Science.gov

Sample records for laser-supported detonation waves

  1. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J.T.

    1989-01-01

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition if the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research questions still outstanding in this area. 16 refs., 7 figs.

  2. Laser-supported detonation waves and pulsed laser propulsion

    SciTech Connect

    Kare, J. )

    1990-07-30

    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10{sup 4} K, 10{sup 2} atmospheres, 10{sup 7} w/cm{sup 2}) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area.

  3. Energy Absorption Structure of Laser Supported Detonation Wave

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Yamaguchi, Toshikazu; Hatai, Keigo; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2010-05-01

    In Repetitive Pulsed (RP) laser propulsion, when the high energy laser beam is focused in the thruster, Laser Supported Detonation (LSD) wave is generated. This LSD wave converts the laser energy to the enthalpy of the blast wave, which will then apply impulse to the wall of the thruster. Therefore, the energy absorption structure and sustaining condition of LSD wave are important to be understood, which was still not clear though some visualized experiments have been conducted by Ushio et al. before. In this paper, 2-wavelength Mach-Zehnder interferometry is brought to investigate the electron density distribution of LSD area. At the same time, the temperature of the laser induced plasma is measured by an emission spectroscopy experiment, and calculated based on the assumption of local thermal equilibrium. The results show that in LSD, the electron density has a peak (as high as 2×1024[m-3]) behind the shock wave. The irradiated laser can be entirely absorbed before reaching the position of this peak. As a result, a new peak is always generating in front of the old one and this propagating has the same velocity as that of the blast wave. In this way, high heating ratio is sustained right after the shock front. However, as the laser pulse energy becomes lower, the propagating peak cannot catch up with the blast wave anymore, which leads to a termination of the LSD wave. From this study, it is found that for sustaining the LSD wave, a sufficiently thin laser absorption layer is necessary.

  4. Lateral expansion of a laser-supported detonation wave in a gas.

    NASA Technical Reports Server (NTRS)

    Howe, J. T.

    1972-01-01

    A model satisfying the conditions in the burnt (ionized) and ambient undisturbed gases is presented for the two-dimensional case of the absorption wave resulting from the interaction of a laser beam with the plasma it generates in the gas through which the beam propagates. The flowfield of the rarefaction wave resulting from the laser-supported detonation is discussed, along with the computed shock and flow deflection angles.

  5. Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave

    SciTech Connect

    Shiraishi, Hiroyuki

    2004-03-30

    For developing laser propulsion, it is very important to analyze the mechanism of Laser-Supported Detonation (LSD), because it can generate high pressure and high temperature to be used by laser propulsion can be categorized as one type of hypersonic reacting flows, where exothermicity is supplied not by chemical reaction but by radiation absorption. I have numerically simulated the 1-D and Quasi-1-D LSD waves propagating through an inert gas, which absorbs CO2 gasdynamic laser, using a 2-temperature model. Calculated results show the fundamental properties of the non-equilibrium LSD Waves.

  6. A computational study of laser-supported detonation waves propagating up an oblique incident beam

    NASA Astrophysics Data System (ADS)

    Bohn, C. L.; Crawford, M. L.

    1987-01-01

    A series of numerical experiments was conducted to study the propagation of laser-supported detonation waves (LSDWs) in the case that a CO2 laser beam strikes an aluminum surface obliquely in air. A reflected shock formed at the aluminum surface was more prominent at higher angles of incidence theta of the beam, but otherwise the hydrodynamics of the plasma and the LSDW were insensitive to theta. Furthermore, the total impulse delivered to the aluminum varied approximately as 1/cos theta, a result that can be modeled with elementary blast-wave theory.

  7. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization

    SciTech Connect

    Shiraishi, Hiroyuki

    2006-05-02

    Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.

  8. Precursor ionization ahead of laser-supported detonation wave in air and argon

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Komurasaki, Kimiya; Koizumi, Hiroyuki; Arakawa, Yoshihiro

    2012-10-01

    Laser-produced plasma in a gaseous form is considered, which has attracted great interest for use in many devices. After breakdown one of possible mechanisms of occurrence of this process is noted as laser-supported detonation wave. This wave consisting of the shock wave and the beam absorbing plasma travels at several kilometers per second along the laser beam channel in the direction opposite to the beam incidence. A Nd: Glass laser and a TEA CO2 laser were utilized. According to shadowgraph and spectroscopic studies, the wave has a velocity of 1-10 km/s, an electron temperature of 2-5 eV and an electron density of 10^24 m-3 after breakdown. For simplicity, the discussion is restricted to one-dimensional flows that considers the radiation from plasma and the collisional ionization by laser irradiation. Assuming that UV photons radiating from laser plasma induce photoionization ahead of ionization front, this ionization frequency fp at the distance lp (mean free path of photon) from the wave front corresponds to 10^10 s-1. This is higher than the collisional ionization frequency (10^5-6 s-1). Analytical velocities (fplp) describing the avalanche ionization in the pre-ionization layer agree with the experimentally observed velocities. These results does not depend on background gas and laser-wavelength.

  9. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    SciTech Connect

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio; Wang Bin; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Hatai, Keigo; Fukui, Akihiro; Arakawa, Yoshihiro

    2011-04-15

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measured properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.

  10. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    SciTech Connect

    Shiraishi, Hiroyuki

    2008-04-28

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO{sub 2} gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.

  11. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    NASA Astrophysics Data System (ADS)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2014-03-01

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  12. Calculation of laser induced impulse based on the laser supported detonation wave model with dissociation, ionization and radiation

    SciTech Connect

    Gan, Li Mousen, Cheng; Xiaokang, Li

    2014-03-15

    In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.

  13. Influence of the gaseous form on the precursor heating layer of a laser-supported detonation wave using half self-emission half shadowgraph visualization

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Michigami, Keisuke; Ofoso, Joseph; Komursaki, Kimiya

    2012-10-01

    After breakdown one of the possible mechanisms of occurrence of laser-produced plasma is noted as laser-supported detonation (LSD) wave. This wave consisting of the shock wave and the beam absorbing plasma travels at 1-10 km/s along the beam channel in the direction opposite to the laser incidence. The laser heating structure is recognized as the ZND model of chemical detonation. However, Shimamura et. al, showed that the plasma proceeds the shock wave during LSD regime. The role of shock compression is relatively smaller than preheating by laser. The conventional model is inconsistent with our paper. To investigate the heating structure of a LSD wave, half self-emission half shadowgraph (HSHS) methods provides the self-emission image from the plasma on the top half and the shadowgraph image of the induced shock wave on the bottom half simultaneously. A TEA CO2 laser was used at 10 J incident energy. The locations of both wave fronts were detected from the brightness distribution of the HSHS images. As a result, the propagation of ionization front precedes that of shock wave front by the order of 10-4 m in air and N2. Preheating layer of N2 is shorter than that of air because O2 in air has the lowest ionization energy. Thus, a characteristic of preionization layer depends on the ionization properties because photoionization by the UV radiation generate the seed electrons ahead of shock wave.

  14. Predicting propagation limits of laser-supported detonation by Hugoniot analysis

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2015-01-01

    Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.

  15. Detonation Wave Profile

    SciTech Connect

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  16. Light detonation wave in a cylindrical Z-pinch

    NASA Astrophysics Data System (ADS)

    Yusupaliev, U.; Sysoev, N. N.; Shuteev, S. A.; Elenskii, V. G.

    2015-09-01

    A secondary compression wave previously observed by other researchers in a cylindrical Z-pinch has been identified in this work as a light detonation wave. It appears on the inner surface of a discharge chamber under the action of the intense ultraviolet radiation from a plasma pinch at the stage of its maximum compression. The condition of the light detonation wave has been determined experimentally. The dependence of its Mach number on a generalized dimensionless variable has been determined taking into account the conservation laws for the light detonation wave including the pressure of the gas, expenses on the formation of the surface plasma, and the energy of ionization of the gas involved in the wave. An analogy with the laser-supported detonation wave created by intense laser radiation has been revealed. The indicated dependence is within the error of measurement in agreement with the experimental data for light detonation waves created by both methods.

  17. Planar Reflection of Detonations Waves

    NASA Astrophysics Data System (ADS)

    Damazo, Jason; Shepherd, Joseph

    2012-11-01

    An experimental study examining normally reflected gaseous detonation waves is undertaken so that the physics of reflected detonations may be understood. Focused schlieren visualization is used to describe the boundary layer development behind the incident detonation wave and the nature of the reflected shock wave. Reflected shock wave bifurcation-which has received extensive study as it pertains to shock tube performance-is predicted by classical bifurcation theory, but is not observed in the present study for undiluted hydrogen-oxygen and ethylene-oxygen detonation waves. Pressure and thermocouple gauges are installed in the floor of the detonation tube so as to examine both the wall pressure and heat flux. From the pressure results, we observe an inconsistency between the measured reflected shock speed and the measured reflected shock strength with one dimensional flow predictions confirming earlier experiments performed in our laboratory. This research is sponsored by the DHS through the University of Rhode Island, Center of Excellence for Explosives Detection.

  18. Photoionization in the Precursor of Laser Supported Detonation by Ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Michigami, Keisuke; Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-11-01

    The propagation mechanism of laser-supported detonation (LSD) is important for designing laser propulsion for a detonation type thruster. The purpose of this work to was to confirm that photo-ionization in precursor is the predominant LSD sustainment mechanism. First of all, we tried to investigate the dependency of LSD duration on ambient gas species, air and argon. We took a series of high-speed images using the laser shadow-graphy. Besides, to estimate the UV photons emitted from the plasma, we used plasma emission spectroscopy and determined the electron temperature and density. As a result, the LSD duration of argon plasma and air plasma are 0.7 μs and 0.3 μs, resp. Besides, argon plasma emitted 1010 to 1014 photons/seconds, which was higher than air plasma. These results reveal that LSD propagation depends on the photon-contributing photoionization. The threshold photon-emission rate of LSD termination gives the elucidation of the LSD termination condition.

  19. Photoionization in the Precursor of Laser Supported Detonation by Ultraviolet Radiation

    SciTech Connect

    Shimamura, Kohei; Michigami, Keisuke; Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2011-11-10

    The propagation mechanism of laser-supported detonation (LSD) is important for designing laser propulsion for a detonation type thruster. The purpose of this work to was to confirm that photo-ionization in precursor is the predominant LSD sustainment mechanism. First of all, we tried to investigate the dependency of LSD duration on ambient gas species, air and argon. We took a series of high-speed images using the laser shadow-graphy. Besides, to estimate the UV photons emitted from the plasma, we used plasma emission spectroscopy and determined the electron temperature and density. As a result, the LSD duration of argon plasma and air plasma are 0.7 {mu}s and 0.3 {mu}s, resp. Besides, argon plasma emitted 10{sup 10} to 10{sup 14} photons/seconds, which was higher than air plasma. These results reveal that LSD propagation depends on the photon-contributing photoionization. The threshold photon-emission rate of LSD termination gives the elucidation of the LSD termination condition.

  20. Double-Front Detonation Waves

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  1. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  2. Analytical study of laser-supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1978-01-01

    Laser supported combustion (LSC) waves are an important ingredient in the fluid mechanics of CW laser propulsion using a hydrogen propellant and 10.6 micron lasers. Therefore, a computer model has been constructed to solve the one-dimensional energy equation with constant pressure and area. Physical processes considered include convection, conduction, absorption of laser energy, radiation energy loss, and accurate properties of equilibrium hydrogen. Calculations for 1, 3, 10 and 30 atm were made for intensities of 10 to the 4th to 10 to the 6th W/sq cm, which gave temperature profiles, wave speed, etc. To pursue the propulsion application, a second computer model was developed to describe the acceleration of the gas emerging from the LSC wave into a variable-pressure, converging streamtube, still including all the above-mentioned physical processes. The results show very high temperatures in LSC waves which absorb all the laser energy, and high radiative losses.

  3. Point Measurement of Detonation Wave Speed

    NASA Astrophysics Data System (ADS)

    Lu, F. K.; Gupta, N. K. M.; Wilson, D. R.

    Accurate determination of the speed of a detonation wave is important for studies of detonation phenomena. Different types of sensors that measure pressure, ion and flame have been used for this purpose.

  4. Reduced Model for Detonation Wave

    NASA Astrophysics Data System (ADS)

    Maillet, Jean-Bernard; Soulard, Laurent; Stoltz, Gabriel

    2007-06-01

    We present a mesoscopic model for reactive waves which extends the model proposed by G. Stoltz (G. Stoltz, Europhys. Lett. 76 (2006) 849). A complex molecule (or a group of molecules) is replaced by a single mesoparticle, evolving according to some Dissipative Particle Dynamics. Chemical reactions can be handled in a mean way by considering an additional variable per particle describing a rate of reaction. The evolution of this rate is governed by the kinetics of a reversible exothermic reaction. Numerical results show that the reactive wave behaves like a detonation wave.

  5. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  6. Detonation wave augmentation of gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1984-01-01

    The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.

  7. Detonation wave compression in gas turbines

    NASA Technical Reports Server (NTRS)

    Wortman, A.

    1986-01-01

    A study was made of the concept of augmenting the performance of low pressure ratio gas turbines by detonation wave compression of part of the flow. The concept exploits the constant volume heat release of detonation waves to increase the efficiency of the Brayton cycle. In the models studied, a fraction of the compressor output was channeled into detonation ducts where it was processed by transient transverse detonation waves. Gas dynamic studies determined the maximum cycling frequency of detonation ducts, proved that upstream propagation of pressure pulses represented no problems and determined the variations of detonation duct output with time. Mixing and wave compression were used to recombine the combustor and detonation duct flows and a concept for a spiral collector to further smooth the pressure and temperature pulses was presented as an optional component. The best performance was obtained with a single firing of the ducts so that the flow could be re-established before the next detonation was initiated. At the optimum conditions of maximum frequency of the detonation ducts, the gas turbine efficiency was found to be 45 percent while that of a corresponding pressure ratio 5 conventional gas turbine was only 26%. Comparable improvements in specific fuel consumption data were found for gas turbines operating as jet engines, turbofans, and shaft output machines. Direct use of the detonation duct output for jet propulsion proved unsatisfactory. Careful analysis of the models of the fluid flow phenomena led to the conclusion that even more elaborate calculations would not diminish the uncertainties in the analysis of the system. Feasibility of the concept to work as an engine now requires validation in an engineering laboratory experiment.

  8. High order hybrid numerical simulations of two dimensional detonation waves

    NASA Technical Reports Server (NTRS)

    Cai, Wei

    1993-01-01

    In order to study multi-dimensional unstable detonation waves, a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves was developed. The numerical algorithm uses a multi-domain approach so different numerical techniques can be applied for different components of detonation waves. The detonation waves are assumed to undergo an irreversible, unimolecular reaction A yields B. Several cases of unstable two dimensional detonation waves are simulated and detailed transverse wave interactions are documented. The numerical results show the importance of resolving the detonation front without excessive numerical viscosity in order to obtain the correct cellular patterns.

  9. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  10. Detonation wave profiles in HMX based explosives

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1997-11-01

    Detonation wave profiles have been measured in several HMX based plastic bonded explosives including PBX9404, PBX9501, and EDC-37, as well as two HMX powders (coarse and fine) pressed to 65% of crystal density. The powders had 120 and 10 {micro}m average grain sizes, respectively. Planar detonations were produced by impacting the explosive with projectiles launched in a 72-mm bore gas gun. Impactors, impact velocity, and explosive thickness were chosen so that the run distance to detonation was always less than half the explosive thickness. For the high density plastic bonded explosives, particle velocity wave profiles were measured at an explosive/window interface using two VISAR interferometers. PMMA windows with vapor deposited aluminum mirrors were used for all experiments. Wave profiles for the powdered explosives were measured using magnetic particle velocity gauges. Estimates of the reaction zone parameters were obtained from the profiles using Hugoniots of the explosive and window.

  11. On the Existence of Pathological Detonation Waves

    SciTech Connect

    Tarver, C M

    2003-07-11

    Pathological detonation waves with velocities greater than Chapman-Jouguet (C-J) have been proposed theoretically but never observed experimentally in gaseous, liquid or solid explosives. Two types of pathological chemical reaction zones have been identified within the Zeldovich-von Neumann-Doring (ZND) model: an exothermic chemical decomposition with a mole decrease during from the von Neumann spike state to the C-J state and an exothermic reaction followed by an endothermic reaction (eigenvalue detonation). The high temperatures reached in detonation reaction zones cause sufficient radial and atom formation to insure overall mole increases in gaseous H{sub 2} + O{sub 2} detonations. Aluminized explosives exhibit a slight mole decrease when the solid aluminum particles are oxidized, but this does not negate the large mole increase that occurs during explosive decomposition. Porous solid explosives whose products form with more cold compression energy than that of the solid are an unlikely possibility for pathological detonation. Eigenvalue detonations have been postulated for H{sub 2} + Cl{sub 2} gas phase detonations and for plastic bonded solid explosives if endothermic binder decomposition follows exothermic explosive decomposition. Chemical kinetic and physical arguments are presented to eliminate these possible pathological detonations. In the case of H{sub 2} + Cl{sub 2}, highly vibrationally excited HCl molecules dissociate Cl{sub 2} molecules during the exothermic portion of the reaction zone rather than later in the flow process. In the plastic bonded explosives, the binders are located on the surfaces of explosive particles and thus are exposed to ''hot spots'' created by the three-dimensional Mach stem shock front. Any remaining binder material rapidly reacts in collisions with the high, vibrationally excited reaction products formed during explosive decomposition. Therefore eigenvalue detonations are extremely unlikely to occur in gaseous, liquid or

  12. Analytical study of laser supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1977-01-01

    A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.

  13. The flow field in a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2011-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engine. They potentially provide further gains than an intermittent or pulsed detonation-wave engine (PDE). However, significantly less work has been on this concept when compared to the PDE. In this talk, we present the detailed flow field in an idealized RDE, primarily consisting of two concentric cylinders. A premixed detonable mixture is injected into the annulus between the two concentric cylinders. Once a detonation is initiated, it keeps travelling around in the annulus as long as there is fresh detonable mixture ahead of it. Hence, the injection process is critically important to the stability and performance of the RDE. Furthermore, we show that the flow field is quite complex consisting of multiple shock waves and the outflow is primarily axial, although the detonation-wave is travelling around circumferentially. Sponsored by the NRL 6.1 Computational Physics Task Area.

  14. Multidimensional detonation propagation modeled via nonlinear shock wave superposition

    NASA Astrophysics Data System (ADS)

    Higgins, Andrew; Mehrjoo, Navid

    2010-11-01

    Detonation waves in gases are inherently multidimensional due to their cellular structure, and detonations in liquids and heterogeneous solids are often associated with instabilities and stochastic, localized reaction centers (i.e., hot spots). To explore the statistical nature of detonation dynamics in such systems, a simple model that idealizes detonation propagation as an ensemble of interacting blast waves originating from spatially random point sources has been proposed. Prior results using this model exhibited features that have been observed in real detonating systems, such as anomalous scaling between axisymmetric and two-dimensional geometries. However, those efforts used simple linear superposition of the blast waves. The present work uses a model of blast wave superposition developed for multiple-source explosions (the LAMB approximation) that incorporates the nonlinear interaction of shock waves analytically, permitting the effect of a more physical model of blast wave interaction to be explored. The results are suggestive of a universal behavior in systems of spatially randomized energy sources.

  15. Simulation Of Attenuation Regularity Of Detonation Wave In Pmma

    NASA Astrophysics Data System (ADS)

    Lan, Wei; Xiaomian, Hu

    2012-03-01

    Polymethyl methacrylate (PMMA) is often used as clapboard or protective medium in the parameter measurement of detonation wave propagation. Theoretical and experimental researches show that the pressure of shock wave in condensed material has the regularity of exponential attenuation with the distance of propagation. Simulation of detonation produced shock wave propagation in PMMA was conducted using a two-dimensional Lagrangian computational fluid dynamics program, and results were compared with the experimental data. Different charge diameters and different angles between the direction of detonation wave propagation and the normal direction of confined boundary were considered during the calculation. Results show that the detonation produced shock wave propagation in PMMA accords with the exponential regularity of shock wave attenuation in condensed material, and several factors are relevant to the attenuation coefficient, such as charge diameter and interface angle.

  16. Simulation of attenuation regularity of detonation wave in PMMA

    NASA Astrophysics Data System (ADS)

    Lan, Wei; Xiaomian, Hu

    2011-06-01

    Polymethyl methacrylate (PMMA) is often used as clapboard or protective medium in the parameter measurement of detonation wave propagation, due to its similar shock impedance with the explosive. Theoretical and experimental research show that the pressure of shock wave in condensed material has the regularity of exponential attenuation with the distance of propagation. Simulation of detonation wave propagation in PMMA is conducted using a two-dimensional Lagrangian computational fluid dynamics program, and results are compared with the experimental data. Different charge diameters and different angles between the direction of detonation wave propagation and the normal direction of confined boundary are considered during the calculation. Results show that the detonation wave propagation in PMMA accords with the exponential regularity of shock wave attenuation in condensed material, and several factors are relevant to the attenuation coefficient, such as charge diameter and interface angle.

  17. DDT and detonation waves in dust-air mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Grönig, H.; van de Ven, A.

    This paper summarizes the studies of DDT and stable detonation waves in dust-air mixtures at the Stosswellenlabor of RWTH Aachen. The DDT process and propagation mechanism for stable heterogeneous dust detonations in air are essentially the same as in the oxygen environment studied previously. The dust DDT process in tubes is composed of a reaction compression stage followed by a reaction shock stage as the pre-detonation process. The transverse waves that couple the shock wave and the chemical energy release are responsible for the propagation of a stable dust-air detonation. However, the transverse wave spacing of dust-air mixtures is much larger. Therefore, DDT and propagation of a stable detonation in most industrial and agricultural, combustible dust-air mixtures require a tube that has a large diameter between 0.1 m and 1 m and a sufficient length-diameter ratio beyond 100, when an appropriately strong initiation energy is used. Two dust detonation tubes, 0.14 m and 0.3 m in diameter, were used for observation of the above-mentioned results in cornstarch, anthraquinone and aluminum dust suspended in air. Smoked-foil technique was also used to measure the cellular structure of dust detonations in the 0.3 m detonation tube.

  18. Theoretical modeling of converging and diverging detonation waves in solid and gaseous explosives

    NASA Astrophysics Data System (ADS)

    Tarver, C. M.; Urtiew, P. A.

    The ignition and growth reactive flow model of shock initiation and detonation accurately calculate detonation velocity radius data on spherically diverging and converging detonation waves in the solid explosive PBX-9404. The theory of converging detonation waves is reviewed. The effects of the final reaction product state, the variability of the heat of reaction, and the equations of state are discussed for converging detonation waves in gaseous and solid explosives. It is postulated that the reaction product states follow a locus of Chapman-Jouguet (CJ) states as the detonation velocity and pressure increase. In converging gaseous detonations the heat of reaction decreases and the adiabatic exponent increases as the detonation velocity increases. In converging detonations in solid explosives equation of state uncertainties dominate the calculations, and more experimental data on overdriven detonation waves are required for improved modeling.

