Science.gov

Sample records for latent markov modelling

  1. Discrete Latent Markov Models for Normally Distributed Response Data

    ERIC Educational Resources Information Center

    Schmittmann, Verena D.; Dolan, Conor V.; van der Maas, Han L. J.; Neale, Michael C.

    2005-01-01

    Van de Pol and Langeheine (1990) presented a general framework for Markov modeling of repeatedly measured discrete data. We discuss analogical single indicator models for normally distributed responses. In contrast to discrete models, which have been studied extensively, analogical continuous response models have hardly been considered. These…

  2. Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Pennoni, Fulvia; Vittadini, Giorgio

    2016-01-01

    We extend to the longitudinal setting a latent class approach that was recently introduced by Lanza, Coffman, and Xu to estimate the causal effect of a treatment. The proposed approach enables an evaluation of multiple treatment effects on subpopulations of individuals from a dynamic perspective, as it relies on a latent Markov (LM) model that is…

  3. Latent Variable Model for Learning in Pairwise Markov Networks

    PubMed Central

    Amizadeh, Saeed; Hauskrecht, Milos

    2011-01-01

    Pairwise Markov Networks (PMN) are an important class of Markov networks which, due to their simplicity, are widely used in many applications such as image analysis, bioinformatics, sensor networks, etc. However, learning of Markov networks from data is a challenging task; there are many possible structures one must consider and each of these structures comes with its own parameters making it easy to overfit the model with limited data. To deal with the problem, recent learning methods build upon the L1 regularization to express the bias towards sparse network structures. In this paper, we propose a new and more flexible framework that let us bias the structure, that can, for example, encode the preference to networks with certain local substructures which as a whole exhibit some special global structure. We experiment with and show the benefit of our framework on two types of problems: learning of modular networks and learning of traffic networks models. PMID:22228193

  4. Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Solis-Trapala, Ivonne L.

    2010-01-01

    We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…

  5. Modeling threat assessments of water supply systems using markov latent effects methodology.

    SciTech Connect

    Silva, Consuelo Juanita

    2006-12-01

    Recent amendments to the Safe Drinking Water Act emphasize efforts toward safeguarding our nation's water supplies against attack and contamination. Specifically, the Public Health Security and Bioterrorism Preparedness and Response Act of 2002 established requirements for each community water system serving more than 3300 people to conduct an assessment of the vulnerability of its system to a terrorist attack or other intentional acts. Integral to evaluating system vulnerability is the threat assessment, which is the process by which the credibility of a threat is quantified. Unfortunately, full probabilistic assessment is generally not feasible, as there is insufficient experience and/or data to quantify the associated probabilities. For this reason, an alternative approach is proposed based on Markov Latent Effects (MLE) modeling, which provides a framework for quantifying imprecise subjective metrics through possibilistic or fuzzy mathematics. Here, an MLE model for water systems is developed and demonstrated to determine threat assessments for different scenarios identified by the assailant, asset, and means. Scenario assailants include terrorists, insiders, and vandals. Assets include a water treatment plant, water storage tank, node, pipeline, well, and a pump station. Means used in attacks include contamination (onsite chemicals, biological and chemical), explosives and vandalism. Results demonstrated highest threats are vandalism events and least likely events are those performed by a terrorist.

  6. A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates.

    PubMed

    Bartolucci, Francesco; Farcomeni, Alessio

    2015-03-01

    Mixed latent Markov (MLM) models represent an important tool of analysis of longitudinal data when response variables are affected by time-fixed and time-varying unobserved heterogeneity, in which the latter is accounted for by a hidden Markov chain. In order to avoid bias when using a model of this type in the presence of informative drop-out, we propose an event-history (EH) extension of the latent Markov approach that may be used with multivariate longitudinal data, in which one or more outcomes of a different nature are observed at each time occasion. The EH component of the resulting model is referred to the interval-censored drop-out, and bias in MLM modeling is avoided by correlated random effects, included in the different model components, which follow common latent distributions. In order to perform maximum likelihood estimation of the proposed model by the expectation-maximization algorithm, we extend the usual forward-backward recursions of Baum and Welch. The algorithm has the same complexity as the one adopted in cases of non-informative drop-out. We illustrate the proposed approach through simulations and an application based on data coming from a medical study about primary biliary cirrhosis in which there are two outcomes of interest, one continuous and the other binary. PMID:25227970

  7. Serial testing for latent tuberculosis using QuantiFERON-TB Gold In-Tube: A Markov model

    PubMed Central

    Moses, Mark W.; Zwerling, Alice; Cattamanchi, Adithya; Denkinger, Claudia M.; Banaei, Niaz; Kik, Sandra V.; Metcalfe, John; Pai, Madhukar; Dowdy, David

    2016-01-01

    Healthcare workers (HCWs) in low-incidence settings are often serially tested for latent TB infection (LTBI) with the QuantiFERON-TB Gold In-Tube (QFT) assay, which exhibits frequent conversions and reversions. The clinical impact of such variability on serial testing remains unknown. We used a microsimulation Markov model that accounts for major sources of variability to project diagnostic outcomes in a simulated North American HCW cohort. Serial testing using a single QFT with the recommended conversion cutoff (IFN-g > 0.35 IU/mL) resulted in 24.6% (95% uncertainty range, UR: 23.8–25.5) of the entire population testing false-positive over ten years. Raising the cutoff to >1.0 IU/mL or confirming initial positive results with a (presumed independent) second test reduced this false-positive percentage to 2.3% (95%UR: 2.0–2.6%) or 4.1% (95%UR: 3.7–4.5%), but also reduced the proportion of true incident infections detected within the first year of infection from 76.5% (95%UR: 66.3–84.6%) to 54.8% (95%UR: 44.6–64.5%) or 61.5% (95%UR: 51.6–70.9%), respectively. Serial QFT testing of HCWs in North America may result in tremendous over-diagnosis and over-treatment of LTBI, with nearly thirty false-positives for every true infection diagnosed. Using higher cutoffs for conversion or confirmatory tests (for initial positives) can mitigate these effects, but will also diagnose fewer true infections. PMID:27469388

  8. Serial testing for latent tuberculosis using QuantiFERON-TB Gold In-Tube: A Markov model.

    PubMed

    Moses, Mark W; Zwerling, Alice; Cattamanchi, Adithya; Denkinger, Claudia M; Banaei, Niaz; Kik, Sandra V; Metcalfe, John; Pai, Madhukar; Dowdy, David

    2016-01-01

    Healthcare workers (HCWs) in low-incidence settings are often serially tested for latent TB infection (LTBI) with the QuantiFERON-TB Gold In-Tube (QFT) assay, which exhibits frequent conversions and reversions. The clinical impact of such variability on serial testing remains unknown. We used a microsimulation Markov model that accounts for major sources of variability to project diagnostic outcomes in a simulated North American HCW cohort. Serial testing using a single QFT with the recommended conversion cutoff (IFN-g > 0.35 IU/mL) resulted in 24.6% (95% uncertainty range, UR: 23.8-25.5) of the entire population testing false-positive over ten years. Raising the cutoff to >1.0 IU/mL or confirming initial positive results with a (presumed independent) second test reduced this false-positive percentage to 2.3% (95%UR: 2.0-2.6%) or 4.1% (95%UR: 3.7-4.5%), but also reduced the proportion of true incident infections detected within the first year of infection from 76.5% (95%UR: 66.3-84.6%) to 54.8% (95%UR: 44.6-64.5%) or 61.5% (95%UR: 51.6-70.9%), respectively. Serial QFT testing of HCWs in North America may result in tremendous over-diagnosis and over-treatment of LTBI, with nearly thirty false-positives for every true infection diagnosed. Using higher cutoffs for conversion or confirmatory tests (for initial positives) can mitigate these effects, but will also diagnose fewer true infections. PMID:27469388

  9. Objective classification of latent behavioral states in bio-logging data using multivariate-normal hidden Markov models.

    PubMed

    Phillips, Joe Scutt; Patterson, Toby A; Leroy, Bruno; Pilling, Graham M; Nicol, Simon J

    2015-07-01

    Analysis of complex time-series data from ecological system study requires quantitative tools for objective description and classification. These tools must take into account largely ignored problems of bias in manual classification, autocorrelation, and noise. Here we describe a method using existing estimation techniques for multivariate-normal hidden Markov models (HMMs) to develop such a classification. We use high-resolution behavioral data from bio-loggers attached to free-roaming pelagic tuna as an example. Observed patterns are assumed to be generated by an unseen Markov process that switches between several multivariate-normal distributions. Our approach is assessed in two parts. The first uses simulation experiments, from which the ability of the HMM to estimate known parameter values is examined using artificial time series of data consistent with hypotheses about pelagic predator foraging ecology. The second is the application to time series of continuous vertical movement data from yellowfin and bigeye tuna taken from tuna tagging experiments. These data were compressed into summary metrics capturing the variation of patterns in diving behavior and formed into a multivariate time series used to estimate a HMM. Each observation was associated with covariate information incorporating the effect of day and night on behavioral switching. Known parameter values were well recovered by the HMMs in our simulation experiments, resulting in mean correct classification rates of 90-97%, although some variance-covariance parameters were estimated less accurately. HMMs with two distinct behavioral states were selected for every time series of real tuna data, predicting a shallow warm state, which was similar across all individuals, and a deep colder state, which was more variable. Marked diurnal behavioral switching was predicted, consistent with many previous empirical studies on tuna. HMMs provide easily interpretable models for the objective classification of

  10. A Latent Markov Modelling Approach to the Evaluation of Circulating Cathodic Antigen Strips for Schistosomiasis Diagnosis Pre- and Post-Praziquantel Treatment in Uganda

    PubMed Central

    Koukounari, Artemis; Donnelly, Christl A.; Moustaki, Irini; Tukahebwa, Edridah M.; Kabatereine, Narcis B.; Wilson, Shona; Webster, Joanne P.; Deelder, André M.; Vennervald, Birgitte J.; van Dam, Govert J.

    2013-01-01

    Regular treatment with praziquantel (PZQ) is the strategy for human schistosomiasis control aiming to prevent morbidity in later life. With the recent resolution on schistosomiasis elimination by the 65th World Health Assembly, appropriate diagnostic tools to inform interventions are keys to their success. We present a discrete Markov chains modelling framework that deals with the longitudinal study design and the measurement error in the diagnostic methods under study. A longitudinal detailed dataset from Uganda, in which one or two doses of PZQ treatment were provided, was analyzed through Latent Markov Models (LMMs). The aim was to evaluate the diagnostic accuracy of Circulating Cathodic Antigen (CCA) and of double Kato-Katz (KK) faecal slides over three consecutive days for Schistosoma mansoni infection simultaneously by age group at baseline and at two follow-up times post treatment. Diagnostic test sensitivities and specificities and the true underlying infection prevalence over time as well as the probabilities of transitions between infected and uninfected states are provided. The estimated transition probability matrices provide parsimonious yet important insights into the re-infection and cure rates in the two age groups. We show that the CCA diagnostic performance remained constant after PZQ treatment and that this test was overall more sensitive but less specific than single-day double KK for the diagnosis of S. mansoni infection. The probability of clearing infection from baseline to 9 weeks was higher among those who received two PZQ doses compared to one PZQ dose for both age groups, with much higher re-infection rates among children compared to adolescents and adults. We recommend LMMs as a useful methodology for monitoring and evaluation and treatment decision research as well as CCA for mapping surveys of S. mansoni infection, although additional diagnostic tools should be incorporated in schistosomiasis elimination programs. PMID:24367250

  11. Two Studies of Specification Error in Models for Categorical Latent Variables

    ERIC Educational Resources Information Center

    Kaplan, David; Depaoli, Sarah

    2011-01-01

    This article examines the problem of specification error in 2 models for categorical latent variables; the latent class model and the latent Markov model. Specification error in the latent class model focuses on the impact of incorrectly specifying the number of latent classes of the categorical latent variable on measures of model adequacy as…

  12. Generalized Latent Trait Models.

    ERIC Educational Resources Information Center

    Moustaki, Irini; Knott, Martin

    2000-01-01

    Discusses a general model framework within which manifest variables with different distributions in the exponential family can be analyzed with a latent trait model. Presents a unified maximum likelihood method for estimating the parameters of the generalized latent trait model and discusses the scoring of individuals on the latent dimensions.…

  13. Mixed Markov models

    PubMed Central

    Fridman, Arthur

    2003-01-01

    Markov random fields can encode complex probabilistic relationships involving multiple variables and admit efficient procedures for probabilistic inference. However, from a knowledge engineering point of view, these models suffer from a serious limitation. The graph of a Markov field must connect all pairs of variables that are conditionally dependent even for a single choice of values of the other variables. This makes it hard to encode interactions that occur only in a certain context and are absent in all others. Furthermore, the requirement that two variables be connected unless always conditionally independent may lead to excessively dense graphs, obscuring the independencies present among the variables and leading to computationally prohibitive inference algorithms. Mumford [Mumford, D. (1996) in ICIAM 95, eds. Kirchgassner, K., Marenholtz, O. & Mennicken, R. (Akademie Verlag, Berlin), pp. 233–256] proposed an alternative modeling framework where the graph need not be rigid and completely determined a priori. Mixed Markov models contain node-valued random variables that, when instantiated, augment the graph by a set of transient edges. A single joint probability distribution relates the values of regular and node-valued variables. In this article, we study the analytical and computational properties of mixed Markov models. In particular, we show that positive mixed models have a local Markov property that is equivalent to their global factorization. We also describe a computationally efficient procedure for answering probabilistic queries in mixed Markov models. PMID:12829802

  14. Latent Variable Interaction Modeling.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.

    2002-01-01

    Used simulation to study two different approaches to latent variable interaction modeling with continuous observed variables: (1) a LISREL 8.30 program and (2) data analysis through PRELIS2 and SIMPLIS programs. Results show that parameter estimation was similar but standard errors were different. Discusses differences in ease of implementation.…

  15. Regime Switching in the Latent Growth Curve Mixture Model

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Schmittmann, Verena D.; Lubke, Gitta H.; Neale, Michael C.

    2005-01-01

    A linear latent growth curve mixture model is presented which includes switching between growth curves. Switching is accommodated by means of a Markov transition model. The model is formulated with switching as a highly constrained multivariate mixture model and is fitted using the freely available Mx program. The model is illustrated by analyzing…

  16. A MCMC-Method for Models with Continuous Latent Responses.

    ERIC Educational Resources Information Center

    Maris, Gunter; Maris, Eric

    2002-01-01

    Introduces a new technique for estimating the parameters of models with continuous latent data. To streamline presentation of this Markov Chain Monte Carlo (MCMC) method, the Rasch model is used. Also introduces a new sampling-based Bayesian technique, the DA-T-Gibbs sampler. (SLD)

  17. An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes

    ERIC Educational Resources Information Center

    Kapland, David

    2008-01-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…

  18. A Latent Transition Model with Logistic Regression

    ERIC Educational Resources Information Center

    Chung, Hwan; Walls, Theodore A.; Park, Yousung

    2007-01-01

    Latent transition models increasingly include covariates that predict prevalence of latent classes at a given time or transition rates among classes over time. In many situations, the covariate of interest may be latent. This paper describes an approach for handling both manifest and latent covariates in a latent transition model. A Bayesian…

  19. Building Simple Hidden Markov Models. Classroom Notes

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Ng, Michael K.

    2004-01-01

    Hidden Markov models (HMMs) are widely used in bioinformatics, speech recognition and many other areas. This note presents HMMs via the framework of classical Markov chain models. A simple example is given to illustrate the model. An estimation method for the transition probabilities of the hidden states is also discussed.

  20. Latent Growth Modeling for Logistic Response Functions

    ERIC Educational Resources Information Center

    Choi, Jaehwa; Harring, Jeffrey R.; Hancock, Gregory R.

    2009-01-01

    Throughout much of the social and behavioral sciences, latent growth modeling (latent curve analysis) has become an important tool for understanding individuals' longitudinal change. Although nonlinear variations of latent growth models appear in the methodological and applied literature, a notable exclusion is the treatment of growth following…

  1. A Multicomponent Latent Trait Model for Diagnosis

    ERIC Educational Resources Information Center

    Embretson, Susan E.; Yang, Xiangdong

    2013-01-01

    This paper presents a noncompensatory latent trait model, the multicomponent latent trait model for diagnosis (MLTM-D), for cognitive diagnosis. In MLTM-D, a hierarchical relationship between components and attributes is specified to be applicable to permit diagnosis at two levels. MLTM-D is a generalization of the multicomponent latent trait…

  2. Semi-Markov Arnason-Schwarz models.

    PubMed

    King, Ruth; Langrock, Roland

    2016-06-01

    We consider multi-state capture-recapture-recovery data where observed individuals are recorded in a set of possible discrete states. Traditionally, the Arnason-Schwarz model has been fitted to such data where the state process is modeled as a first-order Markov chain, though second-order models have also been proposed and fitted to data. However, low-order Markov models may not accurately represent the underlying biology. For example, specifying a (time-independent) first-order Markov process involves the assumption that the dwell time in each state (i.e., the duration of a stay in a given state) has a geometric distribution, and hence that the modal dwell time is one. Specifying time-dependent or higher-order processes provides additional flexibility, but at the expense of a potentially significant number of additional model parameters. We extend the Arnason-Schwarz model by specifying a semi-Markov model for the state process, where the dwell-time distribution is specified more generally, using, for example, a shifted Poisson or negative binomial distribution. A state expansion technique is applied in order to represent the resulting semi-Markov Arnason-Schwarz model in terms of a simpler and computationally tractable hidden Markov model. Semi-Markov Arnason-Schwarz models come with only a very modest increase in the number of parameters, yet permit a significantly more flexible state process. Model selection can be performed using standard procedures, and in particular via the use of information criteria. The semi-Markov approach allows for important biological inference to be drawn on the underlying state process, for example, on the times spent in the different states. The feasibility of the approach is demonstrated in a simulation study, before being applied to real data corresponding to house finches where the states correspond to the presence or absence of conjunctivitis. PMID:26584064

  3. Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations

    ERIC Educational Resources Information Center

    Rijmen, Frank; Vansteelandt, Kristof; De Boeck, Paul

    2008-01-01

    The increasing use of diary methods calls for the development of appropriate statistical methods. For the resulting panel data, latent Markov models can be used to model both individual differences and temporal dynamics. The computational burden associated with these models can be overcome by exploiting the conditional independence relations…

  4. Rating Scale Analysis with Latent Class Models.

    ERIC Educational Resources Information Center

    Rost, Jurgen

    1988-01-01

    A general approach for analyzing rating data with latent class models is described, paralleling rating models in the framework of latent trait theory. A general rating model and a two-parameter model with location and dispersion parameters are derived and illustrated. (Author/SLD)

  5. Consequences of Fitting Nonidentified Latent Class Models

    ERIC Educational Resources Information Center

    Abar, Beau; Loken, Eric

    2012-01-01

    Latent class models are becoming more popular in behavioral research. When models with a large number of latent classes relative to the number of manifest indicators are estimated, researchers must consider the possibility that the model is not identified. It is not enough to determine that the model has positive degrees of freedom. A well-known…

  6. On multitarget pairwise-Markov models

    NASA Astrophysics Data System (ADS)

    Mahler, Ronald

    2015-05-01

    Single- and multi-target tracking are both typically based on strong independence assumptions regarding both the target states and sensor measurements. In particular, both are theoretically based on the hidden Markov chain (HMC) model. That is, the target process is a Markov chain that is observed by an independent observation process. Since HMC assumptions are invalid in many practical applications, the pairwise Markov chain (PMC) model has been proposed as a way to weaken those assumptions. In this paper it is shown that the PMC model can be directly generalized to multitarget problems. Since the resulting tracking filters are computationally intractable, the paper investigates generalizations of the cardinalized probability hypothesis density (CPHD) filter to applications with PMC models.

  7. Information-Theoretic Latent Distribution Modeling: Distinguishing Discrete and Continuous Latent Variable Models

    ERIC Educational Resources Information Center

    Markon, Kristian E.; Krueger, Robert F.

