Science.gov

Sample records for laser-based projection lithography

  1. XUV free-electron laser-based projection lithography systems

    SciTech Connect

    Newnam, B.E.

    1990-01-01

    Free-electron laser sources, driven by rf-linear accelerators, have the potential to operate in the extreme ultraviolet (XUV) spectral range with more than sufficient average power for high-volume projection lithography. For XUV wavelengths from 100 nm to 4 nm, such sources will enable the resolution limit of optical projection lithography to be extended from 0.25 {mu}m to 0.05{mu}m and with an adequate total depth of focus (1 to 2 {mu}m). Recent developments of a photoinjector of very bright electron beams, high-precision magnetic undulators, and ring-resonator cavities raise our confidence that FEL operation below 100 nm is ready for prototype demonstration. We address the motivation for an XUV FEL source for commercial microcircuit production and its integration into a lithographic system, include reflecting reduction masks, reflecting XUV projection optics and alignment systems, and surface-imaging photoresists. 52 refs., 7 figs.

  2. Plasma formed ion beam projection lithography system

    SciTech Connect

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  3. Considerations for a free-electron laser-based extreme-ultraviolet lithography program

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.; Mangat, Pawitter J. S.; Preil, Moshe E.

    2015-03-01

    Recent years have seen great strides in the development of extreme ultraviolet (EUV) laser-produced plasma sources. Field deployed EUV exposure tools are now capable of facilitating advanced technology node development. Nevertheless, as the required manufacturing exposure dose scales, EUV sources must follow suit and provide 500- 1000 W to maintain production throughputs. A free-electron laser (FEL) offers a cost effective, single-source alternative for powering an entire EUV lithography program. FEL integration into semiconductor fab architecture will require both unique facility considerations as well as a paradigm shift in lithography operations. Critical accelerator configurations relating to energy recovery, multi-turn acceleration, and operational mode are discussed from engineering/scientific, cost-minimization, and safety perspectives. Furthermore, the individual components of a FEL (electron injector, RF systems, undulator, etc.) are examined with respect to both design and cost, considering existing technology as well as prospective innovations. Finally, FEL development and deployment roadmaps are presented, focusing on manufacturer deployment for the 5 nm or 3 nm technology nodes.[1-3

  4. Novel electrostatic column for ion projection lithography

    SciTech Connect

    Chalupka, A.; Stengl, G.; Buschbeck, H.; Lammer, G.; Vonach, H.; Fischer, R.; Hammel, E.; Loeschner, H.; Nowak, R.; Wolf, P. ); Finkelstein, W.; Hill, R.W. ); Berry, I.L. ); Harriott, L.R. ); Melngailis, J. ); Randall, J.N. ); Wolfe, J.C. ); Stroh, H.; Wollnik, H. ); Mondelli, A.A.; Petillo, J.J. ); Leung, K. (Lawrence Berkeley Laboratory, University of Californi

    1994-11-01

    Ion projection lithography (IPL) is being considered for high volume sub-0.25-[mu]m lithography. A novel ion-optical column has been designed for exposing 20[times]20 mm[sup 2] fields at 3[times] reduction from stencil mask to wafer substrates. A diverging lens is realized by using the stencil mask as the first electrode of the ion-optical column. The second and third electrode form an accelerating field lens. The aberrations of the first two lenses (diverging lens and field lens) are compensated by an asymmetric Einzel lens projecting an ion image of the stencil mask openings onto the wafer substrate with better than 2 mrad telecentricity. Less than 30 nm intrafield distortion was calculated within 20[times]20 mm[sup 2] exposure fields. The calculation uncertainty is estimated to be about 10 nm. The calculation holds for helium ions with [approx]10 keV ion energy at the stencil mask and 150 keV ion energy at the wafer plane. A virtual ion source size of 10 [mu]m has been assumed. The calculated chromatic aberrations are less than 60 nm, assuming 6 eV energy spread of the ions extracted from a duoplasmatron source. Recently a multicusp ion source has been developed for which preliminary results indicate an energy spread of less than 2 eV. Thus, with a multicusp source chromatic aberrations of less than 20 nm are to be expected. The ion energy at the crossover between the field lens and the asymmetric Einzel lens is 200 keV. Therefore, stochastic space charge induced degradations in resolution can be kept sufficiently low. The divergence of the ion image projected to the wafer plane is less than 2 mrad. Thus, the usable'' depth of focus for the novel ion optics is in the order of 10 [mu]m.

  5. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  6. Illumination optimization in optical projective lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Hai-bo; Xing, Ting-wen; Du, Meng; Chen, An

    2013-08-01

    As lithography still pushing toward to lower K1 imaging, traditional illumination source shapes may perform marginally in resolving complex layouts, freeform source shapes are expected to achieve better image quality. Illumination optimization as one of inverse lithography techniques attempts to synthesize the input source which leads to the desired output wafer pattern by inverting the forward model from mask to wafer. Usually, inverse lithography problem could be solved by standard numerical methods. Recently, a set of gradient-based numerical methods have been developed to solve the mask optimization problem based on Hopkins' approach. In this study, the same method is also applied to resolve the illumination optimization but based on Abbe imaging formulation for partially coherent illumination. Firstly we state a pixel-based source representation, and analyze the constraint condition for source intensity. Secondly, we propose an objective function which includes three aspects: image fidelity, source smoothness and discretization penalty. Image fidelity is to ensure that the image is as close to the given mask as possible. Source smoothness and discretization penalty are to decrease the source complexity. All of the three items could be described mathematically. Thirdly, we describe the detailed optimization flow, and present the advantages of using Abbe imaging formulation as calculation mode of light intensity. Finally, some simulations were done with initial conventional illumination for 90nm isolated, dense and elbow features separately. As a result, we get irregular dipole source shapes for isolated and dense pattern, and irregular quadrupole for elbow pattern. The results also show that our method could provide great improvements in both image fidelity and source complexity.

  7. TECHNICAL NOTE: Micro projection lithography using microlens on a mask

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G.

    2009-12-01

    A micro projection lithography process has been implemented using a photomask having arrays of cylindrical or spherical plano-convex microlenses formed by thermal reflow in proximity exposure mode. This approach provides a practical means to generate patterns inside deep cavities without proximity-based pattern size increases. The generated pattern size can be controlled by controlling the focal depth of the microlens. A maximum pattern size reduction of 62% has been achieved at the bottom of a 216 µm deep trench with a cylindrical microlens having a focal length of 254 µm for a 60 µm square pattern. The effect of the microlens on the lithography process, including the relationship between the focal depth, exposure dose and pattern size, has been analyzed.

  8. Critical illumination condenser for extreme ultraviolet projection lithography

    NASA Astrophysics Data System (ADS)

    Cohen, S. J.; Seppala, L. G.

    1995-03-01

    A condenser system couples a radiation source to an imaging system. The authors have designed a critical illumination condenser system which meets the technical challenges of extreme ultraviolet projection lithography based on a ring field imaging system and a laser produced plasma source. The optical system, a three spherical mirror optical design, is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. This type of condenser optical design is sufficiently versatile to be employed with two distinct systems, one from Lawrence Livermore National Laboratory and one from AT and T/Sandia.

  9. Advanced laser driver for soft x-ray projection lithography

    SciTech Connect

    Zapata, L.E.; Beach, R.J.; Dane, C.B.; Reichert, P.; Honig, J.N.; Hackel, L.A.

    1994-03-01

    A diode-pumped Nd:YAG laser for use as a driver for a soft x-ray projection lithography system is described. The laser will output 0.5 to 1 J per pulse with about 5 ns pulse width at up to 1.5 kHz repetition frequency. The design employs microchannel-cooled diode laser arrays for optical pumping, zigzag slab energy storage, and a single frequency oscillator injected regenerative amplifier cavity using phase conjugator beam correction for near diffraction limited beam quality. The design and initial results of this laser`s activation experiments will be presented.

  10. Fabrication and testing of optics for EUV projection lithography

    SciTech Connect

    Taylor, J. S., LLNL

    1998-03-18

    EUV Lithography (EUVL) is a leading candidate as a stepper technology for fabricating the ``0.1 {micro}m generation`` of microelectronic circuits. EUVL is an optical printing technique qualitatively similar to DUV Lithography (DUVL), except that 11-13nm wavelength light is used instead of 193-248nm. The feasibility of creating 0.1{micro}m features has been well-established using small-field EUVL printing tools and development efforts are currently underway to demonstrate that cost-effective production equipment can be engineered to perform full-width ring-field imaging consistent with high wafer throughput rates Ensuring that an industrial supplier base will be available for key components and subsystems is crucial to the success of EUVL. In particular, the projection optics are the heart of the EUVL imaging system, yet they have figure and finish specifications that are beyond the state-of-the-art in optics manufacturing. Thus it is important to demonstrate that industry will be able to fabricate and certify these optics commensurate with EUVL requirements. Indeed, the goal of this paper is to demonstrate that procuring EUVL projection optical substrates is feasible. This conclusion is based on measurements of both commercially-available and developmental substrates. The paper discusses EUVL figure and finish specifications, followed by examples of ultrasmooth and accurate surfaces, and concludes with a discussion of how substrates are measured and evaluated.

  11. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  12. Lithography trends based on projections of the ITRS (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Arden, Wolfgang

    2005-06-01

    The microelectronic industry has gone through an enormous technical evolution in the last four decades. Both the tech-nological and economic challenges of microelectronics were increasing consistently in the past few years. This paper discusses the future trends in micro- and nano-technologies with special emphasis on lithography. The trends of minia-turization will be sketched with reference to the International Technology Roadmap for Semiconductors (ITRS). After a description of general trends in technology node timing, an overview will be given on the future lithography require-ments and the technical solutions including options for post-optical lithography as, for example, Extreme UV.

  13. FIB mask repair technology for electron projection lithography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoh; Hasuda, Masakatsu; Suzuki, Hiroyuki; Sato, Makoto; Takaoka, Osamu; Matsumura, Hiroshi; Matsumoto, Noboru; Iwasaki, Kouji; Hagiwara, Ryoji; Suzuki, Katsumi; Ikku, Yutaka; Aita, Kazuo; Kaito, Takashi; Adachi, Tatsuya; Yasaka, Anto; Yamamoto, Jiro; Iwasaki, Teruo; Yamabe, Masaki

    2004-08-01

    We have studied stencil mask repair technology with focused ion beam and developed an advanced mask repair tool for electron projection lithography. There were some challenges in the stencil mask repair, which were mainly due to its 3-dimensional structure with aspect ratio more than 10. In order to solve them, we developed some key technologies with focused ion beam (FIB). The transmitted FIB detection technique is a reliable imaging method for a 3-dimensional stencil mask. This technique makes it easy to observe deep patterns of the stencil mask and to detect the process endpoint. High-aspect processing can be achieved using gas-assisted etching (GAE) for a stencil mask. GAE enables us to repair mask patterns with aspect ratio more than 50 and very steep sidewall angle within 90+/-1°precisely. Edge placement accuracy of the developed tool is about 14nm by manual operation. This tool is capable to achieve less than 10nm by advanced software. It was found that FIB technology had capability to satisfy required specifications for EPL mask repair.

  14. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOEpatents

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  15. Synchrotron radiation sources and condensers for projection x-ray lithography

    SciTech Connect

    Murphy, J.B.; MacDowell, A.A. ); White, D.L. ); Wood, O.R. II )

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130[Angstrom] photons for production line projection x-ray lithography is possible.

  16. Synchrotron radiation sources and condensers for projection x-ray lithography

    SciTech Connect

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-11-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130{Angstrom} photons for production line projection x-ray lithography is possible.

  17. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  18. Research progress of wavefront aberration metrology equipment of lithography projection lens

    NASA Astrophysics Data System (ADS)

    Yu, Changsong; Xiang, Yang

    2012-10-01

    The wavefront aberration of lithography projection lens is very important performance parameter. High-accuracy interferometer is a cornerstone requirement for the success of projection lithography lens. Recent development of the international high-accuracy wavefront aberration metrology technology of projection lens is described. Several high-accuracy measurement methods based on phase measurement interferometry (PMI) principle of lens wavefront aberrations are analyzed and compared and the merits and demerits of these measurement methods are also discussed. The dominating test technology types of mainstream companies and research organizations as well as their performance parameters are reviewed. Moreover, the performance and key technologies of point diffraction interferometer (PDI) and lateral shearing interferometer (LSI) are emphatically analyzed. Finally, the trend of high-precision system wavefront aberration test technique is described.

  19. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect.

    PubMed

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method's theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  20. Multi-Repeated Projection Lithography for High-Precision Linear Scale Based on Average Homogenization Effect

    PubMed Central

    Ren, Dongxu; Zhao, Huiying; Zhang, Chupeng; Yuan, Daocheng; Xi, Jianpu; Zhu, Xueliang; Ban, Xinxing; Dong, Longchao; Gu, Yawen; Jiang, Chunye

    2016-01-01

    A multi-repeated photolithography method for manufacturing an incremental linear scale using projection lithography is presented. The method is based on the average homogenization effect that periodically superposes the light intensity of different locations of pitches in the mask to make a consistent energy distribution at a specific wavelength, from which the accuracy of a linear scale can be improved precisely using the average pitch with different step distances. The method’s theoretical error is within 0.01 µm for a periodic mask with a 2-µm sine-wave error. The intensity error models in the focal plane include the rectangular grating error on the mask, static positioning error, and lithography lens focal plane alignment error, which affect pitch uniformity less than in the common linear scale projection lithography splicing process. It was analyzed and confirmed that increasing the repeat exposure number of a single stripe could improve accuracy, as could adjusting the exposure spacing to achieve a set proportion of black and white stripes. According to the experimental results, the effectiveness of the multi-repeated photolithography method is confirmed to easily realize a pitch accuracy of 43 nm in any 10 locations of 1 m, and the whole length accuracy of the linear scale is less than 1 µm/m. PMID:27089348

  1. New metrology stage for ion projection lithography made of glass ceramics

    NASA Astrophysics Data System (ADS)

    Risse, Stefan; Peschel, Thomas; Damm, Christoph; Kirschstein, Ulf Carsten

    1999-09-01

    In the next few years a new chip-generation with structure sizes well below 100 nm and high complexity will require novel, so-called 'future lithography' processes. One of these new technologies is the Ion Projection Lithography. Within the framework of a large European project lead by SIEMENS, the necessary technologies are developed and the first pilot system will be built. In this system, one of the most important units is a high precision wafer stage. The heart of the stage system is the so-called metrology - plate with integrated electrostatic wafer chuck and handling unit. The design of this novel stage system is described in this contribution. Extensive FEM-simulations from the basis of the present design. All major components are made from glass-ceramics to guarantee the highest possible thermal and mechanical stability. Not only in the field of lithography many modern precision mechanical systems require position tolerances in the sub-micrometer and seconds of arc range. Strong systems solutions can be developed by the effort of glass-ceramics and new and traditional manufacturing processes.

  2. High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography.

    PubMed

    Bonakdar, Alireza; Rezaei, Mohsen; Dexheimer, Eric; Mohseni, Hooman

    2016-01-22

    In this paper, we present a low-cost and high-throughput nanofabrication method to realize metasurfaces that have selective absorption/emission in the mid-infrared region of the electromagnetic spectrum. We have developed DUV projection lithography to produce arbitrary patterns with sub-80 nm feature sizes. As examples of practical applications, we experimentally demonstrate structures with single and double spectral absorption/emission features, and in close agreement with numerical simulation. The fundamental mechanism of perfect absorption is discussed as well. Selective infrared absorbers/emitters are critical elements in realizing efficient thermophotovoltaic cells and high-performance biosensors. PMID:26650855

  3. High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography

    NASA Astrophysics Data System (ADS)

    Bonakdar, Alireza; Rezaei, Mohsen; Dexheimer, Eric; Mohseni, Hooman

    2016-01-01

    In this paper, we present a low-cost and high-throughput nanofabrication method to realize metasurfaces that have selective absorption/emission in the mid-infrared region of the electromagnetic spectrum. We have developed DUV projection lithography to produce arbitrary patterns with sub-80 nm feature sizes. As examples of practical applications, we experimentally demonstrate structures with single and double spectral absorption/emission features, and in close agreement with numerical simulation. The fundamental mechanism of perfect absorption is discussed as well. Selective infrared absorbers/emitters are critical elements in realizing efficient thermophotovoltaic cells and high-performance biosensors.

  4. LENS (lithography enhancement toward nano scale): a European project to support double exposure and double patterning technology development

    NASA Astrophysics Data System (ADS)

    Cantu, Pietro; Baldi, Livio; Piacentini, Paolo; Sytsma, Joost; Le Gratiet, Bertrand; Gaugiran, Stéphanie; Wong, Patrick; Miyashita, Hiroyuki; Atzei, Luisa R.; Buch, Xavier; Verkleij, Dick; Toublan, Olivier; Perez-Murano, Francesco; Mecerreyes, David

    2010-04-01

    In 2009 a new European initiative on Double Patterning and Double Exposure lithography process development was started in the framework of the ENIAC Joint Undertaking. The project, named LENS (Lithography Enhancement Towards Nano Scale), involves twelve companies from five different European Countries (Italy, Netherlands, France, Belgium Spain; includes: IC makers (Numonyx and STMicroelectronics), a group of equipment and materials companies (ASML, Lam Research srl, JSR, FEI), a mask maker (Dai Nippon Photomask Europe), an EDA company (Mentor Graphics) and four research and development institutes (CEA-Leti, IMEC, Centro Nacional de Microelectrónica, CIDETEC). The LENS project aims to develop and integrate the overall infrastructure required to reach patterning resolutions required by 32nm and 22nm technology nodes through the double patterning and pitch doubling technologies on existing conventional immersion exposure tools, with the purpose to allow the timely development of 32nm and 22nm technology nodes for memories and logic devices, providing a safe alternative to EUV, Higher Refraction Index Fluids Immersion Lithography and maskless lithography, which appear to be still far from maturity. The project will cover the whole lithography supply chain including design, masks, materials, exposure tools, process integration, metrology and its final objective is the demonstration of 22nm node patterning on available 1.35 NA immersion tools on high complexity mask set.

  5. Stitching accuracy measurement system for EB direct writing and electron-beam projection lithography (EPL)

    NASA Astrophysics Data System (ADS)

    Tamura, Takao; Ema, Takahiro; Nozue, Hiroshi; Sugahara, Tamoya; Sugano, Akio; Nitta, Jun

    2001-08-01

    We have developed a stitching accuracy measurement system for electron beam (EB) direct writing and electron beam projection lithography (EPL). This system calculates the amount of a stitching error between two EB shots from SEM images. It extracts a representative edge line of each pattern from the graphical format files (BMP, JPEG etc.) of SEM images and calculates a distance between each edge line as a stitching error. For obtaining a higher stitching accuracy of EB direct writing or EPL machines, it can analyze the relation of amounts and direction of a stitching error with a field size or a field position of these machines. We could successfully measure about 2.0 nm as a stitching error value in 0.1 micrometers L/S resist patterns on a bare-Si substrate and obtain 1.2 nm (3(sigma) ) as the measurement repeatability. It took 2.5 sec. for this system to measure one stitching region.

  6. Multilayer coatings of 10x projection for extreme-ultraviolet lithography

    SciTech Connect

    Folta, J A; Montcalm, C; Spiller, E; Wedowski, M

    1999-03-09

    Two new sets of projections optics for the prototype 10X reduction EUV lithography system were coated with Mo/Si multilayers. The coating thickness was graded across the optics by using shadow masks to ensure maximum throughput at all incidence angles in the camera. The overall deviation of the (normalized) wavelength response across the clear aperture of each mirror is below 0.01% RMS. However, the wavelength mismatch between two optics coated in different runs is up to 0.07 nm. Nevertheless, this is still within the allowed tolerances, and the predicted optical throughput loss in the camera due to such wavelength mismatch is about 4%. EUV reflectances of 63-65% were measured around 13.40 nm for the secondary optics, which is in good agreement with the expected reflectance based on the substrate finish as measured with AFM.

  7. Robust Control Design for Vibration Isolation of an Electron Beam Projection Lithography System

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Cheng; Hong, Min-Feng; Yen, Jia-Yush

    2010-06-01

    This paper describes vibration control for an electron beam projection lithography (EPL) system. Two kinds of disturbances should be considered for an EPL: load disturbances from the machine and ground disturbances from the environment. However, the suspension settings for insulating these two disturbances conflict with each other. Therefore, we propose a double-layer optical table and apply disturbance response decomposing (DRD) techniques to independently control the disturbances. We use a passive control structure to isolate the ground disturbances, and an active control structure to suppress load disturbances. In addition, symmetric transformation is applied to decouple a full optical table into bounce/pitch and roll/warp half-table models, which can be further decoupled into quarter-table models to simplify controller design. Finally, we apply robust control techniques to design active controllers. From both simulation and experimental results, the designed H∞ robust controllers are proven effective in reducing EPL system vibrations.

  8. A method for compensating the polarization aberration of projection optics in immersion lithography

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Li, Yanqiu; Liu, Lihui; Han, Chunying; Liu, Xiaolin

    2014-08-01

    As the numerical aperture (NA) of 193nm immersion lithography projection optics (PO) increasing, polarization aberration (PA) leads to image quality degradation seriously. PA induced by large incident angle of light, film coatings and intrinsic birefringence of lens materials cannot be ignored. An effective method for PA compensation is to adjust lens position in PO. However, this method is complicated. Therefore, in this paper, an easy and feasible PA compensation method is proposed: for ArF lithographic PO with hyper NA (NA=1.2), which is designed by our laboratory, the PA-induced critical dimension error (CDE) can be effectively reduced by optimizing illumination source partial coherent factor σout. In addition, the basic idea of our method to suppress pattern placement error (PE) is to adopt anti-reflection (AR) multi-layers MgF2/LaF3/MgF2 and calcium fluoride CaF2 of [111] crystal axes. Our simulation results reveal that the proposed method can effectively and quantificationally compensate large PA in the optics. In particular, our method suppresses the dynamic range of CDE from -12.7nm ~ +4.3nm to -1.1nm ~ +1.2nm, while keeping PE at an acceptable level.

