Science.gov

Sample records for laser-driven proton acceleration

  1. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  2. Intense tera-hertz laser driven proton acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  3. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  4. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  5. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  6. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.

    PubMed

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J; Wilson, Robbie; Dance, Rachel J; Powell, Haydn; Maclellan, David A; McCreadie, John; Butler, Nicholas M H; Hawkes, Steve; Green, James S; Murphy, Chris D; Stockhausen, Luca C; Carroll, David C; Booth, Nicola; Scott, Graeme G; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  7. Fabrication of nanostructured targets for improved laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Scisciò, M.; Veltri, S.; Antici, P.

    2016-07-01

    In this work, we present a novel realization of nanostructured targets suitable for improving laser-driven proton acceleration experiments, in particular with regard to the Target-Normal-Sheath Acceleration (TNSA) acceleration mechanism. The nanostructured targets, produced as films, are realized by a simpler and cheaper method than using conventional lithographic techniques. The growth process includes a two step approach for the production of the gold nanoparticle layers: 1) Laser Ablation in Solution and 2) spray-dry technique using a colloidal solution on target surfaces (Aluminum, Mylar and Multi Walled Carbon Nanotube). The obtained nanostructured films appear, at morphological and chemical analysis, uniformly nanostructured and the nanostructure distributed on the target surfaces without presence of oxides or external contaminants. The obtained targets show a broad optical absorption in all the visible region and a surface roughness that is two times greater than non-nanostructured targets, enabling a greater laser energy absorption during the laser-matter interaction experiments producing the laser-driven proton acceleration.

  8. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup −15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1μm) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  9. The progress in the laser-driven proton acceleration experiment JAEA with table-tip Ti:Sappire laser system

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Ogura, K.; Pirozhkov, A. S.; Tanimoto, T.; Yogo, A.; Sakaki, H.; Hori, T.; Fukuda, Y.; Kanasaki, M.; Sagisaka, A.; Tampo, M.; Kiriyama, H.; Shimomura, T.; Kondo, K.; Kawanishi, S.; Brenner, C.; Neely, D.

    2011-05-01

    This paper presents the experimental investigation of laser-driven proton acceleration using a table top Ti:Sapphire laser system interacting with the thin-foil targets during the course of medical application of the laser-driven proton beam. The proton beam with maximum energy of upto 14~MeV is generated in 60 TW mode. The number of protons at ~10 MeV is estimated to be over 105 proton/sr/MeV/shot with beam having half divergence angle of 5~degree. If 10 Hz operation is assumed 2 Gy dose is possible to irradiate during 10 min onto a ~1 mm tumor just under the skin. In contrast to the previous condition of our apparatus with which we demonstrated the DNA double-strand breaking by irradiating the laser-driven proton beam onto the human cancer cells in-vitro test, the result reported here has significant meaning in the sense that pre-clinical in-vivo test can be started by irradiating the laser-driven proton beam onto the skin of the mouse, which is unavoidable step before the real radiation therapy.

  10. Laser-driven proton and deuteron acceleration from a pure solid-density H2/D2 cryogenic jet

    NASA Astrophysics Data System (ADS)

    Kim, Jongjin; Gauthier, Maxence; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Goyon, Clement; Williams, Jackson; Kerr, Shaun; Ruby, John; Propp, Adrienne; Ramakrishna, Bhuvanesh; Pak, Art; Hazi, Andy; Glenzer, Siegfried; Roedel, Christian

    2015-11-01

    Laser-driven proton acceleration has become of tremendous interest for the fundamental science and the potential applications in tumor therapy and proton radiography. We have developed a cryogenic liquid hydrogen jet, which can deliver a self-replenishing target of pure solid-density hydrogen or deuterium. This allows for a target compatible with high-repetition-rate experiments and results in a pure hydrogen plasma, facilitating comparison with simulations. A new modification has allowed for the formation of jets with rectangular profiles, facilitating comparison with foil targets. This jet was installed at the Titan laser and driven by laser pulses of 40-60 J of 527 nm laser light in 1 ps. The resulting proton and deuteron spectra were measured in multiple directions with Thomson parabola spectrometers and RCF stacks. The spectral and angular information suggest contribution from both the TNSA and RPA acceleration mechanisms.

  11. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  12. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  13. Spectral Features in Laser Driven Proton Acceleration from Cylindrical Solid-density Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Curry, Chandra; Gauthier, Maxence; Mishra, Rohini; Kim, Jongjin; Goede, Sebastian; Propp, Adrienne; Fiuza, Frederico; Glenzer, Siegfried H.; Williams, Jackson; Ruby, John; Goyon, Clement; Pak, Art E.; Kerr, Shaun; Tsui, Ying Y.; Ramakrishna, Bhuvanesh; Aurand, Bastian; Willi, Oswald; Roedel, Christian

    2015-11-01

    The generation of monoenergetic proton beams by ultrashort high-intensity laser-plasma interactions is of great interest for applications such as stopping power measurements, fast ignition laser confinement fusion, and ion beam therapy. In general, the commonly used mechanism of target normal sheath acceleration (TNSA) does not provide the required energy spread or maximum proton energy. Here we study alternative acceleration mechanisms, which have been identified in particle in cell (PIC) simulations, to overcome the limitations of TNSA. Using the Titan laser system at the Lawrence Livermore National Laboratory, we investigate proton acceleration from wire targets and a cryogenic solid-density hydrogen jet. Due to the cylindrical geometry, TNSA is suppressed allowing other accelerations mechanisms to become observable. Quasi-monoenergetic features in laser-forward direction are observed in the proton spectrum indicating radiation-pressure-driven acceleration mechanisms. Our experimental results are accompanied by supporting PIC simulations.

  14. Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms

    NASA Astrophysics Data System (ADS)

    Wagner, F.; Bedacht, S.; Bagnoud, V.; Deppert, O.; Geschwind, S.; Jaeger, R.; Ortner, A.; Tebartz, A.; Zielbauer, B.; Hoffmann, D. H. H.; Roth, M.

    2015-06-01

    We present experimental data showing an angular separation of laser accelerated proton beams. Using flat plastic targets with thicknesses ranging from 200 nm to 1200 nm, a laser intensity of 6 ×1020 W cm-2 incident with an angle of 10°, we observe accelerated protons in target normal direction with cutoff energies around 30 MeV independent from the target thickness. For the best match of laser and target conditions, an additional proton signature is detected along the laser axis with a maximum energy of 65 MeV. These different beams can be attributed to two acceleration mechanisms acting simultaneously, i.e., target normal sheath acceleration and acceleration based on relativistic transparency, e.g., laser breakout afterburner, respectively.

  15. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  16. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect

    Floquet, V.; Martin, Ph.; Ceccotti, T.; Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L.; Velyhan, A.; Macchi, A.; Sgattoni, A.; Vassura, L.; Labate, L.; Baffigi, F.; Gizzi, L. A.

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10∘). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  17. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  18. Vlasov modelling of laser-driven collisionless shock acceleration of protons

    NASA Astrophysics Data System (ADS)

    Svedung Wettervik, B.; DuBois, T. C.; Fülöp, T.

    2016-05-01

    Ion acceleration due to the interaction between a short high-intensity laser pulse and a moderately overdense plasma target is studied using Eulerian Vlasov-Maxwell simulations. The effects of variations in the plasma density profile and laser pulse parameters are investigated, and the interplay of collisionless shock and target normal sheath acceleration is analyzed. It is shown that the use of a layered-target with a combination of light and heavy ions, on the front and rear side, respectively, yields a strong quasi-static sheath-field on the rear side of the heavy-ion part of the target. This sheath-field increases the energy of the shock-accelerated ions while preserving their mono-energeticity.

  19. Ultrafast laser-driven proton sources and dynamic proton imaging

    SciTech Connect

    Nickles, Peter V.; Schnuerer, Matthias; Sokollik, Thomas; Ter-Avetisyan, Sargis; Sandner, Wolfgang; Amin, Munib; Toncian, Toma; Willi, Oswald; Andreev, Alexander

    2008-07-15

    Ion bursts, accelerated by an ultrafast (40 fs) laser-assisted target normal sheath acceleration mechanism, can be adjusted so as to deliver a nearly pure proton beam. Such laser-driven proton bursts have predominantly a low transverse emittance and a broad kinetic spectrum suitable for continuous probing of the temporal evolution of spatially extended electric fields that arise after laser irradiation of thin foils. Fields with a strength of up to 10{sup 10} V/m were measured with a new streaklike proton deflectometry setup. The data show the temporal and spatial evolution of electric fields that are due to target charge-up and ion-front expansion following intense laser-target interaction at intensities of 10{sup 17}-10{sup 18} W/cm{sup 2}. Measurement of the field evolution is important to gain further insight into lateral electron-transport processes and the influence of field dynamics on ion beam properties.

  20. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  1. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  2. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2005-09-19

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  3. Picosecond metrology of laser-driven proton bursts

    NASA Astrophysics Data System (ADS)

    Dromey, B.; Coughlan, M.; Senje, L.; Taylor, M.; Kuschel, S.; Villagomez-Bernabe, B.; Stefanuik, R.; Nersisyan, G.; Stella, L.; Kohanoff, J.; Borghesi, M.; Currell, F.; Riley, D.; Jung, D.; Wahlström, C.-G.; Lewis, C. L. S.; Zepf, M.

    2016-02-01

    Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5+/-0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.

  4. Picosecond metrology of laser-driven proton bursts.

    PubMed

    Dromey, B; Coughlan, M; Senje, L; Taylor, M; Kuschel, S; Villagomez-Bernabe, B; Stefanuik, R; Nersisyan, G; Stella, L; Kohanoff, J; Borghesi, M; Currell, F; Riley, D; Jung, D; Wahlström, C-G; Lewis, C L S; Zepf, M

    2016-01-01

    Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter. PMID:26861592

  5. Picosecond metrology of laser-driven proton bursts

    PubMed Central

    Dromey, B.; Coughlan, M.; Senje, L.; Taylor, M.; Kuschel, S.; Villagomez-Bernabe, B.; Stefanuik, R.; Nersisyan, G.; Stella, L.; Kohanoff, J.; Borghesi, M.; Currell, F.; Riley, D.; Jung, D.; Wahlström, C.-G.; Lewis, C.L.S.; Zepf, M.

    2016-01-01

    Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter. PMID:26861592

  6. Progress of Laser-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    2007-07-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world. Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called "dream beams on a table top", which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  7. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  8. Generation of high-quality mega-electron volt proton beams with intense-laser-driven nanotube accelerator

    SciTech Connect

    Murakami, M.; Tanaka, M.

    2013-04-22

    An ion acceleration scheme using carbon nanotubes (CNTs) is proposed, in which embedded fragments of low-Z materials are irradiated by an ultrashort intense laser to eject substantial numbers of electrons. Due to the resultant characteristic electrostatic field, the nanotube and embedded materials play the roles of the barrel and bullets of a gun, respectively, to produce highly collimated and quasimonoenergetic ion beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic MeV-order proton beams using nanometer-size CNT under a super-intense electrostatic field {approx}10{sup 14} V m{sup -1}.

  9. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  10. Bidimensional Particle-In-Cell simulations for laser-driven proton acceleration using ultra-short, ultra-high contrast laser

    SciTech Connect

    Scisciò, M.; Palumbo, L.; D'Humières, E.; Fourmaux, S.; Kieffer, J. C.; Antici, P.

    2014-12-15

    In this paper, we report on bi-dimensional Particle-In-Cell simulations performed in order to reproduce the laser-driven proton acceleration obtained when a commercial 200 TW Ti:Sa Laser hits a solid target. The laser-to prepulse contrast was enhanced using plasma mirrors yielding to a main-to-prepulse contrast of ∼10{sup 12}. We varied the pulse duration from 30 fs to 500 fs and the target thickness from 30 nm to several tens of μm. The on-target laser energy was up to 1.8 J leading to an intensity in excess of 10{sup 20 }W cm{sup −2}. A comparison between numerical and existing experimental data [S. Fourmaux et al., Phys. Plasmas 20, 013110 (2013)] is performed, showing a good agreement between experimental results and simulations which confirms that for ultra-thin targets there is an optimum expansion regime. This regime depends on the target thickness and on the laser intensity: if the target is too expanded, the laser travels through the target without being able to deposit its energy within the target. If the target is not sufficiently expanded, the laser energy is reflected by the target. It is important to note that maximum proton energies are reached at longer pulse durations (in the 100 fs regime) than what is currently the best compression pulse length for this type of lasers (typically 20–30 fs). This duration, around 50–100 fs, can be considered a minimum energy transfer time between hot electrons to ions during the considered acceleration process.

  11. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  12. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  13. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  14. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  15. Laser driven acceleration in vacuum and gases

    SciTech Connect

    Sprangle, P.; Esarey, E.; Hafizi, B.; Hubbard, R.; Krall, J.; Ting, A.

    1997-03-01

    Several important issues pertaining to particle acceleration in vacuum and gases are discussed. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects are presented. Limitations on the laser intensity and particle self-fields due to material breakdown are quantified. In addition, the reflection of the self-fields associated with the accelerated particles places a limit on the number of particles. Two configurations for the inverse Cherenkov accelerator (ICA) are considered, in which the electromagnetic driver is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. The acceleration gradient in the ICA is limited by tunneling and collisional ionization in the dielectric liner or gas. Ionization can lead to significant modification of the optical properties of the waveguide, altering the phase velocity and causing particle slippage, thus disrupting the acceleration process. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m and a 1 mm wavelength driver. We show that the use of an unguided Bessel (axicon) beam can enhance the energy gain compared to a higher order Gaussian beam. The enhancement factor is N{sup 1/2}, where N is the number of lobes in the Bessel beam. {copyright} {ital 1997 American Institute of Physics.}

  16. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  17. Laser-driven Acceleration in Clustered Plasmas

    SciTech Connect

    Gao, X.; Wang, X.; Shim, B.; Downer, M. C.

    2009-01-22

    We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.

  18. The laser driven particle accelerator project: Theory and experiment

    SciTech Connect

    Plettner, T.; Byer, R.L. Smith, T.I.; Siemann, R.H. Huang, Y.C.

    1999-07-01

    A proof of principle experiment for laser driven electron acceleration from crossed laser beams in a dielectric loaded vacuum is being carried out at Stanford University. We seek to measure a maximum energy gain of about 250 keV for a 30{endash}35 MeV electron beam in one accelerator cell. We use laser pulses of a few picoseconds of duration from a regenerative Ti:sapphire laser amplifier at a wavelength of 800 nm in a laser-electron interaction distance of {approximately}1 mm. {copyright} {ital 1999 American Institute of Physics.}

  19. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2006-09-07

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

  20. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  1. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  2. Assessment of secondary radiation and radiation protection in laser-driven proton therapy.

    PubMed

    Faby, Sebastian; Wilkens, Jan J

    2015-06-01

    This work is a feasibility study of a radiation treatment unit with laser-driven protons based on a state-of-the-art energy selection system employing four dipole magnets in a compact shielded beamline. The secondary radiation emitted from the beamline and its energy selection system and the resulting effective dose to the patient are assessed. Further, it is evaluated whether or not such a compact system could be operated in a conventional treatment vault for clinical linear accelerators under the constraint of not exceeding the effective dose limit of 1 mSv per year to the general public outside the treatment room. The Monte Carlo code Geant4 is employed to simulate the secondary radiation generated while irradiating a hypothetical tumor. The secondary radiation inevitably generated inside the patient is taken into account as well, serving as a lower limit. The results show that the secondary radiation emanating from the shielded compact therapy system would pose a serious secondary dose contamination to the patient. This is due to the broad energy spectrum and in particular the angular distribution of the laser-driven protons, which make the investigated beamline together with the employed energy selection system quite inefficient. The secondary radiation also cannot be sufficiently absorbed in a conventional linear accelerator treatment vault to enable a clinical operation. A promising result, however, is the fact that the secondary radiation generated in the patient alone could be very well shielded by a regular treatment vault, allowing the application of more than 100 fractions of 2 Gy per day with protons. It is thus theoretically possible to treat patients with protons in such treatment vaults. Nevertheless, the results show that there is a clear need for alternative more efficient energy selection solutions for laser-driven protons. PMID:25267383

  3. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  4. Towards GeV laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Yin, L.; Albright, B. J.; Flippo, K. A.; Gautier, D. C.; Johnson, R. P.; Letzring, S.; Shah, R. C.; Shimada, T.; Fernandez, J. C.; Henig, A.; Kiefer, D.; Liechtenstein, V.; Schreiber, J.; Habs, D.; Meyer-Ter-Vehn, J.; Rykovanov, S.; Wu, H. C.

    2008-11-01

    Applications like ion-driven fast ignition (IFI) with heavy ions or laser-based hadron therapy require efficient laser-driven ion acceleration to ˜ 0.1 -- 1 GeV. The Break-Out Afterburner (BOA) [1] regime and the Phase-Stable Acceleration (PSA) [2] regime, also reported as Radiation Pressure Acceleration (RPA) [3], promise quasi-monoenergetic beams at such energies, with ˜ 10% efficiency,. This talk summarizes our joint exploratory research program in this new and exciting area, emphasizing the realization of these mechanisms with today's lasers. The laser requirements are discussed, especially pulse contrast. The first experimental results are reported. [1] L. Yin et al., Laser & Part. Beams 24, 1-8 (2006) [2] X. Zhang et al., Phys. Plasmas 14, 123108 (2007) [3] A. P. L. Robinson et al., New J. Phys. 10, 013021 (2008)

  5. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  6. Acceleration of laser-driven ion bunch from double-layer thin foils

    SciTech Connect

    Wang, X.; Liang, E.; Yu, W.; Yu, M. Y.

    2012-05-15

    Generation of monoenergetic ion bunch from a double-layer thin-foil target irradiated by an intense linearly polarized laser pulse is investigated using two-dimensional particle-in-cell simulation. The protons in the front low-density hydrogen target layer accelerated by the space-charge field of the laser-driven hot electrons can penetrate through the high-Z high-mass and high-density ion layer, resulting in an energetic proton bunch. A part of the latter is further accelerated by the space-charge field of the hot electrons in the vacuum behind the high-Z ion layer. With this scheme, quasi-monoenergetic proton bunches can be produced using presently available laser pulses of moderate contrast and duration.

  7. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  8. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  9. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  10. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  11. Single shot cell irradiations with laser-driven protons

    SciTech Connect

    Humble, N.; Schmid, T. E.; Zlobinskaya, O.; Wilkens, J. J.; Allinger, K.; Hilz, P.; Ma, W.; Reinhardt, S.; Bin, J.; Kiefer, D.; Schreiber, J.; Drexler, G. A.; Friedl, A.

    2013-07-26

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  12. Single shot cell irradiations with laser-driven protons

    NASA Astrophysics Data System (ADS)

    Humble, N.; Allinger, K.; Bin, J.; Drexler, G. A.; Friedl, A.; Hilz, P.; Kiefer, D.; Ma, W.; Reinhardt, S.; Schmid, T. E.; Zlobinskaya, O.; Schreiber, J.; Wilkens, J. J.

    2013-07-01

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  13. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-07-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration.

  14. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  15. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  16. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  17. Proton Radiography of a Laser-Driven Implosion

    SciTech Connect

    Mackinnon, A. J.; Patel, P. K.; Hatchett, S. P.; Hey, D.; Hicks, D. G.; Key, M. H.; Phillips, T. W.; Snavely, R. A.; Town, R. P. J.; Borghesi, M.; Kar, S.; Romagnani, L.; Clarke, R. C.; Freeman, R. R.; Habara, H.; Lancaster, K.; Neely, D.; Norreys, P. A.; Notley, M. M.; King, J. A.

    2006-07-28

    Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 {mu}m diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 {mu}m and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3{+-}1 g/cm{sup 3} core with diameter 85{+-}10 {mu}m. Scaling simulations show that protons >50 MeV are required to diagnose asymmetry in ignition scale conditions.

  18. Influence of radiation reaction force on ultraintense laser-driven ion acceleration.

    PubMed

    Capdessus, R; McKenna, P

    2015-05-01

    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets. PMID:26066270

  19. Effect of resistivity gradient on laser-driven electron transport and ion acceleration

    SciTech Connect

    Zhuo, H. B.; Yang, X. H.; Ma, Y. Y.; Li, X. H.; Zhou, C. T.; Yu, M. Y.

    2013-09-15

    The effect of resistivity gradient on laser-driven electron transport and ion acceleration is investigated using collisional particle-in-cell simulation. The study is motivated by recent proton acceleration experiments [Gizzi et al., Phys. Rev. ST Accel. Beams 14, 011301 (2011)], which showed significant effect of the resistivity gradient in layered targets on the proton angular spread. This effect is reproduced in the present simulations. It is found that resistivity-gradient generation of magnetic fields and inhibition of electron transport is significantly enhanced when the feedback interaction between the magnetic field and the fast-electron current is included. Filamentation of the laser-generated hot electron jets inside the target, considered as the origin of the nonuniform proton patterns observed in the experiments, is clearly suppressed by the resistive magnetic field. As a result, the electrostatic sheath field at the target back surface acquires a relatively smooth profile, which contributes to the superior quality of the proton beams accelerated off layered targets in the experiments.

  20. Laser-driven quasimonoenergetic proton burst from water spray target

    SciTech Connect

    Ramakrishna, B.; Murakami, M.; Borghesi, M.; Ter-Avetisyan, S.; Ehrentraut, L.; Schnuerer, M.; Steinke, S.; Nickles, P. V.; Psikal, J.; Tikhonchuk, V.

    2010-08-15

    A narrow band proton bursts at energies of 1.6{+-}0.08 MeV were observed when a water spray consisting of (150 nm)-diameter droplets was irradiated by an ultrashort laser pulse of about 45 fs duration and at an intensity of 5x10{sup 19} W/cm{sup 2}. The results are explained by a Coulomb explosion of sub-laser-wavelength droplets composed of two ion species. The laser prepulse plays an important role. By pre-evaporation of the droplets, its diameter is reduced so that the main pulse can interact with a smaller droplet, and this remaining bulk can be ionized to high states. In the case of water, the mixture of quite differently charged ions establishes an 'iso-Coulomb-potential' during the droplet explosion such that protons are accelerated to a peak energy with a narrow energy spread. The model explains this crucial point, which differs critically from usual Coulomb explosion or ion sheath acceleration mechanisms.

  1. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  2. SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study

    SciTech Connect

    Hofmann, K; Wilkens, J; Masood, U; Pawelke, J

    2014-06-01

    Purpose: Laser-acceleration of particles may offer a cost- and spaceefficient alternative for future radiation therapy with particles. Laser-driven particle beams are pulsed with very short bunch times, and a high number of particles is delivered within one laser shot which cannot be portioned or modulated during irradiation. The goal of this study was to examine whether good treatment plans can be produced for laser-driven proton beams and to investigate the feasibility of a laser-driven treatment unit. Methods: An exponentially decaying proton spectrum was tracked through a gantry and energy selection beam line design to produce multiple proton spectra with different energy widths centered on various nominal energies. These spectra were fed into a treatment planning system to calculate spot scanning proton plans using different lateral widths of the beam and different numbers of protons contained in the initial spectrum. The clinical feasibility of the resulting plans was analyzed in terms of dosimetric quality and the required number of laser shots as an estimation of the overall treatment time. Results: We were able to produce treatment plans with plan qualities of clinical relevance for a maximum initial proton number per laser shot of 6*10{sup 8}. However, the associated minimum number of laser shots was in the order of 10{sup 4}, indicating a long delivery time in the order of at least 15 minutes, when assuming an optimistic repetition rate of the laser system of 10 Hz. Conclusion: With the simulated beam line and the assumed shape of the proton spectrum it was impossible to produce clinically acceptable treatment plans that can be delivered in a reasonable time. The situation can be improved by a method or a device in the beam line which can modulate the number of protons from shot to shot. Supported by DFG Cluster of Excellence: Munich-Centre for Advanced Photonics.

  3. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  4. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  5. Impulse Characteristics of Laser-driven In-Tube Accelerator (LITA)

    SciTech Connect

    Ohtani, Toshiro; Mori, Koichi; Sasoh, Akihiro

    2006-05-02

    In this study, impulse generation processes induced by a single laser pulse in the laser-driven in-tube accelerator are studied through pressure history measured at the center of the projectile base, which acts also as a parabolic mirror. The effects of the fill pressure, laser energy and length of a shroud are analyzed.

  6. Impulse Characteristics of Laser-driven In-Tube Accelerator (LITA)

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshiro; Mori, Koichi; Sasoh, Akihiro

    2006-05-01

    In this study, impulse generation processes induced by a single laser pulse in the laser-driven in-tube accelerator are studied through pressure history measured at the center of the projectile base, which acts also as a parabolic mirror. The effects of the fill pressure, laser energy and length of a shroud are analyzed.

  7. Test of pixel detectors for laser-driven accelerated particle beams

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Granja, C.; Krejci, F.; Assmann, W.

    2011-12-01

    Laser-driven accelerated (LDA) particle beams have due to the unique acceleration process very special properties. In particular they are created in ultra-short bunches of high intensity exceeding more than 107 \\frac{particles}{cm^{2} \\cdot ns} per bunch. Characterization of these beams is very limited with conventional particle detectors. Non-electronic detectors such as imaging plates or nuclear track detectors are, therefore, conventionally used at present. Moreover, all these detectors give only offline information about the particle pulse position and intensity as they require minutes to hours to be processed, calling for a new highly sensitive online device. Here, we present tests of different pixel detectors for real time detection of LDA ion pulses. Experiments have been performed at the Munich 14MV Tandem accelerator with 8-20 MeV protons in dc and pulsed beam, the latter producing comparable flux as a LDA ion pulse. For detection tests we chose the position-sensitive quantum-counting semiconductor pixel detector Timepix which also provides per-pixel energy- or time-sensitivity. Additionally other types of commercially available pixel detectors are being evaluated such as the RadEye™1, a large area (25 x 50 mm2) CMOS image sensor. All of these devices are able to resolve individual ions with high spatial- and energy-resolution down to the level of μm and tens of keV, respectively. Various beam delivering parameters of the accelerator were thus evaluated and verified. The different readout modes of the Timepix detector which is operated with an integrated USB-based readout interface allow online visualization of single and time-integrated events. Therefore Timepix offers the greatest potential in analyzing the beam parameters.

  8. Physics of Laser-driven plasma-based acceleration

    SciTech Connect

    Esarey, Eric; Schroeder, Carl B.

    2003-06-30

    The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

  9. Laser-driven multicharged heavy ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of <10 J laser energy, 36 fs pulse width, and the contrast level of ~1010 from 200 TW class Ti:sapphire J-KAREN laser system at JAEA is used in the experiment. Almost fully stripped Fe ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  10. Nonlinear Laser Driven Donut Wakefields for Positron and Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Vieira, J.; Mendonça, J. T.

    2014-05-01

    We show analytically and through three-dimensional particle-in-cell simulations that nonlinear wakefields driven by Laguerre-Gaussian laser pulses can lead to hollow electron self-injection and positron acceleration. We find that higher order lasers can drive donut shaped blowout wakefields with strong positron accelerating gradients comparable to those of a spherical bubble. Corresponding positron focusing forces can be more than an order of magnitude stronger than electron focusing forces in a spherical bubble. Required laser intensities and energies to reach the nonlinear donut shaped blowout are within state-of-the-art experimental conditions.

  11. Characteristics of laser-driven electron acceleration invacuum

    SciTech Connect

    Wang, P.X.; Ho, Y.K.; Yuan, X.Q.; Kong, Q.; Sessler, A.M.; Esarey, E.; Moshkovich, E.; Nishida, Y.; Yugami, N.; Ito, H.; Wang, J.X.; Scheid, S.

    2001-11-01

    The interaction of free electrons with intense laser beamsin vacuum is studied using a 3D test particle simulation model thatsolves the relativistic Newton-Lorentz equations of motion inanalytically specified laser fields. Recently, a group of solutions wasfound for very intense laser fields that show interesting and unusualcharacteristics. In particular, it was found that an electron can becaptured within the high-intensity laser region, rather than expelledfrom it, and the captured electron can be accelerated to GeV energieswith acceleration gradients on the order of tens of GeV/cm. Thisphenomenon is termed the capture and acceleration scenario (CAS) and isstudied in detail in this paper. The maximum net energy exchange by theCAS mechanism is found to be approximately proportional to a 2_o, in theregime where a_o>100, where a_o = eE_o/m_ewc is a dimensionlessparameter specifying the magnitude of the laser field. The acceleratedGeV electron bunch is a macro-pulse, with duration equal or less thanthat of the laser pulse, which is composed of many micro-pulses that areperiodic at the laser frequency. The energy spectrum of the CAS electronbunch is presented. The dependence of the energy exchange in the CAS onvarious parameters, e.g., a 2_o (laser intensity), w_o (laser radius atfocus), tao (laser pulse duration), b_o (the impact parameter), andtheta_i (the injection angle with respect to the laser propagationdirection), are explored in detail. A comparison with diverse theoreticalmodels is also presented, including a classical model based on phasevelocities and a quantum model based on nonlinear Comptonscattering.

  12. Advances in laser driven accelerator R&D

    SciTech Connect

    Leemans, Wim

    2004-08-23

    Current activities (last few years) at different laboratories, towards the development of a laser wakefield accelerator (LWFA) are reviewed, followed by a more in depth discussion of results obtained at the L'OASIS laboratory of LBNL. Recent results on laser guiding of relativistically intense beams in preformed plasma channels are discussed. The observation of mono-energetic beams in the 100 MeV energy range, produced by a channel guided LWFA at LBNL, is described and compared to results obtained in the unguided case at LOA, RAL and LBNL. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator has a very beneficial impact on the electron energy distribution. Progress on laser triggered injection is reviewed. Results are presented on measurements of bunch duration and emittance of the accelerated electron beams, that indicate the possibility of generating femtosecond duration electron bunches. Future challenges and plans towards the development of a 1 GeV LWFA module are discussed.

  13. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  14. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator (LITA) Performance

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Ohtani, Toshiro; Sasoh, Akihiro; Choi, Jeong-Yeol

    2004-03-30

    At Tohoku University, experiments of Laser-driven In-Tube Accelerator (LITA) have been carried out. In order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this paper, dependency of initial plasma size on LITA performance is investigated numerically. The plasma size is estimated using shadowgraph images and the numerical results are compared with the experimental data of pressure measurement and results of previous modeling.

  15. Dependence of Initial Plasma Size on Laser-driven In-Tube Accelerator (LITA) Performance

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Ohtani, Toshiro; Sasoh, Akihiro; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    At Tohoku University, experiments of Laser-driven In-Tube Accelerator (LITA) have been carried out. In order to observe the initial state of plasma and blast wave, the visualization experiment was carried out using the shadowgraph method. In this paper, dependency of initial plasma size on LITA performance is investigated numerically. The plasma size is estimated using shadowgraph images and the numerical results are compared with the experimental data of pressure measurement and results of previous modeling.

  16. Stability study for matching in laser driven plasma acceleration

    NASA Astrophysics Data System (ADS)

    Rossi, A. R.; Anania, M. P.; Bacci, A.; Belleveglia, M.; Bisesto, F. G.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petrarca, M.; Pompili, R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Villa, F.

    2016-09-01

    In a recent paper [14], a scheme for inserting and extracting high brightness electron beams to/from a plasma based acceleration stage was presented and proved to be effective with an ideal bi-Gaussian beam, as could be delivered by a conventional photo-injector. In this paper, we extend that study, assessing the method stability against some jitters in the properties of the injected beam. We find that the effects of jitters in Twiss parameters are not symmetric in results; we find a promising configuration that yields better performances than the setting proposed in [14]. Moreover we show and interpret what happens when the beam charge profiles are modified.