    2006-01-01

    Distinguishing between discrete and continuous latent variable distributions has become increasingly important in numerous domains of behavioral science. Here, the authors explore an information-theoretic approach to latent distribution modeling, in which the ability of latent distribution models to represent statistical information in observed…

  8. Zipf exponent of trajectory distribution in the hidden Markov model

    NASA Astrophysics Data System (ADS)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  9. Evaluation of Usability Utilizing Markov Models

    ERIC Educational Resources Information Center

    Penedo, Janaina Rodrigues; Diniz, Morganna; Ferreira, Simone Bacellar Leal; Silveira, Denis S.; Capra, Eliane

    2012-01-01

    Purpose: The purpose of this paper is to analyze the usability of a remote learning system in its initial development phase, using a quantitative usability evaluation method through Markov models. Design/methodology/approach: The paper opted for an exploratory study. The data of interest of the research correspond to the possible accesses of users…

  10. Modeling Dyadic Processes Using Hidden Markov Models: A Time Series Approach to Mother-Infant Interactions during Infant Immunization

    ERIC Educational Resources Information Center

    Stifter, Cynthia A.; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…

  11. Estimating Neuronal Ageing with Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Pham, Tuan D.

    2011-06-01

    Neuronal degeneration is widely observed in normal ageing, meanwhile the neurode-generative disease like Alzheimer's disease effects neuronal degeneration in a faster way which is considered as faster ageing. Early intervention of such disease could benefit subjects with potentials of positive clinical outcome, therefore, early detection of disease related brain structural alteration is required. In this paper, we propose a computational approach for modelling the MRI-based structure alteration with ageing using hidden Markov model. The proposed hidden Markov model based brain structural model encodes intracortical tissue/fluid distribution using discrete wavelet transformation and vector quantization. Further, it captures gray matter volume loss, which is capable of reflecting subtle intracortical changes with ageing. Experiments were carried out on healthy subjects to validate its accuracy and robustness. Results have shown its ability of predicting the brain age with prediction error of 1.98 years without training data, which shows better result than other age predition methods.

  12. Heteroscedastic Latent Trait Models for Dichotomous Data.

    PubMed

    Molenaar, Dylan

    2015-09-01

    Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability. PMID:25080866

  13. Programs Help Create And Evaluate Markov Models

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Pade Approximation With Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) computer programs provide flexible, user-friendly, language-based interface for creation and evaluation of Markov models describing behaviors of fault-tolerant reconfigurable computer systems. Produce exact solution for probabilities of system failures and provide conservative estimates of numbers of significant digits in solutions. Also offer as part of bundled package with SURE and ASSIST, two other reliable analysis programs developed by Systems Validation Methods group at Langley Research Center.

  14. Hidden Markov Model Analysis of Multichromophore Photobleaching

    PubMed Central

    Messina, Troy C.; Kim, Hiyun; Giurleo, Jason T.; Talaga, David S.

    2007-01-01

    The interpretation of single-molecule measurements is greatly complicated by the presence of multiple fluorescent labels. However, many molecular systems of interest consist of multiple interacting components. We investigate this issue using multiply labeled dextran polymers that we intentionally photobleach to the background on a single-molecule basis. Hidden Markov models allow for unsupervised analysis of the data to determine the number of fluorescent subunits involved in the fluorescence intermittency of the 6-carboxy-tetramethylrhodamine labels by counting the discrete steps in fluorescence intensity. The Bayes information criterion allows us to distinguish between hidden Markov models that differ by the number of states, that is, the number of fluorescent molecules. We determine information-theoretical limits and show via Monte Carlo simulations that the hidden Markov model analysis approaches these theoretical limits. This technique has resolving power of one fluorescing unit up to as many as 30 fluorescent dyes with the appropriate choice of dye and adequate detection capability. We discuss the general utility of this method for determining aggregation-state distributions as could appear in many biologically important systems and its adaptability to general photometric experiments. PMID:16913765

  15. Phase transitions in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Lathouwers, Emma

    In Hidden Markov Models (HMMs), a Markov process is not directly accessible. In the simplest case, a two-state Markov model ``emits'' one of two ``symbols'' at each time step. We can think of these symbols as noisy measurements of the underlying state. With some probability, the symbol implies that the system is in one state when it is actually in the other. The ability to judge which state the system is in sets the efficiency of a Maxwell demon that observes state fluctuations in order to extract heat from a coupled reservoir. The state-inference problem is to infer the underlying state from such noisy measurements at each time step. We show that there can be a phase transition in such measurements: for measurement error rates below a certain threshold, the inferred state always matches the observation. For higher error rates, there can be continuous or discontinuous transitions to situations where keeping a memory of past observations improves the state estimate. We can partly understand this behavior by mapping the HMM onto a 1d random-field Ising model at zero temperature. We also present more recent work that explores a larger parameter space and more states. Research funded by NSERC, Canada.

  16. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  17. Recovery of Graded Response Model Parameters: A Comparison of Marginal Maximum Likelihood and Markov Chain Monte Carlo Estimation

    ERIC Educational Resources Information Center

    Kieftenbeld, Vincent; Natesan, Prathiba

    2012-01-01

    Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…

  18. Markov counting models for correlated binary responses.

    PubMed

    Crawford, Forrest W; Zelterman, Daniel

    2015-07-01

    We propose a class of continuous-time Markov counting processes for analyzing correlated binary data and establish a correspondence between these models and sums of exchangeable Bernoulli random variables. Our approach generalizes many previous models for correlated outcomes, admits easily interpretable parameterizations, allows different cluster sizes, and incorporates ascertainment bias in a natural way. We demonstrate several new models for dependent outcomes and provide algorithms for computing maximum likelihood estimates. We show how to incorporate cluster-specific covariates in a regression setting and demonstrate improved fits to well-known datasets from familial disease epidemiology and developmental toxicology. PMID:25792624

  19. MODELING PAVEMENT DETERIORATION PROCESSES BY POISSON HIDDEN MARKOV MODELS

    NASA Astrophysics Data System (ADS)

    Nam, Le Thanh; Kaito, Kiyoyuki; Kobayashi, Kiyoshi; Okizuka, Ryosuke

    In pavement management, it is important to estimate lifecycle cost, which is composed of the expenses for repairing local damages, including potholes, and repairing and rehabilitating the surface and base layers of pavements, including overlays. In this study, a model is produced under the assumption that the deterioration process of pavement is a complex one that includes local damages, which occur frequently, and the deterioration of the surface and base layers of pavement, which progresses slowly. The variation in pavement soundness is expressed by the Markov deterioration model and the Poisson hidden Markov deterioration model, in which the frequency of local damage depends on the distribution of pavement soundness, is formulated. In addition, the authors suggest a model estimation method using the Markov Chain Monte Carlo (MCMC) method, and attempt to demonstrate the applicability of the proposed Poisson hidden Markov deterioration model by studying concrete application cases.

  20. Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses

    ERIC Educational Resources Information Center

    Huang, Guan-Hua; Wang, Su-Mei; Hsu, Chung-Chu

    2011-01-01

    Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the…

  1. Latent Curve Models and Latent Change Score Models Estimated in R

    ERIC Educational Resources Information Center

    Ghisletta, Paolo; McArdle, John J.

    2012-01-01

    In recent years the use of the latent curve model (LCM) among researchers in social sciences has increased noticeably, probably thanks to contemporary software developments and the availability of specialized literature. Extensions of the LCM, like the the latent change score model (LCSM), have also increased in popularity. At the same time, the R…

  2. A Markov model of the Indus script

    PubMed Central

    Rao, Rajesh P. N.; Yadav, Nisha; Vahia, Mayank N.; Joglekar, Hrishikesh; Adhikari, R.; Mahadevan, Iravatham

    2009-01-01

    Although no historical information exists about the Indus civilization (flourished ca. 2600–1900 B.C.), archaeologists have uncovered about 3,800 short samples of a script that was used throughout the civilization. The script remains undeciphered, despite a large number of attempts and claimed decipherments over the past 80 years. Here, we propose the use of probabilistic models to analyze the structure of the Indus script. The goal is to reveal, through probabilistic analysis, syntactic patterns that could point the way to eventual decipherment. We illustrate the approach using a simple Markov chain model to capture sequential dependencies between signs in the Indus script. The trained model allows new sample texts to be generated, revealing recurring patterns of signs that could potentially form functional subunits of a possible underlying language. The model also provides a quantitative way of testing whether a particular string belongs to the putative language as captured by the Markov model. Application of this test to Indus seals found in Mesopotamia and other sites in West Asia reveals that the script may have been used to express different content in these regions. Finally, we show how missing, ambiguous, or unreadable signs on damaged objects can be filled in with most likely predictions from the model. Taken together, our results indicate that the Indus script exhibits rich synactic structure and the ability to represent diverse content. both of which are suggestive of a linguistic writing system rather than a nonlinguistic symbol system. PMID:19666571

  3. A Markov model of the Indus script.

    PubMed

    Rao, Rajesh P N; Yadav, Nisha; Vahia, Mayank N; Joglekar, Hrishikesh; Adhikari, R; Mahadevan, Iravatham

    2009-08-18

    Although no historical information exists about the Indus civilization (flourished ca. 2600-1900 B.C.), archaeologists have uncovered about 3,800 short samples of a script that was used throughout the civilization. The script remains undeciphered, despite a large number of attempts and claimed decipherments over the past 80 years. Here, we propose the use of probabilistic models to analyze the structure of the Indus script. The goal is to reveal, through probabilistic analysis, syntactic patterns that could point the way to eventual decipherment. We illustrate the approach using a simple Markov chain model to capture sequential dependencies between signs in the Indus script. The trained model allows new sample texts to be generated, revealing recurring patterns of signs that could potentially form functional subunits of a possible underlying language. The model also provides a quantitative way of testing whether a particular string belongs to the putative language as captured by the Markov model. Application of this test to Indus seals found in Mesopotamia and other sites in West Asia reveals that the script may have been used to express different content in these regions. Finally, we show how missing, ambiguous, or unreadable signs on damaged objects can be filled in with most likely predictions from the model. Taken together, our results indicate that the Indus script exhibits rich synactic structure and the ability to represent diverse content. both of which are suggestive of a linguistic writing system rather than a nonlinguistic symbol system. PMID:19666571

  4. Confirmatory Measurement Model Comparisons Using Latent Means.

    ERIC Educational Resources Information Center

    Millsap, Roger E.; Everson, Howard

    1991-01-01

    Use of confirmatory factor analysis (CFA) with nonzero latent means in testing six different measurement models from classical test theory is discussed. Implications of the six models for observed mean and covariance structures are described, and three examples of the use of CFA in testing the models are presented. (SLD)

  5. Hidden Markov models for stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John

    2015-07-01

    The formalism of state estimation and hidden Markov models can simplify and clarify the discussion of stochastic thermodynamics in the presence of feedback and measurement errors. After reviewing the basic formalism, we use it to shed light on a recent discussion of phase transitions in the optimized response of an information engine, for which measurement noise serves as a control parameter. The HMM formalism also shows that the value of additional information displays a maximum at intermediate signal-to-noise ratios. Finally, we discuss how systems open to information flow can apparently violate causality; the HMM formalism can quantify the performance gains due to such violations.

  6. Multivariate Markov chain modeling for stock markets

    NASA Astrophysics Data System (ADS)

    Maskawa, Jun-ichi

    2003-06-01

    We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.

  7. Forest Pest Occurrence Predictionca-Markov Model

    NASA Astrophysics Data System (ADS)

    Xie, Fangyi; Zhang, Xiaoli; Chen, Xiaoyan

    Since the spatial pattern of forest pest occurrence is determined by biological characteristics and habitat conditions, this paper introduced construction of a cellular automaton model combined with Markov model to predicate the forest pest occurrence. Rules of the model includes the cell states rules, neighborhood rules and transition rules which are defined according to the factors from stand conditions, stand structures, climate and the influence of the factors on the state conversion. Coding for the model is also part of the implementations of the model. The participants were designed including attributes and operations of participants expressed with a UML diagram. Finally, the scale issues on forest pest occurrence prediction, of which the core are the prediction of element size and time interval, are partly discussed in this paper.

  8. Residual Structures in Latent Growth Curve Modeling

    ERIC Educational Resources Information Center

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  9. Mixture Hidden Markov Models in Finance Research

    NASA Astrophysics Data System (ADS)

    Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia

    Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.

  10. Benchmarking of a Markov multizone model of contaminant transport.

    PubMed

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). PMID:25143517

  11. Estimation and uncertainty of reversible Markov models

    NASA Astrophysics Data System (ADS)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-01

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software — http://pyemma.org — as of version 2.0.

  12. Markov state models of biomolecular conformational dynamics

    PubMed Central

    Chodera, John D.; Noé, Frank

    2014-01-01

    It has recently become practical to construct Markov state models (MSMs) that reproduce the long-time statistical conformational dynamics of biomolecules using data from molecular dynamics simulations. MSMs can predict both stationary and kinetic quantities on long timescales (e.g. milliseconds) using a set of atomistic molecular dynamics simulations that are individually much shorter, thus addressing the well-known sampling problem in molecular dynamics simulation. In addition to providing predictive quantitative models, MSMs greatly facilitate both the extraction of insight into biomolecular mechanism (such as folding and functional dynamics) and quantitative comparison with single-molecule and ensemble kinetics experiments. A variety of methodological advances and software packages now bring the construction of these models closer to routine practice. Here, we review recent progress in this field, considering theoretical and methodological advances, new software tools, and recent applications of these approaches in several domains of biochemistry and biophysics, commenting on remaining challenges. PMID:24836551

  13. Inference for dynamic and latent variable models via iterated, perturbed Bayes maps

    PubMed Central

    Ionides, Edward L.; Nguyen, Dao; Atchadé, Yves; Stoev, Stilian; King, Aaron A.

    2015-01-01

    Iterated filtering algorithms are stochastic optimization procedures for latent variable models that recursively combine parameter perturbations with latent variable reconstruction. Previously, theoretical support for these algorithms has been based on the use of conditional moments of perturbed parameters to approximate derivatives of the log likelihood function. Here, a theoretical approach is introduced based on the convergence of an iterated Bayes map. An algorithm supported by this theory displays substantial numerical improvement on the computational challenge of inferring parameters of a partially observed Markov process. PMID:25568084

  14. Component Latent Trait Models for Test Design.

    ERIC Educational Resources Information Center

    Embretson, Susan Whitely

    Latent trait models are presented that can be used for test design in the context of a theory about the variables that underlie task performance. Examples of methods for decomposing and testing hypotheses about the theoretical variables in task performance are given. The methods can be used to determine the processing components that are involved…

  15. Markov state models and molecular alchemy

    NASA Astrophysics Data System (ADS)

    Schütte, Christof; Nielsen, Adam; Weber, Marcus

    2015-01-01

    In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.

  16. Multiple alignment using hidden Markov models

    SciTech Connect

    Eddy, S.R.

    1995-12-31

    A simulated annealing method is described for training hidden Markov models and producing multiple sequence alignments from initially unaligned protein or DNA sequences. Simulated annealing in turn uses a dynamic programming algorithm for correctly sampling suboptimal multiple alignments according to their probability and a Boltzmann temperature factor. The quality of simulated annealing alignments is evaluated on structural alignments of ten different protein families, and compared to the performance of other HMM training methods and the ClustalW program. Simulated annealing is better able to find near-global optima in the multiple alignment probability landscape than the other tested HMM training methods. Neither ClustalW nor simulated annealing produce consistently better alignments compared to each other. Examination of the specific cases in which ClustalW outperforms simulated annealing, and vice versa, provides insight into the strengths and weaknesses of current hidden Maxkov model approaches.

  17. Hidden Markov Models for Zero-Inflated Poisson Counts with an Application to Substance Use

    PubMed Central

    DeSantis, Stacia M.; Bandyopadhyay, Dipankar

    2011-01-01

    Paradigms for substance abuse cue-reactivity research involve short term pharmacological or stressful stimulation designed to elicit stress and craving responses in cocaine-dependent subjects. It is unclear as to whether stress induced from participation in such studies increases drug-seeking behavior. We propose a 2-state Hidden Markov model to model the number of cocaine abuses per week before and after participation in a stress- and cue-reactivity study. The hypothesized latent state corresponds to ‘high’ or ‘low’ use. To account for a preponderance of zeros, we assume a zero-inflated Poisson model for the count data. Transition probabilities depend on the prior week’s state, fixed demographic variables, and time-varying covariates. We adopt a Bayesian approach to model fitting, and use the conditional predictive ordinate statistic to demonstrate that the zero-inflated Poisson hidden Markov model outperforms other models for longitudinal count data. PMID:21538455

  18. Markov state models of protein misfolding

    NASA Astrophysics Data System (ADS)

    Sirur, Anshul; De Sancho, David; Best, Robert B.

    2016-02-01

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.

  19. Probabilistic Resilience in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Panerati, Jacopo; Beltrame, Giovanni; Schwind, Nicolas; Zeltner, Stefan; Inoue, Katsumi

    2016-05-01

    Originally defined in the context of ecological systems and environmental sciences, resilience has grown to be a property of major interest for the design and analysis of many other complex systems: resilient networks and robotics systems other the desirable capability of absorbing disruption and transforming in response to external shocks, while still providing the services they were designed for. Starting from an existing formalization of resilience for constraint-based systems, we develop a probabilistic framework based on hidden Markov models. In doing so, we introduce two new important features: stochastic evolution and partial observability. Using our framework, we formalize a methodology for the evaluation of probabilities associated with generic properties, we describe an efficient algorithm for the computation of its essential inference step, and show that its complexity is comparable to other state-of-the-art inference algorithms.

  20. Markov state models of protein misfolding.

    PubMed

    Sirur, Anshul; De Sancho, David; Best, Robert B

    2016-02-21

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity. PMID:26897000

  1. Modeling anger and aggressive driving behavior in a dynamic choice-latent variable model.

    PubMed

    Danaf, Mazen; Abou-Zeid, Maya; Kaysi, Isam

    2015-02-01

    This paper develops a hybrid choice-latent variable model combined with a Hidden Markov model in order to analyze the causes of aggressive driving and forecast its manifestations accordingly. The model is grounded in the state-trait anger theory; it treats trait driving anger as a latent variable that is expressed as a function of individual characteristics, or as an agent effect, and state anger as a dynamic latent variable that evolves over time and affects driving behavior, and that is expressed as a function of trait anger, frustrating events, and contextual variables (e.g., geometric roadway features, flow conditions, etc.). This model may be used in order to test measures aimed at reducing aggressive driving behavior and improving road safety, and can be incorporated into micro-simulation packages to represent aggressive driving. The paper also presents an application of this model to data obtained from a driving simulator experiment performed at the American University of Beirut. The results derived from this application indicate that state anger at a specific time period is significantly affected by the occurrence of frustrating events, trait anger, and the anger experienced at the previous time period. The proposed model exhibited a better goodness of fit compared to a similar simple joint model where driving behavior and decisions are expressed as a function of the experienced events explicitly and not the dynamic latent variable. PMID:25460097

  2. Modelling modal gating of ion channels with hierarchical Markov models

    PubMed Central

    Fackrell, Mark; Crampin, Edmund J.; Taylor, Peter

    2016-01-01

    Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available. In this paper, we develop a modular approach for building such a model in an iterative process. First, stochastic switching between modes and stochastic opening and closing within modes are represented in separate aggregated Markov models. Second, the continuous-time hierarchical Markov model, a new modelling framework proposed here, then enables us to combine these components so that in the integrated model both mode switching as well as the kinetics within modes are appropriately represented. A mathematical analysis reveals that the behaviour of the hierarchical Markov model naturally depends on the properties of its components. We also demonstrate how a hierarchical Markov model can be parametrized using experimental data and show that it provides a better representation than a previous model of the same dataset. Because evidence is increasing that modal gating reflects underlying molecular properties of the channel protein, it is likely that biophysical processes are better captured by our new approach than in earlier models. PMID:27616917

  3. Stochastic Approximation Methods for Latent Regression Item Response Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2010-01-01

    This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…

  4. Noiseless compression using non-Markov models

    NASA Technical Reports Server (NTRS)

    Blumer, Anselm

    1989-01-01

    Adaptive data compression techniques can be viewed as consisting of a model specified by a database common to the encoder and decoder, an encoding rule and a rule for updating the model to ensure that the encoder and decoder always agree on the interpretation of the next transmission. The techniques which fit this framework range from run-length coding, to adaptive Huffman and arithmetic coding, to the string-matching techniques of Lempel and Ziv. The compression obtained by arithmetic coding is dependent on the generality of the source model. For many sources, an independent-letter model is clearly insufficient. Unfortunately, a straightforward implementation of a Markov model requires an amount of space exponential in the number of letters remembered. The Directed Acyclic Word Graph (DAWG) can be constructed in time and space proportional to the text encoded, and can be used to estimate the probabilities required for arithmetic coding based on an amount of memory which varies naturally depending on the encoded text. The tail of that portion of the text which was encoded is the longest suffix that has occurred previously. The frequencies of letters following these previous occurrences can be used to estimate the probability distribution of the next letter. Experimental results indicate that compression is often far better than that obtained using independent-letter models, and sometimes also significantly better than other non-independent techniques.