  19. Weakly nonlinear dynamics of near-CJ detonation waves

    SciTech Connect

    Bdzil, J.B.; Klein, R.

    1993-02-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature are running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.

  20. Weakly nonlinear dynamics of near-CJ detonation waves

    SciTech Connect

    Bdzil, J.B. ); Klein, R. . Inst. fuer Technische Mechanik)

    1993-01-01

    The renewed interest in safety issues for large scale industrial devices and in high speed combustion has driven recent intense efforts to gain a deeper theoretical understanding of detonation wave dynamics. Linear stability analyses, weakly nonlinear bifurcation calculations as well as full scale multi-dimensional direct numerical simulations have been pursued for a standard model problem based on the reactive Euler equations for an ideal gas with constant specific heat capacities and simplified chemical reaction models. Most of these studies are concerned with overdriven detonations. This is true despite the fact that the majority of all detonations observed in nature are running at speeds close to the Chapman-Jouguet (CJ) limit value. By focusing on overdriven waves one removes an array of difficulties from the analysis that is associated with the sonic flow conditions in the wake of a CJ-detonation. In particular, the proper formulation of downstream boundary conditions in the CJ-case is a yet unsolved analytical problem. A proper treatment of perturbations in the back of a Chapman-Jouguet detonation has to account for two distinct weakly nonlinear effects in the forward acoustic wave component. The first is a nonlinear interactionof highly temperature sensitive chemistry with the forward acoustic wave component in a transonic boundary layer near the end of the reaction zone. The second is a cumulative three-wave-resonance in the sense of Majda et al. which is active in the near-sonic burnt gas flow and which is essentially independent of the details of the chemical model. In this work, we consider detonations in mixtures with moderate state sensitivity of the chemical reactions. Then, the acoustic perturbations do not influence the chemistry at the order considered and we may concentrate on the second effect; the three-wave resonance.

  1. Unsteady interaction of shock and detonation waves in gases

    NASA Astrophysics Data System (ADS)

    Korobeinikov, Viktor P.

    Recent theoretical and experimental investigations of unsteady shock-wave interactions (SWIs) in gases are discussed in chapters contributed by leading Soviet experts. Topics addressed include the thermodynamic and electrophysical parameters of gas flow behind shock waves, the effect of nonequilibrium physicochemical processes on the flow parameters behind a shock wave, shock-tube investigations of unsteady SWI, SWI with a porous compressible medium, and the reflection of shock waves by a plane surface. Consideration is given to the diffraction of a shock wave at a convex corner, unsteady SWIs with curvilinear surfaces, numerical simulations of SWIs with bodies of various shapes, and the unsteady interaction of detonation waves. Diagrams, graphs, and photographs.

  2. On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves

    NASA Astrophysics Data System (ADS)

    Wang, C. J.; Guo, C. M.

    2014-09-01

    The two-dimensional, time-dependent and reactive Navier-Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted by 25 % argon. This mixture generates a mode-7 detonation wave under an initial pressure of 8.00 kPa. Chemical kinetics was simulated by an eight-species, forty-eight-reaction mechanism. It was found that a Mach reflection mode always occurs for a planar detonation wave or planar air shock wave sweeping over wedges with apex angles ranging from to . However, for cellular detonation waves, regular reflection always occurs first, which then transforms into Mach reflection. This phenomenon is more evident for detonations ignited under low initial pressure. Low initial pressure may lead to a curved wave front, that determines the reflection mode. The stochastic nature of boundary shape and transition distance, during deflagration-to-detonation transition, leads to relative disorder of detonation cell location and cell shape. Consequently, when a detonation wave hits the wedge apex, there appears a stochastic variation of triple point origin and variation of the angle between the triple point trajectory and the wedge surface. As the wedge apex angle increases, the distance between the triple point trajectory origin and the wedge apex increases, and the angle between the triple point trajectory and the wedge surface decreases exponentially.

  3. Impact waves and detonation. Part I

    NASA Technical Reports Server (NTRS)

    Becker, R

    1929-01-01

    Among the numerous thermodynamic and kinetic problems that have arisen in the application of the gaseous explosive reaction as a source of power in the internal combustion engine, the problem of the mode or way by which the transformation proceeds and the rate at which the heat energy is delivered to the working fluid became very early in the engine's development a problem of prime importance. The work of Becker here given is a notable extension of earlier investigations, because it covers the entire range of the explosive reaction in gases - normal detonation and burning.

  4. Continuous detonation wave engine studies for space application

    NASA Astrophysics Data System (ADS)

    Davidenko, D. M.; Jouot, F.; Kudryavtsev, A. N.; Dupré, G.; Gökalp, I.; Daniau, E.; Falempin, F.

    2009-09-01

    Continuous Detonation Wave Rocket Engine (CDWRE) for space application is considered in the framework of French R&D and scientific research. A CDWRE demonstrator and a dedicated test bench are designed by MBDA France. At ICARE-CNRS, theoretical and experimental studies on the CDWRE internal processes are under progress. Twodimensional (2D) Euler simulations of a CDWRE combustion chamber have been performed to investigate the effect of geometrical and injection parameters on the internal process and combustion chamber performance. An experimental study is prepared to investigate liquid oxygen breakup and vaporization in a helium flow as well as detonation initiation and propagation in a spray of liquid oxygen/gaseous hydrogen.

  5. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  6. Simulations of a Detonation Wave in Transverse Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc

    2010-11-01

    Numerical simulations of magneto-hydrodynamic (MHD) effects on detonation wave structures are performed, with applications to flow control and MHD power extraction in Pulse Detonation Engines (PDE) and their design variations. In contrast to prior studies of MHD interactions in PDEs,ootnotetextCambier, et al., AIAA-2008-4688 the effects of the finite relaxation length scale for ionization on the stability of the detonation wave are examined. Depending on the coupling parameters, the magnetic field can quench the detonation and effectively act as a barrier to its propagation. Conversely, an applied transient magnetic field can exert a force on a pre-ionized gas and accelerate it. The dynamics are subject to non-linear effects; a propagating transverse magnetic field will initially exert a small force if the gas has a low conductivity and the magnetic Reynolds number (Rem) is low. Nevertheless, the gas accelerated by the "piston" action of the field can pre-heat the ambient gas and increase its conductivity. As the wave progresses, Rem increases and the magnetic field becomes increasingly effective. The dynamics of this process are examined in detail with a high-order shock-capturing method and full kinetics of combustion and ionization. The complex chemical kinetics calculations are ported onto a GPU using the CUDA language, and computational performance is compared with standard CPU-based computations.

  7. The thickness of detonation waves visualised by slight obstacles

    NASA Astrophysics Data System (ADS)

    Weber, M.; Olivier, H.

    . The reflection of detonation waves from slight obstacles, which hardly disturb the wave propagation, is observed by time-resolved schlieren photography. The following stoichiometric mixtures are used: pure and argon-diluted hydrogen-oxygen, hydrogen-air, acetylene-oxygen, and acetylene-air. Initial pressures are varied such that cell widths range from 1.4 up to 108 mm, which is twice the side length of the square cross-section of the tube. The trajectories of the incident and the reflected waves in the x,t-plane are used to determine lower limit values for the wave thickness. The considerable influences of the obstacle shape and of the evaluation method on the results are discussed in detail, and error sources are analyzed. The method has been improved since a previous publication by the authors. The ratio of the lower limit values to the cell width spreads from 0.4 to 0.8 in the medium cell size range. It decreases with increasing marginality and seems to increase at small scale. A unique correlation between the lower limit value and the tube diameter, both referred to the cell size, that was proposed earlier in the literature has to be refused. The velocities of the reflected waves are presented as additional information on the post-detonation wave state. The sonic transition is discussed theoretically, enhancing the stream tube model, and practically, based on detailed observations for marginal detonations.

  8. Propagation of Curved Detonation Waves Stabilized in Annular Channels with a Rectangular Cross-section

    NASA Astrophysics Data System (ADS)

    Nakayama, Hisahiro; Takahiro Moriya; Kasahara, Jiro; Matsuo, Akiko; Sasamoto, Yuya; Funaki, Ikkoh

    Visualization experiments employing rectangular cross-section curved channels were performed in order to examine the fundamental characteristics of a curved detonation wave propagating stably through an annular channel. A stoichiometric ethylene-oxygen mixture gas and five types of curved channels with different inner radii of curvature were used. The detonation waves propagating in the curved channels were curved due to the expansion waves from the inner walls of the curved channels. The ratio of the inner radius of curved channel (ri) to the normal detonation cell width (λ) was an important factor determining the stability of the curved detonation waves. The detonation propagation mode in the curved channels transitioned from unstable to stable in the range 14 ≤ ri/λ ≤ 26. The normal detonation velocity (Dn) of the curved detonation wave propagating stably in a curved channel was approximately formulated. The approximated Dn given by the formula agreed well with the experimental results. The front shock shape of the curved detonation wave could be reconstructed accurately using the formula. The value of Dn nondimensionalized by the Chapman-Jouguet detonation velocity became a function of the local curvature of the curved detonation wave (κ) nondimensionalized by λ regardless of the shape of curved channel. The front shock shapes of the detonation waves in the stable mode became similar to each other under constant ri/λ conditions.

  9. Multi-frame visualization for detonation wave diffraction

    NASA Astrophysics Data System (ADS)

    Nagura, Y.; Kasahara, J.; Matsuo, A.

    2016-05-01

    When a detonation wave emerges from a tube into unconfined space filled with a gas mixture, detonation wave diffraction occurs due to abrupt changes in the cross-sectional area. In the present study, we focused on the local explosion in reinitiation and propagation of a transverse detonation wave by performing comprehensive and direct observation with high time resolution visualization in a two-dimensional rectangular channel. Using the visualization methods of shadowgraph and multi-frame, short-time, open-shutter photography, we determined where the wall reflection point is generated, and also determined where the bright point is originated by the local explosion, and investigated the effects of the deviation angle and initial pressure of the gas mixture. We found that the reinitiation of detonation had two modes that were determined by the deviation angle of the channel. If the deviation angle was less than or equal to 30°, the local explosion of reinitiation might occur in the vicinity of the channel wall, and if the deviation angle was greater than or equal to 60°, the local explosion might originate on the upper side of the tube exit. With a deviation angle greater than 60°, the position of the wall reflection point depended on the cell width, so the radial distance of the wall reflection point from the apex of the tube exit was about 12 times the cell width. Similarly, the bright point (local explosion point) was located a distance of about 11 times the cell width from the apex of the tube exit, with a circumferential angle of 48°.

  10. Structure of an oblique detonation wave induced by a wedge

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, Y.-S.; Wu, D.; Wang, J.-P.

    2016-03-01

    The structure of an oblique detonation wave (ODW) induced by a wedge is investigated via numerical simulations and Rankine-Hugoniot analysis. The two-dimensional Euler equations coupled with a two-step chemical reaction model are solved. In the numerical results, four configurations of the Chapman-Jouguet (CJ) ODW reflection (overall Mach reflection, Mach reflection, regular reflection, and non-reflection) are observed to take place sequentially as the inflow Mach number increases. According to the numerical and analytical results, the change of the CJ ODW reflection configuration results from the interaction among the ODW, the CJ ODW, and the centered expansion wave.

  11. Linear and nonlinear effects in detonation wave structure formation

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2016-06-01

    The role of linear and nonlinear effects in the process of formation of detonation wave structure is investigated using linear stability analysis and direct numerical simulation. A simple model with a one-step irreversible chemical reaction is considered. For linear stability computations, both the local iterative shooting procedure and the global Chebyshev pseudospectral method are employed. Numerical simulations of 1D pulsating instability are performed using a shock fitting approach based on a 5th order upwind-biased compact-difference discretization and a shock acceleration equation deduced from the Rankine-Hugoniot conditions. A shock capturing WENO scheme of the 5th order is used to simulate propagation of detonation wave in a plane channel. It is shown that the linear analysis predicts correctly the mode dominating on early stages of flow evolution and the size of detonation cells which emerge during these stages. Later, however, when a developed self-reproducing cellular structure forms, the cell size is approximately doubled due to nonlinear effects.

  12. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  13. Shock wave and detonation wave response of selected HMX based research explosives with HTPB binder systems

    NASA Astrophysics Data System (ADS)

    Sutherland, G. T.; Lemar, E. R.; Forbes, J. W.; Anderson, E.; Miller, P.; Ashwell, K. D.; Baker, R. N.; Liddiard, T. P.

    1994-07-01

    The sensitivity, detonation properties, and performance of selected HMX based explosives are compared. All explosives were manufactured using a hydroxyl-terminated polybutadiene (HTPB) binder system. IRX class explosives were manufactured to obtain explosives in which ingredients were systematically varied. The particle size range of the HMX particles was controlled by sieving. Sensitivity and performance experiments were conducted using the explosives IRX-1, and IRX-3A. These experiments measured: detonation pressure, detonation velocity, modified gap test shock sensitivity, and detonation wave curvature. Modified gap tests were also performed for SW-21 and PBXN-110. In addition, light gas gun experiments were performed in which reactive stress-time profiles were obtained for IRX-1 and PBXN-110.

  14. The ignition of carbon detonations via converging shock waves in white dwarfs

    SciTech Connect

    Shen, Ken J.; Bildsten, Lars E-mail: bildsten@kitp.ucsb.edu

    2014-04-10

    The progenitor channel responsible for the majority of Type Ia supernovae is still uncertain. One emergent scenario involves the detonation of a He-rich layer surrounding a C/O white dwarf, which sends a shock wave into the core. The quasi-spherical shock wave converges and strengthens at an off-center location, forming a second, C-burning, detonation that disrupts the whole star. In this paper, we examine this second detonation of the double detonation scenario using a combination of analytic and numeric techniques. We perform a spatially resolved study of the imploding shock wave and outgoing detonation and calculate the critical imploding shock strengths needed to achieve a core C detonation. We find that He detonations in recent two-dimensional simulations yield converging shock waves that are strong enough to ignite C detonations in high-mass C/O cores, with the caveat that a truly robust answer requires multi-dimensional detonation initiation calculations. We also find that convergence-driven detonations in low-mass C/O cores and in O/Ne cores are harder to achieve and are perhaps unrealized in standard binary evolution.

  15. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  16. Effect of the initial pressure of multicomponent bubble media on the characteristics of detonation waves

    NASA Astrophysics Data System (ADS)

    Sychev, A. I.

    2016-05-01

    The effect of the initial pressure of multicomponent bubble media on the conditions of initiation, the structure, the velocity, and the pressure of detonation waves is experimentally studied. The variation of the initial pressure of a bubble medium is found to be an effective method to control the parameters of bubble detonation waves.

  17. Progress in measuring detonation wave profiles in PBX9501

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1998-12-31

    The authors have measured detonation wave profiles in PBX9501 (95 wt% HMX and 5 wt% binders) using VISAR. Planar detonations were produced by impacting the explosive with projectiles launched in a 72 mm bore gas gun. Particle velocity wave profiles were measured at the explosive/window interface using two VISARs with different fringe constants. Windows with very thin vapor deposited aluminum mirrors were used for all experiments. PMMA windows provided an undermatch, and LiF (Lithium Fluoride) windows provided an overmatch to the explosive, reacted and unreacted. While the present experiments do not have adequate time resolution to adequately resolve the ZND spike condition, they do constrain it to lie between 38.7 and 53.4 Gpa or 2.4 and 3.3 km/s. Accurate knowledge of the CJ state places the reaction zone length at 35 {+-} 12 ns ({approx} 0.3 mm). The present experiments do not show any effect of the window on the reaction zone; both window materials result in the same reaction zone length.

  18. Shock wave dynamics of novel aluminized detonations and empirical model for temperature evolution from post-detonation combustion fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos

    Optical forensics of explosion events can play a vital role in investigating the chain of events leading up to the explosion by possibly identifying key spectral characteristics and even molecules in the post-detonation fireball that may serve as the fingerprint for a particular explosive type used. This research characterizes the blast wave and temperature evolution of an explosion fireball in order to improve the classification of aluminized conventional munitions based on a single explosive type such as RDX. High speed 4 kHz visible imagery is collected for 13 field detonations of aluminized novel munitions to study fireball and shock wave dynamics. The 238 mus temporal resolution visible imagery and the 12 ms temporal resolution FTS spectra are the data sets upon which shock wave dynamics and the time dependence of the fireball temperature are studied, respectively. The Sedov-Taylor point blast theory is fitted to data where a constant release (s = 1) of energy upon detonation suggests shock energies of 0.5--8.9 MJ corresponding to efficiencies of 2--15 percent of the RDX heats of detonation with blast dimensionalities indicative of the spherical geometry observed in visible imagery. A drag model fit to data shows initial shock wave speeds of Mach 4.7--8.2 and maximum fireball radii ranging from 4.3--5.8 m with most of the radii reached by 50 ms upon detonation. Initial shock speeds are four times lower than theoretical maximum detonation speed of RDX and likely contributes to the low efficiencies. An inverse correlation exists between blast wave energy and overall aluminum or liner content in the test articles. A two-color best fit Planckian is used to extract temperature profiles from collected Fourier-transform spectrometer spectra. The temperatures decay from initial values of 1290--1850 K to less than 1000 K within 1 s after detonation. A physics-based low-dimensionality empirical model is developed to represent the temperature evolution of post-detonation

  19. Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Y.; Mazaheri, K.; Parvar, S.

    2013-10-01

    The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer-Meshkov instability (RMI) and Kelvin-Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier-Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer-Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.

  20. Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media

    NASA Astrophysics Data System (ADS)

    Shaw, Benjamin D.; Pantoya, Michelle L.; Dikici, Birce

    2013-02-01

    The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.

  1. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  2. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    NASA Astrophysics Data System (ADS)

    Ciccarelli, G.; Cross, M.

    2016-06-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  3. Calculation of Chemical Detonation Waves With Hydrodynamics and Thermochemical Equation of State

    SciTech Connect

    Howard, W M; Fried, L E; Souers, P C; Vitello, P A

    2001-08-01

    We model detonation waves for solid explosives, using 2-D Arbitrary Lagrange Eulerian (ALE) hydrodynamics, with an equation of state (EOS) based on thermochemical equilibrium, coupled with simple kinetic rate laws for a few reactants. The EOS for the product species is based on either a BKWC EOS or on an exponential-6 potential model, whose parameters are fitted to a wide range of shock Hugoniot and static compression data. We show some results for the non ideal explosive, urea nitrate. Such a model is a powerful tool for studying such processes as initiation, detonation wave propagation and detonation wave propagation as a function of cylindrical radius.

  4. Numerical study of detonation wave propagation in a confined supersonic flow

    NASA Astrophysics Data System (ADS)

    Yi, T. H.; Lu, F. K.; Wilson, D. R.; Emanuel, G.

    2016-07-01

    The dynamics of detonation waves propagating in a confined supersonic flow is numerically investigated to understand the effects of incoming flow velocity in a combustion chamber on detonation properties and structure. The computational code is based on the Euler equations with detailed chemistry. The detonation is directly initiated with high pressure and temperature at a given region inside a straight tube and then propagates both upstream and downstream. The study shows that as the incoming flow velocity increases, the properties of the detonation wave moving upstream and downstream are significantly changed. This leads to an increase or decrease in the velocity and strength of the detonation wave, and a change in smoked foil cellular pattern. It was found that the strength of the upstream-moving detonation becomes higher and the propagation velocity decreases as the incoming velocity increases. These factors result in a change of the smoked foil pattern such as the cell length, width, and track angle. Moreover, the time in stabilizing the detonations moving in opposite directions is significantly changed with a supersonic incoming flow. An initiation delay occurs on the downstream-moving detonation since it is weakened in a supersonic flow.

  5. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-07-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  6. Head-on Collision of a Detonation with a Planar Shock Wave

    NASA Astrophysics Data System (ADS)

    Ng, H. D.; Botros, B. B.; Chao, J.; Yang, J. M.; Nikiforakis, N.; Lee, J. H. S.

    2006-09-01

    The phenomenon that occurs when a Chapman Jouguet (CJ) detonation collides with a shock wave is discussed. Assuming a one-dimensional steady wave configuration analogous to a planar shock shock frontal interaction, analytical solutions of the Rankine Hugoniot relationships for the transmitted detonation and the transmitted shock are obtained by matching the pressure and particle velocity at the contact surface. The analytical results indicate that there exist three possible regions of solutions, i.e. the transmitted detonation can have either strong, weak or CJ solution, depending on the incident detonation and shock strengths. On the other hand, if we impose the transmitted detonation to have a CJ solution followed by a rarefaction fan, the boundary conditions are also satisfied at the contact surface. The existence of these multiple solutions is verified by an experimental investigation. It is found that the experimental results agree well with those predicted by the second wave interaction model and that the transmitted detonation is a CJ detonation. Unsteady numerical simulations of the reactive Euler equations with both simple one-step Arrhenius kinetic and chain-branching kinetic models are also carried out to look at the transient phenomena and at the influence of a finite reaction thickness of a detonation wave on the problem of head-on collision with a shock. From all the computational results, a relaxation process consisting of a quasi-steady period and an overshoot for the transmitted detonation subsequent to the head-on collisions can be observed, followed by the asymptotic decay to a CJ detonation as predicted theoretically. For unstable pulsating detonations, it is found that, due to the increase in the thermodynamic state of the reactive mixture caused by the shock, the transmitted pulsating detonation can become more stable with smaller amplitude and period oscillation. These observations are in good agreement with experimental evidence obtained

  7. Influence of the initial pressure in bubble media on the detonation wave parameters

    NASA Astrophysics Data System (ADS)

    Sychev, A. I.

    2015-04-01

    The influence of the initial pressure in bubble media on the initiation, structure, velocity, and pressure of detonation waves in single-component bubble media is studied. The test medium (bubbles of a stoichiometric acetylene-oxygen mixture in a hydroglyceric solution) falls under the category of "chemically inactive liquid—bubbles of a chemically active gas." It is found that one can effectively control the parameters of bubble detonation waves by varying the initial pressure in the bubble medium.

  8. Propagation of detonation wave in hydrogen-air mixture in channels with sound-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.

    2015-12-01

    The possibility of using sound-absorbing surfaces for attenuating the intensity of detonation waves propagating in hydrogen-air mixtures has been experimentally studied in a cylindrical detonation tube open at one end, with an explosive initiated by spark discharge at the closed end. Sound-absorbing elements were made of an acoustic-grade foamed rubber with density of 0.035 g/cm3 containing open pores with an average diameter of 0.5 mm. The degree of attenuation of the detonation wave front velocity was determined as dependent on the volume fraction of hydrogen in the gas mixture.