  9. VUV lithography

    DOEpatents

    George, Edward V.; Oster, Yale; Mundinger, David C.

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  10. VUV lithography

    DOEpatents

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  11. Lithography equipment

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    1996-07-01

    Until recently, lithography capability evolved consistently with Moore's law. It appears that semiconductor manufacturers are now deviating from Moore's law, which has implications for lithography equipment. DUV lithography is moving into production in a mix-and-match environment. Step- and-scan technology is the wave of the near-future, as a way to contend with the difficulty of manufacturing wide-field lenses. Resist processing equipment will undergo few fundamental changes, but will often be integrated with steppers, particularly for DUV applications. Metrology is being stretched beyond its limits for technologies below 250 nm. The move is on to 300 m diameter wafers, and 193 nm lithography is under consideration.

  12. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  13. Multi-stencil character projection e-beam lithography: a fast and flexible way for high quality optical metamaterials

    NASA Astrophysics Data System (ADS)

    Huebner, Uwe; Falkner, Matthias; Zeitner, Uwe D.; Banasch, Michael; Dietrich, Kay; Kley, Ernst-Bernhard

    2014-10-01

    In this work we report on the strong improvement of pattern quality and significant write-time reduction using Character Projection with a multi-stencil character stage with more than 2000 apertures for the fabrication of nanomaterials and, in particular, on an optical metamaterial, which is called "Metamaterial Perfect Absorber". The Character Projection ebeam lithography allows the transition from the time-consuming serial to a fast quasi-parallel writing method and opens the way for the fabrication of device areas which are impossible to realize with often in the R&D used SEM based Gaussian electron beam-writers. More than 150.000 times faster than the comparable Gaussian E-beam exposure, 100 times faster and with a factor of 10 improved pattern size homogeneity than the corresponding Variable Shaped E-beam exposure - these are our main results for the fabrication of optical metamaterials using a Variable Shaped E-beam with Character Projection.

  14. Efficient fabrication of complex nano-optical structures by E-beam lithography based on character projection

    NASA Astrophysics Data System (ADS)

    Zeitner, Uwe D.; Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Schmidt, Holger; Kley, Ernst-Bernhard

    2014-03-01

    The fabrication of complex nano-optical structures for plasmonics, photonic-crystals, or meta-materials on application relevant areas by electron-beam lithography requires a highly parallel writing strategy. In case of periodic pattern as they are found in most of the mentioned optical elements this can be achieved by a so called character projection writing principle where complex exposure pattern are coded in a stencil mask and exposed with a single shot. Resulting shotcount and writing time reductions compared to standard Variable-Shaped-Beam exposures can be in the order of 100...10000. The limitation in flexibility by using hard-coded exposure shapes can be overcome by implementing the character projection principle with a highly precise motorized aperture stage capable of carrying several 1000 different apertures. Examples of nano-optical elements fabricated with the new character projection principle are presented.

  15. The DARPA compact superconducting x-ray lithography source features. [Defense Advanced Research Projects Agency (DARPA)

    SciTech Connect

    Heese, R. ); Kalsi, S. ); Leung, E. . Space Systems Div.)

    1991-01-01

    Under DARPA sponsorship, a compact Superconducting X-ray Lithography Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. This source is optimized for lithography work for sub-micron high density computer chips, and is about the size of a billiard table (1.5 m {times} 4.0 m). The machine has a racetrack configuration with two 180{degree} bending magnets being designed and built by General Dynamics under a subcontract with Grumman Corporation. The machine will have 18 photon ports which would deliver light peaked at a wave length of 10 Angstroms. Grumman is commercializing the SXLS device and plans to book orders for delivery of industrialized SXLS (ISXLS) versions in 1995. This paper will describe the major features of this device. The commercial machine will be equipped with a fully automated user-friendly control systems, major features of which are already working on a compact warm dipole ring at BNL. This ring has normal dipole magnets with dimensions identical to the SXLS device, and has been successfully commissioned. 4 figs., 1 tab.

  16. Performance of beta tool for low-energy electron-beam proximity-projection lithography (LEEPL)

    NASA Astrophysics Data System (ADS)

    Yoshida, Akira; Kasahara, Haruo; Higuchi, Akira; Nozue, Hiroshi; Endo, Akihiro; Shimazu, Nobuo

    2003-06-01

    The two LEEPL beta-tools were completed in earlier 2002 and have been evaluated for the performance. 50nm CH patterns and 70nm L/S patterns are attained and the CD uniformity of 70nm L/S patterns with 37 shots on a 200mm wafer is under 4nm with the LEEPL beta-tools. In addition, it is proven that the fine tuning deflector can correct a mask and a wafer distortion by giving a minute angle to the electron beam. The mask distortion with respect to orthogonality and magnification is decreased on a wafer by 1/5. By means of this fine tuning deflector, Mix & Match accuracy with any other lithography tools will be better and difficulty of 1X stencil mask fabrication wil be easier. Referring to the data which has been obtained with the evaluation of the LEEPL beta-tools, the first LEEPL production tool dubbed "LEEPL-3000" is under construction to realize the satisfactory ability for 65nm node device fabrication. The shipping of the first LEEPL-3000 is scheduled in earlier 2003 and it is earlier than any other Next Generation Lithography technologies.

  17. Electron-beam lithography with character projection exposure for throughput enhancement with line-edge quality optimization

    NASA Astrophysics Data System (ADS)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-03-01

    Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.

  18. Enhanced defect detection capability using learning system for extreme ultraviolet lithography mask inspection tool with projection electron microscope optics

    NASA Astrophysics Data System (ADS)

    Hirano, Ryoichi; Hatakeyama, Masahiro; Terao, Kenji; Watanabe, Hidehiro

    2016-04-01

    Extreme ultraviolet lithography (EUVL) patterned mask defect detection is a major issue that must be addressed to realize EUVL-based device fabrication. We have designed projection electron microscope (PEM) optics for integration into a mask inspection system, and the resulting PEM system performs well in half-pitch (hp) 16-nm-node EUVL patterned mask inspection applications. A learning system has been used in this PEM patterned mask inspection tool. The PEM identifies defects using the "defectivity" parameter that is derived from the acquired image characteristics. The learning system has been developed to reduce the labor and the costs associated with adjustment of the PEM's detection capabilities to cope with newly defined mask defects. The concepts behind this learning system and the parameter optimization flow are presented here. The learning system for the PEM is based on a library of registered defects. The learning system then optimizes the detection capability by reconciling previously registered defects with newly registered defects. Functional verification of the learning system is also described, and the system's detection capability is demonstrated by applying it to the inspection of hp 11-nm EUV masks. We can thus provide a user-friendly mask inspection system with reduced cost of ownership.

  19. Multilayer and grazing incidence X-ray/EUV optics for astronomy and projection lithography; Proceedings of the Meeting, San Diego, CA, July 19-22, 1992

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1993-01-01

    The present volume on multilayer and grazing incidence X-ray/EUV optics for astronomy and projection lithography discusses AXAF grazing incidence mirrors, the theory and high throughput optics of grazing incidence optics, multilayer mirror fabrication and characterization, and multilayer optics for X-ray projection lithography. Attention is given to the VETA-I X-ray detection system, a motion detection system for AXAF X-ray ground testing, image analysis of the AXAF VETA-I X-ray mirror, and optical constants from mirror reflectivities measured at synchrotrons. Topics discussed include the application of aberration theory to calculate encircled energy of Wolter I-II telescopes, W/C multilayers deposited on plastic films, nonspecular X-ray scattering from Si/Mo multilayers, and multilayer thin-film design as FUV polarizers. Also discussed are thin-film filter lifetesting results in the EUV, chromospheric and coronal observations with multilayer optics, present and future requirements of soft X-ray projection lithography, and the imaging Schwarzschild multilayer X-ray microscope.

  20. Soft-x-ray projection lithography experiments using Schwarzschild imaging optics

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.; Stulen, R.H.; Haney, S.J.; Berger, K.W.; Brown, L.A. ); Sweatt, W.C. ); Bjorkholm, J.E.; Freeman, R.R.; Himel, M.D.; MacDowell, A.A.; Tennant, D.M.; Wood II, O.R. ); Bokor, J.; Jewell, T.E.; Mansfield, W.M.; Waskiewicz, W.K.; White, D.L.; Windt, D.L. )

    1993-12-01

    Soft-x-ray projection imaging is demonstrated by the use of 14-nm radiation from a laser plasma source and a single-surface multilayer-coated ellipsoidal condenser. Aberrations in the condenser and the Schwarzschild imaging objective are characterized and correlated with imaging performance. A new Schwarzschild housing, designed for improved alignment stability, is described.

  1. Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier

    SciTech Connect

    Kuznetsov, A. P.; Buzhinskij, R. O.; Gubskii, K. L.; Savjolov, A. S.; Sarantsev, S. A.; Terekhin, A. N.

    2010-05-15

    A novel method for visualization of the process of interaction of high-power energy fluxes with various surfaces is proposed. The possibility of the dynamic visualization of a surface covered with a {approx}3-cm-thick plasma layer with a linear density of {approx}10{sup 16} cm{sup -2} is demonstrated experimentally. A scheme of intracavity shadowgraphy of phase objects with the use of a laser projection microscope is developed. Shadow images illustrating the development of the plasma torch of an erosion capillary discharge in air are presented.

  2. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell; Shafer, David

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  3. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  4. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell; Shafer, David R.

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receive a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  5. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOEpatents

    Hudyma, Russell

    2000-01-01

    An all-refelctive optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six refelecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  6. Maskless lithography

    DOEpatents

    Sweatt, William C.; Stulen, Richard H.

    1999-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  7. Membrane projection lithography

    DOEpatents

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  8. EUV lithography

    NASA Astrophysics Data System (ADS)

    Kemp, Kevin; Wurm, Stefan

    2006-10-01

    Extreme ultraviolet lithography (EUVL) technology and infrastructure development has made excellent progress over the past several years, and tool suppliers are delivering alpha tools to customers. However, requirements in source, mask, optics, and resist are very challenging, and significant development efforts are still needed to support beta and production-level performance. Some of the important advances in the past few years include increased source output power, tool and optics system development and integration, and mask blank defect reduction. For example, source power has increased to levels approaching specification, but reliable source operation at these power levels has yet to be fully demonstrated. Significant efforts are also needed to achieve the resolution, line width roughness, and photospeed requirements for EUV photoresists. Cost of ownership and extendibility to future nodes are key factors in determining the outlook for the manufacturing insertion of EUVL. Since wafer throughput is a critical cost factor, source power, resist sensitivity, and system design all need to be carefully considered. However, if the technical and business challenges can be met, then EUVL will be the likely technology of choice for semiconductor manufacturing at the 32, 22, 16 and 11 nm half-pitch nodes. To cite this article: K. Kemp, S. Wurm, C. R. Physique 7 (2006).

  9. Future trends in high-resolution lithography

    NASA Astrophysics Data System (ADS)

    Lawes, R. A.

    2000-02-01

    A perennial question is "what is the future of high-resolution lithography, a key technology that drives the semiconductor industry"? The dominant technology over the last 30 years has been optical lithography, which by lowering wavelengths to 193 nm (ArF) and 157 nm (F 2) and by using optical "tricks" such as phase shift masks, off-axis illumination and phase filters, should be capable of 100 nm CMOS technology. So where does this leave the competition? The 100-nm lithography used to be the domain of electron beam lithography but only in research laboratories. Significant efforts are being made to increase throughput by electron projection (scattering with angular limitation projection electron beam lithography or SCALPEL). X-ray lithography remains a demonstrated R&D tool waiting to be commercially exploited but the initial expenditure to do so is very high. Ion beam lithography and extreme ultraviolet (EUV) ( λ<12 nm) have also received attention in recent years. This paper will concentrate on some of the key issues and speculate on how and when an alternative to optical lithography will be embraced by industry.

  10. Why bother with x-ray lithography?

    NASA Astrophysics Data System (ADS)

    Smith, Henry I.; Schattenburg, Mark L.

    1992-07-01

    The manufacture of state-of-the-art integrated circuits uses UV optical projection lithography. Conventional wisdom (i.e., the trade journals) holds that this technology will take the industry to quarter-micrometer minimum features sizes and below. So, why bother with X-ray lithography? The reason is that lithography is a 'system problem', and proximity X-ray lithography is better matched to that system problem than any other technology, once the initial investment is surmounted. X-ray lithography offers the most cost-effective path to the future of ultra-large-scale integrated circuits with feature sizes of tenth micrometer and below (i.e., gigascale electronics and quantum-effect electronics).

  11. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  12. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  13. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  14. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  15. Optical lithography for nanotechnology

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Arnold, Bill

    2006-09-01

    Optical lithography is continually evolving to meet the ever demanding requirements of the micro - and nano- technology communities. Since the optical exposure systems used in lithography are some of the most advanced and complex optical instruments ever built, they involve ever more complex illuminator designs, nearly aberration free lenses, and hyper numerical apertures approaching unity and beyond. Fortunately, the lithography community has risen to the challenge by devising many inventive optical systems and various methods to use and optimize exposure systems. The recent advancement of water immersion technology into lithography for 193nm wavelengths has allowed the numerical aperture (NA) of lithographic lenses to exceed 1.0 or a hyper-NA region. This allows resolution limits to extend to the 45nm node and beyond with NA>1.3. At these extreme NAs, the imaging within the photoresist is accomplished by not only using water immersion but also using polarized light lithography. This paper will review the current state-of-the-art in immersion, hyper-NA lithography. We show the latest results and discuss the various phenomena that may arise using these systems. Furthermore, we show some of the advanced image optimization techniques that allow lithographic printing at the physical limits of resolution. In addition, we show that the future of optical lithography is likely to go well beyond the 30nm regime using advancements in 193nm double-patterning technology and/or the use of extreme ultra-violet (EUV) optical systems.

  16. Synchronous scan-projection lithography on overall circumference of fine pipes with a diameter of 2 mm

    NASA Astrophysics Data System (ADS)

    Horiuchi, Toshiyuki; Furuhata, Takahiro; Muro, Hideyuki

    2016-06-01

    The scan-projection exposure of small-diameter pipe surfaces was investigated using a newly developed prototype exposure system. It is necessary to secure a very large depth of focus for printing thick resist patterns on round pipe surfaces with a roughness larger than that of semiconductor wafers. For this reason, a camera lens with a low numerical aperture of 0.089 was used as a projection lens, and the momentary exposure area was limited by a narrow slit with a width of 800 µm. Thus, patterns on a flat reticle were replicated on a pipe surface by linearly moving the reticle and rotating the pipe synchronously. By using a reticle with inclined line-and-space patterns, helical patterns with a width of 30 µm were successfully replicated on stainless-steel pipes with an outer diameter of 2 mm and coated with a 10-µm-thick negative resist. The patterns replicated at the start and stop edges were smoothly stitched seamlessly.

  17. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  18. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  19. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  20. Thirty years of lithography simulation

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2005-05-01

    Thirty years ago Rick Dill and his team at IBM published the first account of lithography simulation - the accurate description of semiconductor optical lithography by mathematical equations. Since then, lithography simulation has grown dramatically in importance in four important areas: as a research tool, as a development tool, as a manufacturing tool, and as a learning tool. In this paper, the history of lithography simulations is traced from its roots to today"s indispensable tools for lithographic technology development. Along the way, an attempt will be made to define the true value of lithography simulation to the semiconductor industry.

  1. Beam pen lithography

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei; Zheng, Gengfeng; Liao, Xing; Giam, Louise R.; Chai, Jinan; Chen, Xiaodong; Shim, Wooyoung; Mirkin, Chad A.

    2010-09-01

    Lithography techniques are currently being developed to fabricate nanoscale components for integrated circuits, medical diagnostics and optoelectronics. In conventional far-field optical lithography, lateral feature resolution is diffraction-limited. Approaches that overcome the diffraction limit have been developed, but these are difficult to implement or they preclude arbitrary pattern formation. Techniques based on near-field scanning optical microscopy can overcome the diffraction limit, but they suffer from inherently low throughput and restricted scan areas. Highly parallel two-dimensional, silicon-based, near-field scanning optical microscopy aperture arrays have been fabricated, but aligning a non-deformable aperture array to a large-area substrate with near-field proximity remains challenging. However, recent advances in lithographies based on scanning probe microscopy have made use of transparent two-dimensional arrays of pyramid-shaped elastomeric tips (or `pens') for large-area, high-throughput patterning of ink molecules. Here, we report a massively parallel scanning probe microscopy-based approach that can generate arbitrary patterns by passing 400-nm light through nanoscopic apertures at each tip in the array. The technique, termed beam pen lithography, can toggle between near- and far-field distances, allowing both sub-diffraction limit (100 nm) and larger features to be generated.

  2. An ice lithography instrument

    NASA Astrophysics Data System (ADS)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  3. An ice lithography instrument

    PubMed Central

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-01-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  4. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  5. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  6. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  7. Neutral particle lithography

    NASA Astrophysics Data System (ADS)

    Craver, Barry Paul

    Neutral particle lithography (NPL) is a high resolution, proximity exposure technique where a broad beam of energetic neutral particles floods a stencil mask and transmitted beamlets transfer the mask pattern to resist on a substrate, such that each feature is printed in parallel, rather than in the serial manner of electron beam lithography. It preserves the advantages of ion beam lithography (IBL), including extremely large depth-of-field, sub-5 nm resist scattering, and the near absence of diffraction, yet is intrinsically immune to charge-related artifacts including line-edge roughness and pattern placement errors due to charge accumulation on the mask and substrate. In our experiments, a neutral particle beam is formed by passing an ion beam (e.g., 30 keV He+) through a high pressure helium gas cell (e.g., 100 mTorr) to convert the ions to energetic neutrals through charge transfer scattering. The resolution of NPL is generally superior to that of IBL for applications involving insulating substrates, large proximity gaps, and ultra-small features. High accuracy stepped exposures with energetic neutral particles, where magnetic or electrostatic deflection is impossible, have been obtained by clamping the mask to the wafer, setting the proximity gap with a suitable spacer, and mechanically inclining the mask/wafer stack relative to the beam. This approach is remarkably insensitive to vibration and thermal drift; nanometer scale image offsets have been obtained with +/-2 nm placement accuracy for experiments lasting over one hour. Using this nanostepping technique, linewidth versus dose curves were obtained, from which the NPL lithographic blur was determined as 4.4+/-1.4 nm (1sigma), which is 2-3 times smaller than the blur of electron beam lithography. Neutral particle lithography has the potential to form high density, periodic patterns with sub-10 nm resolution.

  8. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  9. Immersion lithography bevel solutions

    NASA Astrophysics Data System (ADS)

    Tedeschi, Len; Tamada, Osamu; Sanada, Masakazu; Yasuda, Shuichi; Asai, Masaya

    2008-03-01

    The introduction of Immersion lithography, combined with the desire to maximize the number of potential yielding devices per wafer, has brought wafer edge engineering to the forefront for advanced semiconductor manufactures. Bevel cleanliness, the position accuracy of the lithography films, and quality of the EBR cut has become more critical. In this paper, the effectiveness of wafer track based solutions to enable state-of-art bevel schemes is explored. This includes an integrated bevel cleaner and new bevel rinse nozzles. The bevel rinse nozzles are used in the coating process to ensure a precise, clean film edge on or near the bevel. The bevel cleaner is used immediately before the wafer is loaded into the scanner after the coating process. The bevel cleaner shows promise in driving down defectivity levels, specifically printing particles, while not damaging films on the bevel.

  10. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  11. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  12. Colloidal pen lithography.

    PubMed

    Xue, Mianqi; Cai, Xiaojing; Chen, Ghenfu

    2015-02-01

    Colloidal pen lithography, a low-cost, high-throughput scanning probe contact printing method, has been developed, which is based on self-assembled colloidal arrays embedded in a soft elastomeric stamp. Patterned protein arrays are demonstrated using this method, with a feature size ranging from 100 nm to several micrometers. A brief study into the specificity reorganization of protein gives evidence for the feasibility of this method for writing protein chips. PMID:25288364

  13. Industrial strength lithography APC

    NASA Astrophysics Data System (ADS)

    Ausschnitt, Christopher P.; Barker, Brian; Muth, William A.; Postiglione, Marc; Walentosky, Thomas

    2003-06-01

    Fully automated semiconductor manufacturing, becoming a reality with the ramping of 300mm fabricators throughout the world, demands the integration of advanced process control (APC). APC is particularly critical for the lithography sector, whose performance correlates to yield and whose productivity often gates the line. We describe the implementation of a comprehensive lithography APC system at the IBM Center for Nanoelectronics, a 300mm manufacturing and development facility. The base lithography APC function encompasses closed-loop run-to-run control of exposure tool inputs to sustain the overlay and critical dimension outputs consistent with product specifications. Automation demands that no decision regarding the appropriate exposure tool run-time settings be left to human judgment. For each lot, the APC system provides optimum settings based on existing data derived from pertinent process streams. In the case where insufficient prior data exists, the APC system either invokes the appropriate combination of send ahead processing and/or pre-determined defaults. We give specific examples of the application of APC to stitched field and dose control, and quantify its technical benefits. Field matching < 0.1 ppm and critical dimension control < 2.5% is achieved among multiple exposure tools and masks.