  5. Manpower planning using Markov Chain model

    NASA Astrophysics Data System (ADS)

    Saad, Syafawati Ab; Adnan, Farah Adibah; Ibrahim, Haslinda; Rahim, Rahela

    2014-07-01

    Manpower planning is a planning model which understands the flow of manpower based on the policies changes. For such purpose, numerous attempts have been made by researchers to develop a model to investigate the track of movements of lecturers for various universities. As huge number of lecturers in a university, it is difficult to track the movement of lecturers and also there is no quantitative way used in tracking the movement of lecturers. This research is aimed to determine the appropriate manpower model to understand the flow of lecturers in a university in Malaysia by determine the probability and mean time of lecturers remain in the same status rank. In addition, this research also intended to estimate the number of lecturers in different status rank (lecturer, senior lecturer and associate professor). From the previous studies, there are several methods applied in manpower planning model and appropriate method used in this research is Markov Chain model. Results obtained from this study indicate that the appropriate manpower planning model used is validated by compare to the actual data. The smaller margin of error gives a better result which means that the projection is closer to actual data. These results would give some suggestions for the university to plan the hiring lecturers and budgetary for university in future.

  6. Bayesian modeling of ChIP-chip data using latent variables

    PubMed Central

    2009-01-01

    Background The ChIP-chip technology has been used in a wide range of biomedical studies, such as identification of human transcription factor binding sites, investigation of DNA methylation, and investigation of histone modifications in animals and plants. Various methods have been proposed in the literature for analyzing the ChIP-chip data, such as the sliding window methods, the hidden Markov model-based methods, and Bayesian methods. Although, due to the integrated consideration of uncertainty of the models and model parameters, Bayesian methods can potentially work better than the other two classes of methods, the existing Bayesian methods do not perform satisfactorily. They usually require multiple replicates or some extra experimental information to parametrize the model, and long CPU time due to involving of MCMC simulations. Results In this paper, we propose a Bayesian latent model for the ChIP-chip data. The new model mainly differs from the existing Bayesian models, such as the joint deconvolution model, the hierarchical gamma mixture model, and the Bayesian hierarchical model, in two respects. Firstly, it works on the difference between the averaged treatment and control samples. This enables the use of a simple model for the data, which avoids the probe-specific effect and the sample (control/treatment) effect. As a consequence, this enables an efficient MCMC simulation of the posterior distribution of the model, and also makes the model more robust to the outliers. Secondly, it models the neighboring dependence of probes by introducing a latent indicator vector. A truncated Poisson prior distribution is assumed for the latent indicator variable, with the rationale being justified at length. Conclusion The Bayesian latent method is successfully applied to real and ten simulated datasets, with comparisons with some of the existing Bayesian methods, hidden Markov model methods, and sliding window methods. The numerical results indicate that the Bayesian

  7. Hidden Markov models for threat prediction fusion

    NASA Astrophysics Data System (ADS)

    Ross, Kenneth N.; Chaney, Ronald D.

    2000-04-01

    This work addresses the often neglected, but important problem of Level 3 fusion or threat refinement. This paper describes algorithms for threat prediction and test results from a prototype threat prediction fusion engine. The threat prediction fusion engine selectively models important aspects of the battlespace state using probability-based methods and information obtained from lower level fusion engines. Our approach uses hidden Markov models of a hierarchical threat state to find the most likely Course of Action (CoA) for the opposing forces. Decision tress use features derived from the CoA probabilities and other information to estimate the level of threat presented by the opposing forces. This approach provides the user with several measures associated with the level of threat, including: probability that the enemy is following a particular CoA, potential threat presented by the opposing forces, and likely time of the threat. The hierarchical approach used for modeling helps us efficiently represent the battlespace with a structure that permits scaling the models to larger scenarios without adding prohibitive computational costs or sacrificing model fidelity.

  8. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  9. Skills Diagnosis Using IRT-Based Continuous Latent Trait Models

    ERIC Educational Resources Information Center

    Stout, William

    2007-01-01

    This article summarizes the continuous latent trait IRT approach to skills diagnosis as particularized by a representative variety of continuous latent trait models using item response functions (IRFs). First, several basic IRT-based continuous latent trait approaches are presented in some detail. Then a brief summary of estimation, model…

  10. Optimized Markov state models for metastable systems

    NASA Astrophysics Data System (ADS)

    Guarnera, Enrico; Vanden-Eijnden, Eric

    2016-07-01

    A method is proposed to identify target states that optimize a metastability index amongst a set of trial states and use these target states as milestones (or core sets) to build Markov State Models (MSMs). If the optimized metastability index is small, this automatically guarantees the accuracy of the MSM, in the sense that the transitions between the target milestones is indeed approximately Markovian. The method is simple to implement and use, it does not require that the dynamics on the trial milestones be Markovian, and it also offers the possibility to partition the system's state-space by assigning every trial milestone to the target milestones it is most likely to visit next and to identify transition state regions. Here the method is tested on the Gly-Ala-Gly peptide, where it is shown to correctly identify the expected metastable states in the dihedral angle space of the molecule without a priori information about these states. It is also applied to analyze the folding landscape of the Beta3s mini-protein, where it is shown to identify the folded basin as a connecting hub between an helix-rich region, which is entropically stabilized, and a beta-rich region, which is energetically stabilized and acts as a kinetic trap.

  11. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  12. Time series segmentation with shifting means hidden markov models

    NASA Astrophysics Data System (ADS)

    Kehagias, Ath.; Fortin, V.

    2006-08-01

    We present a new family of hidden Markov models and apply these to the segmentation of hydrological and environmental time series. The proposed hidden Markov models have a discrete state space and their structure is inspired from the shifting means models introduced by Chernoff and Zacks and by Salas and Boes. An estimation method inspired from the EM algorithm is proposed, and we show that it can accurately identify multiple change-points in a time series. We also show that the solution obtained using this algorithm can serve as a starting point for a Monte-Carlo Markov chain Bayesian estimation method, thus reducing the computing time needed for the Markov chain to converge to a stationary distribution.

  13. Latent Variable Models of Need for Uniqueness.

    PubMed

    Tepper, K; Hoyle, R H

    1996-10-01

    The theory of uniqueness has been invoked to explain attitudinal and behavioral nonconformity with respect to peer-group, social-cultural, and statistical norms, as well as the development of a distinctive view of self via seeking novelty goods, adopting new products, acquiring scarce commodities, and amassing material possessions. Present research endeavors in psychology and consumer behavior are inhibited by uncertainty regarding the psychometric properties of the Need for Uniqueness Scale, the primary instrument for measuring individual differences in uniqueness motivation. In an important step toward facilitating research on uniqueness motivation, we used confirmatory factor analysis to evaluate three a priori latent variable models of responses to the Need for Uniqueness Scale. Among the a priori models, an oblique three-factor model best accounted for commonality among items. Exploratory factor analysis followed by estimation of unrestricted three- and four-factor models revealed that a model with a complex pattern of loadings on four modestly correlated factors may best explain the latent structure of the Need for Uniqueness Scale. Additional analyses evaluated the associations among the three a priori factors and an array of individual differences. Results of those analyses indicated the need to distinguish among facets of the uniqueness motive in behavioral research. PMID:26788594

  14. A semi-Markov model for price returns

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo

    2012-10-01

    We study the high frequency price dynamics of traded stocks by a model of returns using a semi-Markov approach. More precisely we assume that the intraday returns are described by a discrete time homogeneous semi-Markov process and the overnight returns are modeled by a Markov chain. Based on this assumptions we derived the equations for the first passage time distribution and the volatility autocorrelation function. Theoretical results have been compared with empirical findings from real data. In particular we analyzed high frequency data from the Italian stock market from 1 January 2007 until the end of December 2010. The semi-Markov hypothesis is also tested through a nonparametric test of hypothesis.

  15. Alternative approaches for econometric analysis of panel count data using dynamic latent class models (with application to doctor visits data).

    PubMed

    Hyppolite, Judex; Trivedi, Pravin

    2012-06-01

    Cross-sectional latent class regression models, also known as switching regressions or hidden Markov models, cannot identify transitions between classes that may occur over time. This limitation can potentially be overcome when panel data are available. For such data, we develop a sequence of models that combine features of the static cross-sectional latent class (finite mixture) models with those of hidden Markov models. We model the probability of movement between categories in terms of a Markovian structure, which links the current state with a previous state, where state may refer to the category of an individual. This article presents a suite of mixture models of varying degree of complexity and flexibility for use in a panel count data setting, beginning with a baseline model which is a two-component mixture of Poisson distribution in which latent classes are fixed and permanent. Sequentially, we extend this framework (i) to allow the mixing proportions to be smoothly varying continuous functions of time-varying covariates, (ii) to add time dependence to the benchmark model by modeling the class-indicator variable as a first-order Markov chain and (iii) to extend item (i) by making it dynamic and introducing covariate dependence in the transition probabilities. We develop and implement estimation algorithms for these models and provide an empirical illustration using 1995-1999 panel data on the number of doctor visits derived from the German Socio-Economic Panel. PMID:22556003

  16. Model fitting and inference under Latent Equilibrium Processes

    PubMed Central

    Bhattacharya, Sourabh; Gelfand, Alan E.; Holsinger, Kent E.

    2008-01-01

    This paper presents a methodology for model fitting and inference in the context of Bayesian models of the type f(Y | X, θ)f(X | θ)f(θ), where Y is the (set of) observed data, θ is a set of model parameters and X is an unobserved (latent) stationary stochastic process induced by the first order transition model f(X(t+1) | X(t), θ), where X(t) denotes the state of the process at time (or generation) t. The crucial feature of the above type of model is that, given θ, the transition model f(X(t+1) | X(t), θ) is known but the distribution of the stochastic process in equilibrium, that is f(X | θ), is, except in very special cases, intractable, hence unknown. A further point to note is that the data Y has been assumed to be observed when the underlying process is in equilibrium. In other words, the data is not collected dynamically over time. We refer to such specification as a latent equilibrium process (LEP) model. It is motivated by problems in population genetics (though other applications are discussed), where it is of interest to learn about parameters such as mutation and migration rates and population sizes, given a sample of allele frequencies at one or more loci. In such problems it is natural to assume that the distribution of the observed allele frequencies depends on the true (unobserved) population allele frequencies, whereas the distribution of the true allele frequencies is only indirectly specified through a transition model. As a hierarchical specification, it is natural to fit the LEP within a Bayesian framework. Fitting such models is usually done via Markov chain Monte Carlo (MCMC). However, we demonstrate that, in the case of LEP models, implementation of MCMC is far from straightforward. The main contribution of this paper is to provide a methodology to implement MCMC for LEP models. We demonstrate our approach in population genetics problems with both simulated and real data sets. The resultant model fitting is computationally intensive

  17. Evaluating Latent Growth Curve Models Using Individual Fit Statistics

    ERIC Educational Resources Information Center

    Coffman, Donna L.; Millsap, Roger E.

    2006-01-01

    The usefulness of assessing individual fit in latent growth curve models was examined. The study used simulated data based on an unconditional and a conditional latent growth curve model with a linear component and a small quadratic component and a linear model was fit to the data. Then the overall fit of linear and quadratic models to these data…

  18. Numerical methods in Markov chain modeling

    NASA Technical Reports Server (NTRS)

    Philippe, Bernard; Saad, Youcef; Stewart, William J.

    1989-01-01

    Several methods for computing stationary probability distributions of Markov chains are described and compared. The main linear algebra problem consists of computing an eigenvector of a sparse, usually nonsymmetric, matrix associated with a known eigenvalue. It can also be cast as a problem of solving a homogeneous singular linear system. Several methods based on combinations of Krylov subspace techniques are presented. The performance of these methods on some realistic problems are compared.

  19. Hidden Markov Models for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Continuous monitoring of complex dynamic systems is an increasingly important issue in diverse areas such as nuclear plant safety, production line reliability, and medical health monitoring systems. Recent advances in both sensor technology and computational capabilities have made on-line permanent monitoring much more feasible than it was in the past. In this paper it is shown that a pattern recognition system combined with a finite-state hidden Markov model provides a particularly useful method for modelling temporal context in continuous monitoring. The parameters of the Markov model are derived from gross failure statistics such as the mean time between failures. The model is validated on a real-world fault diagnosis problem and it is shown that Markov modelling in this context offers significant practical benefits.

  20. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth curve models when change…

  1. Intercept Centering and Time Coding in Latent Difference Score Models

    ERIC Educational Resources Information Center

    Grimm, Kevin J.

    2012-01-01

    Latent difference score (LDS) models combine benefits derived from autoregressive and latent growth curve models allowing for time-dependent influences and systematic change. The specification and descriptions of LDS models include an initial level of ability or trait plus an accumulation of changes. A limitation of this specification is that the…

  2. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  3. A vigilance model for latent learning.

    PubMed

    Boguslavsky, G W

    1978-01-01

    The author proposes a heuristic model for latent learning. It is concluded that to regard academic learning as qualitatively different from other forms of learning is to deny evolutionary continuity. Academic learning is not a unitary process governed by a single set of parameters. In addition, it is observed that the problem of student motivation may very well turn out to be purely academic. The instructional technique for a captive audience of a class may be so structured as to make the direction of attention irresistible, the performance of a response, when needed, compelling, and the acquisition of knowledge inevitable. Vigilance is an instance of innate foundation. Its most striking characteristics are its universality in the animal world, its ready evocation by a wide range of stimuli, and its apparent behavior and physiological manifestations. The last two are the natural resources for objective investigation, and the first may well be the basis of broad and valid generalizations. PMID:748845

  4. Building Higher-Order Markov Chain Models with EXCEL

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.

    2004-01-01

    Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…

  5. A Markov model for NASA's Ground Communications Facility

    NASA Technical Reports Server (NTRS)

    Adeyemi, O.

    1974-01-01

    A 'natural' way of constructing finite-state Markov chains (FSMC) is presented for those noise burst channels that can be modeled by them. In particular, a five-state Markov chain is given as a model of errors occurring at the Ground Communications Facility (GCF). A maximum likelihood procedure applicable to any FSMC is developed for estimating all the model parameters starting from the data of error runs. A few of the statistics important for estimating the performance of error control strategies on the channel are provided.

  6. Meeting the NICE requirements: a Markov model approach.

    PubMed

    Mauskopf, J

    2000-01-01

    The National Institute of Clinical Excellence (NICE) was established in the United Kingdom in April 1999 to issue guidance for the National Health Service (NHS) on the use of selective new health care interventions. This article describes the NICE requirements for both incidence-based cost-effectiveness analyses and prevalence-based estimates of the aggregate NHS impact of the new drug. The article demonstrates how both of these requirements can be met using Markov modeling techniques. A Markov model for a hypothetical new treatment for HIV infection is used as an illustration of how to generate the estimates that are required by NICE. The article concludes with a discussion of the difficulties of obtaining data of sufficient quality to include in the Markov model to ensure that the submission meets all the NICE requirements and is credible to the NICE advisory board. PMID:16464193

  7. Assessment of optimized Markov models in protein fold classification.

    PubMed

    Lampros, Christos; Simos, Thomas; Exarchos, Themis P; Exarchos, Konstantinos P; Papaloukas, Costas; Fotiadis, Dimitrios I

    2014-08-01

    Protein fold classification is a challenging task strongly associated with the determination of proteins' structure. In this work, we tested an optimization strategy on a Markov chain and a recently introduced Hidden Markov Model (HMM) with reduced state-space topology. The proteins with unknown structure were scored against both these models. Then the derived scores were optimized following a local optimization method. The Protein Data Bank (PDB) and the annotation of the Structural Classification of Proteins (SCOP) database were used for the evaluation of the proposed methodology. The results demonstrated that the fold classification accuracy of the optimized HMM was substantially higher compared to that of the Markov chain or the reduced state-space HMM approaches. The proposed methodology achieved an accuracy of 41.4% on fold classification, while Sequence Alignment and Modeling (SAM), which was used for comparison, reached an accuracy of 38%. PMID:25152041

  8. An Importance Sampling EM Algorithm for Latent Regression Models

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2007-01-01

    Reporting methods used in large-scale assessments such as the National Assessment of Educational Progress (NAEP) rely on latent regression models. To fit the latent regression model using the maximum likelihood estimation technique, multivariate integrals must be evaluated. In the computer program MGROUP used by the Educational Testing Service for…

  9. Nonlinear Latent Curve Models for Multivariate Longitudinal Data

    ERIC Educational Resources Information Center

    Blozis, Shelley A.; Conger, Katherine J.; Harring, Jeffrey R.

    2007-01-01

    Latent curve models have become a useful approach to analyzing longitudinal data, due in part to their allowance of and emphasis on individual differences in features that describe change. Common applications of latent curve models in developmental studies rely on polynomial functions, such as linear or quadratic functions. Although useful for…

  10. Nonlinear and Quasi-Simplex Patterns in Latent Growth Models

    ERIC Educational Resources Information Center

    Bianconcini, Silvia

    2012-01-01

    In the SEM literature, simplex and latent growth models have always been considered competing approaches for the analysis of longitudinal data, even if they are strongly connected and both of specific importance. General dynamic models, which simultaneously estimate autoregressive structures and latent curves, have been recently proposed in the…

  11. Spurious Latent Classes in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Alexeev, Natalia; Templin, Jonathan; Cohen, Allan S.

    2011-01-01

    Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may…

  12. Nonparametric identification and maximum likelihood estimation for hidden Markov models

    PubMed Central

    Alexandrovich, G.; Holzmann, H.; Leister, A.

    2016-01-01

    Nonparametric identification and maximum likelihood estimation for finite-state hidden Markov models are investigated. We obtain identification of the parameters as well as the order of the Markov chain if the transition probability matrices have full-rank and are ergodic, and if the state-dependent distributions are all distinct, but not necessarily linearly independent. Based on this identification result, we develop a nonparametric maximum likelihood estimation theory. First, we show that the asymptotic contrast, the Kullback–Leibler divergence of the hidden Markov model, also identifies the true parameter vector nonparametrically. Second, for classes of state-dependent densities which are arbitrary mixtures of a parametric family, we establish the consistency of the nonparametric maximum likelihood estimator. Here, identification of the mixing distributions need not be assumed. Numerical properties of the estimates and of nonparametric goodness of fit tests are investigated in a simulation study.