  9. Unsteady Propagation Process of Oblique Detonation Waves Initiated by Hypersonic Spherical Projectiles

    NASA Astrophysics Data System (ADS)

    Maeda, Shinichi; Kasahara, Jiro; Matsuo, Akiko

    A spherical projectile was launched with 110% - 180% of a Chapman-Jouget (C-J) velocity into a detonable mixture, and we investigated the oblique detonation wave (ODW) that stabilized around it. High time-resolution visualizations were conducted using a high-speed camera with 1-μs frame speed to directly confirm the ODW stabilization and to investigate an unsteady phenomenon observed near the stabilizing criticality. In this case, the ODW was a three-dimensional conical wave, and the curvature effect on the conical detonation wave is not negligible near a projectile. We investigated the wave velocity distribution along the wave and revealed that it had a local minimum point at 0.8 - 0.9 times a C-J velocity during the decay process from an overdriven detonation near a projectile to a C-J ODW in the far field. We defined a characteristic wave curvature radius normalized by a cell size on this local minimum point. In this study, the minimum characteristic wave curvature radius of about 18 was needed to stabilize the conical detonation wave around a sphere. Near the stabilizing criticality, we also observed the unsteady ODW stabilization or detonation initiation on a shock-induced combustion. This unsteady regime was characterized by periodical onsets of local explosions that initiate or stabilize an ODW. We investigated the wave velocity distribution along this regime, and our findings revealed that the ODW transition or the detonation initiation following the shock-induced combustion occurred when the wave velocity decayed to 0.5 - 0.6 times a C-J velocity.

  10. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation.

    PubMed

    Lemarchand, A; Nowakowski, B; Dumazer, G; Antoine, C

    2011-01-21

    We perform microscopic simulations using the direct simulation Monte Carlo approach to an exothermic chemical wave front of Fisher-Kolmogorov, Petrovsky, Piskunov-type in a one-dimensional gaseous medium. The results confirm the existence of a transition from a weak detonation or deflagration to a Chapman-Jouguet detonation wave, that we already investigated at the macroscopic scale [G. Dumazer et al., Phys. Rev. E 78, 016309 (2008)]. In the domain of weak detonation or deflagration, the discrepancy between the propagation speeds deduced from the simulations and the macroscopic balance equations of hydrodynamics is explained by two microscopic effects, the discretization of the variables, known as cutoff effect, and the departure from local equilibrium. Remarkably, the propagation speed of a Chapman-Jouguet detonation wave is not sensitive to these perturbations of microscopic origin. PMID:21261344

  11. Analysis of supercritical vapor explosions using thermal detonation wave theory

    SciTech Connect

    Shamoun, B.I.; Corradini, M.L.

    1995-09-01

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixing conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.

  12. Decoupling and recoupling of detonation waves associated with sudden expansion

    NASA Astrophysics Data System (ADS)

    Pantow, E. G.; Fischer, M.; Kratzel, Th.

    1996-09-01

    Detonation propagation behavior associated with sudden expansions has been investigated both experimentally and numerically. Different mechanisms, from sustained propagation to detonation failure and reinitiation including shock and flame front decoupling and recoupling have been observed with the schlieren technique. The shock-induced flame propagation has been modeled with two-step chemistry and structured two-dimensional CFD on arbitrary geometries. The results of the numerical simulations show good correspondence to the variety of phenomena observed in experiments. Thus the numerical simulation can be used to study detonation propagation in complex geometries. It provides a tool for the design of safety devices and aids experimental investigations.

  13. Pressure estimation for a low-speed detonation wave in pressed TEN

    SciTech Connect

    Martynyuk, V.F.; Sulimov, A.A.; Sukoyan, M.K.; Obmenin, A.V.

    1988-05-01

    This paper examined the dynamic deformation in steel shells with stationary low-speed detonation propagating in pressed TEN. Shell expansion was recorded with a ZhLV-2 triggered photographic system with the shell seen against a bright screen. The pressure pattern behind the front was shown to be stationary by the constant mode of shell expansion. Pressure in the stationary low-speed detonation was estimated from the photographic data. An expression was derived for calculating the estimated pressure from an equation for radial expansion of the shell. A dynamic deformation pattern was found which was used to calculate the explosive burnup in stationary low-speed detonation waves.

  14. Damage in low alloy steel produced by sweeping, interacting detonation waves

    NASA Astrophysics Data System (ADS)

    Hull, L.; Gray, G.; Faulkner, J.; Briggs, M.

    2014-05-01

    Detonation waves that sweep along the surface of a metal plate induce reduced pressure and enhanced shear, relative to the same detonation at normal incidence. Detonation waves at intermediate obliquity impress intermediate combined stress states. Release waves from the free surfaces may enter into play and contribute to the damage. Initiation of explosive at discrete points produces strong pressure, density, and velocity gradients in the gaseous explosive products in areas where the waves collide, are impressed in an adjacent metal, causing similar stress gradients within the metal that often leading to intense damage. In this work, we investigate damage generated in AISI 4130 steel by the combined effects of oblique drive and interacting detonation waves. The experimental data consist of multipoint velocimetry points probing the free surface in regions loaded by interacting detonation waves and regions between the interactions. Metallography on recovered plate records the plastic flow and damage correlated with the velocimetry data. Spall is indicated in most regions, but not some, and the alpha-epsilon stress-induced phase transformation appears in most regions, but not all.

  15. Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations

    NASA Astrophysics Data System (ADS)

    Murphy, Michael J.; Adrian, Ronald J.

    2007-08-01

    Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.

  16. Photographic investigation into the mechanism of combustion in irregular detonation waves

    NASA Astrophysics Data System (ADS)

    Kiyanda, C. B.; Higgins, A. J.

    2013-03-01

    Irregular detonations are supersonic combustion waves in which the inherent multi-dimensional structure is highly variable. In such waves, it is questionable whether auto-ignition induced by shock compression is the only combustion mechanism present. Through the use of high-speed schlieren and self-emitted light photography, the velocity of the different components of detonation waves in a {{ CH}}_4+2{ O}_2 mixture is analyzed. The observed burn-out of unreacted pockets is hypothesized to be due to turbulent combustion.

  17. Characterization of Detonation Wave Propagation in LX-17 Near the Critical Diameter

    SciTech Connect

    Tran, T D; Tarver, C M; Maienschein, J; Lewis, P; Pastrone, R; Lee, R S; Roeske, F

    2002-06-14

    A new Detonation Profile Test (DPT) was developed to measure simultaneously the detonation wave breakout profile and the average detonation velocity at the breakout surface. The test evaluated small cylindrical samples with diameter up to 19.08 mm and length up to 33 mm. The experiment involved initiating a LX-17 cylindrical specimen and recording the wave breakout using a fast streaking electronic camera. The initiation was done using a PBX-9407 pellet (1.630 g/cm{sup 3}), which has a Chapman-Jouguet (C-J) pressure close to that of LX-17. The acceptor breakout surface had a 2 mm wide by 1 mm deep groove that provided a step in the recorded breakout profile for velocity determination. A 532-nm laser light illuminated the specimen surface. A streak camera looking perpendicular to the groove, recorded the extinction of the laser light as the detonation wave emerged from the surface. This technique provided a high-resolution spatial and temporal profile of the wave curvature as well as accurate timing of the propagating wave over the last millimeter of the sample. The measured groove depth and recorded travel time were then used to calculate the average detonation wave velocity. Results for 12.7 mm diameter unconfined LX-17 charges showed detonation velocity in the range between 6.79 and 7.06 km/s for parts up to 33 mm long. Since LX-17 can not sustain detonation at less than 7.3 km/s , these waves were definitely failing. Experiments with confined 12.7 mm diameter and unconfined 19.1 mm diameter samples showed wave velocities in the range of 7.4-7.6 km/s, values approaching steady state conditions at infinite diameter. Both unconfined and confined charges show no sensitivity to density variations in the range between 1.890-1.915 g/cm{sup 3}. Experiments with 15.88 mm and 19.08 mm diameters gave velocities in the range between 7.2-7.45 km/s, values close to that expected for failure. The velocity measurement has an estimated experimental error in the range of 2

  18. Millimeter-wave Driven Shock Wave for a Pulsed Detonation Microwave Rocket

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Toshikazu; Komatsu, Reiji; Fukunari, Masafumi; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2011-11-01

    A shock wave driven by millimeter wave ionization can be applied into a pulsed detonation engine as a Microwave Rocket. A high pressure induced inside the thruster generates the thrust, thus the shock wave propagation driven by the plasma is important. In this study, to obtain a different propagating structure, the beam profile was transformed from a Gaussian into a Ring and a Flat-top profile by using a pair of phase correcting mirrors. As a result, the shape of the propagating plasma was changed into a no-center shape in case of the Ring beam, and it was changed to a wider shape in case of the Flat-top beam. The propagating velocity of the ionization front of the Flat-top beam was much lower than that of the Gaussian due to the lower peak power density, and a higher plateau pressure and higher thrust impulse were generated by the Flat-top beam.

  19. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  20. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  1. Critical diameter for the transmission of a detonation wave into a porous medium

    SciTech Connect

    Makris, A.; Oh, T.J.; Lee, J.H.S.; Knystautas, R.

    1994-12-31

    An experimental investigation has been undertaken to elucidate the existence of a critical diameter for the transmission of gaseous detonation into a porous medium. A Chapman-Jouguet (CJ) detonation is first established in a tube and allowed to transmit through an orifice plate into a porous medium comprised of inert spheres of equal diameter. It is found that detonation can successfully transmit past the orifice for diameters much smaller than the normal critical diameter (d{sub c}) of the mixture. An immediate transition from detonation to quasi-detonation normally takes place upon wave entry in the porous medium. Failure of detonation is observed to take place downstream of the orifice in the near-limit regime and is followed by deflagration to detonation transition (DDT) within the porous medium. Wave velocities in the porous medium are found to be identical to the corresponding values measured for direct transmission (without an orifice). For subcritical conditions, there is complete quenching of combustion in the pores. The critical composition (lean and rich) for mixtures with high activation energy is found to be practically the same as the propagation limits in the porous medium without an orifice. This indicates that the phenomenon is governed by the smallest physical dimension of the pore size, and thus a local failure mechanism exists. In mixtures highly diluted with argon, i.e., (C{sub 2}H{sub 2}-O{sub 2}) + 75% Ar, which have, a lower activation energy and for which the ``d{sub c} = 13{lambda}`` correlation (where {lambda} is the cell size) is known to break down, the critical composition appears to depend on the orifice diameter. The orifice now introduces a larger controlling length scale at the limits compared to the pore size, indicating that a global failure mechanism may prevail for such mixtures. Present findings are consistent with a local and global failure mechanism for normal detonation failure recently proposed by Lee.

  2. Equilibrium and stability properties of detonation waves in the hydrodynamic limit of a kinetic model

    NASA Astrophysics Data System (ADS)

    Marques, Wilson, Jr.; Jacinta Soares, Ana; Pandolfi Bianchi, Miriam; Kremer, Gilberto M.

    2015-06-01

    A shock wave structure problem, like the one which can be formulated for the planar detonation wave, is analyzed here for a binary mixture of ideal gases undergoing the symmetric reaction {{A}1}+{{A}1}\\rightleftharpoons {{A}2}+{{A}2}. The problem is studied at the hydrodynamic Euler limit of a kinetic model of the reactive Boltzmann equation. The chemical rate law is deduced in this frame with a second-order reaction rate, in a chemical regime such that the gas flow is not far away from the chemical equilibrium. The caloric and the thermal equations of state for the specific internal energy and temperature are employed to close the system of balance laws. With respect to other approaches known in the kinetic literature for detonation problems with a reversible reaction, this paper aims to improve some aspects of the wave solution. Within the mathematical analysis of the detonation model, the equation of the equilibrium Hugoniot curve of the final states is explicitly derived for the first time and used to define the correct location of the equilibrium Chapman-Jouguet point in the Hugoniot diagram. The parametric space is widened to investigate the response of the detonation solution to the activation energy of the chemical reaction. Finally, the mathematical formulation of the linear stability problem is given for the wave detonation structure via a normal-mode approach, when bidimensional disturbances perturb the steady solution. The stability equations with their boundary conditions and the radiation condition of the considered model are explicitly derived for small transversal deviations of the shock wave location. The paper shows how a second-order chemical kinetics description, derived at the microscopic level, and an analytic deduction of the equilibrium Hugoniot curve, lead to an accurate picture of the steady detonation with reversible reaction, as well as to a proper bidimensional linear stability analysis.

  3. Detailed simulation of the pulsating detonation wave in the shock-attached frame

    NASA Astrophysics Data System (ADS)

    Lopato, A. I.; Utkin, P. S.

    2016-05-01

    The paper is devoted to the numerical investigation of the stability of propagation of pulsating gas detonation waves. For various values of the mixture activation energy, detailed propagation patterns of the stable, weakly unstable, irregular, and strongly unstable detonation are obtained. The mathematical model is based on the Euler system of equations and the one-stage model of chemical reaction kinetics. The distinctive feature of the paper is the use of a specially developed computational algorithm of the second approximation order for simulating detonation wave in the shock-attached frame. In distinction from shock capturing schemes, the statement used in the paper is free of computational artifacts caused by the numerical smearing of the leading wave front. The key point of the computational algorithm is the solution of the equation for the evolution of the leading wave velocity using the second-order grid-characteristic method. The regimes of the pulsating detonation wave propagation thus obtained qualitatively match the computational data obtained in other studies and their numerical quality is superior when compared with known analytical solutions due to the use of a highly accurate computational algorithm.

  4. Periodic oscillation and fine structure of wedge-induced oblique detonation waves

    NASA Astrophysics Data System (ADS)

    Gui, Ming-Yue; Fan, Bao-Chun; Dong, Gang

    2011-12-01

    An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30° turning angle is simulated numerically using Euler equation and one-step rection model. The fifth-order WENO scheme is adopted to capture the shock wave. The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections: the ZND model-like strcuture, single-sided triple point structure and dual-headed triple point strucuture. The first structure is the smooth straight, and the second has the characteristic of the triple points propagating dowanstream only with the same velocity, while the dual-headed triple point structure is very complicated. The detonation waves facing upstream and downstream propagate with different velocities, in which the periodic collisions of the triple points cause the oscillation of the detonation wave front. This oscillation process has temporal and spatial periodicity. In addition, the triple point trace are recorded to obtain different cell structures in three sections.

  5. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Yining; Teng, Honghui; Jiang, Zonglin; Ng, Hoi Dick

    2015-09-01

    Two-dimensional, oblique detonations induced by a wedge are simulated using the reactive Euler equations with a detailed chemical reaction model. The focus of this study is on the oblique shock-to-detonation transition in a stoichiometric hydrogen-air mixture. A combustible, gas mixture at low pressure and high temperature, corresponding to the realistic, inflow conditions applied in oblique detonation wave engines, is presented in this study. At practical flight conditions, the present numerical results illustrate that oblique detonation initiation is achieved through a smooth transition from a curved shock, which differs from the abrupt transition depicted in the previous studies. The formation mechanism of this smooth transition is discussed and a quantitative analysis is carried out by defining a characteristic length for the initiation process. The dependence of the initiation length on different parameters including the wedge angle, flight Mach number, and inflow Mach number is discussed. Despite the hypothetical nature of the simulation configuration, the present numerical study uses parameters we deem relevant to practical conditions and provides important observations for which future investigations can benefit from in reaching toward a rigorous theory of the formation and self-sustenance of oblique detonation waves.

  6. Oblique shock wave calculations for detonation waves in brass confined and bare PBXN-111 cylindrical charges

    SciTech Connect

    Lemar, E.R.; Forbes, J.W.; Cowperthwaite, M.

    1998-07-01

    Shock polar theory is used to calculate the angles detonation fronts make with the cylinder wall for brass cased and bare PBXN-111 cylinders. Two extrapolated unreacted PBXN-111 Hugoniot curves are used to calculate these angles. Measured and calculated angles for bare PBXN-111 cylinders are in good agreement for one of the unreacted PBXN-111 Hugoniots. Except for the 100 mm diameter charge, the differences between calculated and measured angles for brass cased charges are beyond experimental error. Limited data suggests that the wave front curvature exhibits a large change right at the brass wall and the resolution in the experiments may not be fine enough to show it clearly. {copyright} {ital 1998 American Institute of Physics.}

  7. Critical deflagration waves leading to detonation onset under different boundary conditions

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhou, Jin; Fan, Xiao-Hua; Lin, Zhi-Yong

    2015-01-01

    High-speed turbulent critical deflagration waves before detonation onset in H2-air mixture propagated into a square cross section channel, which was assembled of optional rigid rough, rigid smooth, or flexible walls. The corresponding propagation characteristic and the influence of the wall boundaries on the propagation were investigated via high-speed shadowgraph and a high-frequency pressure sampling system. As a comprehensive supplement to the different walls effect investigation, the effect of porous absorbing walls on the detonation propagation was also investigated via smoke foils and the high-frequency pressure sampling system. Results are as follows. In the critical deflagration stage, the leading shock and the closely following turbulent flame front travel at a speed of nearly half the CJ detonation velocity. In the preheated zone, a zonary flame arises from the overlapping part of the boundary layer and the pressure waves, and then merges into the mainstream flame. Among these wall boundary conditions, the rigid rough wall plays a most positive role in the formation of the zonary flame and thus accelerates the transition of the deflagration to detonation (DDT), which is due to the boost of the boundary layer growth and the pressure wave reflection. Even though the flexible wall is not conducive to the pressure wave reflection, it brings out a faster boundary layer growth, which plays a more significant role in the zonary flame formation. Additionally, the porous absorbing wall absorbs the transverse wave and yields detonation decay and velocity deficit. After the absorbing wall, below some low initial pressure conditions, no re-initiation occurs and the deflagration propagates in critical deflagration for a relatively long distance. Project supported by the National Natural Science Foundation of China (Grant No. 51206182).

  8. Evolution of a detonation wave in a cloud of fuel droplets. II - Influence of fuel droplets

    NASA Astrophysics Data System (ADS)

    Burcat, A.; Eidelman, S.

    1980-10-01

    This is the second part of an investigation in which the whole problem of energy release in a combustible spray-gas mixture is solved. The influence of the droplet size of the spray on the parameters of the shock waves traveling in the media are delineated. The investigation was able to reveal the mechanism of shock wave reinforcement and to show the source of dynamic instabilities encountered with two-phase detonation processes.

  9. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  10. Proton Radiography Observations of the Failure of a Detonation Wave to Propagate to the End of a Conical Explosive Charge

    NASA Astrophysics Data System (ADS)

    Ferm, Eric N.; Lansce Proton Radiography Team

    2006-07-01

    Failure diameter is a well-known property of explosive materials, being the critical diameter below which a steady detonation wave will not be able to support itself and ultimately fails to propagate. A detonation wave traveling down a uniform cylindrical charge larger than its critical diameter will reach a steady detonation velocity which is a function of the diameter of the explosive as well as other material properties, notably density and temperature. In this work, we use proton radiography to study the propagation of detonations down conical PBX 9502 charges beginning at diameters larger than failure diameter and ending at diameters much smaller than failure diameter. Experiments show cases where complete detonation of the cone occurs as well as cases where failure is observed significantly before the end of the cone and significant portions of the charge remain unreacted. Wave velocities and densities are obtained from the multiple image proton radiography experiments and compared with failure diameter effect curves for PBX 9502.

  11. Proton Radiography Observations of the Failure of a Detonation Wave to Propagate to the End of a Conical Explosive Charge

    NASA Astrophysics Data System (ADS)

    Ferm, Eric N.

    2005-07-01

    Failure diameter is a well-known property of explosive materials, being the critical diameter below which a steady detonation wave will not be able to support itself and ultimately fails to propagate. A detonation wave traveling down a uniform cylindrical charge larger than its critical diameter will reach a steady detonation velocity which is a function of the diameter of the explosive as well as other material properties, notably density and temperature. In this work, we use proton radiography to study the propagation of detonations down conical PBX 9502 charges beginning at diameters larger than failure diameter and ending at diameters much smaller than failure diameter. Experiments show cases where complete detonation of the cone occurs as well as cases where failure is observed significantly before the end of the cone and significant portions of the charge remain unreacted. Wave velocities and densities are obtained from the multiple image proton radiography experiments and compared with failure diameter effect curves for PBX 9502.

  12. Comparative characteristics of strong shock and detonation waves in bubble media by an electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Kochetkov, I. I.; Pinaev, A. V.

    2013-03-01

    Strong shock and detonation waves in inert and chemically active bubble media, which are generated by a wire explosion initiated by a capacitor with a stored energy W_0 =12.3-1,600 J, is experimentally studied. The measurements are performed near the wire and far from the wire in a vertical shock tube 4.5 m long with a volume fraction of the gas in the medium β _0 =1-4 %. It is shown that in inert bubble medium, a short intensely decaying shock wave (SW) with intense pressure oscillations is formed in the vicinity of wire explosion point; near the explosion point at β _0 le 2 % the SW propagates with the velocity of sound in a liquid. In chemically active bubble medium, an unsteady detonation wave generated by a wire explosion is formed. The pressure amplitude and the velocity of this wave are greater and the length is smaller than those of SW in an inert bubble medium in the same range of explosion energy. It is found that in the interval of low energy explosion from {˜ }12 to 64 J, the formation of the bubble detonation wave occurs faster than that at high energies (3× 102-103 J).

  13. Explosively generated shock wave processing of metal powders by instrumented detonics

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2013-06-01

    The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.

  14. Deflagration-to-detonation transition by amplification of acoustic waves in type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Charignon, C.; Chièze, J.-P.

    2013-02-01

    Aims: We study a new mechanism for deflagration-to-detonation transition in thermonuclear supernovae (SNe Ia), based on the formation of shocks by amplification of sound waves in the steep density gradients of white dwarfs envelopes. We characterise, in terms of wavelength and amplitude, the perturbations which will ignite a detonation after their amplification. Methods: This study was performed using the well tested HERACLES code, a conservative hydrodynamical code, validated in the present specific application by an analytical description of the propagation of sound waves in white dwarfs. Thermonuclear combustion of the carbon oxygen fuel was treated with the α-chain nuclear reactions network. Results: In planar geometry we found the critical parameter to be the height of shock formation. When it occurs in the inner dense regions (ρ > 106 g cm-3) detonation is inevitable but can take an arbitrarily long time. We found that ignition can be achieved for perturbation as low as Mach number: M ~ 0.005, with heating times compatible with typical explosion time scale (a few seconds). On the opposite no ignition occurs when shocks initiated by small amplitude or large wavelength form further away in less dense regions. We show finally that ignition is also achieved in a spherical self-gravitating spherical model of cold C+O white dwarf of 1.430 M⊙, but due to the spherical damping of sound waves it necessitates stronger perturbation (M ~ 0.02). Small perturbations (M ~ 0.003) could still trigger detonation if a small helium layer is considered. In the context of SNe Ia, one has to consider further the initial expansion of the white dwarf, triggered by the deflagration, prior to the transition to detonation. As the star expands, gradients get flatter and ignition requires increasingly strong perturbations.

  15. Corner turning and shock desensitization experiments plus numerical modeling of detonation waves in the triaminotrinitrobenzene based explosive LX-17.