  17. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano; De Nicola, Sergio

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  18. Particle trapping and beam transport issues in laser driven accelerators

    NASA Astrophysics Data System (ADS)

    Gwenael, Fubiani; Wim, Leemans; Eric, Esarey

    2000-10-01

    The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)

  19. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  20. Three-dimensional Dielectric Photonic Crystal Structures for Laser-driven Acceleration

    SciTech Connect

    Cowan, Benjamin M.; /Tech-X, Boulder /SLAC

    2007-12-14

    We present the design and simulation of a three-dimensional photonic crystal waveguide for linear laser-driven acceleration in vacuum. The structure confines a synchronous speed-of-light accelerating mode in both transverse dimensions. We report the properties of this mode, including sustainable gradient and optical-to-beam efficiency. We present a novel method for confining a particle beam using optical fields as focusing elements. This technique, combined with careful structure design, is shown to have a large dynamic aperture and minimal emittance growth, even over millions of optical wavelengths.

  1. Energy Efficiency of an Intracavity Coupled, Laser-Driven Linear Accelerator Pumped by an External Laser

    SciTech Connect

    Neil Na, Y.C.; Siemann, R.H.; Byer, R.L.; /Stanford U., Phys. Dept.

    2005-06-24

    We calculate the optimum energy efficiency of a laser-driven linear accelerator by adopting a simple linear model. In the case of single bunch operation, the energy efficiency can be enhanced by incorporating the accelerator into a cavity that is pumped by an external laser. In the case of multiple bunch operation, the intracavity configuration is less advantageous because the strong wakefield generated by the electron beam is also recycled. Finally, the calculation indicates that the luminosity of a linear collider based on such a structure is comparably small if high efficiency is desired.

  2. Impulse-scaling in a laser-driven in-tube accelerator

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Urabe, N.; Kim, S. S. M.; Jeung, I.-S.

    The laser-driven in-tube accelerator (LITA) is a unique device for laser propulsion. It is characterized by the acceleration of a projectile in a tube. The thrust performance can be improved by exploiting a confinement effect. In the experiment, a 3.0-g projectile is vertically launched, and the momentum coupling coefficient is measured for various monoatomic gases. The measured coupling coefficient is almost proportional to the reciprocal of the speed of sound. The same impulse generation characteristics are obtained in simplified situations that are analyzed based on conservation relations.

  3. Vertical Launch Performance of Laser-driven In-Tube Accelerator

    NASA Astrophysics Data System (ADS)

    Urabe, Naohide; Kim, Sukyum; Sasoh, Akihiro; Jeung, In-Seuck

    2003-05-01

    We studied the vertical launch performance of the Laser-driven In-Tube Accelerator (LITA). This device is primarily characterized by accelerating a projectile in a tube. Owing to the confinement effect, the thrust performance is enhanced. The driver gas can be specified and its pressure be turned so that the impulse performance is optimized. In the experiments, a 3.0-gram projectile was vertically launched. The effects of the projectile exit condition, the laser beam incident direction and the driver gas species were experimentally studied.

  4. Fundamental Studies on the Use of Laser-Driven Proton Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Kim, J.; Beg, F. N.; Wei, M. S.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Theobald, W.; Habara, H.; Tanaka, K.; Yabuuchi, T.; Foord, M. E.; Patel, P. K.; McLean, H. S.; Roth, M.; McKenna, P.

    2015-11-01

    A short-pulse-laser-driven intense proton beam remains a candidate for Fast Ignition heater due to its focusability and high current. However, the proton current density necessary for FI in practice has never been produced in the laboratory and there are many physics issues that should be addressed using current and near-term facilities. For example, the extraction of sufficient proton charge from the short-pulse laser target could be evaluated with the multi-kilojoule NIF ARC laser. Transport of the beam through matter, such as a cone tip, and deposition in the fuel must be considered carefully as it will isochorically heat any material it enters and produce a rapidly-evolving, warm dense matter state with uncertain transport and stopping properties. Here we share experimental measurements of the proton spectra after passing through metal cones and foils taken with the kilojoule-class, multi-picosecond OMEGA EP and LFEX lasers. We also present complementary PIC simulations of beam generation and transport to and in the foils. Upcoming experiments to further evaluate proton beam performance in proton FI will also be outlined. This work was supported by the DOE/NNSA NLUF program, Contract DE-NA0002034 and by the AFOSR under Contract FA9550-14-1-0346.

  5. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Kim, I. J.; Psikal, J.; Kaufman, J.; Mocek, T.; Choi, I. W.; Stolcova, L.; Proska, J.; Choukourov, A.; Melnichuk, I.; Klimo, O.; Limpouch, J.; Sung, J. H.; Lee, S. K.; Korn, G.; Jeong, T. M.

    2015-07-01

    A high-energy, high-yield proton beam with a good homogeneous profile has been generated from a nanosphere target irradiated by a short (30-fs), intense (7 ×1020 W /cm2 ) laser pulse. A maximum proton energy of 30 MeV has been observed with a high proton number of 7 ×1010 in the energy range 5-30 MeV. A homogeneous spatial profile with a uniformity (standard deviation from an average value within 85% beam area) of 15% is observed with the nanosphere dielectric target. Particle-in-cell simulations show the enhancement of proton cutoff energy and proton number with the nanosphere target and reveal that the homogeneous beam profile is related with a broadened angular distribution of hot electrons, which is initiated by the nanosphere structure. The homogeneous spatial properties obtained with the nanosphere target will be advantageous in developing laser-driven proton sources for practical applications in which high-quality beams are required.

  6. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    SciTech Connect

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-30

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  7. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition

    NASA Astrophysics Data System (ADS)

    Kim, Sukyum; Jeung, In-Seuck; Choi, Jeong-Yeol

    2004-03-01

    Recently, several laser propulsion vehicles have been launched successfully. But these vehicles remained in a very low subsonic flight. Laser-driven In-Tube Accelerator (LITA) is developed as unique laser propulsion system at Tohoku University. In this paper, flow characteristics and momentum coupling coefficients are studied numerically in the supersonic condition with the same configuration of LITA. Because of the aerodynamic drag, the coupling coefficient could not get correctly especially at the low energy input. In this study, the coupling coefficient was calculated using the concept of the effective impulse.

  8. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  9. Laser energized traveling wave accelerator - a novel scheme for simultaneous focusing, energy selection and post-acceleration of laser-driven ions

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata

    2015-11-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Where intense laser driven proton beams, mainly by the so called Target Normal Sheath Acceleration mechanism, have attractive properties such as brightness, laminarity and burst duration, overcoming some of the inherent shortcomings, such as large divergence, broad spectrum and slow ion energy scaling poses significant scientific and technological challenges. High power lasers are capable of generating kiloampere current pulses with unprecedented short duration (10s of picoseconds). The large electric field from such localized charge pulses can be harnessed in a traveling wave particle accelerator arrangement. By directing the ultra-short charge pulse along a helical path surrounding a laser-accelerated ion beams, one can achieve simultaneous beam shaping and re-acceleration of a selected portion of the beam by the components of the associated electric field within the helix. In a proof-of-principle experiment on a 200 TW university-scale laser, we demonstrated post-acceleration of ~108 protons by ~5 MeV over less than a cm of propagation - i.e. an accelerating gradient ~0.5 GeV/m, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  10. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  11. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    NASA Astrophysics Data System (ADS)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  12. Laser-driven electron beam acceleration and future application to compact light sources

    SciTech Connect

    Hafz, N.; Jeong, T. M.; Lee, S. K.; Pae, K. H.; Sung, J. H.; Choi, I. W.; Yu, T. J.; Lee, J.; Jeong, Y. U.

    2009-07-25

    Laser-driven plasma accelerators are gaining much attention by the advanced accelerator community due to the potential these accelerators hold in miniaturizing future high-energy and medium-energy machines. In the laser wakefield accelerator (LWFA), the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal plasma wave or bubble. Due to huge charge separation, electric fields created in the plasma bubble can be several orders of magnitude higher than those available in conventional microwave and RF-based accelerator facilities which are limited (up to approx100 MV/m) by material breakdown. Therefore, if an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within an extremely short distance. Here, in the LWFA we show the generation of high-quality and high-energy electron beams up to the GeV-class within a few millimeters of gas-jet plasmas irradiated by tens of terawatt ultrashort laser pulses. Thus we realize approximately four orders of magnitude acceleration gradients higher than available by conventional technology. As a practical application of the stable high-energy electron beam generation, we are planning on injecting the electron beams into a few-meters long conventional undulator in order to realize compact X-ray synchrotron (immediate) and FEL (future) light sources. Stable laser-driven electron beam and radiation devices will surely open a new era in science, medicine and technology and will benefit a larger number of users in those fields.

  13. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  14. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  15. Impulse Generation Mechanisms in a Laser-Driven In-Tube Accelerator

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Yeol; Kang, Ki-Ha; Sasoh, Akihiro; Jeung, In-Seuck; Urabe, Naohide; Kleine, Harald

    To enhance laser-propulsion thrust performance, a unique Laser-driven In-Tube Accelerator (LITA) has been developed. This paper numerically analyzes the impulse generation mechanisms in LITA. For this purpose, a LITA performance experiment was conducted in atmospheric air with a projectile installed on a ballistic pendulum to calibrate the numerical approximations. We conducted experimental flow visualization by framing shadowgraph and computational fluid dynamics solving the axi-symmetric Euler equation applied to an ideal gas. The results show that a laser-driven blast wave is generated by a spherical hot gas core where the supplied laser energy is absorbed first. The effect of confinement by the tube or shroud wall is confirmed. The impulse production is established not only from the interaction between the incident blast wave and projectile, but also from the following repetitive pressure waves. Assuming that about 30% of the input laser energy is absorbed by the working air, both the impulse and peak pressure agrees quantitatively between the experiment and numerical simulation.

  16. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  17. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  18. Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration

    SciTech Connect

    Pae, K. H.; Choi, I. W.; Lee, J.

    2010-12-15

    Via three-dimensional particle-in-cell simulations, the self-mode-transition of a laser-driven electron acceleration from laser wakefield to plasma-wakefield acceleration is studied. In laser wakefield accelerator (LWFA) mode, an intense laser pulse creates a large amplitude wakefield resulting in high-energy electrons. Along with the laser pulse depletion, the electron bunch accelerated in the LWFA mode drives a plasma wakefield. Then, after the plasma wakefield accelerator mode is established, electrons are trapped and accelerated in the plasma wakefield. The mode transition process and the characteristics of the accelerated electron beam are presented.

  19. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  20. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes. PMID:26520950

  1. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Hafz, Nasr A. M.; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ˜1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  2. Modal analysis of the energy loss for an accelerated electron beam passing through a laser-driven RF gun

    NASA Astrophysics Data System (ADS)

    Salah, W.

    2002-06-01

    The energy loss for an accelerated electron beam passing through a laser-driven RF gun has been studied. An analytical formula of the energy loss has been obtained using the time-dependent resonant modes of a cylindrical "pill-box" cavity. As an approximation, this formalism assumes a rigid beam pulse so the change of pulse shape dealing with space-charge force and wake field force is ignored.

  3. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke; Sasoh, Akihiro

    2006-05-02

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  4. Numerical studies of petawatt laser-driven proton generation from two-species targets using a two-dimensional particle-in-cell code

    NASA Astrophysics Data System (ADS)

    Domański, J.; Badziak, J.; Jabloński, S.

    2016-04-01

    Laser-driven generation of high-energy ion beams has recently attracted considerable interest due to a variety of potential applications including proton radiography, ICF fast ignition, nuclear physics or hadron therapy. The ion beam parameters depend on both laser pulse and target parameters, and in order to produce the ion beam of properties required for a particular application the laser and target parameters must be carefully selected, and the mechanism of the ion beam generation should be well understood and controlled. Convenient and commonly used tools for studies of the ion acceleration process are particle-in-cell (PIC) codes. Using two-dimensional PIC simulations, the properties of a proton beam generated from a thin erbium hydride (ErH3) target irradiated by a 25fs laser pulse of linear or circular polarization and of intensity ranging from 1020 to 1021 W/cm2 are investigated and compared with the features of a proton beam produced from a hydrocarbon (CH) target. It has been found that using erbium hydride targets instead of hydrocarbon ones creates an opportunity to generate more compact proton beams of higher mean energy, intensity and of better collimation. This is especially true for the linear polarization of the laser beam, for which the mean proton energy, the amount of high energy protons and the intensity of the proton beam generated from the hydride target is by an order of magnitude higher than for the hydrocarbon target. For the circular polarization, the proton beam parameters are lower than those for the linear one, and the effect of target composition on the acceleration process is weaker.

  5. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  6. Proof-Of-Principle Experiment for Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-03-01

    We recently achieved the first experimental observation of laser-driven particle acceleration of relativistic electrons from a single Gaussian near-infrared laser beam in a semi-infinite vacuum. This article presents an in-depth account of key aspects of the experiment. An analysis of the transverse and longitudinal forces acting on the electron beam is included. A comparison of the observed data to the acceleration viewed as an inverse transition radiation process is presented. This is followed by a detailed description of the components of the experiment and a discussion of future measurements.

  7. Proton radiography of laser-driven imploding target in cylindrical geometry

    SciTech Connect

    Volpe, L.; Batani, D.; Vauzour, B.; Nicolai, Ph.; Santos, J. J.; Regan, C.; Dorchies, F.; Fourment, C.; Hulin, S.; Morace, A.; Perez, F.; Baton, S.; Lancaster, K.; Galimberti, M.; Heathcote, R.; Tolley, M.; Spindloe, Ch.; Koester, P.; Labate, L.; Gizzi, L. A.

    2011-01-15

    An experiment was done at the Rutherford Appleton Laboratory (Vulcan laser petawatt laser) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This was performed in the framework of the experimental road map of HiPER (the European high power laser energy research facility project). In the experiment, protons accelerated by a picosecond-laser pulse were used to radiograph a 220 {mu}m diameter cylinder (20 {mu}m wall, filled with low density foam), imploded with {approx}200 J of green laser light in four symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to get the compression history and the stagnation time. Results are also compared to those from hard x-ray radiography. Detailed comparison with two-dimensional numerical hydrosimulations has been done using a Monte Carlo code adapted to describe multiple scattering and plasma effects. Finally we develop a simple analytical model to estimate the performance of proton radiography for given implosion conditions.

  8. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  9. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  10. Biological effectiveness on live cells of laser driven protons at dose rates exceeding 10{sup 9} Gy/s

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; Litt, S. K.; Ahmed, H.; Lewis, C. L.; Nersisyan, G.; Prasad, R.; Zepf, M.; Borghesi, M.; Fiorini, F.; Kirby, D.; Green, S.; Jeynes, J. C. G.; Kirkby, K. J.; Merchant, M. J.; Kavanagh, J.; Prise, K. M.; Schettino, G.

    2012-03-15

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  11. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    SciTech Connect

    Plettner, T.; Byer, R.L.; Smith, T.I.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process. experiment as the Laser Electron Accelerator Project (LEAP).

  12. Collisionless shocks and particle acceleration in laser-driven laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Fiuza, Frederico

    2012-10-01

    Collisionless shocks are pervasive in space and astrophysical plasmas, from the Earth's bow shock to Gamma Ray Bursters; however, the microphysics underlying shock formation and particle acceleration in these distant sites is not yet fully understood. Mimicking these extreme conditions in laboratory is a grand challenge that would allow for a better understanding of the physical processes involved. Using ab initio multi-dimensional particle-in-cell simulations, shock formation and particle acceleration are investigated for realistic laboratory conditions associated with the interaction of intense lasers with high-energy-density plasmas. Weibel-instability-mediated shocks are shown to be driven by the interaction of an ultraintense laser with overcritical plasmas. In this piston regime, the laser generates a relativistic flow that is Weibel unstable. The strong Weibel magnetic fields deflect the incoming flow, compressing it, and forming a shock. The resulting shock structure is consistent with previous simulations of relativistic astrophysical shocks, demonstrating for the first time the possibility of recreating these structures in laboratory. As the laser intensity is decreased and near-critical density plasmas are used, electron heating dominates over radiation pressure and electrostatic shocks can be formed. The electric field associated with the shock front can reflect ions from the background accelerating them to high energies. It is shown that high quality 200 MeV proton beams, required for tumor therapy, can be generated by using an exponentially decaying plasma profile to control competing accelerating fields. These results pave the way for the experimental exploration of space and astrophysical relevant shocks and particle acceleration with current laser systems.

  13. Proton beam shaped by "particle lens" formed by laser-driven hot electrons

    NASA Astrophysics Data System (ADS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Zhang, L. G.; Huang, S.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.; Xu, Z. Z.

    2016-05-01

    Two-dimensional tailoring of a proton beam is realized by a "particle lens" in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a "fountain-like" pattern when these hot electrons diffuse after propagating a distance.

  14. Towards controlled flyer acceleration by a laser-driven mini flyer

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Fedotov, Vitalij; Baek, Wonkye; Yoh, Jack J.

    2014-06-01

    A laser driven flyer (LDF) system is designed to blast off a very small, thin flyer plate for impact on a target. When a Nd:YAG laser beam is focused through a transparent substrate onto thin metal, a fraction of the metal is ablated. The blow-off products being contained between the substrate and the flyer make the remaining thin film launch as a separate flyer. Some energy of the laser beam is lost by reflection at the boundary between substrate and metal because of the high reflectivity. By using a proper metal of high absorptance at 1.064 μm wavelength, the laser coupling to the flyer would define the system efficiency of a launch system. An effort is presented here to improve the coupling results in the enhancement of the flyer velocity for a given pulse energy. An optimum energy conversion between laser energy and kinetic energy of the flyer is achieved through a black paint coating technique as opposed to a more conventional means of a multi-layered approach requiring electron beaming or magnetron sputtering that are rather expensive and time consuming. The mini flyer flown under 1.4 km/s showed a controlled flight trajectory without fragmentation, suggesting that performance of this simple system is competitive to if not better than other attempts by the multi-layered LDF systems.

  15. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  16. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-01

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ˜1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ˜3 × 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ˜40-50 T magnetic fields at the center of the coil ˜3-4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  17. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGESBeta

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments providemore » significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  18. Laser-driven plasma jets propagating in an ambient gas studied with optical and proton diagnostics

    NASA Astrophysics Data System (ADS)

    Gregory, C. D.; Loupias, B.; Waugh, J.; Dono, S.; Bouquet, S.; Falize, E.; Kuramitsu, Y.; Michaut, C.; Nazarov, W.; Pikuz, S. A.; Sakawa, Y.; Woolsey, N. C.; Koenig, M.

    2010-05-01

    The results of an experiment to propagate laser-generated plasma jets into an ambient medium are presented. The jets are generated via laser irradiation of a foam-filled cone target, the results and characterization of which have been reported previously [Loupias et al., Phys. Rev. Lett. 99, 265001 (2007)] for propagation in vacuum. The introduction of an ambient medium of argon at varying density is seen to result in the formation of a shock wave, and the shock front displays perturbations that appear to grow with time. The system is diagnosed with the aid of proton radiography, imaging the perturbed structure in the dense parts of the shock with high resolution.

  19. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  20. Two-color-laser-driven direct electron acceleration in infinite vacuum.

    PubMed

    Wong, Liang Jie; Kärtner, Franz X

    2011-03-15

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration. The scheme succeeds by exploiting the Gouy phase shift to cause an acceleration-favoring interference of fields only as the electron enters its effectively final accelerating cycle. Optimization conditions and power scaling characteristics are discussed. PMID:21403741

  1. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  2. Free electron lasers driven by linear induction accelerators: High power radiation sources

    NASA Technical Reports Server (NTRS)

    Orzechowski, T. J.

    1989-01-01

    The technology of Free Electron Lasers (FELs) and linear induction accelerators (LIAs) is addressed by outlining the following topics: fundamentals of FELs; basic concepts of linear induction accelerators; the Electron Laser Facility (a microwave FEL); PALADIN (an infrared FEL); magnetic switching; IMP; and future directions (relativistic klystrons). This presentation is represented by viewgraphs only.

  3. Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel

    SciTech Connect

    Zheng, F. L.; Wu, H. C.; Wu, S. Z.; Zhou, C. T.; Cai, H. B.; He, X. T.; Yu, M. Y.; Tajima, T.; Yan, X. Q.

    2013-01-15

    Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2 Degree-Sign divergence can be produced by a circularly polarized laser pulse at an intensity of about 10{sup 22} W/cm{sup 2}.

  4. Vacuum laser-driven acceleration by two slits-truncated Bessel beams

    SciTech Connect

    Li, D.; Imasaki, K.

    2005-08-29

    An approach of vacuum acceleration by two laser Bessel beams is presented in this letter. With elaborate arrangement, the two Bessel beams are truncated by a set of special annular slits to form consecutive acceleration field in the electron traveling direction. Therefore, the electron of a certain initial energy can be accelerated in the whole interaction region without experiencing deceleration even though the phase-slippage occurs. Furthermore, the Bessel beam can provide a rather long distance for the effective interaction between the electron and the laser field due to its 'diffraction-free' property, resulting in improvement of the energy exchange.

  5. Demonstration of electron acceleration in a laser-driven dielectric microstructure.

    PubMed

    Peralta, E A; Soong, K; England, R J; Colby, E R; Wu, Z; Montazeri, B; McGuinness, C; McNeur, J; Leedle, K J; Walz, D; Sozer, E B; Cowan, B; Schwartz, B; Travish, G; Byer, R L

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250 MeV m(-1)) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563 ± 104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30 MeV m(-1), and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6 MeV m(-1) (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (10(6)-10(9) eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (10(12)

  6. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    NASA Astrophysics Data System (ADS)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  7. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  8. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Robinson, K. E.; Toth, Cs.; Gruener, F.; Bakeman, M.; Nakamura, K.; Esarey, E.; Leemans, W. P.

    2009-01-22

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by a high-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source ({approx}10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (> or approx.10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10{sup 13} photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  9. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  10. Free-electron laser driven by the LBNL laser-plasma accelerator

    SciTech Connect

    Schroeder, C. B.; Fawley, W. M.; Gruner, F.; Bakeman, M.; Nakamura, K.; Robinson, K. E.; Toth, Cs.; Esarey, E.; Leemans, W. P.

    2008-08-04

    A design of a compact free-electron laser (FEL), generating ultra-fast, high-peak flux, XUV pulses is presented. The FEL is driven by ahigh-current, 0.5 GeV electron beam from the Lawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator, whose active acceleration length is only a few centimeters. The proposed ultra-fast source (~;;10 fs) would be intrinsically temporally synchronized to the drive laser pulse, enabling pump-probe studies in ultra-fast science. Owing to the high current (>10 kA) of the laser-plasma-accelerated electron beams, saturated output fluxes are potentially greater than 10^13 photons/pulse. Devices based both on self-amplified spontaneous emission and high-harmonic generated input seeds, to reduce undulator length and fluctuations, are considered.

  11. Proposed Few-optical Cycle Laser-driven ParticleAccelerator Structure

    SciTech Connect

    Plettner, T.; Lu, P.; Byer, R.L.; /Stanford U., Ginzton Lab.

    2006-10-06

    We describe a transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles, however to preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. Finally, it shows potential for an unloaded gradient of 10 GeV/m with 10 fsec laser pulses and the possibility to accelerate 10{sup 6} electrons per bunch at an efficiency of 8%. The fabrication procedure and a proposed near term experiment with this accelerator structure are presented.

  12. Laser-driven electron acceleration in a plasma channel with an additional electric field

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Hong; Xue, Ju-Kui; Liu, Jie

    2016-05-01

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the laser pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.

  13. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Assmann, R. W.; Dorda, U.; Marchetti, B.

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  14. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2. PMID:24580346

  15. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  16. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    SciTech Connect

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  17. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration

    SciTech Connect

    Jung, D.; Senje, L.; McCormack, O.; Dromey, B.; Zepf, M.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.; Toncian, T.; Hegelich, B. M.

    2015-03-15

    We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

  18. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (“slingshot effect”). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  19. Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection.

    PubMed

    Li, Song; Hafz, Nasr A M; Mirzaie, Mohammad; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-12-01

    We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers. PMID:25606890

  20. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  1. Proton Therapy - Accelerating Protons to Save Lives

    SciTech Connect

    Keppel, Cynthia

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  2. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  3. Combined proton acceleration from foil targets by ultraintense short laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Yu, Tongpu; Ge, Xulei; Yang, Su; Wei, Wenqing; Yuan, Tao; Liu, Feng; Chen, Min; Liu, Jingquan; Li, Yutong; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-04-01

    Proton emission from solid foil targets irradiated by relativistically intense femtosecond laser pulses is studied experimentally. Broad plateaus in energy spectra are measured from micron-thick targets when the incident laser pulses have relatively low intensity contrasts. It is proposed that such proton spectra can be attributed to the combined processes of laser-driven collisionless shock acceleration and target normal sheath acceleration. Simple analytic estimation and two-dimensional particle-in-cell simulations are performed, which support our interpretation. The obtained plateau-shape spectrum may also serve as an effective tool to diagnose the plasma state and verify the ion acceleration mechanisms in laser-solid interactions.

  4. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-07-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I0 = 3 × 1020 W/cm2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  5. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  6. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  7. High-Intensity Proton Accelerator

    SciTech Connect

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  8. Hole-boring radiation pressure acceleration as a basis for producing high-energy proton bunches

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Trines, R. M. G. M.; Dover, N. P.; Najmudin, Z.

    2012-11-01

    The production of high-energy protons by the ‘hole-boring’ radiation pressure acceleration (HB-RPA) mechanism of laser-driven ion acceleration is examined in the case where the plasma has a density less than a0nc in 2D. Previously this was examined in 1D (Robinson 2011 Phys. Plasmas 18 056701) and was motivated by previous predictions of the non-linear criterion for an ultra-intense laser pulse to penetrate a dense plasma. By reducing the density well below a0nc the proton energies achieved increases considerably, thus leading to proton energies >100 MeV at laser intensities close to current capabilities. The results show that good quality proton beams with proton energies >100 MeV can be obtained via HB-RPA using targets with densities in the range 12-20nc and laser intensities in the range 5 × 1021-3 × 1022 W cm-2.

  9. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  10. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sasao, H.; Wakai, D.; Bolton, P. R.; Daido, H.

    2009-05-01

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  11. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Bolton, P. R.

    2009-05-04

    We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In vitro (living) A549 cells are irradiated with quasimonoenergetic proton bunches of 0.8-2.4 MeV with a single bunch duration of 15 ns. Irradiation with the proton dose of 20 Gy results in a distinct formation of {gamma}-H2AX foci as an indicator of DNA double-strand breaks generated in the cancer cells. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. Unique high-current and short-bunch features make laser-driven proton bunches an excitation source for time-resolved determination of radical yields.

  12. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  13. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. PMID:24100298

  14. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  15. Laser-driven acceleration of subrelativistic electrons near a nanostructured dielectric grating: From acceleration via higher spatial harmonics to necessary elements of a dielectric accelerator

    NASA Astrophysics Data System (ADS)

    McNeur, Josh; Kozak, Martin; Schönenberger, Norbert; Li, Ang; Tafel, Alexander; Hommelhoff, Peter

    2016-09-01

    The experimental setup that allows for the observation of energy gain of electrons interacting with Dielectric Laser Accelerators (DLAs) is reviewed. Moreover, recent results, including acceleration due to electron interaction with third, fourth and fifth spatial harmonics of a nanostructured grating are discussed and an extended outlook is given.

  16. Acceleration of polarized proton at the AGS

    SciTech Connect

    Lee, Y Y

    1980-01-01

    The unexpected importance of high energy spin effects and the success of the ZGS in correcting many intrinsic and imperfection depolarizing resonances led us to attempt to accelerate polarized protons in the AGS. A collaborative effort is underway by the groups in Argonne, Michigan, Rice, Yale and Brookhaven to improve and modify the AGS to accelerate polarized protons. With the appropriate funding the first polarized proton acceleration at the AGS should be possible by 1983.

  17. Cascaded proton acceleration by collisionless electrostatic shock

    SciTech Connect

    Xu, T. J.; Shen, B. F. E-mail: zhxm@siom.ac.cn; Zhang, X. M. E-mail: zhxm@siom.ac.cn; Yi, L. Q.; Wang, W. P.; Zhang, L. G.; Xu, J. C.; Zhao, X. Y.; Shi, Y.; Liu, C.; Pei, Z. K.

    2015-07-15

    A new scheme for proton acceleration by cascaded collisionless electrostatic shock (CES) is proposed. By irradiating a foil target with a moderate high-intensity laser beam, a stable CES field can be induced, which is employed as the accelerating field for the booster stage of proton acceleration. The mechanism is studied through simulations and theoretical analysis, showing that a 55 MeV seed proton beam can be further accelerated to 265 MeV while keeping a good energy spread. This scheme offers a feasible approach to produce proton beams with energy of hundreds of MeV by existing available high-intensity laser facilities.

  18. Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-04-17

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  19. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    PubMed Central

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10−11 achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W∕cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions∕light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 μm (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150–500 TW laser pulse is able to accelerate protons up to 100–220 MeV energies. PMID:18561651

  20. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses

    SciTech Connect

    Bulanov, Stepan S.; Brantov, Andrei; Bychenkov, Valery Yu.; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-05-15

    Proton acceleration by high-intensity laser pulses from ultrathin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10{sup -11} achieved on the Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 10{sup 22} W/cm{sup 2} that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-in-cell (PIC) computer simulations of proton acceleration in the directed Coulomb explosion regime from ultrathin double-layer (heavy ions/light ions) foils of different thicknesses were performed under the anticipated experimental conditions for the Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 {mu}m (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the maximum proton energy on the foil thickness has been found and the laser pulse characteristics have been matched with the thickness of the target to ensure the most efficient acceleration. Moreover, the proton spectrum demonstrates a peaked structure at high energies, which is required for radiation therapy. Two-dimensional PIC simulations show that a 150-500 TW laser pulse is able to accelerate protons up to 100-220 MeV energies.