  14. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  15. Laser-based capillary polarimeter.

    PubMed

    Swinney, K; Hankins, J; Bornhop, D J

    1999-01-01

    A laser-based capillary polarimeter has been configured to allow for the detection of optically active molecules in capillary tubes with a characteristic inner diameter of 250 microm and a 39-nL (10(-9)) sample volume. The simple optical configuration consists of a HeNe laser, polarizing optic, fused-silica capillary, and charge-coupled device (CCD) camera in communication with a laser beam analyzer. The capillary scale polarimeter is based on the interaction between a polarized laser beam and a capillary tube, which results in a 360 degree fan of scattered light. This array of scattered light contains a set of interference fringe, which respond in a reproducible manner to changes in solute optical activity. The polarimetric utility of the instrument will be demonstrated by the analysis of two optically active solutes, R-mandelic acid and D-glucose, in addition to the nonoptically active control, glycerol. The polarimetric response of the system is quantifiable with detection limits facilitating 1.7 x 10(-3) M or 68 x 10(-12) nmol (7 psi 10(-9) g) sensitivity. PMID:11315158

  16. Diamond nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jun; Tokano, Yuji; Miyamoto, Iwao; Komuro, Masanori; Hiroshima, Hiroshi

    2002-10-01

    Electron beam (EB) lithography using polymethylmethacrylate (PMMA) and oxygen gas reactive ion etching (RIE) were used to fabricate fine patterns in a diamond mould. To prevent charge-up during EB lithography, thin conductive polymer was spin-coated over the PMMA resist, yielding dented line patterns 2 μ m wide and 270 nm deep. The diamond mould was pressed into PMMA on a silicon substrate heated to 130, 150 and 170ºC at 43.6, 65.4 and 87.2 MPa. All transferred PMMA convex line patterns were 2 μ m wide. Imprinted pattern depth increased with rising temperature and pressure. PMMA patterns on diamond were transferred by the diamond mould at 150ºC and 65.4 MPa, yielding convex line patterns 2 μ m wide and 200 nm high. Direct aluminium and copper patterns were obtained using the diamond mould at room temperature and 130.8 MPa. The diamond mould is thus useful for replicating patterns on PMMA and metals.

  17. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine. PMID:26678845

  18. Current Status and Perspective of EUV Lithography

    NASA Astrophysics Data System (ADS)

    Nishiyama, Iwao

    The EUV lithography (EUVL) utilizes 13-nm photons as a light source. Because of the short wavelength, it provides a very high resolution and is applicable to the fabrication of multiple generations of semiconductor devices from 45 nm hp down to 32 and even 22 nm hp. This makes EUVL the most promising next-generation lithography, which will follow ArF immersion lithography. However, because the wavelength is so short, bringing EUVL to the level of a practical production tool involves many difficult challenges, such as the development of a high-power light source, high-precision reflective optics, low-defect multilayer masks, a high-resolution high-sensitivity resist, and so on. To overcome the technical difficulties and accelerate the development of EUVL, various projects have been launched and are currently running under the management of SEMATECH (US), NEDEA+ (Europe), and ASET and EUVA (Japan). These activities have produced great advances in EUVL technology in the past several years. A full-field exposure tool for process development (α tool) will be delivered in 2006, and an exposure tool for mass production (γ tool) will be delivered two or three years after that. This presentation gives an overview of recent progress in EUVL.

  19. Neon Ion Beam Lithography (NIBL).

    PubMed

    Winston, Donald; Manfrinato, Vitor R; Nicaise, Samuel M; Cheong, Lin Lee; Duan, Huigao; Ferranti, David; Marshman, Jeff; McVey, Shawn; Stern, Lewis; Notte, John; Berggren, Karl K

    2011-10-12

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. We report lithography using neon ions with fluence <1 ion/nm(2), ∼1000× more efficient than using 30 keV electrons, and resolution down to 7 nm half-pitch. This combination of resolution and exposure efficiency is expected to impact a wide array of fields that are dependent on beam-based lithography. PMID:21899279

  20. Advances in Nanoimprint Lithography.

    PubMed

    Traub, Matthew C; Longsine, Whitney; Truskett, Van N

    2016-06-01

    Nanoimprint lithography (NIL), a molding process, can replicate features <10 nm over large areas with long-range order. We describe the early development and fundamental principles underlying the two most commonly used types of NIL, thermal and UV, and contrast them with conventional photolithography methods used in the semiconductor industry. We then describe current advances toward full commercial industrialization of UV-curable NIL (UV-NIL) technology for integrated circuit production. We conclude with brief overviews of some emerging areas of research, from photonics to biotechnology, in which the ability of NIL to fabricate structures of arbitrary geometry is providing new paths for development. As with previous innovations, the increasing availability of tools and techniques from the semiconductor industry is poised to provide a path to bring these innovations from the lab to everyday life. PMID:27070763

  1. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  2. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  3. Nanowire lithography on silicon.

    PubMed

    Colli, Alan; Fasoli, Andrea; Pisana, Simone; Fu, Yongqing; Beecher, Paul; Milne, William I; Ferrari, Andrea C

    2008-05-01

    Nanowire lithography (NWL) uses nanowires (NWs), grown and assembled by chemical methods, as etch masks to transfer their one-dimensional morphology to an underlying substrate. Here, we show that SiO2 NWs are a simple and compatible system to implement NWL on crystalline silicon and fabricate a wide range of architectures and devices. Planar field-effect transistors made of a single SOI-NW channel exhibit a contact resistance below 20 kOmega and scale with the channel width. Further, we assess the electrical response of NW networks obtained using a mask of SiO2 NWs ink-jetted from solution. The resulting conformal network etched into the underlying wafer is monolithic, with single-crystalline bulk junctions; thus no difference in conductivity is seen between a direct NW bridge and a percolating network. We also extend the potential of NWL into the third dimension, by using a periodic undercutting that produces an array of vertically stacked NWs from a single NW mask. PMID:18386934

  4. Scanning probe nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Dinelli, F.; Menozzi, C.; Baschieri, P.; Facci, P.; Pingue, P.

    2010-02-01

    The present paper reports on a novel lithographic approach at the nanoscale level, which is based on scanning probe microscopy (SPM) and nanoimprint lithography (NIL). The experimental set-up consists of an atomic force microscope (AFM) operated via software specifically developed for the purpose. In particular, this software allows one to apply a predefined external load for a given lapse of time while monitoring in real-time the relative distance between the tip and the sample as well as the normal and lateral force during the embossing process. Additionally, we have employed AFM tips sculptured by means of focused ion beam in order to create indenting tools of the desired shape. Anti-sticking layers can also be used to functionalize the tips if one needs to investigate the effects of different treatments on the indentation and de-molding processes. The lithographic capabilities of this set-up are demonstrated on a polystyrene NIL-patterned sample, where imprinted features have been obtained upon using different normal load values for increasing time intervals, and on a thermoplastic polymer film, where the imprint process has been monitored in real-time.

  5. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  6. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  7. Condenser for extreme-UV lithography with discharge source

    DOEpatents

    Sweatt, William C.; Kubiak, Glenn D.

    2001-01-01

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  8. Holographic lithography for biomedical applications

    NASA Astrophysics Data System (ADS)

    Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.

    2012-06-01

    Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels

  9. Photoinhibition superresolution lithography

    NASA Astrophysics Data System (ADS)

    Forman, Darren Lawrence

    While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy

  10. Laser- based Insect Tracker (LIT)

    NASA Astrophysics Data System (ADS)

    Mesquita, Leonardo; Sinha, Shiva; van Steveninck, Rob De Ruyter

    2011-03-01

    Insects are excellent model systems for studying learning and behavior, and the potential for genetic manipulation makes the fruitfly especially attractive. Many aspects of fruitfly behavior have been studied through video based tracking methods. However, to our knowledge no current system incorporates signals for behavioral conditioning in freely moving flies. We introduce a non-video based method that enables tracking of single insects over large volumes (> 8000cm3 at high spatial (<1mm) and temporal (<1ms) resolution for extended periods (>1 hour). The system uses a set of moveable mirrors that steer a tracking laser beam. Tracking is based on feedback from a four-quadrant sensor, sampling the beam after it bounces back from a retro reflector. Through the same mirrors we couple a high speed camera for flight dynamics analysis and an IR laser for aversive heat conditioning. Such heat shocks, combined with visual stimuli projected on a screen surrounding the flight arena, enable studies of learning and memory. By sampling the long term statistics of behavior, the system augments quantitative studies of behavioral phenotypes. Preliminary results of such studies will be presented.

  11. Polymer nanofibers by soft lithography

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Maruccio, Giuseppe; Mele, Elisa; Persano, Luana; Di Benedetto, Francesca; Cingolani, Roberto

    2005-09-01

    The fabrication of polymeric fibers by soft lithography is demonstrated. Polyurethane, patterned by capillarity-induced molding with high-resolution elastomeric templates, forms mm-long fibers with a diameter below 0.3μm. The Young's modulus of the fabricated structures, evaluated by force-distance scanning probe spectroscopy, has a value of 0.8MPa. This is an excellent example of nanostructures feasible by the combination of soft nanopatterning and high-resolution fabrication approaches for master templates, and particularly electron-beam lithography.

  12. Porphyrin-Based Photocatalytic Lithography

    SciTech Connect

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  13. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  14. SEM metrology for advanced lithographies

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Allgair, John; Rice, Bryan J.; Byers, Jeff; Avitan, Yohanan; Peltinov, Ram; Bar-zvi, Maayan; Adan, Ofer; Swyers, John; Shneck, Roni Z.

    2007-03-01

    For many years, lithographic resolution has been the main obstacle for keeping the pace of transistor densification to meet Moore's Law. The industry standard lithographic wavelength has evolved many times, from G-line to I-line, deep ultraviolet (DUV) based on KrF, and 193nm based on ArF. At each of these steps, new photoresist materials have been used. For the 45nm node and beyond, new lithography techniques are being considered, including immersion ArF lithography and extreme ultraviolet (EUV) lithography. As in the past, these techniques will use new types of photoresists with the capability of printing 45nm node (and beyond) feature widths and pitches. This paper will show results of an evaluation of the critical dimension-scanning electron microscopy (CD-SEM)-based metrology capabilities and limitations for the 193nm immersion and EUV lithography techniques that are suggested in the International Technology Roadmap for Semiconductors. In this study, we will print wafers with these emerging technologies and evaluate the performance of SEM-based metrology on these features. We will conclude with preliminary findings on the readiness of SEM metrology for these new challenges.

  15. ITRS lithography roadmap: 2015 challenges

    NASA Astrophysics Data System (ADS)

    Neisser, Mark; Wurm, Stefan

    2015-08-01

    In the past few years, novel methods of patterning have made considerable progress. In 2011, extreme ultraviolet (EUV) lithography was the front runner to succeed optical lithography. However, although EUV tools for pilot production capability have been installed, its high volume manufacturing (HVM) readiness continues to be gated by productivity and availability improvements taking longer than expected. In the same time frame, alternative and/or complementary technologies to EUV have made progress. Directed self-assembly (DSA) has demonstrated improved defectivity and progress in integration with design and pattern process flows. Nanoimprint improved performance considerably and is pilot production capable for memory products. Maskless lithography has made progress in tool development and could have an α tool ready in the late 2015 or early 2016. But they all have to compete with multiple patterning. Quadruple patterning is already demonstrated and can pattern lines and spaces down to close to 10-nm half pitch. The other techniques have to do something better than quadruple patterning does to be chosen for implementation. DSA and NIL promise a lower cost. EUV promises a simpler and shorter process and the creation of 2-D patterns more easily with much reduced complexity compared to multiple patterning. Maskless lithography promises to make chip personalization easy and to be particularly cost effective for low-volume chip designs. Decision dates for all of the technologies are this year or next year.

  16. Biomolecular Patterning via Photocatalytic Lithography

    SciTech Connect

    Bearinger, J P; Hiddessen, A L; Wu, K J; Christian, A T; Dugan, L C; Stone, G; Camarero, J; Hinz, A K; Hubbell, J A

    2005-02-18

    We have developed a novel method for patterning surface chemistry: Photocatalytic Lithography. This technique relies on inexpensive stamp materials and light; it does not necessitate mass transport or specified substrates, and the wavelength of light should not limit feature resolution. We have demonstrated the utility of this technique through the patterning of proteins, single cells and bacteria.

  17. Graphic Arts/Offset Lithography.

    ERIC Educational Resources Information Center

    Hoisington, James; Metcalf, Joseph

    This revised curriculum for graphic arts is designed to provide secondary and postsecondary students with entry-level skills and an understanding of current printing technology. It contains lesson plans based on entry-level competencies for offset lithography as identified by educators and industry representatives. The guide is divided into 15…

  18. Dynamic maskless holographic lithography and applications

    NASA Astrophysics Data System (ADS)

    McAdams, Daniel R.

    The purpose of this research is to improve the resolution of dynamic maskless holographic lithography (DMHL) by using two-photon absorption, to provide a more thorough characterization of the process, and to expand the functionality of the process by adding previously undemonstrated patterning modes. Two-photon DMHL will be performed in both 2D and 3D configurations with specific characterization relating to process resolution and repeatability. The physical limits of DMHL will be discussed and ways to circumvent them will be proposed and tested. DMHL eliminates the need for a separate mask for every different pattern exposure and allows for real-time shaping of the exposure pattern. It uses an electrically addressable spatial light modulator (SLM) to create an arbitrary intensity pattern at the specimen plane. The SLM is a phase mask that displays a hologram. An algorithm is used to find an appropriate phase hologram for each desired intensity pattern. Each pixel of the SLM shapes the wavefront of the incoming laser light so that the natural Fourier transforming property of a lens causes the desired image to appear in the specimen plane. The process enables one-off projects to be done without the cost of fabricating a mask, and makes it possible to perform lithography with fewer (or even no) moving parts.

  19. Pattern-integrated interference lithography instrumentation

    NASA Astrophysics Data System (ADS)

    Burrow, G. M.; Leibovici, M. C. R.; Kummer, J. W.; Gaylord, T. K.

    2012-06-01

    Multi-beam interference (MBI) provides the ability to form a wide range of sub-micron periodic optical-intensity distributions with applications to a variety of areas, including photonic crystals (PCs), nanoelectronics, biomedical structures, optical trapping, metamaterials, and numerous subwavelength structures. Recently, pattern-integrated interference lithography (PIIL) was presented as a new lithographic method that integrates superposed pattern imaging with interference lithography in a single-exposure step. In the present work, the basic design and systematic implementation of a pattern-integrated interference exposure system (PIIES) is presented to realize PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. A fundamental optimization methodology is presented to model the system and predict MBI-patterning performance. To demonstrate the PIIL method, a prototype PIIES experimental configuration is presented, including detailed alignment techniques and experimental procedures. Examples of well-defined PC structures, fabricated with a PIIES prototype, are presented to demonstrate the potential of PIIL for fabricating dense integrated optical circuits, as well as numerous other subwavelength structures.

  20. Mask and lithography techniques for FPD

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Wahlsten, M.; Sundelin, E.; Hansson, G.; Svensson, A.

    2015-09-01

    Large-field projection lithography for FPDs has developed gradually since the 90s. The LCD screen technology has remained largely unchanged and incremental development has given us better image quality, larger screen sizes, and above all lower cost per area. Recently new types of mobile devices with very high pixel density and/or OLED displays have given rise to dramatically higher requirem ents on photomask technology. Devices with 600 ppi or m ore need lithography with higher optical resolution and better linewidth control. OLED di splays pose new challenges with high sensitivity to transistor parameters and to capacitive cross-talk. New mask requirements leads to new maskwriter requirements and Mycronic has developed a new generation of large -area mask writers with significantly improved properties. This paper discusses and shows data for the improved writers. Mask production to high er quality stan dards also need metrology to verify the quality and Mycronic has introduced a 2D metrology tool with accuracy adequate for current and future masks. New printing or additive methods of producing disp lays on plastic or metal foil will make low-cost disp lays available. This inexpensive type of disp lays will exist side by side with the photographic quality displays of TVs and mobile devices, which will continue to be a challenge in terms of mask and production quality.

  1. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  2. Gain-coupled distributed feedback laser based on periodic surface anode canals.

    PubMed

    Chen, Yongyi; Jia, Peng; Zhang, Jian; Qin, Li; Chen, Hong; Gao, Feng; Zhang, Xing; Shan, Xiaonan; Ning, Yongqiang; Wang, Lijun

    2015-10-20

    A single-longitude-mode, broad-stripe, gain-coupled, distributed-feedback laser based on periodic surface anode canals (PSACs) is demonstrated. The PSACs, produced by i-line lithography, enhance the contrast of periodic current density in the active layer without introducing effective photon coupling; calculated grating κL is only 0.026. Power of 144.6 mW at 968.8 nm, with spectrum linewidth less than 0.04 nm on every uncoated cleavage facet, is obtained at a current of 1.2 A with a side-mode suppression ratio >29  dB. PMID:26560371

  3. Throughput enhancement technique for MAPPER maskless lithography

    NASA Astrophysics Data System (ADS)

    Wieland, M. J.; Derks, H.; Gupta, H.; van de Peut, T.; Postma, F. M.; van Veen, A. H. V.; Zhang, Y.

    2010-03-01

    MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing in combination with high speed optical data transport for switching the electron beams. With 13,000 electron beams each delivering a current of 13nA on the wafer, a throughput of 10 wph is realized for 22nm node lithography. By clustering several of these systems together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV. The most mature and reliable electron source currently available that combines a high brightness, a high emission current and uniform emission is the dispenser cathode. For this electron source a reduced brightness of 106 A/m2SrV has been measured, with no restrictions on emission current. With this brightness however it is possible to realize a beam current of 0.3nA (@ 25nm spotsize), which is almost a factor 50 lower than the 13nA that is required for 10 wph. Three methods can be distinguished to increase the throughput: 1. Use an electron source with a 50× higher brightness 2. Increase the number of beams and lenses 50× 3. Patterned beams: Image multiple sub-beams with each projection lens MAPPER has selected option 3) 'Patterned beams' as the method to increase the beam current to 13nA. This because an electron source with a 50x higher brightness is simply not available at this time, and increasing the number of beams and lenses 50× leads to undesirable engineering issues. During the past years MAPPER has been developing the concept of 'Patterned beams'. By imaging 7×7 sub-beams per projection lens the beam current is increased to the required 13nA level. This technique will also be used to maintain throughput at 10 wph for smaller technology nodes by further increasing the number of sub-beams per projection lens. In this paper we will describe the electron optical design used to image these multiple sub-beams per lens, as well as

  4. OPC modeling and correction solutions for EUV lithography

    NASA Astrophysics Data System (ADS)

    Word, James; Zuniga, Christian; Lam, Michael; Habib, Mohamed; Adam, Kostas; Oliver, Michael

    2011-11-01

    The introduction of EUV lithography into the semiconductor fabrication process will enable a continuation of Moore's law below the 22nm technology node. EUV lithography will, however, introduce new sources of patterning distortions which must be accurately modeled and corrected with software. Flare caused by scattered light in the projection optics result in pattern density-dependent imaging errors. The combination of non-telecentric reflective optics with reflective reticles results in mask shadowing effects. Reticle absorber materials are likely to have non-zero reflectivity due to a need to balance absorber stack height with minimization of mask shadowing effects. Depending upon placement of adjacent fields on the wafer, reflectivity along their border can result in inter-field imaging effects near the edge of neighboring exposure fields. Finally, there exists the ever-present optical proximity effects caused by diffractionlimited imaging and resist and etch process effects. To enable EUV lithography in production, it is expected that OPC will be called-upon to compensate for most of these effects. With the anticipated small imaging error budgets at sub-22nm nodes it is highly likely that only full model-based OPC solutions will have the required accuracy. The authors will explore the current capabilities of model-based OPC software to model and correct for each of the EUV imaging effects. Modeling, simulation, and correction methodologies will be defined, and experimental results of a full model-based OPC flow for EUV lithography will be presented.

  5. Laser-based display technology development at the Naval Ocean Systems Center

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas E.; Trias, John A.; Lasher, Mark E.; Poirier, Peter M.; Dahlke, Weldon J.; Robinson, Waldo R.

    1991-02-01

    For several years, the Naval Ocean Systems Center (NOSC) has been working on the development of laser-based display systems with the goal of upgrading the image quality and ruggedness of shipboard displays. In this paper the authors report work on the major task of developing a full-color laser-addressed liquid crystal light valve (LCLV) projection system.

  6. Laser-based display technology development at the Naval Ocean Systems Center (NOSC)

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas; Trias, John; Lasher, Mark; Poirier, Peter; Dahlke, Weldon

    1991-05-01

    For several years, the Naval Ocean Systems Center (NOSC) has been working on the development of laser-based display systems with the goal of upgrading the image quality and ruggedness of shipboard displays. In this paper we report work on our major task of developing a full-color laser-addressed liquid crystal light value (LCLV) projection system.

  7. Mask technology for EUV lithography

    NASA Astrophysics Data System (ADS)

    Bujak, M.; Burkhart, Scott C.; Cerjan, Charles J.; Kearney, Patrick A.; Moore, Craig E.; Prisbrey, Shon T.; Sweeney, Donald W.; Tong, William M.; Vernon, Stephen P.; Walton, Christopher C.; Warrick, Abbie L.; Weber, Frank J.; Wedowski, Marco; Wilhelmsen, Karl C.; Bokor, Jeffrey; Jeong, Sungho; Cardinale, Gregory F.; Ray-Chaudhuri, Avijit K.; Stivers, Alan R.; Tejnil, Edita; Yan, Pei-yang; Hector, Scott D.; Nguyen, Khanh B.