    PubMed

    Tarver, Craig M

    2010-03-01

    Five new experiments are reported that tested both detonation wave corner turning and shock desensitization properties of the triaminotrinitrobenzene (TATB) based plastic bonded explosive (PBX) LX-17. These experiments used small pentaerythritol tetranitrate (PETN) charges to initiate hemispherical ultrafine TATB (UF TATB) boosters, which then initiated LX-17 hemispherical detonations. The UF TATB boosters were placed under steel shadow plates embedded in the LX-17 cylindrical charges, which were covered by thin aluminum plates. The LX-17 detonation waves propagated outward until they reached the aluminum plates, which were instrumented with photonic Doppler velocimetry probes to measure their axial free surface velocities. X-ray radiographs and framing camera images were taken at various times. The LX-17 detonations propagated around the two corners of the steel shadow plates and into thin LX-17 layers placed between the steel and the top aluminum plates. The detonation waves were met there by weak diverging shocks that propagated through the steel plates and imparted 1-2 GPa pressures to these unreacted LX-17 layers. These weak shock waves compressed and desensitized the unreacted LX-17, resulting in failures of the LX-17 detonation waves. The hydrodynamics of double corner turning and shock desensitization in the five experiments were modeled in two dimensions using the Ignition and Growth LX-17 detonation reactive flow model. The calculated arrival times and axial free surface velocity histories of the top aluminum plates were in excellent agreement with the experimental measurements. PMID:20141191

  16. Scale effect of spherical projectiles for stabilization of oblique detonation waves

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Sumiya, S.; Kasahara, J.; Matsuo, A.

    2015-03-01

    Oblique detonation waves (ODWs) were stabilized by launching a spherical projectile with 1.2-1.4 times the Chapman-Jouguet (C-J) velocity into detonable mixtures at rest. We used smaller projectiles (3.18 mm diameter) than those (4.76 mm diameter) in our previous studies and investigated the effect of the projectile scale on the stabilization of ODWs. We carried out high time resolution schlieren visualization using a high-speed camera. The detonable mixtures used were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They were diluted with argon with a 50 % volumetric fraction, and a dilute mixture containing 75 % argon was also tested for the acetylene/oxygen mixture. Here, we discuss the detonation stability in terms of the curvature effect arising from the three-dimensional nature of a stabilized ODW around a projectile. The curvature effect attenuated the detonation wave to below its C-J velocity in the vicinity of the projectile before the wave velocity asymptotically reached the C-J velocity in the far field. Our previous study showed that the propagation limit of the curvature effect is responsible for the stabilizing criticality of detonation waves. By obtaining detailed distributions of the wave propagation velocity and radius of curvature at the stabilizing criticality, we showed that the radius of curvature at the local minimum point of the wave propagation velocity represents the critical radius of curvature required for curved self-sustained detonation. In this study, we focused on this critical mode of the stabilized ODW for a small projectile (3.18 mm diameter). Distributions of the wave velocity and radius of curvature were obtained in the critical mode of the stabilized ODW. We compare these distributions with those for a larger projectile (4.76 mm diameter) and discuss the stabilizing criticality. For the small projectile, the observed combustion regimes had qualitatively the same trend for the initial pressure of the mixture

  17. Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Herzog, Matthias; Ruiter, Ashley J.; Marquardt, Kai; Ohlmann, Sebastian T.; Röpke, Friedrich K.

    2015-12-01

    The progenitor system(s) and the explosion mechanism(s) of type Ia supernovae (SNe Ia) are still under debate. Nonelectromagnetic observables, in particular, gravitational waves and neutrino emission, of thermoclear supernovae are a complementary window to light curves and spectra for studying these enigmatic objects. A leading model for SNe Ia is the thermonuclear incineration of a near-Chandrasekhar mass carbon-oxygen white dwarf star in a "delayed detonation." We calculate a three-dimensional hydrodynamic explosion for the N100 delayed-detonation model extensively discussed in the literature, taking the dynamical effects of neutrino emission from all important contributing source terms into account. Although neutrinos carry away 2 ×1049 erg of energy, we confirm the common view that neutrino energy losses are dynamically not very important, resulting in only a modest reduction of final kinetic energy by 2%. We then calculate the gravitational wave signal from the time evolution of the quadrupole moment. Our model radiates 7 ×1039 erg in gravitational waves and the spectrum has a pronounced peak around 0.4 Hz. Depending on viewing angle and polarization, we find that the future space-based gravitational wave missions DECIGO and BBO would be able to detect our source to a distance of ˜1.3 Mpc . We predict a clear signature of the deflagration-to-detonation transition in the neutrino and the gravitational wave signals. If observed, such a feature would be a strong indicator of the realization of delayed detonations in near-Chandrasekhar mass white dwarfs.

  18. On self-similar blast waves headed by the Chapman-Jouguet detonation.

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.; Kuhl, A. L.; Kamel, M. M.

    1972-01-01

    Consideration of the whole class of self-similar solutions for blast waves bounded by Chapman-Jouguet detonations that propagate into a uniform, quiescent, zero counterpressure atmosphere of a perfect gas with constant specific heats. Since such conditions can be approached quite closely by some actual chemical systems at NTP, this raises the interesting possibility of the existence of Chapman-Jouguet detonations of variable velocity. The principal virtue of the results presented is, however, more of theoretical significance. They represent the limiting case for all the self-similar blast waves headed by gasdynamic discontinuities associated with a deposition of finite amounts of energy, and they exhibit some unique features owing to the singular nature of the Chapman-Jouguet condition.

  19. Ignition of a Thermonuclear Detonation Wave in the Focus of Two Magnetically Insulated Transmission Lines

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2003-04-01

    For the ignition of a thermonuclear detonation wave assisted by a strong magnetic field, it is proposed to use two concentrically nested magnetically insulated transmission lines, the inner one transmitting a high- voltage lower-current-, and the outer one a high-current lower-voltage- electromagnetic pulse drawn from two Marx generators. The concept has the potential of large thermonuclear gains with an input energy conceivably as small as 105 J.

  20. Portable fiber optic coupled Doppler interferometer system for detonation and shock wave diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, Kevin J.

    1993-01-01

    Testing and analysis of shock wave characteristics such as detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is Doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses Doppler interferometry and has gained wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement nonintrusively.

  1. Relation Between Spark-Ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-Speed Photography

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    A critical review of literature bearing on the autoignition and detonation-wave theories of spark-ignition engine knock and on the nature of gas vibrations associated with combustion and knock results in the conclusion that neither the autoignition theory nor the detonation-wave theory is an adequate explanation of spark-ignition engine knock. A knock theory is proposed, combining the autoignition and detonation-wave theories, which introduces the idea that the detonation wave develops in autoignited or after-burning gases, and ascribes comparatively low-pitched heavy knocks to autoignition but high-pitched pinging knocks to detonation waves with the possibility of combinations of the two types of knocks. Analysis of five shots of knocking combustion, taken with the NACA high-speed motion-picture camera at the rate of 40,000 photographs per second reveals propagation speeds ranging from 3250 to more than 5500 feet per second. The range of propagation speeds from 3250 to more than 5500 feet per second is held to be considered with the proposed combined theory but not with either the simple autoignition theory or the simple detonation-wave theory.

  2. The Attenuation of a Detonation Wave by an Aircraft Engine Axial Turbine Stage

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane; Turner, Mark G.

    2007-01-01

    A Constant Volume Combustion Cycle Engine concept consisting of a Pulse Detonation Combustor (PDC) followed by a conventional axial turbine was simulated numerically to determine the attenuation and reflection of a notional PDC pulse by the turbine. The multi-stage, time-accurate, turbomachinery solver TURBO was used to perform the calculation. The solution domain consisted of one notional detonation tube coupled to 5 vane passages and 8 rotor passages representing 1/8th of the annulus. The detonation tube was implemented as an initial value problem with the thermodynamic state of the tube contents, when the detonation wave is about to exit, provided by a 1D code. Pressure time history data from the numerical simulation was compared to experimental data from a similar configuration to verify that the simulation is giving reasonable results. Analysis of the pressure data showed a spectrally averaged attenuation of about 15 dB across the turbine stage. An evaluation of turbine performance is also presented.

  3. The exhaust flow field of a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2012-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engine. They potentially provide further gains than an intermittent or pulsed detonation-wave engine (PDE). However, significantly less work has been done on this concept when compared to the PDE. Last year, we presented the details of the injection system on the overall flow field in an RDE. In this talk, we focus on the effects of adding an exhaust plenum to this idealized RDE. While the overall exhaust flow shows that a recirculation zone sets up behind the RDE when a plenum is added, the net effect on the flow field within the RDE and on performance is found to be small. However, the slight modification to the flow field may impact the design of suitable nozzles for this device. This is explored further with the addition of a simple conical nozzle. This nozzle reduces the size of the recirculation zone and also reduces the temperature in the plume but has little effect on the flow field inside the RDE. Work Sponsored by ONR through NRL 6.1 Computational Physics Task Area.

  4. Analytical and experimental validation of the Oblique Detonation Wave Engine concept

    NASA Technical Reports Server (NTRS)

    Adelman, Henry G.; Cambier, Jean-Luc; Menees, Gene P.; Balboni, John A.

    1988-01-01

    The Oblique Detonation Wave Engine (ODWE) for hypersonic flight has been analytically studied by NASA using the CFD codes which fully couple finite rate chemistry with fluid dynamics. Fuel injector designs investigated included wall and strut injectors, and the in-stream strut injectors were chosen to provide good mixing with minimal stagnation pressure losses. Plans for experimentally validating the ODWE concept in an arc-jet hypersonic wind tunnel are discussed. Measurements of the flow field properties behind the oblique wave will be compared to analytical predictions.

  5. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel J

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  6. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1990-01-01

    Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  7. Analytical and experimental investigations of the oblique detonation wave engine concept

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc

    1991-01-01

    Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.

  8. Analysis of gas flow evolution and shock wave decay in detonation thermal spraying systems

    NASA Astrophysics Data System (ADS)

    Ramadan, K.; Butler, P. Barry

    2004-06-01

    The reactive Euler equations with variable gas properties are solved in both axisymmetric and plane two-dimensional flows to analyze the gas flow evolution, shock wave decay, and shock reflections in pulsed detonation thermal spraying (PDTS) systems. The gas phase governing equations are numerically solved using a high-resolution shock capturing numerical method. Expansion-compression waves are formed upon external gas expansion and persist for a long time (on the time scale of a PDTS cycle) with wide fluctuations in the gas velocity and temperature. The results show that the reflected shock wave from the substrate dies out extremely fast that micron-sized particles used in PDTS do not encounter these transients. The external shock wave decay is also analyzed for different reactive mixtures and flow geometries and is related to the truncation of the computational domain and the implementation of numerical boundary conditions at the open end boundaries.

  9. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Han, Xudong; Yao, Songbai; Wang, Jianping

    2016-03-01

    The prompt oblique detonation wave (PODW) sustained by a finite-length wedge is investigated by numerical simulation. The numerical results show that it is possible to stabilize a PODW on a finite-length wedge shorter than the induction length of the mixture behind the inert shock by numerically imposing a premature initiation of combustion in the initial flow field. The fully coupled and the partially coupled PODWs are observed in the numerical results. For the fully coupled PODW, the upstream facing transverse waves (UF TW) are swept downstream and consequently a fully coupled PODW can persist. For the partially coupled PODW, the UF TWs propagate upstream and the downstream facing transverse waves are weakened by the expansion wave emanating from the corner. As a result, a partially coupled PODW forms. Further, it is found that the stability of the partially coupled PODW is weak. The configuration of the partially coupled PODW can be altered by local explosions occurring downstream.

  10. The formation of an overdriven detonation wave in the flow of methane-oxygen mixtures in a channel of variable cross section

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu; Golovastov, S. V.; Golub, V. V.

    2015-11-01

    Formation of an overdriven detonation wave in methane-oxygen mixtures in a channel was investigated experimentally The gas mixture was ignited by a spark gap, located at the closed end of the combustion chamber. To create the overdriven detonation wave, a decay of the stationary detonation wave in the transition to a channel with a larger cross-section was carried out. Then, a complex of a shock wave and flame front moved into the channel with converging section. Formation of the overdriven detonation wave with parameters several times greater than those of the Chapman-Jouguet detonation was recorded at the outlet of the conical section. The velocities of the detonation front depend upon the composition of the mixture.

  11. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1992-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesmal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  12. Geometric scaling for a detonation wave governed by a pressure-dependent reaction rate and yielding confinement

    NASA Astrophysics Data System (ADS)

    Li, J.; Mi, X.; Higgins, A. J.

    2015-02-01

    The propagation of detonation waves in reactive media bounded by an inert, compressible layer is examined via computational simulations in two different geometries, axisymmetric cylinders, and two dimensional, planar slabs. For simplicity, an ideal gas equation of state is used with a pressure-dependent reaction rate that results in a detonation wave structure that does not exhibit cellular instability. The detonation is initiated as an ideal Chapman-Jouguet (CJ) detonation with a one-dimensional structure, and then allowed to propagate into a finite diameter or thickness layer of explosive surrounded by an inert layer. The yielding confinement of the inert layer results in the detonation wave decaying to a sub-CJ steady state velocity or failing entirely. Simulations are performed with different values of the reaction rate pressure exponent (n = 2 and 3) and different impedance confinement (greater than, less than, and equal to that of the explosive). The velocity decrement and critical dimension (critical diameter or thickness) are determined, and a 2:1 scaling between the cylinder diameter and slab thickness results is confirmed, in good agreement with curvature-based models of detonation propagation. The measured shock front curvature and detonation velocity relation (DN-κ) agrees with the classic model of Wood and Kirkwood. The computational simulations are compared to a simple, analytic model that treats the interaction of the confinement with the detonation products via Newtonian theory and a model that assumes a continuous variation in shock front curvature with the shock angle at the interface with the confinement matching the angle determined by shock polar analysis. The Newtonian model works very well for the case of high impedance confinement, while the shock front curvature model agrees with the simulations for the case of low impedance confinement.

  13. Parametric study of an ODW scramaccelerator for hypersonic test facilities. [obligation detonation wave

    NASA Technical Reports Server (NTRS)

    Humphrey, Joseph W.

    1990-01-01

    A parametric study has been conducted for an oblique detonation-wave (ODW) 'scramaccelerator' suitable for projectile aerothermodynamics studies in real gas hypersonic test facilities. The results of the present analytical design evaluation indicate that an ODW scramaccelerator using conventional gaseous propellants can accelerate projectiles of 0.1 to 1000 kg masses to speeds in the 6-10 km/sec range. Potential applications for such an accelerator encompass a hypersonic ballistic test range, kinetic energy weapon accelerators, mass drivers to LEO, projectile terminal ballistics testing, projectile/target interaction studies, inertial welders, and shock compactors.

  14. Detonation Wave Profiles in Plastic Bonded Explosives Measured using 1550 nm Heterodyne Velocimetry

    NASA Astrophysics Data System (ADS)

    Gustavsen, Rick

    2009-06-01

    We have measured detonation wave profiles in several triaminotrinitrobenzene (TATB) and cyclotetramethylene tetranitramine (HMX or octogen) based plastic bonded explosives using 1550 nm Heterodyne Velocimetry. (Heterodyne Velocimetry is also called Photon Doppler Velocimetry or PDV.) Planar detonations were produced by impacting the explosive with projectiles launched in a gas gun. Particle velocity wave profiles were measured at the mirror/interface of the explosive and either a LiF or PMMA window. Mirrors consisted of either a thin vapor deposited aluminum layer, or a 6 micron thick aluminum foil. Focusing and collimating light collection probes were used. Time-Frequency-Analysis of the fringe data was carried out using both Wavelet and Short-Time-Fourier-Transform (STFT) methods. With clean fringe data, good profiles can be obtained with a 1 ns full width half maximum (FWHM) analysis window (STFT) or about 3 to 4 oscillations in the wavelet. Some profiles, however, have a noisy character which is correlated with intensity fluctuations in the raw fringe data. Wave profiles show a ZND reaction zone structure with a single reaction in the HMX based explosives and both fast and slow reactions in the TATB based explosives.

  15. Collision of plane thermonuclear detonation waves in a preliminarily compressed DT mixture

    SciTech Connect

    Khishchenko, K. V.; Charakhch’yan, A. A.

    2015-03-15

    The paper deals with a one-dimensional problem on symmetric irradiation of a plane DT fuel layer with a thickness 2H and density ρ{sub 0} ⩽ 100ρ{sub s} (where ρ{sub s} is the density of the DT fuel in the solid state at atmospheric pressure and a temperature of 4 K) by two identical monoenergetic proton beams with a kinetic energy of 1 MeV, an intensity of 10{sup 19} W/cm{sup 2}, and a duration of 50 ps. The problem is solved in the framework of one-fluid two-temperature hydrodynamic model that takes into account the equation of state for hydrogen, electron and ion heat conductivities, kinetics of the DT reaction, plasma self-radiation, and plasma heating by α-particles. The irradiation of the fuel results in the appearance of two counterpropagating detonation waves to the fronts of which rarefaction waves are adjacent. The efficiency of the DT reaction after the collision (reflection from the plane of symmetry) of the detonation waves depends on the spatial homogeneity of thermodynamic functions between the fronts of the reflected detonation waves. At Hρ{sub 0} ≈ 1 g/cm{sup 2}, the gain factor is G ≈ 200, whereas at Hρ{sub 0} ≈ 5 g/cm{sup 2}, it is G > 2000. As applied to a cylindrical target that is ignited from ends and in which the cylinder with the fuel is surrounded by a heavy magnetized shell, the obtained values of the burn-up and gain factors are maximum possible. To estimate the ignition energy E{sub ig} of a cylindrical target by using solutions to the one-dimensional problem, a quasi-one-dimensional model is developed. The model assumes that the main mechanism of target ignition is fuel heating by α-particles. The trajectories of α-particles are limited by a cylindrical surface with a given radius, which is a parameter of the model and is identified with the fuel radius in the target and the radii of the irradiating proton beams. This model reproduces the well-known theoretical dependence E{sub ig} ∼ ρ{sub 0}{sup −2} and yields E

  16. Reflected Detonation Waves: Comparing Theory to Pressure and Heat Flux Measurements

    NASA Astrophysics Data System (ADS)

    Damazo, J.; Shepherd, J. E.

    Gaseous detonations are of concern to engineers designing piping systems for chemical and nuclear processing facilities. Recently, engineers have also begun to explore the possibility of harnessing the impulse created by detonations for thrust.

  17. Development of detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principle of a controlled condensed detonation. In this engine the gas products that are expelled from the engine to produce thrust are generated by the condensed detonation reaction. The engine is constructed of two basic sections consisting of a detonation wave generator section and a condensed detonation reaction section.

  18. The Effect of Detonation Wave Incidence Angle on the Acceleration of Flyers by Explosives Heavily Laden with Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew

    2015-06-01

    The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.

  19. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    PubMed

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation. PMID:26688211

  20. Portable fiber optic coupled doppler interferometer system for detonation and shock wave diagnostics

    SciTech Connect

    Fleming, K.J.

    1993-03-01

    Testing and analysis of shock wave characteristics such as produced by detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses doppler interferometry and has pined wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement non intrusively. The conventional VISAR is not well suited for portability because of its sensitive components, large power and cooling requirements, and hazardous laser beam. A new VISAR using the latest technology in solid state lasers and detectors has been developed and tested. To further enhance this system`s versatility, the unit is fiber optic coupled which allows remote testing, permitting the VISAR to be placed over a kilometer away from the target being measured. Because the laser light is contained in the fiber optic, operation of the system around personnel is far less hazardous. A software package for data reduction has also been developed for use with a personal computer. These new advances have produced a very versatile system with full portability which can be totally powered by batteries or a small generator. This paper describes the solid state VISAR and its peripheral components, fiber optic coupling methods and the fiber optic coupled sensors used for sending and receiving laser radiation.

  1. Isothermal Gaseous Detonation Model

    NASA Astrophysics Data System (ADS)

    Prokhorov, E. S.

    2015-05-01

    We propose an isothermal gaseous detonation model taking into account the initial pressure of the explosive mixture that permits describing in a simplified form both the self-sustaining and the supercompressed and undercompressed detonation regimes. The exactness of this model has been estimated on the basis of a comparative analysis with the results of equilibrium calculations of the gas-dynamic parameters at the front of detonation waves.

  2. Numerical Optimisation in Non Reacting Conditions of the Injector Geometry for a Continuous Detonation Wave Rocket Engine

    NASA Astrophysics Data System (ADS)

    Gaillard, T.; Davidenko, D.; Dupoirieux, F.

    2015-06-01

    The paper presents the methodology and the results of a numerical study, which is aimed at the investigation and optimisation of different means of fuel and oxidizer injection adapted to rocket engines operating in the rotating detonation mode. As the simulations are achieved at the local scale of a single injection element, only one periodic pattern of the whole geometry can be calculated so that the travelling detonation waves and the associated chemical reactions can not be taken into account. Here, separate injection of fuel and oxidizer is considered because premixed injection is handicapped by the risk of upstream propagation of the detonation wave. Different associations of geometrical periodicity and symmetry are investigated for the injection elements distributed over the injector head. To analyse the injection and mixing processes, a nonreacting 3D flow is simulated using the LES approach. Performance of the studied configurations is analysed using the results on instantaneous and mean flowfields as well as by comparing the mixing efficiency and the total pressure recovery evaluated for different configurations.

  3. 1-D detonability

    NASA Astrophysics Data System (ADS)

    Guirguis, R. H.

    1996-05-01

    The likelihood of an energetic material to detonate is expressed in terms of the thermicity σ.dλ/dt within the reaction zone of an incipient one-dimensional detonation wave propagating in the material. Ranking conventional explosives according to σ alone was found to reasonably parallel the ranking according to critical diameter.

  4. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  5. Numerical study on the standing morphology of an oblique detonation wave under the influence of an incoming boundary layer

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Liu, Yu; Lin, Zhi-yong

    2015-01-01

    The influence of an incoming boundary layer to the standing morphology of an oblique detonation wave (ODW) induced by a compression ramp is numerically studied in this paper. The Spalart-Allmaras (SA) turbulence model is used to perform simulation of detonationboundary- layer interactions. Three different wall conditions are applied to realize control on the boundary-layer separation scales. Accordingly, different standing morphologies of the ODWs are obtained, including smooth ODW (without transverse wave) under no-slip, adiabatic wall condition with large-scale separation, abrupt ODW (with transverse wave) under no-slip, cold wall condition with moderate-scale separation, and bow-shaped detached ODW under slipwall condition without a boundary layer.

  6. On the propagation velocity of a detonation-shock combined wave

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Fujiwara, T.

    1974-01-01

    A quasi-one-dimensional analysis and a generalized Chapman-Jouguet condition are developed for a gaseous free detonation in an inert environment. Two characteristic features derived from the results are that there exists a lower limit on the heat of combustion, the charge diameter, and the molecular weight of the ambient gas and that there are two propagation velocities for a parameter combination above a certain critical value. Therefore the detonation failure of a free gas column is a hydrodynamic rather than a chemical phenomenon.