  1. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; von Bargen, N.; Bican, Y.; Bilani, O.; Bödewadt, J.; Böhnert, M.; Böspflug, R.; Bonfigt, S.; Bolz, H.; Borges, F.; Borkenhagen, O.; Brachmanski, M.; Braune, M.; Brinkmann, A.; Brovko, O.; Bruns, T.; Castro, P.; Chen, J.; Czwalinna, M. K.; Damker, H.; Decking, W.; Degenhardt, M.; Delfs, A.; Delfs, T.; Deng, H.; Dressel, M.; Duhme, H.-T.; Düsterer, S.; Eckoldt, H.; Eislage, A.; Felber, M.; Feldhaus, J.; Gessler, P.; Gibau, M.; Golubeva, N.; Golz, T.; Gonschior, J.; Grebentsov, A.; Grecki, M.; Grün, C.; Grunewald, S.; Hacker, K.; Hänisch, L.; Hage, A.; Hans, T.; Hass, E.; Hauberg, A.; Hensler, O.; Hesse, M.; Heuck, K.; Hidvegi, A.; Holz, M.; Honkavaara, K.; Höppner, H.; Ignatenko, A.; Jäger, J.; Jastrow, U.; Kammering, R.; Karstensen, S.; Kaukher, A.; Kay, H.; Keil, B.; Klose, K.; Kocharyan, V.; Köpke, M.; Körfer, M.; Kook, W.; Krause, B.; Krebs, O.; Kreis, S.; Krivan, F.; Kuhlmann, J.; Kuhlmann, M.; Kube, G.; Laarmann, T.; Lechner, C.; Lederer, S.; Leuschner, A.; Liebertz, D.; Liebing, J.; Liedtke, A.; Lilje, L.; Limberg, T.; Lipka, D.; Liu, B.; Lorbeer, B.; Ludwig, K.; Mahn, H.; Marinkovic, G.; Martens, C.; Marutzky, F.; Maslocv, M.; Meissner, D.; Mildner, N.; Miltchev, V.; Molnar, S.; Mross, D.; Müller, F.; Neumann, R.; Neumann, P.; Nölle, D.; Obier, F.; Pelzer, M.; Peters, H.-B.; Petersen, K.; Petrosyan, A.; Petrosyan, G.; Petrosyan, L.; Petrosyan, V.; Petrov, A.; Pfeiffer, S.; Piotrowski, A.; Pisarov, Z.; Plath, T.; Pototzki, P.; Prandolini, M. J.; Prenting, J.; Priebe, G.; Racky, B.; Ramm, T.; Rehlich, K.; Riedel, R.; Roggli, M.; Röhling, M.; Rönsch-Schulenburg, J.; Rossbach, J.; Rybnikov, V.; Schäfer, J.; Schaffran, J.; Schlarb, H.; Schlesselmann, G.; Schlösser, M.; Schmid, P.; Schmidt, C.; Schmidt-Föhre, F.; Schmitz, M.; Schneidmiller, E.; Schöps, A.; Scholz, M.; Schreiber, S.; Schütt, K.; Schütz, U.; Schulte-Schrepping, H.; Schulz, M.; Shabunov, A.; Smirnov, P.; Sombrowski, E.; Sorokin, A.; Sparr, B.; Spengler, J.; Staack, M.; Stadler, M.; Stechmann, C.; Steffen, B.; Stojanovic, N.; Sychev, V.; Syresin, E.; Tanikawa, T.; Tavella, F.; Tesch, N.; Tiedtke, K.; Tischer, M.; Treusch, R.; Tripathi, S.; Vagin, P.; Vetrov, P.; Vilcins, S.; Vogt, M.; de Zubiaurre Wagner, A.; Wamsat, T.; Weddig, H.; Weichert, G.; Weigelt, H.; Wentowski, N.; Wiebers, C.; Wilksen, T.; Willner, A.; Wittenburg, K.; Wohlenberg, T.; Wortmann, J.; Wurth, W.; Yurkov, M.; Zagorodnov, I.; Zemella, J.

    2016-06-01

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.

  2. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams.

    PubMed

    Raschke, S; Spickermann, S; Toncian, T; Swantusch, M; Boeker, J; Giesen, U; Iliakis, G; Willi, O; Boege, F

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 10(7)-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  3. Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams

    PubMed Central

    Raschke, S.; Spickermann, S.; Toncian, T.; Swantusch, M.; Boeker, J.; Giesen, U.; Iliakis, G.; Willi, O.; Boege, F.

    2016-01-01

    Ultra-short proton pulses originating from laser-plasma accelerators can provide instantaneous dose rates at least 107-fold in excess of conventional, continuous proton beams. The impact of such extremely high proton dose rates on A549 human lung cancer cells was compared with conventionally accelerated protons and 90 keV X-rays. Between 0.2 and 2 Gy, the yield of DNA double strand breaks (foci of phosphorylated histone H2AX) was not significantly different between the two proton sources or proton irradiation and X-rays. Protein nitroxidation after 1 h judged by 3-nitrotyrosine generation was 2.5 and 5-fold higher in response to conventionally accelerated protons compared to laser-driven protons and X-rays, respectively. This difference was significant (p < 0.01) between 0.25 and 1 Gy. In conclusion, ultra-short proton pulses originating from laser-plasma accelerators have a similar DNA damaging potential as conventional proton beams, while inducing less immediate nitroxidative stress, which probably entails a distinct therapeutic potential. PMID:27578260

  4. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  5. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  6. Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator

    DOE PAGESBeta

    Faatz, B.; Plönjes, E.; Ackermann, S.; Agababyan, A.; Asgekar, V.; Ayvazyan, V.; Baark, S.; Baboi, N.; Balandin, V.; Bargen, N. von; et al

    2016-06-20

    Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs—dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated inmore » both FELs simultaneously. Here, FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.« less

  7. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  8. Comparative Study of Radiation Dosage Distribution and Medical Implication of Quasi-monoenergetic Proton Generated from Laser Acceleration of Ultra-thin Foil

    NASA Astrophysics Data System (ADS)

    Batpurev, Temuge; Cao, Jennifer; Xie, Wang; Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng

    2012-10-01

    Recently the search for mono-energetic protons has gained great interest, particularly in applications such as proton therapy for cancer treatment. The advantage of proton therapy is that unlike photon radiation, proton beams deposit most of the energy at the tumor, sparing surrounding tissue and vital organs. A compact laser-driven proton accelerator is attractive for proton cancer therapy since the electric fields for particle acceleration can reach the order of tens of GV per cm which allows large reduction of the system size. Recent work by Liu et al. [2012] shows that laser acceleration of an ultra-thin multi-ion foil can generate high quality quasi-monoenergetic proton beams. The proton acceleration is due to the combination of radiation pressure and heavy-ion Coulomb repulsion. To assess the feasibility of laser-proton cancer therapy with such a proton accelerator, we simulated the interaction of protons with water and determine the radiation dosage deposition for particle beams produced from the PIC simulation of laser acceleration of multi-ion targets. We used the SRIM code to calculate the depth and lateral dose distribution of protons. We also compared the dosage map produced from protons generated from laser acceleration of single ion and multi-ion targets.

  9. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    NASA Astrophysics Data System (ADS)

    Xiao, K. D.; Huang, T. W.; Zhou, C. T.; Qiao, B.; Wu, S. Z.; Ruan, S. C.; He, X. T.

    2016-01-01

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.

  10. Acceleration of polarized protons in circular accelerators

    SciTech Connect

    Courant, E.D.; Ruth, R.D.

    1980-09-12

    The theory of depolarization in circular accelerators is presented. The spin equation is first expressed in terms of the particle orbit and then converted to the equivalent spinor equation. The spinor equation is then solved for three different situations: (1) a beam on a flat top near a resonance, (2) uniform acceleration through an isolated resonance, and (3) a model of a fast resonance jump. Finally, the depolarization coefficient, epsilon, is calculated in terms of properties of the particle orbit and the results are applied to a calculation of depolarization in the AGS.

  11. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  12. Proton acceleration in neutron star magnetospheres

    NASA Technical Reports Server (NTRS)

    Smith, I. A.; Katz, J. I.; Diamond, P. H.

    1992-01-01

    To explain the emission of TeV and PeV gamma rays from accreting X-ray binary sources, protons must be accelerated to several times the gamma-ray energy. It is shown here that at certain times, the plasma in the accretion column of the neutron star may form a deep enough pool that the top portion becomes unstable to convective motions in spite of the strong magnetic field. The resulting turbulence produces fluctuations in the strength of the magnetic field that travel up the accretion column, taking energy out to the region of the energetic protons. The protons resonantly absorb this energy and are accelerated to high energies. Including the synchrotron radiation losses of the protons, it is shown that they can be accelerated to energies that are high enough to explain the gamma-ray observations.

  13. Petawatt laser-driven wakefield accelerator: All-optical electron injection via collision of laser pulses and radiation cooling of accelerated electron bunches.

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Avitzour, Yoav; Yi, S. Austin; Shvets, Gennady

    2007-11-01

    We explore an electron injection into the laser wakefield accelerator (LWFA) using nearly head-on collision of the petawatt ultrashort (˜30 fs) laser pulse (driver) with a low- amplitude laser (seed) beam of the same duration and polarization. To eliminate the threat to the main laser amplifier we consider two options: (i) a frequency-shifted seed and (ii) a seed pulse propagating at a small angle to the axis. We show that the emission of synchrotron radiation due to betatron oscillations of trapped and accelerated electrons results in significant transverse cooling of quasi- monoenergetic accelerated electrons (with energies above 1 GeV). At the same time, the energy losses due to the synchrotron emission preserve the final energy spread of the electron beam. The ``dark current'' due to the electron trapping in multiple wake buckets and the effect of beam loading (wake destruction at the instant of beams collision) are discussed.

  14. A New High-Current Proton Accelerator

    SciTech Connect

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-10

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron registered system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  15. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  16. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  17. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  18. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  19. POLARIZED PROTON ACCELERATION IN AGS AND RHIC.

    SciTech Connect

    ROSER,T.

    2007-09-10

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species including polarized proton beams. The acceleration of polarized beams in both the injector and the collider rings is complicated by numerous depolarizing spin resonances. Partial and full Siberian snakes have made it possible to overcome the depolarization and beam polarizations of up to 65% have been reached at 100 GeV in RHIC.

  20. Status of BINP proton tandem accelerator

    NASA Astrophysics Data System (ADS)

    Burdakov, A.; Davydenko, V.; Dolgushin, V.; Dranichnikov, A.; Ivanov, A.; Farrell, J. P.; Khilchenko, A.; Kobets, V.; Konstantinov, S.; Krivenko, A.; Kudryavtsev, A.; Tiunov, M.; Savkin, V.; Shirokov, V.; Sorokin, I.

    2007-08-01

    The status of a unique 2.0 MeV, 10 mA proton tandem accelerator with vacuum insulation is presented. The accelerator is intended to be used in facilities generating resonant gamma rays for explosives detection and epithermal neutrons for boron neutron-capture therapy of brain tumors. A magnetically coupled DC voltage multiplier derived from an industrial ELV-type electron accelerator is used as a high voltage source for the accelerator. A dc high current negative ion source has been developed for injection into the tandem. In the tandem accelerator there is set of nested potential electrodes with openings which form a channel for accelerating the negative hydrogen ion beam and subsequently accelerating the proton beam after stripping in the gas target. The electrodes are connected to a high voltage feedthrough insulator to which required potentials are applied from the high voltage power supply by means of a resistor voltage divider. In the paper the first experimental results obtained with the vacuum insulated tandem accelerator are also given.

  1. CHALLENGES FACING HIGH POWER PROTON ACCELERATORS

    SciTech Connect

    Plum, Michael A

    2013-01-01

    This presentation will provide an overview of the challenges of high power proton accelerators such as SNS, J-PARC, etc., and what we have learned from recent experiences. Beam loss mechanisms and methods to mitigate beam loss will also be discussed.

  2. Rf cavity primer for cyclic proton accelerators

    NASA Astrophysics Data System (ADS)

    Griffin, J. E.

    1988-04-01

    The electrical and mechanical properities of particle accelerator rf cavities are described in a manner which will be useful to physics and engineering graduates entering the accelerator field. The discussion is limited to proton (or antiproton) synchrotron accelerators or storage rings operating roughly in the range of 20 to 200 MHz. The very high gradient, fixed frequency UHF or microwave devices appropriate for electron machines and the somewhat lower frequency and broader bandwidth devices required for heavy ion accelerators are discussed extensively in other papers in this series. While it is common practice to employ field calculation programs such as SUPERFISH, URMEL, or MAFIA as design aids in the development of rf cavities, we attempt here to elucidate various of the design parameters commonly dealt with in proton machines through the use of simple standing wave coaxial resonator expressions. In so doing, we treat only standing wave structures. Although low-impedance, moderately broad pass-band travelling wave accelerating systems are used in the CERN SPS, such systems are more commonly found in linacs, and they have not been used widely in large cyclic accelerators. Two appendices providing useful supporting material regarding relativistic particle dynamics and synchrotron motion in cyclic accelerators are added to supplement the text.

  3. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  4. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is <0.006 π mm-mrad (rms-normalized), a factor of 100 lower than is typical of conventional RF linear accelerators. Within the envelope of the entire beam, we could focus individual proton beamlets to 100 nm spatial scales. This required control of the laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  5. DESIGN CRITERIA OF A PROTON FFAG ACCELERATOR.

    SciTech Connect

    RUGGIERO, A.G.

    2004-10-13

    There are two major issues that are to be confronted in the design of a Fixed-Field Alternating-Gradient (FFAG) accelerator, namely: (1) the stability of motion over the large momentum range needed for the beam acceleration, and (2) the compactness of the trajectories over the same momentum range to limit the dimensions of the magnets. There are a numbers of rules that need to be followed to resolve these issues. In particular, the magnet arrangement in the accelerator lattice and the distribution of the bending and focusing fields are to be set properly in accordance with these rules. In this report they describe four of these rules that ought to be applied for the optimum design of a FFAG accelerator, especially in the case of proton beams.

  6. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  7. Compact accelerator concept for proton therapy

    NASA Astrophysics Data System (ADS)

    Caporaso, G. J.; Sampayan, S.; Chen, Y.-J.; Harris, J.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Sullivan, J.; Wang, L.; Watson, J.

    2007-08-01

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash X-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  8. Stochastic acceleration of solar flare protons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1978-01-01

    The acceleration of solar flare protons is considered by cyclotron damping of intense Alfven wave turbulence in a magnetic trap. The energy diffusion coefficient is computed for a near-isotropic distribution of super-Alfvenic protons and a steady-state solution for the particle spectrum is found for both transit-time and diffusive losses out of the ends of the trap. The acceleration time to a characteristic energy approximately 20 Mev/nucl can be as short as 10 sec. On the basis of phenomenological arguments an omega/2 frequency dependence for the Alfven wave spectrum is inferred. The correlation time of the turbulence lies in the range .0005 less than tau/corr less than .05s.

  9. All-laser-driven Thomson X-ray sources

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald P.

    2015-10-01

    We discuss the development of a new generation of accelerator-based hard X-ray sources driven exclusively by laser light. High-intensity laser pulses serve the dual roles: first, accelerating electrons by laser-driven plasma wakefields, and second, generating X-rays by inverse Compton scattering. Such all-laser-driven X-rays have recently been demonstrated to be energetic, tunable, relatively narrow in bandwidth, short pulsed and well collimated. Such characteristics, especially from a compact source, are highly advantageous for numerous advanced X-ray applications - in metrology, biomedicine, materials, ultrafast phenomena, radiology and fundamental physics.

  10. Toward high-energy laser-driven ion beams: Nanostructured double-layer targets

    NASA Astrophysics Data System (ADS)

    Passoni, M.; Sgattoni, A.; Prencipe, I.; Fedeli, L.; Dellasega, D.; Cialfi, L.; Choi, Il Woo; Kim, I. Jong; Janulewicz, K. A.; Lee, Hwang Woon; Sung, Jae Hee; Lee, Seong Ku; Nam, Chang Hee

    2016-06-01

    The development of novel target concepts is crucial to make laser-driven acceleration of ion beams suitable for applications. We tested double-layer targets formed of an ultralow density nanostructured carbon layer (˜7 mg/cm 3 , 8 - 12 μ m -thick) deposited on a μ m -thick solid Al foil. A systematic increase in the total number of the accelerated ions (protons and C6 + ) as well as enhancement of both their maximum and average energies was observed with respect to bare solid foil targets. Maximum proton energies up to 30 MeV were recorded. Dedicated three-dimensional particle-in-cell simulations were in remarkable agreement with the experimental results, giving clear indication of the role played by the target nanostructures in the interaction process.

  11. Measured and simulated transport of 1.9 MeV laser-accelerated proton bunches through an integrated test beam line at 1 Hz

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Hori, T.; Bolton, P. R.; Ogura, K.; Sagisaka, A.; Yogo, A.; Mori, M.; Orimo, S.; Pirozhkov, A. S.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Tanoue, M.; Nakai, Y.; Sasao, H.; Wakai, D.; Daido, H.; Kondo, K.; Souda, H.; Tongu, H.; Noda, A.; Iseki, Y.; Nagafuchi, T.; Maeda, K.; Hanawa, K.; Yoshiyuki, T.; Shirai, T.

    2010-07-01

    A laser-driven repetition-rated 1.9 MeV proton beam line composed of permanent quadrupole magnets (PMQs), a radio frequency (rf) phase rotation cavity, and a tunable monochromator is developed to evaluate and to test the simulation of laser-accelerated proton beam transport through an integrated system for the first time. In addition, the proton spectral modulation and focusing behavior of the rf phase rotation cavity device is monitored with input from a PMQ triplet. In the 1.9 MeV region we observe very weak proton defocusing by the phase rotation cavity. The final transmitted bunch duration and transverse profile are well predicted by the PARMILA particle transport code. The transmitted proton beam duration of 6 ns corresponds to an energy spread near 5% for which the transport efficiency is simulated to be 10%. The predictive capability of PARMILA suggests that it can be useful in the design of future higher energy transport beam lines as part of an integrated laser-driven ion accelerator system.

  12. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  13. Development of foam-based layered targets for laser-driven ion beam production

    NASA Astrophysics Data System (ADS)

    Prencipe, I.; Sgattoni, A.; Dellasega, D.; Fedeli, L.; Cialfi, L.; Choi, Il Woo; Jong Kim, I.; Janulewicz, K. A.; Kakolee, K. F.; Lee, Hwang Woon; Sung, Jae Hee; Lee, Seong Ku; Nam, Chang Hee; Passoni, M.

    2016-03-01

    We report on the development of foam-based double-layer targets (DLTs) for laser-driven ion acceleration. Foam layers with a density of a few mg cm-3 and controlled thickness in the 8-36 μm range were grown on μm-thick Al foils by pulsed laser deposition (PLD). The DLTs were experimentally investigated by varying the pulse intensity, laser polarisation and target properties. Comparing DLTs with simple Al foils, we observed a systematic enhancement of the maximum and average energies and number of accelerated ions. Maximum energies up to 30 MeV for protons and 130 MeV for C6+ ions were detected. Dedicated three-dimensional particle-in-cell (3D-PIC) simulations were performed considering both uniform and cluster-assembled foams to interpret the effect of the foam nanostructure on the acceleration process.

  14. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  15. Note: A new angle-resolved proton energy spectrometer

    SciTech Connect

    Zheng, Y.; Su, L. N.; Liu, M.; Liu, B. C.; Shen, Z. W.; Fan, H. T.; Li, Y. T.; Chen, L. M.; Lu, X.; Ma, J. L.; Wang, W. M.; Wang, Z. H.; Wei, Z. Y.; Zhang, J.

    2013-09-15

    In typical laser-driven proton acceleration experiments Thomson parabola proton spectrometers are used to measure the proton spectra with very small acceptance angle in specific directions. Stacks composed of CR-39 nuclear track detectors, imaging plates, or radiochromic films are used to measure the angular distributions of the proton beams, respectively. In this paper, a new proton spectrometer, which can measure the spectra and angular distributions simultaneously, has been designed. Proton acceleration experiments performed on the Xtreme light III laser system demonstrates that the spectrometer can give angle-resolved spectra with a large acceptance angle. This will be conductive to revealing the acceleration mechanisms, optimization, and applications of laser-driven proton beams.

  16. Stop motion microphotography of laser driven plates

    SciTech Connect

    Frank, A.M.; Trott, W.M.

    1994-09-01

    Laser driven plates have been used for several years for high velocity shock wave and impact studies. Recent questions about the integrity and ablation rates of these plates coupled with an improved capability for microscopic stop motion photography led to this study. For these experiments, the plates were aluminum, coated on the ends of optical fibers. A high power laser pulse in the fiber ionizes the aluminum at the fiber/coating interface. The plasma thus created accelerates the remaining aluminum to high velocities, several kilometers per second. We defined {open_quotes}thick{close_quotes} or {open_quotes}thin{close_quotes} coatings as those where a flying plate (flyer) was launched vs. the material being completely ionized. Here we were specifically interested in the thick/thin boundary to develop data for the numerical models attempting to predict flyer behavior.

  17. Particle Simulations of a Linear Dielectric Wall Proton Accelerator

    SciTech Connect

    Poole, B R; Blackfield, D T; Nelson, S D

    2007-06-12

    The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance growth associated with various DWA configurations.

  18. Requirements of a proton beam accelerator for an accelerator-driven reactor

    SciTech Connect

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-12-31

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam.

  19. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    SciTech Connect

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  20. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  1. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    NASA Astrophysics Data System (ADS)

    Albertazzi, B.; d'Humières, E.; Lancia, L.; Dervieux, V.; Antici, P.; Böcker, J.; Bonlie, J.; Breil, J.; Cauble, B.; Chen, S. N.; Feugeas, J. L.; Nakatsutsumi, M.; Nicolaï, P.; Romagnani, L.; Shepherd, R.; Sentoku, Y.; Swantusch, M.; Tikhonchuk, V. T.; Borghesi, M.; Willi, O.; Pépin, H.; Fuchs, J.

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  2. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields.

    PubMed

    Albertazzi, B; d'Humières, E; Lancia, L; Dervieux, V; Antici, P; Böcker, J; Bonlie, J; Breil, J; Cauble, B; Chen, S N; Feugeas, J L; Nakatsutsumi, M; Nicolaï, P; Romagnani, L; Shepherd, R; Sentoku, Y; Swantusch, M; Tikhonchuk, V T; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle. PMID:25933857

  3. Laser Acceleration of Monoenergetic Protons Trapped in Moving Double Layer

    SciTech Connect

    Liu, C. S.; Tripathi, V. K.; Shao, X.

    2008-10-15

    We present analytic theory of monoenergetic protons acceleration by short pulse laser irradiation on a thin foil with specific thickness suggested by Yan et al. in simulations. The laser ponderomotive force pushes the electrons forward, leaving ions behind until the space charge field balances the ponderomotive force at distance {delta}. For the optimal target thickness D = {delta}>c/{omega}{sub p}, the electron sheath piled up at the rear surface of width skin depth moves into vacuum, carrying with it the protons contained in the sheath. These protons are trapped by the self field of the electron sheath and are collectively accelerated as a double layer by the laser ponderomotive force. We present here the analytic expression for the energy of the accelerated protons as a function of time, laser intensity, wavelength, and plasma density. For example, proton energy can reach {approx_equal}200 MeV at a = 5, and pulse length 90 fs.

  4. Workshop on acceleration of polarized protons: summary report

    SciTech Connect

    Lee, Y.Y.; Terwilliger, K.M.

    1982-01-01

    The workshop sessions concentrated on polarized protons in circular accelerators and storage rings. Topics such as polarized electrons were discussed only when the subject was relevant to proton phenomena. Of major interest was the possible applicability of the new idea of spin matching for crossing depolarizing resonances. On the experimental side, some remarkable new data were presented by the SATURNE II Group. They have successfully crossed both intrinsic and imperfection depolarizing resonances by the spin flip method with minimal depolarization-the first group to do so. They also obtained some results which apparently cannot be explained with our present understanding of spin phenomena. The workshop concluded that more experimental measurements are needed to understand the physics and that such studies would be very important for the future acceleration of polarized protons at KEK and the AGS. The workshop included status reports from the four laboratories which have programs of polarized particle acceleration--or approved projects to accelerate polarized protons.

  5. Status Of The Dielectric Wall Accelerator For Proton Therapy

    SciTech Connect

    Caporaso, George J.; Chen Yujiuan; Watson, James A.; Blackfield, Don T.; Nelson, Scott D.; Poole, Brian R.; Stanley, Joel R.; Sullivan, James S.

    2011-06-01

    The Dielectric Wall Accelerator (DWA) offers the potential to produce a high gradient linear accelerator for proton therapy and other applications. The current status of the DWA for proton therapy will be reviewed. Recent progress in SiC photoconductive switch development will be presented. There are serious beam transport challenges in the DWA arising from short pulse excitation of the wall. Solutions to these transport difficulties will be discussed.

  6. On the threshold of proton acceleration in solar flares

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    1995-01-01

    Based on the reconnection theory of a flare and on recent observational and statistical findings, the problem of the initial acceleration of solar cosmic rays (SCR) is discussed. Simple estimates of the electric fields required to start the electron acceleration are obtained and the problem of proton ionization losses for overcoming the Coulomb barrier is considered. We take into account also the possible differences between proton and electron spectra from the very beginning of the acceleration process. Special attention is paid to the distribution functions of solar flare events in various parameters (peak fluxes and/or energy fluences in X-ray and radio wave bursts, in proton and electron emissions, etc.). It is shown that the distribution functions allow the interpretation of some scale and time flare parameters in terms of expected threshold effects. However, these functions are still insuffienet to evaluate the relative share of different emissions in the global energy budget of a flare. In this context, a more promising approach is to derive the direct ratio between the number of accelerated protons, Np, and total flare energy, Wf, within the frame of a certain acceleration model. It is argued that an absolute threshold for proton production (in Hudson's formulation) does not exist. Meanwhile, the flux and threshold energy of accelerated protons overcoming the Coulomb loss maximum, in fact, may depend heavily on the global output of flare energy.

  7. Polarized proton acceleration at the Brookhaven AGS

    SciTech Connect

    Ahrens, L.A.

    1986-01-01

    At the conclusion of polarized proton commissioning in February 1986, protons with an average polarization of 45%, momentum of 21.7 GeV/c, and intensity of 2 x 10/sup 10/ protons per pulse, were extracted to an external polarimeter at the Brookhaven AGS. In order to maintain this polarization, five intrinsic and nearly forty imperfection depolarizing resonances had to be corrected. An apparent interaction between imperfection and intrinsic resonances occurring at very nearly the same energy was observed and the correction of imperfection resonances using ''beat'' magnetic harmonics discovered in the previous AGS commissioning run was further confirmed.

  8. Proton shock acceleration in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Marti, M.; Davies, J.; Fonseca, R. A.; Silva, L. O.; Fahlen, J.; Ren, C.; Tsung, F.; Mori, W. B.

    2003-10-01

    The formation of strong, high Mach number (2--3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in 1 and 2-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For dimensionless field strength parameter a_0=16 (Iλ^2 ≈ 3 × 10^20 W cm-2 μm^2, where I is intensity and λ wavelength) the highest energy protons are accelerated by the shock. A plateau in the ion spectrum provides a direct signature for shock acceleration.

  9. Present Status of the TAC Proton Accelerator Proposal

    SciTech Connect

    Akkus, B.; Bilgin, P. S.; Caliskan, A.; Yilmaz, M.; Sultansoy, S.

    2007-04-23

    Recently, conceptual design of the Turkic Accelerator Center (TAC) proposal was completed. The main goal of this proposal is a charm factory that consist of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring, free electron laser from the electron linac and a GeV energy proton accelerator are proposed. The Project related with this proposal has been accepted by the Turkish State Planning Committee. It is planned that the Tecnical Design Repotr of the TAC will have been written in the next three years. In this study we consider main parameters of the TAC proton accelerator, secondary beams and their applications.

  10. Filamentation Instability of Counterstreaming Laser-Driven Plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Fiksel, G.; Bhattacharjee, A.; Chang, P.-Y.; Germaschewski, K.; Hu, S. X.; Nilson, P. M.

    2013-11-01

    Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counterstreaming, ablatively driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP Laser System. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.

  11. Hybrid proton acceleration scheme using relativistic intense laser light

    SciTech Connect

    Andreev, A. A.; Platonov, K. Yu.; Schnuerer, M.; Prasad, R.; Ter-Avetisyan, S.

    2013-03-15

    Ion acceleration phenomena at relativistic intense laser interaction with thin foil targets are studied to find an efficient laser-target interaction concept at the conditions, where neither the ponderomotive pressure of the laser light nor the hot electron pressure is negligible. Particle in cell simulations and the analytical model are allowing to predict optimum laser-target parameters and suggesting a significant increase of proton energy if a hybrid proton acceleration scheme is used. In the proposed scenario, the laser polarisation is changed during the acceleration process: First with circularly polarised laser light the target is accelerated as a whole by the ponderamotive pressure, and then with linearly polarised laser light the electrons are heated which additionally increases the accelerating field. The calculations are in good agreement with experimental findings.

  12. Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

    SciTech Connect

    Jung, D.; Department für Physik, Ludwig-Maximilians-Universität München, D-85748 Garching; Max-Planck-Institut für Quantenoptik, D-85748 Garching ; Yin, L.; Gautier, D. C.; Wu, H.-C.; Letzring, S.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Fernández, J. C.; Hegelich, B. M.; Albright, B. J.; Dromey, B.; Schreiber, J.; Habs, D.; Max-Planck-Institut für Quantenoptik, D-85748 Garching

    2013-08-15

    Experimental data are presented for laser-driven carbon C{sup 6+} ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 × 10{sup 20} W/cm{sup 2} and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C{sup 6+} ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory.

  13. Laser-driven 1 GeV carbon ions from preheated diamond targets in the break-out afterburner regime

    NASA Astrophysics Data System (ADS)

    Jung, D.; Yin, L.; Gautier, D. C.; Wu, H.-C.; Letzring, S.; Dromey, B.; Shah, R.; Palaniyappan, S.; Shimada, T.; Johnson, R. P.; Schreiber, J.; Habs, D.; Fernández, J. C.; Hegelich, B. M.; Albright, B. J.

    2013-08-01

    Experimental data are presented for laser-driven carbon C6+ ion-acceleration, verifying 2D-PIC studies for multi-species targets in the Break-Out Afterburner regime. With Trident's ultra-high contrast at relativistic intensities of 5 × 1020 W/cm2 and nm-scale diamond targets, acceleration of carbon ions has been optimized by using target laser-preheating for removal of surface proton contaminants. Using a high-resolution wide angle spectrometer, carbon C6+ ion energies exceeding 1 GeV or 83 MeV/amu have been measured, which is a 40% increase in maximum ion energy over uncleaned targets. These results are consistent with kinetic plasma modeling and analytic theory.

  14. Proton linear accelerators: A theoretical and historical introduction

    SciTech Connect

    Lapostolle, P.M.

    1989-07-01

    From the beginning, the development of linear accelerators has followed a number of different directions. This report surveys the basic ideas and general principles of such machines, pointing out the problems that have led to the various improvements, with the hope that it may also aid further progress. After a brief historical survey, the principal aspects of accelerator theory are covered in some detail: phase stability, focusing, radio-frequency accelerating structures, the detailed calculation of particle dynamics, and space-charge effects at high intensities. These developments apply essentially to proton and ion accelerators, and only the last chapter deals with a few aspects relative to electrons. 134 refs.

  15. Proton Injector for CW-Mode Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sherman, Joseph D.; Swenson, Donald; Guy, Frank; Love, Cody; Starling, Joel; Willis, Carl

    2009-03-01

    Numerous applications exist for CW linear accelerators with final energies in the 0.5 to 4.0 MeV proton energy range. Typical proton current at the linac output energy is 20 mA. An important subsystem for the accelerator facility is a reliable dc mode proton injector. We present here design and laboratory results for a dc, 25-keV, 30-mA proton injector. The proton source is a 2.45-GHz microwave hydrogen ion source which operates with an 875-G axial magnetic field. Low emittance, high proton fraction (>85%), beams have been demonstrated from this source. The injector uses a novel dual-solenoid magnet for matching the injector beam into a radio frequency quadrupole (RFQ) linear accelerator. Recently, a dc ion-source development program has given up to 30 mA beam current. The dual solenoid is a compact and simple design utilizing tape-wound, edge-cooled coils. The low-energy beam transport design as well as 25-keV beam matching calculations to an RFQ will also be presented.

  16. Plasma wakefield acceleration with a modulated proton bunch

    SciTech Connect

    Caldwell, A.; Lotov, K. V.

    2011-10-15

    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.

  17. TAC Proton Accelerator Facility: The Status and Road Map

    SciTech Connect

    Algin, E.; Akkus, B.; Caliskan, A.; Yilmaz, M.; Sahin, L.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  18. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  19. A brief history of high power RF proton linear accelerators

    SciTech Connect

    Browne, J.C.

    1996-12-31

    The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.