  13. A latent variable transformation model approach for exploring dysphagia.

    PubMed

    Snavely, Anna C; Harrington, David P; Li, Yi

    2014-11-10

    Multiple outcomes are often collected in applications where the quantity of interest cannot be measured directly or is difficult or expensive to measure. In a head and neck cancer study conducted at Dana-Farber Cancer Institute, the investigators wanted to determine the effect of clinical and treatment factors on unobservable dysphagia through collected multiple outcomes of mixed types. Latent variable models are commonly adopted in this setting. These models stipulate that multiple collected outcomes are conditionally independent given the latent factor. Mixed types of outcomes (e.g., continuous vs. ordinal) and censored outcomes present statistical challenges, however, as a natural analog of the multivariate normal distribution does not exist for mixed data. Recently, Lin et al. proposed a semiparametric latent variable transformation model for mixed outcome data; however, it may not readily accommodate event time outcomes where censoring is present. In this paper, we extend the work of Lin et al. by proposing both semiparametric and parametric latent variable models that allow for the estimation of the latent factor in the presence of measurable outcomes of mixed types, including censored outcomes. Both approaches allow for a direct estimate of the treatment (or other covariate) effect on the unobserved latent variable, greatly enhancing the interpretability of the models. The semiparametric approach has the added advantage of allowing the relationship between the measurable outcomes and latent variables to be unspecified, rendering more robust inference. The parametric and semiparametric models can also be used together, providing a comprehensive modeling strategy for complicated latent variable problems. PMID:24974798

  14. Multiensemble Markov models of molecular thermodynamics and kinetics.

    PubMed

    Wu, Hao; Paul, Fabian; Wehmeyer, Christoph; Noé, Frank

    2016-06-01

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model. PMID:27226302

  15. Deterioration Prediction Model of Irrigation Facilities by Markov Chain Model

    NASA Astrophysics Data System (ADS)

    Mori, Takehisa; Nishino, Noriyasu; Fujiwara, Tetsuro

    "Stock Management" launched in all over Japan is an activity to use irrigation facilities effectively and to reduce life cycle costs of theirs. Deterioration prediction of the irrigation facility condition is a vital process for the study of maintenance measures and the estimation of maintenance cost. It is important issue to establish the prediction technique with higher accuracy. Thereupon, we established a deterioration prediction model by a statistical method "Markov chain", and analyzed a function diagnosis data of irrigation facilities. As a result, we clarified the deterioration characteristics into each structure type and facilities.

  16. Multiensemble Markov models of molecular thermodynamics and kinetics

    PubMed Central

    Wu, Hao; Paul, Fabian; Noé, Frank

    2016-01-01

    We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models—clustering of high-dimensional spaces and modeling of complex many-state systems—with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein–ligand binding model. PMID:27226302

  17. Markov reliability models for digital flight control systems

    NASA Technical Reports Server (NTRS)

    Mcgough, John; Reibman, Andrew; Trivedi, Kishor

    1989-01-01

    The reliability of digital flight control systems can often be accurately predicted using Markov chain models. The cost of numerical solution depends on a model's size and stiffness. Acyclic Markov models, a useful special case, are particularly amenable to efficient numerical solution. Even in the general case, instantaneous coverage approximation allows the reduction of some cyclic models to more readily solvable acyclic models. After considering the solution of single-phase models, the discussion is extended to phased-mission models. Phased-mission reliability models are classified based on the state restoration behavior that occurs between mission phases. As an economical approach for the solution of such models, the mean failure rate solution method is introduced. A numerical example is used to show the influence of fault-model parameters and interphase behavior on system unreliability.

  18. Higher-Order Item Response Models for Hierarchical Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  19. A Markov switching model for annual hydrologic time series

    NASA Astrophysics Data System (ADS)

    Akıntuǧ, B.; Rasmussen, P. F.

    2005-09-01

    This paper investigates the properties of Markov switching (MS) models (also known as hidden Markov models) for generating annual time series. This type of model has been used in a number of recent studies in the water resources literature. The model considered here assumes that climate is switching between M states and that the state sequence can be described by a Markov chain. Observations are assumed to be drawn from a normal distribution whose parameters depend on the state variable. We present the stochastic properties of this class of models along with procedures for model identification and parameter estimation. Although, at a first glance, MS models appear to be quite different from ARMA models, we show that it is possible to find an ARMA model that has the same autocorrelation function and the same marginal distribution as any given MS model. Hence, despite the difference in model structure, there are strong similarities between MS and ARMA models. MS and ARMA models are applied to the time series of mean annual discharge of the Niagara River. Although it is difficult to draw any general conclusion from a single case study, it appears that MS models (and ARMA models derived from MS models) generally have stronger autocorrelation at higher lags than ARMA models estimated by conventional maximum likelihood. This may be an important property if the purpose of the study is the analysis of multiyear droughts.

  20. Operations and support cost modeling using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  1. Bayesian Inference for Growth Mixture Models with Latent Class Dependent Missing Data

    PubMed Central

    Lu, Zhenqiu Laura; Zhang, Zhiyong; Lubke, Gitta

    2014-01-01

    Growth mixture models (GMMs) with nonignorable missing data have drawn increasing attention in research communities but have not been fully studied. The goal of this article is to propose and to evaluate a Bayesian method to estimate the GMMs with latent class dependent missing data. An extended GMM is first presented in which class probabilities depend on some observed explanatory variables and data missingness depends on both the explanatory variables and a latent class variable. A full Bayesian method is then proposed to estimate the model. Through the data augmentation method, conditional posterior distributions for all model parameters and missing data are obtained. A Gibbs sampling procedure is then used to generate Markov chains of model parameters for statistical inference. The application of the model and the method is first demonstrated through the analysis of mathematical ability growth data from the National Longitudinal Survey of Youth 1997 (Bureau of Labor Statistics, U.S. Department of Labor, 1997). A simulation study considering 3 main factors (the sample size, the class probability, and the missing data mechanism) is then conducted and the results show that the proposed Bayesian estimation approach performs very well under the studied conditions. Finally, some implications of this study, including the misspecified missingness mechanism, the sample size, the sensitivity of the model, the number of latent classes, the model comparison, and the future directions of the approach, are discussed. PMID:24790248

  2. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first

  3. An abstract specification language for Markov reliability models

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1985-01-01

    Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.

  4. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    PubMed

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. PMID:25761965

  5. Towards automatic Markov reliability modeling of computer architectures

    NASA Technical Reports Server (NTRS)

    Liceaga, C. A.; Siewiorek, D. P.

    1986-01-01

    The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.

  6. A Penalized Latent Class Model for Ordinal Data

    PubMed Central

    Houseman, E. Andrés; Coull, Brent A.; Stemmer-Rachamimov, Anat; Betensky, Rebecca A.

    2016-01-01

    Latent class models provide a useful framework for clustering observations based on several features. Application of latent class methodology to correlated, high-dimensional ordinal data poses many challenges. Unconstrained analyses may not result in an estimable model. Thus, information contained in ordinal variables may not be fully exploited by researchers. We develop a penalized latent class model to facilitate analysis of high-dimensional ordinal data. By stabilizing maximum likelihood estimation, we are able to fit an ordinal latent class model that would otherwise not be identifiable without application of strict constraints. We illustrate our methodology in a study of schwannoma, a peripheral nerve sheath tumor, that included three clinical subtypes and 23 ordinal histological measures. PMID:17626225

  7. A Latent Transition Analysis Model for Latent-State-Dependent Nonignorable Missingness.

    PubMed

    Sterba, Sonya K

    2016-06-01

    Psychologists often use latent transition analysis (LTA) to investigate state-to-state change in discrete latent constructs involving delinquent or risky behaviors. In this setting, latent-state-dependent nonignorable missingness is a potential concern. For some longitudinal models (e.g., growth models), a large literature has addressed extensions to accommodate nonignorable missingness. In contrast, little research has addressed how to extend the LTA to accommodate nonignorable missingness. Here we present a shared parameter LTA that can reduce bias due to latent-state-dependent nonignorable missingness: a parallel-process missing-not-at-random (MNAR-PP) LTA. The MNAR-PP LTA allows outcome process parameters to be interpreted as in the conventional LTA, which facilitates sensitivity analyses assessing changes in estimates between LTA and MNAR-PP LTA. In a sensitivity analysis for our empirical example, previous and current membership in high-delinquency states predicted adolescents' membership in missingness states that had high nonresponse probabilities for some or all items. A conventional LTA overestimated the proportion of adolescents ending up in a low-delinquency state, compared to an MNAR-PP LTA. PMID:25697371

  8. Stochastic algorithms for Markov models estimation with intermittent missing data.

    PubMed

    Deltour, I; Richardson, S; Le Hesran, J Y

    1999-06-01

    Multistate Markov models are frequently used to characterize disease processes, but their estimation from longitudinal data is often hampered by complex patterns of incompleteness. Two algorithms for estimating Markov chain models in the case of intermittent missing data in longitudinal studies, a stochastic EM algorithm and the Gibbs sampler, are described. The first can be viewed as a random perturbation of the EM algorithm and is appropriate when the M step is straightforward but the E step is computationally burdensome. It leads to a good approximation of the maximum likelihood estimates. The Gibbs sampler is used for a full Bayesian inference. The performances of the two algorithms are illustrated on two simulated data sets. A motivating example concerned with the modelling of the evolution of parasitemia by Plasmodium falciparum (malaria) in a cohort of 105 young children in Cameroon is described and briefly analyzed. PMID:11318215

  9. Models of latent tuberculosis: their salient features, limitations, and development.

    PubMed

    Patel, Kamlesh; Jhamb, Sarbjit Singh; Singh, Prati Pal

    2011-07-01

    Latent tuberculosis is a subclinical condition caused by Mycobacterium tuberculosis, which affects about one-third of the population across the world. To abridge the chemotherapy of tuberculosis, it is necessary to have active drugs against latent form of M. tuberculosis. Therefore, it is imperative to devise in vitro and models of latent tuberculosis to explore potential drugs. In vitro models such as hypoxia, nutrient starvation, and multiple stresses are based on adverse conditions encountered by bacilli in granuloma. Bacilli experience oxygen depletion condition in hypoxia model, whereas the nutrient starvation model is based on deprivation of total nutrients from a culture medium. In the multiple stress model dormancy is induced by more than one type of stress. In silico mathematical models have also been developed to predict the interactions of bacilli with the host immune system and to propose structures for potential anti tuberculosis compounds. Besides these in vitro and in silico models, there are a number of in vivo animal models like mouse, guinea pig, rabbit, etc. Although they simulate human latent tuberculosis up to a certain extent but do not truly replicate human infection. All these models have their inherent merits and demerits. However, there is no perfect model for latent tuberculosis. Therefore, it is imperative to upgrade and refine existing models or develop a new model. However, battery of models will always be a better alternative to any single model as they will complement each other by overcoming their limitations. PMID:22219558

  10. CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS.

    PubMed

    McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H; Clark, Samuel J; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A

    2014-06-01

    The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure-this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026

  11. A Hidden Markov Approach to Modeling Interevent Earthquake Times

    NASA Astrophysics Data System (ADS)

    Chambers, D.; Ebel, J. E.; Kafka, A. L.; Baglivo, J.

    2003-12-01

    A hidden Markov process, in which the interevent time distribution is a mixture of exponential distributions with different rates, is explored as a model for seismicity that does not follow a Poisson process. In a general hidden Markov model, one assumes that a system can be in any of a finite number k of states and there is a random variable of interest whose distribution depends on the state in which the system resides. The system moves probabilistically among the states according to a Markov chain; that is, given the history of visited states up to the present, the conditional probability that the next state is a specified one depends only on the present state. Thus the transition probabilities are specified by a k by k stochastic matrix. Furthermore, it is assumed that the actual states are unobserved (hidden) and that only the values of the random variable are seen. From these values, one wishes to estimate the sequence of states, the transition probability matrix, and any parameters used in the state-specific distributions. The hidden Markov process was applied to a data set of 110 interevent times for earthquakes in New England from 1975 to 2000. Using the Baum-Welch method (Baum et al., Ann. Math. Statist. 41, 164-171), we estimate the transition probabilities, find the most likely sequence of states, and estimate the k means of the exponential distributions. Using k=2 states, we found the data were fit well by a mixture of two exponential distributions, with means of approximately 5 days and 95 days. The steady state model indicates that after approximately one fourth of the earthquakes, the waiting time until the next event had the first exponential distribution and three fourths of the time it had the second. Three and four state models were also fit to the data; the data were inconsistent with a three state model but were well fit by a four state model.

  12. Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research

    USGS Publications Warehouse

    Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.

    2002-01-01

    Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.

  13. Infinite Factorial Unbounded-State Hidden Markov Model.

    PubMed

    Valera, Isabel; Ruiz, Francisco J R; Perez-Cruz, Fernando

    2016-09-01

    There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markovmodels (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem. PMID:26571511

  14. Behavior Detection using Confidence Intervals of Hidden Markov Models

    SciTech Connect

    Griffin, Christopher H

    2009-01-01

    Markov models are commonly used to analyze real-world problems. Their combination of discrete states and stochastic transitions is suited to applications with deterministic and stochastic components. Hidden Markov Models (HMMs) are a class of Markov model commonly used in pattern recognition. Currently, HMMs recognize patterns using a maximum likelihood approach. One major drawback with this approach is that data observations are mapped to HMMs without considering the number of data samples available. Another problem is that this approach is only useful for choosing between HMMs. It does not provide a criteria for determining whether or not a given HMM adequately matches the data stream. In this work, we recognize complex behaviors using HMMs and confidence intervals. The certainty of a data match increases with the number of data samples considered. Receiver Operating Characteristic curves are used to find the optimal threshold for either accepting or rejecting a HMM description. We present one example using a family of HMM's to show the utility of the proposed approach. A second example using models extracted from a database of consumer purchases provides additional evidence that this approach can perform better than existing techniques.

  15. Probabilistic Independence Networks for Hidden Markov Probability Models

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic; Heckerman, Cavid; Jordan, Michael I

    1996-01-01

    In this paper we explore hidden Markov models(HMMs) and related structures within the general framework of probabilistic independence networks (PINs). The paper contains a self-contained review of the basic principles of PINs. It is shown that the well-known forward-backward (F-B) and Viterbi algorithms for HMMs are special cases of more general enference algorithms for arbitrary PINs.

  16. Effects of Latent Variable Nonnormality and Model Misspecification on Testing Structural Equation Modeling Interactions

    ERIC Educational Resources Information Center

    Sun, Shaojing; Konold, Timothy R.; Fan, Xitao

    2011-01-01

    Interest in testing interaction terms within the latent variable modeling framework has been on the rise in recent years. However, little is known about the influence of nonnormality and model misspecification on such models that involve latent variable interactions. The authors used Mattson's data generation method to control for latent variable…

  17. Using Parcels to Convert Path Analysis Models into Latent Variable Models

    ERIC Educational Resources Information Center

    Coffman, Donna L.; MacCallum, Robert C.

    2005-01-01

    The biasing effects of measurement error in path analysis models can be overcome by the use of latent variable models. In cases where path analysis is used in practice, it is often possible to use parcels as indicators of a latent variable. The purpose of the current study was to compare latent variable models in which parcels were used as…

  18. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  19. A cautionary note on testing latent variable models

    PubMed Central

    Ropovik, Ivan

    2015-01-01

    The article tackles the practice of testing latent variable models. The analysis covered recently published studies from 11 psychology journals varying in orientation and impact. Seventy-five studies that matched the criterion of applying some of the latent modeling techniques were reviewed. Results indicate the presence of a general tendency to ignore the model test (χ2) followed by the acceptance of approximate fit hypothesis without detailed model examination yielding relevant empirical evidence. Due to reduced sensitivity of such a procedure to confront theory with data, there is an almost invariable tendency to accept the theoretical model. This absence of model test consequences, manifested in frequently unsubstantiated neglect of evidence speaking against the model, thus implies the perilous question of whether such empirical testing of latent structures (the way it is widely applied) makes sense at all. PMID:26594192

  20. Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms.

    PubMed

    Langrock, Roland; Swihart, Bruce J; Caffo, Brian S; Punjabi, Naresh M; Crainiceanu, Ciprian M

    2013-08-30

    In this manuscript, we consider methods for the analysis of populations of electroencephalogram signals during sleep for the study of sleep disorders using hidden Markov models (HMMs). Notably, we propose an easily implemented method for simultaneously modeling multiple time series that involve large amounts of data. We apply these methods to study sleep-disordered breathing (SDB) in the Sleep Heart Health Study (SHHS), a landmark study of SDB and cardiovascular consequences. We use the entire, longitudinally collected, SHHS cohort to develop HMM population parameters, which we then apply to obtain subject-specific Markovian predictions. From these predictions, we create several indices of interest, such as transition frequencies between latent states. Our HMM analysis of electroencephalogram signals uncovers interesting findings regarding differences in brain activity during sleep between those with and without SDB. These findings include stability of the percent time spent in HMM latent states across matched diseased and non-diseased groups and differences in the rate of transitioning. PMID:23348835

  1. A Bayesian Model for the Estimation of Latent Interaction and Quadratic Effects When Latent Variables Are Non-Normally Distributed

    ERIC Educational Resources Information Center

    Kelava, Augustin; Nagengast, Benjamin

    2012-01-01

    Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…

  2. A Flexible Latent Trait Model for Response Times in Tests

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jorg-Tobias

    2012-01-01

    Latent trait models for response times in tests have become popular recently. One challenge for response time modeling is the fact that the distribution of response times can differ considerably even in similar tests. In order to reduce the need for tailor-made models, a model is proposed that unifies two popular approaches to response time…

  3. Markov Boundary Discovery with Ridge Regularized Linear Models

    PubMed Central

    Visweswaran, Shyam

    2016-01-01

    Ridge regularized linear models (RRLMs), such as ridge regression and the SVM, are a popular group of methods that are used in conjunction with coefficient hypothesis testing to discover explanatory variables with a significant multivariate association to a response. However, many investigators are reluctant to draw causal interpretations of the selected variables due to the incomplete knowledge of the capabilities of RRLMs in causal inference. Under reasonable assumptions, we show that a modified form of RRLMs can get “very close” to identifying a subset of the Markov boundary by providing a worst-case bound on the space of possible solutions. The results hold for any convex loss, even when the underlying functional relationship is nonlinear, and the solution is not unique. Our approach combines ideas in Markov boundary and sufficient dimension reduction theory. Experimental results show that the modified RRLMs are competitive against state-of-the-art algorithms in discovering part of the Markov boundary from gene expression data. PMID:27170915

  4. Discriminative Feature Selection via Multiclass Variable Memory Markov Model

    NASA Astrophysics Data System (ADS)

    Slonim, Noam; Bejerano, Gill; Fine, Shai; Tishby, Naftali

    2003-12-01

    We propose a novel feature selection method based on a variable memory Markov (VMM) model. The VMM was originally proposed as a generative model trying to preserve the original source statistics from training data. We extend this technique to simultaneously handle several sources, and further apply a new criterion to prune out nondiscriminative features out of the model. This results in a multiclass discriminative VMM (DVMM), which is highly efficient, scaling linearly with data size. Moreover, we suggest a natural scheme to sort the remaining features based on their discriminative power with respect to the sources at hand. We demonstrate the utility of our method for text and protein classification tasks.

  5. Hidden Markov Modeling for Weigh-In-Motion Estimation

    SciTech Connect

    Abercrombie, Robert K; Ferragut, Erik M; Boone, Shane

    2012-01-01

    This paper describes a hidden Markov model to assist in the weight measurement error that arises from complex vehicle oscillations of a system of discrete masses. Present reduction of oscillations is by a smooth, flat, level approach and constant, slow speed in a straight line. The model uses this inherent variability to assist in determining the true total weight and individual axle weights of a vehicle. The weight distribution dynamics of a generic moving vehicle were simulated. The model estimation converged to within 1% of the true mass for simulated data. The computational demands of this method, while much greater than simple averages, took only seconds to run on a desktop computer.

  6. Distribution system reliability assessment using hierarchical Markov modeling

    SciTech Connect

    Brown, R.E.; Gupta, S.; Christie, R.D.; Venkata, S.S.; Fletcher, R.

    1996-10-01

    Distribution system reliability assessment is concerned with power availability and power quality at each customer`s service entrance. This paper presents a new method, termed Hierarchical Markov Modeling (HMM), which can perform predictive distribution system reliability assessment. HMM is unique in that it decomposes the reliability model based on system topology, integrated protection systems, and individual protection devices. This structure, which easily accommodates the effects of backup protection, fault isolation, and load restoration, is compared to simpler reliability models. HMM is then used to assess the reliability of an existing utility distribution system and to explore the reliability impact of several design improvement options.

  7. A Dynamic Model for Induced Reactivation of Latent Virus

    PubMed Central

    Kepler, G.M.; Nguyen, H.K.; Webster-Cyriaque, J.; Banks, H.T.