  7. On the possibility of the realization of combustion and detonation waves in a system of nuclear isomers

    NASA Astrophysics Data System (ADS)

    Arutyunyan, R. V.; Akhrameev, E. V.; Bolshov, L. A.; Kondratenko, P. S.; Tkalya, E. V.

    2014-02-01

    The possible regimes of the propagation of a self-sustained fluorescence wave of long-lived nuclear isomers, which is initiated by transitions to the nearest short-lived level owing to the absorption of X-ray photons and inelastic collisions of electrons in a plasma, have been analyzed. It has been found that, when the energy exchange between the nuclear subsystem and plasma is due to absorption and emission of photons, the fluorescence wave can propagate in the fast (with a near-light velocity) deflagration regime induced by the radiative heat transfer mechanism. When the energy exchange between the subsystems is nonradiative, the (slower) detonation regime becomes significant. The implementation of each of the two regimes requires certain conditions on the characteristics of the system.

  8. High Speed Photographic Observation Of The Initiation Of Detonation In Explosives By Imploding Shock Waves

    NASA Astrophysics Data System (ADS)

    Austing, James L.; Tulis, Allen J.; Heberlein, David C.

    1984-01-01

    This paper is concerned with the use of a Beckman & Whitley Model 189 framing camera to observe the initiation of detonation in cylindrical explosive charges by the detonation of a concentric outside layer of sheet explosive initiated at one end. Experiments were con-ducted with nitromethane, which is a transparent liquid explosive, and aluminum-potassium perchlorate, which is a binary mixture of fuel and oxidizer powders. The use of the transparent explosive permitted viewing along the entire length of the charge axis, so that the time of the nitromethane initiation as a function of the position of the concentric sheet explosive detonation could be observed. In the case of the binary charge, the experiment involved the simultaneous viewing of both the side and the end of the charge by a judicious positioning of two front-surface mirrors. One of these was oriented at the end of the charge at an angle of 45° with respect to the charge axis. The second mirror, larger in size, viewed the entire system, and was destructed at 656 psec by an explosive backing charge to preclude the possibility of film rewrite. Framing rates for both experiments were approximately 250,000 frames/sec. The induction time to initiation of detonation in the nitromethane was measured to be about 20 psec. However, the induction time for the aluminum-potassium perchlorate charge was too long to be recorded by the Beckman and Whitley camera. For this and other pyrotechnic dharges, it was necessary to use a slower writing Fastax camera recording at a rate of 2000 frames/sec; the induction times for the pyrotechnic systems were in the neighborhood of 1 to 3 msec, which is two orders of magnitude longer than for the nitromethane.

  9. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  10. Molecular dynamics and kinetic study of carbon coagulation in the release wave of detonation products.

    PubMed

    Chevrot, Guillaume; Sollier, Arnaud; Pineau, Nicolas

    2012-02-28

    We present a combined molecular dynamics and kinetic study of a carbon cluster aggregation process in thermodynamic conditions relevant for the detonation products of oxygen deficient explosives. Molecular dynamics simulations with the LCBOPII potential under gigapascal pressure and high temperatures indicate that (i) the cluster motion in the detonation gas is compatible with Brownian diffusion and (ii) the coalescence probability is 100% for two clusters entering the interaction cutoff distance. We used these results for a subsequent kinetic study with the Smoluchowski model, with realistic models applied for the physical parameters such as viscosity and cluster size. We found that purely aggregational kinetics yield too fast clustering, with moderate influence of the model parameters. In agreement with previous studies, the introduction of surface reactivity through a simple kinetic model is necessary to approach the clustering time scales suggested by experiments (1000 atoms after 100 ns, 10 000 atoms after 1 μs). However, these models fail to reach all experimental criteria simultaneously and more complex modelling of the surface process seems desirable to go beyond these current limitations. PMID:22380052

  11. Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling; Part 1: Experimental investigation and development of the method

    SciTech Connect

    Hanjalic, K. . Lehrstuhl fuer Stroemungsmechanik); Smajevic, I. )

    1994-01-01

    The paper presents a description and results of the experimental research, development, and full-scale testing of a new technique for cleaning gas-swept surfaces exposed to fouling, such as found in boilers, furnaces, heat exchangers, reactors, and gas ducts, by means of detonation waves. Part 1 describes the principles and reports on experimental investigations and optimization of the technique. Part 2 reports on several years of experience in applying the technique in full-scale operation in two large coal-fired boilers. Experiments involved detailed measurements of the pressure wave characteristics at a laboratory-scale model of a boiler furnace at a range of operating conditions and produced necessary information for optimum design and operation of the detonation wave generator. The investigation enabled a close insight into the detonation and shock wave generation, their behavior during propagation through the connecting ducts, and attenuation in the inner space of the model furnace. A good indication has also been obtained of the wave impact and effects on deposit-removal from different packages of tube bundles, which were placed in the model boiler in order to mimic boiler heating surfaces.

  12. Theory of gaseous detonations.

    PubMed

    Clavin, Paul

    2004-09-01

    The objective of the present paper is to review some developments that have occurred in detonation theory over the last ten years. They concern nonlinear dynamics of detonation fronts, namely patterns of pulsating and/or cellular fronts, selection of the cell size, dynamical self-quenching, direct (blast) or spontaneous initiation, and transition from deflagration to detonation. These phenomena are all well documented by experiments since the sixties but remained unexplained until recently. In the first part of the paper, the patterns of cellular detonations are described by an asymptotic solution to nonlinear hyperbolic equations (reactive Euler equations) in the form of unsteady (sometime chaotic) and multidimensional traveling-waves. In the second part, turning points of quasi-steady solutions are shown to correspond to critical conditions of fully unsteady problems, either for (direct or spontaneous) initiation or for spontaneous failure (self-quenching). Physical insights are tentatively presented rather than technical aspects. The challenge is to identify the physical mechanisms with their relevant parameters, and more specifically to explain how the length-scales involved in detonation dynamics are larger by two order of magnitude (at least) than the length-scale involved in the steady planar traveling-wave solution (detonation thickness). PMID:15446993

  13. Detonation-wave technique for on-load deposit removal from surfaces exposed to fouling; Part 2: Full-scale application

    SciTech Connect

    Hanjalic, K. ); Smajevic, I. )

    1994-01-01

    The paper reports on the full-scale application and testing of the detonation-wave technique in two boilers, fired with pulverized coal, of total thermal power of 600 MW. Continuous monitoring over a period of several years confirmed earlier laboratory findings, reported in the companion Part 1 of the paper. The testing proved that the technique is efficient and reliable, with a number of advantages in comparison with various conventional cleaning methods. In spite of the fact that the lining of one of the boilers is made of classic refractory material, careful records and inspection over several years of daily application of the detonation wave technique showed no signs of any undesirable effects. The method was officially adopted as a routine deposits removal technique in the Power Plant Kakanj'' in Bosnia.

  14. Numerical Simulation of Aluminum Dust Detonations with Different Product Phases

    NASA Astrophysics Data System (ADS)

    Teng, H. H.; Jiang, Z. L.

    Detonation waves are waves of supersonic combustion induced by strong coupling shock and heat release. Detonation research has attracted much attention in recent years owing to its potential applications in hypersonic propulsion. Aluminum (Al) particle detonation is a type of dust detonation, and its research is important in the prevention of industrial explosions. Al dust detonations for flake and spherical particles have been studied , which is found to be very sensitive to the specific area[1].

  15. A summary of hydrogen-air detonation experiments

    SciTech Connect

    Guirao, C.M.; Knystautas, R.; Lee, J.H.

    1989-05-01

    Dynamic detonation parameters are reviewed for hydrogen-air-diluent detonations and deflagration-to-detonation transitions (DDT). These parameters include the characteristic chemical length scale, such as the detonation cell width, associated with the three-dimensional cellular structure of detonation waves, critical transmission conditions of confined detonations into unconfined environments, critical initiation energy for unconfined detonations, detonability limits, and critical conditions for DDT. The detonation cell width, which depends on hydrogen and diluent concentrations, pressure, and temperature, is an important parameter in the prediction of critical geometry-dependent conditions for the transmission of confined detonations into unconfined environments and the critical energies for the direct initiation of unconfined detonations. Detonability limits depend on both initial and boundary conditions and the limit has been defined as the onset of single head spin. Four flame propagation regimes have been identified and the criterion for DDT in a smooth tube is discussed. 108 refs., 28 figs., 5 tabs.

  16. Two phase detonation studies conducted in 1971

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.

    1972-01-01

    A report is presented describing the research conducted on five phases: (1) ignition of fuel drops by a shock wave and passage of a shock wave over a burning drop, (2) the energy release pattern of a two-phase detonation with controlled drop sizes, (3) the attenuation of shock and detonation waves passing over an acoustic liner, (4) experimental and theoretical studies of film detonations, and (5) a simplified analytical model of a rotating two-phase detonation wave in a rocket motor.

  17. Surface shear strains induced by quasi-steady sweeping detonation waves

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence; Briggs, Matthew; Faulkner, James

    2012-03-01

    Sweeping wave experiments create conditions of greater shear than corresponding onedimensional motion experiments, and are of current interest for material damage characterization. Sweeping waves are also important with regards to the spectrum of applications of explosives driving metals. The intensity of the shear developed in a sweeping wave experiment may be monitored using crossed beams of Photon Doppler Velocimetry (PDV). During the time the material is traversing the volume defined by the crossed beams, the interferometer is measuring the velocity of the same mass element (approximately) from two directions. It is known that PDV measures the velocity component that lies along the beam direction, so that with crossed beams, two independent directions are simultaneously measured and therefore the vector velocity (both magnitude and direction) are captured. The vector velocity is readily related to the strain rates on the surface (after removing the rigid rotation rates), and the equations are integrated to obtain the strains.

  18. The role of compression waves in flame acceleration and transition to detonation inside confined volumes

    NASA Astrophysics Data System (ADS)

    Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2015-11-01

    Features of the unsteady flames propagating in channels filled with gaseous combustible mixtures are studied numerically. The analysis is based on the model treating the flame as a moving energy source. It is shown that the crucial role in flame dynamics and its structure evolution belongs to the compression waves emitted by non-steady flame itself. The compression waves establish flow pattern, temperature and pressure fields near the flame front, which in turn determine the features of flame evolution on the different stages of its propagation.

  19. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  20. PRELUDE TO A DOUBLE DEGENERATE MERGER: THE ONSET OF MASS TRANSFER AND ITS IMPACT ON GRAVITATIONAL WAVES AND SURFACE DETONATIONS

    SciTech Connect

    Dan, Marius; Rosswog, Stephan; Guillochon, James; Ramirez-Ruiz, Enrico E-mail: rosswog@jacobs-university.de E-mail: enrico@ucolick.org

    2011-08-20

    calculating the gravitational wave foreground (although expected to be below Laser Interferometer Space Antenna's sensitivity at these high frequencies). We also show that the inclusion of the entropy increase associated with shock heating of the accreted material reduces the number of orbits a binary survives given the same initial conditions, although the effect is not as pronounced when using the appropriate initial conditions. The use of accurate initial conditions and a correct treatment of shock heating allows for a reliable time evolution of the temperature, density, and angular momentum, which are important when considering thermonuclear events that may occur during the mass transfer phase and/or after merger. Our treatment allows us to accurately identify when surface detonations may occur in the lead-up to the merger, as well as the properties of final merger products.

  1. A reduced model for shock and detonation waves. II. The reactive case

    NASA Astrophysics Data System (ADS)

    Maillet, J. B.; Soulard, L.; Stoltz, G.

    2007-06-01

    We present a mesoscopic model for reactive shock waves, which extends the model proposed in G. Stoltz, Europhys. Lett., 76 (2006) 849. A complex molecule (or a group of molecules) is replaced by a single mesoparticle, evolving according to some Dissipative Particle Dynamics. Chemical reactions can be handled in a mean way by considering an additional variable per particle describing the progress of the reaction. The evolution of the progress variable is governed by the kinetics of a reversible exothermic reaction. Numerical results give profiles in qualitative agreement with all-atom studies.

  2. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    SciTech Connect

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica; Faulkner, James; Briggs, Matthew E.; Meyer, Ross Keith; Andrews, Heather Lynn; Hare, Steven John; Jakulewicz, Micah Shawn; Shinas, Michael A.

    2015-03-30

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress, the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research

  3. Dynamics of detonations and explosions: Detonations; International Colloquium on Dynamics of Explosions and Reactive Systems, 12th, University of Michigan, Ann Arbor, July 23-28, 1989, Technical Papers

    SciTech Connect

    Kuhl, A.L.; Leyer, J.-C.; Borisov, A.A.; Sirignano, W.A.

    1991-01-01

    The present volume on the dynamics of gaseous detonations, detonation initiation and transmission, multiphase detonations, and nonideal detonations and boundary effects, discusses the detonability of hydrocarbon fuels in air, the detonation of cryogenic gaseous hydrogen-oxygen mixtures, chemical kinetics-detonation structure correlations for gaseous explosives, the initiation of hydrogen-air detonations by turbulent fluorine-air jets, and the initiation of a detonation wave due to multistage self-ignition. Also discussed are the limit criterion for detonation in circular cubes, oblique detonation at hypersonic velocities, the mechanisms of detonation propagation in porous structures, surface detonations and indirect ignition processes, the detonation of unconfined large-scale fuel-spray/air clouds, the detonation structure of corn starch particles-oxygen mixtures, and the lean detonation limit of sensitized kerosene sprays in air.

  4. Deflagration to detonation transition in combustible gas mixtures

    SciTech Connect

    Smirnov, N.N.; Panfilov, I.I.

    1995-04-01

    This paper presents the results of a computational investigation of the process of deflagration to detonation transition in a combustible gas mixture. The type of combustion (i.e., deflagration or detonation) supported by a two-step reaction scheme is studied as a function of the activation energies. It is shown that both a deflagration to detonation transition and a deflagration wave that lags behind a leading shock are possible. Two types of deflagration to detonation transitions are found theoretically: initiation of detonation from the flame zone and initiation of detonation along a contact discontinuity in the compressed gas near the primary shock wave.

  5. Detonating apparatus

    DOEpatents

    Johnston, Lawrence H.

    1976-01-01

    1. Apparatus for detonation of high explosive in uniform timing comprising in combination, an outer case, spark gap electrodes insulatedly supported in spaced relationship within said case to form a spark gap, high explosive of the class consisting of pentaerythritol tetranitrate and trimethylene trinitramine substantially free from material sensitive to detonation by impact compressed in surrounding relation to said electrodes including said spark gap under a pressure from about 100 psi to about 500 psi, said spark gap with said compressed explosive therein requiring at least 1000 volts for sparking, and means for impressing at least 1000 volts on said spark gap.

  6. Analysis of Laser-Generated Impulse In An Airbreathing Pulsed Detonation Engine: Part 1

    NASA Astrophysics Data System (ADS)

    Richard, Jacques C.; Myrabo, Leik N.

    2005-04-01

    An investigation is performed on an airbreathing laser propulsion (LP) system designed to propel a 1.4 m diameter, 120-kg (dry mass) vehicle called the Lightcraft Technology Demonstrator (LTD) into low Earth orbit, along with its opto-electronics payload. The LTD concept led directly to the model ♯200 lightcraft — recently demonstrated in laboratory and flight experiments at White Sands Missile Range, NM at the High Energy Laser Systems Test Facility (HELSTF), using the 10-kW PLVTS CO2 laser. The pulsed detonation wave engine (PDE) employs repetitively ignited, laser-supported detonation (LSD) waves to develop thrust by expanding high pressure blast waves over an annular, interior shroud surface. Numerical simulation of thruster impulse is accomplished with a 1-D cylindrical model of blast waves propagating radially outward from a laser-generated `line-source' of high temperature, high pressure air. External airflow over the LTD structure is also analyzed to predict basic engine/vehicle drag characteristics, including inlet total pressure recovery, and captured air mass flow rate — all projected vs. flight Mach number and altitude.

  7. Initiation of Gaseous Detonation by Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed

  8. Molecular dynamics simulations of weak detonations.

    PubMed

    Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie

    2011-12-01

    Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal. PMID:22304055

  9. Cellular structure of detonation utilized in propulsion system

    NASA Astrophysics Data System (ADS)

    Zhang, XuDong; Fan, BaoChun; Gui, MingYue; Pan, ZhenHua

    2012-10-01

    How to confine a detonation in a combustor is a key issue of detonation applications in propulsion systems. Based on achieving schemes, detonations applied in the combustor, including pulse detonation wave (PDW), oblique detonation wave (ODW) and rotating detonation wave (RDW), are different from that described by the classic CJ theory in fine structures and its self-sustaining mechanisms. In this work, the cellular structures and flow fields of ODW and RDW were obtained numerically, and the fundamental characteristics and self-sustaining mechanisms of the detonations were analyzed and discussed. ODW front consists of three parts: the ZND-like front, the single-headed triple point front and the dual-headed triple point front. Cellular structures of RDW are heterogeneous, and the cell size near the outer wall is smaller than that near the inner wall.

  10. Numerical simulation of spinning detonation in circular section channels

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Manuylovich, I. S.; Markov, V. V.

    2016-06-01

    Numerical simulation of three-dimensional structures of gas detonation in circular section channels that emerge due to the instability when the one-dimensional flow is initiated by energy supply at the closed end of the channel is performed. It is found that in channels with a large diameter, an irregular three-dimensional cellular detonation structure is formed. Furthermore, it is found that in channels with a small diameter circular section, the initially plane detonation wave is spontaneously transformed into a spinning detonation wave, while passing through four phases. A critical value of the channel diameter that divides the regimes with the three-dimensional cellular detonation and spinning detonation is determined. The stability of the spinning detonation wave under perturbations occurring when the wave passes into a channel with a greater (a smaller) diameter is investigated. It is found that the spin is preserved if the diameter of the next channel (into which the wave passes) is smaller (respectively, greater) than a certain critical value. The computations were performed on the Lomonosov supercomputer using from 0.1 to 10 billions of computational cells. All the computations of the cellular and spinning detonation were performed in the whole long three-dimensional channel (up to 1 m long) rather than only in its part containing the detonation wave; this made it possible to adequately simulate and investigate the features of the transformation of the detonation structure in the process of its propagation.

  11. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, A.; Othmer, P.; Rostafinski, W.

    1992-01-01

    An experimental demonstration is presented for the generation of detonation waves that move periodically across high speed channel flow; these waves can compress the outflow from a low pressure compressor, and thereby both reduce the compressor requirements associated with conventional gas turbines and enhance thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock-wave losses are reduced by an order of magnitude; the result is a Humphrey cycle augmenting the basic Brayton-cycle gas turbine. Attention is presently given to results from an experimental detonation duct.

  12. Autoignitions and detonations in engines and ducts.

    PubMed

    Bradley, Derek

    2012-02-13

    The origins of autoignition at hot spots are analysed and the pressure pulses that arise from them are related to knock in gasoline engines and to developing detonations in ducts. In controlled autoignition engines, autoignition is benign with little knock. There are several modes of autoignition and the existence of an operational peninsula, within which detonations can develop at a hot spot, helps to explain the performance of various engines. Earlier studies by Urtiew and Oppenheim of the development of autoignitions and detonations ahead of a deflagration in ducts are interpreted further, using a simple one-dimensional theory of the generation of shock waves ahead of a turbulent flame. The theory is able to indicate entry into the domain of autoignition in an 'explosion in the explosion'. Importantly, it shows the influence of the turbulent burning velocity, and particularly its maximum attainable value, upon autoignition. This value is governed by localized flame extinctions for both turbulent and laminar flames. The theory cannot show any details of the transition to a detonation, but regimes of eventually stable or unstable detonations can be identified on the operational peninsula. Both regimes exhibit transverse waves, triple points and a cellular structure. In the case of unstable detonations, transverse waves are essential to the continuing propagation. For hazard assessment, more needs to be known about the survival, or otherwise, of detonations that emerge from a duct into the same mixture at atmospheric pressure. PMID:22213665

  13. Demonstration of a multi-channel, low-profile wire gauge for tracing wave development and detonation turning in explosives

    SciTech Connect

    Skidmore, Bradley E; Novak, Alan M; Zucker, Jonathan M; Parker, Jr, Gary R; Dickson, Peter; Foley, Timothy J; Trebs, Adam A

    2010-01-01

    The multi-channel low-profile wire gauge is a device which measures high pressure wave position via the continuous variation in length of a conductor in conjunction with a fiducial, allowing in situ measurement of wave front curvature during wave development. The gauge's low profile ({approx}250 {micro}m) and high resolution measurements (up to 0.5 nanoseconds) make it minimally intrusive and highly responsive, with a typically wave position accuracy of {+-}1 mm. Gauge construction and data analysis methods are described and waveforms are presented for Detasheet and N-9 explosives.

  14. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  15. Two phase detonation studies

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.; Pierce, T. H.; Miyajima, H.; Oza, R.; Patil, P.

    1974-01-01

    An experimental study of the passage of a shock wave over a burning fuel drop is described. This includes high speed framing photographs of the interaction taken at 500,000 frames per second. A theoretical prediction of the ignition of a fuel drop by a shock wave is presented and the results compared with earlier experimental work. Experimental attempts to generate a detonation in a liquid fuel drop (kerosene)-liquid oxidizer drop (hydrogen peroxide)-inert gas-environment are described. An appendix is included which gives the analytical prediction of power requirements for the drop generator to produce certain size drops at a certain mass rate. A bibliography is also included which lists all of the publications resulting from this research grant.

  16. Detonation interaction with an interface

    NASA Astrophysics Data System (ADS)

    Lieberman, D. H.; Shepherd, J. E.

    2007-09-01

    Detonation interaction with an interface was investigated, where the interface separated a combustible from an oxidizing or inert mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone (TMZ) that resulted from the interaction. Sharp interfaces were created by using a nitro-cellulose membrane to separate the two mixtures. The membrane was mounted on a wood frame and inserted in the experimental test section at a 45° angle to the bulk flow direction. The membrane was destroyed by the detonation wave. The interaction resulted in a transmitted and reflected wave at a node point similar to regular shock refraction. A detonation refraction analysis was carried out to compare with the measured shock angles. It was observed that the measured angle is consistently lower than the predicted value. An uncertainty analysis revealed possible explanations for this systematic variation pointing to factors such as the incident wave curvature and the role of the nitro-cellulose diaphragm. Analysis of the TMZ and Mach stem formed from the reflection of the transmitted shock wave off the solid boundary were carried out and found to justify the size and strength of these features as a function of the test gas composition. The role of secondary combustion in the TMZ was also investigated and found to have a small influence on the wave structure.

  17. High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H 2 –O 2 –Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    DOE PAGESBeta

    Deiterding, Ralf

    2011-01-01

    Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore » in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less

  18. Feasibility and parameter study of a detonation diffuser

    NASA Astrophysics Data System (ADS)

    Stevens, Christopher A.