  20. Enhancing proton acceleration by using composite targets

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  1. Coronal shock acceleration and heliospheric transport of solar energetic protons

    NASA Astrophysics Data System (ADS)

    Kozarev, Kamen Asenov

    Solar flares and coronal mass ejections (CME) in the Sun's atmosphere produce highly energetic charged particles during violent bursts of activity. Protons, the most numerous and important species of these solar energetic particles (SEP), accelerate and propagate throughout the heliosphere, probing the interplanetary transport conditions. They also present a significant radiation hazard to space operations. Nevertheless, SEP acceleration in the low corona is currently not well constrained and poorly understood. In this dissertation, I examine off-limb extreme ultraviolet (EUV) wave dynamics between 1.3 and 2.0 solar radii in the corona, and I show that the EUV signatures are consistent with CME-driven shocks. Therefore, such shocks may form very low in the corona. I also develop a data-driven model for estimating the maximum energy to which protons may be accelerated in coronal shocks. I apply it to an observed shock and show that it may accelerate protons up to tens of MeV during its fast coronal passage, consistent with in-situ observations. To explore further coronal SEP acceleration by CME-driven shocks, I modify a global, 3D numerical model for interplanetary SEP transport for the coronal conditions, and adapt it to incorporate results from a realistic magnetohydrodynamic coronal and CME model. Furthermore, I apply a diffusive shock acceleration model, which explicitly treats proton energization at traveling shocks, to an MHD simulation of a real CME event. I find that the source population becomes strongly accelerated. In addition, I simulate the proton transport between the Sun and Earth, and find that the modeled fluxes are consistent with particle observations near Earth. Results suggest that CME-driven shocks in the corona may be the primary source of SEPs in solar storms. In addition, conditions along coronal shock fronts vary greatly, influencing the amount of acceleration. Finally, I model the global proton transport between Earth and 5 AU during a

  2. Accelerating slow excited state proton transfer.

    PubMed

    Stewart, David J; Concepcion, Javier J; Brennaman, M Kyle; Binstead, Robert A; Meyer, Thomas J

    2013-01-15

    Visible light excitation of the ligand-bridged assembly [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH(2))(4+)] (bpy is 2,2'-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L(-•))Ru(b)(III)-OH(2) with an excited-state lifetime of 13 ± 1 ns. Near-diffusion-controlled quenching of the emission occurs with added HPO(4)(2-) and partial quenching by added acetate anion (OAc(-)) in buffered solutions with pH control. A Stern-Volmer analysis of quenching by OAc(-) gave a quenching rate constant of k(q) = 4.1 × 10(8) M(-1) • s(-1) and an estimated pK(a)* value of ~5 ± 1 for the [(bpy)(2)Ru(a)(II)(L(•-))Ru(b)(III)(bpy)(OH(2))(4+)]* excited state. Following proton loss and rapid excited-state decay to give [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH)(3+)] in a H(2)PO(4)(-)/HPO(4)(2-) buffer, back proton transfer occurs from H(2)PO(4)(-) to give [(bpy)(2)Ru(a)(II)(L)Ru(b)(bpy)(OH(2))(4+)] with k(PT,2) = 4.4 × 10(8) M(-1) • s(-1). From the intercept of a plot of k(obs) vs. [H(2)PO(4)(-)], k = 2.1 × 10(6) s(-1) for reprotonation by water providing a dramatic illustration of kinetically limiting, slow proton transfer for acids and bases with pK(a) values intermediate between pK(a)(H(3)O(+)) = -1.74 and pK(a)(H(2)O) = 15.7. PMID:23277551

  3. Rapid acceleration of protons upstream of earthward propagating dipolarization fronts

    PubMed Central

    Ukhorskiy, AY; Sitnov, MI; Merkin, VG; Artemyev, AV

    2013-01-01

    [1] Transport and acceleration of ions in the magnetotail largely occurs in the form of discrete impulsive events associated with a steep increase of the tail magnetic field normal to the neutral plane (Bz), which are referred to as dipolarization fronts. The goal of this paper is to investigate how protons initially located upstream of earthward moving fronts are accelerated at their encounter. According to our analytical analysis and simplified two-dimensional test-particle simulations of equatorially mirroring particles, there are two regimes of proton acceleration: trapping and quasi-trapping, which are realized depending on whether the front is preceded by a negative depletion in Bz. We then use three-dimensional test-particle simulations to investigate how these acceleration processes operate in a realistic magnetotail geometry. For this purpose we construct an analytical model of the front which is superimposed onto the ambient field of the magnetotail. According to our numerical simulations, both trapping and quasi-trapping can produce rapid acceleration of protons by more than an order of magnitude. In the case of trapping, the acceleration levels depend on the amount of time particles stay in phase with the front which is controlled by the magnetic field curvature ahead of the front and the front width. Quasi-trapping does not cause particle scattering out of the equatorial plane. Energization levels in this case are limited by the number of encounters particles have with the front before they get magnetized behind it. PMID:26167430

  4. Proton acceleration from short pulse lasers interacting with ultrathin foil

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Christopher; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2015-11-01

    Two-dimensional particle-in-cell simulations using 50 nm Si3N4 and DLC foils are compared to published experimental data of proton acceleration from ultra-thin foils (<1 μm) irradiated by short pulse lasers (30-50 fs), and some underlying physics issues pertinent to proton acceleration have been addressed. 2D particle-in-cell simulations show that the maximum proton energy scales as I2/3, stronger than Target Normal Sheath Acceleration for thick foils (>1 μm), which is typically between I1/3 and I1/2. Published experimental data were found to depend primarily on the laser energy and scale as E2/3. The different scaling laws for thick (>1 μm) and ultra-thin (<1 μm) foils are explained qualitatively as transitioning from Target Normal Sheath Acceleration to more advanced acceleration schemes such as Radiation-Induced Transparency and Radiation Pressure Acceleration regimes. This work was performed with the support of the Air Force Office of Scientific Research under grant FA9550-14-1-0282.

  5. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors

    NASA Astrophysics Data System (ADS)

    Kanasaki, M.; Jinno, S.; Sakaki, H.; Kondo, K.; Oda, K.; Yamauchi, T.; Fukuda, Y.

    2016-03-01

    The diagnosis method, using a combination of a permanent magnet and CR-39 track detectors, has been developed to separately measure the energy spectrum of the laser-accelerated MeV/n-class high-Z ions and that of MeV protons. The main role of magnet is separating between high-Z ions and protons, not for the usual energy spectrometer, while ion energy was precisely determined from careful analysis of the etch pit shapes and the etch pit growth behaviors in the CR-39. The method was applied to laser-driven ion acceleration experiments using CO2 clusters embedded in a background H2 gas. Ion energy spectra with uncertainty ΔE  =  0.1 MeV n‑1 for protons and carbon/oxygen ions were simultaneously obtained separately. The maximum energies of carbon/oxygen ions and protons were determined as 1.1  ±  0.1 MeV and 1.6  ±  0.1 MeV n‑1, respectively. The sharp decrease around 1 MeV n‑1 observed in the energy spectrum of carbon/oxygen ions could be due to a trace of the ambipolar hydrodynamic expansion of CO2 clusters. Thanks to the combination of the magnet and the CR-39, the method is robust against electromagnetic pulse (EMP).

  6. Klystron based high power rf system for proton accelerator

    SciTech Connect

    Pande, Manjiri; Shrotriya, Sandip; Sharma, Sonal; Patel, Niranjan; Handu, Verander E-mail: manjiri08@gmail.com

    2011-07-01

    As a part of ADS program a proton accelerator (20 MeV, 30 mA) and its high power RF systems (HPRF) are being developed in BARC. This paper explains design details of this klystron based HPRF system. (author)

  7. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  8. First measurements of laser-accelerated proton induced luminescence

    SciTech Connect

    Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph.; Gremillet, L.

    2012-09-15

    We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

  9. ELIMED: a new hadron therapy concept based on laser driven ion beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Margarone, Daniele; Maggiore, Mario; Anzalone, Antonello; Borghesi, Marco; Jia, S. Bijan; Bulanov, Stepan S.; Bulanov, Sergei; Carpinelli, Massimo; Cavallaro, Salvatore; Cutroneo, Mariapompea; Cuttone, Giacomo; Favetta, Marco; Gammino, Santo; Klimo, Ondrej; Manti, Lorenzo; Korn, Georg; La Malfa, Giuseppe; Limpouch, Jiri; Musumarra, Agatino; Petrovic, Ivan; Prokupek, Jan; Psikal, Jan; Ristic-Fira, Aleksandra; Renis, Marcella; Romano, Francesco P.; Romano, Francesco; Schettino, Giuseppe; Schillaci, Francesco; Scuderi, Valentina; Stancampiano, Concetta; Tramontana, Antonella; Ter-Avetisyan, Sargis; Tomasello, Barbara; Torrisi, Lorenzo; Tudisco, Salvo; Velyhan, Andriy

    2013-05-01

    Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up

  10. Application of ILC superconducting cavities for acceleration of protons

    SciTech Connect

    Ostroumov, P.N.; Aseev, V.N.; Gonin, I.V.; Rusnak, B.; /LLNL, Livermore

    2007-10-01

    Beam acceleration in the International Linear Collider (ILC) will be provided by 9-cell 1300 MHz superconducting (SC) cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on {pi}-mode to provide maximum accelerating gradient. Significant R&D effort has been devoted to develop ILC SC technology and its RF system which resulted excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above {approx}1.2 GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC) cavities operating at 1300 MHz and designed for {beta}{sub G} = 0.81, geometrical beta, to accelerate protons or H{sup -} from {approx}420 MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new {beta}{sub G} = 0.81 cavities by operating ILC cavities on 8/9{pi}-mode of standing wave oscillations.

  11. Emittance measurements from the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Gillespie, G. H.; Hubbard, J.; Sanders, E.

    2005-12-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σij) that best fit measured beam parameters. These σij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a "trial and error" technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab™) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC.

  12. Laser Proton acceleration from mass limited silicon foils

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  13. Magnetic Field Generation by the Nonlinear Rayleigh--Taylor Instability in Laser-Driven Planar Plastic Targets

    NASA Astrophysics Data System (ADS)

    Gao, L.; Igumenshchev, I. V.; Hu, S. X.; Stoeckl, C.; Froula, D. H.; Nilson, P. M.; Davies, J. R.; Betti, R.; Meyerhofer, D. D.; Haines, M. G.

    2012-10-01

    Magnetic field generation during the nonlinear phase of the Rayleigh--Taylor (RT) instability in an ablatively driven plasma using ultrafast laser-driven proton radiography has been measured. Thin plastic foils were irradiated with ˜4-kJ, 2.5-ns laser pulses focused to an intensity of ˜10^14 W/cm^2 on the OMEGA EP Laser System. Target modulations were seeded by laser nonuniformities and amplified during target acceleration by the RT instability. The experimental data show the hydrodynamic evolution of the target and MG-level magnetic fields generated in the broken foil. The experimental data are in good agreement with predictions from 2-D magnetohydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  14. Electron Weibel Instability Mediated Laser Driven Electromagnetic Collisionless Shock

    NASA Astrophysics Data System (ADS)

    Jia, Qing; Mima, Kunioki; Cai, Hong-Bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X. T.

    2015-11-01

    As a fundamental nonlinear structure, collisionless shock is widely studied in astrophysics. Recently, the rapidly-developing laser technology provides a good test-bed to study such shock physics in laboratory. In addition, the laser driven shock ion acceleration is also interested due to its potential applications. We explore the effect of external parallel magnetic field on the collisionless shock formation and resultant particle acceleration by using the 2D3V PIC simulations. We show that unlike the electrostatic shock generated in the unmagnetized plasma, the shock generated in the weakly-magnetized laser-driven plasma is mostly electromagnetic (EM)-like with higher Mach number. The generation mechanism is due to the stronger transverse magnetic field self-generated at the nonlinear stage of the electron Weibel instability which drastically scatters particles and leads to higher energy dissipation. Simulation results also suggest more ions are reflected by this EM shock and results in larger energy transfer rate from the laser to ions, which is of advantage for applications such as neutron production and ion fast ignition.

  15. A STUDY OF POLARIZED PROTON ACCELERATION IN J-PARC.

    SciTech Connect

    LUCCIO, A.U.; BAI, M.; ROSER, T.

    2006-10-02

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductive partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  16. A Study of Polarized Proton Acceleration in J-PARC

    SciTech Connect

    Luccio, A. U.; Bai, M.; Roser, T.; Molodojentsev, A.; Ohmori, C.; Sato, H.; Hatanaka, K.

    2007-06-13

    We have studied the feasibility of polarized proton acceleration in rhe J-PARC accelerator facility, consisting of a 400 MeV linac, a 3 GeV rapid cycling synchrotron (RCS) and a 50 GeV synchrotron (MR). We show how the polarization of the beam can be preserved using an rf dipole in the RCS and two superconductve partial helical Siberian snakes in the MR. The lattice of the MR will be modified with the addition of quadrupoles to compensate for the focusing properties of the snakes.

  17. Proton Shock Acceleration in Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Silva, Luís O.; Marti, Michael; Davies, Jonathan R.; Fonseca, Ricardo A.; Ren, Chuang; Tsung, Frank S.; Mori, Warren B.

    2004-01-01

    The formation of strong, high Mach number (2 3), electrostatic shocks by laser pulses incident on overdense plasma slabs is observed in one- and two-dimensional particle-in-cell simulations, for a wide range of intensities, pulse durations, target thicknesses, and densities. The shocks propagate undisturbed across the plasma, accelerating the ions (protons). For a dimensionless field strength parameter a0=16 (Iλ2≈3×1020 W cm-2 μm2, where I is the intensity and λ the wavelength), and target thicknesses of a few microns, the shock is responsible for the highest energy protons. A plateau in the ion spectrum provides a direct signature for shock acceleration.

  18. Calculation of Coupling Efficiencies for Laser-Driven Photonic Bandgap Structures

    SciTech Connect

    England, R. J.; Ng, C.; Noble, R.; Spencer, J. E.

    2010-11-04

    We present a technique for calculating the power coupling efficiency for a laser-driven photonic bandgap structure using electromagnetic finite element simulations, and evaluate the efficiency of several coupling scenarios for the case of a hollow-core photonic bandgap fiber accelerator structure.

  19. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  20. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  1. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  2. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  3. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  4. Laser-Produced and Accelerated High Energy Protons

    NASA Astrophysics Data System (ADS)

    Cowan, Thomas

    2005-04-01

    Ultra-low emittance, multi-MeV proton beams have recently been produced by the interaction of high-intensity short-pulse lasers with thin metallic foils [1]. The acceleration process proceeds in two steps. First the laser ponderomotively accelerates huge, MA currents of ˜MeV electrons which propagate through the foil and form a dense relativistic electron sheath on the non-irradiated rear surface. This sheath produces an electrostatic field >10^12 V/m that ionizes the surface atoms almost instantaneously, forming a ˜1 nm thick ion layer which, together with the electron sheath, resembles a virtual cathode. The ions are accelerated initially normal to the foil surface, followed by a diverging plasma expansion phase driven by the electron plasma pressure. By structuring the rear surface of the foil, we have succeeded to produce modulations in the transverse phase space of the ions, which resemble fiducial ``beamlets'' within the envelope of the expanding plasma. This allows one to image the initial accelerating sheath, and map the plasma expansion of the beam envelope, to fully reconstruct the transverse phase space. We find that for protons of 10 MeV, the normalized transverse rms emittance is less than 0.004 π mm.mrad [1], i.e. 100-fold better than typical RF accelerators and at substantially higher ion currents exceeding 10 kA. Recent results will be reported on stripping the electrons while maintaining the low emittance from experiments at the LULI 100 TW laser, and theoretical estimates of the lowest emittance which can be expected based on ion heating mechanisms during the initial sheath formation and ion acceleration processes, will be presented. [1] T.E. Cowan, J. Fuchs, H. Ruhl et al., Phys. Rev. Lett. 92, 204801 (2004).

  5. Beam optics of the 2 MeV proton injection line at the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Hubbard, J.; Sanders, E.

    2005-12-01

    Simulations of the beam optics of the LLUMC proton accelerator injection line have been modeled using the computer codes Parmila [Los Alamos Nat'l Lab, Internal Report LA-UR-98-4478, Los Alamos Accelerator Code Group, Los Alamos, NM] and Trace 3D [Distributed by AccelSoft Inc, P.O. Box 2813. Del Mar, CA 92014, United States]. These simulations give reasonable agreement with the known accelerator dispersion, beam energy spread and optimal debuncher setting. The purpose of this paper is to understand the beam losses and show where improvements can be made, if required, in the future. It has previously been found [G. Coutrakon et al., J. Med. Phys. 20 (11) (1994) 1691] that most intensity losses in the synchrotron can be ascribed to the narrow energy acceptance of the synchrotron. While the present intensity of the accelerator is quite adequate for patient treatments, future plans to treat larger fields will make higher intensity more desirable. A simulation has been performed which adds a second debuncher, or energy compactor, which shows a reduction in energy spread by a factor of two yielding a factor of two increase in the available intensity. The present intensity of 2.5 × 1010 protons per pulse with 34% of the injected intensity captured in the ring can possibly be improved to 5 × 1010 protons per pulse by capturing 68% of the injected beam intensity. These results are discussed in this paper.

  6. First acceleration of a proton beam in a side coupled drift tube linac

    NASA Astrophysics Data System (ADS)

    Ronsivalle, C.; Picardi, L.; Ampollini, A.; Bazzano, G.; Marracino, F.; Nenzi, P.; Snels, C.; Surrenti, V.; Vadrucci, M.; Ambrosini, F.

    2015-07-01

    We report the first experiment aimed at the demonstration of low-energy protons acceleration by a high-efficiency S-band RF linear accelerator. The proton beam has been accelerated from 7 to 11.6 MeV by a 1 meter long SCDTL (Side Coupled Drift Tube Linac) module powered with 1.3 MW. The experiment has been done in the framework of the Italian TOP-IMPLART (Oncological Therapy with Protons-Intensity Modulated Proton Therapy Linear Accelerator for Radio-Therapy) project devoted to the realization of a proton therapy centre based on a proton linear accelerator for intensity modulated cancer treatments to be installed at IRE-IFO, the largest oncological hospital in Rome. It is the first proton therapy facility employing a full linear accelerator scheme based on high-frequency technology.

  7. Stochastic acceleration of solar protons in the transrelativistic region

    NASA Astrophysics Data System (ADS)

    Steinacker, J.; Schlickeiser, R.

    1989-10-01

    A model for the stochastic proton acceleration in solar flares with solutions valid for all energies is presented. A comparison with measured proton spectra supplies excellent agreement for shock dominated events and deviations in the nonrelativistic range for spectra of curved shape in contradiction to the conclusions of McGuire and v. Rosenvinge 1984, who used exclusively the non- and ultrarelativistic approximation. The deviations are discussed in detail with regard to a more accurate consideration of the spatial conditions. In the case of a constant escape time we obtain a theoretical spectrum that can be used for calculating the gamma ray radiation with energies greater than 10 MeV, reproducing the data in the transrelativistic region, where the relevant cross sections of the radiation producing processes are maximal.

  8. A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration

    SciTech Connect

    Colby, E.R.; England, R.J.; Noble, R.J.; /SLAC

    2011-05-20

    We present a design concept for an e{sup +}e{sup -} linear collider based on laser-driven dielectric accelerator structures, and discuss technical issues that must be addressed to realize such a concept. With a pulse structure that is quasi-CW, dielectric laser accelerators potentially offer reduced beamstrahlung and pair production, reduced event pileup, and much cleaner environment for high energy physics and. For multi-TeV colliders, these advantages become significant.

  9. High power solid state rf amplifier for proton accelerator

    SciTech Connect

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P. R.

    2008-01-15

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  10. Characterization of short-pulse laser driven neutron source

    NASA Astrophysics Data System (ADS)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  11. Technical assessment of the Loma Linda University proton therapy accelerator

    SciTech Connect

    Not Available

    1989-10-01

    In April 1986, officials of Loma Linda University requested that Fermilab design and construct a 250 MeV proton synchrotron for radiotherapy, to be located at the Loma Linda University Medical Center. In June 1986 the project, having received all necessary approvals, commenced. In order to meet a desirable schedule providing for operation in early 1990, it was decided to erect such parts of the accelerator as were complete at Fermilab and conduct a precommissioning activity prior to the completion of the building at Loma Linda which will house the final radiotherapy facility. It was hoped that approximately one year would be saved by the precommissioning, and that important information would be obtained about the system so that improvements could be made during installation at Loma Linda. This report contains an analysis by Fermilab staff members of the information gained in the precommissioning activity and makes recommendations about steps to be taken to enhance the performance of the proton synchrotron at Loma Linda. In the design of the accelerator, effort was made to employ commercially available components, or to industrialize the products developed so that later versions of the accelerator could be produced industrially. The magnets could only be fabricated at Fermilab if the schedule was to be met, but efforts were made to transfer that technology to industry. Originally, it was planned to use a 1.7 MeV RFQ fabricated at the Lawrence Berkeley Laboratory as injector, but LBL would have found it difficult to meet the project schedule. After consideration of other options, for example a 3.4 MeV tandem accelerator, a supplier (AccSys Inc.) qualified itself to provide a 2 MeV RFQ on a schedule well matched to the project schedule. This choice was made, but a separate supplier was selected to develop and provide the 425 MHz power amplifier for the RFQ.

  12. Requirements for the Loma Linda proton therapy accelerator

    SciTech Connect

    Coutrakon, George; Ghebremedhin, Abiel

    1999-06-10

    More than eight years have passed since Loma Linda University Medical Center treated its first cancer patient with the world's first hospital based proton therapy accelerator. Using a synchrotron with extracted energies in the range of 70 to 250 MeV, nearly one hundred patients per day have been treated at the facility. Over the past five years, more than 97% of the patients received treatments on the day they were scheduled for irradiation. The activity schedules of accelerator maintenance and operations to maintain this patient load and accelerator reliability are presented in this paper. A typical 24-hour schedule of daily beam activities is presented. The specifications of what was needed in 1990 and what is needed now will also be discussed, as will an accelerator control system upgrade for achieving better intensity and energy control for more advanced dose localization. These new requirements include rapid energy and intensity changes within a patient treatment, fast beam abort systems, uniform beam spill, and energy control to better than 0.1%.

  13. Requirements for the Loma Linda proton therapy accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, George; Ghebremedhin, Abiel

    1999-06-01

    More than eight years have passed since Loma Linda University Medical Center treated its first cancer patient with the world's first hospital based proton therapy accelerator. Using a synchrotron with extracted energies in the range of 70 to 250 MeV, nearly one hundred patients per day have been treated at the facility. Over the past five years, more than 97% of the patients received treatments on the day they were scheduled for irradiation. The activity schedules of accelerator maintenance and operations to maintain this patient load and accelerator reliability are presented in this paper. A typical 24-hour schedule of daily beam activities is presented. The specifications of what was needed in 1990 and what is needed now will also be discussed, as will an accelerator control system upgrade for achieving better intensity and energy control for more advanced dose localization. These new requirements include rapid energy and intensity changes within a patient treatment, fast beam abort systems, uniform beam spill, and energy control to better than 0.1%.

  14. Proton laser accelerator by means of the inverse free electron laser mechanism

    SciTech Connect

    Zakowicz, W.

    1984-07-01

    The inverse free electron laser accelerator is considered to be a potential high gradient electron accelerator. In this accelerator electrons oscillating in the magnetic field of a wiggler can gain energy from a strong laser beam propagating collinearly. The same mechanism of acceleration can work for protons and all other heavier particles. One can expect that the proton acceleration will be less effective, as it is more difficult to wiggle a heavier particle. It is indeed so, but this less efficient coupling of the proton and laser beam is partly compensated by the negligible radiative losses. These losses impose restrictions on the electron acceleration above 100 Gev. 6 references, 2 figures.

  15. Acceleration of petaelectronvolt protons in the Galactic Centre.

    PubMed

    2016-03-24

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 10(15) electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 10(13) electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators--not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays--has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 10(6)-10(7) years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays. PMID:26982725

  16. Hole-boring radiation pressure proton acceleration at high intensity in near-critical density targets

    NASA Astrophysics Data System (ADS)

    Yu, Jinqing; Dover, N. P.; Jin, Xiaolin; Li, Bin; Dangor, A. E.; Najmudin, Z.

    2014-10-01

    We will present high quality proton beams accelerated from hole-boring radiation pressure proton acceleration (HB-RPA) using three-dimension Particle-in-Cell simulation results. Scaling works on proton cut off energy with laser parameters such as laser intensity and laser pulse duration have been studied in detail by two-dimension Particle-in-Cell simulations. Optimal conditions for generating proton beam of narrow energy spread will be discussed.

  17. Fiber optic mounted laser driven flyer plates

    SciTech Connect

    Paisley, D.L.

    1990-12-31

    This invention is comprised of a laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs. 2 figs.

  18. A performance study of the Loma Linda proton medical accelerator

    SciTech Connect

    Coutrakon, G.; Hubbard, J.; Johanning, J.; Maudsley, G.; Slaton, T.; Morton, P. )

    1994-11-01

    More than three years have passed since Loma Linda treated the first cancer patient with the world's first proton accelerator dedicated to radiation therapy. Since that time, over 1000 patients have completed treatments and the facility currently treats more than 45 patients per day. With a typical intensity of 3[times]10[sup 10] protons per pulse and 27 pulses per minute, dose rates of 90--100 cGy/min are easily achieved on a 20-cm diameter field. In most cases, patient treatment times are 2 min, much less than the patient alignment time required before each treatment. Nevertheless, there is considerable medical interest in increasing field sizes up to 40-cm diameter while keeping dose rates high and treatment times low. In this article, beam measurements relevant to intensity studies are presented and possible accelerator modifications for upgrades are proposed. It is shown that nearly all intensity losses can be ascribed to the large momentum spread of the injected beam and occur at or near the injection energy of 2 MeV. The agreement between calculations and measurements appears quite good. In addition, optimum beam characteristics for a new injector are discussed based upon the momentum acceptance and space charge limits of the Loma Linda synchrotron.

  19. A performance study of the Loma Linda proton medical accelerator.

    PubMed

    Coutrakon, G; Hubbard, J; Johanning, J; Maudsley, G; Slaton, T; Morton, P

    1994-11-01

    More than three years have passed since Loma Linda treated the first cancer patient with the world's first proton accelerator dedicated to radiation therapy. Since that time, over 1000 patients have completed treatments and the facility currently treats more than 45 patients per day. With a typical intensity of 3 x 10(10) protons per pulse and 27 pulses per minute, dose rates of 90-100 cGy/min are easily achieved on a 20-cm diameter field. In most cases, patient treatment times are 2 min, much less than the patient alignment time required before each treatment. Nevertheless, there is considerable medical interest in increasing field sizes up to 40-cm diameter while keeping dose rates high and treatment times low. In this article, beam measurements relevant to intensity studies are presented and possible accelerator modifications for upgrades are proposed. It is shown that nearly all intensity losses can be ascribed to the large momentum spread of the injected beam and occur at or near the injection energy of 2 MeV. The agreement between calculations and measurements appears quite good. In addition, optimum beam characteristics for a new injector are discussed based upon the momentum acceptance and space charge limits of the Loma Linda synchrotron. PMID:7891629

  20. Laser-accelerated proton conversion efficiency thickness scaling

    SciTech Connect

    Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.; Akli, K. U.; Stephens, R. B.; Bartal, T.; Beg, F. N.; Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.

    2009-12-15

    The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10{sup 19} W/cm{sup 2} Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 {mu}m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 {mu}m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH{sub 3} on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data.

  1. Acceleration of petaelectronvolt protons in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    HESS Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Dewilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemiére, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2016-03-01

    Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outburstsand an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.

  2. Nuclear Powered Laser Driven Plasma Propulsion System

    NASA Astrophysics Data System (ADS)

    Kammash, T.

    A relativistic plasma thruster that could open up the solar system to near-term human exploration is presented. It is based on recent experimental and theoretical research, which show that ultrafast (very short pulse length) lasers can accelerate charged particles to relativistic speeds. In table top-type experiments charge-neutral proton beams containing more than 1014 particles with mean energies of tens of MeV's have been produced when high intensity lasers with femtosecond (10-15 s) pulse lengths are made to strike thin solid targets. When viewed from a propulsion standpoint such systems can produce specific impulses of several million seconds albeit at modest thrusts and require nuclear power systems to drive them. Several schemes are proposed to enhance the thrust and make these systems suitable for manned interplanetary missions. In this paper we set forth the physics principles that make relativistic plasma driven by ultrafast lasers particularly attractive for propulsion applications. We introduce the “Laser Accelerated Plasma Propulsion System” LAPPS, and demonstrate its potential propulsive capability by addressing an interstellar mission to the Oort Cloud, and a planetary mission to Mars. We show that the first can be carried out in a human's lifetime and the second in a matter of months. In both instances we identify the major technological problems that must be addressed if this system is to evolve into a leading contender among the advance propulsion concepts currently under consideration.

  3. Latest Diagnostic Electronics Development for the PROSCAN Proton Accelerator

    SciTech Connect

    Duperrex, P.A.; Frei, U.; Gamma, G.; Mueller, U.; Rezzonico, L.

    2004-11-10

    New VME-based diagnostic electronics are being developed for PROSCAN, a proton accelerator for medical application presently under construction at PSI. One new development is a VME-based multi-channel logarithmic amplifier for converting current to voltage (LogIV). The LogIV boards are used for measuring current from the multiple wire (harp) profile monitors. The LogIV calibration method, current dependant bandwidth and temperature stability are presented. Another development is a BPM front end, based on the newest digital receiver techniques. Features of this new system are the remote control of the preamplifier stage and the continuous monitoring of each individual signal overall gain. Characteristics of the developed prototype are given.

  4. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  5. Laser-Driven Mini-Thrusters

    NASA Astrophysics Data System (ADS)

    Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.

    2006-05-01

    Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  6. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  7. Laser-Driven Mini-Thrusters

    SciTech Connect

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-05-02

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser ({lambda} = 10.6 {mu}m) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  8. Mixing, staging, and phasing for a proton-driven wake field accelerator

    SciTech Connect

    Gai, W.; Ruggiero, A.G.; Simpson, J.D.

    1987-01-01

    This paper expands on a few important details of the Wakeatron concept. This is a device where electrons can be accelerated by the wake field of short intense proton bunches travelling along the axis of an rf structure. Specifically, we have examined the consequences of the longitudinal dynamics of both the electron and the proton bunches. Included were ''mixing'' in the proton bunches (crucial to the overall concept) and phase shifts (electron bunches relative to proton bunches) in the acceleration process. Because of the deterioration of the proton bunches, due to the ''mixing'' process, it is required that the Wakeatron is indeed staged in a number of consecutive sections.

  9. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy. PMID:12512712

  10. On the possibility for precision measurements of differential cross sections for elastic proton-proton scattering at the Protvino accelerator

    NASA Astrophysics Data System (ADS)

    Denisov, S. P.; Kozelov, A. V.; Petrov, V. A.

    2016-03-01

    Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton-proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton-proton scattering per IHEP accelerator run (20 days). Other lines of physics research with this facility are briefly discussed.