    2007-01-01

    We develop a deterministic mathematical model to describe reactivation of latent virus by chemical inducers. This model is applied to the reactivation of latent KSHV in BCBL-1 cell cultures with butyrate as the inducing agent. Parameters for the model are first estimated from known properties of the exponentially growing, uninduced cell cultures. Additional parameters that are necessary to describe induction are determined from fits to experimental data from the literature. Our initial model provides good agreement with two independent sets of experimental data, but also points to the need for a new class of experiments which are required for further understanding of the underlying mechanisms. PMID:17045614

  8. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    ERIC Educational Resources Information Center

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  9. Using LISREL to Fit Nonlinear Latent Curve Models

    ERIC Educational Resources Information Center

    Blozis, Shelley A.; Harring, Jeffrey R.; Mels, Gerhard

    2008-01-01

    Latent curve models offer a flexible approach to the study of longitudinal data when the form of change in a response is nonlinear. This article considers such models that are conditionally linear with regard to the random coefficients at the 2nd level. This framework allows fixed parameters to enter a model linearly or nonlinearly, and random…

  10. Mediation Analysis in a Latent Growth Curve Modeling Framework

    ERIC Educational Resources Information Center

    von Soest, Tilmann; Hagtvet, Knut A.

    2011-01-01

    This article presents several longitudinal mediation models in the framework of latent growth curve modeling and provides a detailed account of how such models can be constructed. Logical and statistical challenges that might arise when such analyses are conducted are also discussed. Specifically, we discuss how the initial status (intercept) and…

  11. Latent Growth Curves within Developmental Structural Equation Models.

    ERIC Educational Resources Information Center

    McArdle, J. J.; Epstein, David

    1987-01-01

    Uses structural equation modeling to combine traditional ideas from repeated-measures ANOVA with some traditional ideas from longitudinal factor analysis. The model describes a latent growth curve model that permits the estimation of parameters representing individual and group dynamics. (Author/RH)

  12. Trajectory classification using switched dynamical hidden Markov models.

    PubMed

    Nascimento, Jacinto C; Figueiredo, Mario; Marques, Jorge S

    2010-05-01

    This paper proposes an approach for recognizing human activities (more specifically, pedestrian trajectories) in video sequences, in a surveillance context. A system for automatic processing of video information for surveillance purposes should be capable of detecting, recognizing, and collecting statistics of human activity, reducing human intervention as much as possible. In the method described in this paper, human trajectories are modeled as a concatenation of segments produced by a set of low level dynamical models. These low level models are estimated in an unsupervised fashion, based on a finite mixture formulation, using the expectation-maximization (EM) algorithm; the number of models is automatically obtained using a minimum message length (MML) criterion. This leads to a parsimonious set of models tuned to the complexity of the scene. We describe the switching among the low-level dynamic models by a hidden Markov chain; thus, the complete model is termed a switched dynamical hidden Markov model (SD-HMM). The performance of the proposed method is illustrated with real data from two different scenarios: a shopping center and a university campus. A set of human activities in both scenarios is successfully recognized by the proposed system. These experiments show the ability of our approach to properly describe trajectories with sudden changes. PMID:20051342

  13. Multilevel Latent Class Models with Dirichlet Mixing Distribution

    PubMed Central

    Di, Chong-Zhi; Bandeen-Roche, Karen

    2010-01-01

    Summary Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social science and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we consider multilevel latent class models, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data. PMID:20560936

  14. Hidden Markov Models for Detecting Aseismic Events in Southern California

    NASA Astrophysics Data System (ADS)

    Granat, R.

    2004-12-01

    We employ a hidden Markov model (HMM) to segment surface displacement time series collection by the Southern California Integrated Geodetic Network (SCIGN). These segmented time series are then used to detect regional events by observing the number of simultaneous mode changes across the network; if a large number of stations change at the same time, that indicates an event. The hidden Markov model (HMM) approach assumes that the observed data has been generated by an unobservable dynamical statistical process. The process is of a particular form such that each observation is coincident with the system being in a particular discrete state, which is interpreted as a behavioral mode. The dynamics are the model are constructed so that the next state is directly dependent only on the current state -- it is a first order Markov process. The model is completely described by a set of parameters: the initial state probabilities, the first order Markov chain state-to-state transition probabilities, and the probability distribution of observable outputs associated with each state. The result of this approach is that our segmentation decisions are based entirely on statistical changes in the behavior of the observed daily displacements. In general, finding the optimal model parameters to fit the data is a difficult problem. We present an innovative model fitting method that is unsupervised (i.e., it requires no labeled training data) and uses a regularized version of the expectation-maximization (EM) algorithm to ensure that model solutions are both robust with respect to initial conditions and of high quality. We demonstrate the reliability of the method as compared to standard model fitting methods and show that it results in lower noise in the mode change correlation signal used to detect regional events. We compare candidate events detected by this method to the seismic record and observe that most are not correlated with a significant seismic event. Our analysis

  15. Improved Hidden-Markov-Model Method Of Detecting Faults

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J.

    1994-01-01

    Method of automated, continuous monitoring to detect faults in complicated dynamic system based on hidden-Markov-model (HMM) approach. Simpler than another, recently proposed HMM method, but retains advantages of that method, including low susceptibility to false alarms, no need for mathematical model of dynamics of system under normal or faulty conditions, and ability to detect subtle changes in characteristics of monitored signals. Examples of systems monitored by use of this method include motors, turbines, and pumps critical in their applications; chemical-processing plants; powerplants; and biomedical systems.

  16. Markov Modeling with Soft Aggregation for Safety and Decision Analysis

    SciTech Connect

    COOPER,J. ARLIN

    1999-09-01

    The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and

  17. Semi-Nonparametric Methods for Detecting Latent Non-Normality: A Fusion of Latent Trait and Ordered Latent Class Modeling

    ERIC Educational Resources Information Center

    Schmitt, J. Eric; Mehta, Paras D.; Aggen, Steven H.; Kubarych, Thomas S.; Neale, Michael C.

    2006-01-01

    Ordered latent class analysis (OLCA) can be used to approximate unidimensional latent distributions. The main objective of this study is to evaluate the method of OLCA in detecting non-normality of an unobserved continuous variable (i.e., a common factor) used to explain the covariation between dichotomous item-level responses. Using simulation,…

  18. An Alternative Approach for Nonlinear Latent Variable Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Bentler, Peter M.

    2010-01-01

    In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…

  19. Class Extraction and Classification Accuracy in Latent Class Models

    ERIC Educational Resources Information Center

    Wu, Qiong

    2009-01-01

    Despite the increasing popularity of latent class models (LCM) in educational research, methodological studies have not yet accumulated much information on the appropriate application of this modeling technique, especially with regard to requirement on sample size and number of indicators. This dissertation study represented an initial attempt to…

  20. A Two-Parameter Latent Trait Model. Methodology Project.

    ERIC Educational Resources Information Center

    Choppin, Bruce

    On well-constructed multiple-choice tests, the most serious threat to measurement is not variation in item discrimination, but the guessing behavior that may be adopted by some students. Ways of ameliorating the effects of guessing are discussed, especially for problems in latent trait models. A new item response model, including an item parameter…

  1. Higher-Order Latent Trait Models for Cognitive Diagnosis

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Douglas, Jeffrey A.

    2004-01-01

    Higher-order latent traits are proposed for specifying the joint distribution of binary attributes in models for cognitive diagnosis. This approach results in a parsimonious model for the joint distribution of a high-dimensional attribute vector that is natural in many situations when specific cognitive information is sought but a less informative…

  2. Latent Partially Ordered Classification Models and Normal Mixtures

    ERIC Educational Resources Information Center

    Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith

    2013-01-01

    Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…

  3. Hidden Markov model using Dirichlet process for de-identification.

    PubMed

    Chen, Tao; Cullen, Richard M; Godwin, Marshall

    2015-12-01

    For the 2014 i2b2/UTHealth de-identification challenge, we introduced a new non-parametric Bayesian hidden Markov model using a Dirichlet process (HMM-DP). The model intends to reduce task-specific feature engineering and to generalize well to new data. In the challenge we developed a variational method to learn the model and an efficient approximation algorithm for prediction. To accommodate out-of-vocabulary words, we designed a number of feature functions to model such words. The results show the model is capable of understanding local context cues to make correct predictions without manual feature engineering and performs as accurately as state-of-the-art conditional random field models in a number of categories. To incorporate long-range and cross-document context cues, we developed a skip-chain conditional random field model to align the results produced by HMM-DP, which further improved the performance. PMID:26407642

  4. AIRWAY LABELING USING A HIDDEN MARKOV TREE MODEL

    PubMed Central

    Ross, James C.; Díaz, Alejandro A.; Okajima, Yuka; Wassermann, Demian; Washko, George R.; Dy, Jennifer; San José Estépar, Raúl

    2014-01-01

    We present a novel airway labeling algorithm based on a Hidden Markov Tree Model (HMTM). We obtain a collection of discrete points along the segmented airway tree using particles sampling [1] and establish topology using Kruskal’s minimum spanning tree algorithm. Following this, our HMTM algorithm probabilistically assigns labels to each point. While alternative methods label airway branches out to the segmental level, we describe a general method and demonstrate its performance out to the subsubsegmental level (two generations further than previously published approaches). We present results on a collection of 25 computed tomography (CT) datasets taken from a Chronic Obstructive Pulmonary Disease (COPD) study. PMID:25436039

  5. Markov-random-field modeling for linear seismic tomography.

    PubMed

    Kuwatani, Tatsu; Nagata, Kenji; Okada, Masato; Toriumi, Mitsuhiro

    2014-10-01

    We apply the Markov-random-field model to linear seismic tomography and propose a method to estimate the hyperparameters for the smoothness and the magnitude of the noise. Optimal hyperparameters can be determined analytically by minimizing the free energy function, which is defined by marginalizing the evaluation function. In synthetic inversion tests under various settings, the assumed velocity structures are successfully reconstructed, which shows the effectiveness and robustness of the proposed method. The proposed mathematical framework can be applied to inversion problems in various fields in the natural sciences. PMID:25375468

  6. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization

    PubMed Central

    Stifter, Cynthia A.; Rovine, Michael

    2016-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.

  7. A Markov chain model for reliability growth and decay

    NASA Technical Reports Server (NTRS)

    Siegrist, K.

    1982-01-01

    A mathematical model is developed to describe a complex system undergoing a sequence of trials in which there is interaction between the internal states of the system and the outcomes of the trials. For example, the model might describe a system undergoing testing that is redesigned after each failure. The basic assumptions for the model are that the state of the system after a trial depends probabilistically only on the state before the trial and on the outcome of the trial and that the outcome of a trial depends probabilistically only on the state of the system before the trial. It is shown that under these basic assumptions, the successive states form a Markov chain and the successive states and outcomes jointly form a Markov chain. General results are obtained for the transition probabilities, steady-state distributions, etc. A special case studied in detail describes a system that has two possible state ('repaired' and 'unrepaired') undergoing trials that have three possible outcomes ('inherent failure', 'assignable-cause' 'failure' and 'success'). For this model, the reliability function is computed explicitly and an optimal repair policy is obtained.

  8. Entropy, complexity, and Markov diagrams for random walk cancer models

    NASA Astrophysics Data System (ADS)

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  9. Entropy, complexity, and Markov diagrams for random walk cancer models

    PubMed Central

    Newton, Paul K.; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-01-01

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential. PMID:25523357

  10. Efficient Parallel Learning of Hidden Markov Chain Models on SMPs

    NASA Astrophysics Data System (ADS)

    Li, Lei; Fu, Bin; Faloutsos, Christos

    Quad-core cpus have been a common desktop configuration for today's office. The increasing number of processors on a single chip opens new opportunity for parallel computing. Our goal is to make use of the multi-core as well as multi-processor architectures to speed up large-scale data mining algorithms. In this paper, we present a general parallel learning framework, Cut-And-Stitch, for training hidden Markov chain models. Particularly, we propose two model-specific variants, CAS-LDS for learning linear dynamical systems (LDS) and CAS-HMM for learning hidden Markov models (HMM). Our main contribution is a novel method to handle the data dependencies due to the chain structure of hidden variables, so as to parallelize the EM-based parameter learning algorithm. We implement CAS-LDS and CAS-HMM using OpenMP on two supercomputers and a quad-core commercial desktop. The experimental results show that parallel algorithms using Cut-And-Stitch achieve comparable accuracy and almost linear speedups over the traditional serial version.

  11. Reduction Of Sizes Of Semi-Markov Reliability Models

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Palumbo, Dan L.

    1995-01-01

    Trimming technique reduces computational effort by order of magnitude while introducing negligible error. Error bound depends on only three parameters from semi-Markov model: maximum sum of rates for failure transitions leaving any state, maximum average holding time for recovery-mode state, and operating time for system. Error bound computed before any model generated, enabling modeler to decide immediately whether or not model can be trimmed. Trimming procedure specified by precise and easy description, making it easy to include trimming procedure in program generating mathematical models for use in assessing reliability. Typical application of technique in design of digital control systems required to be extremely reliable. In addition to aerospace applications, fault-tolerant design has growing importance in wide range of industrial applications.

  12. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  13. Searching For Valid Psychiatric Phenotypes: Discrete Latent Variable Models

    PubMed Central

    Leoutsakos, Jeannie-Marie S.; Zandi, Peter P.; Bandeen-Roche, Karen; Lyketsos, Constantine G.

    2010-01-01

    Introduction A primary challenge in psychiatric genetics is the lack of a completely validated system of classification for mental disorders. Appropriate statistical methods are needed to empirically derive more homogenous disorder subtypes. Methods Using the framework of Robins & Guze’s (1970) five phases, latent variable models to derive and validate diagnostic groups are described. A process of iterative validation is proposed through which refined phenotypes would facilitate research on genetics, pathogenesis, and treatment, which would in turn aid further refinement of disorder definitions. Conclusions Latent variable methods are useful tools for defining and validating psychiatric phenotypes. Further methodological research should address sample size issues and application to iterative validation. PMID:20187060

  14. Self-Organizing Hidden Markov Model Map (SOHMMM).

    PubMed

    Ferles, Christos; Stafylopatis, Andreas

    2013-12-01

    A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. PMID:24001407

  15. Meta-Analysis of Scale Reliability Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2013-01-01

    A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…

  16. Interrater Agreement Evaluation: A Latent Variable Modeling Approach

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; von Eye, Alexander; Marcoulides, George A.

    2013-01-01

    A latent variable modeling method for evaluation of interrater agreement is outlined. The procedure is useful for point and interval estimation of the degree of agreement among a given set of judges evaluating a group of targets. In addition, the approach allows one to test for identity in underlying thresholds across raters as well as to identify…

  17. On Latent Change Model Choice in Longitudinal Studies

    ERIC Educational Resources Information Center

    Raykov, Tenko; Zajacova, Anna

    2012-01-01

    An interval estimation procedure for proportion of explained observed variance in latent curve analysis is discussed, which can be used as an aid in the process of choosing between linear and nonlinear models. The method allows obtaining confidence intervals for the R[squared] indexes associated with repeatedly followed measures in longitudinal…

  18. Linking Academic Entitlement and Student Incivility Using Latent Means Modeling

    ERIC Educational Resources Information Center

    Kopp, Jason P.; Finney, Sara J.

    2013-01-01

    Academic entitlement has been theoretically linked with uncivil student behavior; however, this relationship has not been tested. To address this gap in the literature, the authors used latent means modeling to estimate the relationship between the Academic Entitlement Questionnaire and uncivil student behavior. The authors gathered scores on the…

  19. A hidden Markov model for space-time precipitation

    SciTech Connect

    Zucchini, W. ); Guttorp, P. )

    1991-08-01

    Stochastic models for precipitation events in space and time over mesoscale spatial areas have important applications in hydrology, both as input to runoff models and as parts of general circulation models (GCMs) of global climate. A family of multivariate models for the occurrence/nonoccurrence of precipitation at N sites is constructed by assuming a different probability of events at the sites for each of a number of unobservable climate states. The climate process is assumed to follow a Markov chain. Simple formulae for first- and second-order parameter functions are derived, and used to find starting values for a numerical maximization of the likelihood. The method is illustrated by applying it to data for one site in Washington and to data for a network in the Great plains.

  20. Stylistic gait synthesis based on hidden Markov models

    NASA Astrophysics Data System (ADS)

    Tilmanne, Joëlle; Moinet, Alexis; Dutoit, Thierry

    2012-12-01

    In this work we present an expressive gait synthesis system based on hidden Markov models (HMMs), following and modifying a procedure originally developed for speaking style adaptation, in speech synthesis. A large database of neutral motion capture walk sequences was used to train an HMM of average walk. The model was then used for automatic adaptation to a particular style of walk using only a small amount of training data from the target style. The open source toolkit that we adapted for motion modeling also enabled us to take into account the dynamics of the data and to model accurately the duration of each HMM state. We also address the assessment issue and propose a procedure for qualitative user evaluation of the synthesized sequences. Our tests show that the style of these sequences can easily be recognized and look natural to the evaluators.

  1. Active Inference for Binary Symmetric Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Galstyan, Aram

    2015-10-01

    We consider active maximum a posteriori (MAP) inference problem for hidden Markov models (HMM), where, given an initial MAP estimate of the hidden sequence, we select to label certain states in the sequence to improve the estimation accuracy of the remaining states. We focus on the binary symmetric HMM, and employ its known mapping to 1d Ising model in random fields. From the statistical physics viewpoint, the active MAP inference problem reduces to analyzing the ground state of the 1d Ising model under modified external fields. We develop an analytical approach and obtain a closed form solution that relates the expected error reduction to model parameters under the specified active inference scheme. We then use this solution to determine most optimal active inference scheme in terms of error reduction, and examine the relation of those schemes to heuristic principles of uncertainty reduction and solution unicity.

  2. Robust Hidden Markov Models for Geophysical Data Analysis

    NASA Astrophysics Data System (ADS)

    Granat, R. A.

    2002-12-01

    We employed robust hidden Markov models (HMMs) to perform statistical analysis of seismic events and crustal deformation. These models allowed us to classify different kinds of events or modes of deformation, and furthermore gave us a statistical basis for understanding relationships between different classes. A hidden Markov model is a statistical model for ordered data (typically in time). The observed data is assumed to have been generated by an unobservable statistical process of a particular form. This process is such that each observation is coincident with the system being in a particular discrete state. Furthermore, the next state is dependent on the current state; in other words, it is a first order Markov process. The model is completely described by a set of model parameters: the initial state probabilities, the first order Markov chain state-to-state transition probabilities, and the probabilities of observable outputs associated with each state. Application of the model to data involves optimizing these model parameters with respect to some function of the observations, typically the likelihood of the observations given the model. Our work focused on the fact that this objective function typically has a number of local maxima that is exponential in the model size (the number of states). This means that not only is it very difficult to discover the global maximum, but also that results can vary widely between applications of the model. For some domains, such as speech processing, sufficient a priori information about the system is available such that this problem can be avoided. However, for general scientific analysis, such a priori information is often not available, especially in cases where the HMM is being used as an exploratory tool for scientific understanding. Such was the case for the geophysical data sets used in this work. Our approach involves analytical location of sub-optimal local maxima; once the locations of these maxima have been found

  3. Using Markov state models to study self-assembly.

    PubMed

    Perkett, Matthew R; Hagan, Michael F

    2014-06-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  4. Perspective: Markov models for long-timescale biomolecular dynamics

    SciTech Connect

    Schwantes, C. R.; McGibbon, R. T.; Pande, V. S.

    2014-09-07

    Molecular dynamics simulations have the potential to provide atomic-level detail and insight to important questions in chemical physics that cannot be observed in typical experiments. However, simply generating a long trajectory is insufficient, as researchers must be able to transform the data in a simulation trajectory into specific scientific insights. Although this analysis step has often been taken for granted, it deserves further attention as large-scale simulations become increasingly routine. In this perspective, we discuss the application of Markov models to the analysis of large-scale biomolecular simulations. We draw attention to recent improvements in the construction of these models as well as several important open issues. In addition, we highlight recent theoretical advances that pave the way for a new generation of models of molecular kinetics.