    This research includes an investigation of the mechanisms of diffraction and reinitiation that enable a detonation diffuser. It describes a set of geometric parameters necessary to design a diffuser for a given detonable mixture and initial channel height. Predetonators with channel height less than the critical height are ineffective because detonations in small channels decouple into separate shock and combustion fronts when the channel height increases. A detonation diffuser allows the channel height to increase by utilizing the decoupled shock wave to reinitiate detonation. In the diffuser, a detonation initially decouples into separate shock and combustion fronts, and then the decoupled shock front reflects from an oblique surface initiating a secondary detonation that survives the expansion. This research investigated the three regions of a detonation diffuser: the initial diffraction, the reflecting surface, and the second diffraction corner. Schlieren video of two-dimensional diffracting detonations recorded the position of the detonation, decoupled shock front and flame front. Observations of the decoupled shocks reflecting from surfaces showed that a 45° reflecting surface must be placed less than 80 mm downstream of the initial diffraction corner to initiate a secondary detonation in more than 91% of repeated trials. Observations of the interaction of diffracting detonations with multiple obstacles revealed that the best performance (smallest separation, and highest Mach number) occurred when the decoupled shock reflected from four separate obstacles at approximately the same time.

  19. Effect of Detonation through a Turbine Stage

    NASA Technical Reports Server (NTRS)

    Ellis, Matthew T.

    2004-01-01

    Pulse detonation engines (PDE) have been investigated as a more efficient means of propulsion due to its constant volume combustion rather than the more often used constant pressure combustion of other propulsion systems. It has been proposed that a hybrid PDE-gas turbine engine would be a feasible means of improving the efficiency of the typical constant pressure combustion gas turbine cycle. In this proposed system, multiple pulse detonation tubes would replace the conventional combustor. Also, some of the compressor stages may be removed due to the pressure rise gained across the detonation wave. The benefits of higher thermal efficiency and reduced compressor size may come at a cost. The first question that arises is the unsteadiness in the flow created by the pulse detonation tubes. A constant pressure combustor has the advantage of supplying a steady and large mass flow rate. The use of the pulse detonation tubes will create an unsteady mass flow which will have currently unknown effects on the turbine located downstream of the combustor. Using multiple pulse detonation tubes will hopefully improve the unsteadiness. The interaction between the turbine and the shock waves exiting the tubes will also have an unknown effect. Noise levels are also a concern with this hybrid system. These unknown effects are being investigated using TURBO, an unsteady turbomachinery flow simulation code developed at Mississippi State University. A baseline case corresponding to a system using a constant pressure combustor with the same mass flow rate achieved with the pulse detonation hybrid system will be investigated first.

  20. The influence of detonation cell size and regularity on the propagation of gaseous detonations in granular materials

    NASA Astrophysics Data System (ADS)

    Slungaard, T.; Engebretsen, T.; Sønju, O. K.

    This paper presents results from an experimental study of transmission of gaseous detonation waves through various granular filters. Spherical glass beads of 4 and 8 mm diameter and crushed rock of 7.5 mm volume averaged diameter were used as filter material. Varying the initial pressure of the detonating gas mixture controlled the detonation cell size. Dilution with argon was used to vary the detonation cell regularity. The complete range from almost no detonation velocity deficit to complete extinction of the combustion wave was observed. The existing correlation for gaseous detonation velocity deficit V/VCJ = [1-0.35 (d_ c/dps)] +/- 0.1 where dc is the critical diameter for the gaseous detonation and dps is the pore size, is found to be applicable for both smooth spherical particles and irregular crushed rock when considering irregular detonation structures. Soot films and pressure measurements show that as the detonation cell size is increased, reinitiation of a reanular filter until it finally no longer occurs at V/VCJ ~ 0.4--0.45. Complete extinction of the combustion wave occurs at V/VCJ ~ 0.25--0.3. These two limits appear to be about the same for irregular and regular detonation cell structures. For irregular structures without argon dilution, dc/dps ~ 50 can be found for detonation wave failure, and dc/dps ~ 100 can be found for complete extinction of the combustion wave. For argon dilution these limits are changed to dc/dps ~ 10 and dc/dps ~ 40, respectively. The data are a bit scarce as a basis for proposing a new correlation for regular structures, but as a first approximation V/VCJ =[0.8--0.35log(dc/dps)] +/- 0.1 is suggested for regular structures. The detonation or combustion wave is found to approach a constant velocity in the granular filter if not extinguished.

  1. Pulse detonation MHD power

    SciTech Connect

    Litchford, R.J.; Thompson, B.R.; Lineberry, J.T.

    1998-07-01

    A series of laboratory scale experiments were conducted to investigate the basic engineering performance characteristics of a pulse detonation driven magnetohydrodynamic electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium-hydroxide/ methanol spray were detonated at atmospheric pressure in a 1 m long tube having an inside diameter of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p{sub 2}/p{sub 1} {approximately} 34 and D {approximately} 2400 m/s) and enabled the measurement of current density ({approximately} 2 A/cm{sup 2}) and electrical conductivity ({approximately} 6 mho/m) behind the detonation wave front. In a second set of experiments, a 30 cm long continuous electrode Faraday channel having a height of 2.54 cm and a width of 2.0 cm was attached to the end of the tube using an area transition duct. The Faraday channel was placed inside a permanent magnet assembly having a nominal magnetic induction of 0.6 Tesla, and the electrodes were connected to an active loading circuit in order to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. In these single-shot experiments, the near-electrode potential drop was found to consume approximately 60% of the effective u x B induced potential. For B = 0.6 Tesla, the authors obtained a peak open circuit voltage of V{sub O}C = Bh {approximately} 10 volts implying an effective burned gas velocity relative to the tube of {approximately} 660 m/s which may be compared with the theoretical equilibrium value for the idealized case (1100 m/s). The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohms. The measured peak electrical energy density ranged from 10 to 10{sup 3} J/m{sup 3} when the effective magnetic induction was varied from 0.6 to 4.2 Tesla. These results

  2. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  3. Methods for proving the equivalency of detonator performance

    SciTech Connect

    Munger, Alan C; Akinci, Adrian A; Thomas, Keith A; Clarke, Steve A; Martin, Eric S; Murphy, Michael J

    2009-01-01

    One of the challenges facing engineers is developing newer, safer detonators that are equivalent to devices currently in use. There is no clear consensus on an exact method for drawing equivalence of detonators. This paper summarizes our current efforts to develop diagnostics addressing various aspects of detonator design to better quantify and prove equivalency. We consider various optical techniques to quantify the output pressure and output wave shape. The development of a unique interpretation of streak camera breakouts, known as the apparent center of initiation, will be discussed as a metric for detonation wave shape. Specific examples apply these techniques to the comparison of a new laser-driven detonator with an existing exploding bridgewire (EBW) detonator. Successes and short-comings of the techniques will be discussed.

  4. Effects of high sound speed confiners on ANFO detonations

    NASA Astrophysics Data System (ADS)

    Kiyanda, Charles; Jackson, Scott; Short, Mark

    2011-06-01

    The interaction between high explosive (HE) detonations and high sound speed confiners, where the confiner sound speed exceeds the HE's detonation speed, has not been thoroughly studied. The subsonic nature of the flow in the confiner allows stress waves to travel ahead of the main detonation front and influence the upstream HE state. The interaction between the detonation wave and the confiner is also no longer a local interaction, so that the confiner thickness now plays a significant role in the detonation dynamics. We report here on larger scale experiments in which a mixture of ammonium nitrate and fuel oil (ANFO) is detonated in aluminium confiners with varying charge diameter and confiner thickness. The results of these large-scale experiments are compared with previous large-scale ANFO experiments in cardboard, as well as smaller-scale aluminium confined ANFO experiments, to characterize the effects of confiner thickness.

  5. The Physical Effects of Detonation in a Closed Cylindrical Chamber

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1935-01-01

    Detonation in the internal-combustion engine is studied as a physical process. It is shown that detonation is accompanied by pressure waves within the cylinder charge. Sound theory is applied to the calculation of resonant pressure-wave frequencies. Apparatus is described for direct measurement of pressure-wave frequencies. Frequencies determined from two engines of different cylinder sizes are shown to agree with the values calculated from sound theory. An outline of the theoretically possible modes of vibration in a right circular cylinder with flat ends is included. An appendix by John P. Elting gives a method of calculating pressure in the sound wave following detonation.

  6. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  7. Detonation diffraction in combustible high-speed flows

    NASA Astrophysics Data System (ADS)

    Gui, Mingyue; Fan, Baochun; Li, Baoming

    2016-03-01

    Detonation propagating in a T-shaped tube with quiescent and moving hydrogen/oxygen/argon mixtures is numerically examined based on the Euler equations with detailed finite-rate chemistry using the fifth-order weighted essentially non-oscillatory scheme. When diffracted in a quiescent combustible mixture, the detonation wave propagating from the bottom of the T-shaped tube is influenced by the corner rarefaction waves and decays into a non-reacting shock. Subsequently, the decoupled shock reflects irregularly from the top wall. Through several reflections back and forth between the top and bottom walls, a planar detonation is finally re-established. When the combustible mixture in the horizontal part flows from the left to the right, the detonation products ejected from the vertical tube will retard the flow, generating a compression flow upstream and a rarefaction flow downstream. The disturbed detonation on the left side is stronger than that on the right side. The final planar detonation in the upstream direction propagates faster than the Chapman-Jouguet (CJ) detonation with compressed, fine cellular structures, whereas the detonation in the downstream direction propagates more slowly than the CJ detonation with elongated, coarse cellular structures. The details of the transient behavior of diffracting detonation in high-speed flows are discussed.

  8. Investigation of detonation initiation in aluminium suspensions

    NASA Astrophysics Data System (ADS)

    Veyssiere, B.; Khasainov, B. A.; Briand, A.

    2008-09-01

    Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich ( r = 1.61) aluminium-air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium-air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects.

  9. Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rohit Ranjan

    Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex is periodically re-initiated into an overdriven detonation following a transient Mach reflection process. Past researchers have identified mechanisms that can increase combustion rates and cause localized hot spot re-ignition behind the Mach shock. But due to the small length scales and stochastic behaviour of detonation waves, the important mechanisms that can lead to re-initiation into a detonation requires further clarification. If a detonation is allowed to diffract behind an obstacle, it can quench to form a de-coupled shock-flame complex and if allowed to form a Mach reflection, re-initiation of a detonation can occur. The use of this approach permits the study of re-initiation mechanisms reproducibly with relatively large length scales. The objective of this study is to experimentally elucidate the key mechanisms that can increase chemical reaction rates and sequentially lead to re-initiation of a de-coupled shock-flame complex into an overdriven detonation wave following a Mach reflection. All experiments were carried out in a thin rectangular channel using a stoichiometric mixture of oxy-methane. Three different types of obstacles were used - a half-cylinder, a roughness plate along with the half-cylinder and a full-cylinder. Schlieren visualization was achieved by using a Z-configuration setup, a high speed camera and a high intensity light source. Results indicate that forward jetting of the slip line behind the Mach stem can potentially increase combustion rates by entraining hot burned gas into unburned gas. Following ignition and jet entrainment, a detonation wave first appears along the Mach stem. The transverse wave can form a detonation wave due to rapid combustion of unburned gas which may be attributed to shock interaction with the unburned gas

  10. Molecular-dynamics investigation of the desensitization of detonable material

    NASA Astrophysics Data System (ADS)

    Rice, Betsy M.; Mattson, William; Trevino, Samuel F.

    1998-05-01

    A molecular-dynamics investigation of the effects of a diluent on the detonation of a model crystalline explosive is presented. The diluent, a heavy material that cannot exothermally react with any species of the system, is inserted into the crystalline explosive in two ways. The first series of simulations investigates the attenuation of the energy of a detonation wave in a pure explosive after it encounters a small layer of crystalline diluent that has been inserted into the lattice of the pure explosive. After the shock wave has traversed the diluent layer, it reenters the pure explosive. Unsupported detonation is not reestablished unless the energy of the detonation wave exceeds a threshold value. The second series of simulations investigates detonation of solid solutions of different concentrations of the explosive and diluent. For both types of simulations, the key to reestablishing or reaching unsupported detonation is the attainment of a critical number density behind the shock front. Once this critical density is reached, the explosive molecules make a transition to an atomic phase. This is the first step in the reaction mechanism that leads to the heat release that sustains the detonation. The reactive fragments formed from the atomization of the heteronuclear reactants subsequently combine with new partners, with homonuclear product formation exothermally favored. The results of detonation of the explosive-diluent crystals are consistent with those presented in an earlier study on detonation of pure explosive [B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, Phys. Rev. E 53, 611 (1996)].

  11. Transition to Detonation in Exploding Bridgewire Detonators

    SciTech Connect

    Roeski, F; Benterou, J; Lee, R; Roos, R

    2003-01-08

    We are investigating using breakout profile measurements and/or Fabry-Perot velocimeter measurements during early stages of initiation in Exploding Bridge Wire (EBW) detonators as a tool for understanding the physics of initiation of these devices and as a tool for monitoring aging effects. We believe any changes due to aging may be more readily observed in the very early stages of the initiation. We have developed a method that allows measurement of the detonation velocity, detonation profile and interface velocity as a function of distance from the bridgewire.

  12. Detonation and Transition to Detonation in Horizontal Water-Filled Pipes

    NASA Astrophysics Data System (ADS)

    Bitter, Neal P.; Shepherd, Joseph E.

    2012-11-01

    Detonations and deflagration-to-detonation transition (DDT) are experimentally studied in horizontal pipes which are partially filled with water. The gas layer above the water is stoichiometric hydrogen-oxygen at 1 bar. The detonation wave produces oblique shock waves in the water, which focus at the bottom of the pipe due to the curvature of the walls. This results in peak pressures at the bottom of the pipe that are 4-6 times greater than the peak detonation pressure. Such pressure amplification is measured for water depths of 0.25, 0.5, 0.75, 0.87, and 0.92 pipe diameters. Focusing of the oblique shock waves is studied further by measuring the circumferential variation of pressure when the water depth is 0.5 pipe diameters, and reasonable agreement with theoretical modeling is found. Failure of the detonation waves was not observed, even for water depths as high as 0.92 pipe diameters. Transition to detonation also occurred at every water height, and transition distance did not vary significantly with water height.

  13. Stability Affects of Artificial Viscosity in Detonation Modeling

    SciTech Connect

    Vitello, P; Souers, P C

    2002-06-03

    Accurate multi-dimensional modeling of detonation waves in solid HE materials is a difficult task. To treat applied problems which contain detonation waves one must consider reacting flow with a wide range of length-scales, non-linear equations of state (EOS), and material interfaces at which the detonation wave interacts with other materials. To be useful numerical models of detonation waves must be accurate, stable, and insensitive to details of the modeling such as the mesh spacing, and mesh aspect ratio for multi-dimensional simulations. Studies we have performed show that numerical simulations of detonation waves can be very sensitive to the form of the artificial viscosity term used. The artificial viscosity term is included in our ALE hydrocode to treat shock discontinuities. We show that a monotonic, second order artificial viscosity model derived from an approximate Riemann solver scheme can strongly damp unphysical oscillations in the detonation wave reaction zone, improving the detonation wave boundary wall interaction. These issues are demonstrated in 2D model simulations presented of the 'Bigplate' test. Results using LX-I 7 explosives are compared with numerical simulation results to demonstrate the affects of the artificial viscosity model.

  14. Modelling detonation of heterogeneous explosives with embedded inert particles using detonation shock dynamics: Normal and divergent propagation in regular and simplified microstructure

    NASA Astrophysics Data System (ADS)

    Lieberthal, Brandon A.; Bdzil, John B.; Stewart, D. Scott

    2014-03-01

    This paper discusses the mathematical formulation of Detonation Shock Dynamics (DSD) regarding a detonation shock wave passing over a series of inert spherical particles embedded in a high-explosive material. DSD provides an efficient method for studying detonation front propagation in such materials without the necessity of simulating the combustion equations for the entire system. We derive a series of partial differential equations in a cylindrical coordinate system and a moving shock-attached coordinate system which describes the propagation of detonation about a single particle, where the detonation obeys a linear shock normal velocity-curvature (Dn-κ) DSD relation. We solve these equations numerically and observe the short-term and long-term behaviour of the detonation shock wave as it passes over the particles. We discuss the shape of the perturbed shock wave and demonstrate the periodic and convergent behaviour obtained when detonation passes over a regular, periodic array of inert spherical particles.

  15. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  16. Computation of a diverging Comp-B detonation

    SciTech Connect

    Bukiet, B.G.

    1989-01-01

    The expansion which occurs in diverging detonations weakens the wave and yields pressures and densities below those occurring in planar geometry. We study the problem of a spherically expanding detonation of Comp-B. The effect of varying the order of reaction as well as the rate law parameters (using an Arrhenius burn model) is studied. 14 refs., 3 figs.

  17. Cellular detonation diffraction in gas-particle mixtures

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Khmel, T. A.; Kratova, Y. V.

    2010-12-01

    Diffraction of cellular heterogeneous detonation out of a channel into open half-space in a mixture of aluminum particles and oxygen is investigated numerically. The flow is found to be very similar to gas detonation diffraction. The detonation weakening behind the step results in combustion front deceleration and decoupling from the leading shock wave. Subsequent re-initiation takes place in a transverse wave. New transverse waves are generated along the expanding front. The computations that were performed show that the critical number of cells is several times less than that for gases. This is confirmed by theoretical estimates based upon the Mitrofanov-Soloukhin approach.

  18. Stability of Chapman Jouguet detonations for a stiffened-gas model of condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Short, Mark; Bdzil, John B.; Anguelova, Iana I.

    2006-04-01

    The analysis of the linear stability of a planar Chapman Jouguet detonation wave is reformulated for an arbitrary caloric (incomplete) equation of state in an attempt to better represent the stability properties of detonations in condensed-phase explosives. Calculations are performed on a ‘stiffened-gas’ equation of state which allows us to prescribe a finite detonation Mach number while simultaneously allowing for a detonation shock pressure that is substantially larger than the ambient pressure. We show that the effect of increasing the ambient sound speed in the material, for a given detonation speed, has a stabilizing effect on the detonation. We also show that the presence of the slow reaction stage, a feature of detonations in certain types of energetic materials, where the detonation structure is characterized by a fast reaction stage behind the detonation shock followed by a slow reaction stage, tends to have a destabilizing effect.

  19. Detonation diffraction from an annular channel

    NASA Astrophysics Data System (ADS)

    Meredith, James; Ng, Hoi Dick; Lee, John H. S.

    2010-12-01

    In this study, gaseous detonation diffraction from an annular channel was investigated with a streak camera and the critical pressure for transmission of the detonation wave was obtained. The annular channel was used to approximate an infinite slot resulting in cylindrically expanding detonation waves. Two mixtures, stoichiometric acetylene-oxygen and stoichiometric acetylene-oxygen with 70% Ar dilution, were tested in a 4.3 and 14.3 mm channel width ( W). The undiluted and diluted mixtures were found to have values of the critical channel width over the cell size around 3 and 12 respectively. Comparing these results to values of the critical diameter ( d c ), in which a spherical detonation occurs, a value of critical d c / W c near 2 is observed for the highly diluted mixture. This value corresponds to the geometrical factor of the curvature term between a spherical and cylindrical diverging wave. Hence, the result is in support of Lee's proposed mechanism [Lee in Dynamics of Exothermicity, pp. 321, Gordon and Breach, Amsterdam, 1996] for failure due to diffraction based on curvature in stable mixtures such as those highly argon diluted with very regular detonation cellular patterns.

  20. Numerical simulation of spinning detonation in square tube

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nobuyuki; Asahara, Makoto; Eto, Keitaro; Hayashi, A. Koichi

    2008-09-01

    A single spinning detonation wave propagating in a square tube is simulated three-dimensionally with the detailed chemical reaction mechanism for hydrogen/air mixture proposed by Petersen and Hanson. The spinning detonation is composed of a transverse detonation rotating around the wall normal to the tube axis, triple lines propagating partially out of phase, and a short pressure trail. The formation of an unburned gas pocket behind the detonation front was not observed in the present simulations because the rotating transverse detonation completely consumed the unburned gas. The calculated profiles of instantaneous OH mass fraction have a keystone shape behind the detonation front. The numerical results for the pitch and track angle on the tube wall agree well with the experimental results.

  1. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  2. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2016-05-31

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link there between. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  3. Hydrazine vapor detonations

    NASA Technical Reports Server (NTRS)

    Pedley, M. D.; Bishop, C. V.; Benz, F. J.; Bennett, C. A.; Mcclenagan, R. D.

    1988-01-01

    The detonation velocity and cell widths for hydrazine decomposition were measured over a wide range of temperatures and pressures. The detonation velocity in pure hydrazine was within 5 percent of the calculated C-J velocity. The detonation cell width measurements were interpreted using the Zeldovich-Doering-von Neumann model with a detailed reaction mechanism for hydrazine decomposition. Excellent agreement with experimental data for pure hydrazine was obtained using the empirical relation that detonation cell width was equal to 29 times the kinetically calculated reaction zone length.

  4. Detonation command and control

    DOEpatents

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  5. Explosives malfunction from sympathetic detonation to shock desensitization

    SciTech Connect

    Katsabanis, P.D.; Yeung, C.; Fitz, G.; Heater, R.

    1994-12-31

    Explosives malfunction due to shock waves is a serious concern for successful blasting results. Malfunction can range from sympathetic detonation to desensitization and modification of firing times of conventional pyrotechnic detonators. Decked charges consisting of commercial emulsion explosives having a detonator and a primer were placed in 10cm diameter blastholes and their performance was recorded. Due to the limited length of the holes the events were mainly sympathetic detonations although desensitization was also recorded. Pressure measurements along the stemming column showed that shock waves produced by an explosive have a significant amplitude even at relatively large distances away from the detonating explosive. It was found that 2m away from a detonating charge the pressures in the stemming material were above 0.1 GPa indicating that there is potential for primers and detonators to malfunction. Parallel charges consisting of a commercial emulsion explosive with a diameter of 32mm were confined in 2mm thick steel tubes and initiation was attempted using detonators having a delay interval of 25ms. The charges were placed in sand and the velocity of detonation of the acceptor charge was recorded using a continuous resistance probe system. Carbon resistors were also placed in the same position as the acceptor charge to examine the dynamic pressures that were applied to the charge. Sympathetic detonation, complete desensitization, partial desensitization and properly sequenced detonations were observed as the distance between charges was increased from 76 mm to 305 mm. Delay detonators were also tested in a similar to the last configuration. Modification of firing times was observed at distances between 150 and 360 mm.

  6. Prechamber initiation of detonation in gaseous mixtures

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu; Golovastov, S. V.; Golub, V. V.