    1999-04-01

    Extreme UV Lithography (EUVL) is one of the leading candidates for the next generation lithography, which will decrease critical feature size to below 100 nm within 5 years. EUVL uses 10-14 nm light as envisioned by the EUV Limited Liability Company, a consortium formed by Intel and supported by Motorola and AMD to perform R and D work at three national laboratories. Much work has already taken place, with the first prototypical cameras operational at 13.4 nm using low energy laser plasma EUV light sources to investigate issues including the source, camera, electro- mechanical and system issues, photoresists, and of course the masks. EUV lithograph masks are fundamentally different than conventional photolithographic masks as they are reflective instead of transmissive. EUV light at 13.4 nm is rapidly absorbed by most materials, thus all light transmission within the EUVL system from source to silicon wafer, including EUV reflected from the mask, is performed by multilayer mirrors in vacuum.

  8. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  9. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  10. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  11. Nanoimprint lithography for microfluidics manufacturing

    NASA Astrophysics Data System (ADS)

    Kreindl, Gerald; Matthias, Thorsten

    2013-12-01

    The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.

  12. Commercialization plan laser-based decoating systems

    SciTech Connect

    Freiwald, J.; Freiwald, D.A.

    1998-01-01

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  13. The Brookhaven Superconducting X-Ray Lithography Source (SXLS)

    SciTech Connect

    Murphy, J.B.; Blumberg, L.N.; Bozoki, E.; Desmond, E.; Galayda, J.; Halama, H.; Heese, R.; Hsieh, H.; Keane, J.; Kramer, S.; Mortazavi, P.; Schuchman, J.; Sharma, S.; Singh, O.; Solomon, L.; Thomas, M.; Wang, J.M. ); Kalsi, S.; Reusch, M.; Rose, J. ); Moser, H.O. )

    1990-01-01

    Synchrotron radiation from dipole magnets in electron storage rings has emerged as a useful source of x-rays for lithography. The goal of the SXLS Project at BNL is to design and construct a compact storage ring of circumference, C = 8.503 meters. It will use superconducting dipoles with a field of B{sub 0} = 3.87 Tesla and bending radius of {rho} = .6037 meters along with 700 MeV electrons to produce 10 angstrom x-rays for lithography. The project is proceeding in two phases: in Phase I low field iron dipoles are being used; in Phase II the low field dipoles will be replaced with superconducting dipoles. An overview of the design and status report are presented.

  14. Maskless micro-ion-beam reduction lithography system

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  15. Metrology of 13-nm optics for extreme ultraviolet lithography

    SciTech Connect

    Beckwith, J.F.; Patterson, S.R.; Thompson, D.C.; Badami, V.; Smith, S.

    1997-02-03

    This report documents activities carried in support of the design and construction of an ultra-high precision measuring machine intended for the support of Extreme Ultraviolet Lithography development (for semiconductor fabrication). At the outset, this project was aimed at the overall fabrication of such a measuring machine. Shortly after initiation, however, the scope of activities was reduced and effort was concentrated on the key technical advances necessary to support such machine development: high accuracy surface sensing and highly linear distance interferometry.

  16. Charting CEBL's role in mainstream semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Lam, David K.

    2013-09-01

    historically kept it out of mainstream fabs. Thanks to continuing EBDW advances combined with the industry's move to unidirectional (1D) gridded layout style, EBDW promises to cost-efficiently complement 193nm ArF immersion (193i) optical lithography in high volume manufacturing (HVM). Patterning conventional 2D design layouts with 193i is a major roadblock in device scaling: the resolution limitations of optical lithography equipment have led to higher mask cost and increased lithography complexity. To overcome the challenge, IC designers have used 1D layouts with "lines and cuts" in critical layers.1 Leading logic and memory chipmakers have been producing advanced designs with lines-and-cuts in HVM for several technology nodes in recent years. However, cut masks in multiple optical patterning are getting extremely costly. Borodovsky proposes Complementary Lithography in which another lithography technology is used to pattern line-cuts in critical layers to complement optical lithography.2 Complementary E-Beam Lithography (CEBL) is a candidate to pattern the Cuts of optically printed Lines. The concept of CEBL is gaining acceptance. However, challenges in throughput, scaling, and data preparation rate are threatening to deny CEBL's role in solving industry's lithography problem. This paper will examine the following issues: The challenges of massively parallel pixel writing The solutions of multiple mini-column design/architecture in: Boosting CEBL throughput Resolving issues of CD control, CDU, LER, data rate, higher resolution, and 450mm wafers The role of CEBL in next-generation solution of semiconductor lithography

  17. Protein assay structured on paper by using lithography

    NASA Astrophysics Data System (ADS)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  18. Laser-based detection of chemical contraband

    NASA Astrophysics Data System (ADS)

    Clemmer, Robert G.; Kelly, James F.; Martin, Steven W.; Mong, Gary M.; Sharpe, Steven W.

    1997-02-01

    The goal of our work is tow fold; 1) develop a portable and rapid laser based air sampler for detection of specific chemical contraband and 2) compile a spectral data base in both the near- and mid-IR of sufficiently high quality to be useful for gas phase spectroscopic identification of chemical contraband. During the synthesis or 'cooking' of many illicit chemical substances, relatively high concentrations of volatile solvents, chemical precursors and byproducts are unavoidably released to the atmosphere. In some instances, the final product may have sufficient vapor pressure to be detectable in the surrounding air. The detection of a single high-value effluent or the simultaneous detection of two or more low-value effluents can be used as reliable indicators of a nearby clandestine cooking operation. The designation of high- versus low-value effluent reflects both the commercial availability and legitimate usage of a specific chemical. This paper will describe PNNL's progress and efforts towards the development of a portable laser based air sampling system for the detection of clandestine manufacturing of methamphetamine. Although our current efforts ar focused on methamphetamine, we see no fundamental limitations on detection of other forms of chemical contraband manufacturing. This also includes the synthesis of certain classes of chemical weapons that have recently been deployed by terrorist groups.

  19. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  20. Ultrastable lasers based on vibration insensitive cavities

    SciTech Connect

    Millo, J.; Magalhaes, D. V.; Mandache, C.; Le Coq, Y.; English, E. M. L.; Westergaard, P. G.; Lodewyck, J.; Bize, S.; Lemonde, P.; Santarelli, G.

    2009-05-15

    We present two ultrastable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultrastable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5x10{sup -11}/m s{sup -2} for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6x10{sup -16} at 1 s, which is the best result obtained for this length of cavity.

  1. Mask lithography for display manufacturing

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Ekberg, P.

    2010-05-01

    The last ten years have seen flat displays conquer our briefcases, desktops, and living rooms. There has been an enormous development in production technology, not least in lithography and photomasks. Current masks for large displays are more than 2 m2 and make 4-6 1X prints on glass substrates that are 9 m2. One of the most challenging aspects of photomasks for displays is the so called mura, stripes or blemishes which cause visible defects in the finished display. For the future new and even tighter maskwriter specifications are driven by faster transistors and more complex pixel layouts made necessary by the market's wish for still better image quality, multi-touch panels, 3D TVs, and the next wave of e-book readers. Large OLED screens will pose new challenges. Many new types of displays will be lowcost and use simple lithography, but anything which can show video and high quality photographic images needs a transistor backplane and sophisticated masks for its production.

  2. Direct write electron beam lithography: a historical overview

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.

    2010-09-01

    Maskless pattern generation capability in combination with practically limitless resolution made probe-forming electron beam systems attractive tools in the semiconductor fabrication process. However, serial exposure of pattern elements with a scanning beam is a slow process and throughput presented a key challenge in electron beam lithography from the beginning. To meet this challenge imaging concepts with increasing exposure efficiency have been developed projecting ever larger number of pixels in parallel. This evolution started in the 1960s with the SEM-type Gaussian beam systems writing one pixel at a time directly on wafers. During the 1970s IBM pioneered the concept of shaped beams containing multiple pixels which led to higher throughput and an early success of e-beam direct write (EBDW) in large scale manufacturing of semiconductor chips. EBDW in a mix-and match approach with optical lithography provided unique flexibility in part number management and cycle time reduction and proved extremely cost effective in IBM's Quick-Turn-Around-Time (QTAT) facilities. But shaped beams did not keep pace with Moore's law because of limitations imposed by the physics of charged particles: Coulomb interactions between beam electrons cause image blur and consequently limit beam current and throughput. A new technology approach was needed. Physically separating beam electrons into multiple beamlets to reduce Coulomb interaction led to the development of massively parallel projection of pixels. Electron projection lithography (EPL) - a mask based imaging technique emulating optical steppers - was pursued during the 1990s by Bell Labs with SCALPEL and by IBM with PREVAIL in partnership with Nikon. In 2003 Nikon shipped the first NCR-EB1A e-beam stepper based on the PREVAIL technology to Selete. It exposed pattern segments containing 10 million pixels in single shot and represented the first successful demonstration of massively parallel pixel projection. However the window

  3. Directed Self-assembly for Lithography Applications

    NASA Astrophysics Data System (ADS)

    Cheng, Joy

    2010-03-01

    Economics dictated that semiconductor devices need to be scaled approximately to 70 percent linearly in order to follow the pace of Moore's law and maintain cost effectiveness. Optical lithography has been the driving force for scaling; however, it approaches its physical limit to print patterns beyond 22nm node. Directed self-assembly (DSA), which combines ``bottom-up'' self-assembled polymers and ``top-down'' lithographically defined substrates, has been considered as a potential candidate to extend optical lithography. Benefit from nanometer-scale self-assembly features and the registration precision of advanced lithography, DSA provides precise and programmable nanopatterns beyond the resolution limit of conventional lithography. We have demonstrated DSA concepts including frequency multiplication and pattern rectification using guiding prepattern with proper chemical and topographical information generated by e-beam lithography. In addition, we seek to integrate DSA with 193 nm optical lithography in a straightforward manner in order to move DSA from the research stage to a viable manufacturing technology. Recently, we implemented various integration strategies using photolithography to produce guiding patterns for DSA. This new ability enables DSA to be applied to large areas with state-of-the-art lithography facilities.

  4. Spectroscopic Ellipsometry Applications in Advanced Lithography Research

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Pribil, Greg K.; Hilfiker, James N.; Edwards, Kevin

    2005-09-01

    Spectroscopic ellipsometry (SE) is an optical metrology technique widely used in the semiconductor industry. For lithography applications SE is routinely used for measurement of film thickness and refractive index of polymer photoresist and antireflective coatings. While this remains a primary use of SE, applications are now expanding into other areas of advanced lithography research. New applications include immersion lithography, phase-shift photomasks, transparent pellicles, 193 and 157 nm lithography, stepper optical coatings, imprint lithography, and even real-time monitoring of etch development rate in liquid ambients. Of recent interest are studies of immersion fluids where knowledge of the fluid refractive index and absorption are critical to their use in immersion lithography. Phase-shift photomasks are also of interest as the thickness and index of the phase-shift and absorber layers must be critically controlled for accurate intensity and phase transmission. Thin transparent pellicles to protect these masks must be also characterized for thickness and refractive index. Infrared ellipsometry is sensitive to chemical composition, film thickness, and how film chemistry changes with processing. Real-time monitoring of polymer film thickness during etching in a liquid developer allows etch rate and endpoint determination with monolayer sensitivity. This work considers these emerging applications to survey the current status of spectroscopic ellipsometry as a characterization technique in advanced lithography applications.

  5. EUV lithography development in Europe: present status and perspectives

    NASA Astrophysics Data System (ADS)

    Ceccotti, Tiberio

    2004-01-01

    According to the ISMT roadmap, Extreme Ultraviolet lithography (EUVL) is the most promising technology to reach the 45-nm node for industrial production and to satisfy the famous law of Moore beyond 2007. Already in 1998 the first European EUVL project (EUCLIDES) has been launched under the leadership of ASM Lithography. Shortly after that in 1999, the national R&D program PREUVE started in France to improve EUVL related technologies and to build the first experimental lithography bench (BEL) in Europe. Finally, in 2001, the main European industrial companies as well as academic and national laboratories have federated within the important MEDEA+ effort to overcome the main technological challenges and to industrialize EUVL in time. Indeed, one of the most important challenges of EUVL concerns the achievement of very powerful, clean and reliable sources. The present paper will give the current state of European EUVL source technology and an overview of the different approaches. Main results are reviewed and the remaining challenges are discussed.

  6. Photomask design method for pattern-integrated interference lithography

    NASA Astrophysics Data System (ADS)

    Leibovici, Matthieu C. R.; Gaylord, Thomas K.

    2016-01-01

    Pattern-integrated interference lithography (PIIL) combines multibeam interference lithography and projection lithography simultaneously to produce two-dimensional (2-D) and three-dimensional (3-D) periodic-lattice-based microstructures in a rapid, single-exposure step. Using a comprehensive PIIL vector model and realistic photolithographic conditions, PIIL exposures for a representative photonic-crystal (PhC) 90 deg bend waveguide are simulated in the volume of the photoresist film. The etched structures in the underlying substrate are estimated as well. Due to the imperfect integration of the photomask within the interference pattern, the interference pattern is locally distorted, thereby impacting the PhC periodic lattice and potentially the device performance. To mitigate these distortions, a photomask optimization method for PIIL is presented in this work. With an improved photomask, pillar-area and pillar-displacement errors in the vicinity of the waveguide are reduced by factors of 3.3 and 2.7, respectively. Furthermore, calculated transmission spectra show that the performance of the PIIL-produced PhC device is as good as that of its idealized equivalent.

  7. Scaling behavior in interference lithography

    SciTech Connect

    Agayan, R.R.; Banyai, W.C.; Fernandez, A.

    1998-02-27

    Interference lithography is an emerging, technology that provides a means for achieving high resolution over large exposure areas (approximately 1 m{sup 2}) with virtually unlimited depth of field. One- and two-dimensional arrays of deep submicron structures can be created using near i-line wavelengths and standard resist processing. In this paper, we report on recent advances in the development of this technology, focusing, in particular, on how exposure latitude and resist profile scale with interference period We present structure width vs dose curves for periods ranging from 200 nm to 1 um, demonstrating that deep submicron structures can be generated with exposure latitudes exceeding 30%. Our experimental results are compared to simulations based on PROLITIV2.

  8. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  9. Miniature electron microscopes for lithography

    NASA Astrophysics Data System (ADS)

    Feinerman, Alan D.; Crewe, David A.; Perng, Dung-Ching; Spindt, Capp A.; Schwoebel, Paul R.; Crewe, Albert V.

    1994-05-01

    Two inexpensive and extremely accurate methods for fabricating miniature 10 - 50 kV and 0.5 - 10 kV electron beam columns have been developed: `slicing,' and `stacking.' Two or three miniature columns could be used to perform a 20 nm or better alignment of an x-ray mask to a substrate. An array of miniature columns could be used for rapid wafer inspection and high throughput electron beam lithography. The column fabrication methods combine the precision of semiconductor processing and fiber optic technologies to create macroscopic structures consisting of charged particle sources, deflecting and focusing electrodes, and detectors. The overall performance of the miniature column also depends on the emission characteristics of the micromachined electron source which is currently being investigated.

  10. Local area mask patterning of extreme ultraviolet lithography reticles for native defect analysis

    NASA Astrophysics Data System (ADS)

    Lyons, Adam

    Understanding the nature and behavior of native defects on EUV reticles, particularly their printability, is of critical importance to the successful implementation of EUV lithography for high volume manufacturing, as will be demonstrated in the upcoming chapters. Previous defect characterization work has focused on the examination of programmed defects, native defects on blank reticles, and unaligned native defects on patterned reticles. Each of these approaches has drawbacks, which will be discussed in detail, and the aim of this research is to address these deficiencies by developing a method to pattern features of interest over native defects, enabling the direct observation of their effect on lithography. The development of this Local Area Mask Patterning, or LAMP process, posed significant challenges, each of which are discussed in detail in the following chapters. Chapter 1 describes the history of semiconductor lithography and how EUV lithography came to be the leading candidate for the manufacture of future technology nodes. Chapter 2 describes EUV technology in more detail, presenting some of the major challenges facing its implementation, and how the LAMP project can contribute to their solution. Since electron beam lithography is used to create reticles for the LAMP project, an overview of this technology is provided in Chapter 3 below. After the reticle has been patterned using EBL, the pattern must be transferred to the absorber layer, and Chapter 4 describes a method developed for absorber patterning using a bench-top lift-off lithography technique. The major disadvantage of using lift-off lithography is the tendency of the process to re-deposit absorber particles across the reticle surface, and there is no tool available at CNSE to perform patterned reticle defect inspection. To address this need the functionality of the VB300 was extended to allow the inspection of the patterned reticle using the VB300 backscatter electron SEM imaging capability

  11. Lithography of choice for the 45-nm node: new medium, new wavelength, or new beam?

    NASA Astrophysics Data System (ADS)

    Uesawa, Fumikatsu; Katsumata, Mikio; Ogawa, Kazuhisa; Takeuchi, Koichi; Omori, Shinji; Yoshizawa, Masaki; Kawahira, Hiroichi

    2004-05-01

    In order to clarify the direction of the lithography for the 45 nm node, the feasibilities of various lithographic techniques for gate, metal, and contact layers are studied by using experimental data and aerial image simulations. The focus and exposure budget have been determined from the actual data and the realistic estimation such as the focus distributions across a wafer measured by the phase shift focus monitor (PSFM), the focus and exposure reproducibility of the latest exposure tools, and the anticipated 45 nm device topography, etc. 193 nm lithography with a numerical aperture (NA) of 0.93 achieves the half pitch of 70 nm (hp70) by using an attenuated phase shift mask (att-PSM) and annular illumination. 193 nm immersion lithography has the possibility to achieve the hp60 without an alternative PSM (alt-PSM). For a gate layer, 50-nm/130-nm line-and-space (L/S) patterns as well as 50 nm isolated lines can be fabricated by an alt-PSM. Although specific aberrations degrade the critical dimension (CD) variation of an alt-PSM, +/-2.6 nm CD uniformity (CDU) is demonstrated by choosing the well-controlled projection lens and using a high flatness wafer. For a contact layers, printing 90 nm contacts is very critical by optical lithography even if the aggressive resolution enhancement technique (RET) is used. Especially for dense contact, the mask error factor (MEF) increases to around 10 and practical process margin is not available at all. On the other hand, low-energy electron-beam proximity-projection lithography (LEEPL) can fabricate 80 nm contact with large process margin. As a lithography tool for the contact layers of the 45 nm node devices, LEEPL is expected to replace 193 nm lithography.

  12. Evolution of light source technology to support immersion and EUV lithography

    NASA Astrophysics Data System (ADS)

    Blumenstock, Gerry M.; Meinert, Christine; Farrar, Nigel R.; Yen, Anthony

    2005-01-01

    Since the early 1980's, the resolution of optical projection lithography has improved dramatically primarily due to three factors: increases in projection lens numerical aperture, reduction of the imaging source wavelength, and continued reduction of the k1 factor. These three factors have been enabled by the concurrent improvements in lens making technology, DUV light sources, photoresist technology, and resolution enhancement techniques. The DUV light source, excimer KrF and ArF lasers, has entered main stream production and now images more than 50% of the critical layers in today's leading edge devices. Looking forward to both immersion lithography and beyond to EUV lithography, new light source technologies must be created to enable the continued progression of shrinking feature sizes embodied by Moore's law.

  13. MAGIC: a European program to push the insertion of maskless lithography

    NASA Astrophysics Data System (ADS)

    Pain, L.; Icard, B.; Tedesco, S.; Kampherbeek, B.; Gross, G.; Klein, C.; Loeschner, H.; Platzgummer, E.; Morgan, R.; Manakli, S.; Kretz, J.; Holhe, C.; Choi, K.-H.; Thrum, F.; Kassel, E.; Pilz, W.; Keil, K.; Butschke, J.; Irmscher, M.; Letzkus, F.; Hudek, P.; Paraskevopoulos, A.; Ramm, P.; Weber, J.

    2008-03-01

    With the willingness of the semiconductor industry to push manufacturing costs down, the mask less lithography solution represents a promising option to deal with the cost and complexity concerns about the optical lithography solution. Though a real interest, the development of multi beam tools still remains in laboratory environment. In the frame of the seventh European Framework Program (FP7), a new project, MAGIC, started January 1st 2008 with the objective to strengthen the development of the mask less technology. The aim of the program is to develop multi beam systems from MAPPER and IMS nanofabrication technologies and the associated infrastructure for the future tool usage. This paper draws the present status of multi beam lithography and details the content and the objectives of the MAGIC project.

  14. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  15. Development of a computational lithography roadmap

    NASA Astrophysics Data System (ADS)

    Chen, J. Fung; Liu, Hua-Yu; Laidig, Thomas; Zuniga, Christian; Cao, Yu; Socha, Robert

    2008-03-01

    While lithography R&D community at large has already gotten the mind set for 32nm, all eyes are on 22nm node. Current consensus is to employ computational lithography to meet wafer CD uniformity (CDU) requirement. Resolution enhancement technologies (RET) and model OPC are the two fundamental components for computational lithography. Today's full-chip CDU specifications are already pushing physical limits at extreme lithography k I factor. While increasingly aggressive RET either by double exposure or double patterning are enabling imaging performance, for CDU control we need ever more accurate OPC at a greater computational efficiency. In this report, we discuss the desire for wanting more robust and accurate OPC models. One important trend is to have predictive OPC models allowing accurate OPC results to be obtained much faster, shortening the qualification process for exposure tools. We investigate several key parameters constitute to accuracy achievable in computational lithography. Such as the choice of image pixel size, numbers of terms needed for transmission cross coefficients (TCC), and "safe" ambit radius for assuring accurate CD prediction. Selections of image pixel size and "safe" ambit radius together determine % utilization for 2D fast Fourier transformation (FFT) for efficient full-chip OPC computation. For IC manufacturing beyond ArF, we made initial observations and estimations on EUV computational lithography. These discussions pave the way for developing a computational lithography roadmap extends to the end of Moore's Law. This computational lithography roadmap aims to be a complement for the current ITRS roadmap on what does it take to achieve CD correction accuracy.