  11. Experimental Results on the First Short Pulse Laser Driven Neutron Source Powerful Enough For Applications In Radiography

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat

    2012-10-01

    Short pulse laser driven neutron source can be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. It is based on short pulse laser driven ions interacting with a converter material to produce neutrons via separation or breakup mechanisms. Previous research on the short pulse laser driven ion acceleration has mainly concentrated on surface acceleration mechanisms, which typically yield isotropic emission of neutrons from the converter. Recent experiments performed with a high contrast laser at TRIDENT facility at LANL demonstrated laser driven ion acceleration mechanism based on the concept of relativistic transparency. This produced an intense beam of high energy (up to 80 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 4.4x10^9 n/sr. The produced neutron beam had a pulse duration less than a nanosecond and an energy range between 2-80 MeV, peaking around 12 MeV. The neutrons in the energy range of 2.5 to 15 MeV were selected by the gated neutron imager to radiograph tungsten blocks of different thicknesses. We will present the results from the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.

  12. Influence of electromagnetic oscillating two-stream instability on the evolution of laser-driven plasma beat-wave

    SciTech Connect

    Gupta, D. N.; Singh, K. P.; Suk, H.

    2007-01-15

    The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.

  13. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  14. Terahertz-driven linear electron acceleration.

    PubMed

    Nanni, Emilio A; Huang, Wenqian R; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m(-1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  15. Terahertz-driven linear electron acceleration

    SciTech Connect

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  16. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  17. Terahertz-driven linear electron acceleration

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30-50 MeV m-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

  18. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  19. Shock-Wave Acceleration of Protons on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.

    2015-11-01

    Recent experimental results using shock-wave acceleration (SWA) driven by a CO2 laser in a H2 gas-jet plasma have shown the possibility of producing proton beams with energy spreads <10% and with energies of up to 20 MeV using a modest peak laser power of 4 TW. Here we propose the investigation of the scaling of the SWA mechanism to higher laser powers using the 1- μm OMEGA EP Laser System at the Laboratory for Laser Energetics. The required tailored plasma profile is created by expanding a CH target using the thermal x-ray emission from a UV ablated material. The desired characteristics optimal for SWA are met: (a) peak plasma density is overcritical for the 1- μm main pulse and (b) the plasma profile exponentially decays over a long scale length on the rear side. Results will be shown using a 4 ω probe to experimentally characterize the plasma density profile. Scaling from simulations of the SWA mechanism shows that ion energies in the range of 100 MeV/amu are achievable with a focused a0 of 5 from the OMEGA EP Laser System. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Optimization of the combined proton acceleration regime with a target composition scheme

    NASA Astrophysics Data System (ADS)

    Yao, W. P.; Li, B. W.; Zheng, C. Y.; Liu, Z. J.; Yan, X. Q.; Qiao, B.

    2016-01-01

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CH target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 1022 W cm-2, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.

  1. Laser-driven nonlinear cluster dynamics

    SciTech Connect

    Fennel, Th.; Meiwes-Broer, K.-H.; Tiggesbaeumker, J.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2010-04-15

    Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

  2. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    NASA Astrophysics Data System (ADS)

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-01

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a = 30 over 108 protons at 30 MeV with a 3% spread are selected, and at least107 protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  3. The LILIA experiment: Energy selection and post-acceleration of laser generated protons

    SciTech Connect

    Turchetti, Giorgio; Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Sumini, Marco; Giove, Dario; De Martinis, Carlo

    2012-12-21

    The LILIA experiment is planned at the SPARCLAB facility of the Frascati INFN laboratories. We have simulated the laser acceleration of protons, the transport and energy selection with collimators and a pulsed solenoid and the post-acceleration with a compact high field linac. For the highest achievable intensity corresponding to a= 30 over 10{sup 8} protons at 30 MeV with a 3% spread are selected, and at least10{sup 7} protons are post-accelerated up to 60 MeV. If a 10 Hz repetition rated can be achieved the delivered dose would be suitable for the treatment of small superficial tumors.

  4. Terahertz-driven linear electron acceleration

    DOE PAGESBeta

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  5. Fast scaling of energetic protons generated in the interaction of linearly polarized femtosecond petawatt laser pulses with ultrathin targets

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Kim, Chul Min; Kim, Hyung Taek; Choi, Il Woo; Lee, Chang-Lyoul; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Nam, Chang Hee

    2015-12-01

    Laser-driven proton/ion acceleration is a rapidly developing research field attractive for both fundamental physics and applications such as hadron therapy, radiography, inertial confinement fusion, and nuclear/particle physics. Laser-driven proton/ion beams, compared to those obtained in conventional accelerators, have outstanding features such as low emittance, small source size, ultra-short duration and huge acceleration gradient of ∼1 MeV μm-1. We report proton acceleration from ultrathin polymer targets irradiated with linearly polarized, 30-fs, 1-PW Ti:sapphire laser pulses. A maximum proton energy of 45 MeV with a broad and modulated profile was obtained when a 10-nm-thick target was irradiated at a laser intensity of 3.3 × 1020 W/cm2. The transition from slow (I1/2) to fast scaling (I) of maximum proton energy with respect to laser intensity I was observed and explained by the hybrid acceleration mechanism including target normal sheath acceleration and radiation pressure acceleration in the acceleration stage and Coulomb-explosion-assisted free expansion in the post acceleration stage.

  6. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Bulanov, S. V.; Margarone, D.; Korn, G.; Haberer, T.

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  7. Radiochromic film diagnostics for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Kaufman, J.; Margarone, Daniele; Candiano, Giacomo; Kim, I. Jong; Jeong, Tae Moon; Pšikal, Jan; Romano, F.; Cirrone, P.; Scuderi, V.; Korn, Georg

    2015-05-01

    Radiochromic film (RCF) based multichannel diagnostics utilizes the concept of a stack detector comprised of alternating layers of RCFs and shielding aluminium layers. An algorithm based on SRIM simulations is used to correct the accumulated dose. Among the standard information that can be obtained is the maximum ion energy and to some extend the beam energy spectrum. The main area where this detector shines though is the geometrical characterization of the beam. Whereas other detectors such as Thomson parabola spectrometer or Faraday cups detect only a fraction of the outburst cone, the RCF stack placed right behind the target absorbs the whole beam. A complete 2D and to some extend 3D imprint of the ion beam allows us to determine parameters such as divergence or beam center shift with respect to the target normal. The obvious drawback of such diagnostics is its invasive character. But considering that only a few successful shots (2-3) are needed per one kind of target to perform the analysis, the drawbacks are acceptable. In this work, we present results obtained with the RCF diagnostics using both conventional accelerators and laser-driven ion beams during 2 experimental campaigns.

  8. Ultra-bright laser-driven neutron source

    NASA Astrophysics Data System (ADS)

    Roth, M.; Favalli, A.; Bagnoud, V.; Bridgewater, J.; Deppert, O.; Devlin, M.; Falk, K.; Fernndez, J.; Gautier, D.; Guler, N.; Henzlova, D.; Hornung, J.; Iliev, M.; Ianakiev, K.; Kleinschmidt, A.; Koehler, K.; Palaniyappan, S.; Poth, P.; Schaumann, G.; Swinhoe, M.; Taddeucci, T.; Tebartz, A.; Wagner, Florian; Wurden, G.

    2015-11-01

    Short-pulse laser-driven neutron sources have become a topic of interest since their brightness and yield have recently increased by orders of magnitude. Using novel target designs, high contrast - high power lasers and compact converter/moderator setups, these neutron sources have finally reached intensities that make many interesting applications possible. We present the results of two experimental campaigns on the GSI PHELIX and the LANL Trident lasers from 2015. We have produced an unprecedented neutron flux, mapped the spatial distribution of the neutron production as well as its energy spectra and ultimately used the beam for first applications to show the prospect of these new compact sources. We also made measurements for the conversion of energetic neutrons into short epithermal and thermal neutron pulses in order to evaluate further applications in dense plasma research. The results address a large community as it paves the way to use short pulse lasers as a neutron source. This can open up neutron research to a broad academic community including material science, biology, medicine and high energy density physics to universities and therefore can complement large scale facilities like reactors or particle accelerators.

  9. Laser-driven mechanical fracture in fused silica

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz

    1999-10-01

    Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack

  10. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    SciTech Connect

    Ni, P. A.; Bieniosek, F. M.; Logan, B. G.; Lund, S. M.; Barnard, J. J.; Bellei, C.; Cohen, R. H.; McGuffey, C.; Beg, F. N.; Kim, J.; Alexander, N.; Aurand, B.; Brabetz, C.; Neumayer, P.; Roth, M.

    2013-08-15

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure (“lens”) consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a “passive environment,” i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt “PHELIX” laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the “Helmholtzzentrum für Schwerionenforschung–GSI” in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  11. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  12. Role of target material in proton acceleration from thin foils irradiated by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Tayyab, M.; Bagchi, S.; Ramakrishna, B.; Mandal, T.; Upadhyay, A.; Ramis, R.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2014-08-01

    We report on the proton acceleration studies from thin metallic foils of varying atomic number (Z) and thicknesses, investigated using a 45 fs, 10 TW Ti:sapphire laser system. An optimum foil thickness was observed for efficient proton acceleration for our laser conditions, dictated by the laser ASE prepulse and hot electron propagation behavior inside the material. The hydrodynamic simulations for ASE prepulse support the experimental observation. The observed maximum proton energy at different thicknesses for a given element is in good agreement with the reported scaling laws. The results with foils of different atomic number Z suggest that a judicious choice of the foil material can enhance the proton acceleration efficiency, resulting into higher proton energy.

  13. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    SciTech Connect

    Fuchs, J.; Antici, P.; D'Humieres, E.; Lefebvre, E.; Borghesi, M.; Cecchetti, C. A.; Brambrink, E.; Audebert, P.; Kaluza, M.; Schreiber, J.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Toncian, T.; Pepin, H.

    2006-04-07

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of {approx}200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  14. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (∼100–1000 m)

  15. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cutroneo, M.; Ceccio, G.; Cannavò, A.; Batani, D.; Boutoux, G.; Jakubowska, K.; Ducret, J. E.

    2016-04-01

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions depending on the laser parameters, the irradiation conditions, and a target optimization.

  16. Flare vs. Shock Acceleration of >100 MeV Protons in Large Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.

    2016-05-01

    Recently several studies have presented correlative evidence for a significant-to-dominant role for a flare-resident process in the acceleration of high-energy protons in large solar particle events. In one of these investigations, a high correlation between >100 MeV proton fluence and 35 GHz radio fluence is obtained by omitting large proton events associated with relatively weak flares; these outlying events are attributed to proton acceleration by shock waves driven by coronal mass ejections (CMEs). We argue that the strong CMEs and associated shocks observed for proton events on the main sequence of the scatter plot are equally likely to accelerate high-energy protons. In addition, we examine ratios of 0.5 MeV electron to >100 MeV proton intensities in large SEP events, associated with both well-connected and poorly-connected solar eruptions, to show that scaled-up versions of the small flares associated with classical impulsive SEP events are not significant accelerators of >100 MeV protons.

  17. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    NASA Astrophysics Data System (ADS)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  18. Spot size dependence of laser accelerated protons in thin multi-ion foils

    SciTech Connect

    Liu, Tung-Chang Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2014-06-15

    We present a numerical study of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi-monoenergetic protons in laser proton acceleration using a thin carbon-hydrogen foil. The used proton acceleration scheme is a combination of laser radiation pressure and shielded Coulomb repulsion due to the carbon ions. We observe that the spot size plays a crucial role in determining the net charge of the electron-shielded carbon ion foil and consequently the efficiency of proton acceleration. Using a laser pulse with fixed input energy and pulse length impinging on a carbon-hydrogen foil, a laser beam with smaller spot sizes can generate higher energy but fewer quasi-monoenergetic protons. We studied the scaling of the proton energy with respect to the laser spot size and obtained an optimal spot size for maximum proton energy flux. Using the optimal spot size, we can generate an 80 MeV quasi-monoenergetic proton beam containing more than 10{sup 8} protons using a laser beam with power 250 TW and energy 10 J and a target of thickness 0.15 wavelength and 49 critical density made of 90% carbon and 10% hydrogen.

  19. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-01

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  20. Stable long range proton acceleration driven by intense laser pulse with underdense plasmas

    SciTech Connect

    Gu, Y. J.; Zhu, Z.; Li, X. F.; Yu, Q.; Huang, S.; Zhang, F.; Kong, Q.; Kawata, S.

    2014-06-15

    Proton acceleration is investigated by 2.5-dimensional particle-in-cell simulations in an interaction of an ultra intense laser with a near-critical-density plasma. It was found that multi acceleration mechanisms contribute together to a 1.67 GeV collimated proton beam generation. The W-BOA (breakout afterburner based on electrons accelerated by a wakefield) acceleration mechanism plays an important role for the proton energy enhancement in the area far from the target. The stable and continuous acceleration maintains for a long distance and period at least several pico-seconds. Furthermore, the energy scalings are also discussed about the target density and the laser intensity.

  1. Biological Effectiveness of Accelerated Protons for Chromosome Exchanges

    PubMed Central

    George, Kerry A.; Hada, Megumi; Cucinotta, Francis A.

    2015-01-01

    We have investigated chromosome exchanges induced in human cells by seven different energies of protons (5–2500 MeV) with LET values ranging from 0.2 to 8 keV/μm. Human lymphocytes were irradiated in vitro and chromosome damage was assessed using three-color fluorescence in situ hybridization chromosome painting in chemically condensed chromosomes collected during the first cell division post irradiation. The relative biological effectiveness (RBE) was calculated from the initial slope of the dose–response curve for chromosome exchanges with respect to low dose and low dose-rate γ-rays (denoted as RBEmax), and relative to acute doses of γ-rays (denoted as RBEγAcute). The linear dose–response term was similar for all energies of protons, suggesting that the decrease in LET with increasing proton energy was balanced by the increase in dose from the production of nuclear secondaries. Secondary particles increase slowly above energies of a few hundred megaelectronvolts. Additional studies of 50 g/cm2 aluminum shielded high-energy proton beams showed minor differences compared to the unshielded protons and lower RBE values found for shielded in comparison to unshielded beams of 2 or 2.5 GeV. All energies of protons produced a much higher percentage of complex-type chromosome exchanges when compared to acute doses of γ-rays. The implications of these results for space radiation protection and proton therapy are discussed. PMID:26539409

  2. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    SciTech Connect

    Ting, A.; Gordon, D.; Kaganovich, D.; Sprangle, P.; Helle, M.; Hafizi, B.

    2010-11-04

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, {approx}1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called ''bucket jumping'' where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  3. Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks.

    PubMed

    Park, Jaehong; Caprioli, Damiano; Spitkovsky, Anatoly

    2015-02-27

    We study diffusive shock acceleration (DSA) of protons and electrons at nonrelativistic, high Mach number, quasiparallel, collisionless shocks by means of self-consistent 1D particle-in-cell simulations. For the first time, both species are found to develop power-law distributions with the universal spectral index -4 in momentum space, in agreement with the prediction of DSA. We find that scattering of both protons and electrons is mediated by right-handed circularly polarized waves excited by the current of energetic protons via nonresonant hybrid (Bell) instability. Protons are injected into DSA after a few gyrocycles of shock drift acceleration (SDA), while electrons are first preheated via SDA, then energized via a hybrid acceleration process that involves both SDA and Fermi-like acceleration mediated by Bell waves, before eventual injection into DSA. Using the simulations we can measure the electron-proton ratio in accelerated particles, which is of paramount importance for explaining the cosmic ray fluxes measured on Earth and the multiwavelength emission of astrophysical objects such as supernova remnants, radio supernovae, and galaxy clusters. We find the normalization of the electron power law is ≲10^{-2} of the protons for strong nonrelativistic shocks. PMID:25768768

  4. Simultaneous Acceleration of Protons and Electrons at Nonrelativistic Quasiparallel Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Caprioli, Damiano; Spitkovsky, Anatoly

    2015-02-01

    We study diffusive shock acceleration (DSA) of protons and electrons at nonrelativistic, high Mach number, quasiparallel, collisionless shocks by means of self-consistent 1D particle-in-cell simulations. For the first time, both species are found to develop power-law distributions with the universal spectral index -4 in momentum space, in agreement with the prediction of DSA. We find that scattering of both protons and electrons is mediated by right-handed circularly polarized waves excited by the current of energetic protons via nonresonant hybrid (Bell) instability. Protons are injected into DSA after a few gyrocycles of shock drift acceleration (SDA), while electrons are first preheated via SDA, then energized via a hybrid acceleration process that involves both SDA and Fermi-like acceleration mediated by Bell waves, before eventual injection into DSA. Using the simulations we can measure the electron-proton ratio in accelerated particles, which is of paramount importance for explaining the cosmic ray fluxes measured on Earth and the multiwavelength emission of astrophysical objects such as supernova remnants, radio supernovae, and galaxy clusters. We find the normalization of the electron power law is ≲1 0-2 of the protons for strong nonrelativistic shocks.

  5. Control of target-normal-sheath-accelerated protons from a guiding cone

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Yu, T. P.; Shao, F. Q.; Pukhov, A.

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  6. Optimizing proton therapy at the LBL medical accelerator. Final report

    SciTech Connect

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  7. Optimizing proton therapy at the LBL medical accelerator

    SciTech Connect

    Alonso, J.

    1992-03-01

    This Grant has marked the beginning of a multi-year study process expected to lead to design and construction of at least one, possibly several hospital-based proton therapy facilities in the United States.

  8. Pulsars as cosmic ray particle accelerators: Proton orbits

    NASA Technical Reports Server (NTRS)

    Thielheim, K. O.

    1985-01-01

    Proton orbits are calculated in the electromagnetic vacuum field of a magnetic point dipole rotating with its angular velocity omega perpendicular to its dipole moment mu by numerical integration of the Lorentz-Dirac equation. Trajectories are shown and discussed for various initial conditions. A critical surface is shown separating initial positions of protons which finally hit the pulsar in the polar region from those which finally recede to infinity.

  9. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    SciTech Connect

    Antici, P.; Benedetti, C.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  10. Radiation Shielding at High-Energy Electron and Proton Accelerators

    SciTech Connect

    Rokni, Sayed H.; Cossairt, J.Donald; Liu, James C.; /SLAC

    2007-12-10

    The goal of accelerator shielding design is to protect the workers, general public, and the environment against unnecessary prompt radiation from accelerator operations. Additionally, shielding at accelerators may also be used to reduce the unwanted background in experimental detectors, to protect equipment against radiation damage, and to protect workers from potential exposure to the induced radioactivity in the machine components. The shielding design for prompt radiation hazards is the main subject of this chapter.

  11. Program to research laser-driven thermionic electron sources for free electron lasers

    NASA Astrophysics Data System (ADS)

    1988-01-01

    This is the Final Report on the research and development of high brightness pulse laser driven thermionic electron sources. Enhanced coupling of electron beam energies to radiative fields in accelerator-driven free-electron lasers requires injector cathodes of higher brightness than is possible with conventional dispenser cathodes or plasma-forming field emitters. Cesiated refractory surfaces and dispenser cathodes which are pulse laser heated may offer such an increase in brightness, by the emission of monoenergetic beams of electrons at high current densities. The studies were designed to investigate the emission characteristics of both of these types of thermionic cathodes.

  12. Proposed Laser-driven, Dielectric Microstructure Few-cm Long Undulator for Attosecond Coherent X-rays

    SciTech Connect

    Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.

    2011-09-16

    This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electron bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.

  13. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  14. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  15. Laser Acceleration of Protons Using Multi-Ion Plasma Gaseous Targets and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Liu, Tung-Chang; Liu, Chuan-Sheng; Eliasson, Bengt; Hill, Wendell; Wang, Jyhpyng; Chen, Shih-Hung

    2014-10-01

    We present an acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO2 laser pulse with a wavelength of 10 μm, the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the foil compounds or mixtures, as well as their density and thickness profiles. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with peak power 70 TW and pulse duration of 150 wave periods. We compared the effects of modifying the thickness and density of the gaseous targets and showed that the compression of the gaseous target affects significantly in the quasi-monoenergetic property of the proton beams. To assess the feasibility of laser-proton cancer therapy with such a proton accelerator, simulations are carried out to model the interaction of protons with water and determine the depth and lateral dose distribution for particle beams produced from PIC simulation. Comparison between the dosage maps of the proton beams produced with different foil densities and thicknesses is also presented. This work was supported by US DoE Grant DE-SC0008391.

  16. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  17. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Romano, F.; Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L. Fanola; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  18. Enhancement of proton acceleration field in laser double-layer target interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Li, X. F.; Yu, Q.; Wang, P. X.; Ma, Y. Y.

    2013-07-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  19. Enhancement of proton acceleration field in laser double-layer target interaction

    SciTech Connect

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-07-15

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations.

  20. Proton and heavy ion acceleration facilities for space radiation research

    NASA Technical Reports Server (NTRS)

    Miller, Jack

    2003-01-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

  1. Proton and heavy ion acceleration facilities for space radiation research.

    PubMed

    Miller, Jack

    2003-06-01

    The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space. PMID:12959128

  2. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications. PMID:15839352

  3. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  4. Nonlinear laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Siemon, Carl; Khudik, Vladimir; Yi, S. Austin; Pukhov, Alexander; Shvets, Gennady

    2013-10-01

    A new method for seeding the modulation instability (MI) in a proton driver plasma wakefield accelerator (PDPWA) using a CO2 laser pulse is presented. The proton beam's envelope equation is used to analytically compare the laser seed with previously suggested seeding methods. Simulations demonstrate that a laser pulse placed ahead of a proton beam with a realistic longitudinal density profile leads to peak accelerating gradients that are comparable to those produced by other seeding methods. The nonlinear BNS damping of the MI is analytically shown to lead to instability saturation. The envelope equation is Fourier expanded into a set of coupled, nonlinear equations that describe the evolution of the beam's Fourier components. Peak beam density and peak accelerating gradient during the beam's evolution are estimated.

  5. Proton acceleration with high intensity lasers interacting on micro-cone targets

    NASA Astrophysics Data System (ADS)

    D'Humieres, Emmanuel; Cowan, Tom; Gaillard, Sandrine; Le Galloudec, Nathalie; Rassuchine, Jennifer; Sentoku, Yasuhiko

    2006-10-01

    In the last few years, intense research has been conducted on laser-accelerated ion sources and their applications [1,2]. Proton beams accelerated from solid planar targets have exceptional properties that open new opportunities for ion beam generation and control. Experiments conducted at LANL and LULI have shown that high intensity lasers interacting on micro-cone targets can produce proton beams more collimated and more energetic than with planar targets. These micro-cone targets are composed of a curved cone attached to a micro-table. 2D PIC simulations were performed to understand the experiments and separate the effect of the cone from the effect of the micro-table. These new targets could help increase the laser-accelerated protons maximum energy to the 100 MeV range. [1] J. Fuchs et al., Nature Physics 2, 48 (2006). [2] T.Toncian et al., Science Vol. 312, 21 April 2006, p.410-413.

  6. INJECTOR PARTICLE SIMULATION AND BEAM TRANSPORT IN A COMPACT LINEAR PROTON ACCELERATOR

    SciTech Connect

    Blackfield, D T; Chen, Y J; Harris, J; Nelson, S; Paul, A; Poole, B

    2007-06-18

    A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MW/m is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector must create a proton pulse up to several hundred picoseconds, which is then shaped and accelerated with energies up to 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to obtain the voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

  7. Laser Radiation Pressure Accelerator for Quasi-Monoenergetic Proton Generation and Its Medical Implications

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Shao, X.; Liu, T. C.; Su, J. J.; He, M. Q.; Eliasson, B.; Tripathi, V. K.; Dudnikova, G.; Sagdeev, R. Z.; Wilks, S.; Chen, C. D.; Sheng, Z. M.

    Laser radiation pressure acceleration (RPA) of ultrathin foils of subwavelength thickness provides an efficient means of quasi-monoenergetic proton generation. With an optimal foil thickness, the ponderomotive force of the intense short-pulse laser beam pushes the electrons to the edge of the foil, while balancing the electric field due to charge separation. The electron and proton layers form a self-organized plasma double layer and are accelerated by the radiation pressure of the laser, the so-called light sail. However, the Rayleigh-Taylor instability can limit the acceleration and broaden the energy of the proton beam. Two-dimensional particle-in-cell (PIC) simulations have shown that the formation of finger-like structures due to the nonlinear evolution of the Rayleigh-Taylor instability limits the acceleration and leads to a leakage of radiation through the target by self-induced transparency. We here review the physics of quasi-monoenergetic proton generation by RPA and recent advances in the studies of energy scaling of RPA, and discuss the RPA of multi-ion and gas targets. The scheme for generating quasi-monoenergetic protons with RPA has the potential of leading to table-top accelerators as sources for producing monoenergetic 50-250 MeV protons. We also discuss potential medical implications, such as particle therapy for cancer treatment, using quasi-monoenergetic proton beams generated from RPA. Compact monoenergetic ion sources also have applications in many other areas such as high-energy particle physics, space electronics radiation testing, and fast ignition in laser fusion.

  8. A hypervelocity debris simulating technique with laser driven flyer

    NASA Astrophysics Data System (ADS)

    Tong, J.; Dong, H.; Wang, J.

    Theoretical models suggest that most of the space debris in LEO consist of particles are smaller than 0.5mm. LDEF exposed a total surface area of about 130m 2 for 69 months in the LEO environment. It provided a huge collection of impact data that covers a wide size range of impact crater. Total of 34336 impacts were found on the LDEF surface, of which 27385 impact craters were less than 0.5mm in diameter. The small space debris can cause a gradual degradation of a satellite surfaces, including mechanical damage and contamination generated by impacts. Moreover the small debris may cause greater synergistic effects with AO. AO undercutting of impact damage can further expand the damage areas. This paper describes a new method to simulate small space debris by the laser driven flyer technique. A neodymium-glass pulsed laser was used in this work, capable of up 20 joules in 20 nanoseconds. Tow bonding methods to adhere the aluminum foil to the glass substrate were used. One was a field assisted thermal diffusion bond. The other used silicon oil as the adhesive. In the diffusion bond, the laser is used to vaporize the interface of a aluminum foil diffusively bonded to a glass substrate. The vapor reaches high pressures and then cuts out and accelerates a aluminum disk in the diameter of the periphery of the laser beam. In the second flyer configuration, the silicon oil was vaporized by the laser beam and the expanding gas drove the aluminum disc to the hypervelocity. In our tests, both of methods were successful. In the method of silicon oil adhesion, a 2mm diameter, 60micron thick aluminum disc was accelerated to 3.2km/s. But the velocity data of diffusion bond could not be obtained because the meas uring appliance was improper. The method to measure velocity was very simple and cheap. First, the flight time of a particle was measured with a piezoelectric transducer and a digital oscilloscope. Then attaining the flight time and distance of the particle, its velocity

  9. A crystal routine for collimation studies in circular proton accelerators

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2015-07-01

    A routine has been developed to simulate interactions of protons with bent crystals in a version of SixTrack for collimation studies. This routine is optimized to produce high-statistics tracking simulations for a highly efficient collimation system, like the one of the CERN Large Hadron Collider (LHC). The routine has recently been reviewed and improved through a comparison with experimental data, benchmarked against other codes and updated by adding better models of low-probability interactions. In this paper, data taken with 400 GeV/c proton beams at the CERN-SPS North Area are used to verify the prediction of the routine, including the results of a more recent analysis.

  10. Enhancement of proton energy by polarization switch in laser acceleration of multi-ion foils

    SciTech Connect

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Wang, Jyhpyng; Chen, Shih-Hung

    2013-10-15

    We present a scheme to significantly increase the energy of quasi-monoenergetic protons accelerated by a laser beam without increasing the input power. This improvement is accomplished by first irradiating the foil several wave periods with circular polarization and then switching the laser to linear polarization. The polarization switch increases the electron temperature and thereby moves more electrons ahead of the proton layer, resulting in a space charge electric field pushing the protons forwards. The scaling of the proton energy evolution with respect to the switching time is studied, and an optimal switching time is obtained. The proton energy for the case with optimal switching time can reach about 80 MeV with an input laser power of 70 TW, an improvement of more than 30% compared to the case without polarization switch.

  11. Laser accelerated protons captured and transported by a pulse power solenoid

    NASA Astrophysics Data System (ADS)

    Burris-Mog, T.; Harres, K.; Nürnberg, F.; Busold, S.; Bussmann, M.; Deppert, O.; Hoffmeister, G.; Joost, M.; Sobiella, M.; Tauschwitz, A.; Zielbauer, B.; Bagnoud, V.; Herrmannsdoerfer, T.; Roth, M.; Cowan, T. E.

    2011-12-01

    Using a pulse power solenoid, we demonstrate efficient capture of laser accelerated proton beams and the ability to control their large divergence angles and broad energy range. Simulations using measured data for the input parameters give inference into the phase-space and transport efficiencies of the captured proton beams. We conclude with results from a feasibility study of a pulse power compact achromatic gantry concept. Using a scaled target normal sheath acceleration spectrum, we present simulation results of the available spectrum after transport through the gantry.

  12. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices.

    PubMed

    Schollmeier, M; Becker, S; Geissel, M; Flippo, K A; Blazević, A; Gaillard, S A; Gautier, D C; Grüner, F; Harres, K; Kimmel, M; Nürnberg, F; Rambo, P; Schramm, U; Schreiber, J; Schütrumpf, J; Schwarz, J; Tahir, N A; Atherton, B; Habs, D; Hegelich, B M; Roth, M

    2008-08-01

    This Letter demonstrates the transporting and focusing of laser-accelerated 14 MeV protons by permanent magnet miniature quadrupole lenses providing field gradients of up to 500 T/m. The approach is highly reproducible and predictable, leading to a focal spot of (286 x 173) microm full width at half maximum 50 cm behind the source. It decouples the relativistic laser-proton acceleration from the beam transport, paving the way to optimize both separately. The collimation and the subsequent energy selection obtained are perfectly applicable for upcoming high-energy, high-repetition rate laser systems. PMID:18764401

  13. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  14. Dynamics of Electric Fields Driving the Laser Acceleration of Multi-MeV Protons

    SciTech Connect

    Romagnani, L.; Borghesi, M.; Kar, S.; Fuchs, J.; Antici, P.; Audebert, P.; Ceccherini, F.; Macchi, A.; Cowan, T.; Grismayer, T.; Mora, P.; Pretzler, G.; Toncian, T.; Willi, O.; Schiavi, A.

    2005-11-04

    The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense ({approx}10{sup 18} W/cm{sup 2}) and short ({approx}1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.

  15. Solar Interacting Protons Versus Interplanetary Protons in the Core Plus Halo Model of Diffusive Shock Acceleration and Stochastic Re-acceleration

    NASA Astrophysics Data System (ADS)

    Kocharov, L.; Laitinen, T.; Vainio, R.; Afanasiev, A.; Mursula, K.; Ryan, J. M.

    2015-06-01

    With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space.

  16. Accelerator on a Chip

    SciTech Connect

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  17. Accelerator on a Chip

    ScienceCinema

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  18. High intensity proton acceleration at the Brookhaven AGS -- An update

    SciTech Connect

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-07-01

    The AGS accelerator complex is into its third year of 60+ {times} 10{sup 12} (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps.