  5. Using Markov state models to study self-assembly

    PubMed Central

    Perkett, Matthew R.; Hagan, Michael F.

    2014-01-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  6. A coupled hidden Markov model for disease interactions.

    PubMed

    Sherlock, Chris; Xifara, Tatiana; Telfer, Sandra; Begon, Mike

    2013-08-01

    To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis-Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. PMID:24223436

  7. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1993-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) perpendicular to x), 1 less than or equal to i is less than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  8. Wave propagation modeling with non-Markov phase screens.

    PubMed

    Charnotskii, Mikhail

    2016-04-01

    A recently introduced [J. Opt. Soc. Am. A30, 479 (2013)10.1364/JOSAA.30.000479JOAOD61084-7529] sparse spectrum (SS) model of statistically homogeneous random fields makes it possible to generate 3D samples of refractive-index fluctuations with prescribed spectral density at a very reasonable computational cost. The SS technique can be used in the framework of the split-step Fourier method for numerical simulation of wave propagation in turbulence. It allows generation of the phase screen samples that are free from the limitations of the Markov approximation, which is commonly used for theoretical description and numerical modeling of optical waves propagation through turbulence. We investigate statistics of these phase screens and present a numerical algorithm for their generation. PMID:27140765

  9. Hidden Markov models for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic J. (Inventor)

    1995-01-01

    The invention is a system failure monitoring method and apparatus which learns the symptom-fault mapping directly from training data. The invention first estimates the state of the system at discrete intervals in time. A feature vector x of dimension k is estimated from sets of successive windows of sensor data. A pattern recognition component then models the instantaneous estimate of the posterior class probability given the features, p(w(sub i) (vertical bar)/x), 1 less than or equal to i isless than or equal to m. Finally, a hidden Markov model is used to take advantage of temporal context and estimate class probabilities conditioned on recent past history. In this hierarchical pattern of information flow, the time series data is transformed and mapped into a categorical representation (the fault classes) and integrated over time to enable robust decision-making.

  10. Selection between Linear Factor Models and Latent Profile Models Using Conditional Covariances

    ERIC Educational Resources Information Center

    Halpin, Peter F.; Maraun, Michael D.

    2010-01-01

    A method for selecting between K-dimensional linear factor models and (K + 1)-class latent profile models is proposed. In particular, it is shown that the conditional covariances of observed variables are constant under factor models but nonlinear functions of the conditioning variable under latent profile models. The performance of a convenient…

  11. Identifying Seismicity Levels via Poisson Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Orfanogiannaki, K.; Karlis, D.; Papadopoulos, G. A.

    2010-08-01

    Poisson Hidden Markov models (PHMMs) are introduced to model temporal seismicity changes. In a PHMM the unobserved sequence of states is a finite-state Markov chain and the distribution of the observation at any time is Poisson with rate depending only on the current state of the chain. Thus, PHMMs allow a region to have varying seismicity rate. We applied the PHMM to model earthquake frequencies in the seismogenic area of Killini, Ionian Sea, Greece, between period 1990 and 2006. Simulations of data from the assumed model showed that it describes quite well the true data. The earthquake catalogue is dominated by main shocks occurring in 1993, 1997 and 2002. The time plot of PHMM seismicity states not only reproduces the three seismicity clusters but also quantifies the seismicity level and underlies the degree of strength of the serial dependence of the events at any point of time. Foreshock activity becomes quite evident before the three sequences with the gradual transition to states of cascade seismicity. Traditional analysis, based on the determination of highly significant changes of seismicity rates, failed to recognize foreshocks before the 1997 main shock due to the low number of events preceding that main shock. Then, PHMM has better performance than traditional analysis since the transition from one state to another does not only depend on the total number of events involved but also on the current state of the system. Therefore, PHMM recognizes significant changes of seismicity soon after they start, which is of particular importance for real-time recognition of foreshock activities and other seismicity changes.

  12. Markov Model of Accident Progression at Fukushima Daiichi

    SciTech Connect

    Cuadra A.; Bari R.; Cheng, L-Y; Ginsberg, T.; Lehner, J.; Martinez-Guridi, G.; Mubayi, V.; Pratt, T.; Yue, M.

    2012-11-11

    On March 11, 2011, a magnitude 9.0 earthquake followed by a tsunami caused loss of offsite power and disabled the emergency diesel generators, leading to a prolonged station blackout at the Fukushima Daiichi site. After successful reactor trip for all operating reactors, the inability to remove decay heat over an extended period led to boil-off of the water inventory and fuel uncovery in Units 1-3. A significant amount of metal-water reaction occurred, as evidenced by the quantities of hydrogen generated that led to hydrogen explosions in the auxiliary buildings of the Units 1 & 3, and in the de-fuelled Unit 4. Although it was assumed that extensive fuel damage, including fuel melting, slumping, and relocation was likely to have occurred in the core of the affected reactors, the status of the fuel, vessel, and drywell was uncertain. To understand the possible evolution of the accident conditions at Fukushima Daiichi, a Markov model of the likely state of one of the reactors was constructed and executed under different assumptions regarding system performance and reliability. The Markov approach was selected for several reasons: It is a probabilistic model that provides flexibility in scenario construction and incorporates time dependence of different model states. It also readily allows for sensitivity and uncertainty analyses of different failure and repair rates of cooling systems. While the analysis was motivated by a need to gain insight on the course of events for the damaged units at Fukushima Daiichi, the work reported here provides a more general analytical basis for studying and evaluating severe accident evolution over extended periods of time. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accidents.

  13. A Spline Regression Model for Latent Variables

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.

    2014-01-01

    Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…

  14. Stochastic Approximation Methods for Latent Regression Item Response Models. Research Report. ETS RR-09-09

    ERIC Educational Resources Information Center

    von Davier, Matthias; Sinharay, Sandip

    2009-01-01

    This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…

  15. ASSESSING PHENOTYPIC CORRELATION THROUGH THE MULTIVARIATE PHYLOGENETIC LATENT LIABILITY MODEL

    PubMed Central

    Cybis, Gabriela B.; Sinsheimer, Janet S.; Bedford, Trevor; Mather, Alison E.; Lemey, Philippe; Suchard, Marc A.

    2016-01-01

    Understanding which phenotypic traits are consistently correlated throughout evolution is a highly pertinent problem in modern evolutionary biology. Here, we propose a multivariate phylogenetic latent liability model for assessing the correlation between multiple types of data, while simultaneously controlling for their unknown shared evolutionary history informed through molecular sequences. The latent formulation enables us to consider in a single model combinations of continuous traits, discrete binary traits, and discrete traits with multiple ordered and unordered states. Previous approaches have entertained a single data type generally along a fixed history, precluding estimation of correlation between traits and ignoring uncertainty in the history. We implement our model in a Bayesian phylogenetic framework, and discuss inference techniques for hypothesis testing. Finally, we showcase the method through applications to columbine flower morphology, antibiotic resistance in Salmonella, and epitope evolution in influenza. PMID:27053974

  16. Pediatric heart sound segmentation using hidden Markov model.

    PubMed

    Sedighian, Pouye; Subudhi, Andrew W; Scalzo, Fabien; Asgari, Shadnaz

    2014-01-01

    Recent advances in technology have enabled automatic cardiac auscultation using digital stethoscopes. This in turn creates the need for development of algorithms capable of automatic segmentation of heart sounds. Pediatric heart sound segmentation is a challenging task due to various confounding factors including the significant influence of respiration on children's heart sounds. The current work investigates the application of homomorphic filtering and Hidden Markov Model for the purpose of segmenting pediatric heart sounds. The efficacy of the proposed method is evaluated on the publicly available Pascal Challenge dataset and its performance is compared with those of three other existing methods. The results show that our proposed method achieves an accuracy of 92.4%±1.1% and 93.5%±1.1% in identifying the first and second heart sound components, respectively, and is superior to three other existing methods in terms of accuracy or computational complexity. PMID:25571237

  17. Natural movement generation using hidden Markov models and principal components.

    PubMed

    Kwon, Junghyun; Park, Frank C

    2008-10-01

    Recent studies have shown that the perception of natural movements-in the sense of being "humanlike"-depends on both joint and task space characteristics of the movement. This paper proposes a movement generation framework that merges two established techniques from gesture recognition and motion generation-hidden Markov models (HMMs) and principal components-into an efficient and reliable means of generating natural movements, which uniformly considers joint and task space characteristics. Given human motion data that are classified into several movement categories, for each category, the principal components extracted from the joint trajectories are used as basis elements. An HMM is, in turn, designed and trained for each movement class using the human task space motion data. Natural movements are generated as the optimal linear combination of principal components, which yields the highest probability for the trained HMM. Experimental case studies with a prototype humanoid robot demonstrate the various advantages of our proposed framework. PMID:18784005

  18. Projection methods for the numerical solution of Markov chain models

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  19. Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation

    NASA Astrophysics Data System (ADS)

    Andreão, Rodrigo Varejão; Boudy, Jérôme

    2006-12-01

    This work aims at providing new insights on the electrocardiogram (ECG) segmentation problem using wavelets. The wavelet transform has been originally combined with a hidden Markov models (HMMs) framework in order to carry out beat segmentation and classification. A group of five continuous wavelet functions commonly used in ECG analysis has been implemented and compared using the same framework. All experiments were realized on the QT database, which is composed of a representative number of ambulatory recordings of several individuals and is supplied with manual labels made by a physician. Our main contribution relies on the consistent set of experiments performed. Moreover, the results obtained in terms of beat segmentation and premature ventricular beat (PVC) detection are comparable to others works reported in the literature, independently of the type of the wavelet. Finally, through an original concept of combining two wavelet functions in the segmentation stage, we achieve our best performances.

  20. A Markov decision model for determining optimal outpatient scheduling.

    PubMed

    Patrick, Jonathan

    2012-06-01

    Managing an efficient outpatient clinic can often be complicated by significant no-show rates and escalating appointment lead times. One method that has been proposed for avoiding the wasted capacity due to no-shows is called open or advanced access. The essence of open access is "do today's demand today". We develop a Markov Decision Process (MDP) model that demonstrates that a short booking window does significantly better than open access. We analyze a number of scenarios that explore the trade-off between patient-related measures (lead times) and physician- or system-related measures (revenue, overtime and idle time). Through simulation, we demonstrate that, over a wide variety of potential scenarios and clinics, the MDP policy does as well or better than open access in terms of minimizing costs (or maximizing profits) as well as providing more consistent throughput. PMID:22089944

  1. Comparison of glycosyltransferase families using the profile hidden Markov model.

    PubMed

    Kikuchi, Norihiro; Kwon, Yeon-Dae; Gotoh, Masanori; Narimatsu, Hisashi

    2003-10-17

    In order to investigate the relationship between glycosyltransferase families and the motif for them, we classified 47 glycosyltransferase families in the CAZy database into four superfamilies, GTS-A, -B, -C, and -D, using a profile Hidden Markov Model method. On the basis of the classification and the similarity between GTS-A and nucleotidylyltransferase family catalyzing the synthesis of nucleotide-sugar, we proposed that ancient oligosaccharide might have been synthesized by the origin of GTS-B whereas the origin of GTS-A might be the gene encoding for synthesis of nucleotide-sugar as the donor and have evolved to glycosyltransferases to catalyze the synthesis of divergent carbohydrates. We also suggested that the divergent evolution of each superfamily in the corresponding subcellular component has increased the complexities of eukaryotic carbohydrate structure. PMID:14521949

  2. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models.

    PubMed

    Pan, Xiaoliang; Schwartz, Steven D

    2016-07-14

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy. PMID:27347759

  3. Modeling healthcare data using multiple-channel latent Dirichlet allocation.

    PubMed

    Lu, Hsin-Min; Wei, Chih-Ping; Hsiao, Fei-Yuan

    2016-04-01

    Information and communications technologies have enabled healthcare institutions to accumulate large amounts of healthcare data that include diagnoses, medications, and additional contextual information such as patient demographics. To gain a better understanding of big healthcare data and to develop better data-driven clinical decision support systems, we propose a novel multiple-channel latent Dirichlet allocation (MCLDA) approach for modeling diagnoses, medications, and contextual information in healthcare data. The proposed MCLDA model assumes that a latent health status group structure is responsible for the observed co-occurrences among diagnoses, medications, and contextual information. Using a real-world research testbed that includes one million healthcare insurance claim records, we investigate the utility of MCLDA. Our empirical evaluation results suggest that MCLDA is capable of capturing the comorbidity structures and linking them with the distribution of medications. Moreover, MCLDA is able to identify the pairing between diagnoses and medications in a record based on the assigned latent groups. MCLDA can also be employed to predict missing medications or diagnoses given partial records. Our evaluation results also show that, in most cases, MCLDA outperforms alternative methods such as logistic regressions and the k-nearest-neighbor (KNN) model for two prediction tasks, i.e., medication and diagnosis prediction. Thus, MCLDA represents a promising approach to modeling healthcare data for clinical decision support. PMID:26898516

  4. Classifying movement behaviour in relation to environmental conditions using hidden Markov models.

    PubMed

    Patterson, Toby A; Basson, Marinelle; Bravington, Mark V; Gunn, John S

    2009-11-01

    1. Linking the movement and behaviour of animals to their environment is a central problem in ecology. Through the use of electronic tagging and tracking (ETT), collection of in situ data from free-roaming animals is now commonplace, yet statistical approaches enabling direct relation of movement observations to environmental conditions are still in development. 2. In this study, we examine the hidden Markov model (HMM) for behavioural analysis of tracking data. HMMs allow for prediction of latent behavioural states while directly accounting for the serial dependence prevalent in ETT data. Updating the probability of behavioural switches with tag or remote-sensing data provides a statistical method that links environmental data to behaviour in a direct and integrated manner. 3. It is important to assess the reliability of state categorization over the range of time-series lengths typically collected from field instruments and when movement behaviours are similar between movement states. Simulation with varying lengths of times series data and contrast between average movements within each state was used to test the HMMs ability to estimate movement parameters. 4. To demonstrate the methods in a realistic setting, the HMMs were used to categorize resident and migratory phases and the relationship between movement behaviour and ocean temperature using electronic tagging data from southern bluefin tuna (Thunnus maccoyii). Diagnostic tools to evaluate the suitability of different models and inferential methods for investigating differences in behaviour between individuals are also demonstrated. PMID:19563470

  5. Comparing quantum versus Markov random walk models of judgements measured by rating scales

    PubMed Central

    Wang, Z.; Busemeyer, J. R.

    2016-01-01

    Quantum and Markov random walk models are proposed for describing how people evaluate stimuli using rating scales. To empirically test these competing models, we conducted an experiment in which participants judged the effectiveness of public health service announcements from either their own personal perspective or from the perspective of another person. The order of the self versus other judgements was manipulated, which produced significant sequential effects. The quantum and Markov models were fitted to the data using the same number of parameters, and the model comparison strongly supported the quantum over the Markov model. PMID:26621984

  6. Identification and classification of conopeptides using profile Hidden Markov Models.

    PubMed

    Laht, Silja; Koua, Dominique; Kaplinski, Lauris; Lisacek, Frédérique; Stöcklin, Reto; Remm, Maido

    2012-03-01

    Conopeptides are small toxins produced by predatory marine snails of the genus Conus. They are studied with increasing intensity due to their potential in neurosciences and pharmacology. The number of existing conopeptides is estimated to be 1 million, but only about 1000 have been described to date. Thanks to new high-throughput sequencing technologies the number of known conopeptides is likely to increase exponentially in the near future. There is therefore a need for a fast and accurate computational method for identification and classification of the novel conopeptides in large data sets. 62 profile Hidden Markov Models (pHMMs) were built for prediction and classification of all described conopeptide superfamilies and families, based on the different parts of the corresponding protein sequences. These models showed very high specificity in detection of new peptides. 56 out of 62 models do not give a single false positive in a test with the entire UniProtKB/Swiss-Prot protein sequence database. Our study demonstrates the usefulness of mature peptide models for automatic classification with accuracy of 96% for the mature peptide models and 100% for the pro- and signal peptide models. Our conopeptide profile HMMs can be used for finding and annotation of new conopeptides from large datasets generated by transcriptome or genome sequencing. To our knowledge this is the first time this kind of computational method has been applied to predict all known conopeptide superfamilies and some conopeptide families. PMID:22244925

  7. A hidden markov model derived structural alphabet for proteins.

    PubMed

    Camproux, A C; Gautier, R; Tufféry, P

    2004-06-01

    Understanding and predicting protein structures depends on the complexity and the accuracy of the models used to represent them. We have set up a hidden Markov model that discretizes protein backbone conformation as series of overlapping fragments (states) of four residues length. This approach learns simultaneously the geometry of the states and their connections. We obtain, using a statistical criterion, an optimal systematic decomposition of the conformational variability of the protein peptidic chain in 27 states with strong connection logic. This result is stable over different protein sets. Our model fits well the previous knowledge related to protein architecture organisation and seems able to grab some subtle details of protein organisation, such as helix sub-level organisation schemes. Taking into account the dependence between the states results in a description of local protein structure of low complexity. On an average, the model makes use of only 8.3 states among 27 to describe each position of a protein structure. Although we use short fragments, the learning process on entire protein conformations captures the logic of the assembly on a larger scale. Using such a model, the structure of proteins can be reconstructed with an average accuracy close to 1.1A root-mean-square deviation and for a complexity of only 3. Finally, we also observe that sequence specificity increases with the number of states of the structural alphabet. Such models can constitute a very relevant approach to the analysis of protein architecture in particular for protein structure prediction. PMID:15147844

  8. Weighted-indexed semi-Markov models for modeling financial returns

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo

    2012-07-01

    In this paper we propose a new stochastic model based on a generalization of semi-Markov chains for studying the high frequency price dynamics of traded stocks. We assume that the financial returns are described by a weighted-indexed semi-Markov chain model. We show, through Monte Carlo simulations, that the model is able to reproduce important stylized facts of financial time series such as the first-passage-time distributions and the persistence of volatility. The model is applied to data from the Italian and German stock markets from 1 January 2007 until the end of December 2010.

  9. Marginal Maximum Likelihood Estimation of a Latent Variable Model with Interaction

    ERIC Educational Resources Information Center

    Cudeck, Robert; Harring, Jeffrey R.; du Toit, Stephen H. C.

    2009-01-01

    There has been considerable interest in nonlinear latent variable models specifying interaction between latent variables. Although it seems to be only slightly more complex than linear regression without the interaction, the model that includes a product of latent variables cannot be estimated by maximum likelihood assuming normality.…

  10. Modeling Coordination in Multiple Simultaneous Latent Change Scores

    PubMed Central

    Butner, Jonathan E.; Berg, Cynthia A.; Baucom, Brian R.; Wiebe, Deborah J.

    2016-01-01

    Coordination is a taxonomy of how processes change together through time. It depicts the changes of two or more variables in terms of the strength and consistency of their covariation, the directionality of their covariation (i.e., do increases in one variable correspond with increases [in-phase] or decreases [anti-phase] in the other variable), and the timing of their covariation (i.e., do both variables change at the same rate or does one variable change faster than the other). Current methods are able to characterize some, but not all, of these aspects of coordination and provide incomplete information as a result. The current study addresses this limitation by demonstrating that multivariate latent change score models can be used to fully differentiate all possible coordination patterns. Furthermore, one can then expand coordination beyond the two outcome case to test arrangements of underlying coordination mechanisms or patterns. Examples using two simultaneous latent change score models and four simultaneous latent change score models illustrate this approach within the context of adolescents and parents regulating type 1 diabetes. PMID:26735358

  11. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  12. Modeling Pacing Behavior and Test Speededness Using Latent Growth Curve Models

    ERIC Educational Resources Information Center

    Kahraman, Nilufer; Cuddy, Monica M.; Clauser, Brian E.

    2013-01-01

    This research explores the usefulness of latent growth curve modeling in the study of pacing behavior and test speededness. Examinee response times from a high-stakes, computerized examination, collected before and after the examination was subjected to a timing change, were analyzed using a series of latent growth curve models to detect…

  13. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  14. A Latent Transition Analysis of Academic Intrinsic Motivation from Childhood through Adolescence

    ERIC Educational Resources Information Center

    Marcoulides, George A.; Gottfried, Adele Eskeles; Gottfried, Allen W.; Oliver, Pamella H.