  16. ITRS lithography roadmap: status and challenges

    NASA Astrophysics Data System (ADS)

    Neisser, Mark; Wurm, Stefan

    2012-09-01

    Recent ITRS lithography roadmaps show a big technology decision approaching the semiconductor industry about how to do leading edge lithography. The need is rapidly approaching for the industry to select an option for the 22-nm half pitch, but no decision has been made yet. The main options for the 22-nm half pitch are extreme ultraviolet (EUV), ArF immersion lithography with multiple patterning, and maskless lithography. For the 16-nm half pitch, directed self-assembly (DSA) is also an option. The EUV has the most industry investment and is the closest to current lithography in the way it works but still faces challenges in tool productivity and defect-free masks. The nanoimprint needs to overcome the defect, contamination, and overlay challenges before it can be applied to the semiconductor production. Maskless lithography may be used first for prototyping and small volume products where mask costs per chip produced would be very high. Double patterning could be extended to multiple pattering, but would give tremendous process complexity and exponentially rising mask costs due to the many exposures needed per level. The DSA, which only recently has emerged from the research stage, has the potential for very high resolution but represents a huge change in how critical dimensions are formed and controlled.

  17. Speckle disturbance limit in laser-based cinema projection systems

    NASA Astrophysics Data System (ADS)

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2015-09-01

    In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers’ responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain.

  18. Speckle disturbance limit in laser-based cinema projection systems.

    PubMed

    Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo

    2015-01-01

    In a multi-disciplinary effort, we investigate the level of speckle that can be tolerated in a laser cinema projector based on a quality of experience experiment with movie clips shown to a test audience in a real-life movie theatre setting. We identify a speckle disturbance threshold by statistically analyzing the observers' responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. The speckle disturbance limit for movies turns out to be substantially larger than that for still images, and hence is easier to attain. PMID:26370531

  19. Magnetic nanostructures by colloidal lithography

    NASA Astrophysics Data System (ADS)

    Zhu, Frank Qing

    Structural, magnetic and in some cases magneto-transport properties of (1) symmetric and asymmetric ferromagnetic nanorings and (2) single layer, multilayer, and exchange biased ferromagnetic nanodots prepared by colloidal lithography are presented. A fast, reliable and cost effective method has been developed to fabricate large number (˜ 109) of magnetic nanorings over macroscopic areas (˜ cm2) with large areal densities (up to 45 rings/mum 2). Cobalt nanorings with diameters ranging from 100 nm to 500 nm have been fabricated by sputtering Co onto nanosphere-coated substrates followed by ion beam etching. X-ray diffraction verifies that the Co nanorings still have hexagonal close-packed (hcp) structure. Scanning electron microscopy reveals that the cross-section of the symmetric nanoring is tapered and uniform along the circumference, and the cross-section of the asymmetric nanoring changes progressively along the circumference. Two magnetic reversal processes have been found in magnetic nanorings---the vortex formation process and the onion rotation process. The co-existence of these two processes is the manifestation of the competition between the exchange energy and the magnetostatic energy in the nanorings. Micromagnetics simulations have been carried out to reveal the details of the magnetic reversals. The experimental and the computed hysteresis loops agree both qualitatively and quantitatively. For the 100 nm symmetric Co nanorings, the vortex formation process has a probability of about 40%, while the onion rotation process has 60% chances. To increase the probability of vortex formation process, a desirable process for application, asymmetric nanorings have been fabricated by ion beam etching at oblique angles. Unlike the symmetric nanorings, the probability of the vortex formation process in asymmetric nanorings can be controlled by the direction of the external field. For the 100 nm asymmetric nanorings, the fraction of the vortex formation process

  20. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-01

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%. PMID:24921496

  1. Laser-Based Measurement Of Torsional Vibration

    NASA Astrophysics Data System (ADS)

    Eastwood, P. G.; Halliwell, N. A.

    1986-07-01

    Investigations of the torsional vibration characteristics of shaft systems which transmit pulsating torques are an important part of a machinery designer's responsibility. Satisfactory operation of such systems depends to a large extent on successful treatment of this vibration problem, since incorrectly or insufficiently controlled torsional oscillations can lead to fatigue failure, rapid bearing wear, gear hammer etc. The problem is particularly severe in engine crankshaft design where numerous failures have been traced to abnormal vibration at "critical" speeds. Traditionally, the monitoring of torsional oscillation has been performed using strain gauges, slip rings and a variety of mechanical and electrical "torsiographs". More recently systems employing slotted discs or toothed wheels together with proximity transducers have been preferred, but a disadvantage arises from all these methods in that they require contact with the rotating component which necessitates "downtime" for transducer attachment. Moreover, physical access to the rotating surface is often restricted thus making the use of such methods impractical. The "cross-beam" laser velocimeter provides a means of measuring torsional vibration by a non-contact method, thus effectively overcoming the disadvantages of previous measurement systems. This well established laser-based instrument provides a time-resolved voltage analogue of shaft tangential surface velocity and laboratory and field tests have shown it to be both accurate and reliable. The versatility of this instrument, however, is restricted by the need for accurate positioning, since the velocimeter must be arranged so that the rotating surface always traverses the beam intersection region, which is typically only a fraction of a millimetre in length. As a consequence use is restricted to components of circular cross section. This paper compares and contrasts the "cross-beam" system with a new laser instrument, the laser torsional vibrometer

  2. Masks for extreme ultraviolet lithography

    SciTech Connect

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y

    1998-09-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed.

  3. Semiconductor foundry, lithography, and partners

    NASA Astrophysics Data System (ADS)

    Lin, Burn J.

    2002-07-01

    The semiconductor foundry took off in 1990 with an annual capacity of less than 0.1M 8-inch-equivalent wafers at the 2-mm node. In 2000, the annual capacity rose to more than 10M. Initially, the technology practiced at foundries was 1 to 2 generations behind that at integrated device manufacturers (IDMs). Presently, the progress in 0.13-mm manufacturing goes hand-in-hand with any of the IDMs. There is a two-order of magnitude rise in output and the progress of technology development outpaces IDMs. What are the reasons of the success? Is it possible to sustain the pace? This paper shows the quick rise of foundries in capacity, sales, and market share. It discusses the their uniqueness which gives rise to advantages in conjunction with challenges. It also shows the role foundries take with their customer partners and supplier partners, their mutual dependencies, as well as expectations. What role then does lithography play in the foundries? What are the lithographic challenges to sustain the pace of technology? The experience of technology development and transfer, at one of the major foundries, is used to illustrate the difficulties and progresses made. Looking into the future, as semiconductor manufacturing will become even more expensive and capital investment more prohibitive, we will make an attempt to suggest possible solutions.

  4. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  5. Secondary Electrons in EUV Lithography

    SciTech Connect

    Torok, Justin; Re, Ryan Del; Herbol, Henry; Das, Sanjana; Bocharova, Irina; Paolucci, Angela; Ocola, Leonidas E.; Ventrice Jr., Carl; Lifshin, Eric; Denbeaux, Greg; Brainard, Robert L.

    2013-01-01

    Secondary electrons play critical roles in several imaging technologies, including extreme ultraviolet (EUV) lithography. At longer wavelengths of light (e.g. 193 and 248 nm), the photons are directly involved in the photochemistry occurring during photolysis. EUV light (13.5 nm, 92 eV), however, first creates a photoelectron, and this electron, or its subsequent daughter electrons create most of the chemical changes that occur during exposure. Despite the importance of these electrons, the details surrounding the chemical events leading to acid production remain poorly understood. Previously reported experimental results using high PAG-loaded resists have demonstrated that up to five or six photoacids can be generated per incident photon. Until recently, only electron recombination events were thought to play a role in acid generation, requiring that at least as many secondary electrons are produced to yield a given number of acid molecules. However, the initial results we have obtained using a Monte Carlo-based modeling program, LESiS, demonstrate that only two to three secondary electrons are made per absorbed EUV photon. A more comprehensive understanding of EUV-induced acid generation is therefore needed for the development of higher performance resists

  6. Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution.

    PubMed

    Lu, Yuerui; Lal, Amit

    2010-06-01

    The critical dimension, throughput, and cost of nanolithography are central to developing commercially viable high-performance nanodevices. Available top-down lithography approaches to fabricate large-area nanostructures at low cost, such as controllable nanowire (NW) array fabrication for solar cells applications, are challenging due to the requirement of both high lithography resolution and high throughput. Here, a minimum 35 nm resolution is experimentally demonstrated by using a new mask fabrication technique in our demonstrated vacuum-free high-throughput self-powered parallel electron lithography (SPEL) system, which uses large-area planar radioactive beta-electron thin film emitters to parallel expose e-beam resist through a stencil mask. SPEL is the first-time demonstrated vacuum-free electron lithography, which overcomes the membrane mask distortion challenge that was shown to be the Achilles heel of previous attempts at electron projection lithography in vacuum. Monte Carlo simulations show that by using beryllium tritide thin film source in SPEL system, the exposure time can be reduced down to 2 min for each large-area (10000 cm(2) or more) parallel exposure, with resolution not larger than 20 nm. Moreover, experimental demonstration of large-area diameter-and-density controllable vertical NW arrays fabricated by SPEL shows its promising utility for an application requiring large-area nanostructure definition. PMID:20481509

  7. Lithography aware overlay metrology target design method

    NASA Astrophysics Data System (ADS)

    Lee, Myungjun; Smith, Mark D.; Lee, Joonseuk; Jung, Mirim; Lee, Honggoo; Kim, Youngsik; Han, Sangjun; Adel, Michael E.; Lee, Kangsan; Lee, Dohwa; Choi, Dongsub; Liu, Zephyr; Itzkovich, Tal; Levinski, Vladimir; Levy, Ady

    2016-03-01

    We present a metrology target design (MTD) framework based on co-optimizing lithography and metrology performance. The overlay metrology performance is strongly related to the target design and optimizing the target under different process variations in a high NA optical lithography tool and measurement conditions in a metrology tool becomes critical for sub-20nm nodes. The lithography performance can be quantified by device matching and printability metrics, while accuracy and precision metrics are used to quantify the metrology performance. Based on using these metrics, we demonstrate how the optimized target can improve target printability while maintaining the good metrology performance for rotated dipole illumination used for printing a sub-100nm diagonal feature in a memory active layer. The remaining challenges and the existing tradeoff between metrology and lithography performance are explored with the metrology target designer's perspective. The proposed target design framework is completely general and can be used to optimize targets for different lithography conditions. The results from our analysis are both physically sensible and in good agreement with experimental results.

  8. Soft Lithography Using Nectar Droplets.

    PubMed

    Biswas, Saheli; Chakrabarti, Aditi; Chateauminois, Antoine; Wandersman, Elie; Prevost, Alexis M; Chaudhury, Manoj K

    2015-12-01

    In spite of significant advances in replication technologies, methods to produce well-defined three-dimensional structures are still at its infancy. Such a limitation would be evident if we were to produce a large array of simple and, especially, compound convex lenses, also guaranteeing that their surfaces would be molecularly smooth. Here, we report a novel method to produce such structures by cloning the 3D shape of nectar drops, found widely in nature, using conventional soft lithography.The elementary process involves transfer of a thin patch of the sugar solution coated on a glass slide onto a hydrophobic substrate on which this patch evolves into a microdroplet. Upon the absorption of water vapor, such a microdroplet grows linearly with time, and its final size can be controlled by varying its exposure time to water vapor. At any stage of the evolution of the size of the drop, its shape can be cloned onto a soft elastomer by following the well-known methods of molding and cross-linking the same. A unique new science that emerges in our attempt to understand the transfer of the sugar patch and its evolution to a spherical drop is the elucidation of the mechanics underlying the contact of a deformable sphere against a solid support intervening a thin liquid film. A unique aspect of this work is to demonstrate that higher level structures can also be generated by transferring even smaller nucleation sites on the surface of the primary lenses and then allowing them to grow by absorption of water vapor. What results at the end is either a well-controlled distribution of smooth hemispherical lenses or compound structures that could have potential applications in the fundamental studies of contact mechanics, wettability, and even in optics. PMID:26563988

  9. High-n immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; Mulkens, Jan; Graeupner, Paul; McCafferty, Diane; Markoya, Louis; Donders, Sjoerd; Cortie, Rogier; Meijers, Ralph; Evangelista, Fabrizio; Samarakone, Nandarisi

    2008-03-01

    A two-year study on the feasibility of High-n Immersion Lithography shows very promising results. This paper reports the findings of the study. The evaluation shows the tremendous progress made in the development of second-generation immersion fluid technology. Candidate fluids from several suppliers have been evaluated. All the commercial fluids evaluated are viable, so there are a number of options. Life tests have been conducted on bench top fluid-handling systems and the results referenced to full-scale systems. Parameters such as Dose per Laser Pulse, Pulse Rate, Fluid Flow Rate, and Fluid Absorbency at 193nm, and Oxygen/Air Contamination Levels were explored. A detailed evaluation of phenomena such as Last Lens Element (LLE) contamination has been conducted. Lens cleaning has been evaluated. A comparison of High-n fluid-based technology and water-based immersion technology shows interesting advantages of High-n fluid in the areas of Defect and Resist Interaction. Droplet Drying tests, Resist Staining evaluations, and Resist Contrast impact studies have all been run. Defect-generating mechanisms have been identified and are being eliminated. The lower evaporation rate of the High-n fluids compared with water shows the advantages of High-n Immersion. The core issue for the technology, the availability of High-n optical material for use as the final lens element, is updated. Samples of LuAG material have been received from development partners and have been evaluated. The latest status of optical materials and the technology timelines are reported. The potential impact of the availability of the technology is discussed. Synergy with technologies such as Double Patterning is discussed. The prospects for <22nm (hp) are evaluated.

  10. Hybrid lithography for triple patterning decomposition and E-beam lithography

    NASA Astrophysics Data System (ADS)

    Tian, Haitong; Zhang, Hongbo; Xiao, Zigang; Wong, Martin D. F.

    2014-03-01

    As we advances into 14/10nm technology node, single patterning technology is far from enough to fabricate the features with shrinking feature size. According to International Technology Roadmap for Semiconductors in 2011,1 double patterning lithography is already available for massive productions in industry for sub-32nm half pitch technology node. For 14/10nm technology node, double patterning begins to show its limitations as it uses too many stitches to resolve the native coloring conflicts. Stitches will increase the manufacturing cost, lead to potential functional errors of the chip, and cause the yield lost. Triple patterning lithography and E-Beam lithography are two emerging techniques to beat the diffraction limit for current optical lithography system. In this paper, we investigate combining the merits of triple patterning lithography and E-Beam lithography for standard cell based designs. We devise an approach to compute a stitch free decomposition with the optimal number of E-Beam shots for row structure layout. The approach is expected to highlight the necessity and advantages of using hybrid lithography for advanced technology node.

  11. Advanced mask aligner lithography: new illumination system.

    PubMed

    Voelkel, Reinhard; Vogler, Uwe; Bich, Andreas; Pernet, Pascal; Weible, Kenneth J; Hornung, Michael; Zoberbier, Ralph; Cullmann, Elmar; Stuerzebecher, Lorenz; Harzendorf, Torsten; Zeitner, Uwe D

    2010-09-27

    A new illumination system for mask aligner lithography is presented. The illumination system uses two subsequent microlens-based Köhler integrators. The second Köhler integrator is located in the Fourier plane of the first. The new illumination system uncouples the illumination light from the light source and provides excellent uniformity of the light irradiance and the angular spectrum. Spatial filtering allows to freely shape the angular spectrum to minimize diffraction effects in contact and proximity lithography. Telecentric illumination and ability to precisely control the illumination light allows to introduce resolution enhancement technologies (RET) like customized illumination, optical proximity correction (OPC) and source-mask optimization (SMO) in mask aligner lithography. PMID:20940992

  12. Lithography and design in partnership: a new roadmap

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.

    2008-10-01

    We discuss the notion of a 'shared technology roadmap' between lithography and design from several perspectives. First, we examine cultural gaps and other intrinsic barriers to a shared roadmap. Second, we discuss how lithography technology can change the design technology roadmap. Third, we discuss how design technology can change the lithography technology roadmap. We conclude with an example of the 'flavor' of technology roadmapping activity that can truly bridge lithography and design.

  13. LAVA: lithography analysis using virtual access

    NASA Astrophysics Data System (ADS)

    Hsu, Chang; Yang, Rona; Cheng, Jeffery; Chien, Peter; Wen, Victor; Neureuther, Andrew R.

    1998-06-01

    A web site allowing remote operation of the SPLAT, SAMPLE, TEMPEST and SIMPL simulators has been developed to promote collaborative work on lithography and in particular on EUV technology. Based on the extensive use of platform independent programming languages, LAVA is accessible from all modern computing platforms. The software supporting the web site is available to others in creating similar web site sites and in making simulators such as those from other universities 'play' together. The web site explores new paradigms in remote operation of lithography simulators and introduces more application-oriented modes of interaction with technologists. The LAVA web site URL is http://cuervo.eecs.berkeley.edu/Volcano/

  14. Lithography light source fault detection

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Pantel, Erica; Nelissen, Patrick; Moen, Jeffrey; Tincu, Eduard; Dunstan, Wayne; Brown, Daniel

    2010-04-01

    High productivity is a key requirement for today's advanced lithography exposure tools. Achieving targets for wafers per day output requires consistently high throughput and availability. One of the keys to high availability is minimizing unscheduled downtime of the litho cell, including the scanner, track and light source. From the earliest eximer laser light sources, Cymer has collected extensive performance data during operation of the source, and this data has been used to identify the root causes of downtime and failures on the system. Recently, new techniques have been developed for more extensive analysis of this data to characterize the onset of typical end-of-life behavior of components within the light source and allow greater predictive capability for identifying both the type of upcoming service that will be required and when it will be required. The new techniques described in this paper are based on two core elements of Cymer's light source data management architecture. The first is enhanced performance logging features added to newer-generation light source software that captures detailed performance data; and the second is Cymer OnLine (COL) which facilitates collection and transmission of light source data. Extensive analysis of the performance data collected using this architecture has demonstrated that many light source issues exhibit recognizable patterns in their symptoms. These patterns are amenable to automated identification using a Cymer-developed model-based fault detection system, thereby alleviating the need for detailed manual review of all light source performance information. Automated recognition of these patterns also augments our ability to predict the performance trending of light sources. Such automated analysis provides several efficiency improvements for light source troubleshooting by providing more content-rich standardized summaries of light source performance, along with reduced time-to-identification for previously

  15. SYSTEM CONSIDERATIONS FOR MASKLESS LITHOGRAPHY

    SciTech Connect

    Karnowski, Thomas Paul; Joy, David; Allard Jr, Lawrence Frederick; Clonts, Lloyd G

    2004-01-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting problems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-off switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devices are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  16. System considerations for maskless lithography

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas; Joy, David; Allard, Larry; Clonts, Lloyd

    2004-05-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting prblems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-ofrf switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devidces are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  17. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  18. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  19. Polymer-based optical interconnects using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Boersma, Arjen; Wiegersma, Sjoukje; Offrein, Bert J.; Duis, Jeroen; Delis, Jos; Ortsiefer, Markus; van Steenberge, Geert; Karpinen, Mikko; van Blaaderen, Alfons; Corbett, Brian

    2013-02-01

    The increasing request for higher data speeds in the information and communication technology leads to continuously increasing performance of microprocessors. This has led to the introduction of optical data transmission as a replacement of electronic data transmission in most transmission applications longer than 10 meters. However, a need remains for optical data transmission for shorter distances inside the computer. This paper gives an overview of the Joint European project FIREFLY, in which new polymer based single mode waveguides are developed for integration with VCSELs, splitters and fibers that will be manufactured using multi-layer nanoimprint lithography (NIL). Innovative polymers, new applications of nano-technology, new methods for optical coupling between components, and the integration of all these new components are the technical ingredients of this ambitious project.

  20. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  1. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  2. Recent Progress On Submicron Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Takigawa, Tadahiro; Shimazaki, Kuniya; Kusui, Naoki

    1986-06-01

    In order to fabricate submicron pattern, total electron beam (EB) lithography system has been developed. Upper submicron pattern will be realized by optical lithography, which requires reticle with high accuracy. An EB writing system, EBM-130/40, has the performance of drawing capability of 4 M bit DRAM reticle pattern in about 40 minutes. The EB system incorporated with peripheral technologies including data compaction conversion software, reticle inspection system, APC-130R, and EBR-9 resist process can produce advanced reticles of number of about 600 per month. For lower submicron pattern formation, next generation lithography system is required. The EBM-130V is the variable shaped EB system with high acceleration voltage of 50 kV and high dosage of 50 μC/cm2 for direct writing and X-ray mask fabrication for development of the high bit density VLSI pattern. This system makes possible EB/optical combined lithography. Its metrology function allows it to measure X-ray mask distortion.