  19. A beam intensity monitor for the Loma Linda cancer therapy proton accelerator

    SciTech Connect

    Coutrakon, G.; Miller, D. ); Kross, B.J.; Anderson, D.F. ); DeLuca, P. Jr.; Siebers, J. )

    1991-07-01

    A beam intensity monitor was tested in a 230-MeV proton beam at the Loma Linda Proton Therapy Accelerator during its commissioning at Fermi National Accelerator Laboratory. The intensity monitor was designed to regulate the beam intensity extracted from the proton synchrotron. The proton beam is tunable between 70 and 250 MeV with an adjustable intensity between 10{sup 10} and 10{sup 11} protons per spill. A beam spill is typically 1 s long with a 2-s repetition period. The intensity monitor must be radiation hard, expose minimum mass to the beam, and measure intensity to 1% in 1-ms time intervals. To this end, a 5-cm-thick xenon gas scintillator optically coupled to a photomultiplier tube (PMT) was tested to measure its response to the proton beam. The gas cell was operated at 1.2 atm of pressure and has 12.7-{mu}m-thick titanium entrance and exit foils. The total mass exposed to the beam is 0.14 g/cm{sup 2} and is dominated by the titanium windows. This mass corresponds to a range attenuation equal to 1.4 mm of water. The energy lost to the xenon gas is about 70 keV per proton. Each passing proton will produce approximately 2000 photons. With a detection efficiency on the order of 0.05% for this UV light, one would anticipate over 10{sup 10} photoelectrons per second. In a 1-ms time bin there will be approximately 10{sup 7} photoelectrons. This yields a resolution limited by systematics. For unregulated 0.4-s proton spills, we observe a response bandwidth in excess of 10{sup 4} Hz. While signal-to-noise and linearity were not easily measured, we estimate as few as 10{sup 3} protons can be observed suggesting a dynamic range in excess of 10{sup 5} is available.

  20. A beam intensity monitor for the Loma Linda cancer therapy proton accelerator.

    PubMed

    Coutrakon, G; Miller, D; Kross, B J; Anderson, D F; DeLuca, P; Siebers, J

    1991-01-01

    A beam intensity monitor was tested in a 230-MeV proton beam at the Loma Linda Proton Therapy Accelerator during its commissioning at Fermi National Accelerator Laboratory. The intensity monitor was designed to regulate the beam intensity extracted from the proton synchrotron. The proton beam is tunable between 70 and 250 MeV with an adjustable intensity between 10(10) and 10(11) protons per spill. A beam spill is typically 1 s long with a 2-s repetition period. The intensity monitor must be radiation hard, expose minimum mass to the beam, and measure intensity to 1% in 1-ms time intervals. To this end, a 5-cm-thick xenon gas scintillator optically coupled to a photomultiplier tube (PMT) was tested to measure its response to the proton beam. The gas cell was operated at 1.2 atm of pressure and has 12.7-microns-thick titanium entrance and exit foils. The total mass exposed to the beam is 0.14 g/cm2 and is dominated by the titanium windows. This mass corresponds to a range attenuation equal to 1.4 mm of water. The energy lost to the xenon gas is about 70 keV per proton. Each passing proton will produce approximately 2000 photons. With a detection efficiency on the order of 0.05% for this UV light, one would anticipate over 10(10) photoelectrons per second. In a 1-ms time bin there will be approximately 10(7) photoelectrons. This yields a resolution limited by systematics. For unregulated 0.4-s proton spills, we observe a response bandwidth in excess of 10(4) Hz. While signal-to-noise and linearity were not easily measured, we estimate as few as 10(3) protons can be observed suggesting a dynamic range in excess of 10(5) is available. PMID:1656180

  1. A proton medical accelerator by the SBIR route: An example of technology transfer

    SciTech Connect

    Martin, R.L.

    1988-01-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable, and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates have received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described. 4 refs., 1 fig.

  2. RF properties of 1050 MHz, β = 0.49 Elliptical cavity for High Current Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Roy, Amitava; Mondal, J.; Mittal, K. C.

    2008-04-01

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, β = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation Pc, quality factor Q and effective shunt impedante ZT2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  3. A prototype beam delivery system for the proton medical accelerator at Loma Linda (US)

    SciTech Connect

    Coutrakon, G.; Bauman, M.; Lesyna, D.; Miller, D.; Nusbaum, J.; Slater, J.; Johanning, J.; Miranda, J. ); DeLuca, P.M. Jr.; Siebers, J. ); Ludewigt, B. )

    1991-11-01

    A variable energy proton accelerator was commissioned at Fermi National Accelerator Laboratory for use in cancer treatment at the Loma Linda University Medical Center. The advantages of precise dose localization by proton therapy, while sparing nearby healthy tissue, are well documented (R. R. Wilson, Radiology {bold 47}, 487 (1946); M. Wagner, Med. Phys. {bold 9}, 749 (1982); M. Goitein and F. Chen, Med. Phys. {bold 10}, 831 (1983)). One of the components of the proton therapy facility is a beam delivery system capable of delivering precise dose distributions to the target volume in the patient. To this end, a prototype beam delivery system was tested during the accelerator's commissioning period. The beam delivery system consisted of a beam spreading device to produce a large, uniform field, a range modulator to generate a spread out Bragg peak (SOBP), and various beam detectors to measure intensity, beam centering, and dose distributions. The beam delivery system provided a uniform proton dose distribution in a cylindrical volume of 20-cm-diam area and 9-cm depth. The dose variations throughout the target volume were found to be less then {plus minus}5%. Modifications in the range modulator should reduce this considerably. The central axis dose rate in the region of the SOBP was found to be 0.4 cGy/spill with an incident beam intensity of 6.7{times}10{sup 9} protons/spill. With an accelerator repetition rate of 30 spills/min and expected intensity of 2.5{times}10{sup 10} protons/spills for patient treatment, this system can provide 50 cGy/min for a 20-cm-diam field and 9-cm range modulation. The distal edge of the spread out Bragg peak was observed at 27.5-cm depth with an incident proton energy of 235 MeV. The dose at the distal edge falls from 90% to 10% of peak value in 7 mm.

  4. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  5. Research methods for parameters of accelerated low-energy proton beam

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Dudkin, G. N.; Kyznetsov, S. I.; Nechaev, B. A.; Padalko, V. N.; Philippov, A. V.; Sadovsky, A. B.; Varlachev, V. A.; Zvaygintsev, O. A.

    2015-07-01

    To study the pd-reaction cross-section it is necessary to know the main parameters of the accelerated hydrogen ion beam with a high accuracy. These parameters include: the energy ion dispersion; the content of neutrals; the ratio of atomic and molecular ions of hydrogen in the flux of accelerated particles. This work is aimed at development of techniques and the measurement of the above mentioned parameters of the low-energy proton beam.

  6. First experimental results from 2MeV proton tandem accelerator for neutron productiona)

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A.; Belchenko, Yu.; Burdakov, A.; Davydenko, V.; Ivanov, A.; Khilchenko, A.; Konstantinov, S.; Krivenko, A.; Kuznetsov, A.; Mekler, K.; Sanin, A.; Shirokov, V.; Sorokin, I.; Sulyaev, Yu.; Tiunov, M.

    2008-02-01

    A 2MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction Li7(p,n)Be7 for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724MeV resonance gamma, which are produced via reaction C13(p,γ)N14, absorption in nitrogen.

  7. Overview of Laser-Plasma Acceleration Programs in Asia

    SciTech Connect

    Sheng, Z. M.; Zhang, J.

    2010-11-04

    With many high power laser systems ranging from a few TW to multi-100 TW installed in some laboratories in Asia, significant progress on laser-driven wakefield acceleration of electrons has been achieved. Generation of quasi-monoenergetic electron beams from tens of MeV to nearly GeV has been demonstrated. Several programs for ion/proton acceleration aiming at potential medical applications are running or planned based upon their significant theoretical and numerical findings. There are quite a few collaborations existing among Asian research groups.

  8. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  9. Improve beam quality of laser proton acceleration with funnel-shaped-hole target

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Da Peng; Li, Yu Xiao

    2016-03-01

    Improve beam quality of laser proton acceleration using a funnel-shaped-hole target is demonstrated through particle simulations. When an intense short pulse laser illuminates a thin foil target with a hole at the rear surface, the proton beam divergence is suppressed compared with that obtained in a traditional flat target. In this paper, a funnel-shaped-hole target is proposed to improve the proton beam quality. Using two-dimensional particle-in-cell (PIC) simulations, three different shapes of target (funnel-shaped-hole target, cylinder-shaped-hole target and flat target) are simulated and compared. The funnel-shaped hole in the rear surface of the target helps to focus the electron cloud significantly and improve the maximum proton energy and suppress the proton beam divergence. Different thicknesses of the new target are also simulated, and the effects of thickness on the divergence angle and proton spectra are investigated. The optimal size of the new target is obtained and the quality of the proton beam is improved significantly. The funnel-shaped-hole target serves as a new method to improve the proton beam quality in laser-plasma interactions.

  10. Generation of quasi-monoenergetic protons from a double-species target driven by the radiation pressure of an ultraintense laser pulse

    NASA Astrophysics Data System (ADS)

    Pae, Ki Hong; Kim, Chul Min; Nam, Chang Hee

    2016-03-01

    In laser-driven proton acceleration, generation of quasi-monoenergetic proton beams has been considered a crucial feature of the radiation pressure acceleration (RPA) scheme, but the required difficult physical conditions have hampered its experimental realization. As a method to generate quasi-monoenergetic protons under experimentally viable conditions, we investigated using double-species targets of controlled composition ratio in order to make protons bunched in the phase space in the RPA scheme. From a modified optimum condition and three-dimensional particle-in-cell simulations, we showed by varying the ion composition ratio of proton and carbon that quasi-monoenergetic protons could be generated from ultrathin plane targets irradiated with a circularly polarized Gaussian laser pulse. The proposed scheme should facilitate the experimental realization of ultrashort quasi-monoenergetic proton beams for unique applications in high field science.

  11. Proton acceleration from microdroplet spray by weakly relativistic femtosecond laser pulses

    SciTech Connect

    Peng Xiaoyu; Li Yingjun; Li Hanming; Zhang Jie; Zheng Jun; Sheng Zhengming; Xu Miaohua; Zheng Zhiyuan; Liang Tianjiao; Li Yutong; Dong Quanli; Yuan Xiaohui

    2006-09-15

    Angular distribution of protons is measured from ethanol droplet spray irradiated by linearly polarized 150 fs laser pulses at an intensity of 1.1x10{sup 16} W/cm{sup 2}. Fast protons (with energies >16 keV) with an anisotropic distribution can be observed only in or near the polarization plane of the laser fields, while the slow protons (with energies IE16 keV) emit with nearly an isotropic distribution. Two-dimensional particle-in-cell simulations suggest that three groups of protons originate from different acceleration regimes in the laser-droplet interaction. The first group with the highest energies is accelerated backwards by the anisotropic charge-separation field near the front surface (laser-droplet interaction side) due to the resonance absorption; the second group (forward emission) is generated by the target-normal sheath acceleration mechanism; and the third group, with the lowest energies, is accelerated by the hydrodynamic expansion of the droplet plasmas.

  12. Isochoric heating of matter by laser-accelerated high-energy protons

    NASA Astrophysics Data System (ADS)

    Antici, P.; Fuchs, J.; Atzeni, S.; Benuzzi, A.; Brambrink, E.; Esposito, M.; Koenig, M.; Ravasio, A.; Schreiber, J.; Schiavi, A.; Audebert, P.

    2006-06-01

    We describe an experiment on isochoric heating of matter by intense laser-accelerated protons. The experiment was performed using the LULI 100 TW facility with 15-20 J on target energy and > 1019 W.cm - 2 maximum focused intensity. Focusing the laser on a 10 micron thick Au foil, we accelerated forward a laminar proton beam with a maximum energy of 16 MeV. This proton beam irradiated and heated a secondary target positioned after a variable vacuum gap. The heating was diagnosed by 1D and 2D time-resolved measurements of the optical self-emission of the heated target rear-surface. Detailed results as a function of the Z and the thickness of the secondary target as well as analysis, including a full modelling of the target heating with a 2D hydro-code (DUED) coupled to a proton energy deposition code, were obtained. We have also studied the efficiency of heating as a function of the primary target topology, i.e. either flat, which results in a diverging proton beam, or curved, which has the ability of focusing partly the proton beam.

  13. The proton injector for the accelerator facility of antiproton and ion research (FAIR)

    SciTech Connect

    Ullmann, C. Kester, O.; Chauvin, N.; Delferriere, O.

    2014-02-15

    The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 μs. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm., rms)

  14. Electron and proton acceleration efficiency by merger shocks in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Eckert, D.; Brüggen, M.; Huber, B.

    2015-08-01

    Radio relics in galaxy clusters are associated with powerful shocks that (re)accelerate relativistic electrons. It is widely believed that the acceleration proceeds via diffusive shock acceleration. In the framework of thermal leakage, the ratio of the energy in relativistic electrons to the energy in relativistic protons should be smaller than Ke/p ˜ 10-2. The relativistic protons interact with the thermal gas to produce γ-rays in hadronic interactions. Combining observations of radio relics with upper limits from γ-ray observatories can constrain the ratio Ke/p. In this work, we selected 10 galaxy clusters that contain double radio relics, and derive new upper limits from the stacking of γ-ray observations by Fermi. We modelled the propagation of shocks using a semi-analytical model, where we assumed a simple geometry for shocks and that cosmic ray protons are trapped in the intracluster medium. Our analysis shows that diffusive shock acceleration has difficulties in matching simultaneously the observed radio emission and the constraints imposed by Fermi, unless the magnetic field in relics is unrealistically large ( ≫ 10 μG). In all investigated cases (also including realistic variations of our basic model and the effect of re-acceleration), the mean emission of the sample is of the order of the stacking limit by Fermi, or larger. These findings put tension on the commonly adopted model for the powering of radio relics, and imply that the relative acceleration efficiency of electrons and protons is at odds with predictions of diffusive shock acceleration, requiring Ke/p ≥ 10 - 10-2.

  15. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG, H.; AHRENS, L.A.; BAI, M.; BRAVAR, A.; BROWN, K.; COURANT, E.D.; GARDNER, C.; GLENN, J.W.; LUCCIO, A.U.; MACKAY, W.W.; PTITSYN, V.; ROSER, T.; TEPIKIAN, S.; TSOUPAS, N.; WOOD, J.; YIP, K.; ZELENSKI, A.; ZENO, K.

    2006-06-26

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  16. Neutron-proton-converter acceleration mechanism at subphotospheres of relativistic outflows.

    PubMed

    Kashiyama, Kazumi; Murase, Kohta; Mészáros, Peter

    2013-09-27

    We study a type of particle acceleration that operates via neutron-proton conversion in inelastic nuclear collisions. This mechanism can be expected for relativistic shocks at subphotospheres if relativistic outflows contain neutrons. Using a test-particle approximation, we numerically calculate the energy spectrum and the efficiency of accelerated particles, and show that a good energy fraction of the nucleons can be accelerated. This mechanism may be especially relevant if the shock is radiation mediated, and it would enhance the detectability of GeV-TeV neutrinos. PMID:24116765

  17. Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes

    SciTech Connect

    Huang, H.; Ahrens, L. A.; Bai, M.; Bravar, A.; Brown, K.; Courant, E. D.; Gardner, C.; Glenn, J. W.; Luccio, A. U.; MacKay, W. W.; Ptitsyn, V.; Roser, T.; Tepikian, S.; Tsoupas, N.; Wood, J.; Yip, K.; Zelenski, A.; Zeno, K.; Lin, F.; Okamura, M.

    2007-06-13

    Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and are not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate the intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results.

  18. Beam Transport in a Compact Dielectric Wall Accelerator for Proton Therapy

    SciTech Connect

    Chen, Y; Caporaso, G; Blackfield, D; Nelson, S D; Poole, B

    2011-03-16

    To attain the highest accelerating gradient in the compact dielectric wall (DWA) accelerator, the DWA will be operated in the 'virtual' traveling mode with potentially non-uniform and time-dependent axial accelerating field profiles, especially near the DWA entrance and exit, which makes beam transport challenging. We have established a baseline transport case without using any external lenses. Results of simulations using the 3-D, EM PIC code, LSP indicate that the DWA transport performance meets the medical specifications for proton treatment. Sensitivity of the transport performance to Blumlein block failure will be presented.

  19. A prototype beam delivery system for the proton medical accelerator at Loma Linda.

    PubMed

    Coutrakon, G; Bauman, M; Lesyna, D; Miller, D; Nusbaum, J; Slater, J; Johanning, J; Miranda, J; DeLuca, P M; Siebers, J

    1991-01-01

    A variable energy proton accelerator was commissioned at Fermi National Accelerator Laboratory for use in cancer treatment at the Loma Linda University Medical Center. The advantages of precise dose localization by proton therapy, while sparing nearby healthy tissue, are well documented [R. R. Wilson, Radiology 47, 487 (1946); M. Wagner, Med. Phys. 9, 749 (1982); M. Goitein and F. Chen, Med. Phys. 10, 831 (1983)]. One of the components of the proton therapy facility is a beam delivery system capable of delivering precise dose distributions to the target volume in the patient. To this end, a prototype beam delivery system was tested during the accelerator's commissioning period. The beam delivery system consisted of a beam spreading device to produce a large, uniform field, a range modulator to generate a spread out Bragg peak (SOBP), and various beam detectors to measure intensity, beam centering, and dose distributions. The beam delivery system provided a uniform proton dose distribution in a cylindrical volume of 20-cm-diam area and 9-cm depth. The dose variations throughout the target volume were found to be less than +/- 5%. Modifications in the range modulator should reduce this considerably. The central axis dose rate in the region of the SOBP was found to be 0.4 cGy/spill with an incident beam intensity of 6.7 x 10(9) protons/spill. With an accelerator repetition rate of 30 spills/min and expected intensity of 2.5 x 10(10) protons/spill for patient treatment, this system can provide 50 cGy/min for a 20-cm-diam field and 9-cm range modulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1661367

  20. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    SciTech Connect

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. We report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. Furthermore, these results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  1. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas.

    PubMed

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C; Hamilton, Christopher E; Santiago, Miguel A; Kreuzer, Christian; Sefkow, Adam B; Shah, Rahul C; Fernández, Juan C

    2015-01-01

    Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼10(12) V m(-1)) and magnetic (∼10(4) T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  2. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  3. Laser-driven flyer impact experiments at the LULI 2000 laser facility

    NASA Astrophysics Data System (ADS)

    Ozaki, N.; Koenig, M.; Benuzzi-Mounaix, A.; Vinci, T.; Ravasio, A.; Esposito, M.; Lepape, S.; Henry, E.; Hüser, G.; Tanaka, K. A.; Nazarov, W.; Nagai, K.; Yoshida, M.

    2006-06-01

    New laser-driven flyer impact experiments have been performed at the LULI laboratory. In these experiments, three types of targets (single Al flyer, multi-layered, and foam-buffered high-Z metal) were used. Impacted conditions in fused quartz were measured with rear-side (two VISARs and SOP) and transverse diagnostics (shadowgraph). In the foam-buffered target, Ta foil was accelerated up to a velocity of 55 km/s. Shock wave accelerated in fused quartz by an Al flyer impact was generated, and the shock wave passing a distinct boundary to a conductive state was directly observed. This method is a way to create unique conditions within the EOS diagram of material.

  4. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-01

    Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  5. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGESBeta

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. We report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. Furthermore, these results contributemore » to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  6. Collimated proton acceleration in light sail regime with a tailored pinhole target

    SciTech Connect

    Wang, H. Y.; Zepf, M.; Yan, X. Q.

    2014-06-15

    A scheme for producing collimated protons from laser interactions with a diamond-like-carbon + pinhole target is proposed. The process is based on radiation pressure acceleration in the multi-species light-sail regime [B. Qiao et al., Phys. Rev. Lett. 105, 155002 (2010); T. P. Yu et al., Phys. Rev. Lett. 105, 065002 (2010)]. Particle-in-cell simulations demonstrate that transverse quasistatic electric field at TV/m level can be generated in the pinhole. The transverse electric field suppresses the transverse expansion of protons effectively, resulting in a higher density and more collimated proton beam compared with a single foil target. The dependence of the proton beam divergence on the parameters of the pinhole is also investigated.

  7. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  8. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  9. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  10. Shielded radiography with a laser-driven MeV-energy X-ray source

    NASA Astrophysics Data System (ADS)

    Chen, Shouyuan; Golovin, Grigory; Miller, Cameron; Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen; Clarke, Shaun; Pozzi, Sara; Umstadter, Donald

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 107 photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam's inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  11. Laser-driven ion sources for metal ion implantation for the reduction of dry friction

    SciTech Connect

    Boody, F. P.; Juha, L.; Kralikova, B.; Krasa, J.; Laska, L.; Masek, K.; Pfeifer, M.; Rohlena, K.; Skala, J.; Straka, P.; Perina, V.; Woryna, E.; Giersch, D.; Hoepfl, R.; Kelly, J. C.; Hora, H.

    1997-04-15

    The anomalously high ion currents and very high ionization levels of laser-produced plasmas give laser-driven ion sources significant advantages over conventional ion sources. In particular, laser-driven ion sources should provide higher currents of metal ions at lower cost, for implantation into solids in order to improve their material properties such as friction. The energy and charge distributions for Pb and Sn ions produced by ablation of solid targets with {approx}25 J, {approx}300 ps iodine laser pulses, resulting in up to 48-times ionized MeV ions, as well as the optimization of focus position, are presented. Implantation of these ions into Ck-45 steel, without electrostatic acceleration, produced profiles with two regions. Almost all of the ions were implanted in a near surface region a few nm deep. However, a small but significant number of ions were implanted as deep as could be measured with Rutherford backscattering (RBS), here 150 nm for Sn and 250 nm for Pb. For the implanted ion densities and profiles achieved, no change in the coefficient of friction was measured for either ion.

  12. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  13. Focusing dynamics of high-energy density, laser-driven ion beams.

    PubMed

    Chen, S N; d'Humières, E; Lefebvre, E; Romagnani, L; Toncian, T; Antici, P; Audebert, P; Brambrink, E; Cecchetti, C A; Kudyakov, T; Pipahl, A; Sentoku, Y; Borghesi, M; Willi, O; Fuchs, J

    2012-02-01

    The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30  μm, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e.g., in proton-driven fast ignition. PMID:22400936

  14. Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2016-02-01

    A theoretical study complemented with published experimental data of proton acceleration from sub-micron (thickness < 1 μm) foils irradiated by ultra-high contrast ( >1010 ) short pulse lasers is presented. The underlying physics issues pertinent to proton acceleration are addressed using two-dimensional particle-in-cell simulations. For laser energy ɛ≤4 J (intensity I ≤5 ×1020 W/cm 2 ), simulation predictions agree with experimental data, both exhibiting scaling superior to Target Normal Sheath Acceleration's model. Anomalous behavior was observed for ɛ>4 J ( I >5 ×1020 W/cm 2 ), for which the measured maximum proton energies were much lower than predicted by scaling and these simulations. This unexpected behavior could not be explained within the frame of the model, and we conjecture that pre-pulses preceding the main pulse by picoseconds may be responsible. If technological issues can be resolved, energetic proton beams could be generated for a wide range of applications such as nuclear physics, radiography, and medical science.

  15. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  16. Laser-IORT: a laser-driven source of relativistic electrons suitable for Intra-Operative Radiation Therapy of tumors

    SciTech Connect

    Gamucci, A.; Giulietti, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, Ph.; Galy, J.; Giulietti, D.; Hamilton, D. J.; Sarri, G.

    2010-02-02

    In a recent experiment [1] a high efficiency regime of stable electron acceleration to kinetic energies ranging from 10 to 40 MeV has been achieved. The main parameters of the electron bunches are comparable with those of bunches provided by commercial Radio-Frequency based Linacs currently used in Hospitals for Intra-Operative Radiation Therapy (IORT). IORT is an emerging technique applied in operating theaters during the surgical treatment of tumors. Performances and structure of a potential laser-driven Hospital accelerator are compared in detail with the ones of several commercial devices. A number of possible advantages of the laser based technique are also discussed.

  17. Nonlinear surface plasma wave induced target normal sheath acceleration of protons

    SciTech Connect

    Liu, C. S.; Tripathi, V. K. Shao, Xi; Liu, T. C.

    2015-02-15

    The mode structure of a large amplitude surface plasma wave (SPW) over a vacuum–plasma interface, including relativistic and ponderomotive nonlinearities, is deduced. It is shown that the SPW excited by a p-polarized laser on a rippled thin foil target can have larger amplitude than the transmitted laser amplitude and cause stronger target normal sheath acceleration of protons as reported in a recent experiment. Substantial enhancement in proton number also occurs due to the larger surface area covered by the SPW.

  18. Laser acceleration of protons using multi-ion plasma gaseous targets

    SciTech Connect

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such a laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.

  19. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE PAGESBeta

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  20. Simulation on buildup of electron cloud in a proton circular accelerator

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wei; Liu, Yu-Dong

    2015-10-01

    Electron cloud interaction with high energy positive beams are believed responsible for various undesirable effects such as vacuum degradation, collective beam instability and even beam loss in high power proton circular accelerators. An important uncertainty in predicting electron cloud instability lies in the detailed processes of the generation and accumulation of the electron cloud. The simulation on the build-up of electron cloud is necessary to further studies on beam instability caused by electron clouds. The China Spallation Neutron Source (CSNS) is an intense proton accelerator facility now being built, whose accelerator complex includes two main parts: an H-linac and a rapid cycling synchrotron (RCS). The RCS accumulates the 80 MeV proton beam and accelerates it to 1.6 GeV with a repetition rate of 25 Hz. During beam injection with lower energy, the emerging electron cloud may cause serious instability and beam loss on the vacuum pipe. A simulation code has been developed to simulate the build-up, distribution and density of electron cloud in CSNS/RCS. Supported by National Natural Science Foundation of China (11275221, 11175193)

  1. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  2. Lower hybrid turbulence at cometary bow wave and acceleration of cometary protons

    NASA Technical Reports Server (NTRS)

    Shapiro, V. D.; Shevchenko, V. I.; Sharma, A. S.; Papadopoulos, K.; Sagdeev, R. Z.; Lebedev, V. B.

    1993-01-01

    The wave measurements at the spacecraft encounters with Comet Halley have shown intense wave activity at the lower hybrid frequency. The excitation of the lower hybrid instability by the pickup cometary ions (protons and water group) in the bow wave region and the quasi-linear diffusion of the ions in these fluctuations are discussed. The quasi-linear diffusion of the pickup protons takes place over a scale length shorter than that of the heavier water group ions. This enhances damping of the waves by protons, and when the pickup proton density is large enough, it can result in the saturation of the instability as this damping balances the heavy ion driven growth. The observed electric field amplitude and the scale length of proton relaxation are in agreement with the theory. For small pickup proton density the instability can saturate due to the wave energy cascade arising from the modulation instability of the large-amplitude lower hybrid waves. This saturation mechanism leads to electron acceleration and suprathermal tail formation.

  3. High Power Proton Accelerator Development at KAERI and its Vacuum System

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  4. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  5. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2015-06-01

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  6. On the feasibility of increasing the energy of laser-accelerated protons by using low-density targets

    SciTech Connect

    Brantov, A. V. Bychenkov, V. Yu.

    2015-06-15

    Optimal regimes of proton acceleration in the interaction of short high-power laser pulses with thin foils and low-density targets are determined by means of 3D numerical simulation. It is demonstrated that the maximum proton energy can be increased by using low-density targets in which ions from the front surface of the target are accelerated most efficiently. It is shown using a particular example that, for the same laser pulse, the energy of protons accelerated from a low-density target can be increased by one-third as compared to a solid-state target.

  7. Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime

    PubMed Central

    Bulanov, S. S.; Brantov, A.; Bychenkov, V. Yu.; Chvykov, V.; Kalinchenko, G.; Matsuoka, T.; Rousseau, P.; Reed, S.; Yanovsky, V.; Litzenberg, D. W.; Krushelnick, K.; Maksimchuk, A.

    2008-01-01

    We consider the effect of laser beam shaping on proton acceleration in the interaction of a tightly focused pulse with ultrathin double-layer solid targets in the regime of directed Coulomb explosion. In this regime, the heavy ions of the front layer are forced by the laser to expand predominantly in the direction of the pulse propagation, forming a moving longitudinal charge separation electric field, thus increasing the effectiveness of acceleration of second-layer protons. The utilization of beam shaping, namely, the use of flat-top beams, leads to more efficient proton acceleration due to the increase of the longitudinal field. PMID:18850951

  8. Definition and Application of Proton Source Efficiency in Accelerator-Driven Systems

    SciTech Connect

    Seltborg, Per; Wallenius, Jan; Tucek, Kamil; Gudowski, Waclaw

    2003-11-15

    In order to study the beam power amplification of an accelerator-driven system (ADS), a new parameter, the proton source efficiency {psi}* is introduced. {psi}* represents the average importance of the external proton source, relative to the average importance of the eigenmode production, and is closely related to the neutron source efficiency [varphi]*, which is frequently used in the ADS field. [varphi]* is commonly used in the physics of subcritical systems driven by any external source (spallation source, (d,d), (d,t), {sup 252}Cf spontaneous fissions, etc.). On the contrary, {psi}* has been defined in this paper exclusively for ADS studies where the system is driven by a spallation source. The main advantage with using {psi}* instead of [varphi]* for ADS is that the way of defining the external source is unique and that it is proportional to the core power divided by the proton beam power, independent of the neutron source distribution.Numerical simulations have been performed with the Monte Carlo code MCNPX in order to study {psi}* as a function of different design parameters. It was found that, in order to maximize {psi}* and therefore minimize the proton current needs, a target radius as small as possible should be chosen. For target radii smaller than {approx}30 cm, lead-bismuth is a better choice of coolant material than sodium, regarding the proton source efficiency, while for larger target radii the two materials are equally good. The optimal axial proton beam impact was found to be located {approx}20 cm above the core center. Varying the proton energy, {psi}*/E{sub p} was found to have a maximum for proton energies between 1200 and 1400 MeV. Increasing the americium content in the fuel decreases {psi}* considerably, in particular when the target radius is large.

  9. Electron versus proton accelerator driven sub-critical system performance using TRIGA reactors at power

    SciTech Connect

    Carta, M.; Burgio, N.; D'Angelo, A.; Santagata, A.; Petrovich, C.; Schikorr, M.; Beller, D.; Felice, L. S.; Imel, G.; Salvatores, M.

    2006-07-01

    This paper provides a comparison of the performance of an electron accelerator-driven experiment, under discussion within the Reactor Accelerator Coupling Experiments (RACE) Project, being conducted within the U.S. Dept. of Energy's Advanced Fuel Cycle Initiative (AFCI), and of the proton-driven experiment TRADE (TRIGA Accelerator Driven Experiment) originally planned at ENEA-Casaccia in Italy. Both experiments foresee the coupling to sub-critical TRIGA core configurations, and are aimed to investigate the relevant kinetic and dynamic accelerator-driven systems (ADS) core behavior characteristics in the presence of thermal reactivity feedback effects. TRADE was based on the coupling of an upgraded proton cyclotron, producing neutrons via spallation reactions on a tantalum (Ta) target, with the core driven at a maximum power around 200 kW. RACE is based on the coupling of an Electron Linac accelerator, producing neutrons via photoneutron reactions on a tungsten-copper (W-Cu) or uranium (U) target, with the core driven at a maximum power around 50 kW. The paper is focused on analysis of expected dynamic power response of the RACE core following reactivity and/or source transients. TRADE and RACE target-core power coupling coefficients are compared and discussed. (authors)

  10. First experimental results from 2 MeV proton tandem accelerator for neutron production.

    PubMed

    Kudryavtsev, A; Belchenko, Yu; Burdakov, A; Davydenko, V; Ivanov, A; Khilchenko, A; Konstantinov, S; Krivenko, A; Kuznetsov, A; Mekler, K; Sanin, A; Shirokov, V; Sorokin, I; Sulyaev, Yu; Tiunov, M

    2008-02-01

    A 2 MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction (7)Li(p,n)(7)Be for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724 MeV resonance gamma, which are produced via reaction (13)C(p,gamma)(14)N, absorption in nitrogen. PMID:18315262

  11. Construction of low current 30 keV proton accelerator for detection efficiency studies

    NASA Astrophysics Data System (ADS)

    Salas Bacci, Americo; Baessler, Stefan; Ross, Aaron; Roane, Nicholas; Whitaker, C. J.