    2015-11-01

    A process of deflagration-to-detonation transition in propane-butane-oxygen and acetylene-oxygen mixtures, in an open channel with a circular cross section with a diameter of 3 mm, was investigated experimentally. Detonation initiation was carried out by burning the mixture in the prechamber connected to the channel. The prechamber was considered as an extended source for the initiation of the detonation of a finite volume. To measure the velocity of a flame front, photodiodes, installed along the axis of the channel, were used. To determine the boundary conditions at the entrance to the channel, a piezoelectric pressure transducer was used. The influence of the dimensions of the prechamber, equivalence ratio and fuel on the pressure profile, and evolution of the flame front along the axis of the channel are presented. It was shown that, the dynamics of the flame front and shock waves in the channel can occur in different scenarios depending on the geometry of the prechamber and equivalence ratio. Two limit effects of the prechamber detonation initiation in the channel have been analyzed. The pre-detonation distances and the minimal energy of direct initiation of the detonation were determined.

  7. Analysis of the influence of inert particles on the propagation of a cellular heterogeneous detonation

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Kratova, Y. V.

    2015-05-01

    The interaction of a cellular detonation wave with a cloud of inert particles is investigated numerically. The regimes of propagation of the heterogeneous cellular detonation and its suppression are identified. The influence of various parameters of the inert cloud is demonstrated. The critical length of the cloud for detonation suppression is determined. It is shown that the disperse composition and the non-uniform distribution of particles of the particle cloud are important parameters affecting the detonation propagation mode.

  8. Volumetric initiation of gaseous detonation by radiant heating of suspended microparticles

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2016-02-01

    The concept of detonation wave initiation in the local volume of a fuel-gas mixture containing suspended chemically neutral microparticles heated by radiant energy from an external source is proposed. Mechanisms of initiation of the combustion and detonation waves in a region of accumulation of the radiation- heated microparticles have been studied by numerical simulation methods. Criteria that determine geometric dimensions of a region of the two-phase medium, which are necessary for the initiation of detonation waves, are formulated.

  9. Simplified modeling of transition to detonation in porous energetic materials

    SciTech Connect

    Stewart, D.S. ); Asay, B.W. ); Prasad, K. )

    1994-07-01

    A simplified model that can predict the transitions from compaction to detonation and shock to detonation is given with the aim of describing experiments in beds of porous HMX. In the case of compaction to detonation, the energy of early impact generates a slowly moving, convective-reactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined deflagration to detonation transition. A single-phase state variable theory is adopted in contrast to a two-phase axiomatic mixture theory. The ability of the porous material to compact is treated as an endothermic process. Reaction is treated as an exothermic process. The algebraic (Rankine--Hugoniot) steady wave analysis is given for inert compaction waves and steady detonation waves in a piston supported configuration, typical of the experiments carried out in porous HMX. A structure analysis of the steady compaction wave is given. Numerical simulations of deflagration to detonation are carried out for parameters that describe an HMX-like material and compared with the experiments. The simple model predicts the high density plug that is observed in the experiments and suggests that the leading front of the plug is a secondary compaction wave. A shock to detonation transition is also numerically simulated.

  10. Atomistic simulation of detonation initiation by ultra-short impact

    NASA Astrophysics Data System (ADS)

    Murzov, S. A.; Zhakhovsky, V. V.

    2015-11-01

    We present results of the classical molecular dynamics simulation of detonation initiation in simple AB model of a high explosive compressed by ultra-short shock wave (SW). The simplified reactive empirical bond order potential (REBO) defines interatomic forces in the AB model explosive made up of diatomic AB molecules. Simulation of ultra-short piston-driven compression of AB explosive with duration of picoseconds represents an indirect initiation via a thin metal foil irradiated by a femtosecond laser pulse. We studied transition of SW to a detonation wave (DW), including evolution of calculated pressure profile in a sample. A run distance to detonation of such AB explosive film, which is required for detonation initiation, was obtained. Variation of loading time and piston velocity gives a 2D region of transition from SW to DW. The influence of pores on detonation initiation threshold is discussed.

  11. Numerical analysis of thermonuclear detonation in dense plasma

    NASA Astrophysics Data System (ADS)

    Avronin, Y. N.; Bunatyan, A. A.; Gadzhiyev, A. D.; Mustafin, K. A.; Nurbakov, A. S.; Pisarev, V. N.; Feoktistov, L. P.; Frolov, V. D.; Shibarshov, L. I.

    1985-01-01

    The propagation of thermonuclear combustion from the region heated to thermonuclear temperatures by an external source to the remaining part of the target was investigated. The target was a tube of inert material (gold, lead, beryllium, etc.) filled with a deuterium-tritium mixture. It was determined analytically that thermonuclear combustion can propagate from a small portion of a nonspherical target to the remainder of the target and that a steady-state thermonuclear detonation wave can be formed. The role of various physical processes in thermonuclear detonation was investigated. Shock wave is the main mechanism underlying detonation propagation. The detonation rate and intensity of the thermonuclear reaction is influenced by the leakage of heat due to transvere heat conductivity. The critical diameter for thermonuclear detonation was determined approximately for a plasma filament encased in a housing with twice the density of the fuel.

  12. Bidirectional slapper detonator

    DOEpatents

    McCormick, Robert N.; Boyd, Melissa D.

    1984-01-01

    The disclosure is directed to a bidirectional slapper detonator. One embodiment utilizes a single bridge circuit to detonate a pair of opposing initiating pellets. A line generator embodiment uses a plurality of bridges in electrical series to generate opposing cylindrical wavefronts.

  13. On gas detonation limits

    SciTech Connect

    Nikolaev, Yu.A.; Gapanov, O.A.

    1995-11-01

    A one-dimensional model for a multiheaded detonation has been constructed with account for friction, heat losses, and the decay of gas velocity pulsations. The existence of detonation limits in narrow channels has been numerically shown. The calculation results are in satisfactory agreement with experimental data.

  14. Propagation Mechanism of Cylindrical Cellular Detonation

    NASA Astrophysics Data System (ADS)

    Han, Wen-Hu; Wang, Cheng; Ning, Jian-Guo

    2012-10-01

    We investigate the evolution of cylindrical cellular detonation with different instabilities. The numerical results show that with decreasing initial temperature, detonation becomes more unstable and the cells of the cylindrical detonation tend to be irregular. For stable detonation, a divergence of cylindrical detonation cells is formed eventually due to detonation instability resulting from a curved detonation front. For mildly unstable detonation, local overdriven detonation occurs. The detonation cell diverges and its size decreases. For highly unstable detonation, locally driven detonation is more obvious and the front is highly wrinkled. As a result, the diverging cylindrical detonation cell becomes highly irregular.

  15. The development of a sonic boom simulator with detonable gases

    NASA Technical Reports Server (NTRS)

    Strugielski, R. T.; Fugelso, L. E.; Holmes, L. B.; Byrne, W. J.

    1971-01-01

    A sonic boom pressure profile was simulated in the far-field by detonation of a methane-oxygen mixture contained in a slender, shaped Mylar envelope. Ideal N-waves were synthesized with peak overpressures from two to five psf and durations of 30 to 75 milliseconds. The detonation of the gas mixture was initiated by a single Primacord strand running the length of balloon. The N-wave producing balloon was synthesized as a composite structure, utilizing experimental pressure profiles obtained from the detonations of slender, axisymmetric balloons with elementary, non-cylindrical shapes.

  16. Pulse Detonation Engine Test Bed Developed

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    2002-01-01

    A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.

  17. Numerical simulation of Mach reflection of cellular detonations

    NASA Astrophysics Data System (ADS)

    Li, J.; Lee, J. H. S.

    2016-07-01

    The Mach reflection of cellular detonation waves on a wedge is investigated numerically in an attempt to elucidate the effect of cellular instabilities on Mach reflection, the dependence of self-similarity on the thickness of a detonation wave, and the initial development of the Mach stem near the wedge apex. A two-step chain-branching reaction model is used to give a thermally neutral induction zone followed by a chemical reaction zone for the detonation wave. A sufficiently large distance of travel of the Mach stem is computed to observe the asymptotic behavior in the far field. Depending on the scale at which the Mach reflection process occurs, it is found that the Mach reflection of a cellular detonation behaves essentially in the same way as a planar ZND detonation wave. The cellular instabilities, however, cause the triple-point trajectory to fluctuate. The fluctuations are due to interactions of the triple point of the Mach stem with the transverse waves of cellular instabilities. In the vicinity of the wedge apex, the Mach reflection is found to be self-similar and corresponds to that of a shock wave of the same strength, since the Mach stem is highly overdriven initially. In the far field, the triple-point trajectory approaches a straight line, indicating that the Mach reflection becomes self-similar asymptotically. The distance of the approach to self-similarity is found to decrease rapidly with decreasing thickness of the detonation front.

  18. Detonation Front Curvatures and Detonation Rates

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark

    2015-06-01

    We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Experimental investigation of deflagration to detonation transition in hydrocarbon-air gaseous mixtures

    SciTech Connect

    Smirnov, N.N.; Tyurnikov, M.V.

    1995-03-01

    The paper presents the results of investigation of deflagration to detonation transition in gas mixtures with exothermic chemical reaction using the experimental method of nonintrusive diagnostics of the process. Schlieren photochronography in the optical sections in different places of the tube is performed using the laser as a source of light. Experimental results of visualization of the transition process in hydrocarbon-air gas mixtures show several different flow patterns: (1) The detonation wave originates in the flame zone. (2) The detonation wave originates between the flame zone and primary shock wave. (3) The secondary combustion zone originates between primary shock and the flame and causes the detonation. (4) Spontaneous flame occurs that leads to the combustion to detonation transition. The influence of the flame zone on the originating strong detonation wave is noticed.

  20. Detonation propagation in a high loss configuration

    SciTech Connect

    Jackson, Scott I; Shepherd, Joseph E

    2009-01-01

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  1. Ignition and Growth Reactive Flow Modeling of Recent HMX/TATB Detonation Experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig

    2015-06-01

    Ignition and Growth model parameters for detonating PBX 9501 (95%HMX, 2.5 %Estane, 2.5%BDNPAF) and PBX 9502 (95%TATB, 5%Kel-F800) are used to simulate two experiments in which detonating HMX-based PBX's accelerate slower detonating TATB PBX's. The measured HMX and TATB detonation velocities, the angles produced in the detonating TATB charges by the leading HMX detonation waves, the arrival times of the complex detonation wave front, and the PDV records measured at several positions along the interfaces between the two explosives and LiF windows are accurately calculated. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. Development of a chemical microthruster based on pulsed detonation

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Hsun; Lu, Tsung-Hsun

    2012-10-01

    The development of a microthruster based on gaseous pulsed detonation is presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is first experimentally investigated in a microchannel with 1 mm × 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce the time and distance required for the reaction wave to run up to detonation in a smooth channel. High-speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. The validated concepts are implemented for the development of an integrated pulsed detonation microthruster. The microthruster was fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes were embedded in the ceramic microthruster. The channel and via holes were fabricated using laser cutting techniques. Ion probe measurements showed that the reaction wave propagated at velocities larger than 2000 m s-1 before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 200 Hz.

  3. Modeling Hemispheric Detonation Experiments in 2-Dimensions

    SciTech Connect

    Howard, W M; Fried, L E; Vitello, P A; Druce, R L; Phillips, D; Lee, R; Mudge, S; Roeske, F

    2006-06-22

    Experiments have been performed with LX-17 (92.5% TATB and 7.5% Kel-F 800 binder) to study scaling of detonation waves using a dimensional scaling in a hemispherical divergent geometry. We model these experiments using an arbitrary Lagrange-Eulerian (ALE3D) hydrodynamics code, with reactive flow models based on the thermo-chemical code, Cheetah. The thermo-chemical code Cheetah provides a pressure-dependent kinetic rate law, along with an equation of state based on exponential-6 fluid potentials for individual detonation product species, calibrated to high pressures ({approx} few Mbars) and high temperatures (20000K). The parameters for these potentials are fit to a wide variety of experimental data, including shock, compression and sound speed data. For the un-reacted high explosive equation of state we use a modified Murnaghan form. We model the detonator (including the flyer plate) and initiation system in detail. The detonator is composed of LX-16, for which we use a program burn model. Steinberg-Guinan models5 are used for the metal components of the detonator. The booster and high explosive are LX-10 and LX-17, respectively. For both the LX-10 and LX-17, we use a pressure dependent rate law, coupled with a chemical equilibrium equation of state based on Cheetah. For LX-17, the kinetic model includes carbon clustering on the nanometer size scale.

  4. Measuring In-Situ Mdf Velocity Of Detonation

    DOEpatents

    Horine, Frank M.; James, Jr., Forrest B.

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  5. Direct observation detonator operation

    NASA Astrophysics Data System (ADS)

    Hall, Charles R.

    2001-11-01

    The analysis of detonator-timing performance has involved the use of rotating-mirror cameras (RMC) used in the streak mode and high-speed film. Fiducial timing marks are applied to the film to provide temporal references. The use of a RMC for detonator analysis requires aligning the camera, performing an exposure test, capturing light from the detonation and then processing the film. This procedure can take up to an hour for two technicians. After the film is possessed another technician compares each light streak on the film with the fiducial timing marks also recorded on the film. Capturing light from a detonator and recording it directly to a digitizer can improve detonator-timing measurement in several ways. The digitized signals can then be directly analyzed with software. The direct recording method reduces the need for expensive rotating mirror cameras, film processing and subjective optical measurement comparison. Furthermore, an extensive support facility requiring several specialized technicians is reduced to a single technician in a modest laboratory. This technician is then capable of performing several tests an hour. Tests were preformed to measure light intensity at detonation. An optical method of capturing the light was designed using a remote microscope coupled to optical fiber to bring the light to an optical/electrical converter and a digitizer then records the signal. This system is presently used in parallel with a RMC. The results are compared for accuracy.

  6. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho

    1993-07-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar{mu}s/cm{sup 2}. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/{mu}s under a loading pressure rate of several Mbar/{mu}s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/{mu}s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/{mu}s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/{mu}s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  7. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho.

    1993-01-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar[mu]s/cm[sup 2]. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/[mu]s under a loading pressure rate of several Mbar/[mu]s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/[mu]s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/[mu]s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/[mu]s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  8. Multiple-cycle Simulation of a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Perkins, H. D.

    2002-01-01

    This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.

  9. Numerical simulation of H2/air detonation using unstructured mesh

    NASA Astrophysics Data System (ADS)

    Togashi, Fumiya; Löhner, Rainald; Tsuboi, Nobuyuki

    2009-06-01

    To explore the capability of unstructured mesh to simulate detonation wave propagation phenomena, numerical simulation of H2/air detonation using unstructured mesh was conducted. The unstructured mesh has several adv- antages such as easy mesh adaptation and flexibility to the complicated configurations. To examine the resolution dependency of the unstructured mesh, several simulations varying the mesh size were conducted and compared with a computed result using a structured mesh. The results show that the unstructured mesh solution captures the detailed structure of detonation wave, as well as the structured mesh solution. To capture the detailed detonation cell structure, the unstructured mesh simulations required at least twice, ideally 5times the resolution of structured mesh solution.

  10. Modeling of Explosion Gas Dynamics with Account of Detonation

    NASA Astrophysics Data System (ADS)

    Morozov, D. O.

    2013-11-01

    The physical and hydrodynamic processes in the initial phase of explosion of condensed explosives in the air have been considered. The role of the processes of energy release connected with the explosive detonation has been analyzed. The equations of formal kinetics for modeling the processes of transformation of the original substance into detonation products have been described. The results obtained with the use of the equation of state of an ideal gas with a constant adiabatic index have been compared with calculations, where for the equation of state wide-range tables of properties of the air and explosion products were used. The stage of detonation of an explosive is included in the self-consistent hydrodynamic model used for describing the explosion processes from the moment of initiation of the detonation wave to the moment the air shock wave is formed, as well as in describing its propagation and attenuation.

  11. Miniature plasma accelerating detonator and method of detonating insensitive materials

    SciTech Connect

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1986-11-11

    This patent describes a detonator assembly for initiating insensitive explosives or energetic materials. In the improvement described here the detonator assembly comprises: railgun accelerating means of a size sufficient to be used as a detonator for insensitive explosives or energetic materials in an amount of about 100 mg of explosives or less and capable of accelerating a plasma to detonation initiating velocities; and power supply means for supplying the power necessary to the railgun accelerating means to generate and accelerate the plasma.

  12. Studies of DDT enhancement approaches for kerosene-fueled small-scale pulse detonation engines applications

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Tang, H.; Li, J.; Zhang, C.

    2012-11-01

    Two-phase small-scale pulse detonation engine (SPDE) offers a competitive alternative for small-scale propulsion systems from a high cycle efficiency and structural simplicity standpoint. SPDE models are designed with the aero-valve, and three different cases of obstacle combinations are used as deflagration-to-detonation transition (DDT) devices. The inner diameters of detonation tubes are 29 mm, and the lengths of three SPDEs are 995, 1,100, and 1,175 mm. Using kerosene-air as the fuel-oxidizer, a series of high-frequency detonation tests is conducted to seek efficient DDT enhancement approaches that reduce DDT distance and time and increase the frequency of kerosene-fueled SPDE. The results show that the fully developed detonation wave can be achieved at a distance of 3.4 times the minimum characteristic distance for gaseous detonation formation from the igniter and that the SPDE can steadily operate at a maximal frequency of 62.5 Hz. By adopting these DDT enhancement approaches, the detonability of kerosene is significantly improved. In addition, experiments are performed to study the effects of firing frequencies on detonation transitions. The results clearly indicate that the values of detonation wave pressures and velocities, the degree of overdriven wave, the ignition delay times, and detonation initiation times vary with frequencies. In terms of the performance, the optimal frequencies of three SPDE models are 20, 42.5, and 50 Hz, respectively.

  13. Attenuation of a hydrogen-air detonation by acoustic absorbing covering

    NASA Astrophysics Data System (ADS)

    Bivol, G. Yu; Golovastov, S. V.; Golub, V. V.; Ivanov, K. V.; Korobov, A. E.

    2015-11-01

    Using of sound-absorbing surfaces to weaken and decay of a detonation wave in hydrogen-air mixtures was investigated experimentally. Experiments were carried out in a cylindrical detonation tube open at one end. Initiation of the explosive mixture was carried out by a spark discharge, which is located at the closed end of the detonation tube. Acoustical sound absorbing foam element of a specific weight of 0.035 g/cm3 with open pores of 0.5 mm was used. The degree of attenuation of the intensity of the detonation wave front was determined.

  14. Rapid detonation initiation by sparks in a short duct: a numerical study

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  15. Reverse slapper detonator

    DOEpatents

    Weingart, Richard C.

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  16. Synchro-ballistic recording of detonation phenomena

    SciTech Connect

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.; Davis, W.C.; Ferm, E.N.; Idar, D.J.

    1997-09-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  17. On the theory of the propagation of detonation in gaseous systems

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y B

    1950-01-01

    The existing theory of detonation is critically examined. It is shown that the considerations with which the steady value of the velocity of detonation is chosen are not convincing. In connection with the problem of the process of the chemical reaction in a detonation wave, the objections raised against the conceptions of Le Chatelier and Vieille of the 19th century with regard to the ignition of the gas by the shock wave are refuted. On the basis of this concept, it is possible to give a rigorous foundation for the existing method of computing the detonation velocity. The distributions of the temperature, the pressure, and the velocity in the detonation wave front as the chemical reaction proceeds, are considered. On the assumption of the absence of losses, the pure compression of the gas in the shock wave at the start of the chemical reaction develops a temperature that is near the temperature of combustion of the given mixture at constant pressure.

  18. Printable sensors for explosive detonation

    SciTech Connect

    Griffith, Matthew J. Cooling, Nathan A.; Elkington, Daniel C.; Belcher, Warwick J.; Dastoor, Paul C.; Muller, Elmar

    2014-10-06

    Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.

  19. Detonation and deflagration properties of pyrotechnic mixtures

    SciTech Connect

    Tanaka, Katsumi

    1996-07-01

    Theoretical calculation of detonation and deflagration properties of pyrotechnic mixtures have been performed including report charges and display charges. Calculation were performed with the KHT (Kihara-Hikta-Tanaka) code. KHT results are compared with a modified version of the TIGER code which allows calculation with 900 gaseous and 600 condensed product species at high pressure. Detonation properties computed by KHT and BKWS (Becker-Kistiakowskii-Wilson) give favorable agreement with experimental results of detonation velocity measurements. Hydrodynamic computation by one dimensional Lagrangian hydrodynamic code using the isentrope given by KHT constant volume explosion, indicated that experimental results for blast wave measurement for 30kg and 50kg of report charge were an incomplete reaction. Underwater detonation experiments with explosive charge of 25g, however, indicates a more energetic nature than the KHT prediction. This scale effect indicates complicated slow reactions and a number of condensed phase deflagration products of powder mixtures such as aluminum or titanium with oxidizers such as potassium perchlorate or nitrate salts as suggested by Hobbs et al.

  20. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  1. Nonequilibrium detonation of composite explosives

    SciTech Connect

    Nichols III, A.L.

    1997-07-01

    The effect of nonequilibrium diffusional flow on detonation velocities in composite explosives is examined. Detonation conditions are derived for complete equilibrium, temperature and pressure equilibrium, and two forms of pressure equilibrium. Partial equilibria are associated with systems which have not had sufficient time for transport to smooth out the gradients between spatially separate regions. The nonequilibrium detonation conditions are implemented in the CHEQ equation of state code. We show that the detonation velocity decreases as the non-chemical degrees of freedom of the explosive are allowed to equilibrate. It is only when the chemical degrees of freedom are allowed to equilibrate that the detonation velocity increases.

  2. Detonation propagation in narrow gaps with various configurations

    NASA Astrophysics Data System (ADS)

    Monwar, M.; Yamamoto, Y.; Ishii, K.; Tsuboi, T.

    2007-08-01

    In general all detonation waves have cellular structure formed by the trajectory of the triple points. This paper aims to investigate experimentally the propagation of detonation in narrow gaps for hydrogen-oxygen-argon mixtures in terms of various gap heights and gap widths. The gap of total length 1500 mm was constructed by three pair of stainless plates, each of them was 500 mm in length, which were inserted in a detonation tube. The gap heights were varied from 1.2 mm to 3.0 mm while the gap widths were varied from 10 mm to 40 mm. Various argon dilution rates were tested in the present experiments to change the size of cellular structure. Attempts have been made by means of reaction front velocity, shock front velocity, and smoked foil to record variations of cellular structure inside the gaps. A combination probe composed of a pressure and an ion probe detected the arrival of the shock and the reaction front individually at one measurement point. Experimental results show that the number of the triple points contained in detonation front decreases with decrease in the gap heights and gap widths, which lead to larger cellular structures. For mixtures with low detonability, cell size is affected by a certain gap width although conversely cell size is almost independent of gap width. From the present result it was found that detonation propagation inside the gaps is strongly governed by the gap height and effects of gap width is dependent on detonability of mixtures.

  3. Influence of discrete sources on detonation propagation in a Burgers equation analog system

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.