  3. Development of MOEMS technology in maskless lithography

    NASA Astrophysics Data System (ADS)

    Smith, David; Klenk, Dieter

    2009-02-01

    Micro-opto-electro-mechanical-systems (MOEMS) have proven to be a facilitating technology in the lithography industry. Recently, there have been significant advancements in digital micromirror device (DMD) based maskless lithography. These advancements have been in the areas of throughput, resolution, accuracy, and cost reduction. This progression in digital micromirror evolution provides considerable opportunities to displace existing lithographic techniques. Precise control of the individual mircormirrors, including scrolling, and full utilization of the FPGA, have allowed DMD-based lithography systems to reach new levels of throughput and repeatability, while reducing production and warranty costs. Throughput levels have far surpassed scanning laser techniques. Chip level cooling technologies allow for higher incident power to be reliably distributed over larger areas of the substrate. Resolution roadmaps are in place to migrate from the current 2400dpi (11μm) to 4800dpi (5.3μm). Without the constraints of mask requirements, mask alignment, storage, and defect analysis are not required, thus increasing accuracy and reducing cost. This contribution will examine the advancements in and benefits of DMD based maskless lithography.

  4. Neutral Atom Lithography Using a Bright Metastable Helium Beam

    NASA Astrophysics Data System (ADS)

    Shean, Claire; Reeves, Jason; Metcalf, Harold

    2008-05-01

    We have performed neutral atom lithography using a bright beam of metastable Helium (He*) that is collimated with the bichromatic force followed by two Doppler molasses velocity compression stages. We have previously demonstrated this lithography method using a metal grid to project its image on a self assembled monolayer (SAM) of nonanethiol. The open areas of the grid allow incident He* to damage the SAM molecules by depositing their 20 eV of internal energy on the surface. The undisturbed SAM regions then protect a gold coated Silicon wafer from a wet chemical etch. Samples created with this method have an edge resolution of 63 nm that was observed using an atomic force microscope. We have now achieved focusing of the He* beam into lines by the dipole force that the atoms experience while traversing a standing wave of λ = 1083 nm light tuned 500 MHz above the 2^3S1-->2^3P2 transition. The lines are separated by λ/2 and their length is comparable to the laser beam waist. Because bichromatic collimation makes such an intense He* beam, our exposure time can be as short as 10 minutes.

  5. Laser based micro forming and assembly.

    SciTech Connect

    MacCallum, Danny O'Neill; Wong, Chung-Nin Channy; Knorovsky, Gerald Albert; Steyskal, Michele D.; Lehecka, Tom; Scherzinger, William Mark; Palmer, Jeremy Andrew

    2006-11-01

    It has been shown that thermal energy imparted to a metallic substrate by laser heating induces a transient temperature gradient through the thickness of the sample. In favorable conditions of laser fluence and absorptivity, the resulting inhomogeneous thermal strain leads to a measurable permanent deflection. This project established parameters for laser micro forming of thin materials that are relevant to MESA generation weapon system components and confirmed methods for producing micrometer displacements with repeatable bend direction and magnitude. Precise micro forming vectors were realized through computational finite element analysis (FEA) of laser-induced transient heating that indicated the optimal combination of laser heat input relative to the material being heated and its thermal mass. Precise laser micro forming was demonstrated in two practical manufacturing operations of importance to the DOE complex: micrometer gap adjustments of precious metal alloy contacts and forming of meso scale cones.

  6. Laser-based Measurement Systems for Space Applications

    NASA Astrophysics Data System (ADS)

    Plattner, Markus

    2012-03-01

    Measurement systems based on laser technology are widely used in laboratories, metrology institutes and industry. Measurement applications like optical sensing and optical spectroscopy are state of the art. For space applications, however, laser systems are rarely used due to the sensitivity of optical components to the harsh environmental conditions. The focus of this work lies on further development of laser technologies for the applications optical frequency comb generation and fiber-optic sensing. In order to identify suitable laser technologies, the conditions for systems that shall be operated in space are analyzed thoroughly. The influences due to the space environment are considered and the radiation and temperature effects on laser optics are determined. Commercially available femtosecond fiber lasers based on mode-locking technologies non-linear polarization rotation and quasi-soliton generation are functionally tested in order to verify the theoretical analysis. Thermal-vacuum and Gamma radiation test series are carried out and the performance of the lasers is measured online. Evaluation of measurement data, assessment of laser setups in terms of robustness and their behaviors during tests allow concluding an optimized femtosecond laser design. This design serves as baseline for further development and will yield a system that can cope with the requirements for an application in space. In order to demonstrate the functionality of fiber-optic sensing based on a tunable laser diode, an interrogator system is built and tested in the frame of this work. This technology, based on a monolithic laser, enables an all-in-fiber setup without any free-space optics. The laser wavelength is tuned by feeding in three control currents. Thereby, the connected fiber Bragg grating temperature sensors are sampled spectrally. Newly developed algorithms enhance the measurement performance, evaluate the back reflected sensor responses and determine the measurement value. This

  7. Diode-laser-based lidars: the next generation

    NASA Astrophysics Data System (ADS)

    Vujkovic-Cvijin, Pajo; Cooper, David E.; Van der Laan, Jan E.; Warren, Russell E.

    1999-10-01

    The work on the development of compact diode laser-based lidar systems at SRI International is reviewed. Two systems, a pseudorandom modulation lidar, and a mobile remote sensor for natural gas pipeline leak detection are described in detail, and experimental results are presented. Methods to enhance signal detection by digital filtering are also reviewed.

  8. Laser-based direct-write techniques for cell printing

    PubMed Central

    Schiele, Nathan R; Corr, David T; Huang, Yong; Raof, Nurazhani Abdul; Xie, Yubing; Chrisey, Douglas B

    2016-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. PMID:20814088

  9. Nanoimprint lithography using IR laser irradiation

    NASA Astrophysics Data System (ADS)

    Grigaliūnas, V.; Tamulevičius, S.; Muehlberger, M.; Jucius, D.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.

    2006-11-01

    A new technique called "infrared laser-assisted nanoimprint lithography" was utilised to soften the thermoplastic polymer material mR-I 8020 during nanoimprint lithography. A laser setup and a sample holder with pressure and temperature control were designed for the imprint experiments. The polymer was spin coated onto crystalline Si <1 1 1> substrates. A prepatterned Si <1 1 1> substrate, which is transparent for the CO 2 laser irradiation, was used as an imprint stamp as well. It was shown, that the thermoplastic resist mR-I 8020 could be successfully imprinted using the infrared CW CO 2 laser irradiation ( λ = 10.6 μm). The etching rate of the CO 2 laser beam irradiated mR-I 8020 resist film under O 2 RF (13.56 MHz) plasma treatment and during O 2 reactive ion beam etching was investigated as well.

  10. Optimization criteria for SRAM design: lithography contribution

    NASA Astrophysics Data System (ADS)

    Cole, Daniel C.; Bula, Orest; Conrad, Edward W.; Coops, Daniel S.; Leipold, William C.; Mann, Randy W.; Oppold, Jeffrey H.

    1999-07-01

    Here we discuss the use of well calibrated resist and etch bias models, in conjunction with a fast microlithography aerial image simulator, to predict and 'optimize' the printed shapes through all critical levels in a dense SRAM design. Our key emphasis here is on 'optimization criteria', namely, having achieved good predictability for printability with lithography models, how to use this capability in conjunction of best electrical performance, yield, and density. The key lithography/design optimization issues discussed here are: (1) tightening of gate width variation by reducing spatial curvature in the source and drain regions, (2) achieving sufficient contact areas, (3) maximizing process window for overlay, (4) reducing leakage mechanisms by reducing contributions of stress and strain due to the printed shape of oxide isolation regions, (5) examining topological differences in design during the optimization process, (6) accounting for mask corner rounding, and (7) designing for scalability to smaller dimensions to achieve optical design reusability issues without hardware.

  11. Synchrotron beamlines for x-ray lithography

    NASA Astrophysics Data System (ADS)

    Trippe, Anthony P.; Pearce, W. J.

    1994-02-01

    Louisiana State University established the J. Bennett Johnston, Sr., Center for Advanced Microstructures and Devices (CAMD). Designed and constructed by the Brobeck Division of Maxwell Laboratories, the CAMD synchrotron light source is the first electron storage ring to be built by a commercial company in the United States. The synchrotron x-ray radiation generated at CAMD is an extremely useful exposure source for both thin and thick film lithography. Passing through a beamline containing two plane mirrors, the synchrotron light is used to expose thin resists for lithography of patterns with feature sizes of 0.25 micron and smaller. Two thick-resist beamlines, one using a single aspheric (collimating) mirror and one using a plane mirror, provide the higher flux photons required for miniaturization in silicon to produce microscopic mechanical devices including gears, motors, filters, and valves.

  12. Precision manufacturing using advanced optical interference lithography. Final report

    SciTech Connect

    Britten, J.A.; Hawryluk, A.M.

    1997-04-03

    Goal was to develop interference lithography (IL) as a reliable process for patterning large-area, deep-submicron scale field emission arrays for field emission display (FED) applications. We have developed a system based on IL which can easily produce an array of 0.2-0.5 micron emitters over large area (up to 400 sq. in. to date) with better than 5% height and spacing uniformity. Process development as a result of this LDRD project represents a significant advance over the current state of the art for FED manufacturing and is applicable to all types of FEDs, independent of the emitter material. Ability of IL to pattern such structures simultaneously and uniformly on a large format has application to other technology areas, such as dynamic random access memory (DRAM) production and magnetic media recording.

  13. Rethinking ASIC design with next generation lithography and process integration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Kaushik; Liu, Renzhi; Liebmann, Lars; Lai, Kafai; Strojwas, Andrzej; Pileggi, Larry

    2013-03-01

    Given the deployment delays for EUV, several next generation lithography (NGL) options are being actively researched. Several cost-effective NGL solutions, such as self-aligned double patterning through sidewall image transfer (SIT) and directed self-assembly (DSA), in conjunction with process integration challenges, mandate grating-like pattern design. As part of the GRATEdd project, we have evaluated the design cost of grating-based design for ASICs (application specific ICs). Based on our observations we have engineered fundamental changes to the primary ASIC design components to make scaling affordable and useful in deeply scaled sub-20 nm technologies: unidirectional-M1 based standard cells, application-specific smart SRAM synthesis, and statistical and self-healing analog design.

  14. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, Simon J.; Seppala, Lynn G.

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  15. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  16. Implementation of assist features in EUV lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Burkhardt, Martin; Raghunathan, Ananthan; Torres, Andres; Gupta, Rachit; Word, James

    2015-03-01

    The introduction of EUV lithography will happen at a critical feature pitch which corresponds to a k1 factor of roughly 0.45. While this number seems not very aggressive compared to recent ArF lithography nodes, the number is sufficiently low that the introduction of assist features has to be considered. While the small NA makes the k1 factor larger, the depth of focus still needs to be scaled down with wavelength. However the exposure tool's focus control is not greatly improved over the ArF tools, so other solutions to improve the depth of focus, e.g. SRAFs, are needed. On the other hand, sub-resolution assist features (SRAFs) require very small mask dimensions, which make masks more costly to write and inspect. Another disadvantage of SRAFs is the fact that they may cause pattern-dependent best focus shift due to thick mask effects. Those effects can be predicted, but the shift of best focus and the associated tilt of Bossung curves make the process more difficult to control. We investigate the impact of SRAFs on printing in EUV lithography and evaluate advantages and disadvantages. By using image quality parameters such as best focus (BF), and depth of focus (DOF), respectively with and without SRAFs, we will answer the question if we can gain a net benefit for 1D and 2D patterns by adding SRAFs. SRAFs will only be introduced if any net improvement in process variation (PV) outweighs the additional expense of assist patterning on the mask. In this paper, we investigate the difference in printing behavior of symmetric and asymmetric SRAF placement and whether through slit effect needs to be considered in SRAF placement for EUV lithography.

  17. Metallic resist for phase-change lithography

    PubMed Central

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-01-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge2Sb2Te5 films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg58Cu29Y13 alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg58Cu29Y13 thin film is better and can be more easily controlled than that in Ge2Sb2Te5 during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg58Cu29Y13 thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg58Cu29Y13 is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics. PMID:24931505

  18. REBL nanowriter: Reflective Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Petric, Paul; Bevis, Chris; Brodie, Alan; Carroll, Allen; Cheung, Anthony; Grella, Luca; McCord, Mark; Percy, Henry; Standiford, Keith; Zywno, Marek

    2009-03-01

    REBL (Reflective Electron Beam Lithography) is being developed for high throughput electron beam direct write maskless lithography. The system is specifically targeting 5 to 7 wafer levels per hour throughput on average at the 45 nm node, with extendibility to the 32 nm node and beyond. REBL incorporates a number of novel technologies to generate and expose lithographic patterns at estimated throughputs considerably higher than electron beam lithography has been able to achieve as yet. A patented reflective electron optic concept enables the unique approach utilized for the Digital Pattern Generator (DPG). The DPG is a CMOS ASIC chip with an array of small, independently controllable cells or pixels, which act as an array of electron mirrors. In this way, the system is capable of generating the pattern to be written using massively parallel exposure by ~1 million beams at extremely high data rates (~ 1Tbps). A rotary stage concept using a rotating platen carrying multiple wafers optimizes the writing strategy of the DPG to achieve the capability of high throughput for sparse pattern wafer levels. The exposure method utilized by the DPG was emulated on a Vistec VB-6 in order to validate the gray level exposure method used in REBL. Results of these exposure tests are discussed.

  19. Self-segregating materials for immersion lithography

    NASA Astrophysics Data System (ADS)

    Sanders, Daniel P.; Sundberg, Linda K.; Brock, Phillip J.; Ito, Hiroshi; Truong, Hoa D.; Allen, Robert D.; McIntyre, Gregory R.; Goldfarb, Dario L.

    2008-03-01

    In this paper, we employ the self-segregating materials approach used in topcoat-free resists for water immersion lithography to extend the performance of topcoat materials for water immersion and to increase the contact angles of organic fluids on topcoat-free resists for high index immersion lithography. By tailoring polymers that segregate to the air and resist interfaces of the topcoat, high contact angle topcoats with relatively low fluorine content are achieved. While graded topcoats may extend the performance and/or reduce the cost of topcoat materials, the large amount of unprotected acidic groups necessary for TMAH development prevent them from achieving the high contact angles and low hysteresis exhibited by topcoat-free resists. Another application of this self-segregating approach is tailoring resist surfaces for high index immersion. Due to the low surface tension and higher viscosities of organic fluids relative to water and their lower contact angles on most surfaces, film pulling cannot be prevented without dramatically reducing wafer scan rates; however, tuning the surface energy of the resist may be important to control stain morphology and facilitate fluid removal from the wafer. By tailoring fluoropolymer additives for high contact angles with second generation organic high index immersion fluids, we show herein that topcoat-free resists can be developed specifically for high index immersion lithography with good contact angles and lithographic imaging performance.

  20. Formation of Magnetic Anisotropy by Lithography.

    PubMed

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2-0.3 erg/cm(2) for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  1. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  2. Advanced lithography for micro-optics

    NASA Astrophysics Data System (ADS)

    Zeitner, U. D.; Kley, E.-B.

    2006-08-01

    Since the beginning of micro-optics fabrication most of the used technologies have been adapted from or are related to semiconductor fabrication techniques. These are widely known and the special microelectronics fabrication tools, especially lithography machines, are available at numerous places. Besides the fact that therefore micro-optics was able to took advantage of the steady development of semiconductor technology this tight linkage has also a lot of drawbacks. The adaptation of element properties to the fabrication limits given by the available technologies is very often connected with compromises in optical performance. In nowadays micro-optics fabrication has reached a level which justifies the development of fabrication tools specialized to its own demands. In the article the special demands of optical microstructures on the fabrication technologies are discussed and newly developed mico-optics fabrication tools are introduced. The first one is an electron-beam lithography machine for use with up substrates up to 300mm large and 15mm thick achieving a very high overlay accuracy and writing speed. The second one is a laser-lithography system capable to expose micro-optical structures onto non-planar substrates.

  3. Metallic resist for phase-change lithography.

    PubMed

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-01-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge₂Sb₂Te₅ films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg₅₈Cu₂₉Y₁₃ alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg₅₈Cu₂₉Y₁₃ thin film is better and can be more easily controlled than that in Ge₂Sb₂Te₅ during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg₅₈Cu₂₉Y₁₃ thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg₅₈Cu₂₉Y₁₃ is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics. PMID:24931505

  4. Hard-tip, soft-spring lithography.

    PubMed

    Shim, Wooyoung; Braunschweig, Adam B; Liao, Xing; Chai, Jinan; Lim, Jong Kuk; Zheng, Gengfeng; Mirkin, Chad A

    2011-01-27

    Nanofabrication strategies are becoming increasingly expensive and equipment-intensive, and consequently less accessible to researchers. As an alternative, scanning probe lithography has become a popular means of preparing nanoscale structures, in part owing to its relatively low cost and high resolution, and a registration accuracy that exceeds most existing technologies. However, increasing the throughput of cantilever-based scanning probe systems while maintaining their resolution and registration advantages has from the outset been a significant challenge. Even with impressive recent advances in cantilever array design, such arrays tend to be highly specialized for a given application, expensive, and often difficult to implement. It is therefore difficult to imagine commercially viable production methods based on scanning probe systems that rely on conventional cantilevers. Here we describe a low-cost and scalable cantilever-free tip-based nanopatterning method that uses an array of hard silicon tips mounted onto an elastomeric backing. This method-which we term hard-tip, soft-spring lithography-overcomes the throughput problems of cantilever-based scanning probe systems and the resolution limits imposed by the use of elastomeric stamps and tips: it is capable of delivering materials or energy to a surface to create arbitrary patterns of features with sub-50-nm resolution over centimetre-scale areas. We argue that hard-tip, soft-spring lithography is a versatile nanolithography strategy that should be widely adopted by academic and industrial researchers for rapid prototyping applications. PMID:21270890

  5. A mask manufacturer's perspective on maskless lithography

    NASA Astrophysics Data System (ADS)

    Buck, Peter; Biechler, Charles; Kalk, Franklin

    2005-11-01

    Maskless Lithography (ML2) is again being considered for use in mainstream CMOS IC manufacturing. Sessions at technical conferences are being devoted to ML2. A multitude of new companies have been formed in the last several years to apply new concepts to breaking the throughput barrier that has in the past prevented ML2 from achieving the cost and cycle time performance necessary to become economically viable, except in rare cases. Has Maskless Lithography's (we used to call it "Direct Write Lithography") time really come? If so, what is the expected impact on the mask manufacturer and does it matter? The lithography tools used today in mask manufacturing are similar in concept to ML2 except for scale, both in throughput and feature size. These mask tools produce highly accurate lithographic images directly from electronic pattern files, perform multi-layer overlay, and mix-n-match across multiple tools, tool types and sites. Mask manufacturers are already accustomed to the ultimate low volume - one substrate per design layer. In order to achieve the economically required throughput, proposed ML2 systems eliminate or greatly reduce some of the functions that are the source of the mask writer's accuracy. Can these ML2 systems meet the demanding lithographic requirements without these functions? ML2 may eliminate the reticle but many of the processes and procedures performed today by the mask manufacturer are still required. Examples include the increasingly complex mask data preparation step and the verification performed to ensure that the pattern on the reticle is accurately representing the design intent. The error sources that are fixed on a reticle are variable with time on an ML2 system. It has been proposed that if ML2 is successful it will become uneconomical to be in the mask business - that ML2, by taking the high profit masks will take all profitability out of mask manufacturing and thereby endanger the entire semiconductor industry. Others suggest that a

  6. Deep-UV interference lithography combined with masked contact lithography for pixel wiregrid patterns

    NASA Astrophysics Data System (ADS)

    Lombardo, David; Shah, Piyush; Guo, Pengfei; Sarangan, Andrew

    2016-04-01

    Pixelated wiregrids are of great interest in polarimetric imagers, but there are no straightforward methods available for combining the uniform exposures of laser interference with a masking system to achieve pixels at different rotational angles. In this work we demonstrate a 266nm deep-UV interference lithography combined with a traditional i-line contact lithography to create such pixels. Aluminum wiregrids are first made, following by etching to create the pixels, and then a planarizing molybdenum film is used before patterning subsequent pixel arrays. The etch contrast between the molybdenum and the aluminum enables the release of the planarizing layer.

  7. Defectivity reduction by optimization of 193-nm immersion lithography using an interfaced exposure-track system

    NASA Astrophysics Data System (ADS)

    Carcasi, Michael; Hatakeyama, Shinichi; Nafus, Kathleen; Moerman, Richard; van Dommelen, Youri; Huisman, Peter; Hooge, Joshua; Scheer, Steven; Foubert, Philippe

    2006-03-01

    As the integration of semiconductor devices continues, pattern sizes required in lithography get smaller and smaller. To achieve even more scaling down of these patterns without changing the basic infrastructure technology of current cutting-edge 193-nm lithography, 193-nm immersion lithography is being viewed as a powerful technique that can accommodate next-generation mass productions needs. Therefore this technology has been seriously considered and after proof of concept it is currently entering the stage of practical application. In the case of 193-nm immersion lithography, however, because liquid fills the area between the projection optics and the silicon wafer, several causes of concern have been raised - namely, diffusion of moisture into the resist film due to direct resist-water interaction during exposure, dissolution of internal components of the resist into the de-ionized water, and the influence of residual moisture generated during exposure on post-exposure processing. To prevent these unwanted effects, optimization of the three main components of the lithography system: materials, track and scanner, is required. For the materials, 193nm resist formulation improvements specifically for immersion processing have reduced the leaching and the sensitivity to water related defects, further benefits can be seen by the application of protective top coat materials. For the track component, optimization of the processing conditions and immersion specific modules are proven to advance the progress made by the material suppliers. Finally, by optimizing conditions on the 3 rd generation immersion scanner with the latest hardware configuration, defectivity levels comparable to dry processing can be achieved. In this evaluation, we detail the improvements that can be realized with new immersion specific track rinse modules and formulate a hypothesis for the improvements seen with the rinsing process. Additionally, we show the current status of water induced

  8. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  9. Mitigation of ion and particulate emission from laser-produced plasmas used for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Di Lazzaro, Paolo; Bollanti, Sarah; Flora, Francesco; Mezi, Luca; Murra, Daniele; Torre, Amalia

    2013-05-01

    While developing a laboratory-scale micro-exposure tool for extreme ultraviolet (EUV) projection lithography which uses a laser-produced plasma emitting EUV pulsed radiation, we faced the problem of suppressing the various debris (ions, neutrals, particulate, clusters, droplets) emitted by the plasma target. The suppression of debris is a crucial task in the frame of EUV projection lithography, mainly because debris seriously limit both lifetime and performance of the expensive optics and filters put close to the plasma source. In this paper we present the experimental measurements of main debris characteristics (velocity, size, charge, momentum, spectral energy, spatial distribution). Then, we present the operating results of a patented debris mitigation systems (DMS) specifically designed to suppress debris with the measured characteristics. We achieved reduction factors ˜800 for atoms and nm-size clusters, and ˜1600 for particles larger than 500 nm. These results are at the forefront in this field. The excellent performance of our DMS was a breakthrough to achieve a 90-nm patterning on commercial resists by our micro-exposure tool EUV projection lithography.

