, Melhem J.; Titus, Jack L.

    1997-03-15

    The 'arterial plug' is a resistant thrombus that frequently persists at the arterial anastomosis of clotted hemodialysis grafts following thrombolytic therapy. We studied the physical and morphological characteristics of the plug and determined the feasibility of transcatheter removal in vitro using the tulip compression thrombectomy system. Sixteen thrombus plugs were recovered during surgical thrombectomy of clotted human dialysis grafts. The physical and gross physical characteristics of all plugs were analyzed. Eight specimens were evaluated microscopically. Transcatheter compression thrombectomy of eight plugs was attempted in vitro. Each plug was embedded in a polyvinyl tube filled with newly clotted blood and connected to a flow circuit. First, balloon-assisted aspiration thrombectomy (BAT) of soft thrombus was performed, while sparing the distal-most segment containing the plug. The tulip sheath was then introduced facing the 'arterial end' of the tube. The thrombus segment containing the plug was pulled back into the tulip mesh using either a 3 Fr Fogarty balloon catheter or a self-expanding rake. The tulip was closed to compress and remove the trapped plug. Near-complete thrombectomy of soft clot was achieved in all tested tubes. Compression and retrieval of the entire arterial plug was successful in all except one, where only partial compression of the plug occurred, presumably due to fibrotic changes. No fragmentation or embolization occurred in the remaining procedures. Spongy consistency was noted in 94% of the specimens. Microscopic evaluation showed organized layered thrombus with compaction in five plugs. Transcatheter removal of a thrombus plug is feasible in vitro using the tulip compression-thrombectomy system.

  12. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    ERIC Educational Resources Information Center

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  13. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion. PMID:16270557

  14. Ferrofluid-based optofluidic switch using femtosecond laser-micromachined waveguides.

    PubMed

    Gu, Yu; Bragheri, Francesca; Valentino, Gianna; Morris, Karl; Bellini, Nicola; Osellame, Roberto

    2015-02-20

    We present a portable optofluidic switch using a ferrofluid plug in a commercially produced microfluidic chip with waveguides added via femtosecond laser micromachining (FLM). FLM enabled the one-step fabrication of highly reproducible, perfectly aligned integrated waveguides orthogonally crossing an existing microfluidic channel. In the "ON" state for each output, the ferrofluid plug is outside the intersection and input light arrives at the output with relatively small loss. In the "OFF" state, the plug is inside the intersection and the input light is absorbed. The same plug is used to turn ON and OFF several parallel waveguides with contrast ratios of 22 dB or better. In addition, the plug is driven periodically using an electromagnet combined with a permanent magnet for frequency-dependent characterization. Photodiode data show high contrast up to 50 Hz and linear frequency response up to 1 KHz. PMID:25968208

  15. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These

  16. Laser diode end-pumped ND:YAG laser. Memorandum report

    SciTech Connect

    Elder, I.F.

    1992-01-01

    100 Hz operation of a Nd:YAG laser longitudinally pumped by a 1 W peak power quasi-cw laser diode was investigated theoretically and experimentally. An optical-to-optical slope efficiency of 33%, indicating a wall-plug efficiency of 7%, was exhibited, but the threshold optical power of 330 mW was high due to poor antireflection coatings on the laser rod giving a round-trip intracavity loss of 3.1 %. The 1.064 micrometer output was observed to be diffraction-limited. The theoretical modelling of the laser's input/ output characteristics agreed well with the experimentally obtained results.

  17. Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water

    NASA Astrophysics Data System (ADS)

    Niu, Zhiwen; Wen, Xiaoqiong; Ren, Chunsheng; Qiu, Yuliang

    2016-08-01

    The temporally and spatially resolved optical emission spectrum of Hα of a pulsed spark discharge in water was experimentally measured. The temporally and spatially resolved electron densities, along the radial direction of the spark filament, for a pulsed spark discharge in water with a conductivity of 100 μS/cm were investigated. The electron density in the spark filament was found to be in the 1018/cm3 order of magnitude. The highest electron density was measured at the primary stage of the spark filament, and it decreased with time. The radial distribution of electron density increased from the center to the edge of the spark filament. supported in part by National Natural Science Foundation of China (Nos. 11275040 and 51437002)

  18. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  19. Densification behavior, nanocrystallization, and mechanical properties of spark plasma sintered Fe-based bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Singh, Ashish Kumar

    Fe-based amorphous alloys are gaining increasing attention due to their exceptional wear and corrosion resistance for potential structural applications. Two major challenges that are hindering the commercialization of these amorphous alloys are difficulty in processing of bulk shapes (diameter > 10 mm) and lack of ductility. Spark plasma sintering (SPS) is evolving as a promising technique for processing bulk shapes of amorphous and nanocrystalline materials. The objective of this work is to investigate densification behavior, nanocrystallization, and mechanical properties of SPS sintered Fe-based amorphous alloys of composition Fe48Cr15Mo14Y2C15B6. SPS processing was performed in three distinct temperature ranges of amorphous alloys: (a) below glass transition temperature (Tg), (b) between Tg and crystallization temperature (Tx), and (c) above Tx. Punch displacement data obtained during SPS sintering was correlated with the SPS processing parameters such as temperature, pressure, and sintering time. Powder rearrangement, plastic deformation below T g, and viscous flow of the material between Tg and Tx were observed as the main densification stages during SPS sintering. Micro-scale temperature distributions at the point of contact and macro-scale temperature distribution throughout the sample during SPS of amorphous alloys were modeled. The bulk amorphous alloys are expected to undergo structural relaxation and nanocrystallization during SPS sintering. X-ray diffraction (XRD), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) was performed to investigate the evolution of nanocrystallites in SPS sintered Fe-based bulk amorphous alloys. The SANS analysis showed significant scattering for the samples sintered in the supercooled region indicating local structural and compositional changes with the profuse nucleation of nano-clusters (~4 nm). Compression tests and microhardness were performed on the samples sintered at different

  20. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    NASA Astrophysics Data System (ADS)

    Stelmashuk, V.

    2014-01-01

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.