    2008-01-01

    A longitudinal modeling approach was utilized to determine the existence of latent classes with regard to academic intrinsic motivation and the points of stability and transition of individuals between and within classes. A special type of latent Markov Chain model using "Mplus" was fit to data from the Fullerton Longitudinal Study, with academic…

  15. Accelerating Monte Carlo Markov chains with proxy and error models

    NASA Astrophysics Data System (ADS)

    Josset, Laureline; Demyanov, Vasily; Elsheikh, Ahmed H.; Lunati, Ivan

    2015-12-01

    In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in the presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the "exact" model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

  16. Detection and diagnosis of bearing faults using shift-invariant dictionary learning and hidden Markov model

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Chen, Jin; Dong, Guangming; Wang, Ran

    2016-05-01

    Many existing signal processing methods usually select a predefined basis function in advance. This basis functions selection relies on a priori knowledge about the target signal, which is always infeasible in engineering applications. Dictionary learning method provides an ambitious direction to learn basis atoms from data itself with the objective of finding the underlying structure embedded in signal. As a special case of dictionary learning methods, shift-invariant dictionary learning (SIDL) reconstructs an input signal using basis atoms in all possible time shifts. The property of shift-invariance is very suitable to extract periodic impulses, which are typical symptom of mechanical fault signal. After learning basis atoms, a signal can be decomposed into a collection of latent components, each is reconstructed by one basis atom and its corresponding time-shifts. In this paper, SIDL method is introduced as an adaptive feature extraction technique. Then an effective approach based on SIDL and hidden Markov model (HMM) is addressed for machinery fault diagnosis. The SIDL-based feature extraction is applied to analyze both simulated and experiment signal with specific notch size. This experiment shows that SIDL can successfully extract double impulses in bearing signal. The second experiment presents an artificial fault experiment with different bearing fault type. Feature extraction based on SIDL method is performed on each signal, and then HMM is used to identify its fault type. This experiment results show that the proposed SIDL-HMM has a good performance in bearing fault diagnosis.

  17. Recognition of surgical skills using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Speidel, Stefanie; Zentek, Tom; Sudra, Gunther; Gehrig, Tobias; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is a highly complex medical discipline and can be regarded as a major breakthrough in surgical technique. A minimally invasive intervention requires enhanced motor skills to deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To recognize and analyze the current situation for context-aware assistance, we need intraoperative sensor data and a model of the intervention. Characteristics of a situation are the performed activity, the used instruments, the surgical objects and the anatomical structures. Important information about the surgical activity can be acquired by recognizing the surgical gesture performed. Surgical gestures in minimally invasive surgery like cutting, knot-tying or suturing are here referred to as surgical skills. We use the motion data from the endoscopic instruments to classify and analyze the performed skill and even use it for skill evaluation in a training scenario. The system uses Hidden Markov Models (HMM) to model and recognize a specific surgical skill like knot-tying or suturing with an average recognition rate of 92%.

  18. A comparison of weighted ensemble and Markov state model methodologies

    NASA Astrophysics Data System (ADS)

    Feng, Haoyun; Costaouec, Ronan; Darve, Eric; Izaguirre, Jesús A.

    2015-06-01

    Computation of reaction rates and elucidation of reaction mechanisms are two of the main goals of molecular dynamics (MD) and related simulation methods. Since it is time consuming to study reaction mechanisms over long time scales using brute force MD simulations, two ensemble methods, Markov State Models (MSMs) and Weighted Ensemble (WE), have been proposed to accelerate the procedure. Both approaches require clustering of microscopic configurations into networks of "macro-states" for different purposes. MSMs model a discretization of the original dynamics on the macro-states. Accuracy of the model significantly relies on the boundaries of macro-states. On the other hand, WE uses macro-states to formulate a resampling procedure that kills and splits MD simulations for achieving better efficiency of sampling. Comparing to MSMs, accuracy of WE rate predictions is less sensitive to the definition of macro-states. Rigorous numerical experiments using alanine dipeptide and penta-alanine support our analyses. It is shown that MSMs introduce significant biases in the computation of reaction rates, which depend on the boundaries of macro-states, and Accelerated Weighted Ensemble (AWE), a formulation of weighted ensemble that uses the notion of colors to compute fluxes, has reliable flux estimation on varying definitions of macro-states. Our results suggest that whereas MSMs provide a good idea of the metastable sets and visualization of overall dynamics, AWE provides reliable rate estimations requiring less efforts on defining macro-states on the high dimensional conformational space.

  19. Decoding coalescent hidden Markov models in linear time

    PubMed Central

    Harris, Kelley; Sheehan, Sara; Kamm, John A.; Song, Yun S.

    2014-01-01

    In many areas of computational biology, hidden Markov models (HMMs) have been used to model local genomic features. In particular, coalescent HMMs have been used to infer ancient population sizes, migration rates, divergence times, and other parameters such as mutation and recombination rates. As more loci, sequences, and hidden states are added to the model, however, the runtime of coalescent HMMs can quickly become prohibitive. Here we present a new algorithm for reducing the runtime of coalescent HMMs from quadratic in the number of hidden time states to linear, without making any additional approximations. Our algorithm can be incorporated into various coalescent HMMs, including the popular method PSMC for inferring variable effective population sizes. Here we implement this algorithm to speed up our demographic inference method diCal, which is equivalent to PSMC when applied to a sample of two haplotypes. We demonstrate that the linear-time method can reconstruct a population size change history more accurately than the quadratic-time method, given similar computation resources. We also apply the method to data from the 1000 Genomes project, inferring a high-resolution history of size changes in the European population. PMID:25340178

  20. A clustering approach for estimating parameters of a profile hidden Markov model.

    PubMed

    Aghdam, Rosa; Pezeshk, Hamid; Malekpour, Seyed Amir; Shemehsavar, Soudabeh; Eslahchi, Changiz

    2013-01-01

    A Profile Hidden Markov Model (PHMM) is a standard form of a Hidden Markov Models used for modeling protein and DNA sequence families based on multiple alignment. In this paper, we implement Baum-Welch algorithm and the Bayesian Monte Carlo Markov Chain (BMCMC) method for estimating parameters of small artificial PHMM. In order to improve the prediction accuracy of the estimation of the parameters of the PHMM, we classify the training data using the weighted values of sequences in the PHMM then apply an algorithm for estimating parameters of the PHMM. The results show that the BMCMC method performs better than the Maximum Likelihood estimation. PMID:23865165

  1. Grey-Markov model with state membership degree and its application

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Li, Bingjun; Liu, Fang

    2013-10-01

    In the Grey-Markov forecasting, the extent of a given state that a research object belongs to is expressed as state membership degree. The state membership degree can help compensate for the inaccurate states division and improve the predicted results. Based on the Grey-Markov forecasting analysis, this paper uses the central triangle albino function to calculate the state membership degrees of research objects and determine the state transition probability. Thereby, the new model achieves the improvement of conventional Grey-Markov model. Taking the grain production of Henan Province as an example, the validity and applicability of the improved model are verified.

  2. Ensemble hidden Markov models with application to landmine detection

    NASA Astrophysics Data System (ADS)

    Hamdi, Anis; Frigui, Hichem

    2015-12-01

    We introduce an ensemble learning method for temporal data that uses a mixture of hidden Markov models (HMM). We hypothesize that the data are generated by K models, each of which reflects a particular trend in the data. The proposed approach, called ensemble HMM (eHMM), is based on clustering within the log-likelihood space and has two main steps. First, one HMM is fit to each of the N individual training sequences. For each fitted model, we evaluate the log-likelihood of each sequence. This results in an N-by-N log-likelihood distance matrix that will be partitioned into K groups using a relational clustering algorithm. In the second step, we learn the parameters of one HMM per cluster. We propose using and optimizing various training approaches for the different K groups depending on their size and homogeneity. In particular, we investigate the maximum likelihood (ML), the minimum classification error (MCE), and the variational Bayesian (VB) training approaches. Finally, to test a new sequence, its likelihood is computed in all the models and a final confidence value is assigned by combining the models' outputs using an artificial neural network. We propose both discrete and continuous versions of the eHMM. Our approach was evaluated on a real-world application for landmine detection using ground-penetrating radar (GPR). Results show that both the continuous and discrete eHMM can identify meaningful and coherent HMM mixture components that describe different properties of the data. Each HMM mixture component models a group of data that share common attributes. These attributes are reflected in the mixture model's parameters. The results indicate that the proposed method outperforms the baseline HMM that uses one model for each class in the data.

  3. Optical character recognition of handwritten Arabic using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M.

    2011-04-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  4. A markov model based analysis of stochastic biochemical systems.

    PubMed

    Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajial K

    2007-01-01

    The molecular networks regulating basic physiological processes in a cell are generally converted into rate equations assuming the number of biochemical molecules as deterministic variables. At steady state these rate equations gives a set of differential equations that are solved using numerical methods. However, the stochastic cellular environment motivates us to propose a mathematical framework for analyzing such biochemical molecular networks. The stochastic simulators that solve a system of differential equations includes this stochasticity in the model, but suffer from simulation stiffness and require huge computational overheads. This paper describes a new markov chain based model to simulate such complex biological systems with reduced computation and memory overheads. The central idea is to transform the continuous domain chemical master equation (CME) based method into a discrete domain of molecular states with corresponding state transition probabilities and times. Our methodology allows the basic optimization schemes devised for the CME and can also be extended to reduce the computational and memory overheads appreciably at the cost of accuracy. The simulation results for the standard Enzyme-Kinetics and Transcriptional Regulatory systems show promising correspondence with the CME based methods and point to the efficacy of our scheme. PMID:17951818

  5. Optical character recognition of handwritten Arabic using hidden Markov models

    SciTech Connect

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M

    2011-01-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  6. Analysis of nanopore data using hidden Markov models

    PubMed Central

    Schreiber, Jacob; Karplus, Kevin

    2015-01-01

    Motivation: Nanopore-based sequencing techniques can reconstruct properties of biosequences by analyzing the sequence-dependent ionic current steps produced as biomolecules pass through a pore. Typically this involves alignment of new data to a reference, where both reference construction and alignment have been performed by hand. Results: We propose an automated method for aligning nanopore data to a reference through the use of hidden Markov models. Several features that arise from prior processing steps and from the class of enzyme used can be simply incorporated into the model. Previously, the M2MspA nanopore was shown to be sensitive enough to distinguish between cytosine, methylcytosine and hydroxymethylcytosine. We validated our automated methodology on a subset of that data by automatically calculating an error rate for the distinction between the three cytosine variants and show that the automated methodology produces a 2–3% error rate, lower than the 10% error rate from previous manual segmentation and alignment. Availability and implementation: The data, output, scripts and tutorials replicating the analysis are available at https://github.com/UCSCNanopore/Data/tree/master/Automation. Contact: karplus@soe.ucsc.edu or jmschreiber91@gmail.com Supplementary information: Supplementary data are available from Bioinformatics online. PMID:25649617

  7. Mapping eQTL Networks with Mixed Graphical Markov Models

    PubMed Central

    Tur, Inma; Roverato, Alberto; Castelo, Robert

    2014-01-01

    Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303

  8. A Network of SCOP Hidden Markov Models and Its Analysis

    PubMed Central

    2011-01-01

    Background The Structural Classification of Proteins (SCOP) database uses a large number of hidden Markov models (HMMs) to represent families and superfamilies composed of proteins that presumably share the same evolutionary origin. However, how the HMMs are related to one another has not been examined before. Results In this work, taking into account the processes used to build the HMMs, we propose a working hypothesis to examine the relationships between HMMs and the families and superfamilies that they represent. Specifically, we perform an all-against-all HMM comparison using the HHsearch program (similar to BLAST) and construct a network where the nodes are HMMs and the edges connect similar HMMs. We hypothesize that the HMMs in a connected component belong to the same family or superfamily more often than expected under a random network connection model. Results show a pattern consistent with this working hypothesis. Moreover, the HMM network possesses features distinctly different from the previously documented biological networks, exemplified by the exceptionally high clustering coefficient and the large number of connected components. Conclusions The current finding may provide guidance in devising computational methods to reduce the degree of overlaps between the HMMs representing the same superfamilies, which may in turn enable more efficient large-scale sequence searches against the database of HMMs. PMID:21635719

  9. Efficient inference of hidden Markov models from large observation sequences

    NASA Astrophysics Data System (ADS)

    Priest, Benjamin W.; Cybenko, George

    2016-05-01

    The hidden Markov model (HMM) is widely used to model time series data. However, the conventional Baum- Welch algorithm is known to perform poorly when applied to long observation sequences. The literature contains several alternatives that seek to improve the memory or time complexity of the algorithm. However, for an HMM with N states and an observation sequence of length T, these alternatives require at best O(N) space and O(N2T) time. Given the preponderance of applications that increasingly deal with massive amounts of data, an alternative whose time is O(T)+poly(N) is desired. Recent research presents an alternative to the Baum-Welch algorithm that relies on nonnegative matrix factorization. This document examines the space complexity of this alternative approach and proposes further optimizations using approaches adopted from the matrix sketching literature. The result is a streaming algorithm whose space complexity is constant and time complexity is linear with respect to the size of the observation sequence. The paper also presents a batch algorithm that allow for even further improved space complexity at the expense of an additional pass over the observation sequence.

  10. Supervised learning of hidden Markov models for sequence discrimination

    SciTech Connect

    Mamitsuka, Hiroshi

    1997-12-01

    We present two supervised learning algorithms for hidden Markov models (HMMs) for sequence discrimination. When we model a class of sequences with an HMM, conventional learning algorithms for HMMs have trained the HMM with training examples belonging to the class, i.e. positive examples alone, while both of our methods allow us to use negative examples as well as positive examples. One of our algorithms minimizes a kind of distance between a target likelihood of a given training sequence and an actual likelihood of the sequence, which is obtained by a given HMM, using an additive type of parameter updating based on a gradient-descent learning. The other algorithm maximizes a criterion which represents a kind of ratio of the likelihood of a positive example to the likelihood of the total example, using a multiplicative type of parameter updating which is more efficient in actual computation time than the additive type one. We compare our two methods with two conventional methods on a type of cross-validation of actual motif classification experiments. Experimental results show that in terms of the average number of classification errors, our two methods out-perform the two conventional algorithms. 14 refs., 4 figs., 1 tab.

  11. Latent Growth Modeling of Longitudinal Data: A Finite Growth Mixture Modeling Approach.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Duncan, Susan C.; Acock, Alan

    2001-01-01

    Presents a new approach that extends conventional random coefficient growth models to incorporate a categorical latent trajectory variable representing latent classes or mixtures. Provides a didactic example of this new methodology using adolescent alcohol use data and discusses the method as a tool for mapping hypotheses of development onto…

  12. Hui and Walter’s latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data

    PubMed Central

    Bermingham, Mairead L.; Handel, Ian G.; Glass, Elizabeth J.; Woolliams, John A.; Bronsvoort, B. Mark de Clare; McBride, Stewart H.; Skuce, Robin A.; Allen, Adrian R.; McDowell, Stanley W. J.; Bishop, Stephen C.

    2015-01-01

    Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies. PMID:26148538

  13. Using Cox cluster processes to model latent pulse location patterns in hormone concentration data.

    PubMed

    Carlson, Nichole E; Grunwald, Gary K; Johnson, Timothy D

    2016-04-01

    Many hormones, including stress hormones, are intermittently secreted as pulses. The pulsatile location process, describing times when pulses occur, is a regulator of the entire stress system. Characterizing the pulse location process is particularly difficult because the pulse locations are latent; only hormone concentration at sampled times is observed. In addition, for stress hormones the process may change both over the day and relative to common external stimuli. This potentially results in clustering in pulse locations across subjects. Current approaches to characterizing the pulse location process do not capture subject-to-subject clustering in locations. Here we show how a Bayesian Cox cluster process may be adapted as a model of the pulse location process. We show that this novel model of pulse locations is capable of detecting circadian rhythms in pulse locations, clustering of pulse locations between subjects, and identifying exogenous controllers of pulse events. We integrate our pulse location process into a model of hormone concentration, the observed data. A spatial birth-and-death Markov chain Monte Carlo algorithm is used for estimation. We exhibit the strengths of this model on simulated data and adrenocorticotropic and cortisol data collected to study the stress axis in depressed and non-depressed women. PMID:26553914

  14. Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy.

    PubMed

    Abler, Daniel; Kanellopoulos, Vassiliki; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken

    2013-07-01

    Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of 'general Markov models', providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results. PMID:23824126

  15. High-order hidden Markov model for piecewise linear processes and applications to speech recognition.

    PubMed

    Lee, Lee-Min; Jean, Fu-Rong

    2016-08-01

    The hidden Markov models have been widely applied to systems with sequential data. However, the conditional independence of the state outputs will limit the output of a hidden Markov model to be a piecewise constant random sequence, which is not a good approximation for many real processes. In this paper, a high-order hidden Markov model for piecewise linear processes is proposed to better approximate the behavior of a real process. A parameter estimation method based on the expectation-maximization algorithm was derived for the proposed model. Experiments on speech recognition of noisy Mandarin digits were conducted to examine the effectiveness of the proposed method. Experimental results show that the proposed method can reduce the recognition error rate compared to a baseline hidden Markov model. PMID:27586781

  16. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    NASA Astrophysics Data System (ADS)

    Johnston, Kyle B.; Peter, Adrian M.

    2016-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. Our research focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

  17. Hidden Markov chain modeling for epileptic networks identification.

    PubMed

    Le Cam, Steven; Louis-Dorr, Valérie; Maillard, Louis

    2013-01-01

    The partial epileptic seizures are often considered to be caused by a wrong balance between inhibitory and excitatory interneuron connections within a focal brain area. These abnormal balances are likely to result in loss of functional connectivities between remote brain structures, while functional connectivities within the incriminated zone are enhanced. The identification of the epileptic networks underlying these hypersynchronies are expected to contribute to a better understanding of the brain mechanisms responsible for the development of the seizures. In this objective, threshold strategies are commonly applied, based on synchrony measurements computed from recordings of the electrophysiologic brain activity. However, such methods are reported to be prone to errors and false alarms. In this paper, we propose a hidden Markov chain modeling of the synchrony states with the aim to develop a reliable machine learning methods for epileptic network inference. The method is applied on a real Stereo-EEG recording, demonstrating consistent results with the clinical evaluations and with the current knowledge on temporal lobe epilepsy. PMID:24110697

  18. ENSO informed Drought Forecasting Using Nonhomogeneous Hidden Markov Chain Model

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Yoo, J.; Kim, T.

    2013-12-01

    The study aims at developing a new scheme to investigate the potential use of ENSO (El Niño/Southern Oscillation) for drought forecasting. In this regard, objective of this study is to extend a previously developed nonhomogeneous hidden Markov chain model (NHMM) to identify climate states associated with drought that can be potentially used to forecast drought conditions using climate information. As a target variable for forecasting, SPI(standardized precipitation index) is mainly utilized. This study collected monthly precipitation data over 56 stations that cover more than 30 years and K-means cluster analysis using drought properties was applied to partition regions into mutually exclusive clusters. In this study, six main clusters were distinguished through the regionalization procedure. For each cluster, the NHMM was applied to estimate the transition probability of hidden states as well as drought conditions informed by large scale climate indices (e.g. SOI, Nino1.2, Nino3, Nino3.4, MJO and PDO). The NHMM coupled with large scale climate information shows promise as a technique for forecasting drought scenarios. A more detailed explanation of large scale climate patterns associated with the identified hidden states will be provided with anomaly composites of SSTs and SLPs. Acknowledgement This research was supported by a grant(11CTIPC02) from Construction Technology Innovation Program (CTIP) funded by Ministry of Land, Transport and Maritime Affairs of Korean government.

  19. User’s manual for basic version of MCnest Markov chain nest productivity model

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  20. Technical manual for basic version of the Markov chain nest productivity model (MCnest)

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  1. Regional land salinization assessment and simulation through cellular automaton-Markov modeling and spatial pattern analysis.