    2013-10-01

    We have constructed a small ion source and proton accelerator at UVA. This accelerator is needed for the characterization of the detection efficiency of a large area, thick, 127-hexagonal segmented Silicon detector for the neutron beta decay ``Nab'' experiment that will be carried out at SNS, Oak Ridge National Laboratory in search of physics beyond the standard model. We will present the design, simulations, operation, and detection of 30 keV H+ and H2+, as well as our efforts to stabilize and correlate both ion currents.

  12. First experimental results from 2 MeV proton tandem accelerator for neutron production

    SciTech Connect

    Kudryavtsev, A.; Belchenko, Yu.; Burdakov, A.; Davydenko, V.; Ivanov, A.; Khilchenko, A.; Konstantinov, S.; Krivenko, A.; Kuznetsov, A.; Mekler, K.; Sanin, A.; Shirokov, V.; Sorokin, I.; Sulyaev, Yu.; Tiunov, M.

    2008-02-15

    A 2 MeV proton tandem accelerator with vacuum insulation was developed and first experiments are carried out in the Budker Institute of Nuclear Physics (Novosibirsk). The accelerator is designed for neutron production via reaction {sup 7}Li(p,n){sup 7}Be for the boron neutron-capture therapy of the brain tumors, and for explosive detection based on 9.1724 MeV resonance gamma, which are produced via reaction {sup 13}C(p,{gamma}){sup 14}N, absorption in nitrogen.

  13. Protons acceleration in thin CH foils by ultra-intense femtosecond laser pulses

    SciTech Connect

    Kosarev, I. N.

    2015-03-15

    Interaction of femtosecond laser pulses with the intensities 10{sup 21}, 10{sup 22 }W/cm{sup 2} with CH plastic foils is studied in the framework of kinetic theory of laser plasma based on the construction of propagators (in classical limit) for electron and ion distribution functions in plasmas. The calculations have been performed for real densities and charges of plasma ions. Protons are accelerated both in the direction of laser pulse (up to 1 GeV) and in the opposite direction (more than 5 GeV). The mechanisms of forward acceleration are different for various intensities.

  14. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    SciTech Connect

    Lecz, Zs.; Andreev, A.

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  15. Proton acceleration with high-intensity ultrahigh-contrast laser pulses.

    PubMed

    Ceccotti, T; Lévy, A; Popescu, H; Réau, F; D'Oliveira, P; Monot, P; Geindre, J P; Lefebvre, E; Martin, Ph

    2007-11-01

    We report on simultaneous measurements of backward- and forward-accelerated protons spectra when an ultrahigh intensity (approximately 5 x 10(18) W/cm(20), ultrahigh contrast (>10(10)) laser pulse interacts with foils of thickness ranging from 0.08 to 105 microm. Under such conditions, free of preplasma originating from ionization of the laser-irradiated surface, we show that the maximum proton energies are proportional to the p component of the laser electric field only and not to the ponderomotive force and that the characteristics of the proton beams originating from both target sides are almost identical. All these points have been corroborated by extensive 1D and 2D particle-in-cell simulations showing a very good agreement with the experimental data. PMID:17995415

  16. Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses

    SciTech Connect

    Ceccotti, T.; Levy, A.; Popescu, H.; Reau, F.; D'Oliveira, P.; Monot, P.; Martin, Ph.; Lefebvre, E.

    2007-11-02

    We report on simultaneous measurements of backward- and forward-accelerated protons spectra when an ultrahigh intensity ({approx}5x10{sup 18} W/cm{sup 2}), ultrahigh contrast (>10{sup 10}) laser pulse interacts with foils of thickness ranging from 0.08 to 105 {mu}m. Under such conditions, free of preplasma originating from ionization of the laser-irradiated surface, we show that the maximum proton energies are proportional to the p component of the laser electric field only and not to the ponderomotive force and that the characteristics of the proton beams originating from both target sides are almost identical. All these points have been corroborated by extensive 1D and 2D particle-in-cell simulations showing a very good agreement with the experimental data.

  17. Calculations of neutron shielding data for 10-100 MeV proton accelerators.

    PubMed

    Chen, C C; Sheu, R J; Jian, S H

    2005-01-01

    The characteristics of neutron sources and their attenuation in concrete were investigated in detail for protons with energies ranging from 10 to 100 MeV striking on target materials of C, N, Al, Fe, Cu and W. A two-step approach was adopted: thick-target double-differential neutron yields were first calculated from the (p, xn) cross sections recommended in the ICRU Report 63; further, transport simulations of those neutrons in concrete were performed by using the FLUKA Monte Carlo code. The purpose of this study is to provide reasonably accurate parameters for shielding design for 10-100 MeV proton accelerators. Source terms and the corresponding attenuation lengths in concrete for several target materials are given as a function of proton energies and neutron emission angles. PMID:16604637

  18. Numerical study of a linear accelerator using laser-generated proton beams as a source

    SciTech Connect

    Antici, P.; Fazi, M.; Migliorati, M.; Palumbo, L.; Lombardi, A.; Audebert, P.; Fuchs, J.

    2008-12-15

    The injection of laser-generated protons through conventional drift tube linear accelerators (linacs) has been studied numerically. For this, we used the parameters of the proton source produced by ultraintense lasers, i.e., with an intrinsic high beam quality. The numerical particle tracing code PARMELA[L. M. Young and J. H. Billen, LANL Report No. LA-UR-96-1835, 2004] is then used to inject experimentally measured laser-generated protons with energies of 7{+-}0.1 MeV and rms un-normalized emittance of 0.180 mm mrad into one drift tube linac tank that accelerated them to more than 14 MeV. The simulations exhibit un-normalized emittance growths of 8 in x direction and 22.6 in y direction, with final emittances lower than those produced using conventional sources, allowing a potential luminosity gain for the final beam. However, the simulations also exhibit a limitation in the allowed injected proton charge as, over 0.112 mA, space charge effect worsens significantly the beam emittance.

  19. Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell

    SciTech Connect

    Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.

    2009-01-22

    Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.

  20. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui

    2016-01-01

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropy {T}{{e}\\perp }\\gt {T}{{e}| | } develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. The energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.

  1. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  2. Ultrafast phase contrast imaging of laser driven shocks using betatron X-rays

    NASA Astrophysics Data System (ADS)

    Chapman, D. J.; Rutherford, M. E.; White, T. G.; Eakins, D. E.; Wood, J. C.; Poder, K.; Lopes, N. C.; Bryant, J. S. J.; Mangles, S. P. D.; Najmudin, Z.; Cole, J. S.; Albert, F.; Pollack, B. B.; Behm, K. T.; Zhao, Z.; Thomas, A. G. R.; Krushelnick, K.; Schumaker, W.; Glenzer, S.

    2015-06-01

    Bright, high-energy photon sources, such as synchrotrons and more recently the new generation of X-ray free-electron lasers, offer the attractive combination of high brilliance, short pulse duration and high-energy X-rays. Betatron X-rays produced within a laser-plasma wakefield accelerator provide an exciting complementary energetic photon source to these large scale facilities. We describe the first proof-of-principle experiments imaging shock-front evolution in laser driven targets using wakefield betatron X-rays. These pioneering experiments were performed on the 400TW Gemini laser at the Rutherford Appleton Laboratory, UK. Shock waves were driven into silicon wafers along the [100] direction, and stroboscopically imaged perpendicular to the shock propagation direction using a ~ 40 fs betatron X-ray pulse. These initial results showcase a promising, potentially table top sized X-ray source suitable for probing the response of materials under extreme condition.

  3. Reflective optical probing of laser-driven plasmas at the rear surface of solid targets

    NASA Astrophysics Data System (ADS)

    Metzkes, J.; Zeil, K.; Kraft, S. D.; Rehwald, M.; Cowan, T. E.; Schramm, U.

    2016-03-01

    In this paper, a reflective optical pump-probe technique for laser-driven plasmas at solid density target surfaces is presented. The technique is termed high depth-of-field time-resolved microscopy and it exploits the angular redistribution of the probe beam intensity after the probe’s reflection from an expanded and hence non-planar iso-density surface in the plasma. The main application of the robust technique, which uses simple imaging of the probe beam, is the spatio-temporal resolution of the plasma formation and expansion at the target rear surface. Analytic and numerical modeling of the experimental setup are applied for the analysis of the experimental results. The relevance and potential of the optical plasma probing method is highlighted by the application to targets of different geometries, helping to understand the target shape-related differences in the ion acceleration performance.

  4. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    PubMed

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles. PMID:25600561

  5. How to Produce a Reactor Neutron Spectrum Using a Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Burns, K.; Wootan, D.; Gates, R.; Schmitt, B.; Asner, D. M.

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  6. How to produce a reactor neutron spectrum using a proton accelerator

    SciTech Connect

    Burns, Kimberly A.; Wootan, David W.; Gates, Robert O.; Schmitt, Bruce E.; Asner, David M.

    2015-01-01

    A method for reproducing the neutron energy spectrum present in the core of an operating nuclear reactor using an engineered target in an accelerator proton beam is proposed. The protons interact with a target to create neutrons through various (p,n) type reactions. Spectral tailoring of the emitted neutrons can be used to modify the energy of the generated neutron spectrum to represent various reactor spectra. Through the use of moderators and reflectors, the neutron spectrum can be modified to reproduce many different spectra of interest including spectra in small thermal test reactors, large pressurized water reactors, and fast reactors. The particular application of this methodology is the design of an experimental approach for using an accelerator to measure the betas produced during fission to be used to reduce uncertainties in the interpretation of reactor antineutrino measurements. This approach involves using a proton accelerator to produce a neutron field representative of a power reactor, and using this neutron field to irradiate fission foils of the primary isotopes contributing to fission in the reactor, creating unstable, neutron rich fission products that subsequently beta decay and emit electron antineutrinos. A major advantage of an accelerator neutron source over a neutron beam from a thermal reactor is that the fast neutrons can be slowed down or tailored to approximate various power reactor spectra. An accelerator based neutron source that can be tailored to match various reactor neutron spectra provides an advantage for control in studying how changes in the neutron spectra affect parameters such as the resulting fission product beta spectrum.

  7. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  8. Study of proton acceleration at the target front surface in laser-solid interactions by neutron spectroscopy

    SciTech Connect

    Youssef, A.; Kodama, R.; Tampo, M.

    2006-03-15

    Proton acceleration inside solid LiF and CH-LiF targets irradiated by a 450-fs, 20-J, 1053-nm laser at an intensity of 3x10{sup 18} W/cm{sup 2} has been studied via neutron spectroscopy. Neutron spectra produced through the {sup 7}Li(p,n){sup 7}Be reaction that occurs between accelerated protons, at the front surface, and background {sup 7}Li ions inside the target. From measured and calculated spectra, by three-dimensional Monte Carlo code, the maximum energy, total number, and slope temperature of the accelerated protons are investigated. The study indicates that protons originate at the front surface and are accelerated to a maximum energy that is reasonably consistent with the calculated one due to the ponderomotive force.

  9. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    SciTech Connect

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-15

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  10. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-01

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  11. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  12. Fusion yield enhancement in magnetized laser-driven implosions.

    PubMed

    Chang, P Y; Fiksel, G; Hohenberger, M; Knauer, J P; Betti, R; Marshall, F J; Meyerhofer, D D; Séguin, F H; Petrasso, R D

    2011-07-15

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively. PMID:21838372

  13. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  14. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    NASA Astrophysics Data System (ADS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Betti, R.; Marshall, F. J.; Meyerhofer, D. D.; Séguin, F. H.; Petrasso, R. D.

    2011-07-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  15. Laser-driven flat plate impacts to 100 GPA with sub-nanosecond pulse duration and resolution for material property studies

    SciTech Connect

    Paisley, D.L.; Warnes, R.H.; Kopp, R.A.

    1991-01-01

    Miniature laser-driven flat plates (<1-mm diam {times} 0.5--10{mu}m thick, typical) of aluminum, cooper, tungsten, and other materials are accelerated to {le}5 km/s. These miniature plates are used to generate one-dimensional shock waves in solids, liquids, and crystals. Dynamic measurements of spall strength at strain rates {le}10{sup 7} s{sup {minus}1}, elastic-plastic shock wave profiles in 10-{mu}m-thick targets, shocked free-surface acceleration of 10{sup 12} m/s{sup 2}, and laser-driven plate launch accelerations of 10{sup 10} m/s{sup 2} are routinely obtained. The small size of the sample of and projectile mass permits recovery of targets without additional unintended damage or energy deposited into the test specimen. These miniature plates can be launched with conventional 1-J laboratory lasers. 10 refs., 5 figs.

  16. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.

    PubMed

    Yoo, Seung Hoon; Cho, Ilsung; Cho, Sungho; Song, Yongkeun; Jung, Won-Gyun; Kim, Dae-Hyun; Shin, Dongho; Lee, Se Byeong; Pae, Ki-Hong; Park, Sung Yong

    2014-12-01

    Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm. PMID:25154880

  17. Research program for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    NASA Astrophysics Data System (ADS)

    Barashenkov, V. S.; Buttsev, V. S.; Buttseva, G. L.; Dudarev, S. Ju.; Polanski, A.; Puzynin, I. V.; Sissakian, A. N.

    2000-07-01

    This paper presents the research program of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating in the Laboratory of Nuclear Problems at the Joint Institute for Nuclear Research in Dubna. Mixed-oxide (MOX) fuel (25% PuO2+75% UO2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient keff=0.945, energetic gain G=30, and accelerator beam power of 0.5 kW.

  18. Shielding Benchmark Experiments Through Concrete and Iron with High-Energy Proton and Heavy Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Sasaki, M.; Nunomiya, T.; Nakao, N.; Kim, E.; Kurosawa, T.; Taniguchi, S.; Iwase, H.; Uwamino, Y.; Shibata, T.; Ito, S.; Fukumura, A.; Perry, D. R.; Wright, P.

    The deep penetration of neutrons through thick shield has become a very serious problem in the shielding design of high-energy, high-intensity accelerator facility. In the design calculation, the Monte Carlo transport calculation through thick shields has large statistical errors and the basic nuclear data and model used in the existing Monte Carlo codes are not well evaluated because of very few experimental data. It is therefore strongly needed to do the deep penetration experiment as shielding benchmark for investigating the calculation accuracy. Under this circumference, we performed the following two shielding experiments through concrete and iron, one with a 800 MeV proton accelerator of the Rutherford Appleton Laboratory (RAL), England and the other with a high energy heavy iron accelerator of the National Institute of Radiological Sciences (NIRS), Japan. Here these two shielding benchmark experiments are outlined.

  19. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    SciTech Connect

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-06-15

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches.

  20. A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute

    NASA Astrophysics Data System (ADS)

    Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.

    2014-08-01

    Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.

  1. ELECTRON AND PROTON ACCELERATION DURING THE FIRST GROUND LEVEL ENHANCEMENT EVENT OF SOLAR CYCLE 24

    SciTech Connect

    Li, C.; Sun, L. P.; Firoz, Kazi A.; Miroshnichenko, L. I.

    2013-06-10

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 {+-} 0.05 AU) and solar particle release time (01:29 {+-} 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released {approx}10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of {approx}1.12 GeV, are probably accelerated by the CME-driven shock when it travels to {approx}3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

  2. Electron and Proton Acceleration during the First Ground Level Enhancement Event of Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Li, C.; Firoz, Kazi A.; Sun, L. P.; Miroshnichenko, L. I.

    2013-06-01

    High-energy particles were recorded by near-Earth spacecraft and ground-based neutron monitors (NMs) on 2012 May 17. This event was the first ground level enhancement (GLE) of solar cycle 24. In this study, we try to identify the acceleration source(s) of solar energetic particles by combining in situ particle measurements from the WIND/3DP, GOES 13, and solar cosmic rays registered by several NMs, as well as remote-sensing solar observations from SDO/AIA, SOHO/LASCO, and RHESSI. We derive the interplanetary magnetic field (IMF) path length (1.25 ± 0.05 AU) and solar particle release time (01:29 ± 00:01 UT) of the first arriving electrons by using their velocity dispersion and taking into account contamination effects. We found that the electron impulsive injection phase, indicated by the dramatic change in the spectral index, is consistent with flare non-thermal emission and type III radio bursts. Based on the potential field source surface concept, modeling of the open-field lines rooted in the active region has been performed to provide escape channels for flare-accelerated electrons. Meanwhile, relativistic protons are found to be released ~10 minutes later than the electrons, assuming their scatter-free travel along the same IMF path length. Combining multi-wavelength imaging data of the prominence eruption and coronal mass ejection (CME), we obtain evidence that GLE protons, with an estimated kinetic energy of ~1.12 GeV, are probably accelerated by the CME-driven shock when it travels to ~3.07 solar radii. The time-of-maximum spectrum of protons is typical for shock wave acceleration.

  3. Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas.

    PubMed

    Totorica, Samuel R; Abel, Tom; Fiuza, Frederico

    2016-03-01

    The possibility of studying nonthermal electron energization in laser-driven plasma experiments of magnetic reconnection is studied using two- and three-dimensional particle-in-cell simulations. It is demonstrated that nonthermal electrons with energies more than an order of magnitude larger than the initial thermal energy can be produced in plasma conditions currently accessible in the laboratory. Electrons are accelerated by the reconnection electric field, being injected at varied distances from the X points, and in some cases trapped in plasmoids, before escaping the finite-sized system. Trapped electrons can be further energized by the electric field arising from the motion of the plasmoid. This acceleration gives rise to a nonthermal electron component that resembles a power-law spectrum, containing up to ∼8% of the initial energy of the interacting electrons and ∼24% of the initial magnetic energy. Estimates of the maximum electron energy and of the plasma conditions required to observe suprathermal electron acceleration are provided, paving the way for a new platform for the experimental study of particle acceleration induced by reconnection. PMID:26991182

  4. Dynamics of Laser-Driven Shock Waves in Solid Targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  5. Focusing of high-current laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.

    2007-04-01

    Using a two-dimensional relativistic hydrodynamic code, it is shown that a dense high-current ion beam driven by a short-pulse laser can be effectively focused by curving the target front surface. The focused beam parameters essentially depend on the density gradient scale length of the preplasma Ln and the surface curvature radius RT. When Ln⩽0.5λL (λL is the laser wavelength) and RT is comparable with the laser beam aperture dL, a significant fraction of the accelerated ions is focused on a spot much smaller than dL, which results in a considerable increase in the ion fluence and current density. Using high-contrast multipetawatt picosecond laser pulses of relativistic intensity (˜1020W/cm2), focused ion (proton) current densities approaching those required for fast ignition of DT fuel seem to be feasible.

  6. Laser-Driven Coherent Betatron Oscillation in a Laser-Wakefield Cavity: Formation of Sinusoid Beam Shapes and Coherent Trajectories

    SciTech Connect

    Nemeth, Karoly; Li Yuelin; Shang Hairong; Harkay, Katherine C.; Shen Baifei; Crowell, Robert; Cary, John R.

    2009-01-22

    High amplitude coherent electron-trajectories have been seen in 3D particle-in-cell simulations of the colliding pulse injection scheme of laser-wakefield accelerators in the bubble regime, and explained as a consequence of laser-driven coherent betatron oscillation in our recent paper [K. Nemeth et al., Phys. Rev. Lett. 100, 095002 (2008)]. In the present paper we provide more details on the shape of the trajectories, their relationship to the phase velocity of the laser and indicate the dependence of the phenomenon on the accuracy of the numerical representation and choice of laser/plasma parameters.

  7. Novel Slow Extraction Scheme for Proton Accelerators Using Pulsed Dipole Correctors and Crystals

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2012-05-01

    Slow extraction of protons beams from circular accelerators is currently widely used for a variety of beam-based experiments. The method has some deficiencies including limited efficiency of extraction, radiation induced due to scattering on the electrostatic septa and limited beam pipe aperture, beam dynamics effects of space charge forces and magnet power supplies ripple. Here we present a novel slow extraction scheme employing a number of non-standard accelerator elements, such as Silicone crystal strips and pulsed stripline dipole correctors, and illustrate practicality of these examples at the 8 GeV proton Recycler Ring at Fermilab. The proposed method of non-resonant slow extraction of protons by bent crystals in combination with orbit fast deflectors shows great promise in simulations. We propose to initiate an R&D program in the Fermilab 8 GeV Recycler to address the key issues of the method: (a) feasibility of very short crystals - from few mm down to 0.2 mm; (b) their efficiency in the channelling and volume reflection regimes; (c) practical aspects of the fast deflectors.

  8. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  9. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams

    SciTech Connect

    Schollmeier, M.; Geissel, M.; Sefkow, A. B.; Flippo, K. A.

    2014-04-15

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  10. Search by mariner 10 for electrons and protons accelerated in association with venus.

    PubMed

    Simpson, J A; Eraker, J H; Lamport, J E; Walpole, P H

    1974-03-29

    The University of Chicago instrumnents on board the Mariner 10 spacecraft bound for Mercury have measured energy spectra and fluxes of electrons from 0.18 to 30 million electron volts and protons from 0.5 to 68 million electron volts along the plasma wake and in the bow shock regions associated with Venus. Unusually quiet solar conditions and improved instrumentation made it possible to search for much lower fluxes of protons and electrons in similar energy regions as compared to earlier Mariner missions to Venus-that is, lower by a factor of 10(2) for protons and 10(3) for electrons. We found no evidence for electrons or protons either in the form of increases of intensity or energy spectral changes in the vicinity of the planet, nor any evidence of bursts of radiation in or near the observed bow shock where bursts of electrons might have been expected in analogy with the bow shock at the earth. The importance of these null results for determining the necessary and sufficient conditions for particle acceleration is discussed with respect to magnetometer evidence that Venus does not have a magnetosphere. PMID:17791375

  11. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  12. Acceleration of interstellar pickup protons at the heliospheric termination shock: Voyager 1/2 energetic proton fluxes in the inner heliosheath

    NASA Astrophysics Data System (ADS)

    Chalov, S. V.; Malama, Y. G.; Alexashov, D. B.; Izmodenov, V. V.

    2016-01-01

    Fluxes of energetic protons in the range from 30 keV up to several MeV measured at the Voyager 1/2 spacecraft downstream of the heliospheric termination shock can be explained by shock-drift acceleration theory, which includes variations of the magnetic field direction in a vicinity of the shock. The variations can be connected with the sector structure of the interplanetary magnetic field near the solar equatorial plane. Theoretical fluxes of accelerated protons are calculated numerically in the framework of a 3D kinetic-magnetohydrodynamic model of the interaction of the solar wind and local interstellar medium.

  13. Focal spot effects on the generation of proton beams during target normal sheath acceleration

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Zhang, H.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Yu, L. H.; Chu, Y. X.; Li, Y. Y.; Xu, T. J.; Zhang, H.; Zhai, S. H.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z.

    2016-02-01

    Focal spot effects on the generation of proton beams are investigated by a high-intensity high-contrast laser irradiating on solid foil in target normal sheath acceleration experiments. Different spot size, transverse shape, and intensity of the laser are obtained by appropriately using deformable mirrors and parabolic mirrors. Experiments show that the maximum proton energy is mainly determined by the laser intensity if the focal spot size is not seriously changed. Compared with the previous experimental results, the optimum foil thickness d o is scaled by the laser intensity I as d o ~ I 0.33. The corresponding theoretical estimation is carried out as d o ~ I 0.25 for ultra-high intensity laser systems with similar contrast. MULTI and particle-in-cell simulations are used to interpret the experimental results.

  14. Laser acceleration of monoenergetic protons with a near-critical, optically-shaped gas target

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Hsin; Helle, Michael; Ting, Antonio; Gordon, Daniel; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Marcus; Najmudin, Zulfikar

    2015-11-01

    Laser-based ion acceleration is studied using the intense terawatt CO2 laser pulse with a near-critical hydrogen gas target. The gas density profile is tailored by a hydrodynamic shock, which is launched by ablation of solid with a moderate-energy, nanosecond Nd:YAG laser pulse in the vicinity of the gas jet. A sharp density gradient is thus created near the edge of the gas column, resulting to ~ 6X local density enhancement up to several times of critical density within 100 micrometers before CO2 laser pulse arrives. With such density profile, we have observed quasi-monoenergetic proton beams with energies >1 MeV and good shot-to-shot reproducibility. In contrast, no protons were observed when the hydrodynamic shock is absent. Results from experiments and simulations will be presented. This work is supported by U.S. Department of Energy.

  15. Reduction of proton acceleration in high-intensity laser interaction with solid two-layer targets

    SciTech Connect

    Wei, M. S.; Davies, J. R.; Clark, E. L.; Beg, F. N.; Gopal, A.; Tatarakis, M.; Willingale, L.; Nilson, P.; Dangor, A. E.; Norreys, P. A.; Zepf, M.; Krushelnick, K.

    2006-12-15

    Reduction of proton acceleration in the interaction of a high-intensity, picosecond laser with a 50-{mu}m aluminum target was observed when 0.1-6 {mu}m of plastic was deposited on the back surface (opposite side of the laser). The maximum energy and number of energetic protons observed at the back of the target were greatly reduced in comparison to pure aluminum and plastic targets of the same thickness. This is attributed to the effect of the interface between the layers. Modeling of the electron propagation in the targets using a hybrid code showed strong magnetic-field generation at the interface and rapid surface heating of the aluminum layer, which may account for the results.

  16. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  17. Guiding and collimation of laser-accelerated proton beams using thin foils followed with a hollow plasma channel

    NASA Astrophysics Data System (ADS)

    Xiao, K. D.; Zhou, C. T.; Qiao, B.; He, X. T.

    2015-09-01

    It is proposed that guided and collimated proton acceleration by intense lasers can be achieved using an advanced target—a thin foil followed by a hollow plasma channel. For the advanced target, the laser-accelerated hot electrons can be confined in the hollow channel at the foil rear side, which leads to the formation of transversely localized, Gaussian-distributed sheath electric field and resultantly guiding of proton acceleration. Further, due to the hot electron flow along the channel wall, a strong focusing transverse electric field is induced, taking the place of the original defocusing one driven by hot electron pressure in the case of a purely thin foil target, which results in collimation of proton beams. Two-dimensional particle-in-cell simulations show that collimated proton beams with energy about 20 MeV and nearly half-reduced divergence of 26° are produced at laser intensities 1020 W/cm2 by using the advanced target.

  18. Proton Acceleration beyond 100 EeV by an Oblique Shock Wave in the Jet of 3C 273

    NASA Astrophysics Data System (ADS)

    Honda, Yasuko S.; Honda, Mitsuru

    2004-09-01

    We estimate the highest energy of a proton diffusively accelerated by a shock in knot A1 of the jet in luminous nearby quasar 3C 273. Referring to the recent polarization measurements using very long baseline interferometry, we consider the shock propagation across magnetic field lines, namely, configuration of the oblique shock. For larger inclination of the field lines, the effects of particle reflection at the shock front are more pronounced, to significantly increase acceleration efficiency. The quasiperpendicular shock turns out to be needed for safely achieving the proton acceleration to the energy above 100 EeV (1020 eV) in a parameter domain reflecting conceivable energy restrictions.

  19. Laser-Foil Acceleration of High-Energy Protons in Small-Scale Plasma Gradients

    SciTech Connect

    Fuchs, J.; Audebert, P.; Cecchetti, C. A.; Borghesi, M.; Romagnani, L.; Grismayer, T.; Mora, P.; D'Humieres, E.; Sentoku, Y.; Antici, P.; Atzeni, S.; Schiavi, A.; Pipahl, A.; Toncian, T.; Willi, O.

    2007-07-06

    Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters.

  20. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    SciTech Connect

    HUANG,H.; AHRENS,L.; BAI,M.; ET AL.

    2005-05-16

    The RHIC spin program requires 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is no space for a full snake to overcome numerous depolarizing resonances. An ac dipole and a partial snake have been used to preserve beam polarization in the past few years. Two helical snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the setup and preliminary results.

  1. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  2. ANALYSIS OF ACCELERATOR BASED NEUTRON SPECTRA FOR BNCT USING PROTON RECOIL SPECTROSCOPY

    SciTech Connect

    WIELOPOLSKI,L.; LUDEWIG,H.; POWELL,J.R.; RAPARIA,D.; ALESSI,J.G.; LOWENSTEIN,D.I.

    1998-11-06

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  3. Laser-foil acceleration of high-energy protons in small-scale plasma gradients.

    PubMed

    Fuchs, J; Cecchetti, C A; Borghesi, M; Grismayer, T; d'Humières, E; Antici, P; Atzeni, S; Mora, P; Pipahl, A; Romagnani, L; Schiavi, A; Sentoku, Y; Toncian, T; Audebert, P; Willi, O

    2007-07-01

    Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters. PMID:17678159

  4. Proposed method for high-speed plasma density measurement in proton-driven plasma wakefield acceleration

    SciTech Connect

    Tarkeshian, R.; Reimann, O.; Muggli, P.

    2012-12-21

    Recently a proton-bunch-driven plasma wakefield acceleration experiment using the CERN-SPS beam was proposed. Different types of plasma cells are under study, especially laser ionization, plasma discharge, and helicon sources. One of the key parameters is the spatial uniformity of the plasma density profile along the cell that has to be within < 1% of the nominal density (6 Multiplication-Sign 10{sup 14} cm{sup -3}). Here a setup based on a photomixing concept is proposed to measure the plasma cut-off frequency and determine the plasma density.

  5. Bright Laser-Driven Neutron Source Based on the Relativistic Transparency of Solids

    NASA Astrophysics Data System (ADS)

    Roth, M.; Jung, D.; Falk, K.; Guler, N.; Deppert, O.; Devlin, M.; Favalli, A.; Fernandez, J.; Gautier, D.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Johnson, R. P.; Merrill, F.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Taddeucci, T.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wilde, C. H.; Wurden, G. A.

    2013-01-01

    Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers sufficient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 1010n/sr. We present results comparing the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.

  6. Bright laser-driven neutron source based on the relativistic transparency of solids.

    PubMed

    Roth, M; Jung, D; Falk, K; Guler, N; Deppert, O; Devlin, M; Favalli, A; Fernandez, J; Gautier, D; Geissel, M; Haight, R; Hamilton, C E; Hegelich, B M; Johnson, R P; Merrill, F; Schaumann, G; Schoenberg, K; Schollmeier, M; Shimada, T; Taddeucci, T; Tybo, J L; Wagner, F; Wender, S A; Wilde, C H; Wurden, G A

    2013-01-25

    Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers sufficient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of 10(10)  n/sr. We present results comparing the two acceleration mechanisms and the first short pulse laser generated neutron radiograph. PMID:25166169

  7. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    SciTech Connect

    Takahashi, Hiroshi

    1994-04-01

    This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety.

  8. The safe and economical operations of a reactor driven by a small proton accelerator

    SciTech Connect

    Takahashi, Hiroshi; Takashita, Hirofumi

    1994-06-01

    An accelerator can be used to increase the safety and neutron economy of a power reactor and transmuter of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9-0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the radiation damage of the target area, and discuss the necessity of high neutron economy to transmute the long lived fission products using the fast reactor system.