    2015-05-01

    An analog to the equations of compressible flow that is based on the inviscid Burgers equation is utilized to investigate the effect of spatial discreteness of energy release on the propagation of a detonation wave. While the traditional Chapman-Jouguet (CJ) treatment of a detonation wave assumes that the energy release of the medium is homogeneous through space, the system examined here consists of sources represented by δ functions embedded in an otherwise inert medium. The sources are triggered by the passage of the leading shock wave following a delay that is either of fixed period or randomly generated. The solution for wave propagation through a large array (103-104) of sources in one dimension can be constructed without the use of a finite difference approximation by tracking the interaction of sawtooth-profiled waves for which an analytic solution is available. A detonation-like wave results from the interaction of the shock and rarefaction waves generated by the sources. The measurement of the average velocity of the leading shock front for systems of both regular, fixed-period and randomized sources is found to be in close agreement with the velocity of the equivalent CJ detonation in a uniform medium, wherein the sources have been spatially homogenized. This result may have implications for the applicability of the CJ criterion to detonations in highly heterogeneous media (e.g., polycrystalline, solid explosives) and unstable detonations with a transient and multidimensional structure (e.g., gaseous detonation waves).

  4. Clamp for detonating fuze

    NASA Technical Reports Server (NTRS)

    Holderman, E. J.

    1968-01-01

    Quick acting clamp provides physical support for a closely confined detonating fuse in an application requiring removal and replacement at frequent intervals during test. It can be designed with a base of any required strength and configuration to permit the insertion of an object.

  5. Environmentally Benign Stab Detonators

    SciTech Connect

    Gash, A

    2005-12-21

    Many energetic systems can be activated via mechanical means. Percussion primers in small caliber ammunition and stab detonators used in medium caliber ammunition are just two examples. Current medium caliber (20-60mm) munitions are detonated through the use of impact sensitive stab detonators. Stab detonators are very sensitive and must be small, as to meet weight and size limitations. A mix of energetic powders, sensitive to mechanical stimulus, is typically used to ignite such devices. Stab detonators are mechanically activated by forcing a firing pin through the closure disc of the device and into the stab initiating mix. Rapid heating caused by mechanically driven compression and friction of the mixture results in its ignition. The rapid decomposition of these materials generates a pressure/temperature pulse that is sufficient to initiate a transfer charge, which has enough output energy to detonate the main charge. This general type of ignition mix is used in a large variety of primers, igniters, and detonators.[1] Common primer mixes, such as NOL-130, are made up of lead styphnate (basic) 40%, lead azide (dextrinated) 20%, barium nitrate 20%, antimony sulfide 15%, and tetrazene 5%.[1] These materials pose acute and chronic toxicity hazards during mixing of the composition and later in the item life cycle after the item has been field functioned. There is an established need to replace these mixes on toxicity, health, and environmental hazard grounds. This effort attempts to demonstrate that environmentally acceptable energetic solgel coated flash metal multilayer nanocomposites can be used to replace current impact initiated devices (IIDs), which have hazardous and toxic components. Successful completion of this project will result in IIDs that include innocuous compounds, have sufficient output energy for initiation, meet current military specifications, are small, cost competitive, and perform as well as or better than current devices. We expect flash

  6. New detonation concepts for propulsion and power generation

    NASA Astrophysics Data System (ADS)

    Braun, Eric M.

    A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected

  7. PIC-DSMC analysis on interaction of a laser induced discharge and shock wave

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei

    2015-09-01

    Laser induced discharge and the shock wave have attracted great interest for use in the electrical engineering. When the high intensity laser (10 GW >) is focused in the atmosphere, the breakdown occurs and the discharge wave propagates toward to the laser irradiation. The shock wave is generated around the discharge wave, which is called as the laser supported detonation wave. After breakdown occurred, the initial electron of the avalanche ionization is produced by the photoionization due to the plasma radiation. It is well recognized that the radiation of the laser plasma affects the propagation mechanism of the laser induced discharge wave after the initiation of the breakdown. However, it is difficult to observe the interaction between the plasma radiation and the electron avalanche in the ionization-wave front in experimentally except in the high intensity laser. In the numerical calculation of the laser-induced discharge, the fluid dynamics based on the Navier-Stokes equation have been widely used. However, it is difficult to investigate the avalanche ionization at the wave front using the fluid dynamics simulation. To investigate the interaction of the ionization-wave front and the shock wave, it is appropriate to utilize the PIC-DSMC method. The present study showed the propagation of the ionization front of the discharge wave and the shock wave using the particle simulation. This work was supported by Kato Foundation for Promotion of Science and Japan Power Academy.

  8. Non ideal detonation of emulsion explosives mixed with metal particles

    NASA Astrophysics Data System (ADS)

    Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.

    2011-06-01

    The detonation of ammonium nitrate based compositions like emulsion explosives (EX) mixed with metal particles has been investigated experimentally. Aluminium powder with a mean particle size of 10 μm was used, and the mass concentration of aluminum on the explosive charge was ranged from 0 to 30%. The values of the detonation velocity, the pressure attenuation - P(x) - of detonation front amplitude in a standard PMMA monitor and manganin gauges pressure-time histories are shown as a function of the explosive charge porosity and specific mass. All these parameters except the pressure-times histories have been evaluated using the multi fiber optical probe (MFOP) method which is based on the use of an optical fiber strip, with 64 independent optical fibers. The MFOP allow a quasi continuous evaluation of the detonation wave run propagation and the assessment to spatial resolved measurements of the shock wave induced in the PMMA barrier which in turns allows a detailed characterization of the detonation reaction zone structure. Results of that characterization process are presented and discussed for aluminized and non aluminized EX. Moreover, the effect of the mass concentration of the sensitizing agent (hollow glass micro-balloons) on the non monotonic detonation velocity variation, for EX, will be discussed.

  9. Minimum tube diameters for steady propagation of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ng, H. D.; Lee, J. H. S.

    2014-07-01

    Recent experimental results on detonation limits are reported in this paper. A parametric study was carried out to determine the minimum tube diameters for steady detonation propagation in five different hydrocarbon fuel-oxygen combustible mixtures and in five polycarbonate test tube diameters ranging from 50.8 mm down to a small scale of 1.5 mm. The wave propagation in the tube was monitored by optical fibers. By decreasing the initial pressure, hence the sensitivity of the mixture, the onset of limits is indicated by an abrupt drop in the steady detonation velocity after a short distance of travel. From the measured wave velocities inside the test tube, the critical pressure corresponding to the limit and the minimum tube diameters for the propagation of the detonation can be obtained. The present experimental results are in good agreement with previous studies and show that the measured minimum tube diameters can be reasonably estimated on the basis of the /3 rule over a wide range of conditions, where is the detonation cell size. These new data shall be useful for safety assessment in process industries and in developing and validating models for detonation limits.

  10. Numerical investigations on reignition behavior of detonation diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Han, Wen-Hu; Bi, Yong; Ding, Jian-Xu

    2016-02-01

    In this paper, by adopting a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method for two-dimensional reactive Euler equations, a parallel code is developed, and reignition behavior after a self-sustaining detonation from the tube into free space filled with H2/O2 mixtures is investigated. The numerical results show that the initial pressure has a great influence on the detonation cellular width, and that as the initial pressure increases, the cellular width gradually decreases and the cellular shape changes from irregular structure to regular structure, demonstrating the detonation instability to stability transition. When the initial pressure is larger than 1.2 atm, the detonation wave expands over the edge of the splitter plate, reignition can come into being because enough transverse waves collide with each other at the leading edge of the expanding front. When the initial pressure is 1.2 atm, hot spots appear on the front, and ignite the combustible gas near the hot spots after detonation diffraction. When the initial pressure is 1.0 atm, reignition fails. These findings hint that a critical initial pressure exists between 1.0-1.2 atm for direct reignition after detonation diffraction.

  11. Novel Small-scale Technique for Determining Detonation Velocity

    NASA Astrophysics Data System (ADS)

    Preston, Daniel; Hill, Larry; Tappan, Bryce

    2013-06-01

    Measuring the local detonation velocity of an explosive has been limited to rate stick and cylinder tests. These tests traditionally used break wires, pins, and more recently PDV as a velocity diagnostic. These experimental techniques can be very accurate at measuring detonation velocities but are costly and require tens to hundreds of grams of material. This paper presents a novel small-scale technique for inferring detonation velocity from a modest sized pellet of explosive. A streak image is taken of the breakout shock on the flat output side of the pellet. Assuming a spherical shock wave, one can show that the breakout trace is of hyperbolic form. From this, one can simultaneously infer detonation velocty and apparent center. This method is ideal for energetic formulation and synthesis development due to the small amount of material required. Furthermore, this paper discusses the accuracy and limitations of this technique.

  12. Non-ideal detonation behaviour of PBX 9502

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikos

    2009-06-01

    Numerical experiments are performed investigating the non-ideal detonation behaviour of PBX 9502 in two setups. In the first setup we consider a three-dimensional rate stick experiment. A booster charge initiates a reaction front leading to a curved detonation wave. The numerical results are compared to theory and experimental evidence. The effects of weak and strong confinement are discussed. The second setup considers the so called ``hockey puck experiment.'' Experimental results show the appearance of a dead zone due to the effect of the geometry. This is captured by the numerical results, which also reveal that the initially spherical detonation is diffracted leading to local detonation failure. The numerical simulations are performed by solving a mathematical model for a three-phase medium based on the Euler equations. The numerical results are obtained using high-resolution shock-capturing methods combined with adaptive mesh refinement.

  13. Three-dimensional cellular structure of detonations in suspensions of aluminium particles

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Veyssière, B.

    2013-05-01

    Recently, we have used scarce available data on the detonation cell size in suspensions of aluminium particles in air and oxygen to adjust the kinetic parameters of our two-phase model of detonations in these mixtures. The calculated detonation cell width was derived by means of two-dimensional (2D) unsteady simulations using an assumption of cylindrical symmetry of the flow in the tube. However, in reality, the detonation cells are three-dimensional (3D). In this work, we have applied the same detonation model which is based on the continuous mechanics of two-phase flows, for 3D numerical simulations of cellular detonation structures in aluminium particle suspensions in oxygen. Reasonable agreement on the detonation cell width was obtained with the aforementioned 2D results. The range of tube diameters where detonations in { Al/O}_2 mixture at a given particle size and concentration would propagate in the spinning mode has been estimated (these results make a complement to our previous analysis of spinning detonations in Al/air mixtures). Coupling these results with the dependencies of detonation cell size on the mean particle diameter is of great interest for the understanding of fundamental mechanisms of detonation propagation in solid particle suspensions in gas and can help to better guide the experimental studies of detonations in aluminium suspensions. It is shown that the part of detonation wave energy used for transverse kinetic energy of both gas and particles is quite small, which explains why the propagation velocity of spinning and multi-headed detonations reasonably agrees with the ideal CJ values.

  14. Maximum Entropy of Effective Reaction Theory of Steady Non-ideal Detonation

    NASA Astrophysics Data System (ADS)

    Watt, Simon; Braithwaite, Martin; Byers Brown, William; Falle, Samuel; Sharpe, Gary

    2009-06-01

    According to the theory of Byers Brown, in a steady state detonation the entropy production between the shock and sonic locus is a maximum in a self-sustaining wave. This has shown to hold true for all one-dimensional cases. Applied to 2D steady curved detonation waves in a slab or cylindrical stick of explosive, Byers Brown suggested a novel variational approach for maximising the global entropy generation within the detonation driving zone, hence providing the solution of the self-sustaining detonation wave problem. Preliminary application of such a variational technique, albeit with simplfying assumptions, demonstrate its potential to provide a rapid and accurate solution method for the problem. In this paper, recent progress in the development of the 2D variational technique and validation of the maximum entropy concept are reported. The predictions of the theory are compared with high-resolution numerical simulations and with the predictions of existing Detonation Shock Dynamics theory.

  15. Some perspectives on pulse detonation propulsion systems

    NASA Astrophysics Data System (ADS)

    Lu, F. K.; Wilson, D. R.

    Pulse detonation engines and rockets (PDE/Rs) can potentially revolutionize air breathing and rocket propulsion [1-6]. While the PDE concept is over five decades old, it has recently enjoyed renewed interest, due mostly to theoretical and computational studies indicating high cycle efficiencies. When modeled by a constant volume, Humphrey cycle, the detonation engine is found to be superior to that of existing constant pressure, Brayton cycles, with claims of as much as 10-40% improvement in specific impulse [4,7-9]. The constant volume process is derived from the Zeldovich-von Neumann-Döring (ZND) model of the detonation wave as a high strength shock wave, followed by a region of chemical reaction and a subsequent isentropic rarefaction. Amongst other advantages of the PDE is simplicity, where the PDE is easy to manufacture and requires few moving parts, with the possibility of eliminating high-pressure pumps in rocket applications, or reducing turbomachinery stages in air-breathing propulsion systems.

  16. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1985-01-04

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

  17. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOEpatents

    Bickes, Jr., Robert W.; Kopczewski, Michael R.; Schwarz, Alfred C.

    1986-01-01

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

  18. The Use of Steady and Pulsed Detonations for Propulsion Systems

    SciTech Connect

    Adelman, H.G.; Menees, G.P.; Cambier, J.L.; Bowles, J.V.

    1996-02-01

    Objectives of the ODWE concept studies are: demonstrate the feasibility of the oblique detonation wave engine (ODWE) for hypersonic propulsion; demonstrate the existance and stability of an oblique detonation wave in hypersonic wind tunnels; develop engineering codes which predict the performance characteristics of the ODWE including specific impulse and thrust coefficients for various operating conditions; develop multi-dimensional computer codes which can model all aspects of the ODWE including fuel injection, mixing, ignition, combustion and expansion with fully detailed chemical kinetics and turbulence models; and validate the codes with experimental data use the simulations to predict the ODWE performance for conditions not easily obtained in wind tunnels.

  19. Estimation of the detonation cell size in gases

    NASA Astrophysics Data System (ADS)

    Kuchinskii, V. V.; Onosov, I. I.

    2011-06-01

    A simple method to calculate the parameters of a shock wave in a space between the shock wave front and the Chapman-Jouguet plane is considered. Solving a velocity equation, one can calculate the pressure, density, and temperature of the gas, as well as determine the size of a detonation region in a one-dimensional approximation. The dependences of the detonation region size on input parameters are derived. From these dependences, one can estimate the run of the same curves in the real situation.

  20. From combustion and detonation to nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Ivanov, M. F.; Kiverin, A. D.; Klumov, B. A.; Fortov, V. E.

    2014-03-01

    This paper looks at Ya B Zeldovich's ideas on the combustion and detonation physics of gaseous mixtures and how they evolved as work in this field progressed. The paper demonstrates the fundamental role of Zeldovich's concept of spontaneous combustion waves in studying transient initiation processes for various combustion regimes and in determining the energy and concentration inflammation limits for combustible gaseous mixtures. It shows how his notion that flame front stretching crucially influences flame acceleration in channels explains in a new way the deflagration-to-detonation transition in highly reactive gaseous mixtures. Most of the presented results were obtained by simulations, allowing Zeldovich's ideas to be extended to the combustion of real gaseous mixtures, where chemical reactions and gasdynamical flows add hugely to the complexity of the problem. The paper concludes by using Zeldovich's mechanism to assess the amount of nitrogen oxide produced by a lightning discharge.

  1. Chemical Equilibrium Detonation

    NASA Astrophysics Data System (ADS)

    Bastea, Sorin; Fried, Laurence E.

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. The fundamental principles outlined in this chapter pertain to the study of detonation in both gas-phase and condensed-phase energetic materials, but our main focus will be on the condensed ones, particularly on high explosives (HEs). They share many properties with other classes of condensed energetic compounds such as propellants and pyrotechnics, but a detailed understanding of detonation is especially important for numerous HE applications. The usage and study of HE materials goes back more than a century, but many questions remain to be answered, e.g., on their reaction pathways at high pressures and temperatures, chemical properties, etc.

  2. Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)

    SciTech Connect

    Francois, Elizabeth Green; Morris, John S; Novak, Alan M; Kennedy, James E

    2010-01-01

    Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to density gradients, pressing methods and geometry can be seen on the wave breakout behavior.

  3. Application of a Schlieren diagnostic to the behavior of exploding bridge wire and laser detonators

    SciTech Connect

    Murphy, Michael J; Clarke, Steven A; Munger, Alan C; Thomas, Keith A

    2009-01-01

    Even though the exploding bridge wire (EBW) detonator has been in use for over 60 years, there are still discussions about the mechanism for achieving detonation. Los Alamos has been developing a high-power laser detonator to function in a manner similar to an EBW. Schlieren imaging techniques are applied to laser-driven detonator output in polydimethylsiloxane (POMS) samples to investigate the time-dependent geometry of the shock wave and to obtain instantaneous measurements of shock-front velocity. Velocity Hugoniot data are used to convert measured shock velocities to corresponding particle velocities, allowing instantaneous shock pressures to be obtained via Rankine-Hugoniot relations across the shock.

  4. Initial hydrogen detonation data from the High-Temperature Combustion Facility

    SciTech Connect

    Ginsberg, T.; Ciccarelli, G.; Boccio, J.

    1994-12-31

    The Brookhaven National Laboratory High-Temperature Combustion Facility (HTCF) is described and data from initial hydrogen detonation experiments are presented. Initial phase of the inherent detonability experimental program is described. Test gases thus far tested are hydrogen-air mixtures at one atmosphere initial pressure and temperatures 300K-650K. Detonation pressure, wave speed, and detonation cell size were measured. Data were consistent with earlier SSDA (small-scale development apparatus) test results. HTCF results confirm the conclusion from the SSDA program that the gas temperature decreases the cell size and, therefore, increases the sensitivity of mixtures to detonation. Data from the larger HTCF test vessel, however, also demonstrates that the effect of increased scale is to extend the range of detonable mixtures to lower concentration.

  5. Parameters, limits, attenuation, and suppression of detonation in mixtures of an explosive gas with chemically inert microparticles

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Fomin, P. A.; Tropin, D. A.; Chen, Z.-R.

    2012-03-01

    Chapman-Jouguet parameters and the cell size of a detonation wave in mixtures of an explosive gas with chemically inert particles have been calculated. The algorithm of calculation of the minimum mass and characteristic dimension of a particle cloud ensuring successful suppression of detonation in the gas has been proposed. The calculation results are in good agreement with the available experimental data. The influence of the initial composition of the gas on the efficiency of suppression of the detonation wave has been analyzed. The issue of the dependence of the concentration limits of detonation on the mass fraction of particles has been investigated. It has been established that the increase in the concentration of the condensed phase leads to a narrowing of the existence domain of detonation and that the propagation of the detonation wave becomes impossible when the concentration of the particles is fairly high.

  6. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    NASA Astrophysics Data System (ADS)

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2008-04-01

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO2 laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changes in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17×1013 kW/m3 to 5×1013 kW/m3 at the termination.

  7. Suppression of gas detonation by a dust cloud at reduced mixture pressures

    NASA Astrophysics Data System (ADS)

    Pinaev, A. V.; Vasil'ev, A. A.; Pinaev, P. A.

    2015-05-01

    The decay of a detonation wave in a mixture propagating through a dust cloud is experimentally studied for three types of silica sand with particle sizes 250-600, 120-250, and 90-120 , mean volume densities 2.2-3.5 g/l, and initial pressure 0.1-0.01 MPa. A non-monotonic character of reduction of wave velocity in the dust cloud is observed, where a secondary detonation can arise behind the leading front of the wave in the course of its attenuation. This situation is induced by the dual role of sand particles in decelerating the flow and simultaneously generating hot spots that promote reaction excitation. As a result, the mechanism of ignition in the decaying detonation wave becomes different. Critical parameters of the dust cloud providing complete suppression of the detonation wave and the flame propagating behind the latter at a reduced initial pressure of the gas mixture are determined.

  8. Recent work on gaseous detonations

    NASA Astrophysics Data System (ADS)

    Nettleton, M. A.

    The paper reviews recent progress in the field of gaseous detonations, with sections on shock diffraction and reflection, the transition to detonation, hybrid, spherically-imploding, and galloping and stuttering fronts, their structure, their transmission and quenching by additives, the critical energy for initiation and detonation of more unusual fuels. The final section points out areas where our understanding is still far from being complete and contains some suggestions of ways in which progress might be made.

  9. Experimental Study on DDT Characteristics in Spiral Configuration Pulse Detonation Engines

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Qiu, Hua; Fan, Wei; Xiong, Cha

    2013-09-01

    This work investigated features of the deflagration to detonation transition in a curved tube. A number of experiments were performed to acquire the transition rule of DDT, which would provide the design data and theoretical basis for the curved detonation chamber. The content of research is as follows: (1) Flow resistance experiments of nine detonation chambers have been explored. The results show that the spiral configuration can reduce the axial length of DC, and the total pressure recovery coefficient increases with the spiral pitch. (2) Single-cycle detonation experiments have been conducted using the 9 tubes in the resistance experiments. Liquid-gasoline/air is used as the detonative mixture in all the experiments. The detonation experimental results indicate that there is no detonation wave formed in the straight tube, but in all the selected spiral tubes fully-developed detonation waves have been obtained; compared to the straight tube case, the DDT time decrease with the decreasing of the radius of curvature (RC) by 6.2%˜19.8% in the spiral detonation tubes.

  10. Gaseous detonation initiation and stabilization by hypervelocity projectiles

    NASA Astrophysics Data System (ADS)

    Kaneshige, Michael Jiro

    An experimental investigation of gaseous detonations initiated and stabilized by high-speed spherical projectiles has been carried out. Detonation initiation by projectiles is closely related to propulsion concepts such as the ram accelerator and the oblique detonation wave engine, in which, theoretically, rapid combustion occurs in detonation waves stabilized on solid objects. The criteria for initiation and stabilization by projectiles are also related to other initiation and propagation criteria such as blast initiation and failure of diffracting detonations. Experimental data of this type are useful for identifying relevant assumptions and important processes, and for providing validation for computational and analytical models. Experiments were performed in the Caltech T5 shock tunnel laboratory. T5 was used in a shock-compression light gas gun mode, with 25.4-mm diameter nylon spheres and velocities around 2300 m/s. Gaseous mixtures studied included 2H2+O2+βN2 (1 >= β >= 13.76), C2H4+3O2+5N2, and C2H 2+2.5O2+9.4N2 at initial pressures of 0.08-2.56 bar. Flow visualization results obtained by differential interferometry, shadowgraphy, and intensified CCD imaging were augmented by wall pressure records. A wide variety of results were observed, including non- detonative shock-induced combustion, unstably initiated detonations, stabilized prompt initiations, and stabilized delayed initiations. These results can be roughly correlated in terms of the ratio of projectile velocity to mixture Chapman-Jouguet detonation speed, and the ratio of projectile diameter to detonation cell size or reaction zone thickness, although the effects of confinement and unsteadiness complicate this categorization. Two basic approaches to modeling the results have been attempted. In the first, a global model for initiation is based on an existing blast-initiation model using the hypersonic blast-wave analogy. This model is simple, and roughly predicts the experimental results, but