    PubMed

    Zhou, De; Lin, Zhulu; Liu, Liming

    2012-11-15

    Land salinization and desalinization are complex processes affected by both biophysical and human-induced driving factors. Conventional approaches of land salinization assessment and simulation are either too time consuming or focus only on biophysical factors. The cellular automaton (CA)-Markov model, when coupled with spatial pattern analysis, is well suited for regional assessments and simulations of salt-affected landscapes since both biophysical and socioeconomic data can be efficiently incorporated into a geographic information system framework. Our hypothesis set forth that the CA-Markov model can serve as an alternative tool for regional assessment and simulation of land salinization or desalinization. Our results suggest that the CA-Markov model, when incorporating biophysical and human-induced factors, performs better than the model which did not account for these factors when simulating the salt-affected landscape of the Yinchuan Plain (China) in 2009. In general, the CA-Markov model is best suited for short-term simulations and the performance of the CA-Markov model is largely determined by the availability of high-quality, high-resolution socioeconomic data. The coupling of the CA-Markov model with spatial pattern analysis provides an improved understanding of spatial and temporal variations of salt-affected landscape changes and an option to test different soil management scenarios for salinity management. PMID:23085467

  2. Group association test using a hidden Markov model.

    PubMed

    Cheng, Yichen; Dai, James Y; Kooperberg, Charles

    2016-04-01

    In the genomic era, group association tests are of great interest. Due to the overwhelming number of individual genomic features, the power of testing for association of a single genomic feature at a time is often very small, as are the effect sizes for most features. Many methods have been proposed to test association of a trait with a group of features within a functional unit as a whole, e.g. all SNPs in a gene, yet few of these methods account for the fact that generally a substantial proportion of the features are not associated with the trait. In this paper, we propose to model the association for each feature in the group as a mixture of features with no association and features with non-zero associations to explicitly account for the possibility that a fraction of features may not be associated with the trait while other features in the group are. The feature-level associations are first estimated by generalized linear models; the sequence of these estimated associations is then modeled by a hidden Markov chain. To test for global association, we develop a modified likelihood ratio test based on a log-likelihood function that ignores higher order dependency plus a penalty term. We derive the asymptotic distribution of the likelihood ratio test under the null hypothesis. Furthermore, we obtain the posterior probability of association for each feature, which provides evidence of feature-level association and is useful for potential follow-up studies. In simulations and data application, we show that our proposed method performs well when compared with existing group association tests especially when there are only few features associated with the outcome. PMID:26420797

  3. A graph theoretic approach to global earthquake sequencing: A Markov chain model

    NASA Astrophysics Data System (ADS)

    Vasudevan, K.; Cavers, M. S.

    2012-12-01

    We construct a directed graph to represent a Markov chain of global earthquake sequences and analyze the statistics of transition probabilities linked to earthquake zones. For earthquake zonation, we consider the simplified plate boundary template of Kagan, Bird, and Jackson (KBJ template, 2010). We demonstrate the applicability of the directed graph approach to hazard-related forecasting using some of the properties of graphs that represent the finite Markov chain. We extend the present study to consider Bird's 52-plate zonation (2003) describing the global earthquakes at and within plate boundaries to gain further insight into the usefulness of digraphs corresponding to a Markov chain model.

  4. Target characterization using hidden Markov models and classifiers

    SciTech Connect

    Kil, D.H.; Shin, F.B.; Fricke, J.R.

    1996-06-01

    We investigate various projection spaces and extract key parameters or features from each space to characterize low-frequency active (LFA) target returns in a low-dimensional space. The projection spaces encompass (1) time-embedded phase map, (2) segmented matched filter output, (3) various time-frequency distribution functions, such as Reduced Interference Distribution, to capture time-varying echo signatures, and (4) principal component inversion for signal cleaning and characterization. We utilize both dynamic and static features and parameterize them with a hybrid classification methodology consisting of hidden Markov models, classifiers, and data fusion. This clue identification and evaluation process is complemented by concurrent work on target physics to enhance our understanding of the target echo formation process. As a function of target aspect, we can observe (1) back scatter dominated by axial n=0 modes propagating back and forth along the length of the shell, (2) direct scatter from shell discontinuities, (3) helical or creeping waves from phase matching between the acoustic waves and membrane waves (both shear and compressional), and (4) the ``array response`` of the shell, with coherent superposition of elemental scattering sites along the shell leading to a peak response near broadside. As a function of target structures (the empty shell and the ribbed/complex shells), we see considerable complexity brought about by multiple reflections of the membrane waves between the rings. We show the merit of fusing parameters estimated from these projection spaces in characterizing LFA target returns using the MIT/NRL scaled model data. Our hybrid classifiers outperform the matched filter-based recognizer by an average of 5-25%;. This improvement can be attributed to a combination of good features that maximize inter-class discrimination and appropriate classifier topologies that exploit the underlying multi-dimensional feature probability density function.

  5. On Latent Trait Estimation in Multidimensional Compensatory Item Response Models.

    PubMed

    Wang, Chun

    2015-06-01

    Making inferences from IRT-based test scores requires accurate and reliable methods of person parameter estimation. Given an already calibrated set of item parameters, the latent trait could be estimated either via maximum likelihood estimation (MLE) or using Bayesian methods such as maximum a posteriori (MAP) estimation or expected a posteriori (EAP) estimation. In addition, Warm's (Psychometrika 54:427-450, 1989) weighted likelihood estimation method was proposed to reduce the bias of the latent trait estimate in unidimensional models. In this paper, we extend the weighted MLE method to multidimensional models. This new method, denoted as multivariate weighted MLE (MWLE), is proposed to reduce the bias of the MLE even for short tests. MWLE is compared to alternative estimators (i.e., MLE, MAP and EAP) and shown, both analytically and through simulations studies, to be more accurate in terms of bias than MLE while maintaining a similar variance. In contrast, Bayesian estimators (i.e., MAP and EAP) result in biased estimates with smaller variability. PMID:24604245

  6. Bayesian Analysis of Multivariate Latent Curve Models with Nonlinear Longitudinal Latent Effects

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum; Hser, Yih-Ing

    2009-01-01

    In longitudinal studies, investigators often measure multiple variables at multiple time points and are interested in investigating individual differences in patterns of change on those variables. Furthermore, in behavioral, social, psychological, and medical research, investigators often deal with latent variables that cannot be observed directly…

  7. Dimensionality of the Latent Structure and Item Selection via Latent Class Multidimensional IRT Models

    ERIC Educational Resources Information Center

    Bartolucci, F.; Montanari, G. E.; Pandolfi, S.

    2012-01-01

    With reference to a questionnaire aimed at assessing the performance of Italian nursing homes on the basis of the health conditions of their patients, we investigate two relevant issues: dimensionality of the latent structure and discriminating power of the items composing the questionnaire. The approach is based on a multidimensional item…

  8. Stochastic model of homogeneous coding and latent periodicity in DNA sequences.

    PubMed

    Chaley, Maria; Kutyrkin, Vladimir

    2016-02-01

    The concept of latent triplet periodicity in coding DNA sequences which has been earlier extensively discussed is confirmed in the result of analysis of a number of eukaryotic genomes, where latent periodicity of a new type, called profile periodicity, is recognized in the CDSs. Original model of Stochastic Homogeneous Organization of Coding (SHOC-model) in textual string is proposed. This model explains the existence of latent profile periodicity and regularity in DNA sequences. PMID:26656186

  9. Modeling sediment transport as a spatio-temporal Markov process.

    NASA Astrophysics Data System (ADS)

    Heyman, Joris; Ancey, Christophe

    2014-05-01

    Despite a century of research about sediment transport by bedload occuring in rivers, its constitutive laws remain largely unknown. The proof being that our ability to predict mid-to-long term transported volumes within reasonable confidence interval is almost null. The intrinsic fluctuating nature of bedload transport may be one of the most important reasons why classical approaches fail. Microscopic probabilistic framework has the advantage of taking into account these fluctuations at the particle scale, to understand their effect on the macroscopic variables such as sediment flux. In this framework, bedload transport is seen as the random motion of particles (sand, gravel, pebbles...) over a two-dimensional surface (the river bed). The number of particles in motion, as well as their velocities, are random variables. In this talk, we show how a simple birth-death Markov model governing particle motion on a regular lattice accurately reproduces the spatio-temporal correlations observed at the macroscopic level. Entrainment, deposition and transport of particles by the turbulent fluid (air or water) are supposed to be independent and memoryless processes that modify the number of particles in motion. By means of the Poisson representation, we obtained a Fokker-Planck equation that is exactly equivalent to the master equation and thus valid for all cell sizes. The analysis shows that the number of moving particles evolves locally far from thermodynamic equilibrium. Several analytical results are presented and compared to experimental data. The index of dispersion (or variance over mean ratio) is proved to grow from unity at small scales to larger values at larger scales confirming the non Poisonnian behavior of bedload transport. Also, we study the one and two dimensional K-function, which gives the average number of moving particles located in a ball centered at a particle centroid function of the ball's radius.

  10. Markov Model of Severe Accident Progression and Management

    SciTech Connect

    Bari, R.A.; Cheng, L.; Cuadra,A.; Ginsberg,T.; Lehner,J.; Martinez-Guridi,G.; Mubayi,V.; Pratt,W.T.; Yue, M.

    2012-06-25

    The earthquake and tsunami that hit the nuclear power plants at the Fukushima Daiichi site in March 2011 led to extensive fuel damage, including possible fuel melting, slumping, and relocation at the affected reactors. A so-called feed-and-bleed mode of reactor cooling was initially established to remove decay heat. The plan was to eventually switch over to a recirculation cooling system. Failure of feed and bleed was a possibility during the interim period. Furthermore, even if recirculation was established, there was a possibility of its subsequent failure. Decay heat has to be sufficiently removed to prevent further core degradation. To understand the possible evolution of the accident conditions and to have a tool for potential future hypothetical evaluations of accidents at other nuclear facilities, a Markov model of the state of the reactors was constructed in the immediate aftermath of the accident and was executed under different assumptions of potential future challenges. This work was performed at the request of the U.S. Department of Energy to explore 'what-if' scenarios in the immediate aftermath of the accident. The work began in mid-March and continued until mid-May 2011. The analysis had the following goals: (1) To provide an overall framework for describing possible future states of the damaged reactors; (2) To permit an impact analysis of 'what-if' scenarios that could lead to more severe outcomes; (3) To determine approximate probabilities of alternative end-states under various assumptions about failure and repair times of cooling systems; (4) To infer the reliability requirements of closed loop cooling systems needed to achieve stable core end-states and (5) To establish the importance for the results of the various cooling system and physical phenomenological parameters via sensitivity calculations.

  11. A continuous time version and a generalization of a Markov-recapture model for trapping experiments.

    PubMed

    Alpizar-Jara, Russell; Smith, Charles E

    2008-01-01

    Wileyto et al. [E.P. Wileyto, W.J. Ewens, M.A. Mullen, Markov-recapture population estimates: a tool for improving interpretation of trapping experiments, Ecology 75 (1994) 1109] propose a four-state discrete time Markov process, which describes the structure of a marking-capture experiment as a method of population estimation. They propose this method primarily for estimation of closed insect populations. Their method provides a mark-recapture estimate from a single trap observation by allowing subjects to mark themselves. The estimate of the unknown population size is based on the assumption of a closed population and a simple Markov model in which the rates of marking, capture, and recapture are assumed to be equal. Using the one step transition probability matrix of their model, we illustrate how to go from an embedded discrete time Markov process to a continuous time Markov process assuming exponentially distributed holding times. We also compute the transition probabilities after time t for the continuous time case and compare the limiting behavior of the continuous and discrete time processes. Finally, we generalize their model by relaxing the assumption of equal per capita rates for marking, capture, and recapture. Other questions about how their results change when using a continuous time Markov process are examined. PMID:18556026

  12. Modeling Relations among Discrete Developmental Processes: A General Approach to Associative Latent Transition Analysis

    ERIC Educational Resources Information Center

    Bray, Bethany C.; Lanza, Stephanie T.; Collins, Linda M.

    2010-01-01

    To understand one developmental process, it is often helpful to investigate its relations with other developmental processes. Statistical methods that model development in multiple processes simultaneously over time include latent growth curve models with time-varying covariates, multivariate latent growth curve models, and dual trajectory models.…

  13. Comparison of the unavailability using FT model and Markov model of SDS1

    SciTech Connect

    Cho, S.; Jiang, J.

    2006-07-01

    In Candu nuclear power plants, the unavailability of the shutdown system number 1 (SDS1) is not only a function of the component failure rate, but also the test interval, the test duration, and the channel configuration. In classical fault tree methods, the effect of the configuration change and the test duration is usually ignored. To analyze their effects on the unavailability, a dynamic fault tree model and a Markov process model of the shutdown system number 1 have been developed and quantified using the high neutron power trip channel data in this paper. It is shown that the Markov process model of the SDS1 trip channel provides the most conservative results, while the dynamic fault tree model offers the least conservative one. The unavailability decreases as the test frequency and the test duration increases in both models. (authors)

  14. Latent Tuberculosis Infection: Myths, Models, and Molecular Mechanisms

    PubMed Central

    Dutta, Noton K.

    2014-01-01

    SUMMARY The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including “latency,” “persistence,” “dormancy,” and “antibiotic tolerance.” Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, “dormant” bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4+ and CD8+ T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI. PMID:25184558

  15. A discrete latent factor model for smoking, cancer and mortality.

    PubMed

    Howdon, Daniel; Jones, Andrew M

    2015-07-01

    This paper investigates the relationship between smoking and ill-health, with a focus on the onset of cancer. A discrete latent factor model for smoking and health outcomes, allowing for these to be commonly affected by unobserved factors, is jointly estimated, using the British Health and Lifestyle Survey (HALS) dataset. Post-estimation predictions suggest the reduction in time-to-cancer to be 5.7 years for those with an exposure of 30 pack-years, compared to never-smokers. Estimation of posterior probabilities for class membership shows that individuals in certain classes exhibit similar observables but highly divergent health outcomes, suggesting that unobserved factors influence outcomes. The use of a joint model changes the results substantially. The results show that failure to account for unobserved heterogeneity leads to differences in survival times between those with different smoking exposures to be overestimated by more than 50% (males, with 30 pack-years of exposure). PMID:25898078

  16. MARKOV Model Application to Proliferation Risk Reduction of an Advanced Nuclear System

    SciTech Connect

    Bari,R.A.

    2008-07-13

    The Generation IV International Forum (GIF) emphasizes proliferation resistance and physical protection (PR&PP) as a main goal for future nuclear energy systems. The GIF PR&PP Working Group has developed a methodology for the evaluation of these systems. As an application of the methodology, Markov model has been developed for the evaluation of proliferation resistance and is demonstrated for a hypothetical Example Sodium Fast Reactor (ESFR) system. This paper presents the case of diversion by the facility owner/operator to obtain material that could be used in a nuclear weapon. The Markov model is applied to evaluate material diversion strategies. The following features of the Markov model are presented here: (1) An effective detection rate has been introduced to account for the implementation of multiple safeguards approaches at a given strategic point; (2) Technical failure to divert material is modeled as intrinsic barriers related to the design of the facility or the properties of the material in the facility; and (3) Concealment to defeat or degrade the performance of safeguards is recognized in the Markov model. Three proliferation risk measures are calculated directly by the Markov model: the detection probability, technical failure probability, and proliferation time. The material type is indicated by an index that is based on the quality of material diverted. Sensitivity cases have been done to demonstrate the effects of different modeling features on the measures of proliferation resistance.

  17. A Latent Transition Analysis Model for Assessing Change in Cognitive Skills

    ERIC Educational Resources Information Center

    Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan

    2016-01-01

    Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…

  18. Addressing the Problem of Switched Class Labels in Latent Variable Mixture Model Simulation Studies

    ERIC Educational Resources Information Center

    Tueller, Stephen J.; Drotar, Scott; Lubke, Gitta H.

    2011-01-01

    The discrimination between alternative models and the detection of latent classes in the context of latent variable mixture modeling depends on sample size, class separation, and other aspects that are related to power. Prior to a mixture analysis it is useful to investigate model performance in a simulation study that reflects the research…

  19. Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots

    ERIC Educational Resources Information Center

    Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.

    2013-01-01

    Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…

  20. Stochastic Ordering of the Latent Trait by the Sum Score Under Various Polytomous IRT Models

    ERIC Educational Resources Information Center

    van der Ark, L. Andries

    2005-01-01

    The sum score is often used to order respondents on the latent trait measured by the test. Therefore, it is desirable that under the chosen model the sum score stochastically orders the latent trait. It is known that unlike dichotomous item response theory (IRT) models, most polytomous IRT models do not imply stochastic ordering. It is unknown,…

  1. Examining Parallelism of Sets of Psychometric Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Patelis, Thanos; Marcoulides, George A.

    2011-01-01

    A latent variable modeling approach that can be used to examine whether several psychometric tests are parallel is discussed. The method consists of sequentially testing the properties of parallel measures via a corresponding relaxation of parameter constraints in a saturated model or an appropriately constructed latent variable model. The…

  2. Confidence Intervals for a Semiparametric Approach to Modeling Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.

    2011-01-01

    Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…

  3. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    NASA Astrophysics Data System (ADS)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-06-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  4. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    SciTech Connect

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-06-19

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  5. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  6. Super-Resolution Using Hidden Markov Model and Bayesian Detection Estimation Framework

    NASA Astrophysics Data System (ADS)

    Humblot, Fabrice; Mohammad-Djafari, Ali

    2006-12-01

    This paper presents a new method for super-resolution (SR) reconstruction of a high-resolution (HR) image from several low-resolution (LR) images. The HR image is assumed to be composed of homogeneous regions. Thus, the a priori distribution of the pixels is modeled by a finite mixture model (FMM) and a Potts Markov model (PMM) for the labels. The whole a priori model is then a hierarchical Markov model. The LR images are assumed to be obtained from the HR image by lowpass filtering, arbitrarily translation, decimation, and finally corruption by a random noise. The problem is then put in a Bayesian detection and estimation framework, and appropriate algorithms are developed based on Markov chain Monte Carlo (MCMC) Gibbs sampling. At the end, we have not only an estimate of the HR image but also an estimate of the classification labels which leads to a segmentation result.

  7. Deriving non-homogeneous DNA Markov chain models by cluster analysis algorithm minimizing multiple alignment entropy.

    PubMed

    Borodovsky, M; Peresetsky, A

    1994-09-01

    Non-homogeneous Markov chain models can represent biologically important regions of DNA sequences. The statistical pattern that is described by these models is usually weak and was found primarily because of strong biological indications. The general method for extracting similar patterns is presented in the current paper. The algorithm incorporates cluster analysis, multiple alignment and entropy minimization. The method was first tested using the set of DNA sequences produced by Markov chain generators. It was shown that artificial gene sequences, which initially have been randomly set up along the multiple alignment panels, are aligned according to the hidden triplet phase. Then the method was applied to real protein-coding sequences and the resulting alignment clearly indicated the triplet phase and produced the parameters of the optimal 3-periodic non-homogeneous Markov chain model. These Markov models were already employed in the GeneMark gene prediction algorithm, which is used in genome sequencing projects. The algorithm can also handle the case in which the sequences to be aligned reveal different statistical patterns, such as Escherichia coli protein-coding sequences belonging to Class II and Class III. The algorithm accepts a random mix of sequences from different classes, and is able to separate them into two groups (clusters), align each cluster separately, and define a non-homogeneous Markov chain model for each sequence cluster. PMID:7952897

  8. Hypothesis Generation in Latent Growth Curve Modeling Using Principal Components

    ERIC Educational Resources Information Center

    Davison, Mark L.

    2008-01-01

    While confirmatory latent growth curve analyses provide procedures for testing hypotheses about latent growth curves underlying data, one must first derive hypotheses to be tested. It is argued that such hypotheses should be generated from a combination of theory and exploratory data analyses. An exploratory components analysis is described and…

  9. Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.

    2014-01-01

    The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…

  10. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    ERIC Educational Resources Information Center

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…