  9. Electron self-injection in the proton-driven-plasma-wakefield acceleration

    SciTech Connect

    Hu, Zhang-Hu; Wang, You-Nian

    2013-12-15

    The self-injection process of plasma electrons in the proton-driven-plasma-wakefield acceleration scheme is investigated using a two-dimensional, electromagnetic particle-in-cell method. Plasma electrons are self-injected into the back of the first acceleration bucket during the initial bubble formation period, where the wake phase velocity is low enough to trap sufficient electrons. Most of the self-injected electrons are initially located within a distance of the skin depth c/ω{sub pe} to the beam axis. A decrease (or increase) in the beam radius (or length) leads to a significant reduction in the total charges of self-injected electron bunch. Compared to the uniform plasma, the energy spread, emittance and total charges of the self-injected bunch are reduced in the plasma channel case, due to a reduced injection of plasma electrons that initially located further away from the beam axis.

  10. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    SciTech Connect

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  11. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons. PMID:23410447

  12. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  13. Laser Driven Shock Experiments for Deuterium EOS Studies

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Mostovych, Andrew

    2005-10-01

    With the Nike KrF laser facility at the Naval Research Laboratory, we have conducted laser driven shock experiments along the primary Hugoniot of deuterium in the pressure range 25 ˜ 200 GPa (0.25 ˜ 2 Mbar). A streak camera was used to resolve the optical self-emission from the shocks and provide information about the shock temperatures. A NIST traceable lamp with photomultipliers was used to calibrate in situ the device for the temperature measurements. Velocity interferometer system for any reflector (VISAR) measured the shock speed and the reflectivity at the shock front. The preheat effect on the shock formation is also investigated. The results from these measurements will be presented to evaluate various EOS models. This research was performed in Laser Plasma Branch, Plasma Physics Division, Naval Research Laboratory and was supported by the U.S. Department of Energy.

  14. Laser-driven Sisyphus cooling in an optical dipole trap

    SciTech Connect

    Ivanov, Vladyslav V.; Gupta, Subhadeep

    2011-12-15

    We propose a laser-driven Sisyphus-cooling scheme for atoms confined in a far-off resonance optical dipole trap. Utilizing the differential trap-induced ac Stark shift, two electronic levels of the atom are resonantly coupled by a cooling laser preferentially near the trap bottom. After absorption of a cooling photon, the atom loses energy by climbing the steeper potential, and then spontaneously decays preferentially away from the trap bottom. The proposed method is particularly suited to cooling alkaline-earth-metal-like atoms where two-level systems with narrow electronic transitions are present. Numerical simulations for the cases of {sup 88}Sr and {sup 174}Yb demonstrate the expected recoil and Doppler temperature limits. The method requires a relatively small number of scattered photons and can potentially lead to phase-space densities approaching quantum degeneracy in subsecond time scales.

  15. Laser-driven Sisyphus cooling in an optical dipole trap

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladyslav V.; Gupta, Subhadeep

    2011-12-01

    We propose a laser-driven Sisyphus-cooling scheme for atoms confined in a far-off resonance optical dipole trap. Utilizing the differential trap-induced ac Stark shift, two electronic levels of the atom are resonantly coupled by a cooling laser preferentially near the trap bottom. After absorption of a cooling photon, the atom loses energy by climbing the steeper potential, and then spontaneously decays preferentially away from the trap bottom. The proposed method is particularly suited to cooling alkaline-earth-metal-like atoms where two-level systems with narrow electronic transitions are present. Numerical simulations for the cases of 88Sr and 174Yb demonstrate the expected recoil and Doppler temperature limits. The method requires a relatively small number of scattered photons and can potentially lead to phase-space densities approaching quantum degeneracy in subsecond time scales.

  16. Flyer Velocity Characteristics of the Laser-Driven Miniflyer System

    SciTech Connect

    Gehr, R.J.; Harper, R.W.; Robbins, D.L.; Rupp, T.D.; Sheffield, S.A.; Stahl, D.B.

    1999-07-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity, are discussed.

  17. Studies of laser-driven radiative blast waves

    SciTech Connect

    Edwards, M J; Hansen, J; Edens, A; Ditmire, T; Adams, R; Rambo, P; Ruggles, L; Smith, I; Porter, J

    2004-04-29

    We have performed two sets of experiments looking at laser-driven radiating blast waves. In one set of experiments the effect of a drive laser's passage through a background gas on the hydrodynamical evolution of blast waves was examined. It was found that the laser's passage heats a channel in the gas, creating a region where a portion of the blast wave front had an increased velocity, leading to the formation of a bump-like protrusion on the blast wave. The second set of experiments involved the use of regularly spaced wire arrays to induce perturbations on a blast wave surface. The decay of these perturbations as a function of time was measured for various wave number perturbations and found to be in good agreement with theoretical predictions.

  18. Estimation of thermal neutron fluences in the concrete of proton accelerator facilities from 36Cl production

    NASA Astrophysics Data System (ADS)

    Bessho, K.; Matsumura, H.; Miura, T.; Wang, Q.; Masumoto, K.; Hagura, H.; Nagashima, Y.; Seki, R.; Takahashi, T.; Sasa, K.; Sueki, K.; Matsuhiro, T.; Tosaki, Y.

    2007-06-01

    The thermal neutron fluence that poured into the shielding concrete of proton accelerator facilities was estimated from the in situ production of 36Cl. The thermal neutron fluences at concrete surfaces during 10-30 years of operation were in the range of 1012-1014 n/cm2. The maxima in thermal neutron fluences were observed at ≈5-15 cm in the depths analyzed for 36Cl/35Cl by AMS. These characteristics imply that thermalization of neutrons occurred inside the concrete. Compared to the several tens of MeV cyclotrons, secondary neutrons penetrate deeper into the concrete at the high-energy accelerators possessing acceleration energies of 400 MeV and 12 GeV. The attenuation length of neutrons reflects the energy spectra of secondary neutrons emitted by the nuclear reaction at the beam-loss points. Increasing the energy of secondary neutrons shifts the maximum in the thermal neutron fluences to deeper positions. The data obtained in this study will be useful for the radioactive waste management at accelerator facilities.

  19. Numerical studies of electron acceleration behind self-modulating proton beam in plasma with a density gradient

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Lotov, K.; Sosedkin, A.

    2016-09-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1015cm-3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project-the proof-of-principle experiment on proton driven plasma wakefield acceleration at CERN.

  20. Equation Of State Measurements of Warm Dense Copper Heated By Laser Accelerated Proton Beams

    NASA Astrophysics Data System (ADS)

    Dyer, Gilliss; Feldman, Samuel; Kuk, Donghoon; Wagner, Craig; Gaul, Erhard; Donovan, Michael; Martinez, Mikael; Borger, Teddy; Spinks, Michael; Jiang, Sheng; Aymond, Franki; Akli, Kramer; Ditmire, Todd

    2014-10-01

    We report equation of state (EOS) measurements of solid density transition metals heated to temperatures of 1 to 50 eV by laser accelerated pulsed proton beams. Matter at these densities and temperatures, referred to as warm dense matter (WDM), will exhibit long-range coupling, partial ionization and thermal energies comparable to the Fermi energy, making theoretical predictions of state properties very challenging. Mbar pressures likewise make such states difficult to study in the lab. In this work we use a terawatt or petawatt laser to accelerate MeV protons from a source foil, which then heat an adjacent sample foil. We probe the sample foil on a picosecond timescale using streaked optical pyrometery, time resolved interferometry, and XUV imaging. Previously we and various other groups have applied these techniques to the study of aluminum, one of the best-understood metals from the standpoint of high energy density equations of state. Here we present measurements of Cu, Cr, and Ag. Transition metals such as these are of particular interest because of modeling challenges posed by a partially filled d - orbital.

  1. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  2. Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy

    NASA Astrophysics Data System (ADS)

    Garland, J. M.; Appleby, R. B.; Owen, H.; Tygier, S.

    2015-09-01

    In this paper we present a new lattice design for a 30-350 MeV scaling fixed-field alternating gradient accelerator for proton therapy and tomography—NORMA (NOrmal-conducting Racetrack Medical Accelerator). The energy range allows the realization of proton computed tomography and utilizes normal conducting magnets in both a conventional circular ring option and a novel racetrack configuration, both designed using advanced optimization algorithms we have developed in pyzgoubi. Both configurations consist of ten focusing-defocusing-focusing triplet cells and operate in the second stability region of Hills equation. The ring configuration has a circumference of 60 m, a peak magnetic field seen by the beam of <1.6 T , a maximum horizontal orbit excursion of 44 cm and a dynamic aperture of 68 mm mrad—determined using a novel dynamic aperture (DA) calculation technique. The racetrack alternative is realized by adding magnet-free drift space in between cells at two opposing points in the ring, to facilitate injection and extraction. Our racetrack design has a total magnet-free straight lengths of 4.9 m, a circumference of 71 m, a peak magnetic field seen by the beam of <1.74 T , a maximum horizontal orbit excursion of 50 cm and a DA of 58 mm mrad. A transverse magnet misalignment model is also presented for the ring and racetrack configurations where the DA remains above 40 mm mrad for randomly misaligned error distributions with a standard deviation up to 100 μ m .

  3. A Compact Linac for Proton Therapy Based on a Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y -; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2007-10-29

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  4. Development of an H- ion source for Japan Proton Accelerator Research Complex upgradea)

    NASA Astrophysics Data System (ADS)

    Ohkoshi, K.; Namekawa, Y.; Ueno, A.; Oguri, H.; Ikegami, K.

    2010-02-01

    A cesium (Cs) free H- ion source driven with a lanthanum hexaboride (LaB6) filament was adopted as an ion source for the first stage of the Japan Proton Accelerator Research Complex (J-PARC). At present, the maximum H- ion current produced by the ion source is 38 mA, using which J-PARC can produce a proton beam power of 0.6 MW by accelerating it with the 181 MeV linac and the 3 GeV rapid cycling synchrotron. In order to satisfy the beam power of 1 MW required for the second stage of the J-PARC in the near future, we have to increase the ion current to more than 60 mA. Therefore, we have started to develop a Cs-seeded ion source by adding an external Cs-seeding system to a J-PARC test ion source that has a structure similar to that of the J-PARC ion source except for the fact that the plasma chamber is slightly larger. As a result, a H- ion current of more than 70 mA was obtained from the ion source using a tungsten filament instead of a LaB6 filament with a low arc discharge power of 15 kW (100 V, 150 A).

  5. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  6. Principles of self-modulated proton driven plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Pukhov, Alexander; Tuckmantel, Tobias; Kumar, N.; Upadhyay, A.; Lotov, K.; Khudik, V.; Siemon, C.; Shvets, G.; Muggli, P.; Caldwell, A.

    2012-12-01

    When a long proton bunch propagates in plasma, it is subject to the self-modulational instability. The radius of the proton bunch is modulated at the background plasma wavelength. The wake field is then resonantly excited. The amplitude of the wake is growing exponentially up to a saturation level that can reach a significant fraction of the wave breaking limit. The phase velocity of the wake is defined not only by the driver velocity, but also by the own instability dynamics. At the linear stage of the instability, the phase velocity is decreased that allows to inject low energy electrons in the wake. At the saturation phase, the wake phase velocity becomes close to that of the drvier. Side injection of particles at the right position in plasma may help to improve the maximum energy gain and the quality of acceleration. The wake's phase velocity can be controlled by smooth density gradients. The modulations of the proton bunch can be diagnosed by a transverse coherent transition radiation.

  7. Comparison of scintillators for single shot imaging of laser accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Cook, Nathan

    2012-03-01

    The application of intense laser pulses incident on specialized targets provides exciting new means for generating energetic beams of protons and ions. Recent work has demonstrated the utility of these beams of particles in a variety of applications, from inertial confinement fusion to radiation therapy. These applications require precise control, and subsequently precise feedback from the beam. Imaging techniques can provide the necessary shot-to-shot characterization to be effective as diagnostics. However, the utility of imaging methods scales with the capability of scintillating materials to emit well characterized and consistent radiation upon irradiance by a charged particle beam. We will discuss three candidates for an ideal diagnostic for MeV range protons and light ions. CsI:Tl^+ and Al2O3:Cr^3+ are two inorganic scintillators which exhibit excellent response to hadrons in this energy range. They are compared with the combination diagnostic micro-channel plate with a P43 phosphor screen, which offers advantages in refresh rate and resolution over direct exposure methods. Ultimately we will determine which candidate performs optimally as part of a robust, inexpensive diagnostic for laser accelerated protons and light ions.

  8. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect

    Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D.; Gray, R. J.; McKenna, P.; Rosinski, M.; Badziak, J.; Wolowski, J.; Deppert, O.; Batani, D.; Davies, J. R.; Hassan, S. M.; Tatarakis, M.; and others

    2014-02-24

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 μm-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.

  9. Towards Spectral Control of Laser-Driven Ion Beams Generated in the Relativistic Transparency Regime

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.; Gautier, D. C.; Hamilton, C.; Huang, C.; Palaniyappan, S.

    2014-10-01

    Until recently, experiments on the LANL Trident laser in the relativistic transparency regime have demonstrated efficient, volumetric acceleration of the bulk target ions to high energies by the laser-plasma interaction, but with broad ion-energy distributions. That ion acceleration mechanism (Breakout Afterburner) is intrinsically capable of producing quasi-monoenergetic ion-energy distributions. However, there are processes responsible for energy spread, both during the laser-plasma interaction with present-day experimental conditions, as well as during the subsequent transport of the beam, driven by expansion of the co-moving hot-electron population. Strategies to counter such spread are discussed. Furthermore, our work to understand the recent observation of efficiently-generated, quasi-monoenergetic, ~150 MeV Al-ion beams indicates that the dynamics immediately following the laser-plasma interaction can be quite important and beneficial. It has uncovered a new strategy, i.e., using plasma-electron dynamics to increase the ion energy and to decrease its spread. This presentation thus motivates and frames two companion talks on these laser-driven Al-ion beams by Palaniyappan et al. and Huang et al. in this conference. This work is sponsored by the LANL LDRD Program.

  10. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  11. Design and test of superconducting RF cavity prototypes for high intensity proton accelerators

    NASA Astrophysics Data System (ADS)

    Junquera, T.; Biarrotte, J. L.; Saugnac, H.; Gassot, H.; Lesrel, J.; Olry, G.; Bousson, S.; Safa, H.; Charrier, J. P.; Devanz, G.

    2002-05-01

    High intensity proton beams, in the multi-MW range (typically 1 GeV and a few mA) are considered today for different applications: neutron sources, nuclear waste transmutation, radioactive ion beams and neutrino factories. All the foreseen projects are based on superconducting RF cavities for the high energy part of the linac accelerator between 100 MeV and 1 GeV. In this paper we present conceptual and experimental work made by the French group in the R&D preliminary phase. The aim of this study was to design an optimized cavity prototype integrating the more recent progress on RF superconductivity in terms of fabrication and preparation techniques. To reach high accelerating gradients while keeping safety margins and good reliability imposes careful cavity geometry optimization and detailed study of some important technological issues. The most relevant results obtained with several cavity prototypes (accelerating gradient, multipactor,…) are presented. Some other important components of the cavity (helium tank and cold tuner) are also discussed.

  12. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    NASA Astrophysics Data System (ADS)

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Müller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-01

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  13. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    SciTech Connect

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Mueller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-10

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  14. Acceleration of protons in plasma produced from a thin plastic or aluminum target by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Rosinski, M.; Badziak, J.; Parys, P.; Zaras-Szydlowska, A.; Ryc, L.; Torrisi, L.; Szydlowski, A.; Malinowska, A.; Kaczmarczyk, B.; Makowski, J.; Torrisi, A.

    2016-05-01

    The acceleration of protons in plasma produced from thin mylar (3.5 μ m) and aluminum (2 μm) targets by a 45-fs laser pulses with the energy of 400 mJ and the intensity of up to 1019 W/cm2 was investigated. Characteristics of forward-accelerated protons were measured by the time-of-flight method. In the measurements, special attention was paid to the dependence of proton beam parameters on the laser focus position (FP) in relation to the target surface which resulted in the intensity change within a factor of ~ 10. It was observed that in the case of using the Mylar target, the dependence of both the maximum (Epmax) and the mean (langleEprangle) proton energy on |Δx| is clearly non-symmetric with regard to the point where FP = 0 (the focal plane on the target surface) and highest proton energies are achieved when the focal plane is situated in front of the target. In particular, for the target with the thickness of 3.5 μ m Epmax reached 2.2 MeV for FP = +50 μm while for FP = 0 and FP = ‑100 μm the maximum proton energies reached only 1.6 MeV and 1.3 MeV, respectively. For the aluminum target of 2 μm thickness Ep changed only within ~ 40% and the highest proton energies reached 2.4 MeV.

  15. Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave

    SciTech Connect

    Tsujino, Masashi; Sano, Tomokazu; Sakata, Osami; Ozaki, Norimasa; Kodama, Ryosuke; Kimura, Shigeru; Takeda, Shingo; Kobayashi, Kojiro F.; Hirose, Akio

    2011-12-15

    We measured the grain size of metastable phase of Si synthesized by shock compression. We analyzed the crystalline structures of the femtosecond laser-driven shock compressed silicon with x-ray diffraction measurements. We found that submicron grains of metastable Si-VIII exist in the silicon. We suggest that the pressure loading time is too short for the nucleated high-pressure phases to grow in case of the femtosecond laser-driven shock compression, therefore Si-VIII grains of submicron size are obtained. We are expecting to discover other unique crystalline structures induced by the femtosecond laser-driven shock wave.

  16. Laser-based acceleration for nuclear physics experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Tesileanu, O.; Asavei, Th.; Dancus, I.; Gales, S.; Negoita, F.; Turcu, I. C. E.; Ursescu, D.; Zamfir, N. V.

    2016-05-01

    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments.

  17. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  18. Beyond the CMSSM without an accelerator: proton decay and direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Ellis, John; Evans, Jason L.; Luo, Feng; Nagata, Natsumi; Olive, Keith A.; Sandick, Pearl

    2016-01-01

    We consider two potential non-accelerator signatures of generalizations of the well-studied constrained minimal supersymmetric standard model (CMSSM). In one generalization, the universality constraints on soft supersymmetry-breaking parameters are applied at some input scale M_{in} below the grand unification (GUT) scale M_{GUT}, a scenario referred to as `sub-GUT'. The other generalization we consider is to retain GUT-scale universality for the squark and slepton masses, but to relax universality for the soft supersymmetry-breaking contributions to the masses of the Higgs doublets. As with other CMSSM-like models, the measured Higgs mass requires supersymmetric particle masses near or beyond the TeV scale. Because of these rather heavy sparticle masses, the embedding of these CMSSM-like models in a minimal SU(5) model of grand unification can yield a proton lifetime consistent with current experimental limits, and may be accessible in existing and future proton decay experiments. Another possible signature of these CMSSM-like models is direct detection of supersymmetric dark matter. The direct dark matter scattering rate is typically below the reach of the LUX-ZEPLIN (LZ) experiment if M_{in} is close to M_{GUT}, but it may lie within its reach if M_{in} ≲ 10^{11} GeV. Likewise, generalizing the CMSSM to allow non-universal supersymmetry-breaking contributions to the Higgs offers extensive possibilities for models within reach of the LZ experiment that have long proton lifetimes.

  19. Clinical aspects and potential clinical applications of laser accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Spatola, C.; Privitera, G.

    2013-07-01

    Proton beam radiation therapy (PBRT), as well as the other forms of hadrontherapy, is in use in the treatment of neoplastic diseases, to realize a high selective irradiation with maximum sparing of surrounding organs. The main characteristic of such a particles is to have an increased radiobiological effectiveness compared to conventional photons (about 10% more) and the advantage to deposit the energy in a defined space through the tissues (Bragg peak phenomenon). The goal of ELIMED Project is the realization of a laser accelerated proton beam line to prove its potential use for clinical application in the field of hadrontherapy. To date, there are several potential clinical applications of PBRT, some of which have become the treatment of choice for a specific tumour, for others it is under investigation as a therapeutic alternative to conventional X-ray radiotherapy, to increase the dose to the tumour and reduce the side effects. For almost half of cancers, an increased local tumour control is the mainstay for increased cancer curability.

  20. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  1. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  2. CO2 laser-driven Stirling engine. [space power applications

    NASA Technical Reports Server (NTRS)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  3. Distribution of Ions in Laser-Driven Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Warrens, Mackenzie; Barbarino, Matteo; Bonasera, Aldo; Lattuada, Dario; Group Bonasera Team

    2015-10-01

    Experiments of laser-driven fusion reactions are important for many aspects, such as measuring the cross section of plasma. In the experiments at University of Texas using the Texas Petawatt laser, deuterium clusters of various sizes suspended in 3He gas absorb the laser's energy and are irradiated. The clusters undergo a Coulomb explosion, forming a hot plasma which initiates the reactions. This analysis studies two possible fusions: D(d, 3He)n and 3He(d,p)4He. Signals are recorded using a Faraday cup detector, then transformed and analyzed in energy space. In this work, we investigate if the log-normal distribution is an appropriate description of the energy distribution of the ions. If the log-normal distribution is a good fit, the energy distribution can be thought of as chaotic enough to appear thermalized. The chaos may be due to many-body interactions over long distances, as well as the different charges and masses of the particles involved. Using the well-known S-factor for the two reactions and the extrapolated fits, the number of fusions is calculated and compared with experimental data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1263281.

  4. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  5. Quantum Localization in Laser-Driven Molecular Rotation

    NASA Astrophysics Data System (ADS)

    Averbukh, Ilya

    2016-05-01

    Recently we predicted that several celebrated solid state quantum localization phenomena - Anderson localization, Bloch oscillations, and Tamm-Shockley surface states - may manifest themselves in the rotational dynamics of laser-kicked molecules. In this talk, I will present these new rotational effects in a gas of linear molecules subject to a moderately long periodic train of femtosecond laser pulses. A small detuning of the train period from the rotational revival time causes Anderson localization in the angular momentum space above some critical value of J - the Anderson wall. This wall marks an impenetrable border stopping any further rotational excitation. Below the Anderson wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. I will present the results of the first experimental observation of the laser-induced rotational Bloch oscillations in molecular nitrogen at ambient conditions (Stanford & Weizmann, 2015). We will also discuss the prospects of observing the rotational analogues of the Tamm surface states in a similar experimental setup. Our results offer laser-driven molecular rotation as a new platform for studies on the localization phenomena in quantum transport. These effects are important for many processes involving highly excited rotational states, including coherent optical manipulations in molecular mixtures, and propagation of powerful laser pulses in atmosphere.

  6. Laser-driven relativistic electron beam interaction with solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-01

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  7. A laser-driven source of polarized hydrogen and deuterium

    SciTech Connect

    Young, L.; Holt, R.J.; Gilman, R.A.; Kowalczyk, R.; Coulter, K.

    1989-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin-exchange optical pumping is being developed. This source is designed to operate as an internal target in an electron storage ring for fundamental studies of spin-dependent structure of nuclei. It has the potential to exceed the flux from existing conventional sources (3 /times/ 10/sup 16//s) by an order of magnitude. Currently, the source delivers hydrogen at a flux of 8 /times/ 10/sup 16/ atoms/s with an atomic polarization of 24% and deuterium at 6 /times/ 10/sup 16/ atoms/s with a polarization of 29%. Technical obstacles which have been overcome, with varying degrees of success are complete Doppler-coverage in the optical-pumping stage without the use of a buffer gas, wall-induced depolarization and radiation-trapping. Future improvements should allow achievement of the design goals of 4 /times/ 10/sup 17/ atoms/s with a polarization of 50%. 8 refs., 2 figs.

  8. Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona

    SciTech Connect

    Kozarev, Kamen A.; Opher, Merav; Evans, Rebekah M.; Dayeh, Maher A.; Korreck, Kelly E.; Van der Holst, Bart

    2013-11-20

    The acceleration of protons and electrons to high (sometimes GeV/nucleon) energies by solar phenomena is a key component of space weather. These solar energetic particle (SEP) events can damage spacecraft and communications, as well as present radiation hazards to humans. In-depth particle acceleration simulations have been performed for idealized magnetic fields for diffusive acceleration and particle propagation, and at the same time the quality of MHD simulations of coronal mass ejections (CMEs) has improved significantly. However, to date these two pieces of the same puzzle have remained largely decoupled. Such structures may contain not just a shock but also sizable sheath and pileup compression regions behind it, and may vary considerably with longitude and latitude based on the underlying coronal conditions. In this work, we have coupled results from a detailed global three-dimensional MHD time-dependent CME simulation to a global proton acceleration and transport model, in order to study time-dependent effects of SEP acceleration between 1.8 and 8 solar radii in the 2005 May 13 CME. We find that the source population is accelerated to at least 100 MeV, with distributions enhanced up to six orders of magnitude. Acceleration efficiency varies strongly along field lines probing different regions of the dynamically evolving CME, whose dynamics is influenced by the large-scale coronal magnetic field structure. We observe strong acceleration in sheath regions immediately behind the shock.

  9. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  10. Proton beam of 2 MeV 1.6 mA on a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Kuznetsov, A.; Makarov, A.; Shchudlo, I.; Sorokin, I.; Taskaev, S.

    2014-12-01

    A source of epithermal neutrons based on a tandem accelerator with vacuum insulation for boron neutron capture therapy of malignant tumors was proposed and constructed. Stationary proton beam with 2 MeV energy, 1.6 mA current, 0.1% energy monochromaticity and 0.5% current stability has just been obtained.

  11. A 100 MeV Multi-Tank Drift Tube Linac for the Linear Proton Accelerator of the Energy Amplifier

    NASA Astrophysics Data System (ADS)

    D'Auria, Gerardo; Rossi, Carlo

    1997-05-01

    For the acceleration of protons from the exit of the RFQ at about 6 MeV up to 100 MeV, a Multi-Tank Drift Tube Linac (MTDTL) has been proposed with the goal of being technologically simple, compact, efficient and economical. Theoretical design studies and first measurements on a prototype tank are presented.

  12. Acceleration of protons to above 6 MeV using H{sub 2}O 'snow' nanowire targets

    SciTech Connect

    Pomerantz, I.; Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Gordon, D.; Sprangel, P.; Zigler, A.

    2012-07-09

    A scheme is presented for using H{sub 2}O 'snow' nanowire targets for the generation of fast protons. This novel method may relax the requirements for very high laser intensities, thus reducing the size and cost of laser based ion acceleration system.

  13. Simulations in One Dimension of Unstable Mix in Laser-Driven Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Delettrez, J. A.; Bradley, D. K.; Verdon, C. P.

    1997-11-01

    The effects of Rayleigh-Taylor flow in recent laser-driven implosion experiments are simulated in one dimension by the hydrocode LILAC*. The adequacy of this mix model to account for the experimental results is examined. Mix is modeled as a diffusive transport process affecting material constituents, thermal energy, and turbulent mix-motion energy within a growing mix region whose boundaries are derived from a saturable, linear multimode model of the Rayleigh-Taylor instability. The linear growth rates and the feedthrough coupling between perturbations of different unstable interfaces are obtained analytically in terms of the one-dimensional fluid profiles. Two-dimensional simulations and experimental data are used to reduce the uncertainties in the adjustable parameters of the model. Mode evolution proceeds according to equations applicable to all phases of acceleration, and the effects of geometrically converging, compressible flow are taken into account. Simulated mix diagnostics include time-resolved spectra of x-ray emission from additives in the shell and in the fuel and time-resolved neutron production from CD layers in the shell. Spectra are simulated using a non-LTE radiation-transport post-processor that makes full use of the multi-material mix information. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  14. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    SciTech Connect

    Negoita, F. Gugiu, M. Petrascu, H. Petrone, C. Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; and others

    2015-02-24

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr{sub 3}(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  15. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source.

    PubMed

    Wenz, J; Schleede, S; Khrennikov, K; Bech, M; Thibault, P; Heigoldt, M; Pfeiffer, F; Karsch, S

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  16. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  17. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    NASA Astrophysics Data System (ADS)

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-07-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.

  18. A high velocity impact experiment of micro-scale ice particles using laser-driven system

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Kim, Jungwook; Yoh, Jack J.

    2014-11-01

    A jet engine for high speed air breathing propulsion is subject to continuous wear as a result of impacts of micro-scale ice particles during a flight in the atmosphere. The inlet duct and compressor blades are exposed to on-coming frozen moisture particles that may result in the surface damage and significantly shorten the designed lifetime of the aircraft. Under such prolonged high-speed impact loading, the performance parameters such as flight instability and power loss of a jet engine can be significantly degraded. In this work, a laser-driven system was designed to accelerate micro-scale ice particles to the velocity up to Mach 2 using a Q-switched Nd:YAG laser beam at 100-600 mJ with 1064 nm wavelength and 9 ns pulse duration. The high speed images (Phantom v711) and double exposure shadowgraphs were used to calculate the average velocity of ice particles and their deceleration. Velocity Interferometer System for Any Reflector measurements were also utilized for the analysis of free surface velocity of a metal foil in order to understand the interfacial dynamics between the impacting particles and accepting metal target. The velocity of our ice particles is sufficiently fast for studying the effect of moisture particle collision on an air-breathing duct of high speed aircraft, and thus the results can provide insight into how minute space debris or micrometeorites cause damage to the orbiting spacecraft at large.

  19. Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams

    SciTech Connect

    Schell, Stefan; Wilkens, Jan J.

    2010-10-15

    Purpose: Laser plasma acceleration can potentially replace large and expensive cyclotrons or synchrotrons for radiotherapy with protons and ions. On the way toward a clinical implementation, various challenges such as the maximum obtainable energy still remain to be solved. In any case, laser accelerated particles exhibit differences compared to particles from conventional accelerators. They typically have a wide energy spread and the beam is extremely pulsed (i.e., quantized) due to the pulsed nature of the employed lasers. The energy spread leads to depth dose curves that do not show a pristine Bragg peak but a wide high dose area, making precise radiotherapy impossible without an additional energy selection system. Problems with the beam quantization include the limited repetition rate and the number of accelerated particles per laser shot. This number might be too low, which requires a high repetition rate, or it might be too high, which requires an additional fluence selection system to reduce the number of particles. Trying to use laser accelerated particles in a conventional way such as spot scanning leads to long treatment times and a high amount of secondary radiation produced when blocking unwanted particles. Methods: The authors present methods of beam delivery and treatment planning that are specifically adapted to laser accelerated particles. In general, it is not necessary to fully utilize the energy selection system to create monoenergetic beams for the whole treatment plan. Instead, within wide parts of the target volume, beams with broader energy spectra can be used to simultaneously cover multiple axially adjacent spots of a conventional dose delivery grid as applied in intensity modulated particle therapy. If one laser shot produces too many particles, they can be distributed over a wider area with the help of a scattering foil and a multileaf collimator to cover multiple lateral spot positions at the same time. These methods are called axial and

  20. Observation of Quasi Mono-Energetic Protons in Laser Spray-Target Interaction

    SciTech Connect

    Ramakrishna, B.; Borghesi, M.; Doria, D.; Sarri, G.; Ter-Avetisyan, S.; Andreev, A.; Ehrentraut, L.; Sandner, W.; Schnuerer, M.; Steinke, S.; Nickles, P. V.

    2010-02-02

    Laser driven ion acceleration arises from charge separation effects caused by an ultrahigh intensity laser pulse. Limited mass targets confine the accelerated electrons within the target size and prevent the large area spreading seen in extended foil targets. Furthermore, if the target size is smaller than the laser wavelength and focal spot diameter, homogeneous heating of the target is ensured. Observation of quasi-monoenergetic protons in the interaction of a high intensity high contrast laser pulse at 5x10{sup 19} W/cm{sup 2} with 150 nm--diameter water droplets is investigated. An ensemble of such objects is formed in a spray. Quasi mono energetic proton bursts of energy Eapprox1.6 MeV are observed and are associated with a specific ionization and explosion dynamics of the spheres.