  10. EUV lithography scanner for sub-8nm resolution

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; van Ingen Schenau, Koen; Valentin, Chris; Migura, Sascha

    2015-03-01

    EUV lithography for resolutions below 8 nm half pitch requires the numerical aperture (NA) of the projection lens to be significantly larger than the current state-of-the-art 0.33NA. In order to be economically viable, a throughput in the range of 100 wafers per hour is needed. As a result of the increased NA, the incidence angles of the light rays at the mask increase significantly. Consequently the shadowing deteriorates the aerial image contrast to unacceptably low values at the current 4x magnification. The only solution to reduce the angular range at the mask is to increase the magnification. Simulations show that we have to double the magnification to 8x in order to overcome the shadowing effects. Assuming that the mask infrastructure will not change the mask form factor, this would inevitably lead to a field size that is a quarter of the field size of current 0.33NA step and scan systems. This would reduce the throughput of the high-NA scanner to a value significantly below 100 wafers per hour unless additional measures are taken. This paper presents an anamorphic step and scan system capable to print fields that are half the field size of the current full field. The anamorphic system has the potential to achieve a throughput in excess of 150 wafers per hour by increasing the transmission of the optics as well as increasing the acceleration of the wafer- and mask stage. This makes it an economically viable lithography solution. Furthermore, the simulated imaging behavior of the system is demonstrated and its impact on the rest of the lithographic system is discussed.

  11. Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography

    SciTech Connect

    Park, Joong- Mok; Nalwa, Kanwar Singh; Leung, Wai; Constant, Kristen; Chaudhary, Sumit; Ho, Kai-Ming

    2010-04-30

    Ordered and free-standing metallic nanowires were fabricated by e-beam deposition on patterned polymer templates made by interference lithography. The dimensions of the nanowires can be controlled through adjustment of deposition conditions and polymer templates. Grain size, polarized optical transmission and electrical resistivity were measured with ordered and free-standing nanowires.

  12. EUV lithography imaging using novel pellicle membranes

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  13. Materials Design for Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Sweat, Daniel Patrick

    Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up

  14. Molecular resists for EUV and EB lithography

    NASA Astrophysics Data System (ADS)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Lee, Youngjoon; Takashima, Masayuki; Yokoyama, Hiroyuki

    2008-03-01

    Extreme ultraviolet lithography at a wavelength of 13.5 nm has been prepared for next generation lithography for several years. Of primary concern in EUV lithography is line edge roughness as well as high sensitivity. In recent years, various types of resist, such as protected PHS resin resist and molecular resist, have been investigated. In order to reduce LER, we have studied novel molecular resists which are promising alternative to polymeric photoresists for use as imaging materials with improved resolution and line edge roughness. The work reported in this paper has focused on the development of a new class of chemically amplified molecular resists that are composed of a single molecule which contains all of the different functionalities desired in a chemically amplified resists. For the purpose of improvement of the resist performance, we have designed the resist material of a protected polyphenol derivative (protected Compound A). PAG moiety is bonded to Compound A to achieve uniform PAG density and to control the acid diffusion length in a resist film. We analyzed uniformity of PAG density in a resist film by using gradient shaving preparation and TOF-SIMS analysis. From the TOF-SIMS spectra, the ions intensities of the PAG moiety are almost constant from the surface to the bottom of the film. Therefore, we can conclude that PAG is distributed homogeneously. Under e-beam exposure, a 100nm thick film of the PAG bonded molecular resist resolved lines down to 100nm. We also discussed the new design for molecular resists, their synthesis and lithographic performance.

  15. EUV lithography: progress, challenges, and outlook

    NASA Astrophysics Data System (ADS)

    Wurm, S.

    2014-10-01

    Extreme Ultraviolet Lithography (EUVL) has been in the making for more than a quarter century. The first EUVL production tools have been delivered over the past year and chip manufacturers and suppliers are maturing the technology in pilot line mode to prepare for high volume manufacturing (HVM). While excellent progress has been made in many technical and business areas to prepare EUVL for HVM introduction, there are still critical technical and business challenges to be addressed before the industry will be able to use EUVL in HVM.

  16. Atom Lithography with a Holographic Light Mask

    NASA Astrophysics Data System (ADS)

    Mützel, M.; Tandler, S.; Haubrich, D.; Meschede, D.; Peithmann, K.; Flaspöhler, M.; Buse, K.

    2002-02-01

    In atom lithography with optical masks, deposition of an atomic beam on a given substrate is controlled by a standing light-wave field. The lateral intensity distribution of the light field is transferred to the substrate with nanometer scale. We have tailored a complex pattern of this intensity distribution through diffraction of a laser beam from a hologram that is stored in a photorefractive crystal. This method can be extended to superpose 1000 or more laser beams. The method is furthermore applicable during growth processes and thus allows full 3D structuring of suitable materials with periodic and nonperiodic patterns at nanometer scales.

  17. Laser lithography by photon scanning tunneling microscopy

    SciTech Connect

    Lee, I.; Warmack, R.J.; Ferrell, T.L.

    1993-06-01

    We have investigated the possibility of using a photon scanning tunneling microscope (PSTM) for laser lithography. A contrast enhancement material (CEM) is coated onto a sample slide and coupled to the prism of a PSTM. The CEM becomes transparent above a laser (HeCd at a wavelength of 442 nm) intensity threshold attained due to the proximity of the probe tip. The same surface can then be inspected using the given experimental configuration by replacing the HeCd laser line with a non-exposing 633-nm HeNe laser line. Direct patterns can be produced by varying the exposure time and the shape of the probe tip.

  18. Wave and Particle in Molecular Interference Lithography

    SciTech Connect

    Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, Andras G.; Arndt, Markus; Deachapunya, Sarayut; Ulbricht, Hendrik

    2009-12-31

    The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments.

  19. Wave and particle in molecular interference lithography.

    PubMed

    Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, András G; Deachapunya, Sarayut; Ulbricht, Hendrik; Arndt, Markus

    2009-12-31

    The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments. PMID:20366311

  20. Nanoimprint lithography: an enabling technology for nanophotonics

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wang, Yifei; Li, Yuanrui; Song, Boxiang; Bratkovsk, Alexandre; Wang, Shih-Yuan; Wu, Wei

    2015-11-01

    Nanoimprint lithography (NIL) is an indispensable tool to realize a fast and accurate nanoscale patterning in nanophotonics due to high resolution and high yield. The number of publication on NIL has increased from less than a hundred per year to over three thousand per year. In this paper, the most recent developments on NIL patterning transfer processes and its applications on nanophotonics are discussed and reviewed. NIL has been opening up new opportunities for nanophotonics, especially in fabricating optical meta-materials. With more researches on this low-cost high-throughput fabrication technology, we should anticipate a brighter future for nanophotonics and NIL.

  1. Exposure tool control for advanced semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Matsuyama, Tomoyuki

    2015-08-01

    This is a review paper to show how we control exposure tool parameters in order to satisfy patterning performance and productivity requirements for advanced semiconductor lithography. In this paper, we will discuss how we control illumination source shape to satisfy required imaging performance, heat-induced lens aberration during exposure to minimize the aberration impact on imaging, dose and focus control to realize uniform patterning performance across the wafer and patterning position of circuit patterns on different layers. The contents are mainly about current Nikon immersion exposure tools.

  2. Antiadhesion considerations for UV nanoimprint lithography

    SciTech Connect

    Houle, F. A.; Rettner, C. T.; Miller, D. C.; Sooriyakumaran, R.

    2007-05-21

    Low surface energy fluorosilane layers are widely used as release coatings for quartz templates in UV nanoimprint lithography, yet they are generally found to degrade with use. It is found that these layers are chemically attacked when used with UV cured methacrylate and vinyl ether resists, as found previously for acrylate resists, leading to the conclusion that low reactivity and not low surface energy is of importance for effective release layers. It is shown that an ion-beam deposited diamondlike carbon release coating is a useful alternative, having both stability in a reactive environment and lower adhesion despite its higher surface energy.

  3. Film stacking architecture for immersion lithography process

    NASA Astrophysics Data System (ADS)

    Goto, Tomohiro; Sanada, Masakazu; Miyagi, Tadashi; Shigemori, Kazuhito; Kanaoka, Masashi; Yasuda, Shuichi; Tamada, Osamu; Asai, Masaya

    2008-03-01

    In immersion lithography process, film stacking architecture will be necessary due to film peeling. However, the architecture will restrict lithographic area within a wafer due to top side EBR accuracy In this paper, we report an effective film stacking architecture that also allows maximum lithographic area. This study used a new bevel rinse system on RF3 for all materials to make suitable film stacking on the top side bevel. This evaluation showed that the new bevel rinse system allows the maximum lithographic area and a clean wafer edge. Patterning defects were improved with suitable film stacking.

  4. A review of roll-to-roll nanoimprint lithography

    PubMed Central

    2014-01-01

    Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands generated from the recent developments in the semiconductor and flexible electronics industries, which results in variations of the process. Roll-to-roll (R2R) nanoimprint lithography (NIL) is the most demanded technique due to its high-throughput fulfilling industrial-scale application. In the present work, a general literature review on the various types of nanoimprint lithography processes especially R2R NIL and the methods commonly adapted to fabricate imprint molds are presented to provide a clear view and understanding on the nanoimprint lithography technique as well as its recent developments. PACS 81.16.Nd PMID:25024682

  5. Laser-based sample preparation for electronic package failure analysis

    NASA Astrophysics Data System (ADS)

    Frazier, Brandon M.; Mathews, Scott A.; Duignan, Michael T.; Skoglund, Lars D.; Wang, Zhiyong; Dias, Rajen C.

    2002-06-01

    Failure analysis has come to play a key role in ensuring quality and reliability in semiconductor devices, associated packaging and printed wiring boards. Tools are increasingly available to those investigating high-density integrated circuits at the die level, particularly for edit and repair operations. Until recently however, this capability has been limited by the inherent low-resolution mechanical/manual processes used for destructive analysis on electronics packaging. A laser-based tool has been developed to selectively and locally enable access to traces and layers within packages and provide a way to perform edits to an area of interest.

  6. A laser based reusable microjet injector for transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Han, Tae-hee; Yoh, Jack J.

    2010-05-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of microscale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 μm and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  7. Wavelength-tunable laser based on electro-optic effect

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Tang, Suning

    2015-03-01

    Currently available wavelength-tunable lasers have technical difficulty in combining high-speed, continuous and wide wavelength tunability with high output power. We demonstrated a high-speed wavelength-tunable laser based on a fast electro-optic effect. We observed that the wavelength-swept speed exceeds 107 nm/s at center wavelength of 1550 nm with continuous wavelength tunability. Moreover, the maximum output power is over 100 mW and the wavelength tuning range is near 100 nm with a full width at half maximum of less than 0.5 nm.

  8. Laser-Based Diagnostic Measurements of Low Emissions Combustor Concepts

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.

    2011-01-01

    This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.

  9. Mask cost of ownership for advanced lithography

    NASA Astrophysics Data System (ADS)

    Muzio, Edward G.; Seidel, Philip K.

    2000-07-01

    As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.

  10. Development of cleaning process for immersion lithography

    NASA Astrophysics Data System (ADS)

    Chang, Ching Yu; Yu, D. C.; Lin, John C.; Lin, Burn J.

    2006-03-01

    In immersion lithography, DI water fills the space between the resist surface and the last lens element. However water is also a good solvent for most of the leaching compounds from resists. The leaching materials from the resist and the original impurities in the water from pipelines pose a significant risk on bottom lens deterioration, wafer surface particles, and facility contamination. If the bottom lens surface deteriorates, it can cause flare and reduce transparency. Particles on the wafer surface can degrade image formation. In addition to contaminating the facility, the impurity inside the water can cause stains or defects after the water is evaporated from the wafer surface. In order to reduce the impact of such contamination, we have evaluated many chemicals for removing organic contamination as well as particles. We have collected and characterized immersion-induced particles from cleaning studies on bare silicon wafers. We have also used oxide wafers to simulate the lens damage caused by the cleaning chemicals. In case, a mega sonic power is not suitable for scanners last lens element in production FABs, the emulsion concept has also been adopted to remove the lens organic contaminants. We have studied many chemical and mechanical methods for tool cleaning, and identified those that possess good organic solubility and particle removal efficiency. These cleaning methods will be used in periodic maintenance procedures to ensure freedom from defects in immersion lithography.

  11. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  12. Hard Transparent Arrays for Polymer Pen Lithography.

    PubMed

    Hedrick, James L; Brown, Keith A; Kluender, Edward J; Cabezas, Maria D; Chen, Peng-Cheng; Mirkin, Chad A

    2016-03-22

    Patterning nanoscale features across macroscopic areas is challenging due to the vast range of length scales that must be addressed. With polymer pen lithography, arrays of thousands of elastomeric pyramidal pens can be used to write features across centimeter-scales, but deformation of the soft pens limits resolution and minimum feature pitch, especially with polymeric inks. Here, we show that by coating polymer pen arrays with a ∼175 nm silica layer, the resulting hard transparent arrays exhibit a force-independent contact area that improves their patterning capability by reducing the minimum feature size (∼40 nm), minimum feature pitch (<200 nm for polymers), and pen to pen variation. With these new arrays, patterns with as many as 5.9 billion features in a 14.5 cm(2) area were written using a four hundred thousand pyramid pen array. Furthermore, a new method is demonstrated for patterning macroscopic feature size gradients that vary in feature diameter by a factor of 4. Ultimately, this form of polymer pen lithography allows for patterning with the resolution of dip-pen nanolithography across centimeter scales using simple and inexpensive pen arrays. The high resolution and density afforded by this technique position it as a broad-based discovery tool for the field of nanocombinatorics. PMID:26928012

  13. Economic consequences of high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Hartley, John G.; Govindaraju, Lakshmi

    2005-11-01

    Many people in the semiconductor industry bemoan the high costs of masks and view mask cost as one of the significant barriers to bringing new chip designs to market. All that is needed is a viable maskless technology and the problem will go away. Numerous sites around the world are working on maskless lithography but inevitably, the question asked is "Wouldn't a one wafer per hour maskless tool make a really good mask writer?" Of course, the answer is yes, the hesitation you hear in the answer isn't based on technology concerns, it's financial. The industry needs maskless lithography because mask costs are too high. Mask costs are too high because mask pattern generators (PG's) are slow and expensive. If mask PG's become much faster, mask costs go down, the maskless market goes away and the PG supplier is faced with an even smaller tool demand from the mask shops. Technical success becomes financial suicide - or does it? In this paper we will present the results of a model that examines some of the consequences of introducing high throughput maskless pattern generation. Specific features in the model include tool throughput for masks and wafers, market segmentation by node for masks and wafers and mask cost as an entry barrier to new chip designs. How does the availability of low cost masks and maskless tools affect the industries tool makeup and what is the ultimate potential market for high throughput maskless pattern generators?

  14. Benchtop Micromolding of Polystyrene by Soft Lithography

    PubMed Central

    Wang, Yuli; Balowski, Joseph; Phillips, Colleen; Phillips, Ryan; Sims, Christopher E.; Allbritton, Nancy L.

    2012-01-01

    Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 µm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods. PMID:21811715

  15. A laser-based ice shape profilometer for use in icing wind tunnels

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Vargas, Mario

    1995-01-01

    A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.

  16. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  17. Laser based diagnostics - from cultural heritage to human health

    NASA Astrophysics Data System (ADS)

    Svanberg, S.

    2008-09-01

    An overview of applied laser-based diagnostics as pursued at the Division of Atomic Physics, Lund University, is given. The fields of application range from environmental monitoring including cultural heritage assessment, to biomedical applications. General aspects of laser-based methods are non-intrusiveness, high spectral- and spatial resolution, and data production in real-time. Different applications are frequently generically very similar irrespective of the particular context, which, however, decides the spatial and temporal scales as well as the size of the optics employed. Thus, volcanic plume mapping by lidar, and optical mammography are two manifestations of the same principle, as is fluorescence imaging of a human bronchus by an endoscope, and the scanning of a cathedral using a fluorescence lidar system. Recent applications include remote laser-induced break-down spectroscopy (LIBS) and gas monitoring in scattering media (GASMAS). In particular, a powerful method for diagnostics of human sinus cavities was developed, where free oxygen and water molecules are monitored simultaneously.

  18. Trace gas monitoring with infrared laser-based detection schemes

    NASA Astrophysics Data System (ADS)

    Sigrist, M. W.; Bartlome, R.; Marinov, D.; Rey, J. M.; Vogler, D. E.; Wächter, H.

    2008-02-01

    The success of laser-based trace gas sensing techniques crucially depends on the availability and performance of tunable laser sources combined with appropriate detection schemes. Besides near-infrared diode lasers, continuously tunable midinfrared quantum cascade lasers and nonlinear optical laser sources are preferentially employed today. Detection schemes are based on sensitive absorption measurements and comprise direct absorption in multi-pass cells as well as photoacoustic and cavity ringdown techniques in various configurations. We illustrate the performance of several systems implemented in our laboratory. These include time-resolved multicomponent traffic emission measurements with a mobile CO2-laser photoacoustic system, a diode-laser based cavity ringdown device for measurements of impurities in industrial process control, isotope ratio measurements with a difference frequency (DFG) laser source combined with balanced path length detection, detection of methylamines for breath analysis with both a near-IR diode laser and a DFG source, and finally, acetone measurements with a heatable multipass cell intended for vapor phase studies on doping agents in urine samples.

  19. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    NASA Astrophysics Data System (ADS)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  20. Liftoff lithography of metals for extreme ultraviolet lithography mask absorber layer patterning

    NASA Astrophysics Data System (ADS)

    Lyons, Adam; Teki, Ranganath; Hartley, John

    2012-03-01

    The authors present a process for patterning Extreme Ultraviolet Lithography (EUVL) mask absorber metal using electron beam evaporation and bi-layer liftoff lithography. The Line Edge Roughness (LER) and Critical Dimension Uniformity (CDU) of patterned chrome absorber are determined for various chrome thicknesses on silicon substrates, and the viability of the method for use with nickel absorber and on EUVL masks is demonstrated. Scanning Electron Microscope (SEM) data is used with SuMMIT software to determine the absorber LER and CDU. The Lawrence Berkeley National Labs Actinic Inspection Tool (AIT) is used to verify the printability of the pattern down to 24nm half pitch. The effect of processing on the integrity of the mask multilayer is measured using an actinic reflectometer at the College of Nanoscale Science and Engineering.

  1. Practical resolution enhancement effect by new complete antireflective layer in KrF excimer laser lithography

    NASA Astrophysics Data System (ADS)

    Ogawa, Tohru; Kimura, Mitsumori; Gocho, Tetsuo; Tomo, Yoichi; Tsumori, Toshiro

    1993-08-01

    A new complete anti-reflective layer (ARL) for KrF excimer laser lithography, which becomes an excimer laser lithography to a practical mass production tool beyond 0.35 micrometers rule devices, is developed. This new ARL, whose material is a type of hydro silicon oxynitride film (SiOxNy:H), can be applied to tungsten silicide (W-Si) and even to aluminum silicon (Al- Si) substrates by controlling deposition conditions in plasma enhanced chemical vapor deposition systems. Using this SiOxNy:H film with 30 nm and 25 nm thicknesses on W-Si and Al-Si substrates respectively, critical dimension variations for both substrates are drastically reduced to within 0.02 micrometers for 0.30 micrometers imaging. On actual device structures, with these SiOxNy:H film as an ARL, notching effects by halation are completely reduced. Moreover, these SiOxNy:H film can not only be deposited with topographical uniformity but also etched with conventional SiO2 etching conditions. Another advantage with ARL is a depth of focus enhancement effect. With a SiOxNy:H film depth of focus for the critical dimension is enlarged more than 23% for 0.35 micrometers line and space patterns. Accordingly, practical resolution is enhanced. From the above effect, the limitations of KrF excimer laser lithography for ideal substrate conditions are considered from the point of view of optimal projection lens NA for various feature sizes.

  2. Scanner performance predictor and optimizer in further low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Aoyama, Hajime; Nakashima, Toshiharu; Ogata, Taro; Kudo, Shintaro; Kita, Naonori; Ikeda, Junji; Matsui, Ryota; Yamamoto, Hajime; Sukegawa, Ayako; Makino, Katsushi; Murayama, Masayuki; Masaki, Kazuo; Matsuyama, Tomoyuki

    2014-03-01

    Due to the importance of errors in lithography scanners, masks, and computational lithography in low-k1 lithography, application software is used to simultaneously reduce them. We have developed "Masters" application software, which is all-inclusive term of critical dimension uniformity (CDU), optical proximity effect (OPE), overlay (OVL), lens control (LNS), tool maintenance (MNT) and source optimization for wide process window (SO), for compensation of the issues on imaging and overlay. In this paper, we describe the more accurate and comprehensive solution of OPE-Master, LNS-Master and SO-Master with functions of analysis, prediction and optimization. Since OPE-Master employed a rigorous simulation, a root cause of error in OPE matching was found out. From the analysis, we had developed an additional knob and evaluated a proof-of- concept for the improvement. Influence of thermal issues on projection optics is evaluated with a heating prediction, and an optimization with scanner knobs on an optimized source taken into account mask 3D effect for obtaining usable process window. Furthermore, we discuss a possibility of correction for reticle expansion by heating comparing calculation and measurement.

  3. Direct three-dimensional patterning using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Li, Mingtao; Chen, Lei; Chou, Stephen Y.

    2001-05-01

    We demonstrated that nanoimprint lithography (NIL) can create three-dimensional patterns, sub-40 nm T-gates, and air-bridge structures, in a single step imprint in polymer and metal by lift-off. A method based on electron beam lithography and reactive ion etching was developed to fabricate NIL molds with three-dimensional protrusions. The low-cost and high-throughput nanoimprint lithography for three-dimensional nanostructures has many significant applications such as monolithic microwave integrated circuits and nanoelectromechanical system.

  4. High resolution fabrication of nanostructures using controlled proximity nanostencil lithography

    NASA Astrophysics Data System (ADS)

    Jain, T.; Aernecke, M.; Liberman, V.; Karnik, R.

    2014-02-01

    Nanostencil lithography has a number of distinct benefits that make it an attractive nanofabrication processes, but the inability to fabricate features with nanometer precision has significantly limited its utility. In this paper, we describe a nanostencil lithography process that provides sub-15 nm resolution even for 40-nm thick structures by using a sacrificial layer to control the proximity between the stencil and substrate, thereby enhancing the correspondence between nanostencil patterns and fabricated nanostructures. We anticipate that controlled proximity nanostencil lithography will provide an environmentally stable, clean, and positive-tone candidate for fabrication of nanostructures with high resolution.

  5. Resolution considerations in MeV ion microscopy and lithography

    NASA Astrophysics Data System (ADS)

    Norarat, Rattanaporn; Whitlow, Harry J.

    2015-04-01

    There a disparity between the way the resolution is specified in microscopy and lithography using light compared to MeV ion microscopy and lithography. In this work we explore the implications of the way the resolution is defined with a view to answering the questions; how are the resolving powers in MeV ion microscopy and lithography relate to their optical counterparts? and how do different forms of point spread function affect the modulation transfer function and the sharpness of the edge profile?

  6. Thermoplastic microcantilevers fabricated by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Greve, Anders; Keller, Stephan; Vig, Asger L.; Kristensen, Anders; Larsson, David; Yvind, Kresten; Hvam, Jørn M.; Cerruti, Marta; Majumdar, Arunava; Boisen, Anja

    2010-01-01

    Nanoimprint lithography has been exploited to fabricate micrometre-sized cantilevers in thermoplastic. This technique allows for very well defined microcantilevers and gives the possibility of embedding structures into the cantilever surface. The microcantilevers are fabricated in TOPAS and are up to 500 µm long, 100 µm wide, and 4.5 µm thick. Some of the cantilevers have built-in ripple surface structures with heights of 800 nm and pitches of 4 µm. The yield for the cantilever fabrication is 95% and the initial out-of-plane bending is below 10 µm. The stiffness of the cantilevers is measured by deflecting the cantilever with a well-characterized AFM probe. An average stiffness of 61.3 mN m-1 is found. Preliminary tests with water vapour indicate that the microcantilevers can be used directly for vapour sensing applications and illustrate the influence of surface structuring of the cantilevers.

  7. Nanoscale plasmonic stamp lithography on silicon.

    PubMed

    Liu, Fenglin; Luber, Erik J; Huck, Lawrence A; Olsen, Brian C; Buriak, Jillian M

    2015-02-24

    Nanoscale lithography on silicon is of interest for applications ranging from computer chip design to tissue interfacing. Block copolymer-based self-assembly, also called directed self-assembly (DSA) within the semiconductor industry, can produce a variety of complex nanopatterns on silicon, but these polymeric films typically require transformation into functional materials. Here we demonstrate how gold nanopatterns, produced via block copolymer self-assembly, can be incorporated into an optically transparent flexible PDMS stamp, termed a plasmonic stamp, and used to directly functionalize silicon surfaces on a sub-100 nm scale. We propose that the high intensity electric fields that result from the localized surface plasmons of the gold nanoparticles in the plasmonic stamps upon illumination with low intensity green light, lead to generation of electron-hole pairs in the silicon that drive spatially localized hydrosilylation. This approach demonstrates how localized surface plasmons can be used to enable functionalization of technologically relevant surfaces with nanoscale control. PMID:25654172

  8. Lithography process window analysis with calibrated model

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Yu, Jin; Lo, James; Liu, Johnson

    2004-05-01

    As critical-dimension shrink below 0.13 μm, the SPC (Statistical Process Control) based on CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate decision of process window center. However in practical fabrication, we found that systematic error introduced by metrology and/or resist process can significantly impact the process window analysis result. Especially, when the simple polynomial functions are used to fit the lithographic data from focus exposure matrix (FEM), the model will fit these systematic errors rather than filter them out. This will definitely impact the process window analysis and determination of the best process condition. In this paper, we proposed to use a calibrated first principle model to do process window analysis. With this method, the systematic metrology error can be filtered out efficiently and give a more reasonable window analysis result.

  9. Nanoimprint lithography using disposable biomass template

    NASA Astrophysics Data System (ADS)

    Hanabata, Makoto; Takei, Satoshi; Sugahara, Kigen; Nakajima, Shinya; Sugino, Naoto; Kameda, Takao; Fukushima, Jiro; Matsumoto, Yoko; Sekiguchi, Atsushi

    2016-04-01

    A novel nanoimprint lithography process using disposable biomass template having gas permeability was investigated. It was found that a disposable biomass template derived from cellulose materials shows an excellent gas permeability and decreases transcriptional defects in conventional templates such as quartz, PMDS, DLC that have no gas permeability. We believe that outgasses from imprinted materials are easily removed through the template. The approach to use a cellulose for template material is suitable as the next generation of clean separation technology. It is expected to be one of the defect-less thermal nanoimprint lithographic technologies. It is also expected that volatile materials and solvent including materials become available that often create defects and peelings in conventional temples that have no gas permeability.

  10. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  11. Micro-optics and lithography simulation are key enabling technologies for shadow printing lithography in mask aligners

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Noell, Wilfried

    2015-02-01

    Mask aligners are lithographic tools used to transfer a pattern of microstructures by shadow printing lithography onto a planar wafer. Contact lithography allows us to print large mask fields with sub-micron resolution, but requires frequent mask cleaning. Thus, contact lithography is used for small series of wafer production. Proximity lithography, where the mask is located at a distance of typically 30-100 μm above the wafer, provides a resolution of approximately 3-5 μm, limited by diffraction effects. Proximity lithography in mask aligners is a very cost-efficient method widely used in semiconductor, packaging and MEMS manufacturing industry for high-volume production. Micro-optics plays a key role in improving the performance of shadow printing lithography in mask aligners. Refractive or diffractive micro-optics allows us to efficiently collect the light from the light source and to precisely shape the illumination light (customized illumination). Optical proximity correction and phase shift mask technology allow us to influence the diffraction effects in the aerial image and to enhance resolution and critical dimension. The paper describes the status and future trends of shadow printing lithography in mask aligners and the decisive role of micro-optics as key enabling technology.

  12. Laser-Based Hot-Melt Bonding of Thermosetting GFRP

    NASA Astrophysics Data System (ADS)

    Amend, P.; Pillach, B.; Frick, T.; Schmidt, M.

    In the future the use of tailored multi-material components will increase because of lightweight constructions. However for an optimal integration of different materials suitable joining techniques are necessary. This paper presents results of joining thermosetting composites to thermoplastics by means of laser-based hot-melt bonding. First the joining process of glass fiber reinforced plastics (GFRP) to thermoplastics is analyzed with regard to appropriate material selection of the thermoplastic joining partner. Then experiments are performed to join two thermosetting GFRP composites using a thermoplastic interlayer. All joined specimens are characterized by tensile shear tests whereby the influences of the used peel ply and the thermoplastic joining partner on the tensile shear strength are analyzed. Finally climate tests are performed to investigate the long-term durability of the joint connections.

  13. Laser-based profilometry -- Ever-expanding applications

    SciTech Connect

    Doyle, J.L.

    1996-12-31

    Over the past ten years, laser-based profilometry has evolved from a near-novelty to a reliable and cost-effective NDE technology. Employing miniature optics, high-speed digital signal processing electronics, and computer-graphic data presentation, systems have been developed for a broad spectrum of NDE and QC applications. These tools are not only capable of providing a high-resolution three-dimensional profile of the test surface but also a monochrome laser-video image of the surface. These devices are now being used for the inspection of tubular goods less than 5 mm in diameter, rifled gun tubes, and process piping. In addition, the technology has been extended to operation underwater and to the profiling of complex surfaces such as nuclear recirculation nozzles and solid rocket motors. This paper presents an overview of this rapidly growing NDE method and provides examples of recent industrial applications.

  14. Laser-based instrumentation for the detection of chemical agents

    SciTech Connect

    Hartford, A. Jr.; Sander, R.K.; Quigley, G.P.; Radziemski, L.J.; Cremers, D.A.

    1982-01-01

    Several laser-based techniques are being evaluated for the remote, point, and surface detection of chemical agents. Among the methods under investigation are optoacoustic spectroscopy, laser-induced breakdown spectroscopy (LIBS), and synchronous detection of laser-induced fluorescence (SDLIF). Optoacoustic detection has already been shown to be capable of extremely sensitive point detection. Its application to remote sensing of chemical agents is currently being evaluated. Atomic emission from the region of a laser-generated plasma has been used to identify the characteristic elements contained in nerve (P and F) and blister (S and Cl) agents. Employing this LIBS approach, detection of chemical agent simulants dispersed in air and adsorbed on a variety of surfaces has been achieved. Synchronous detection of laser-induced fluorescence provides an attractive alternative to conventional LIF, in that an artificial narrowing of the fluorescence emission is obtained. The application of this technique to chemical agent simulants has been successfully demonstrated. 19 figures.

  15. Determination of glass thickness using laser-based ultrasound

    NASA Astrophysics Data System (ADS)

    Shih, Frank J.; Pouet, Bruno F.; Klein, Marvin B.; McKie, Andrew D. W.

    2001-04-01

    Thickness measurements of glass plates and glass bottles using laser-based ultrasound (LBU) are described. Ultrasound in the glass specimens was generated thermoelastically with either a pulsed CO2 laser, or a Q-switched Nd:YAG laser in the case of colored glass filters. The detection of ultrasound was accomplished by one of the following methods; a spherical Fabry-Pérot interferometer system or a photo-refractive interferometer based on two-wave mixing. A self-interference effect, utilizing the partial reflection from the front and back faces of a glass plate was also demonstrated to have sufficient sensitivity under certain conditions. The thickness of the glass plates and colored glass bottles was determined using the fundamental reverberation frequency obtained from the time-domain waveform data. LBU results were compared to physical thickness measurements and showed excellent agreement.

  16. A Laser-Based Vision System for Weld Quality Inspection

    PubMed Central

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved. PMID:22344308

  17. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  18. Modeling and laser-based sensing of pulsed detonation engines

    NASA Astrophysics Data System (ADS)

    Barbour, Ethan A.

    This work is concerned with two major aspects of pulse detonation engines (PDE) research: modeling and laser-based sensing. The modeling addresses both ideal and real considerations relevant to PDE design. First, an ideal nozzle model is developed which provides a tool for choosing area ratios for fixed-geometry converging, diverging, or converging-diverging nozzles. Next, losses associated with finite-rate chemistry are investigated. It was found that PDEs can experience up to 10% reduction in specific impulse from this effect if 02 is used as the oxidizer, whereas the losses are negligible for air-breathing applications. Next, heat transfer and friction losses were investigated and found to be greater than the losses from simple straight-tube PDEs. These losses are most pronounced (˜15%) when converging nozzles are used. The second portion of this work focuses on laser-based absorption sensing for PDEs. The mid-infrared was chosen as the best way to address the challenges of signal-to-noise ratio, sensitivity, robustness, and sensor bandwidth. A water vapor sensor was developed and applied to the PDE at the Naval Postgraduate School. This sensor provided improvements in temperature accuracy, and it revealed that water (generated by the vitiator) inhibited performance of the engine. Next, a JP-10 absorption sensor was developed and applied to the same engine. This sensor provided thermometry data at a higher temporal resolution than the water sensor. The sensor also provided crucial information on equivalence ratio and fuel arrival time which enabled the engine to be successfully operated on JP-10 and air for the first time.

  19. Impacts of cost functions on inverse lithography patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen

    2010-10-25

    For advanced CMOS processes, inverse lithography promises better patterning fidelity than conventional mask correction techniques due to a more complete exploration of the solution space. However, the success of inverse lithography relies highly on customized cost functions whose design and know-how have rarely been discussed. In this paper, we investigate the impacts of various objective functions and their superposition for inverse lithography patterning using a generic gradient descent approach. We investigate the most commonly used objective functions, which are the resist and aerial images, and also present a derivation for the aerial image contrast. We then discuss the resulting pattern fidelity and final mask characteristics for simple layouts with a single isolated contact and two nested contacts. We show that a cost function composed of a dominant resist-image component and a minor aerial-image or image-contrast component can achieve a good mask correction and contour targets when using inverse lithography patterning. PMID:21164674

  20. The economic impact of EUV lithography on critical process modules

    NASA Astrophysics Data System (ADS)

    Mallik, Arindam; Horiguchi, Naoto; Bömmels, Jürgen; Thean, Aaron; Barla, Kathy; Vandenberghe, Geert; Ronse, Kurt; Ryckaert, Julien; Mercha, Abdelkarim; Altimime, Laith; Verkest, Diederik; Steegen, An

    2014-04-01

    Traditionally, semiconductor density scaling has been supported by optical lithography. The ability of the exposure tools to provide shorter exposure wavelengths or higher numerical apertures have allowed optical lithography be on the forefront of dimensional scaling for the semiconductor industry. Unfortunately, the roadmap for lithography is currently at a juncture of a major paradigm shift. EUV Lithography is steadily maturing but not fully ready to be inserted into HVM. Unfortunately, there are no alternative litho candidates on the horizon that can take over from 193nm. As a result, it is important to look into the insertion point of EUV that would be ideal for the industry from an economical perspective. This paper details the benefit observed by such a transition. Furthermore, it looks into such detail with an EUV throughput sensitivity study.

  1. Lithography imaging control by enhanced monitoring of light source performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Lalovic, Ivan; Seong, Nakgeuon; Rechsteiner, Gregory; Thornes, Joshua; D'havé, Koen; Van Look, Lieve; Bekaert, Joost

    2013-04-01

    Reducing lithography pattern variability has become a critical enabler of ArF immersion scaling and is required to ensure consistent lithography process yield for sub-30nm device technologies. As DUV multi-patterning requirements continue to shrink, it is imperative that all sources of lithography variability are controlled throughout the product life-cycle, from technology development to high volume manufacturing. Recent developments of new ArF light-source metrology and monitoring capabilities have been introduced in order to improve lithography patterning control.[1] These technologies enable performance monitoring of new light-source properties, relating to illumination stability, and enable new reporting and analysis of in-line performance.

  2. First results from AIMS beta tool for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Teuber, Silvio; Higashikawa, Iwao; Urbach, Jan-Peter; Schilz, Christof M.; Koehle, Roderick; Zibold, Axel M.

    2004-05-01

    In modern mask manufacturing, a successful defect mitigation strategy has been become crucial to achieve defect free masks for high-end lithography. The basic steps of such a strategy include inspection, repair, and subsequent post-repair qualification of repair sites. For the latter task, actinic aerial image measurements have been proven to be the technique of choice to assess the printability of a repaired site. In the last three years, International SEMATECH in cooperation with Infineon/AMTC-Dresden and SELETE, funded a joint development project at Carl Zeiss to develop an AIMS tool operating at the 157nm wavelength. The three beta tools were shipped in 2003 to the three beta customer sites. In this paper are presented the first results obtained with these beta tools, including measurements on binary as well as alternating phase shift masks. The technical properties of the tool were discussed with regards to the capability of the tool for defect qualification on photomasks. Additionally, preliminary results of the evaluation of alternating phase shift masks will be discussed, including measurements performed on dense lines-and-spaces structures with various pitch sizes.

  3. Fundamentals of embossing nanoimprint lithography in polymer substrates.

    SciTech Connect

    Simmons, Blake Alexander; King, William P.

    2011-02-01

    The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

  4. Manipulation of heat-diffusion channel in laser thermal lithography.

    PubMed

    Wei, Jingsong; Wang, Yang; Wu, Yiqun

    2014-12-29

    Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system. PMID:25607209

  5. Scatterometry for EUV lithography at the 22-nm node

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Vartanian, Victor; Ren, Liping; Huang, George; Montgomery, Cecilia; Montgomery, Warren; Elia, Alex; Liu, Xiaoping

    2011-03-01

    Moore's Law continues to drive improvements to lithographic resolution to increase integrated circuit transistor density, improve performance, and reduce cost. For the 22 nm node and beyond, extreme ultraviolet lithography (EUVL) is a promising technology with λ=13.5 nm, a larger k1 value and lower cost of ownership than other available technologies. For small feature sizes, process control will be increasingly challenging, as small features will create measurement uncertainties, yet with tighter specifications. Optical scatterometry is a primary candidate metrology for EUV lithography process control. Using simulation and experimental data, this work will explore scatterometry's application to a typical lithography process being used for EUV development, which should be representative of lithography processes that will be utilized for EUV High Volume manufacturing (HVM). EUV lithography will be performed using much thinner photoresist thicknesses than were used at the 248nm or 193nm lithography generations, and will probably include underlayers for adhesion improvement; these new processes conditions were investigated in this metrological study.

  6. Application of optical CD metrology for alternative lithography

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Kawamoto, Akiko; Matsuki, Kazuto; Godny, Stephane; Lin, Tingsheng; Wakamoto, Koichi

    2013-04-01

    Directed self-assembly (DSA) and nanoimprint lithography (NIL) have been widely developed for low-cost nanoscale patterning. Although they are currently regarded as "alternative lithography," some papers show their potential to be candidates for next-generation lithography (NGL). To actualize the potential, the contribution of metrology engineers is necessary. Since the characteristics of the lithography techniques are different from those of conventional lithography, new metrology schemes correlated with each characteristic are required. In DSA of block copolymer (BCP), a guide is needed to control the direction and position of BCP. Therefore, it is necessary to monitor the relationship between the guide and the BCP pattern. Since the depth of guide or the coating thickness variation of BCP over guide influences the behavior of phase separation of BCP, 3D metrology becomes increasingly important. In NIL, residual resist thickness (RLT) underneath the pattern should be measured because its variation affects the CD variation of transferred pattern. 3D metrology is also important in NIL. Optical critical dimension (OCD) metrology will be a powerful tool for 3D metrology. In this work, some applications of OCD for alternative lithography have been studied. For DSA, we have tried to simultaneously monitor the guide and BCP pattern in a DSA-based contact hole shrinking process. Sufficient measurement accuracy for CD and shapes for guide and BCP patterns was achievable. For NIL, sufficient sensitivity to RLT measurement was obtained.

  7. Successful demonstration of a comprehensive lithography defect monitoring strategy

    NASA Astrophysics Data System (ADS)

    Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael

    2003-07-01

    This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the

  8. Projection lithography with distortion compensation using reticle chuck contouring

    DOEpatents

    Tichenor, Daniel A.

    2001-01-01

    A chuck for holding a reflective reticle where the chuck has an insulator block with a non-planer surface contoured to cause distortion correction of EUV radiation is provided. Upon being placed on the chuck, a thin, pliable reflective reticle will conform to the contour of the chuck's non-planer surface. When employed in a scanning photolithography system, distortion in the scanned direction is corrected.

  9. EUV micro-exposure tool at 0.5 NA for sub-16 nm lithography

    SciTech Connect

    Goldstein, Michael; Hudyma, Russ; Naulleau, Patrick; Wurm, Stefan

    2008-09-26

    The resolution limit of present 0.3 NA 13.5 nm wavelength micro-exposure tools is compared to next generation lithography research requirements. Findings suggest that a successor design is needed for patterning starting at the 16 nm semiconductor process technology node. A two-mirror 0.5 NA optical design is presented, and performance expectations are established from detailed optical and lithographic simulation. Here, we report on the results from a SEMATECH program to fabricate a projection optic with an ultimate resolution limit of approximately 11 nm.

  10. Polarization aberration compensation method by adjusting illumination partial coherent factors in immersion lithography

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Li, Yanqiu; Liu, Lihui; Han, Chunying; Liu, Xiaolin

    2014-11-01

    As the numerical aperture (NA) increasing and process factor k1 decreasing in 193nm immersion lithography, polarization aberration (PA) of projection optics leads to image quality degradation seriously. Therefore, this work proposes a new scheme for compensating polarization aberration. By simulating we found that adjusting the illumination source partial coherent factors σout is an effective method for decreasing the PA induced pattern critical dimension (CD) error while keeping placement error (PE) within an acceptable range. Our simulation results reveal that the proposed method can effectively compensate large PA in actual optics.